1 /*
2 * PowerPC atomic bit operations.
3 *
4 * Merged version by David Gibson <david@gibson.dropbear.id.au>.
5 * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don
6 * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard. They
7 * originally took it from the ppc32 code.
8 *
9 * Within a word, bits are numbered LSB first. Lot's of places make
10 * this assumption by directly testing bits with (val & (1<<nr)).
11 * This can cause confusion for large (> 1 word) bitmaps on a
12 * big-endian system because, unlike little endian, the number of each
13 * bit depends on the word size.
14 *
15 * The bitop functions are defined to work on unsigned longs, so for a
16 * ppc64 system the bits end up numbered:
17 * |63..............0|127............64|191...........128|255...........192|
18 * and on ppc32:
19 * |31.....0|63....32|95....64|127...96|159..128|191..160|223..192|255..224|
20 *
21 * There are a few little-endian macros used mostly for filesystem
22 * bitmaps, these work on similar bit arrays layouts, but
23 * byte-oriented:
24 * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56|
25 *
26 * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit
27 * number field needs to be reversed compared to the big-endian bit
28 * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b).
29 *
30 * This program is free software; you can redistribute it and/or
31 * modify it under the terms of the GNU General Public License
32 * as published by the Free Software Foundation; either version
33 * 2 of the License, or (at your option) any later version.
34 */
35
36 #ifndef _ASM_POWERPC_BITOPS_H
37 #define _ASM_POWERPC_BITOPS_H
38
39 #ifdef __KERNEL__
40
41 #ifndef _LINUX_BITOPS_H
42 #error only <linux/bitops.h> can be included directly
43 #endif
44
45 #include <linux/compiler.h>
46 #include <asm/asm-compat.h>
47 #include <asm/synch.h>
48
49 /* PPC bit number conversion */
50 #define PPC_BITLSHIFT(be) (BITS_PER_LONG - 1 - (be))
51 #define PPC_BIT(bit) (1UL << PPC_BITLSHIFT(bit))
52 #define PPC_BITMASK(bs, be) ((PPC_BIT(bs) - PPC_BIT(be)) | PPC_BIT(bs))
53
54 #include <asm/barrier.h>
55
56 /* Macro for generating the ***_bits() functions */
57 #define DEFINE_BITOP(fn, op, prefix) \
58 static __inline__ void fn(unsigned long mask, \
59 volatile unsigned long *_p) \
60 { \
61 unsigned long old; \
62 unsigned long *p = (unsigned long *)_p; \
63 __asm__ __volatile__ ( \
64 prefix \
65 "1:" PPC_LLARX(%0,0,%3,0) "\n" \
66 stringify_in_c(op) "%0,%0,%2\n" \
67 PPC405_ERR77(0,%3) \
68 PPC_STLCX "%0,0,%3\n" \
69 "bne- 1b\n" \
70 : "=&r" (old), "+m" (*p) \
71 : "r" (mask), "r" (p) \
72 : "cc", "memory"); \
73 }
74
75 DEFINE_BITOP(set_bits, or, "")
76 DEFINE_BITOP(clear_bits, andc, "")
DEFINE_BITOP(clear_bits_unlock,andc,PPC_RELEASE_BARRIER)77 DEFINE_BITOP(clear_bits_unlock, andc, PPC_RELEASE_BARRIER)
78 DEFINE_BITOP(change_bits, xor, "")
79
80 static __inline__ void set_bit(int nr, volatile unsigned long *addr)
81 {
82 set_bits(BIT_MASK(nr), addr + BIT_WORD(nr));
83 }
84
clear_bit(int nr,volatile unsigned long * addr)85 static __inline__ void clear_bit(int nr, volatile unsigned long *addr)
86 {
87 clear_bits(BIT_MASK(nr), addr + BIT_WORD(nr));
88 }
89
clear_bit_unlock(int nr,volatile unsigned long * addr)90 static __inline__ void clear_bit_unlock(int nr, volatile unsigned long *addr)
91 {
92 clear_bits_unlock(BIT_MASK(nr), addr + BIT_WORD(nr));
93 }
94
change_bit(int nr,volatile unsigned long * addr)95 static __inline__ void change_bit(int nr, volatile unsigned long *addr)
96 {
97 change_bits(BIT_MASK(nr), addr + BIT_WORD(nr));
98 }
99
100 /* Like DEFINE_BITOP(), with changes to the arguments to 'op' and the output
101 * operands. */
102 #define DEFINE_TESTOP(fn, op, prefix, postfix, eh) \
103 static __inline__ unsigned long fn( \
104 unsigned long mask, \
105 volatile unsigned long *_p) \
106 { \
107 unsigned long old, t; \
108 unsigned long *p = (unsigned long *)_p; \
109 __asm__ __volatile__ ( \
110 prefix \
111 "1:" PPC_LLARX(%0,0,%3,eh) "\n" \
112 stringify_in_c(op) "%1,%0,%2\n" \
113 PPC405_ERR77(0,%3) \
114 PPC_STLCX "%1,0,%3\n" \
115 "bne- 1b\n" \
116 postfix \
117 : "=&r" (old), "=&r" (t) \
118 : "r" (mask), "r" (p) \
119 : "cc", "memory"); \
120 return (old & mask); \
121 }
122
123 DEFINE_TESTOP(test_and_set_bits, or, PPC_ATOMIC_ENTRY_BARRIER,
124 PPC_ATOMIC_EXIT_BARRIER, 0)
125 DEFINE_TESTOP(test_and_set_bits_lock, or, "",
126 PPC_ACQUIRE_BARRIER, 1)
127 DEFINE_TESTOP(test_and_clear_bits, andc, PPC_ATOMIC_ENTRY_BARRIER,
128 PPC_ATOMIC_EXIT_BARRIER, 0)
129 DEFINE_TESTOP(test_and_change_bits, xor, PPC_ATOMIC_ENTRY_BARRIER,
130 PPC_ATOMIC_EXIT_BARRIER, 0)
131
test_and_set_bit(unsigned long nr,volatile unsigned long * addr)132 static __inline__ int test_and_set_bit(unsigned long nr,
133 volatile unsigned long *addr)
134 {
135 return test_and_set_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0;
136 }
137
test_and_set_bit_lock(unsigned long nr,volatile unsigned long * addr)138 static __inline__ int test_and_set_bit_lock(unsigned long nr,
139 volatile unsigned long *addr)
140 {
141 return test_and_set_bits_lock(BIT_MASK(nr),
142 addr + BIT_WORD(nr)) != 0;
143 }
144
test_and_clear_bit(unsigned long nr,volatile unsigned long * addr)145 static __inline__ int test_and_clear_bit(unsigned long nr,
146 volatile unsigned long *addr)
147 {
148 return test_and_clear_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0;
149 }
150
test_and_change_bit(unsigned long nr,volatile unsigned long * addr)151 static __inline__ int test_and_change_bit(unsigned long nr,
152 volatile unsigned long *addr)
153 {
154 return test_and_change_bits(BIT_MASK(nr), addr + BIT_WORD(nr)) != 0;
155 }
156
157 #include <asm-generic/bitops/non-atomic.h>
158
__clear_bit_unlock(int nr,volatile unsigned long * addr)159 static __inline__ void __clear_bit_unlock(int nr, volatile unsigned long *addr)
160 {
161 __asm__ __volatile__(PPC_RELEASE_BARRIER "" ::: "memory");
162 __clear_bit(nr, addr);
163 }
164
165 /*
166 * Return the zero-based bit position (LE, not IBM bit numbering) of
167 * the most significant 1-bit in a double word.
168 */
169 static __inline__ __attribute__((const))
__ilog2(unsigned long x)170 int __ilog2(unsigned long x)
171 {
172 int lz;
173
174 asm (PPC_CNTLZL "%0,%1" : "=r" (lz) : "r" (x));
175 return BITS_PER_LONG - 1 - lz;
176 }
177
178 static inline __attribute__((const))
__ilog2_u32(u32 n)179 int __ilog2_u32(u32 n)
180 {
181 int bit;
182 asm ("cntlzw %0,%1" : "=r" (bit) : "r" (n));
183 return 31 - bit;
184 }
185
186 #ifdef __powerpc64__
187 static inline __attribute__((const))
__ilog2_u64(u64 n)188 int __ilog2_u64(u64 n)
189 {
190 int bit;
191 asm ("cntlzd %0,%1" : "=r" (bit) : "r" (n));
192 return 63 - bit;
193 }
194 #endif
195
196 /*
197 * Determines the bit position of the least significant 0 bit in the
198 * specified double word. The returned bit position will be
199 * zero-based, starting from the right side (63/31 - 0).
200 */
ffz(unsigned long x)201 static __inline__ unsigned long ffz(unsigned long x)
202 {
203 /* no zero exists anywhere in the 8 byte area. */
204 if ((x = ~x) == 0)
205 return BITS_PER_LONG;
206
207 /*
208 * Calculate the bit position of the least significant '1' bit in x
209 * (since x has been changed this will actually be the least significant
210 * '0' bit in * the original x). Note: (x & -x) gives us a mask that
211 * is the least significant * (RIGHT-most) 1-bit of the value in x.
212 */
213 return __ilog2(x & -x);
214 }
215
__ffs(unsigned long x)216 static __inline__ unsigned long __ffs(unsigned long x)
217 {
218 return __ilog2(x & -x);
219 }
220
221 /*
222 * ffs: find first bit set. This is defined the same way as
223 * the libc and compiler builtin ffs routines, therefore
224 * differs in spirit from the above ffz (man ffs).
225 */
ffs(int x)226 static __inline__ int ffs(int x)
227 {
228 unsigned long i = (unsigned long)x;
229 return __ilog2(i & -i) + 1;
230 }
231
232 /*
233 * fls: find last (most-significant) bit set.
234 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
235 */
fls(unsigned int x)236 static __inline__ int fls(unsigned int x)
237 {
238 int lz;
239
240 asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x));
241 return 32 - lz;
242 }
243
__fls(unsigned long x)244 static __inline__ unsigned long __fls(unsigned long x)
245 {
246 return __ilog2(x);
247 }
248
249 /*
250 * 64-bit can do this using one cntlzd (count leading zeroes doubleword)
251 * instruction; for 32-bit we use the generic version, which does two
252 * 32-bit fls calls.
253 */
254 #ifdef __powerpc64__
fls64(__u64 x)255 static __inline__ int fls64(__u64 x)
256 {
257 int lz;
258
259 asm ("cntlzd %0,%1" : "=r" (lz) : "r" (x));
260 return 64 - lz;
261 }
262 #else
263 #include <asm-generic/bitops/fls64.h>
264 #endif /* __powerpc64__ */
265
266 #ifdef CONFIG_PPC64
267 unsigned int __arch_hweight8(unsigned int w);
268 unsigned int __arch_hweight16(unsigned int w);
269 unsigned int __arch_hweight32(unsigned int w);
270 unsigned long __arch_hweight64(__u64 w);
271 #include <asm-generic/bitops/const_hweight.h>
272 #else
273 #include <asm-generic/bitops/hweight.h>
274 #endif
275
276 #include <asm-generic/bitops/find.h>
277
278 /* Little-endian versions */
279 #include <asm-generic/bitops/le.h>
280
281 /* Bitmap functions for the ext2 filesystem */
282
283 #include <asm-generic/bitops/ext2-atomic-setbit.h>
284
285 #include <asm-generic/bitops/sched.h>
286
287 #endif /* __KERNEL__ */
288
289 #endif /* _ASM_POWERPC_BITOPS_H */
290