1 /*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_dmabuf.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51
is_mmio_work(struct intel_flip_work * work)52 static bool is_mmio_work(struct intel_flip_work *work)
53 {
54 return work->mmio_work.func;
55 }
56
57 /* Primary plane formats for gen <= 3 */
58 static const uint32_t i8xx_primary_formats[] = {
59 DRM_FORMAT_C8,
60 DRM_FORMAT_RGB565,
61 DRM_FORMAT_XRGB1555,
62 DRM_FORMAT_XRGB8888,
63 };
64
65 /* Primary plane formats for gen >= 4 */
66 static const uint32_t i965_primary_formats[] = {
67 DRM_FORMAT_C8,
68 DRM_FORMAT_RGB565,
69 DRM_FORMAT_XRGB8888,
70 DRM_FORMAT_XBGR8888,
71 DRM_FORMAT_XRGB2101010,
72 DRM_FORMAT_XBGR2101010,
73 };
74
75 static const uint32_t skl_primary_formats[] = {
76 DRM_FORMAT_C8,
77 DRM_FORMAT_RGB565,
78 DRM_FORMAT_XRGB8888,
79 DRM_FORMAT_XBGR8888,
80 DRM_FORMAT_ARGB8888,
81 DRM_FORMAT_ABGR8888,
82 DRM_FORMAT_XRGB2101010,
83 DRM_FORMAT_XBGR2101010,
84 DRM_FORMAT_YUYV,
85 DRM_FORMAT_YVYU,
86 DRM_FORMAT_UYVY,
87 DRM_FORMAT_VYUY,
88 };
89
90 /* Cursor formats */
91 static const uint32_t intel_cursor_formats[] = {
92 DRM_FORMAT_ARGB8888,
93 };
94
95 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
96 struct intel_crtc_state *pipe_config);
97 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
98 struct intel_crtc_state *pipe_config);
99
100 static int intel_framebuffer_init(struct drm_device *dev,
101 struct intel_framebuffer *ifb,
102 struct drm_mode_fb_cmd2 *mode_cmd,
103 struct drm_i915_gem_object *obj);
104 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
106 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
107 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
108 struct intel_link_m_n *m_n,
109 struct intel_link_m_n *m2_n2);
110 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipeconf(struct drm_crtc *crtc);
112 static void haswell_set_pipemisc(struct drm_crtc *crtc);
113 static void vlv_prepare_pll(struct intel_crtc *crtc,
114 const struct intel_crtc_state *pipe_config);
115 static void chv_prepare_pll(struct intel_crtc *crtc,
116 const struct intel_crtc_state *pipe_config);
117 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
119 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
120 struct intel_crtc_state *crtc_state);
121 static void skylake_pfit_enable(struct intel_crtc *crtc);
122 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
123 static void ironlake_pfit_enable(struct intel_crtc *crtc);
124 static void intel_modeset_setup_hw_state(struct drm_device *dev);
125 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
127 static int bxt_calc_cdclk(int max_pixclk);
128
129 struct intel_limit {
130 struct {
131 int min, max;
132 } dot, vco, n, m, m1, m2, p, p1;
133
134 struct {
135 int dot_limit;
136 int p2_slow, p2_fast;
137 } p2;
138 };
139
140 /* returns HPLL frequency in kHz */
valleyview_get_vco(struct drm_i915_private * dev_priv)141 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
142 {
143 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
144
145 /* Obtain SKU information */
146 mutex_lock(&dev_priv->sb_lock);
147 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148 CCK_FUSE_HPLL_FREQ_MASK;
149 mutex_unlock(&dev_priv->sb_lock);
150
151 return vco_freq[hpll_freq] * 1000;
152 }
153
vlv_get_cck_clock(struct drm_i915_private * dev_priv,const char * name,u32 reg,int ref_freq)154 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155 const char *name, u32 reg, int ref_freq)
156 {
157 u32 val;
158 int divider;
159
160 mutex_lock(&dev_priv->sb_lock);
161 val = vlv_cck_read(dev_priv, reg);
162 mutex_unlock(&dev_priv->sb_lock);
163
164 divider = val & CCK_FREQUENCY_VALUES;
165
166 WARN((val & CCK_FREQUENCY_STATUS) !=
167 (divider << CCK_FREQUENCY_STATUS_SHIFT),
168 "%s change in progress\n", name);
169
170 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
171 }
172
vlv_get_cck_clock_hpll(struct drm_i915_private * dev_priv,const char * name,u32 reg)173 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174 const char *name, u32 reg)
175 {
176 if (dev_priv->hpll_freq == 0)
177 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
178
179 return vlv_get_cck_clock(dev_priv, name, reg,
180 dev_priv->hpll_freq);
181 }
182
183 static int
intel_pch_rawclk(struct drm_i915_private * dev_priv)184 intel_pch_rawclk(struct drm_i915_private *dev_priv)
185 {
186 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
187 }
188
189 static int
intel_vlv_hrawclk(struct drm_i915_private * dev_priv)190 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
191 {
192 /* RAWCLK_FREQ_VLV register updated from power well code */
193 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194 CCK_DISPLAY_REF_CLOCK_CONTROL);
195 }
196
197 static int
intel_g4x_hrawclk(struct drm_i915_private * dev_priv)198 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
199 {
200 uint32_t clkcfg;
201
202 /* hrawclock is 1/4 the FSB frequency */
203 clkcfg = I915_READ(CLKCFG);
204 switch (clkcfg & CLKCFG_FSB_MASK) {
205 case CLKCFG_FSB_400:
206 return 100000;
207 case CLKCFG_FSB_533:
208 return 133333;
209 case CLKCFG_FSB_667:
210 return 166667;
211 case CLKCFG_FSB_800:
212 return 200000;
213 case CLKCFG_FSB_1067:
214 return 266667;
215 case CLKCFG_FSB_1333:
216 return 333333;
217 /* these two are just a guess; one of them might be right */
218 case CLKCFG_FSB_1600:
219 case CLKCFG_FSB_1600_ALT:
220 return 400000;
221 default:
222 return 133333;
223 }
224 }
225
intel_update_rawclk(struct drm_i915_private * dev_priv)226 void intel_update_rawclk(struct drm_i915_private *dev_priv)
227 {
228 if (HAS_PCH_SPLIT(dev_priv))
229 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234 else
235 return; /* no rawclk on other platforms, or no need to know it */
236
237 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
238 }
239
intel_update_czclk(struct drm_i915_private * dev_priv)240 static void intel_update_czclk(struct drm_i915_private *dev_priv)
241 {
242 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
243 return;
244
245 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246 CCK_CZ_CLOCK_CONTROL);
247
248 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
249 }
250
251 static inline u32 /* units of 100MHz */
intel_fdi_link_freq(struct drm_i915_private * dev_priv,const struct intel_crtc_state * pipe_config)252 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253 const struct intel_crtc_state *pipe_config)
254 {
255 if (HAS_DDI(dev_priv))
256 return pipe_config->port_clock; /* SPLL */
257 else if (IS_GEN5(dev_priv))
258 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
259 else
260 return 270000;
261 }
262
263 static const struct intel_limit intel_limits_i8xx_dac = {
264 .dot = { .min = 25000, .max = 350000 },
265 .vco = { .min = 908000, .max = 1512000 },
266 .n = { .min = 2, .max = 16 },
267 .m = { .min = 96, .max = 140 },
268 .m1 = { .min = 18, .max = 26 },
269 .m2 = { .min = 6, .max = 16 },
270 .p = { .min = 4, .max = 128 },
271 .p1 = { .min = 2, .max = 33 },
272 .p2 = { .dot_limit = 165000,
273 .p2_slow = 4, .p2_fast = 2 },
274 };
275
276 static const struct intel_limit intel_limits_i8xx_dvo = {
277 .dot = { .min = 25000, .max = 350000 },
278 .vco = { .min = 908000, .max = 1512000 },
279 .n = { .min = 2, .max = 16 },
280 .m = { .min = 96, .max = 140 },
281 .m1 = { .min = 18, .max = 26 },
282 .m2 = { .min = 6, .max = 16 },
283 .p = { .min = 4, .max = 128 },
284 .p1 = { .min = 2, .max = 33 },
285 .p2 = { .dot_limit = 165000,
286 .p2_slow = 4, .p2_fast = 4 },
287 };
288
289 static const struct intel_limit intel_limits_i8xx_lvds = {
290 .dot = { .min = 25000, .max = 350000 },
291 .vco = { .min = 908000, .max = 1512000 },
292 .n = { .min = 2, .max = 16 },
293 .m = { .min = 96, .max = 140 },
294 .m1 = { .min = 18, .max = 26 },
295 .m2 = { .min = 6, .max = 16 },
296 .p = { .min = 4, .max = 128 },
297 .p1 = { .min = 1, .max = 6 },
298 .p2 = { .dot_limit = 165000,
299 .p2_slow = 14, .p2_fast = 7 },
300 };
301
302 static const struct intel_limit intel_limits_i9xx_sdvo = {
303 .dot = { .min = 20000, .max = 400000 },
304 .vco = { .min = 1400000, .max = 2800000 },
305 .n = { .min = 1, .max = 6 },
306 .m = { .min = 70, .max = 120 },
307 .m1 = { .min = 8, .max = 18 },
308 .m2 = { .min = 3, .max = 7 },
309 .p = { .min = 5, .max = 80 },
310 .p1 = { .min = 1, .max = 8 },
311 .p2 = { .dot_limit = 200000,
312 .p2_slow = 10, .p2_fast = 5 },
313 };
314
315 static const struct intel_limit intel_limits_i9xx_lvds = {
316 .dot = { .min = 20000, .max = 400000 },
317 .vco = { .min = 1400000, .max = 2800000 },
318 .n = { .min = 1, .max = 6 },
319 .m = { .min = 70, .max = 120 },
320 .m1 = { .min = 8, .max = 18 },
321 .m2 = { .min = 3, .max = 7 },
322 .p = { .min = 7, .max = 98 },
323 .p1 = { .min = 1, .max = 8 },
324 .p2 = { .dot_limit = 112000,
325 .p2_slow = 14, .p2_fast = 7 },
326 };
327
328
329 static const struct intel_limit intel_limits_g4x_sdvo = {
330 .dot = { .min = 25000, .max = 270000 },
331 .vco = { .min = 1750000, .max = 3500000},
332 .n = { .min = 1, .max = 4 },
333 .m = { .min = 104, .max = 138 },
334 .m1 = { .min = 17, .max = 23 },
335 .m2 = { .min = 5, .max = 11 },
336 .p = { .min = 10, .max = 30 },
337 .p1 = { .min = 1, .max = 3},
338 .p2 = { .dot_limit = 270000,
339 .p2_slow = 10,
340 .p2_fast = 10
341 },
342 };
343
344 static const struct intel_limit intel_limits_g4x_hdmi = {
345 .dot = { .min = 22000, .max = 400000 },
346 .vco = { .min = 1750000, .max = 3500000},
347 .n = { .min = 1, .max = 4 },
348 .m = { .min = 104, .max = 138 },
349 .m1 = { .min = 16, .max = 23 },
350 .m2 = { .min = 5, .max = 11 },
351 .p = { .min = 5, .max = 80 },
352 .p1 = { .min = 1, .max = 8},
353 .p2 = { .dot_limit = 165000,
354 .p2_slow = 10, .p2_fast = 5 },
355 };
356
357 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
358 .dot = { .min = 20000, .max = 115000 },
359 .vco = { .min = 1750000, .max = 3500000 },
360 .n = { .min = 1, .max = 3 },
361 .m = { .min = 104, .max = 138 },
362 .m1 = { .min = 17, .max = 23 },
363 .m2 = { .min = 5, .max = 11 },
364 .p = { .min = 28, .max = 112 },
365 .p1 = { .min = 2, .max = 8 },
366 .p2 = { .dot_limit = 0,
367 .p2_slow = 14, .p2_fast = 14
368 },
369 };
370
371 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
372 .dot = { .min = 80000, .max = 224000 },
373 .vco = { .min = 1750000, .max = 3500000 },
374 .n = { .min = 1, .max = 3 },
375 .m = { .min = 104, .max = 138 },
376 .m1 = { .min = 17, .max = 23 },
377 .m2 = { .min = 5, .max = 11 },
378 .p = { .min = 14, .max = 42 },
379 .p1 = { .min = 2, .max = 6 },
380 .p2 = { .dot_limit = 0,
381 .p2_slow = 7, .p2_fast = 7
382 },
383 };
384
385 static const struct intel_limit intel_limits_pineview_sdvo = {
386 .dot = { .min = 20000, .max = 400000},
387 .vco = { .min = 1700000, .max = 3500000 },
388 /* Pineview's Ncounter is a ring counter */
389 .n = { .min = 3, .max = 6 },
390 .m = { .min = 2, .max = 256 },
391 /* Pineview only has one combined m divider, which we treat as m2. */
392 .m1 = { .min = 0, .max = 0 },
393 .m2 = { .min = 0, .max = 254 },
394 .p = { .min = 5, .max = 80 },
395 .p1 = { .min = 1, .max = 8 },
396 .p2 = { .dot_limit = 200000,
397 .p2_slow = 10, .p2_fast = 5 },
398 };
399
400 static const struct intel_limit intel_limits_pineview_lvds = {
401 .dot = { .min = 20000, .max = 400000 },
402 .vco = { .min = 1700000, .max = 3500000 },
403 .n = { .min = 3, .max = 6 },
404 .m = { .min = 2, .max = 256 },
405 .m1 = { .min = 0, .max = 0 },
406 .m2 = { .min = 0, .max = 254 },
407 .p = { .min = 7, .max = 112 },
408 .p1 = { .min = 1, .max = 8 },
409 .p2 = { .dot_limit = 112000,
410 .p2_slow = 14, .p2_fast = 14 },
411 };
412
413 /* Ironlake / Sandybridge
414 *
415 * We calculate clock using (register_value + 2) for N/M1/M2, so here
416 * the range value for them is (actual_value - 2).
417 */
418 static const struct intel_limit intel_limits_ironlake_dac = {
419 .dot = { .min = 25000, .max = 350000 },
420 .vco = { .min = 1760000, .max = 3510000 },
421 .n = { .min = 1, .max = 5 },
422 .m = { .min = 79, .max = 127 },
423 .m1 = { .min = 12, .max = 22 },
424 .m2 = { .min = 5, .max = 9 },
425 .p = { .min = 5, .max = 80 },
426 .p1 = { .min = 1, .max = 8 },
427 .p2 = { .dot_limit = 225000,
428 .p2_slow = 10, .p2_fast = 5 },
429 };
430
431 static const struct intel_limit intel_limits_ironlake_single_lvds = {
432 .dot = { .min = 25000, .max = 350000 },
433 .vco = { .min = 1760000, .max = 3510000 },
434 .n = { .min = 1, .max = 3 },
435 .m = { .min = 79, .max = 118 },
436 .m1 = { .min = 12, .max = 22 },
437 .m2 = { .min = 5, .max = 9 },
438 .p = { .min = 28, .max = 112 },
439 .p1 = { .min = 2, .max = 8 },
440 .p2 = { .dot_limit = 225000,
441 .p2_slow = 14, .p2_fast = 14 },
442 };
443
444 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
445 .dot = { .min = 25000, .max = 350000 },
446 .vco = { .min = 1760000, .max = 3510000 },
447 .n = { .min = 1, .max = 3 },
448 .m = { .min = 79, .max = 127 },
449 .m1 = { .min = 12, .max = 22 },
450 .m2 = { .min = 5, .max = 9 },
451 .p = { .min = 14, .max = 56 },
452 .p1 = { .min = 2, .max = 8 },
453 .p2 = { .dot_limit = 225000,
454 .p2_slow = 7, .p2_fast = 7 },
455 };
456
457 /* LVDS 100mhz refclk limits. */
458 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
459 .dot = { .min = 25000, .max = 350000 },
460 .vco = { .min = 1760000, .max = 3510000 },
461 .n = { .min = 1, .max = 2 },
462 .m = { .min = 79, .max = 126 },
463 .m1 = { .min = 12, .max = 22 },
464 .m2 = { .min = 5, .max = 9 },
465 .p = { .min = 28, .max = 112 },
466 .p1 = { .min = 2, .max = 8 },
467 .p2 = { .dot_limit = 225000,
468 .p2_slow = 14, .p2_fast = 14 },
469 };
470
471 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
472 .dot = { .min = 25000, .max = 350000 },
473 .vco = { .min = 1760000, .max = 3510000 },
474 .n = { .min = 1, .max = 3 },
475 .m = { .min = 79, .max = 126 },
476 .m1 = { .min = 12, .max = 22 },
477 .m2 = { .min = 5, .max = 9 },
478 .p = { .min = 14, .max = 42 },
479 .p1 = { .min = 2, .max = 6 },
480 .p2 = { .dot_limit = 225000,
481 .p2_slow = 7, .p2_fast = 7 },
482 };
483
484 static const struct intel_limit intel_limits_vlv = {
485 /*
486 * These are the data rate limits (measured in fast clocks)
487 * since those are the strictest limits we have. The fast
488 * clock and actual rate limits are more relaxed, so checking
489 * them would make no difference.
490 */
491 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
492 .vco = { .min = 4000000, .max = 6000000 },
493 .n = { .min = 1, .max = 7 },
494 .m1 = { .min = 2, .max = 3 },
495 .m2 = { .min = 11, .max = 156 },
496 .p1 = { .min = 2, .max = 3 },
497 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
498 };
499
500 static const struct intel_limit intel_limits_chv = {
501 /*
502 * These are the data rate limits (measured in fast clocks)
503 * since those are the strictest limits we have. The fast
504 * clock and actual rate limits are more relaxed, so checking
505 * them would make no difference.
506 */
507 .dot = { .min = 25000 * 5, .max = 540000 * 5},
508 .vco = { .min = 4800000, .max = 6480000 },
509 .n = { .min = 1, .max = 1 },
510 .m1 = { .min = 2, .max = 2 },
511 .m2 = { .min = 24 << 22, .max = 175 << 22 },
512 .p1 = { .min = 2, .max = 4 },
513 .p2 = { .p2_slow = 1, .p2_fast = 14 },
514 };
515
516 static const struct intel_limit intel_limits_bxt = {
517 /* FIXME: find real dot limits */
518 .dot = { .min = 0, .max = INT_MAX },
519 .vco = { .min = 4800000, .max = 6700000 },
520 .n = { .min = 1, .max = 1 },
521 .m1 = { .min = 2, .max = 2 },
522 /* FIXME: find real m2 limits */
523 .m2 = { .min = 2 << 22, .max = 255 << 22 },
524 .p1 = { .min = 2, .max = 4 },
525 .p2 = { .p2_slow = 1, .p2_fast = 20 },
526 };
527
528 static bool
needs_modeset(struct drm_crtc_state * state)529 needs_modeset(struct drm_crtc_state *state)
530 {
531 return drm_atomic_crtc_needs_modeset(state);
532 }
533
534 /*
535 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538 * The helpers' return value is the rate of the clock that is fed to the
539 * display engine's pipe which can be the above fast dot clock rate or a
540 * divided-down version of it.
541 */
542 /* m1 is reserved as 0 in Pineview, n is a ring counter */
pnv_calc_dpll_params(int refclk,struct dpll * clock)543 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
544 {
545 clock->m = clock->m2 + 2;
546 clock->p = clock->p1 * clock->p2;
547 if (WARN_ON(clock->n == 0 || clock->p == 0))
548 return 0;
549 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
551
552 return clock->dot;
553 }
554
i9xx_dpll_compute_m(struct dpll * dpll)555 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
556 {
557 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
558 }
559
i9xx_calc_dpll_params(int refclk,struct dpll * clock)560 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
561 {
562 clock->m = i9xx_dpll_compute_m(clock);
563 clock->p = clock->p1 * clock->p2;
564 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
565 return 0;
566 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568
569 return clock->dot;
570 }
571
vlv_calc_dpll_params(int refclk,struct dpll * clock)572 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
573 {
574 clock->m = clock->m1 * clock->m2;
575 clock->p = clock->p1 * clock->p2;
576 if (WARN_ON(clock->n == 0 || clock->p == 0))
577 return 0;
578 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
580
581 return clock->dot / 5;
582 }
583
chv_calc_dpll_params(int refclk,struct dpll * clock)584 int chv_calc_dpll_params(int refclk, struct dpll *clock)
585 {
586 clock->m = clock->m1 * clock->m2;
587 clock->p = clock->p1 * clock->p2;
588 if (WARN_ON(clock->n == 0 || clock->p == 0))
589 return 0;
590 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591 clock->n << 22);
592 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
593
594 return clock->dot / 5;
595 }
596
597 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
598 /**
599 * Returns whether the given set of divisors are valid for a given refclk with
600 * the given connectors.
601 */
602
intel_PLL_is_valid(struct drm_device * dev,const struct intel_limit * limit,const struct dpll * clock)603 static bool intel_PLL_is_valid(struct drm_device *dev,
604 const struct intel_limit *limit,
605 const struct dpll *clock)
606 {
607 if (clock->n < limit->n.min || limit->n.max < clock->n)
608 INTELPllInvalid("n out of range\n");
609 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
610 INTELPllInvalid("p1 out of range\n");
611 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
612 INTELPllInvalid("m2 out of range\n");
613 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
614 INTELPllInvalid("m1 out of range\n");
615
616 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
617 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
618 if (clock->m1 <= clock->m2)
619 INTELPllInvalid("m1 <= m2\n");
620
621 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
622 if (clock->p < limit->p.min || limit->p.max < clock->p)
623 INTELPllInvalid("p out of range\n");
624 if (clock->m < limit->m.min || limit->m.max < clock->m)
625 INTELPllInvalid("m out of range\n");
626 }
627
628 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
629 INTELPllInvalid("vco out of range\n");
630 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
631 * connector, etc., rather than just a single range.
632 */
633 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
634 INTELPllInvalid("dot out of range\n");
635
636 return true;
637 }
638
639 static int
i9xx_select_p2_div(const struct intel_limit * limit,const struct intel_crtc_state * crtc_state,int target)640 i9xx_select_p2_div(const struct intel_limit *limit,
641 const struct intel_crtc_state *crtc_state,
642 int target)
643 {
644 struct drm_device *dev = crtc_state->base.crtc->dev;
645
646 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
647 /*
648 * For LVDS just rely on its current settings for dual-channel.
649 * We haven't figured out how to reliably set up different
650 * single/dual channel state, if we even can.
651 */
652 if (intel_is_dual_link_lvds(dev))
653 return limit->p2.p2_fast;
654 else
655 return limit->p2.p2_slow;
656 } else {
657 if (target < limit->p2.dot_limit)
658 return limit->p2.p2_slow;
659 else
660 return limit->p2.p2_fast;
661 }
662 }
663
664 /*
665 * Returns a set of divisors for the desired target clock with the given
666 * refclk, or FALSE. The returned values represent the clock equation:
667 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
668 *
669 * Target and reference clocks are specified in kHz.
670 *
671 * If match_clock is provided, then best_clock P divider must match the P
672 * divider from @match_clock used for LVDS downclocking.
673 */
674 static bool
i9xx_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)675 i9xx_find_best_dpll(const struct intel_limit *limit,
676 struct intel_crtc_state *crtc_state,
677 int target, int refclk, struct dpll *match_clock,
678 struct dpll *best_clock)
679 {
680 struct drm_device *dev = crtc_state->base.crtc->dev;
681 struct dpll clock;
682 int err = target;
683
684 memset(best_clock, 0, sizeof(*best_clock));
685
686 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
687
688 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
689 clock.m1++) {
690 for (clock.m2 = limit->m2.min;
691 clock.m2 <= limit->m2.max; clock.m2++) {
692 if (clock.m2 >= clock.m1)
693 break;
694 for (clock.n = limit->n.min;
695 clock.n <= limit->n.max; clock.n++) {
696 for (clock.p1 = limit->p1.min;
697 clock.p1 <= limit->p1.max; clock.p1++) {
698 int this_err;
699
700 i9xx_calc_dpll_params(refclk, &clock);
701 if (!intel_PLL_is_valid(dev, limit,
702 &clock))
703 continue;
704 if (match_clock &&
705 clock.p != match_clock->p)
706 continue;
707
708 this_err = abs(clock.dot - target);
709 if (this_err < err) {
710 *best_clock = clock;
711 err = this_err;
712 }
713 }
714 }
715 }
716 }
717
718 return (err != target);
719 }
720
721 /*
722 * Returns a set of divisors for the desired target clock with the given
723 * refclk, or FALSE. The returned values represent the clock equation:
724 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
725 *
726 * Target and reference clocks are specified in kHz.
727 *
728 * If match_clock is provided, then best_clock P divider must match the P
729 * divider from @match_clock used for LVDS downclocking.
730 */
731 static bool
pnv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)732 pnv_find_best_dpll(const struct intel_limit *limit,
733 struct intel_crtc_state *crtc_state,
734 int target, int refclk, struct dpll *match_clock,
735 struct dpll *best_clock)
736 {
737 struct drm_device *dev = crtc_state->base.crtc->dev;
738 struct dpll clock;
739 int err = target;
740
741 memset(best_clock, 0, sizeof(*best_clock));
742
743 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
744
745 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
746 clock.m1++) {
747 for (clock.m2 = limit->m2.min;
748 clock.m2 <= limit->m2.max; clock.m2++) {
749 for (clock.n = limit->n.min;
750 clock.n <= limit->n.max; clock.n++) {
751 for (clock.p1 = limit->p1.min;
752 clock.p1 <= limit->p1.max; clock.p1++) {
753 int this_err;
754
755 pnv_calc_dpll_params(refclk, &clock);
756 if (!intel_PLL_is_valid(dev, limit,
757 &clock))
758 continue;
759 if (match_clock &&
760 clock.p != match_clock->p)
761 continue;
762
763 this_err = abs(clock.dot - target);
764 if (this_err < err) {
765 *best_clock = clock;
766 err = this_err;
767 }
768 }
769 }
770 }
771 }
772
773 return (err != target);
774 }
775
776 /*
777 * Returns a set of divisors for the desired target clock with the given
778 * refclk, or FALSE. The returned values represent the clock equation:
779 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
780 *
781 * Target and reference clocks are specified in kHz.
782 *
783 * If match_clock is provided, then best_clock P divider must match the P
784 * divider from @match_clock used for LVDS downclocking.
785 */
786 static bool
g4x_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)787 g4x_find_best_dpll(const struct intel_limit *limit,
788 struct intel_crtc_state *crtc_state,
789 int target, int refclk, struct dpll *match_clock,
790 struct dpll *best_clock)
791 {
792 struct drm_device *dev = crtc_state->base.crtc->dev;
793 struct dpll clock;
794 int max_n;
795 bool found = false;
796 /* approximately equals target * 0.00585 */
797 int err_most = (target >> 8) + (target >> 9);
798
799 memset(best_clock, 0, sizeof(*best_clock));
800
801 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
802
803 max_n = limit->n.max;
804 /* based on hardware requirement, prefer smaller n to precision */
805 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
806 /* based on hardware requirement, prefere larger m1,m2 */
807 for (clock.m1 = limit->m1.max;
808 clock.m1 >= limit->m1.min; clock.m1--) {
809 for (clock.m2 = limit->m2.max;
810 clock.m2 >= limit->m2.min; clock.m2--) {
811 for (clock.p1 = limit->p1.max;
812 clock.p1 >= limit->p1.min; clock.p1--) {
813 int this_err;
814
815 i9xx_calc_dpll_params(refclk, &clock);
816 if (!intel_PLL_is_valid(dev, limit,
817 &clock))
818 continue;
819
820 this_err = abs(clock.dot - target);
821 if (this_err < err_most) {
822 *best_clock = clock;
823 err_most = this_err;
824 max_n = clock.n;
825 found = true;
826 }
827 }
828 }
829 }
830 }
831 return found;
832 }
833
834 /*
835 * Check if the calculated PLL configuration is more optimal compared to the
836 * best configuration and error found so far. Return the calculated error.
837 */
vlv_PLL_is_optimal(struct drm_device * dev,int target_freq,const struct dpll * calculated_clock,const struct dpll * best_clock,unsigned int best_error_ppm,unsigned int * error_ppm)838 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
839 const struct dpll *calculated_clock,
840 const struct dpll *best_clock,
841 unsigned int best_error_ppm,
842 unsigned int *error_ppm)
843 {
844 /*
845 * For CHV ignore the error and consider only the P value.
846 * Prefer a bigger P value based on HW requirements.
847 */
848 if (IS_CHERRYVIEW(dev)) {
849 *error_ppm = 0;
850
851 return calculated_clock->p > best_clock->p;
852 }
853
854 if (WARN_ON_ONCE(!target_freq))
855 return false;
856
857 *error_ppm = div_u64(1000000ULL *
858 abs(target_freq - calculated_clock->dot),
859 target_freq);
860 /*
861 * Prefer a better P value over a better (smaller) error if the error
862 * is small. Ensure this preference for future configurations too by
863 * setting the error to 0.
864 */
865 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
866 *error_ppm = 0;
867
868 return true;
869 }
870
871 return *error_ppm + 10 < best_error_ppm;
872 }
873
874 /*
875 * Returns a set of divisors for the desired target clock with the given
876 * refclk, or FALSE. The returned values represent the clock equation:
877 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
878 */
879 static bool
vlv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)880 vlv_find_best_dpll(const struct intel_limit *limit,
881 struct intel_crtc_state *crtc_state,
882 int target, int refclk, struct dpll *match_clock,
883 struct dpll *best_clock)
884 {
885 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
886 struct drm_device *dev = crtc->base.dev;
887 struct dpll clock;
888 unsigned int bestppm = 1000000;
889 /* min update 19.2 MHz */
890 int max_n = min(limit->n.max, refclk / 19200);
891 bool found = false;
892
893 target *= 5; /* fast clock */
894
895 memset(best_clock, 0, sizeof(*best_clock));
896
897 /* based on hardware requirement, prefer smaller n to precision */
898 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
899 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
900 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
901 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
902 clock.p = clock.p1 * clock.p2;
903 /* based on hardware requirement, prefer bigger m1,m2 values */
904 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
905 unsigned int ppm;
906
907 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
908 refclk * clock.m1);
909
910 vlv_calc_dpll_params(refclk, &clock);
911
912 if (!intel_PLL_is_valid(dev, limit,
913 &clock))
914 continue;
915
916 if (!vlv_PLL_is_optimal(dev, target,
917 &clock,
918 best_clock,
919 bestppm, &ppm))
920 continue;
921
922 *best_clock = clock;
923 bestppm = ppm;
924 found = true;
925 }
926 }
927 }
928 }
929
930 return found;
931 }
932
933 /*
934 * Returns a set of divisors for the desired target clock with the given
935 * refclk, or FALSE. The returned values represent the clock equation:
936 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
937 */
938 static bool
chv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)939 chv_find_best_dpll(const struct intel_limit *limit,
940 struct intel_crtc_state *crtc_state,
941 int target, int refclk, struct dpll *match_clock,
942 struct dpll *best_clock)
943 {
944 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
945 struct drm_device *dev = crtc->base.dev;
946 unsigned int best_error_ppm;
947 struct dpll clock;
948 uint64_t m2;
949 int found = false;
950
951 memset(best_clock, 0, sizeof(*best_clock));
952 best_error_ppm = 1000000;
953
954 /*
955 * Based on hardware doc, the n always set to 1, and m1 always
956 * set to 2. If requires to support 200Mhz refclk, we need to
957 * revisit this because n may not 1 anymore.
958 */
959 clock.n = 1, clock.m1 = 2;
960 target *= 5; /* fast clock */
961
962 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
963 for (clock.p2 = limit->p2.p2_fast;
964 clock.p2 >= limit->p2.p2_slow;
965 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
966 unsigned int error_ppm;
967
968 clock.p = clock.p1 * clock.p2;
969
970 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
971 clock.n) << 22, refclk * clock.m1);
972
973 if (m2 > INT_MAX/clock.m1)
974 continue;
975
976 clock.m2 = m2;
977
978 chv_calc_dpll_params(refclk, &clock);
979
980 if (!intel_PLL_is_valid(dev, limit, &clock))
981 continue;
982
983 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
984 best_error_ppm, &error_ppm))
985 continue;
986
987 *best_clock = clock;
988 best_error_ppm = error_ppm;
989 found = true;
990 }
991 }
992
993 return found;
994 }
995
bxt_find_best_dpll(struct intel_crtc_state * crtc_state,int target_clock,struct dpll * best_clock)996 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
997 struct dpll *best_clock)
998 {
999 int refclk = 100000;
1000 const struct intel_limit *limit = &intel_limits_bxt;
1001
1002 return chv_find_best_dpll(limit, crtc_state,
1003 target_clock, refclk, NULL, best_clock);
1004 }
1005
intel_crtc_active(struct drm_crtc * crtc)1006 bool intel_crtc_active(struct drm_crtc *crtc)
1007 {
1008 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1009
1010 /* Be paranoid as we can arrive here with only partial
1011 * state retrieved from the hardware during setup.
1012 *
1013 * We can ditch the adjusted_mode.crtc_clock check as soon
1014 * as Haswell has gained clock readout/fastboot support.
1015 *
1016 * We can ditch the crtc->primary->fb check as soon as we can
1017 * properly reconstruct framebuffers.
1018 *
1019 * FIXME: The intel_crtc->active here should be switched to
1020 * crtc->state->active once we have proper CRTC states wired up
1021 * for atomic.
1022 */
1023 return intel_crtc->active && crtc->primary->state->fb &&
1024 intel_crtc->config->base.adjusted_mode.crtc_clock;
1025 }
1026
intel_pipe_to_cpu_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1027 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1028 enum pipe pipe)
1029 {
1030 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1031 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1032
1033 return intel_crtc->config->cpu_transcoder;
1034 }
1035
pipe_dsl_stopped(struct drm_device * dev,enum pipe pipe)1036 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1037 {
1038 struct drm_i915_private *dev_priv = to_i915(dev);
1039 i915_reg_t reg = PIPEDSL(pipe);
1040 u32 line1, line2;
1041 u32 line_mask;
1042
1043 if (IS_GEN2(dev))
1044 line_mask = DSL_LINEMASK_GEN2;
1045 else
1046 line_mask = DSL_LINEMASK_GEN3;
1047
1048 line1 = I915_READ(reg) & line_mask;
1049 msleep(5);
1050 line2 = I915_READ(reg) & line_mask;
1051
1052 return line1 == line2;
1053 }
1054
1055 /*
1056 * intel_wait_for_pipe_off - wait for pipe to turn off
1057 * @crtc: crtc whose pipe to wait for
1058 *
1059 * After disabling a pipe, we can't wait for vblank in the usual way,
1060 * spinning on the vblank interrupt status bit, since we won't actually
1061 * see an interrupt when the pipe is disabled.
1062 *
1063 * On Gen4 and above:
1064 * wait for the pipe register state bit to turn off
1065 *
1066 * Otherwise:
1067 * wait for the display line value to settle (it usually
1068 * ends up stopping at the start of the next frame).
1069 *
1070 */
intel_wait_for_pipe_off(struct intel_crtc * crtc)1071 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1072 {
1073 struct drm_device *dev = crtc->base.dev;
1074 struct drm_i915_private *dev_priv = to_i915(dev);
1075 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1076 enum pipe pipe = crtc->pipe;
1077
1078 if (INTEL_INFO(dev)->gen >= 4) {
1079 i915_reg_t reg = PIPECONF(cpu_transcoder);
1080
1081 /* Wait for the Pipe State to go off */
1082 if (intel_wait_for_register(dev_priv,
1083 reg, I965_PIPECONF_ACTIVE, 0,
1084 100))
1085 WARN(1, "pipe_off wait timed out\n");
1086 } else {
1087 /* Wait for the display line to settle */
1088 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1089 WARN(1, "pipe_off wait timed out\n");
1090 }
1091 }
1092
1093 /* Only for pre-ILK configs */
assert_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1094 void assert_pll(struct drm_i915_private *dev_priv,
1095 enum pipe pipe, bool state)
1096 {
1097 u32 val;
1098 bool cur_state;
1099
1100 val = I915_READ(DPLL(pipe));
1101 cur_state = !!(val & DPLL_VCO_ENABLE);
1102 I915_STATE_WARN(cur_state != state,
1103 "PLL state assertion failure (expected %s, current %s)\n",
1104 onoff(state), onoff(cur_state));
1105 }
1106
1107 /* XXX: the dsi pll is shared between MIPI DSI ports */
assert_dsi_pll(struct drm_i915_private * dev_priv,bool state)1108 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1109 {
1110 u32 val;
1111 bool cur_state;
1112
1113 mutex_lock(&dev_priv->sb_lock);
1114 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1115 mutex_unlock(&dev_priv->sb_lock);
1116
1117 cur_state = val & DSI_PLL_VCO_EN;
1118 I915_STATE_WARN(cur_state != state,
1119 "DSI PLL state assertion failure (expected %s, current %s)\n",
1120 onoff(state), onoff(cur_state));
1121 }
1122
assert_fdi_tx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1123 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1124 enum pipe pipe, bool state)
1125 {
1126 bool cur_state;
1127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 pipe);
1129
1130 if (HAS_DDI(dev_priv)) {
1131 /* DDI does not have a specific FDI_TX register */
1132 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1133 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1134 } else {
1135 u32 val = I915_READ(FDI_TX_CTL(pipe));
1136 cur_state = !!(val & FDI_TX_ENABLE);
1137 }
1138 I915_STATE_WARN(cur_state != state,
1139 "FDI TX state assertion failure (expected %s, current %s)\n",
1140 onoff(state), onoff(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144
assert_fdi_rx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146 enum pipe pipe, bool state)
1147 {
1148 u32 val;
1149 bool cur_state;
1150
1151 val = I915_READ(FDI_RX_CTL(pipe));
1152 cur_state = !!(val & FDI_RX_ENABLE);
1153 I915_STATE_WARN(cur_state != state,
1154 "FDI RX state assertion failure (expected %s, current %s)\n",
1155 onoff(state), onoff(cur_state));
1156 }
1157 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1158 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1159
assert_fdi_tx_pll_enabled(struct drm_i915_private * dev_priv,enum pipe pipe)1160 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1161 enum pipe pipe)
1162 {
1163 u32 val;
1164
1165 /* ILK FDI PLL is always enabled */
1166 if (IS_GEN5(dev_priv))
1167 return;
1168
1169 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1170 if (HAS_DDI(dev_priv))
1171 return;
1172
1173 val = I915_READ(FDI_TX_CTL(pipe));
1174 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176
assert_fdi_rx_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 enum pipe pipe, bool state)
1179 {
1180 u32 val;
1181 bool cur_state;
1182
1183 val = I915_READ(FDI_RX_CTL(pipe));
1184 cur_state = !!(val & FDI_RX_PLL_ENABLE);
1185 I915_STATE_WARN(cur_state != state,
1186 "FDI RX PLL assertion failure (expected %s, current %s)\n",
1187 onoff(state), onoff(cur_state));
1188 }
1189
assert_panel_unlocked(struct drm_i915_private * dev_priv,enum pipe pipe)1190 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1191 enum pipe pipe)
1192 {
1193 struct drm_device *dev = &dev_priv->drm;
1194 i915_reg_t pp_reg;
1195 u32 val;
1196 enum pipe panel_pipe = PIPE_A;
1197 bool locked = true;
1198
1199 if (WARN_ON(HAS_DDI(dev)))
1200 return;
1201
1202 if (HAS_PCH_SPLIT(dev)) {
1203 u32 port_sel;
1204
1205 pp_reg = PP_CONTROL(0);
1206 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1207
1208 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1209 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1210 panel_pipe = PIPE_B;
1211 /* XXX: else fix for eDP */
1212 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1213 /* presumably write lock depends on pipe, not port select */
1214 pp_reg = PP_CONTROL(pipe);
1215 panel_pipe = pipe;
1216 } else {
1217 pp_reg = PP_CONTROL(0);
1218 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1219 panel_pipe = PIPE_B;
1220 }
1221
1222 val = I915_READ(pp_reg);
1223 if (!(val & PANEL_POWER_ON) ||
1224 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1225 locked = false;
1226
1227 I915_STATE_WARN(panel_pipe == pipe && locked,
1228 "panel assertion failure, pipe %c regs locked\n",
1229 pipe_name(pipe));
1230 }
1231
assert_cursor(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1232 static void assert_cursor(struct drm_i915_private *dev_priv,
1233 enum pipe pipe, bool state)
1234 {
1235 struct drm_device *dev = &dev_priv->drm;
1236 bool cur_state;
1237
1238 if (IS_845G(dev) || IS_I865G(dev))
1239 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1240 else
1241 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1242
1243 I915_STATE_WARN(cur_state != state,
1244 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1245 pipe_name(pipe), onoff(state), onoff(cur_state));
1246 }
1247 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1248 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1249
assert_pipe(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1250 void assert_pipe(struct drm_i915_private *dev_priv,
1251 enum pipe pipe, bool state)
1252 {
1253 bool cur_state;
1254 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1255 pipe);
1256 enum intel_display_power_domain power_domain;
1257
1258 /* if we need the pipe quirk it must be always on */
1259 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1260 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1261 state = true;
1262
1263 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1264 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1265 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1266 cur_state = !!(val & PIPECONF_ENABLE);
1267
1268 intel_display_power_put(dev_priv, power_domain);
1269 } else {
1270 cur_state = false;
1271 }
1272
1273 I915_STATE_WARN(cur_state != state,
1274 "pipe %c assertion failure (expected %s, current %s)\n",
1275 pipe_name(pipe), onoff(state), onoff(cur_state));
1276 }
1277
assert_plane(struct drm_i915_private * dev_priv,enum plane plane,bool state)1278 static void assert_plane(struct drm_i915_private *dev_priv,
1279 enum plane plane, bool state)
1280 {
1281 u32 val;
1282 bool cur_state;
1283
1284 val = I915_READ(DSPCNTR(plane));
1285 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1286 I915_STATE_WARN(cur_state != state,
1287 "plane %c assertion failure (expected %s, current %s)\n",
1288 plane_name(plane), onoff(state), onoff(cur_state));
1289 }
1290
1291 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1292 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1293
assert_planes_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1294 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1295 enum pipe pipe)
1296 {
1297 struct drm_device *dev = &dev_priv->drm;
1298 int i;
1299
1300 /* Primary planes are fixed to pipes on gen4+ */
1301 if (INTEL_INFO(dev)->gen >= 4) {
1302 u32 val = I915_READ(DSPCNTR(pipe));
1303 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1304 "plane %c assertion failure, should be disabled but not\n",
1305 plane_name(pipe));
1306 return;
1307 }
1308
1309 /* Need to check both planes against the pipe */
1310 for_each_pipe(dev_priv, i) {
1311 u32 val = I915_READ(DSPCNTR(i));
1312 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1313 DISPPLANE_SEL_PIPE_SHIFT;
1314 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1315 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1316 plane_name(i), pipe_name(pipe));
1317 }
1318 }
1319
assert_sprites_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1320 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1321 enum pipe pipe)
1322 {
1323 struct drm_device *dev = &dev_priv->drm;
1324 int sprite;
1325
1326 if (INTEL_INFO(dev)->gen >= 9) {
1327 for_each_sprite(dev_priv, pipe, sprite) {
1328 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1329 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1330 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1331 sprite, pipe_name(pipe));
1332 }
1333 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1334 for_each_sprite(dev_priv, pipe, sprite) {
1335 u32 val = I915_READ(SPCNTR(pipe, sprite));
1336 I915_STATE_WARN(val & SP_ENABLE,
1337 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1338 sprite_name(pipe, sprite), pipe_name(pipe));
1339 }
1340 } else if (INTEL_INFO(dev)->gen >= 7) {
1341 u32 val = I915_READ(SPRCTL(pipe));
1342 I915_STATE_WARN(val & SPRITE_ENABLE,
1343 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344 plane_name(pipe), pipe_name(pipe));
1345 } else if (INTEL_INFO(dev)->gen >= 5) {
1346 u32 val = I915_READ(DVSCNTR(pipe));
1347 I915_STATE_WARN(val & DVS_ENABLE,
1348 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1349 plane_name(pipe), pipe_name(pipe));
1350 }
1351 }
1352
assert_vblank_disabled(struct drm_crtc * crtc)1353 static void assert_vblank_disabled(struct drm_crtc *crtc)
1354 {
1355 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1356 drm_crtc_vblank_put(crtc);
1357 }
1358
assert_pch_transcoder_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1359 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1360 enum pipe pipe)
1361 {
1362 u32 val;
1363 bool enabled;
1364
1365 val = I915_READ(PCH_TRANSCONF(pipe));
1366 enabled = !!(val & TRANS_ENABLE);
1367 I915_STATE_WARN(enabled,
1368 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1369 pipe_name(pipe));
1370 }
1371
dp_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 port_sel,u32 val)1372 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1373 enum pipe pipe, u32 port_sel, u32 val)
1374 {
1375 if ((val & DP_PORT_EN) == 0)
1376 return false;
1377
1378 if (HAS_PCH_CPT(dev_priv)) {
1379 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1380 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1381 return false;
1382 } else if (IS_CHERRYVIEW(dev_priv)) {
1383 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1384 return false;
1385 } else {
1386 if ((val & DP_PIPE_MASK) != (pipe << 30))
1387 return false;
1388 }
1389 return true;
1390 }
1391
hdmi_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1392 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1393 enum pipe pipe, u32 val)
1394 {
1395 if ((val & SDVO_ENABLE) == 0)
1396 return false;
1397
1398 if (HAS_PCH_CPT(dev_priv)) {
1399 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1400 return false;
1401 } else if (IS_CHERRYVIEW(dev_priv)) {
1402 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1403 return false;
1404 } else {
1405 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1406 return false;
1407 }
1408 return true;
1409 }
1410
lvds_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1411 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1412 enum pipe pipe, u32 val)
1413 {
1414 if ((val & LVDS_PORT_EN) == 0)
1415 return false;
1416
1417 if (HAS_PCH_CPT(dev_priv)) {
1418 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1419 return false;
1420 } else {
1421 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1422 return false;
1423 }
1424 return true;
1425 }
1426
adpa_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1427 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1428 enum pipe pipe, u32 val)
1429 {
1430 if ((val & ADPA_DAC_ENABLE) == 0)
1431 return false;
1432 if (HAS_PCH_CPT(dev_priv)) {
1433 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1434 return false;
1435 } else {
1436 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1437 return false;
1438 }
1439 return true;
1440 }
1441
assert_pch_dp_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,i915_reg_t reg,u32 port_sel)1442 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1443 enum pipe pipe, i915_reg_t reg,
1444 u32 port_sel)
1445 {
1446 u32 val = I915_READ(reg);
1447 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1448 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1449 i915_mmio_reg_offset(reg), pipe_name(pipe));
1450
1451 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1452 && (val & DP_PIPEB_SELECT),
1453 "IBX PCH dp port still using transcoder B\n");
1454 }
1455
assert_pch_hdmi_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,i915_reg_t reg)1456 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1457 enum pipe pipe, i915_reg_t reg)
1458 {
1459 u32 val = I915_READ(reg);
1460 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1461 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1462 i915_mmio_reg_offset(reg), pipe_name(pipe));
1463
1464 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1465 && (val & SDVO_PIPE_B_SELECT),
1466 "IBX PCH hdmi port still using transcoder B\n");
1467 }
1468
assert_pch_ports_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1469 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1470 enum pipe pipe)
1471 {
1472 u32 val;
1473
1474 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1475 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1476 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1477
1478 val = I915_READ(PCH_ADPA);
1479 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1480 "PCH VGA enabled on transcoder %c, should be disabled\n",
1481 pipe_name(pipe));
1482
1483 val = I915_READ(PCH_LVDS);
1484 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1485 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1486 pipe_name(pipe));
1487
1488 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1489 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1490 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1491 }
1492
_vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1493 static void _vlv_enable_pll(struct intel_crtc *crtc,
1494 const struct intel_crtc_state *pipe_config)
1495 {
1496 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1497 enum pipe pipe = crtc->pipe;
1498
1499 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1500 POSTING_READ(DPLL(pipe));
1501 udelay(150);
1502
1503 if (intel_wait_for_register(dev_priv,
1504 DPLL(pipe),
1505 DPLL_LOCK_VLV,
1506 DPLL_LOCK_VLV,
1507 1))
1508 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1509 }
1510
vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1511 static void vlv_enable_pll(struct intel_crtc *crtc,
1512 const struct intel_crtc_state *pipe_config)
1513 {
1514 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1515 enum pipe pipe = crtc->pipe;
1516
1517 assert_pipe_disabled(dev_priv, pipe);
1518
1519 /* PLL is protected by panel, make sure we can write it */
1520 assert_panel_unlocked(dev_priv, pipe);
1521
1522 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1523 _vlv_enable_pll(crtc, pipe_config);
1524
1525 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1526 POSTING_READ(DPLL_MD(pipe));
1527 }
1528
1529
_chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1530 static void _chv_enable_pll(struct intel_crtc *crtc,
1531 const struct intel_crtc_state *pipe_config)
1532 {
1533 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1534 enum pipe pipe = crtc->pipe;
1535 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1536 u32 tmp;
1537
1538 mutex_lock(&dev_priv->sb_lock);
1539
1540 /* Enable back the 10bit clock to display controller */
1541 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1542 tmp |= DPIO_DCLKP_EN;
1543 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1544
1545 mutex_unlock(&dev_priv->sb_lock);
1546
1547 /*
1548 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1549 */
1550 udelay(1);
1551
1552 /* Enable PLL */
1553 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1554
1555 /* Check PLL is locked */
1556 if (intel_wait_for_register(dev_priv,
1557 DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1558 1))
1559 DRM_ERROR("PLL %d failed to lock\n", pipe);
1560 }
1561
chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1562 static void chv_enable_pll(struct intel_crtc *crtc,
1563 const struct intel_crtc_state *pipe_config)
1564 {
1565 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1566 enum pipe pipe = crtc->pipe;
1567
1568 assert_pipe_disabled(dev_priv, pipe);
1569
1570 /* PLL is protected by panel, make sure we can write it */
1571 assert_panel_unlocked(dev_priv, pipe);
1572
1573 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1574 _chv_enable_pll(crtc, pipe_config);
1575
1576 if (pipe != PIPE_A) {
1577 /*
1578 * WaPixelRepeatModeFixForC0:chv
1579 *
1580 * DPLLCMD is AWOL. Use chicken bits to propagate
1581 * the value from DPLLBMD to either pipe B or C.
1582 */
1583 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1584 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1585 I915_WRITE(CBR4_VLV, 0);
1586 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1587
1588 /*
1589 * DPLLB VGA mode also seems to cause problems.
1590 * We should always have it disabled.
1591 */
1592 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1593 } else {
1594 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1595 POSTING_READ(DPLL_MD(pipe));
1596 }
1597 }
1598
intel_num_dvo_pipes(struct drm_device * dev)1599 static int intel_num_dvo_pipes(struct drm_device *dev)
1600 {
1601 struct intel_crtc *crtc;
1602 int count = 0;
1603
1604 for_each_intel_crtc(dev, crtc) {
1605 count += crtc->base.state->active &&
1606 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1607 }
1608
1609 return count;
1610 }
1611
i9xx_enable_pll(struct intel_crtc * crtc)1612 static void i9xx_enable_pll(struct intel_crtc *crtc)
1613 {
1614 struct drm_device *dev = crtc->base.dev;
1615 struct drm_i915_private *dev_priv = to_i915(dev);
1616 i915_reg_t reg = DPLL(crtc->pipe);
1617 u32 dpll = crtc->config->dpll_hw_state.dpll;
1618
1619 assert_pipe_disabled(dev_priv, crtc->pipe);
1620
1621 /* PLL is protected by panel, make sure we can write it */
1622 if (IS_MOBILE(dev) && !IS_I830(dev))
1623 assert_panel_unlocked(dev_priv, crtc->pipe);
1624
1625 /* Enable DVO 2x clock on both PLLs if necessary */
1626 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1627 /*
1628 * It appears to be important that we don't enable this
1629 * for the current pipe before otherwise configuring the
1630 * PLL. No idea how this should be handled if multiple
1631 * DVO outputs are enabled simultaneosly.
1632 */
1633 dpll |= DPLL_DVO_2X_MODE;
1634 I915_WRITE(DPLL(!crtc->pipe),
1635 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1636 }
1637
1638 /*
1639 * Apparently we need to have VGA mode enabled prior to changing
1640 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1641 * dividers, even though the register value does change.
1642 */
1643 I915_WRITE(reg, 0);
1644
1645 I915_WRITE(reg, dpll);
1646
1647 /* Wait for the clocks to stabilize. */
1648 POSTING_READ(reg);
1649 udelay(150);
1650
1651 if (INTEL_INFO(dev)->gen >= 4) {
1652 I915_WRITE(DPLL_MD(crtc->pipe),
1653 crtc->config->dpll_hw_state.dpll_md);
1654 } else {
1655 /* The pixel multiplier can only be updated once the
1656 * DPLL is enabled and the clocks are stable.
1657 *
1658 * So write it again.
1659 */
1660 I915_WRITE(reg, dpll);
1661 }
1662
1663 /* We do this three times for luck */
1664 I915_WRITE(reg, dpll);
1665 POSTING_READ(reg);
1666 udelay(150); /* wait for warmup */
1667 I915_WRITE(reg, dpll);
1668 POSTING_READ(reg);
1669 udelay(150); /* wait for warmup */
1670 I915_WRITE(reg, dpll);
1671 POSTING_READ(reg);
1672 udelay(150); /* wait for warmup */
1673 }
1674
1675 /**
1676 * i9xx_disable_pll - disable a PLL
1677 * @dev_priv: i915 private structure
1678 * @pipe: pipe PLL to disable
1679 *
1680 * Disable the PLL for @pipe, making sure the pipe is off first.
1681 *
1682 * Note! This is for pre-ILK only.
1683 */
i9xx_disable_pll(struct intel_crtc * crtc)1684 static void i9xx_disable_pll(struct intel_crtc *crtc)
1685 {
1686 struct drm_device *dev = crtc->base.dev;
1687 struct drm_i915_private *dev_priv = to_i915(dev);
1688 enum pipe pipe = crtc->pipe;
1689
1690 /* Disable DVO 2x clock on both PLLs if necessary */
1691 if (IS_I830(dev) &&
1692 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1693 !intel_num_dvo_pipes(dev)) {
1694 I915_WRITE(DPLL(PIPE_B),
1695 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1696 I915_WRITE(DPLL(PIPE_A),
1697 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1698 }
1699
1700 /* Don't disable pipe or pipe PLLs if needed */
1701 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1702 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1703 return;
1704
1705 /* Make sure the pipe isn't still relying on us */
1706 assert_pipe_disabled(dev_priv, pipe);
1707
1708 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1709 POSTING_READ(DPLL(pipe));
1710 }
1711
vlv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1712 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1713 {
1714 u32 val;
1715
1716 /* Make sure the pipe isn't still relying on us */
1717 assert_pipe_disabled(dev_priv, pipe);
1718
1719 val = DPLL_INTEGRATED_REF_CLK_VLV |
1720 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1721 if (pipe != PIPE_A)
1722 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1723
1724 I915_WRITE(DPLL(pipe), val);
1725 POSTING_READ(DPLL(pipe));
1726 }
1727
chv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1728 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1729 {
1730 enum dpio_channel port = vlv_pipe_to_channel(pipe);
1731 u32 val;
1732
1733 /* Make sure the pipe isn't still relying on us */
1734 assert_pipe_disabled(dev_priv, pipe);
1735
1736 val = DPLL_SSC_REF_CLK_CHV |
1737 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1738 if (pipe != PIPE_A)
1739 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1740
1741 I915_WRITE(DPLL(pipe), val);
1742 POSTING_READ(DPLL(pipe));
1743
1744 mutex_lock(&dev_priv->sb_lock);
1745
1746 /* Disable 10bit clock to display controller */
1747 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1748 val &= ~DPIO_DCLKP_EN;
1749 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1750
1751 mutex_unlock(&dev_priv->sb_lock);
1752 }
1753
vlv_wait_port_ready(struct drm_i915_private * dev_priv,struct intel_digital_port * dport,unsigned int expected_mask)1754 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1755 struct intel_digital_port *dport,
1756 unsigned int expected_mask)
1757 {
1758 u32 port_mask;
1759 i915_reg_t dpll_reg;
1760
1761 switch (dport->port) {
1762 case PORT_B:
1763 port_mask = DPLL_PORTB_READY_MASK;
1764 dpll_reg = DPLL(0);
1765 break;
1766 case PORT_C:
1767 port_mask = DPLL_PORTC_READY_MASK;
1768 dpll_reg = DPLL(0);
1769 expected_mask <<= 4;
1770 break;
1771 case PORT_D:
1772 port_mask = DPLL_PORTD_READY_MASK;
1773 dpll_reg = DPIO_PHY_STATUS;
1774 break;
1775 default:
1776 BUG();
1777 }
1778
1779 if (intel_wait_for_register(dev_priv,
1780 dpll_reg, port_mask, expected_mask,
1781 1000))
1782 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1783 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1784 }
1785
ironlake_enable_pch_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1786 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1787 enum pipe pipe)
1788 {
1789 struct drm_device *dev = &dev_priv->drm;
1790 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1791 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1792 i915_reg_t reg;
1793 uint32_t val, pipeconf_val;
1794
1795 /* Make sure PCH DPLL is enabled */
1796 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1797
1798 /* FDI must be feeding us bits for PCH ports */
1799 assert_fdi_tx_enabled(dev_priv, pipe);
1800 assert_fdi_rx_enabled(dev_priv, pipe);
1801
1802 if (HAS_PCH_CPT(dev)) {
1803 /* Workaround: Set the timing override bit before enabling the
1804 * pch transcoder. */
1805 reg = TRANS_CHICKEN2(pipe);
1806 val = I915_READ(reg);
1807 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1808 I915_WRITE(reg, val);
1809 }
1810
1811 reg = PCH_TRANSCONF(pipe);
1812 val = I915_READ(reg);
1813 pipeconf_val = I915_READ(PIPECONF(pipe));
1814
1815 if (HAS_PCH_IBX(dev_priv)) {
1816 /*
1817 * Make the BPC in transcoder be consistent with
1818 * that in pipeconf reg. For HDMI we must use 8bpc
1819 * here for both 8bpc and 12bpc.
1820 */
1821 val &= ~PIPECONF_BPC_MASK;
1822 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1823 val |= PIPECONF_8BPC;
1824 else
1825 val |= pipeconf_val & PIPECONF_BPC_MASK;
1826 }
1827
1828 val &= ~TRANS_INTERLACE_MASK;
1829 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1830 if (HAS_PCH_IBX(dev_priv) &&
1831 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1832 val |= TRANS_LEGACY_INTERLACED_ILK;
1833 else
1834 val |= TRANS_INTERLACED;
1835 else
1836 val |= TRANS_PROGRESSIVE;
1837
1838 I915_WRITE(reg, val | TRANS_ENABLE);
1839 if (intel_wait_for_register(dev_priv,
1840 reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1841 100))
1842 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1843 }
1844
lpt_enable_pch_transcoder(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder)1845 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1846 enum transcoder cpu_transcoder)
1847 {
1848 u32 val, pipeconf_val;
1849
1850 /* FDI must be feeding us bits for PCH ports */
1851 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1852 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1853
1854 /* Workaround: set timing override bit. */
1855 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1856 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1857 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1858
1859 val = TRANS_ENABLE;
1860 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1861
1862 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1863 PIPECONF_INTERLACED_ILK)
1864 val |= TRANS_INTERLACED;
1865 else
1866 val |= TRANS_PROGRESSIVE;
1867
1868 I915_WRITE(LPT_TRANSCONF, val);
1869 if (intel_wait_for_register(dev_priv,
1870 LPT_TRANSCONF,
1871 TRANS_STATE_ENABLE,
1872 TRANS_STATE_ENABLE,
1873 100))
1874 DRM_ERROR("Failed to enable PCH transcoder\n");
1875 }
1876
ironlake_disable_pch_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1877 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1878 enum pipe pipe)
1879 {
1880 struct drm_device *dev = &dev_priv->drm;
1881 i915_reg_t reg;
1882 uint32_t val;
1883
1884 /* FDI relies on the transcoder */
1885 assert_fdi_tx_disabled(dev_priv, pipe);
1886 assert_fdi_rx_disabled(dev_priv, pipe);
1887
1888 /* Ports must be off as well */
1889 assert_pch_ports_disabled(dev_priv, pipe);
1890
1891 reg = PCH_TRANSCONF(pipe);
1892 val = I915_READ(reg);
1893 val &= ~TRANS_ENABLE;
1894 I915_WRITE(reg, val);
1895 /* wait for PCH transcoder off, transcoder state */
1896 if (intel_wait_for_register(dev_priv,
1897 reg, TRANS_STATE_ENABLE, 0,
1898 50))
1899 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1900
1901 if (HAS_PCH_CPT(dev)) {
1902 /* Workaround: Clear the timing override chicken bit again. */
1903 reg = TRANS_CHICKEN2(pipe);
1904 val = I915_READ(reg);
1905 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1906 I915_WRITE(reg, val);
1907 }
1908 }
1909
lpt_disable_pch_transcoder(struct drm_i915_private * dev_priv)1910 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1911 {
1912 u32 val;
1913
1914 val = I915_READ(LPT_TRANSCONF);
1915 val &= ~TRANS_ENABLE;
1916 I915_WRITE(LPT_TRANSCONF, val);
1917 /* wait for PCH transcoder off, transcoder state */
1918 if (intel_wait_for_register(dev_priv,
1919 LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1920 50))
1921 DRM_ERROR("Failed to disable PCH transcoder\n");
1922
1923 /* Workaround: clear timing override bit. */
1924 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1925 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1926 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1927 }
1928
1929 /**
1930 * intel_enable_pipe - enable a pipe, asserting requirements
1931 * @crtc: crtc responsible for the pipe
1932 *
1933 * Enable @crtc's pipe, making sure that various hardware specific requirements
1934 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1935 */
intel_enable_pipe(struct intel_crtc * crtc)1936 static void intel_enable_pipe(struct intel_crtc *crtc)
1937 {
1938 struct drm_device *dev = crtc->base.dev;
1939 struct drm_i915_private *dev_priv = to_i915(dev);
1940 enum pipe pipe = crtc->pipe;
1941 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1942 enum pipe pch_transcoder;
1943 i915_reg_t reg;
1944 u32 val;
1945
1946 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1947
1948 assert_planes_disabled(dev_priv, pipe);
1949 assert_cursor_disabled(dev_priv, pipe);
1950 assert_sprites_disabled(dev_priv, pipe);
1951
1952 if (HAS_PCH_LPT(dev_priv))
1953 pch_transcoder = TRANSCODER_A;
1954 else
1955 pch_transcoder = pipe;
1956
1957 /*
1958 * A pipe without a PLL won't actually be able to drive bits from
1959 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1960 * need the check.
1961 */
1962 if (HAS_GMCH_DISPLAY(dev_priv)) {
1963 if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1964 assert_dsi_pll_enabled(dev_priv);
1965 else
1966 assert_pll_enabled(dev_priv, pipe);
1967 } else {
1968 if (crtc->config->has_pch_encoder) {
1969 /* if driving the PCH, we need FDI enabled */
1970 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1971 assert_fdi_tx_pll_enabled(dev_priv,
1972 (enum pipe) cpu_transcoder);
1973 }
1974 /* FIXME: assert CPU port conditions for SNB+ */
1975 }
1976
1977 reg = PIPECONF(cpu_transcoder);
1978 val = I915_READ(reg);
1979 if (val & PIPECONF_ENABLE) {
1980 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1981 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1982 return;
1983 }
1984
1985 I915_WRITE(reg, val | PIPECONF_ENABLE);
1986 POSTING_READ(reg);
1987
1988 /*
1989 * Until the pipe starts DSL will read as 0, which would cause
1990 * an apparent vblank timestamp jump, which messes up also the
1991 * frame count when it's derived from the timestamps. So let's
1992 * wait for the pipe to start properly before we call
1993 * drm_crtc_vblank_on()
1994 */
1995 if (dev->max_vblank_count == 0 &&
1996 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1997 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1998 }
1999
2000 /**
2001 * intel_disable_pipe - disable a pipe, asserting requirements
2002 * @crtc: crtc whose pipes is to be disabled
2003 *
2004 * Disable the pipe of @crtc, making sure that various hardware
2005 * specific requirements are met, if applicable, e.g. plane
2006 * disabled, panel fitter off, etc.
2007 *
2008 * Will wait until the pipe has shut down before returning.
2009 */
intel_disable_pipe(struct intel_crtc * crtc)2010 static void intel_disable_pipe(struct intel_crtc *crtc)
2011 {
2012 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2013 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2014 enum pipe pipe = crtc->pipe;
2015 i915_reg_t reg;
2016 u32 val;
2017
2018 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2019
2020 /*
2021 * Make sure planes won't keep trying to pump pixels to us,
2022 * or we might hang the display.
2023 */
2024 assert_planes_disabled(dev_priv, pipe);
2025 assert_cursor_disabled(dev_priv, pipe);
2026 assert_sprites_disabled(dev_priv, pipe);
2027
2028 reg = PIPECONF(cpu_transcoder);
2029 val = I915_READ(reg);
2030 if ((val & PIPECONF_ENABLE) == 0)
2031 return;
2032
2033 /*
2034 * Double wide has implications for planes
2035 * so best keep it disabled when not needed.
2036 */
2037 if (crtc->config->double_wide)
2038 val &= ~PIPECONF_DOUBLE_WIDE;
2039
2040 /* Don't disable pipe or pipe PLLs if needed */
2041 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2042 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2043 val &= ~PIPECONF_ENABLE;
2044
2045 I915_WRITE(reg, val);
2046 if ((val & PIPECONF_ENABLE) == 0)
2047 intel_wait_for_pipe_off(crtc);
2048 }
2049
intel_tile_size(const struct drm_i915_private * dev_priv)2050 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2051 {
2052 return IS_GEN2(dev_priv) ? 2048 : 4096;
2053 }
2054
intel_tile_width_bytes(const struct drm_i915_private * dev_priv,uint64_t fb_modifier,unsigned int cpp)2055 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2056 uint64_t fb_modifier, unsigned int cpp)
2057 {
2058 switch (fb_modifier) {
2059 case DRM_FORMAT_MOD_NONE:
2060 return cpp;
2061 case I915_FORMAT_MOD_X_TILED:
2062 if (IS_GEN2(dev_priv))
2063 return 128;
2064 else
2065 return 512;
2066 case I915_FORMAT_MOD_Y_TILED:
2067 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2068 return 128;
2069 else
2070 return 512;
2071 case I915_FORMAT_MOD_Yf_TILED:
2072 switch (cpp) {
2073 case 1:
2074 return 64;
2075 case 2:
2076 case 4:
2077 return 128;
2078 case 8:
2079 case 16:
2080 return 256;
2081 default:
2082 MISSING_CASE(cpp);
2083 return cpp;
2084 }
2085 break;
2086 default:
2087 MISSING_CASE(fb_modifier);
2088 return cpp;
2089 }
2090 }
2091
intel_tile_height(const struct drm_i915_private * dev_priv,uint64_t fb_modifier,unsigned int cpp)2092 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2093 uint64_t fb_modifier, unsigned int cpp)
2094 {
2095 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2096 return 1;
2097 else
2098 return intel_tile_size(dev_priv) /
2099 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2100 }
2101
2102 /* Return the tile dimensions in pixel units */
intel_tile_dims(const struct drm_i915_private * dev_priv,unsigned int * tile_width,unsigned int * tile_height,uint64_t fb_modifier,unsigned int cpp)2103 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2104 unsigned int *tile_width,
2105 unsigned int *tile_height,
2106 uint64_t fb_modifier,
2107 unsigned int cpp)
2108 {
2109 unsigned int tile_width_bytes =
2110 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2111
2112 *tile_width = tile_width_bytes / cpp;
2113 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2114 }
2115
2116 unsigned int
intel_fb_align_height(struct drm_device * dev,unsigned int height,uint32_t pixel_format,uint64_t fb_modifier)2117 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2118 uint32_t pixel_format, uint64_t fb_modifier)
2119 {
2120 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2121 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2122
2123 return ALIGN(height, tile_height);
2124 }
2125
intel_rotation_info_size(const struct intel_rotation_info * rot_info)2126 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2127 {
2128 unsigned int size = 0;
2129 int i;
2130
2131 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2132 size += rot_info->plane[i].width * rot_info->plane[i].height;
2133
2134 return size;
2135 }
2136
2137 static void
intel_fill_fb_ggtt_view(struct i915_ggtt_view * view,const struct drm_framebuffer * fb,unsigned int rotation)2138 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2139 const struct drm_framebuffer *fb,
2140 unsigned int rotation)
2141 {
2142 if (intel_rotation_90_or_270(rotation)) {
2143 *view = i915_ggtt_view_rotated;
2144 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2145 } else {
2146 *view = i915_ggtt_view_normal;
2147 }
2148 }
2149
intel_linear_alignment(const struct drm_i915_private * dev_priv)2150 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2151 {
2152 if (INTEL_INFO(dev_priv)->gen >= 9)
2153 return 256 * 1024;
2154 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2155 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2156 return 128 * 1024;
2157 else if (INTEL_INFO(dev_priv)->gen >= 4)
2158 return 4 * 1024;
2159 else
2160 return 0;
2161 }
2162
intel_surf_alignment(const struct drm_i915_private * dev_priv,uint64_t fb_modifier)2163 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2164 uint64_t fb_modifier)
2165 {
2166 switch (fb_modifier) {
2167 case DRM_FORMAT_MOD_NONE:
2168 return intel_linear_alignment(dev_priv);
2169 case I915_FORMAT_MOD_X_TILED:
2170 if (INTEL_INFO(dev_priv)->gen >= 9)
2171 return 256 * 1024;
2172 return 0;
2173 case I915_FORMAT_MOD_Y_TILED:
2174 case I915_FORMAT_MOD_Yf_TILED:
2175 return 1 * 1024 * 1024;
2176 default:
2177 MISSING_CASE(fb_modifier);
2178 return 0;
2179 }
2180 }
2181
2182 struct i915_vma *
intel_pin_and_fence_fb_obj(struct drm_framebuffer * fb,unsigned int rotation)2183 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2184 {
2185 struct drm_device *dev = fb->dev;
2186 struct drm_i915_private *dev_priv = to_i915(dev);
2187 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2188 struct i915_ggtt_view view;
2189 struct i915_vma *vma;
2190 u32 alignment;
2191
2192 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2193
2194 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2195
2196 intel_fill_fb_ggtt_view(&view, fb, rotation);
2197
2198 /* Note that the w/a also requires 64 PTE of padding following the
2199 * bo. We currently fill all unused PTE with the shadow page and so
2200 * we should always have valid PTE following the scanout preventing
2201 * the VT-d warning.
2202 */
2203 if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2204 alignment = 256 * 1024;
2205
2206 /*
2207 * Global gtt pte registers are special registers which actually forward
2208 * writes to a chunk of system memory. Which means that there is no risk
2209 * that the register values disappear as soon as we call
2210 * intel_runtime_pm_put(), so it is correct to wrap only the
2211 * pin/unpin/fence and not more.
2212 */
2213 intel_runtime_pm_get(dev_priv);
2214
2215 vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2216 if (IS_ERR(vma))
2217 goto err;
2218
2219 if (i915_vma_is_map_and_fenceable(vma)) {
2220 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2221 * fence, whereas 965+ only requires a fence if using
2222 * framebuffer compression. For simplicity, we always, when
2223 * possible, install a fence as the cost is not that onerous.
2224 *
2225 * If we fail to fence the tiled scanout, then either the
2226 * modeset will reject the change (which is highly unlikely as
2227 * the affected systems, all but one, do not have unmappable
2228 * space) or we will not be able to enable full powersaving
2229 * techniques (also likely not to apply due to various limits
2230 * FBC and the like impose on the size of the buffer, which
2231 * presumably we violated anyway with this unmappable buffer).
2232 * Anyway, it is presumably better to stumble onwards with
2233 * something and try to run the system in a "less than optimal"
2234 * mode that matches the user configuration.
2235 */
2236 if (i915_vma_get_fence(vma) == 0)
2237 i915_vma_pin_fence(vma);
2238 }
2239
2240 err:
2241 intel_runtime_pm_put(dev_priv);
2242 return vma;
2243 }
2244
intel_unpin_fb_obj(struct drm_framebuffer * fb,unsigned int rotation)2245 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2246 {
2247 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2248 struct i915_ggtt_view view;
2249 struct i915_vma *vma;
2250
2251 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2252
2253 intel_fill_fb_ggtt_view(&view, fb, rotation);
2254 vma = i915_gem_object_to_ggtt(obj, &view);
2255
2256 if (WARN_ON_ONCE(!vma))
2257 return;
2258
2259 i915_vma_unpin_fence(vma);
2260 i915_gem_object_unpin_from_display_plane(vma);
2261 }
2262
intel_fb_pitch(const struct drm_framebuffer * fb,int plane,unsigned int rotation)2263 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2264 unsigned int rotation)
2265 {
2266 if (intel_rotation_90_or_270(rotation))
2267 return to_intel_framebuffer(fb)->rotated[plane].pitch;
2268 else
2269 return fb->pitches[plane];
2270 }
2271
2272 /*
2273 * Convert the x/y offsets into a linear offset.
2274 * Only valid with 0/180 degree rotation, which is fine since linear
2275 * offset is only used with linear buffers on pre-hsw and tiled buffers
2276 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2277 */
intel_fb_xy_to_linear(int x,int y,const struct intel_plane_state * state,int plane)2278 u32 intel_fb_xy_to_linear(int x, int y,
2279 const struct intel_plane_state *state,
2280 int plane)
2281 {
2282 const struct drm_framebuffer *fb = state->base.fb;
2283 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2284 unsigned int pitch = fb->pitches[plane];
2285
2286 return y * pitch + x * cpp;
2287 }
2288
2289 /*
2290 * Add the x/y offsets derived from fb->offsets[] to the user
2291 * specified plane src x/y offsets. The resulting x/y offsets
2292 * specify the start of scanout from the beginning of the gtt mapping.
2293 */
intel_add_fb_offsets(int * x,int * y,const struct intel_plane_state * state,int plane)2294 void intel_add_fb_offsets(int *x, int *y,
2295 const struct intel_plane_state *state,
2296 int plane)
2297
2298 {
2299 const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2300 unsigned int rotation = state->base.rotation;
2301
2302 if (intel_rotation_90_or_270(rotation)) {
2303 *x += intel_fb->rotated[plane].x;
2304 *y += intel_fb->rotated[plane].y;
2305 } else {
2306 *x += intel_fb->normal[plane].x;
2307 *y += intel_fb->normal[plane].y;
2308 }
2309 }
2310
2311 /*
2312 * Input tile dimensions and pitch must already be
2313 * rotated to match x and y, and in pixel units.
2314 */
_intel_adjust_tile_offset(int * x,int * y,unsigned int tile_width,unsigned int tile_height,unsigned int tile_size,unsigned int pitch_tiles,u32 old_offset,u32 new_offset)2315 static u32 _intel_adjust_tile_offset(int *x, int *y,
2316 unsigned int tile_width,
2317 unsigned int tile_height,
2318 unsigned int tile_size,
2319 unsigned int pitch_tiles,
2320 u32 old_offset,
2321 u32 new_offset)
2322 {
2323 unsigned int pitch_pixels = pitch_tiles * tile_width;
2324 unsigned int tiles;
2325
2326 WARN_ON(old_offset & (tile_size - 1));
2327 WARN_ON(new_offset & (tile_size - 1));
2328 WARN_ON(new_offset > old_offset);
2329
2330 tiles = (old_offset - new_offset) / tile_size;
2331
2332 *y += tiles / pitch_tiles * tile_height;
2333 *x += tiles % pitch_tiles * tile_width;
2334
2335 /* minimize x in case it got needlessly big */
2336 *y += *x / pitch_pixels * tile_height;
2337 *x %= pitch_pixels;
2338
2339 return new_offset;
2340 }
2341
2342 /*
2343 * Adjust the tile offset by moving the difference into
2344 * the x/y offsets.
2345 */
intel_adjust_tile_offset(int * x,int * y,const struct intel_plane_state * state,int plane,u32 old_offset,u32 new_offset)2346 static u32 intel_adjust_tile_offset(int *x, int *y,
2347 const struct intel_plane_state *state, int plane,
2348 u32 old_offset, u32 new_offset)
2349 {
2350 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2351 const struct drm_framebuffer *fb = state->base.fb;
2352 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2353 unsigned int rotation = state->base.rotation;
2354 unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2355
2356 WARN_ON(new_offset > old_offset);
2357
2358 if (fb->modifier[plane] != DRM_FORMAT_MOD_NONE) {
2359 unsigned int tile_size, tile_width, tile_height;
2360 unsigned int pitch_tiles;
2361
2362 tile_size = intel_tile_size(dev_priv);
2363 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2364 fb->modifier[plane], cpp);
2365
2366 if (intel_rotation_90_or_270(rotation)) {
2367 pitch_tiles = pitch / tile_height;
2368 swap(tile_width, tile_height);
2369 } else {
2370 pitch_tiles = pitch / (tile_width * cpp);
2371 }
2372
2373 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2374 tile_size, pitch_tiles,
2375 old_offset, new_offset);
2376 } else {
2377 old_offset += *y * pitch + *x * cpp;
2378
2379 *y = (old_offset - new_offset) / pitch;
2380 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2381 }
2382
2383 return new_offset;
2384 }
2385
2386 /*
2387 * Computes the linear offset to the base tile and adjusts
2388 * x, y. bytes per pixel is assumed to be a power-of-two.
2389 *
2390 * In the 90/270 rotated case, x and y are assumed
2391 * to be already rotated to match the rotated GTT view, and
2392 * pitch is the tile_height aligned framebuffer height.
2393 *
2394 * This function is used when computing the derived information
2395 * under intel_framebuffer, so using any of that information
2396 * here is not allowed. Anything under drm_framebuffer can be
2397 * used. This is why the user has to pass in the pitch since it
2398 * is specified in the rotated orientation.
2399 */
_intel_compute_tile_offset(const struct drm_i915_private * dev_priv,int * x,int * y,const struct drm_framebuffer * fb,int plane,unsigned int pitch,unsigned int rotation,u32 alignment)2400 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2401 int *x, int *y,
2402 const struct drm_framebuffer *fb, int plane,
2403 unsigned int pitch,
2404 unsigned int rotation,
2405 u32 alignment)
2406 {
2407 uint64_t fb_modifier = fb->modifier[plane];
2408 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2409 u32 offset, offset_aligned;
2410
2411 if (alignment)
2412 alignment--;
2413
2414 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2415 unsigned int tile_size, tile_width, tile_height;
2416 unsigned int tile_rows, tiles, pitch_tiles;
2417
2418 tile_size = intel_tile_size(dev_priv);
2419 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2420 fb_modifier, cpp);
2421
2422 if (intel_rotation_90_or_270(rotation)) {
2423 pitch_tiles = pitch / tile_height;
2424 swap(tile_width, tile_height);
2425 } else {
2426 pitch_tiles = pitch / (tile_width * cpp);
2427 }
2428
2429 tile_rows = *y / tile_height;
2430 *y %= tile_height;
2431
2432 tiles = *x / tile_width;
2433 *x %= tile_width;
2434
2435 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2436 offset_aligned = offset & ~alignment;
2437
2438 _intel_adjust_tile_offset(x, y, tile_width, tile_height,
2439 tile_size, pitch_tiles,
2440 offset, offset_aligned);
2441 } else {
2442 offset = *y * pitch + *x * cpp;
2443 offset_aligned = offset & ~alignment;
2444
2445 *y = (offset & alignment) / pitch;
2446 *x = ((offset & alignment) - *y * pitch) / cpp;
2447 }
2448
2449 return offset_aligned;
2450 }
2451
intel_compute_tile_offset(int * x,int * y,const struct intel_plane_state * state,int plane)2452 u32 intel_compute_tile_offset(int *x, int *y,
2453 const struct intel_plane_state *state,
2454 int plane)
2455 {
2456 const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2457 const struct drm_framebuffer *fb = state->base.fb;
2458 unsigned int rotation = state->base.rotation;
2459 int pitch = intel_fb_pitch(fb, plane, rotation);
2460 u32 alignment;
2461
2462 /* AUX_DIST needs only 4K alignment */
2463 if (fb->pixel_format == DRM_FORMAT_NV12 && plane == 1)
2464 alignment = 4096;
2465 else
2466 alignment = intel_surf_alignment(dev_priv, fb->modifier[plane]);
2467
2468 return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2469 rotation, alignment);
2470 }
2471
2472 /* Convert the fb->offset[] linear offset into x/y offsets */
intel_fb_offset_to_xy(int * x,int * y,const struct drm_framebuffer * fb,int plane)2473 static void intel_fb_offset_to_xy(int *x, int *y,
2474 const struct drm_framebuffer *fb, int plane)
2475 {
2476 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2477 unsigned int pitch = fb->pitches[plane];
2478 u32 linear_offset = fb->offsets[plane];
2479
2480 *y = linear_offset / pitch;
2481 *x = linear_offset % pitch / cpp;
2482 }
2483
intel_fb_modifier_to_tiling(uint64_t fb_modifier)2484 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2485 {
2486 switch (fb_modifier) {
2487 case I915_FORMAT_MOD_X_TILED:
2488 return I915_TILING_X;
2489 case I915_FORMAT_MOD_Y_TILED:
2490 return I915_TILING_Y;
2491 default:
2492 return I915_TILING_NONE;
2493 }
2494 }
2495
2496 static int
intel_fill_fb_info(struct drm_i915_private * dev_priv,struct drm_framebuffer * fb)2497 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2498 struct drm_framebuffer *fb)
2499 {
2500 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2501 struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2502 u32 gtt_offset_rotated = 0;
2503 unsigned int max_size = 0;
2504 uint32_t format = fb->pixel_format;
2505 int i, num_planes = drm_format_num_planes(format);
2506 unsigned int tile_size = intel_tile_size(dev_priv);
2507
2508 for (i = 0; i < num_planes; i++) {
2509 unsigned int width, height;
2510 unsigned int cpp, size;
2511 u32 offset;
2512 int x, y;
2513
2514 cpp = drm_format_plane_cpp(format, i);
2515 width = drm_format_plane_width(fb->width, format, i);
2516 height = drm_format_plane_height(fb->height, format, i);
2517
2518 intel_fb_offset_to_xy(&x, &y, fb, i);
2519
2520 /*
2521 * The fence (if used) is aligned to the start of the object
2522 * so having the framebuffer wrap around across the edge of the
2523 * fenced region doesn't really work. We have no API to configure
2524 * the fence start offset within the object (nor could we probably
2525 * on gen2/3). So it's just easier if we just require that the
2526 * fb layout agrees with the fence layout. We already check that the
2527 * fb stride matches the fence stride elsewhere.
2528 */
2529 if (i915_gem_object_is_tiled(intel_fb->obj) &&
2530 (x + width) * cpp > fb->pitches[i]) {
2531 DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2532 i, fb->offsets[i]);
2533 return -EINVAL;
2534 }
2535
2536 /*
2537 * First pixel of the framebuffer from
2538 * the start of the normal gtt mapping.
2539 */
2540 intel_fb->normal[i].x = x;
2541 intel_fb->normal[i].y = y;
2542
2543 offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2544 fb, 0, fb->pitches[i],
2545 DRM_ROTATE_0, tile_size);
2546 offset /= tile_size;
2547
2548 if (fb->modifier[i] != DRM_FORMAT_MOD_NONE) {
2549 unsigned int tile_width, tile_height;
2550 unsigned int pitch_tiles;
2551 struct drm_rect r;
2552
2553 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2554 fb->modifier[i], cpp);
2555
2556 rot_info->plane[i].offset = offset;
2557 rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2558 rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2559 rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2560
2561 intel_fb->rotated[i].pitch =
2562 rot_info->plane[i].height * tile_height;
2563
2564 /* how many tiles does this plane need */
2565 size = rot_info->plane[i].stride * rot_info->plane[i].height;
2566 /*
2567 * If the plane isn't horizontally tile aligned,
2568 * we need one more tile.
2569 */
2570 if (x != 0)
2571 size++;
2572
2573 /* rotate the x/y offsets to match the GTT view */
2574 r.x1 = x;
2575 r.y1 = y;
2576 r.x2 = x + width;
2577 r.y2 = y + height;
2578 drm_rect_rotate(&r,
2579 rot_info->plane[i].width * tile_width,
2580 rot_info->plane[i].height * tile_height,
2581 DRM_ROTATE_270);
2582 x = r.x1;
2583 y = r.y1;
2584
2585 /* rotate the tile dimensions to match the GTT view */
2586 pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2587 swap(tile_width, tile_height);
2588
2589 /*
2590 * We only keep the x/y offsets, so push all of the
2591 * gtt offset into the x/y offsets.
2592 */
2593 _intel_adjust_tile_offset(&x, &y,
2594 tile_width, tile_height,
2595 tile_size, pitch_tiles,
2596 gtt_offset_rotated * tile_size, 0);
2597
2598 gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2599
2600 /*
2601 * First pixel of the framebuffer from
2602 * the start of the rotated gtt mapping.
2603 */
2604 intel_fb->rotated[i].x = x;
2605 intel_fb->rotated[i].y = y;
2606 } else {
2607 size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2608 x * cpp, tile_size);
2609 }
2610
2611 /* how many tiles in total needed in the bo */
2612 max_size = max(max_size, offset + size);
2613 }
2614
2615 if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2616 DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2617 max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2618 return -EINVAL;
2619 }
2620
2621 return 0;
2622 }
2623
i9xx_format_to_fourcc(int format)2624 static int i9xx_format_to_fourcc(int format)
2625 {
2626 switch (format) {
2627 case DISPPLANE_8BPP:
2628 return DRM_FORMAT_C8;
2629 case DISPPLANE_BGRX555:
2630 return DRM_FORMAT_XRGB1555;
2631 case DISPPLANE_BGRX565:
2632 return DRM_FORMAT_RGB565;
2633 default:
2634 case DISPPLANE_BGRX888:
2635 return DRM_FORMAT_XRGB8888;
2636 case DISPPLANE_RGBX888:
2637 return DRM_FORMAT_XBGR8888;
2638 case DISPPLANE_BGRX101010:
2639 return DRM_FORMAT_XRGB2101010;
2640 case DISPPLANE_RGBX101010:
2641 return DRM_FORMAT_XBGR2101010;
2642 }
2643 }
2644
skl_format_to_fourcc(int format,bool rgb_order,bool alpha)2645 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2646 {
2647 switch (format) {
2648 case PLANE_CTL_FORMAT_RGB_565:
2649 return DRM_FORMAT_RGB565;
2650 default:
2651 case PLANE_CTL_FORMAT_XRGB_8888:
2652 if (rgb_order) {
2653 if (alpha)
2654 return DRM_FORMAT_ABGR8888;
2655 else
2656 return DRM_FORMAT_XBGR8888;
2657 } else {
2658 if (alpha)
2659 return DRM_FORMAT_ARGB8888;
2660 else
2661 return DRM_FORMAT_XRGB8888;
2662 }
2663 case PLANE_CTL_FORMAT_XRGB_2101010:
2664 if (rgb_order)
2665 return DRM_FORMAT_XBGR2101010;
2666 else
2667 return DRM_FORMAT_XRGB2101010;
2668 }
2669 }
2670
2671 static bool
intel_alloc_initial_plane_obj(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)2672 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2673 struct intel_initial_plane_config *plane_config)
2674 {
2675 struct drm_device *dev = crtc->base.dev;
2676 struct drm_i915_private *dev_priv = to_i915(dev);
2677 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2678 struct drm_i915_gem_object *obj = NULL;
2679 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2680 struct drm_framebuffer *fb = &plane_config->fb->base;
2681 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2682 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2683 PAGE_SIZE);
2684
2685 size_aligned -= base_aligned;
2686
2687 if (plane_config->size == 0)
2688 return false;
2689
2690 /* If the FB is too big, just don't use it since fbdev is not very
2691 * important and we should probably use that space with FBC or other
2692 * features. */
2693 if (size_aligned * 2 > ggtt->stolen_usable_size)
2694 return false;
2695
2696 mutex_lock(&dev->struct_mutex);
2697
2698 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2699 base_aligned,
2700 base_aligned,
2701 size_aligned);
2702 if (!obj) {
2703 mutex_unlock(&dev->struct_mutex);
2704 return false;
2705 }
2706
2707 if (plane_config->tiling == I915_TILING_X)
2708 obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2709
2710 mode_cmd.pixel_format = fb->pixel_format;
2711 mode_cmd.width = fb->width;
2712 mode_cmd.height = fb->height;
2713 mode_cmd.pitches[0] = fb->pitches[0];
2714 mode_cmd.modifier[0] = fb->modifier[0];
2715 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2716
2717 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2718 &mode_cmd, obj)) {
2719 DRM_DEBUG_KMS("intel fb init failed\n");
2720 goto out_unref_obj;
2721 }
2722
2723 mutex_unlock(&dev->struct_mutex);
2724
2725 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2726 return true;
2727
2728 out_unref_obj:
2729 i915_gem_object_put(obj);
2730 mutex_unlock(&dev->struct_mutex);
2731 return false;
2732 }
2733
2734 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2735 static void
update_state_fb(struct drm_plane * plane)2736 update_state_fb(struct drm_plane *plane)
2737 {
2738 if (plane->fb == plane->state->fb)
2739 return;
2740
2741 if (plane->state->fb)
2742 drm_framebuffer_unreference(plane->state->fb);
2743 plane->state->fb = plane->fb;
2744 if (plane->state->fb)
2745 drm_framebuffer_reference(plane->state->fb);
2746 }
2747
2748 static void
intel_find_initial_plane_obj(struct intel_crtc * intel_crtc,struct intel_initial_plane_config * plane_config)2749 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2750 struct intel_initial_plane_config *plane_config)
2751 {
2752 struct drm_device *dev = intel_crtc->base.dev;
2753 struct drm_i915_private *dev_priv = to_i915(dev);
2754 struct drm_crtc *c;
2755 struct intel_crtc *i;
2756 struct drm_i915_gem_object *obj;
2757 struct drm_plane *primary = intel_crtc->base.primary;
2758 struct drm_plane_state *plane_state = primary->state;
2759 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2760 struct intel_plane *intel_plane = to_intel_plane(primary);
2761 struct intel_plane_state *intel_state =
2762 to_intel_plane_state(plane_state);
2763 struct drm_framebuffer *fb;
2764
2765 if (!plane_config->fb)
2766 return;
2767
2768 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2769 fb = &plane_config->fb->base;
2770 goto valid_fb;
2771 }
2772
2773 kfree(plane_config->fb);
2774
2775 /*
2776 * Failed to alloc the obj, check to see if we should share
2777 * an fb with another CRTC instead
2778 */
2779 for_each_crtc(dev, c) {
2780 i = to_intel_crtc(c);
2781
2782 if (c == &intel_crtc->base)
2783 continue;
2784
2785 if (!i->active)
2786 continue;
2787
2788 fb = c->primary->fb;
2789 if (!fb)
2790 continue;
2791
2792 obj = intel_fb_obj(fb);
2793 if (i915_gem_object_ggtt_offset(obj, NULL) == plane_config->base) {
2794 drm_framebuffer_reference(fb);
2795 goto valid_fb;
2796 }
2797 }
2798
2799 /*
2800 * We've failed to reconstruct the BIOS FB. Current display state
2801 * indicates that the primary plane is visible, but has a NULL FB,
2802 * which will lead to problems later if we don't fix it up. The
2803 * simplest solution is to just disable the primary plane now and
2804 * pretend the BIOS never had it enabled.
2805 */
2806 to_intel_plane_state(plane_state)->base.visible = false;
2807 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2808 intel_pre_disable_primary_noatomic(&intel_crtc->base);
2809 intel_plane->disable_plane(primary, &intel_crtc->base);
2810
2811 return;
2812
2813 valid_fb:
2814 plane_state->src_x = 0;
2815 plane_state->src_y = 0;
2816 plane_state->src_w = fb->width << 16;
2817 plane_state->src_h = fb->height << 16;
2818
2819 plane_state->crtc_x = 0;
2820 plane_state->crtc_y = 0;
2821 plane_state->crtc_w = fb->width;
2822 plane_state->crtc_h = fb->height;
2823
2824 intel_state->base.src.x1 = plane_state->src_x;
2825 intel_state->base.src.y1 = plane_state->src_y;
2826 intel_state->base.src.x2 = plane_state->src_x + plane_state->src_w;
2827 intel_state->base.src.y2 = plane_state->src_y + plane_state->src_h;
2828 intel_state->base.dst.x1 = plane_state->crtc_x;
2829 intel_state->base.dst.y1 = plane_state->crtc_y;
2830 intel_state->base.dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2831 intel_state->base.dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2832
2833 obj = intel_fb_obj(fb);
2834 if (i915_gem_object_is_tiled(obj))
2835 dev_priv->preserve_bios_swizzle = true;
2836
2837 drm_framebuffer_reference(fb);
2838 primary->fb = primary->state->fb = fb;
2839 primary->crtc = primary->state->crtc = &intel_crtc->base;
2840 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2841 atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2842 &obj->frontbuffer_bits);
2843 }
2844
skl_max_plane_width(const struct drm_framebuffer * fb,int plane,unsigned int rotation)2845 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2846 unsigned int rotation)
2847 {
2848 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2849
2850 switch (fb->modifier[plane]) {
2851 case DRM_FORMAT_MOD_NONE:
2852 case I915_FORMAT_MOD_X_TILED:
2853 switch (cpp) {
2854 case 8:
2855 return 4096;
2856 case 4:
2857 case 2:
2858 case 1:
2859 return 8192;
2860 default:
2861 MISSING_CASE(cpp);
2862 break;
2863 }
2864 break;
2865 case I915_FORMAT_MOD_Y_TILED:
2866 case I915_FORMAT_MOD_Yf_TILED:
2867 switch (cpp) {
2868 case 8:
2869 return 2048;
2870 case 4:
2871 return 4096;
2872 case 2:
2873 case 1:
2874 return 8192;
2875 default:
2876 MISSING_CASE(cpp);
2877 break;
2878 }
2879 break;
2880 default:
2881 MISSING_CASE(fb->modifier[plane]);
2882 }
2883
2884 return 2048;
2885 }
2886
skl_check_main_surface(struct intel_plane_state * plane_state)2887 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2888 {
2889 const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2890 const struct drm_framebuffer *fb = plane_state->base.fb;
2891 unsigned int rotation = plane_state->base.rotation;
2892 int x = plane_state->base.src.x1 >> 16;
2893 int y = plane_state->base.src.y1 >> 16;
2894 int w = drm_rect_width(&plane_state->base.src) >> 16;
2895 int h = drm_rect_height(&plane_state->base.src) >> 16;
2896 int max_width = skl_max_plane_width(fb, 0, rotation);
2897 int max_height = 4096;
2898 u32 alignment, offset, aux_offset = plane_state->aux.offset;
2899
2900 if (w > max_width || h > max_height) {
2901 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2902 w, h, max_width, max_height);
2903 return -EINVAL;
2904 }
2905
2906 intel_add_fb_offsets(&x, &y, plane_state, 0);
2907 offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2908
2909 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2910
2911 /*
2912 * AUX surface offset is specified as the distance from the
2913 * main surface offset, and it must be non-negative. Make
2914 * sure that is what we will get.
2915 */
2916 if (offset > aux_offset)
2917 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2918 offset, aux_offset & ~(alignment - 1));
2919
2920 /*
2921 * When using an X-tiled surface, the plane blows up
2922 * if the x offset + width exceed the stride.
2923 *
2924 * TODO: linear and Y-tiled seem fine, Yf untested,
2925 */
2926 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED) {
2927 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2928
2929 while ((x + w) * cpp > fb->pitches[0]) {
2930 if (offset == 0) {
2931 DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2932 return -EINVAL;
2933 }
2934
2935 offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2936 offset, offset - alignment);
2937 }
2938 }
2939
2940 plane_state->main.offset = offset;
2941 plane_state->main.x = x;
2942 plane_state->main.y = y;
2943
2944 return 0;
2945 }
2946
skl_check_nv12_aux_surface(struct intel_plane_state * plane_state)2947 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2948 {
2949 const struct drm_framebuffer *fb = plane_state->base.fb;
2950 unsigned int rotation = plane_state->base.rotation;
2951 int max_width = skl_max_plane_width(fb, 1, rotation);
2952 int max_height = 4096;
2953 int x = plane_state->base.src.x1 >> 17;
2954 int y = plane_state->base.src.y1 >> 17;
2955 int w = drm_rect_width(&plane_state->base.src) >> 17;
2956 int h = drm_rect_height(&plane_state->base.src) >> 17;
2957 u32 offset;
2958
2959 intel_add_fb_offsets(&x, &y, plane_state, 1);
2960 offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2961
2962 /* FIXME not quite sure how/if these apply to the chroma plane */
2963 if (w > max_width || h > max_height) {
2964 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2965 w, h, max_width, max_height);
2966 return -EINVAL;
2967 }
2968
2969 plane_state->aux.offset = offset;
2970 plane_state->aux.x = x;
2971 plane_state->aux.y = y;
2972
2973 return 0;
2974 }
2975
skl_check_plane_surface(struct intel_plane_state * plane_state)2976 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2977 {
2978 const struct drm_framebuffer *fb = plane_state->base.fb;
2979 unsigned int rotation = plane_state->base.rotation;
2980 int ret;
2981
2982 if (!plane_state->base.visible)
2983 return 0;
2984
2985 /* Rotate src coordinates to match rotated GTT view */
2986 if (intel_rotation_90_or_270(rotation))
2987 drm_rect_rotate(&plane_state->base.src,
2988 fb->width << 16, fb->height << 16,
2989 DRM_ROTATE_270);
2990
2991 /*
2992 * Handle the AUX surface first since
2993 * the main surface setup depends on it.
2994 */
2995 if (fb->pixel_format == DRM_FORMAT_NV12) {
2996 ret = skl_check_nv12_aux_surface(plane_state);
2997 if (ret)
2998 return ret;
2999 } else {
3000 plane_state->aux.offset = ~0xfff;
3001 plane_state->aux.x = 0;
3002 plane_state->aux.y = 0;
3003 }
3004
3005 ret = skl_check_main_surface(plane_state);
3006 if (ret)
3007 return ret;
3008
3009 return 0;
3010 }
3011
i9xx_update_primary_plane(struct drm_plane * primary,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)3012 static void i9xx_update_primary_plane(struct drm_plane *primary,
3013 const struct intel_crtc_state *crtc_state,
3014 const struct intel_plane_state *plane_state)
3015 {
3016 struct drm_device *dev = primary->dev;
3017 struct drm_i915_private *dev_priv = to_i915(dev);
3018 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3019 struct drm_framebuffer *fb = plane_state->base.fb;
3020 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3021 int plane = intel_crtc->plane;
3022 u32 linear_offset;
3023 u32 dspcntr;
3024 i915_reg_t reg = DSPCNTR(plane);
3025 unsigned int rotation = plane_state->base.rotation;
3026 int x = plane_state->base.src.x1 >> 16;
3027 int y = plane_state->base.src.y1 >> 16;
3028
3029 dspcntr = DISPPLANE_GAMMA_ENABLE;
3030
3031 dspcntr |= DISPLAY_PLANE_ENABLE;
3032
3033 if (INTEL_INFO(dev)->gen < 4) {
3034 if (intel_crtc->pipe == PIPE_B)
3035 dspcntr |= DISPPLANE_SEL_PIPE_B;
3036
3037 /* pipesrc and dspsize control the size that is scaled from,
3038 * which should always be the user's requested size.
3039 */
3040 I915_WRITE(DSPSIZE(plane),
3041 ((crtc_state->pipe_src_h - 1) << 16) |
3042 (crtc_state->pipe_src_w - 1));
3043 I915_WRITE(DSPPOS(plane), 0);
3044 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
3045 I915_WRITE(PRIMSIZE(plane),
3046 ((crtc_state->pipe_src_h - 1) << 16) |
3047 (crtc_state->pipe_src_w - 1));
3048 I915_WRITE(PRIMPOS(plane), 0);
3049 I915_WRITE(PRIMCNSTALPHA(plane), 0);
3050 }
3051
3052 switch (fb->pixel_format) {
3053 case DRM_FORMAT_C8:
3054 dspcntr |= DISPPLANE_8BPP;
3055 break;
3056 case DRM_FORMAT_XRGB1555:
3057 dspcntr |= DISPPLANE_BGRX555;
3058 break;
3059 case DRM_FORMAT_RGB565:
3060 dspcntr |= DISPPLANE_BGRX565;
3061 break;
3062 case DRM_FORMAT_XRGB8888:
3063 dspcntr |= DISPPLANE_BGRX888;
3064 break;
3065 case DRM_FORMAT_XBGR8888:
3066 dspcntr |= DISPPLANE_RGBX888;
3067 break;
3068 case DRM_FORMAT_XRGB2101010:
3069 dspcntr |= DISPPLANE_BGRX101010;
3070 break;
3071 case DRM_FORMAT_XBGR2101010:
3072 dspcntr |= DISPPLANE_RGBX101010;
3073 break;
3074 default:
3075 BUG();
3076 }
3077
3078 if (INTEL_GEN(dev_priv) >= 4 &&
3079 fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3080 dspcntr |= DISPPLANE_TILED;
3081
3082 if (IS_G4X(dev))
3083 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3084
3085 intel_add_fb_offsets(&x, &y, plane_state, 0);
3086
3087 if (INTEL_INFO(dev)->gen >= 4)
3088 intel_crtc->dspaddr_offset =
3089 intel_compute_tile_offset(&x, &y, plane_state, 0);
3090
3091 if (rotation == DRM_ROTATE_180) {
3092 dspcntr |= DISPPLANE_ROTATE_180;
3093
3094 x += (crtc_state->pipe_src_w - 1);
3095 y += (crtc_state->pipe_src_h - 1);
3096 }
3097
3098 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3099
3100 if (INTEL_INFO(dev)->gen < 4)
3101 intel_crtc->dspaddr_offset = linear_offset;
3102
3103 intel_crtc->adjusted_x = x;
3104 intel_crtc->adjusted_y = y;
3105
3106 I915_WRITE(reg, dspcntr);
3107
3108 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3109 if (INTEL_INFO(dev)->gen >= 4) {
3110 I915_WRITE(DSPSURF(plane),
3111 intel_fb_gtt_offset(fb, rotation) +
3112 intel_crtc->dspaddr_offset);
3113 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3114 I915_WRITE(DSPLINOFF(plane), linear_offset);
3115 } else
3116 I915_WRITE(DSPADDR(plane), i915_gem_object_ggtt_offset(obj, NULL) + linear_offset);
3117 POSTING_READ(reg);
3118 }
3119
i9xx_disable_primary_plane(struct drm_plane * primary,struct drm_crtc * crtc)3120 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3121 struct drm_crtc *crtc)
3122 {
3123 struct drm_device *dev = crtc->dev;
3124 struct drm_i915_private *dev_priv = to_i915(dev);
3125 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3126 int plane = intel_crtc->plane;
3127
3128 I915_WRITE(DSPCNTR(plane), 0);
3129 if (INTEL_INFO(dev_priv)->gen >= 4)
3130 I915_WRITE(DSPSURF(plane), 0);
3131 else
3132 I915_WRITE(DSPADDR(plane), 0);
3133 POSTING_READ(DSPCNTR(plane));
3134 }
3135
ironlake_update_primary_plane(struct drm_plane * primary,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)3136 static void ironlake_update_primary_plane(struct drm_plane *primary,
3137 const struct intel_crtc_state *crtc_state,
3138 const struct intel_plane_state *plane_state)
3139 {
3140 struct drm_device *dev = primary->dev;
3141 struct drm_i915_private *dev_priv = to_i915(dev);
3142 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3143 struct drm_framebuffer *fb = plane_state->base.fb;
3144 int plane = intel_crtc->plane;
3145 u32 linear_offset;
3146 u32 dspcntr;
3147 i915_reg_t reg = DSPCNTR(plane);
3148 unsigned int rotation = plane_state->base.rotation;
3149 int x = plane_state->base.src.x1 >> 16;
3150 int y = plane_state->base.src.y1 >> 16;
3151
3152 dspcntr = DISPPLANE_GAMMA_ENABLE;
3153 dspcntr |= DISPLAY_PLANE_ENABLE;
3154
3155 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3156 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3157
3158 switch (fb->pixel_format) {
3159 case DRM_FORMAT_C8:
3160 dspcntr |= DISPPLANE_8BPP;
3161 break;
3162 case DRM_FORMAT_RGB565:
3163 dspcntr |= DISPPLANE_BGRX565;
3164 break;
3165 case DRM_FORMAT_XRGB8888:
3166 dspcntr |= DISPPLANE_BGRX888;
3167 break;
3168 case DRM_FORMAT_XBGR8888:
3169 dspcntr |= DISPPLANE_RGBX888;
3170 break;
3171 case DRM_FORMAT_XRGB2101010:
3172 dspcntr |= DISPPLANE_BGRX101010;
3173 break;
3174 case DRM_FORMAT_XBGR2101010:
3175 dspcntr |= DISPPLANE_RGBX101010;
3176 break;
3177 default:
3178 BUG();
3179 }
3180
3181 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3182 dspcntr |= DISPPLANE_TILED;
3183
3184 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
3185 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3186
3187 intel_add_fb_offsets(&x, &y, plane_state, 0);
3188
3189 intel_crtc->dspaddr_offset =
3190 intel_compute_tile_offset(&x, &y, plane_state, 0);
3191
3192 if (rotation == DRM_ROTATE_180) {
3193 dspcntr |= DISPPLANE_ROTATE_180;
3194
3195 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
3196 x += (crtc_state->pipe_src_w - 1);
3197 y += (crtc_state->pipe_src_h - 1);
3198 }
3199 }
3200
3201 linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3202
3203 intel_crtc->adjusted_x = x;
3204 intel_crtc->adjusted_y = y;
3205
3206 I915_WRITE(reg, dspcntr);
3207
3208 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3209 I915_WRITE(DSPSURF(plane),
3210 intel_fb_gtt_offset(fb, rotation) +
3211 intel_crtc->dspaddr_offset);
3212 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3213 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3214 } else {
3215 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3216 I915_WRITE(DSPLINOFF(plane), linear_offset);
3217 }
3218 POSTING_READ(reg);
3219 }
3220
intel_fb_stride_alignment(const struct drm_i915_private * dev_priv,uint64_t fb_modifier,uint32_t pixel_format)3221 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3222 uint64_t fb_modifier, uint32_t pixel_format)
3223 {
3224 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
3225 return 64;
3226 } else {
3227 int cpp = drm_format_plane_cpp(pixel_format, 0);
3228
3229 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
3230 }
3231 }
3232
intel_fb_gtt_offset(struct drm_framebuffer * fb,unsigned int rotation)3233 u32 intel_fb_gtt_offset(struct drm_framebuffer *fb,
3234 unsigned int rotation)
3235 {
3236 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3237 struct i915_ggtt_view view;
3238 struct i915_vma *vma;
3239
3240 intel_fill_fb_ggtt_view(&view, fb, rotation);
3241
3242 vma = i915_gem_object_to_ggtt(obj, &view);
3243 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
3244 view.type))
3245 return -1;
3246
3247 return i915_ggtt_offset(vma);
3248 }
3249
skl_detach_scaler(struct intel_crtc * intel_crtc,int id)3250 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3251 {
3252 struct drm_device *dev = intel_crtc->base.dev;
3253 struct drm_i915_private *dev_priv = to_i915(dev);
3254
3255 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3256 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3257 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3258 }
3259
3260 /*
3261 * This function detaches (aka. unbinds) unused scalers in hardware
3262 */
skl_detach_scalers(struct intel_crtc * intel_crtc)3263 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3264 {
3265 struct intel_crtc_scaler_state *scaler_state;
3266 int i;
3267
3268 scaler_state = &intel_crtc->config->scaler_state;
3269
3270 /* loop through and disable scalers that aren't in use */
3271 for (i = 0; i < intel_crtc->num_scalers; i++) {
3272 if (!scaler_state->scalers[i].in_use)
3273 skl_detach_scaler(intel_crtc, i);
3274 }
3275 }
3276
skl_plane_stride(const struct drm_framebuffer * fb,int plane,unsigned int rotation)3277 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3278 unsigned int rotation)
3279 {
3280 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3281 u32 stride = intel_fb_pitch(fb, plane, rotation);
3282
3283 /*
3284 * The stride is either expressed as a multiple of 64 bytes chunks for
3285 * linear buffers or in number of tiles for tiled buffers.
3286 */
3287 if (intel_rotation_90_or_270(rotation)) {
3288 int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
3289
3290 stride /= intel_tile_height(dev_priv, fb->modifier[0], cpp);
3291 } else {
3292 stride /= intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3293 fb->pixel_format);
3294 }
3295
3296 return stride;
3297 }
3298
skl_plane_ctl_format(uint32_t pixel_format)3299 u32 skl_plane_ctl_format(uint32_t pixel_format)
3300 {
3301 switch (pixel_format) {
3302 case DRM_FORMAT_C8:
3303 return PLANE_CTL_FORMAT_INDEXED;
3304 case DRM_FORMAT_RGB565:
3305 return PLANE_CTL_FORMAT_RGB_565;
3306 case DRM_FORMAT_XBGR8888:
3307 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3308 case DRM_FORMAT_XRGB8888:
3309 return PLANE_CTL_FORMAT_XRGB_8888;
3310 /*
3311 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3312 * to be already pre-multiplied. We need to add a knob (or a different
3313 * DRM_FORMAT) for user-space to configure that.
3314 */
3315 case DRM_FORMAT_ABGR8888:
3316 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3317 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3318 case DRM_FORMAT_ARGB8888:
3319 return PLANE_CTL_FORMAT_XRGB_8888 |
3320 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3321 case DRM_FORMAT_XRGB2101010:
3322 return PLANE_CTL_FORMAT_XRGB_2101010;
3323 case DRM_FORMAT_XBGR2101010:
3324 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3325 case DRM_FORMAT_YUYV:
3326 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3327 case DRM_FORMAT_YVYU:
3328 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3329 case DRM_FORMAT_UYVY:
3330 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3331 case DRM_FORMAT_VYUY:
3332 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3333 default:
3334 MISSING_CASE(pixel_format);
3335 }
3336
3337 return 0;
3338 }
3339
skl_plane_ctl_tiling(uint64_t fb_modifier)3340 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3341 {
3342 switch (fb_modifier) {
3343 case DRM_FORMAT_MOD_NONE:
3344 break;
3345 case I915_FORMAT_MOD_X_TILED:
3346 return PLANE_CTL_TILED_X;
3347 case I915_FORMAT_MOD_Y_TILED:
3348 return PLANE_CTL_TILED_Y;
3349 case I915_FORMAT_MOD_Yf_TILED:
3350 return PLANE_CTL_TILED_YF;
3351 default:
3352 MISSING_CASE(fb_modifier);
3353 }
3354
3355 return 0;
3356 }
3357
skl_plane_ctl_rotation(unsigned int rotation)3358 u32 skl_plane_ctl_rotation(unsigned int rotation)
3359 {
3360 switch (rotation) {
3361 case DRM_ROTATE_0:
3362 break;
3363 /*
3364 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3365 * while i915 HW rotation is clockwise, thats why this swapping.
3366 */
3367 case DRM_ROTATE_90:
3368 return PLANE_CTL_ROTATE_270;
3369 case DRM_ROTATE_180:
3370 return PLANE_CTL_ROTATE_180;
3371 case DRM_ROTATE_270:
3372 return PLANE_CTL_ROTATE_90;
3373 default:
3374 MISSING_CASE(rotation);
3375 }
3376
3377 return 0;
3378 }
3379
skylake_update_primary_plane(struct drm_plane * plane,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)3380 static void skylake_update_primary_plane(struct drm_plane *plane,
3381 const struct intel_crtc_state *crtc_state,
3382 const struct intel_plane_state *plane_state)
3383 {
3384 struct drm_device *dev = plane->dev;
3385 struct drm_i915_private *dev_priv = to_i915(dev);
3386 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3387 struct drm_framebuffer *fb = plane_state->base.fb;
3388 const struct skl_wm_values *wm = &dev_priv->wm.skl_results;
3389 int pipe = intel_crtc->pipe;
3390 u32 plane_ctl;
3391 unsigned int rotation = plane_state->base.rotation;
3392 u32 stride = skl_plane_stride(fb, 0, rotation);
3393 u32 surf_addr = plane_state->main.offset;
3394 int scaler_id = plane_state->scaler_id;
3395 int src_x = plane_state->main.x;
3396 int src_y = plane_state->main.y;
3397 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3398 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3399 int dst_x = plane_state->base.dst.x1;
3400 int dst_y = plane_state->base.dst.y1;
3401 int dst_w = drm_rect_width(&plane_state->base.dst);
3402 int dst_h = drm_rect_height(&plane_state->base.dst);
3403
3404 plane_ctl = PLANE_CTL_ENABLE |
3405 PLANE_CTL_PIPE_GAMMA_ENABLE |
3406 PLANE_CTL_PIPE_CSC_ENABLE;
3407
3408 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3409 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3410 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3411 plane_ctl |= skl_plane_ctl_rotation(rotation);
3412
3413 /* Sizes are 0 based */
3414 src_w--;
3415 src_h--;
3416 dst_w--;
3417 dst_h--;
3418
3419 intel_crtc->dspaddr_offset = surf_addr;
3420
3421 intel_crtc->adjusted_x = src_x;
3422 intel_crtc->adjusted_y = src_y;
3423
3424 if (wm->dirty_pipes & drm_crtc_mask(&intel_crtc->base))
3425 skl_write_plane_wm(intel_crtc, wm, 0);
3426
3427 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3428 I915_WRITE(PLANE_OFFSET(pipe, 0), (src_y << 16) | src_x);
3429 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3430 I915_WRITE(PLANE_SIZE(pipe, 0), (src_h << 16) | src_w);
3431
3432 if (scaler_id >= 0) {
3433 uint32_t ps_ctrl = 0;
3434
3435 WARN_ON(!dst_w || !dst_h);
3436 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3437 crtc_state->scaler_state.scalers[scaler_id].mode;
3438 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3439 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3440 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3441 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3442 I915_WRITE(PLANE_POS(pipe, 0), 0);
3443 } else {
3444 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3445 }
3446
3447 I915_WRITE(PLANE_SURF(pipe, 0),
3448 intel_fb_gtt_offset(fb, rotation) + surf_addr);
3449
3450 POSTING_READ(PLANE_SURF(pipe, 0));
3451 }
3452
skylake_disable_primary_plane(struct drm_plane * primary,struct drm_crtc * crtc)3453 static void skylake_disable_primary_plane(struct drm_plane *primary,
3454 struct drm_crtc *crtc)
3455 {
3456 struct drm_device *dev = crtc->dev;
3457 struct drm_i915_private *dev_priv = to_i915(dev);
3458 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3459 int pipe = intel_crtc->pipe;
3460
3461 /*
3462 * We only populate skl_results on watermark updates, and if the
3463 * plane's visiblity isn't actually changing neither is its watermarks.
3464 */
3465 if (!crtc->primary->state->visible)
3466 skl_write_plane_wm(intel_crtc, &dev_priv->wm.skl_results, 0);
3467
3468 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3469 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3470 POSTING_READ(PLANE_SURF(pipe, 0));
3471 }
3472
3473 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3474 static int
intel_pipe_set_base_atomic(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y,enum mode_set_atomic state)3475 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3476 int x, int y, enum mode_set_atomic state)
3477 {
3478 /* Support for kgdboc is disabled, this needs a major rework. */
3479 DRM_ERROR("legacy panic handler not supported any more.\n");
3480
3481 return -ENODEV;
3482 }
3483
intel_complete_page_flips(struct drm_i915_private * dev_priv)3484 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3485 {
3486 struct intel_crtc *crtc;
3487
3488 for_each_intel_crtc(&dev_priv->drm, crtc)
3489 intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3490 }
3491
intel_update_primary_planes(struct drm_device * dev)3492 static void intel_update_primary_planes(struct drm_device *dev)
3493 {
3494 struct drm_crtc *crtc;
3495
3496 for_each_crtc(dev, crtc) {
3497 struct intel_plane *plane = to_intel_plane(crtc->primary);
3498 struct intel_plane_state *plane_state =
3499 to_intel_plane_state(plane->base.state);
3500
3501 if (plane_state->base.visible)
3502 plane->update_plane(&plane->base,
3503 to_intel_crtc_state(crtc->state),
3504 plane_state);
3505 }
3506 }
3507
3508 static int
__intel_display_resume(struct drm_device * dev,struct drm_atomic_state * state)3509 __intel_display_resume(struct drm_device *dev,
3510 struct drm_atomic_state *state)
3511 {
3512 struct drm_crtc_state *crtc_state;
3513 struct drm_crtc *crtc;
3514 int i, ret;
3515
3516 intel_modeset_setup_hw_state(dev);
3517 i915_redisable_vga(dev);
3518
3519 if (!state)
3520 return 0;
3521
3522 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3523 /*
3524 * Force recalculation even if we restore
3525 * current state. With fast modeset this may not result
3526 * in a modeset when the state is compatible.
3527 */
3528 crtc_state->mode_changed = true;
3529 }
3530
3531 /* ignore any reset values/BIOS leftovers in the WM registers */
3532 to_intel_atomic_state(state)->skip_intermediate_wm = true;
3533
3534 ret = drm_atomic_commit(state);
3535
3536 WARN_ON(ret == -EDEADLK);
3537 return ret;
3538 }
3539
gpu_reset_clobbers_display(struct drm_i915_private * dev_priv)3540 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3541 {
3542 return intel_has_gpu_reset(dev_priv) &&
3543 INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3544 }
3545
intel_prepare_reset(struct drm_i915_private * dev_priv)3546 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3547 {
3548 struct drm_device *dev = &dev_priv->drm;
3549 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3550 struct drm_atomic_state *state;
3551 int ret;
3552
3553 /*
3554 * Need mode_config.mutex so that we don't
3555 * trample ongoing ->detect() and whatnot.
3556 */
3557 mutex_lock(&dev->mode_config.mutex);
3558 drm_modeset_acquire_init(ctx, 0);
3559 while (1) {
3560 ret = drm_modeset_lock_all_ctx(dev, ctx);
3561 if (ret != -EDEADLK)
3562 break;
3563
3564 drm_modeset_backoff(ctx);
3565 }
3566
3567 /* reset doesn't touch the display, but flips might get nuked anyway, */
3568 if (!i915.force_reset_modeset_test &&
3569 !gpu_reset_clobbers_display(dev_priv))
3570 return;
3571
3572 /*
3573 * Disabling the crtcs gracefully seems nicer. Also the
3574 * g33 docs say we should at least disable all the planes.
3575 */
3576 state = drm_atomic_helper_duplicate_state(dev, ctx);
3577 if (IS_ERR(state)) {
3578 ret = PTR_ERR(state);
3579 state = NULL;
3580 DRM_ERROR("Duplicating state failed with %i\n", ret);
3581 goto err;
3582 }
3583
3584 ret = drm_atomic_helper_disable_all(dev, ctx);
3585 if (ret) {
3586 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3587 goto err;
3588 }
3589
3590 dev_priv->modeset_restore_state = state;
3591 state->acquire_ctx = ctx;
3592 return;
3593
3594 err:
3595 drm_atomic_state_free(state);
3596 }
3597
intel_finish_reset(struct drm_i915_private * dev_priv)3598 void intel_finish_reset(struct drm_i915_private *dev_priv)
3599 {
3600 struct drm_device *dev = &dev_priv->drm;
3601 struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3602 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3603 int ret;
3604
3605 /*
3606 * Flips in the rings will be nuked by the reset,
3607 * so complete all pending flips so that user space
3608 * will get its events and not get stuck.
3609 */
3610 intel_complete_page_flips(dev_priv);
3611
3612 dev_priv->modeset_restore_state = NULL;
3613
3614 dev_priv->modeset_restore_state = NULL;
3615
3616 /* reset doesn't touch the display */
3617 if (!gpu_reset_clobbers_display(dev_priv)) {
3618 if (!state) {
3619 /*
3620 * Flips in the rings have been nuked by the reset,
3621 * so update the base address of all primary
3622 * planes to the the last fb to make sure we're
3623 * showing the correct fb after a reset.
3624 *
3625 * FIXME: Atomic will make this obsolete since we won't schedule
3626 * CS-based flips (which might get lost in gpu resets) any more.
3627 */
3628 intel_update_primary_planes(dev);
3629 } else {
3630 ret = __intel_display_resume(dev, state);
3631 if (ret)
3632 DRM_ERROR("Restoring old state failed with %i\n", ret);
3633 }
3634 } else {
3635 /*
3636 * The display has been reset as well,
3637 * so need a full re-initialization.
3638 */
3639 intel_runtime_pm_disable_interrupts(dev_priv);
3640 intel_runtime_pm_enable_interrupts(dev_priv);
3641
3642 intel_pps_unlock_regs_wa(dev_priv);
3643 intel_modeset_init_hw(dev);
3644
3645 spin_lock_irq(&dev_priv->irq_lock);
3646 if (dev_priv->display.hpd_irq_setup)
3647 dev_priv->display.hpd_irq_setup(dev_priv);
3648 spin_unlock_irq(&dev_priv->irq_lock);
3649
3650 ret = __intel_display_resume(dev, state);
3651 if (ret)
3652 DRM_ERROR("Restoring old state failed with %i\n", ret);
3653
3654 intel_hpd_init(dev_priv);
3655 }
3656
3657 drm_modeset_drop_locks(ctx);
3658 drm_modeset_acquire_fini(ctx);
3659 mutex_unlock(&dev->mode_config.mutex);
3660 }
3661
abort_flip_on_reset(struct intel_crtc * crtc)3662 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3663 {
3664 struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3665
3666 if (i915_reset_in_progress(error))
3667 return true;
3668
3669 if (crtc->reset_count != i915_reset_count(error))
3670 return true;
3671
3672 return false;
3673 }
3674
intel_crtc_has_pending_flip(struct drm_crtc * crtc)3675 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3676 {
3677 struct drm_device *dev = crtc->dev;
3678 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3679 bool pending;
3680
3681 if (abort_flip_on_reset(intel_crtc))
3682 return false;
3683
3684 spin_lock_irq(&dev->event_lock);
3685 pending = to_intel_crtc(crtc)->flip_work != NULL;
3686 spin_unlock_irq(&dev->event_lock);
3687
3688 return pending;
3689 }
3690
intel_update_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * old_crtc_state)3691 static void intel_update_pipe_config(struct intel_crtc *crtc,
3692 struct intel_crtc_state *old_crtc_state)
3693 {
3694 struct drm_device *dev = crtc->base.dev;
3695 struct drm_i915_private *dev_priv = to_i915(dev);
3696 struct intel_crtc_state *pipe_config =
3697 to_intel_crtc_state(crtc->base.state);
3698
3699 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3700 crtc->base.mode = crtc->base.state->mode;
3701
3702 /*
3703 * Update pipe size and adjust fitter if needed: the reason for this is
3704 * that in compute_mode_changes we check the native mode (not the pfit
3705 * mode) to see if we can flip rather than do a full mode set. In the
3706 * fastboot case, we'll flip, but if we don't update the pipesrc and
3707 * pfit state, we'll end up with a big fb scanned out into the wrong
3708 * sized surface.
3709 */
3710
3711 I915_WRITE(PIPESRC(crtc->pipe),
3712 ((pipe_config->pipe_src_w - 1) << 16) |
3713 (pipe_config->pipe_src_h - 1));
3714
3715 /* on skylake this is done by detaching scalers */
3716 if (INTEL_INFO(dev)->gen >= 9) {
3717 skl_detach_scalers(crtc);
3718
3719 if (pipe_config->pch_pfit.enabled)
3720 skylake_pfit_enable(crtc);
3721 } else if (HAS_PCH_SPLIT(dev)) {
3722 if (pipe_config->pch_pfit.enabled)
3723 ironlake_pfit_enable(crtc);
3724 else if (old_crtc_state->pch_pfit.enabled)
3725 ironlake_pfit_disable(crtc, true);
3726 }
3727 }
3728
intel_fdi_normal_train(struct drm_crtc * crtc)3729 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3730 {
3731 struct drm_device *dev = crtc->dev;
3732 struct drm_i915_private *dev_priv = to_i915(dev);
3733 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3734 int pipe = intel_crtc->pipe;
3735 i915_reg_t reg;
3736 u32 temp;
3737
3738 /* enable normal train */
3739 reg = FDI_TX_CTL(pipe);
3740 temp = I915_READ(reg);
3741 if (IS_IVYBRIDGE(dev)) {
3742 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3743 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3744 } else {
3745 temp &= ~FDI_LINK_TRAIN_NONE;
3746 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3747 }
3748 I915_WRITE(reg, temp);
3749
3750 reg = FDI_RX_CTL(pipe);
3751 temp = I915_READ(reg);
3752 if (HAS_PCH_CPT(dev)) {
3753 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3754 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3755 } else {
3756 temp &= ~FDI_LINK_TRAIN_NONE;
3757 temp |= FDI_LINK_TRAIN_NONE;
3758 }
3759 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3760
3761 /* wait one idle pattern time */
3762 POSTING_READ(reg);
3763 udelay(1000);
3764
3765 /* IVB wants error correction enabled */
3766 if (IS_IVYBRIDGE(dev))
3767 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3768 FDI_FE_ERRC_ENABLE);
3769 }
3770
3771 /* The FDI link training functions for ILK/Ibexpeak. */
ironlake_fdi_link_train(struct drm_crtc * crtc)3772 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3773 {
3774 struct drm_device *dev = crtc->dev;
3775 struct drm_i915_private *dev_priv = to_i915(dev);
3776 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3777 int pipe = intel_crtc->pipe;
3778 i915_reg_t reg;
3779 u32 temp, tries;
3780
3781 /* FDI needs bits from pipe first */
3782 assert_pipe_enabled(dev_priv, pipe);
3783
3784 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3785 for train result */
3786 reg = FDI_RX_IMR(pipe);
3787 temp = I915_READ(reg);
3788 temp &= ~FDI_RX_SYMBOL_LOCK;
3789 temp &= ~FDI_RX_BIT_LOCK;
3790 I915_WRITE(reg, temp);
3791 I915_READ(reg);
3792 udelay(150);
3793
3794 /* enable CPU FDI TX and PCH FDI RX */
3795 reg = FDI_TX_CTL(pipe);
3796 temp = I915_READ(reg);
3797 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3798 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3799 temp &= ~FDI_LINK_TRAIN_NONE;
3800 temp |= FDI_LINK_TRAIN_PATTERN_1;
3801 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3802
3803 reg = FDI_RX_CTL(pipe);
3804 temp = I915_READ(reg);
3805 temp &= ~FDI_LINK_TRAIN_NONE;
3806 temp |= FDI_LINK_TRAIN_PATTERN_1;
3807 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3808
3809 POSTING_READ(reg);
3810 udelay(150);
3811
3812 /* Ironlake workaround, enable clock pointer after FDI enable*/
3813 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3814 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3815 FDI_RX_PHASE_SYNC_POINTER_EN);
3816
3817 reg = FDI_RX_IIR(pipe);
3818 for (tries = 0; tries < 5; tries++) {
3819 temp = I915_READ(reg);
3820 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3821
3822 if ((temp & FDI_RX_BIT_LOCK)) {
3823 DRM_DEBUG_KMS("FDI train 1 done.\n");
3824 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3825 break;
3826 }
3827 }
3828 if (tries == 5)
3829 DRM_ERROR("FDI train 1 fail!\n");
3830
3831 /* Train 2 */
3832 reg = FDI_TX_CTL(pipe);
3833 temp = I915_READ(reg);
3834 temp &= ~FDI_LINK_TRAIN_NONE;
3835 temp |= FDI_LINK_TRAIN_PATTERN_2;
3836 I915_WRITE(reg, temp);
3837
3838 reg = FDI_RX_CTL(pipe);
3839 temp = I915_READ(reg);
3840 temp &= ~FDI_LINK_TRAIN_NONE;
3841 temp |= FDI_LINK_TRAIN_PATTERN_2;
3842 I915_WRITE(reg, temp);
3843
3844 POSTING_READ(reg);
3845 udelay(150);
3846
3847 reg = FDI_RX_IIR(pipe);
3848 for (tries = 0; tries < 5; tries++) {
3849 temp = I915_READ(reg);
3850 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3851
3852 if (temp & FDI_RX_SYMBOL_LOCK) {
3853 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3854 DRM_DEBUG_KMS("FDI train 2 done.\n");
3855 break;
3856 }
3857 }
3858 if (tries == 5)
3859 DRM_ERROR("FDI train 2 fail!\n");
3860
3861 DRM_DEBUG_KMS("FDI train done\n");
3862
3863 }
3864
3865 static const int snb_b_fdi_train_param[] = {
3866 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3867 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3868 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3869 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3870 };
3871
3872 /* The FDI link training functions for SNB/Cougarpoint. */
gen6_fdi_link_train(struct drm_crtc * crtc)3873 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3874 {
3875 struct drm_device *dev = crtc->dev;
3876 struct drm_i915_private *dev_priv = to_i915(dev);
3877 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3878 int pipe = intel_crtc->pipe;
3879 i915_reg_t reg;
3880 u32 temp, i, retry;
3881
3882 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3883 for train result */
3884 reg = FDI_RX_IMR(pipe);
3885 temp = I915_READ(reg);
3886 temp &= ~FDI_RX_SYMBOL_LOCK;
3887 temp &= ~FDI_RX_BIT_LOCK;
3888 I915_WRITE(reg, temp);
3889
3890 POSTING_READ(reg);
3891 udelay(150);
3892
3893 /* enable CPU FDI TX and PCH FDI RX */
3894 reg = FDI_TX_CTL(pipe);
3895 temp = I915_READ(reg);
3896 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3897 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3898 temp &= ~FDI_LINK_TRAIN_NONE;
3899 temp |= FDI_LINK_TRAIN_PATTERN_1;
3900 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3901 /* SNB-B */
3902 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3903 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3904
3905 I915_WRITE(FDI_RX_MISC(pipe),
3906 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3907
3908 reg = FDI_RX_CTL(pipe);
3909 temp = I915_READ(reg);
3910 if (HAS_PCH_CPT(dev)) {
3911 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3912 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3913 } else {
3914 temp &= ~FDI_LINK_TRAIN_NONE;
3915 temp |= FDI_LINK_TRAIN_PATTERN_1;
3916 }
3917 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3918
3919 POSTING_READ(reg);
3920 udelay(150);
3921
3922 for (i = 0; i < 4; i++) {
3923 reg = FDI_TX_CTL(pipe);
3924 temp = I915_READ(reg);
3925 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3926 temp |= snb_b_fdi_train_param[i];
3927 I915_WRITE(reg, temp);
3928
3929 POSTING_READ(reg);
3930 udelay(500);
3931
3932 for (retry = 0; retry < 5; retry++) {
3933 reg = FDI_RX_IIR(pipe);
3934 temp = I915_READ(reg);
3935 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3936 if (temp & FDI_RX_BIT_LOCK) {
3937 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3938 DRM_DEBUG_KMS("FDI train 1 done.\n");
3939 break;
3940 }
3941 udelay(50);
3942 }
3943 if (retry < 5)
3944 break;
3945 }
3946 if (i == 4)
3947 DRM_ERROR("FDI train 1 fail!\n");
3948
3949 /* Train 2 */
3950 reg = FDI_TX_CTL(pipe);
3951 temp = I915_READ(reg);
3952 temp &= ~FDI_LINK_TRAIN_NONE;
3953 temp |= FDI_LINK_TRAIN_PATTERN_2;
3954 if (IS_GEN6(dev)) {
3955 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3956 /* SNB-B */
3957 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3958 }
3959 I915_WRITE(reg, temp);
3960
3961 reg = FDI_RX_CTL(pipe);
3962 temp = I915_READ(reg);
3963 if (HAS_PCH_CPT(dev)) {
3964 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3965 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3966 } else {
3967 temp &= ~FDI_LINK_TRAIN_NONE;
3968 temp |= FDI_LINK_TRAIN_PATTERN_2;
3969 }
3970 I915_WRITE(reg, temp);
3971
3972 POSTING_READ(reg);
3973 udelay(150);
3974
3975 for (i = 0; i < 4; i++) {
3976 reg = FDI_TX_CTL(pipe);
3977 temp = I915_READ(reg);
3978 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3979 temp |= snb_b_fdi_train_param[i];
3980 I915_WRITE(reg, temp);
3981
3982 POSTING_READ(reg);
3983 udelay(500);
3984
3985 for (retry = 0; retry < 5; retry++) {
3986 reg = FDI_RX_IIR(pipe);
3987 temp = I915_READ(reg);
3988 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3989 if (temp & FDI_RX_SYMBOL_LOCK) {
3990 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3991 DRM_DEBUG_KMS("FDI train 2 done.\n");
3992 break;
3993 }
3994 udelay(50);
3995 }
3996 if (retry < 5)
3997 break;
3998 }
3999 if (i == 4)
4000 DRM_ERROR("FDI train 2 fail!\n");
4001
4002 DRM_DEBUG_KMS("FDI train done.\n");
4003 }
4004
4005 /* Manual link training for Ivy Bridge A0 parts */
ivb_manual_fdi_link_train(struct drm_crtc * crtc)4006 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
4007 {
4008 struct drm_device *dev = crtc->dev;
4009 struct drm_i915_private *dev_priv = to_i915(dev);
4010 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4011 int pipe = intel_crtc->pipe;
4012 i915_reg_t reg;
4013 u32 temp, i, j;
4014
4015 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4016 for train result */
4017 reg = FDI_RX_IMR(pipe);
4018 temp = I915_READ(reg);
4019 temp &= ~FDI_RX_SYMBOL_LOCK;
4020 temp &= ~FDI_RX_BIT_LOCK;
4021 I915_WRITE(reg, temp);
4022
4023 POSTING_READ(reg);
4024 udelay(150);
4025
4026 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4027 I915_READ(FDI_RX_IIR(pipe)));
4028
4029 /* Try each vswing and preemphasis setting twice before moving on */
4030 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4031 /* disable first in case we need to retry */
4032 reg = FDI_TX_CTL(pipe);
4033 temp = I915_READ(reg);
4034 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4035 temp &= ~FDI_TX_ENABLE;
4036 I915_WRITE(reg, temp);
4037
4038 reg = FDI_RX_CTL(pipe);
4039 temp = I915_READ(reg);
4040 temp &= ~FDI_LINK_TRAIN_AUTO;
4041 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4042 temp &= ~FDI_RX_ENABLE;
4043 I915_WRITE(reg, temp);
4044
4045 /* enable CPU FDI TX and PCH FDI RX */
4046 reg = FDI_TX_CTL(pipe);
4047 temp = I915_READ(reg);
4048 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4049 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4050 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4051 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4052 temp |= snb_b_fdi_train_param[j/2];
4053 temp |= FDI_COMPOSITE_SYNC;
4054 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4055
4056 I915_WRITE(FDI_RX_MISC(pipe),
4057 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4058
4059 reg = FDI_RX_CTL(pipe);
4060 temp = I915_READ(reg);
4061 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4062 temp |= FDI_COMPOSITE_SYNC;
4063 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4064
4065 POSTING_READ(reg);
4066 udelay(1); /* should be 0.5us */
4067
4068 for (i = 0; i < 4; i++) {
4069 reg = FDI_RX_IIR(pipe);
4070 temp = I915_READ(reg);
4071 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4072
4073 if (temp & FDI_RX_BIT_LOCK ||
4074 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4075 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4076 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4077 i);
4078 break;
4079 }
4080 udelay(1); /* should be 0.5us */
4081 }
4082 if (i == 4) {
4083 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4084 continue;
4085 }
4086
4087 /* Train 2 */
4088 reg = FDI_TX_CTL(pipe);
4089 temp = I915_READ(reg);
4090 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4091 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4092 I915_WRITE(reg, temp);
4093
4094 reg = FDI_RX_CTL(pipe);
4095 temp = I915_READ(reg);
4096 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4097 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4098 I915_WRITE(reg, temp);
4099
4100 POSTING_READ(reg);
4101 udelay(2); /* should be 1.5us */
4102
4103 for (i = 0; i < 4; i++) {
4104 reg = FDI_RX_IIR(pipe);
4105 temp = I915_READ(reg);
4106 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4107
4108 if (temp & FDI_RX_SYMBOL_LOCK ||
4109 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4110 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4111 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4112 i);
4113 goto train_done;
4114 }
4115 udelay(2); /* should be 1.5us */
4116 }
4117 if (i == 4)
4118 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4119 }
4120
4121 train_done:
4122 DRM_DEBUG_KMS("FDI train done.\n");
4123 }
4124
ironlake_fdi_pll_enable(struct intel_crtc * intel_crtc)4125 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4126 {
4127 struct drm_device *dev = intel_crtc->base.dev;
4128 struct drm_i915_private *dev_priv = to_i915(dev);
4129 int pipe = intel_crtc->pipe;
4130 i915_reg_t reg;
4131 u32 temp;
4132
4133 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4134 reg = FDI_RX_CTL(pipe);
4135 temp = I915_READ(reg);
4136 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4137 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4138 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4139 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4140
4141 POSTING_READ(reg);
4142 udelay(200);
4143
4144 /* Switch from Rawclk to PCDclk */
4145 temp = I915_READ(reg);
4146 I915_WRITE(reg, temp | FDI_PCDCLK);
4147
4148 POSTING_READ(reg);
4149 udelay(200);
4150
4151 /* Enable CPU FDI TX PLL, always on for Ironlake */
4152 reg = FDI_TX_CTL(pipe);
4153 temp = I915_READ(reg);
4154 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4155 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4156
4157 POSTING_READ(reg);
4158 udelay(100);
4159 }
4160 }
4161
ironlake_fdi_pll_disable(struct intel_crtc * intel_crtc)4162 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4163 {
4164 struct drm_device *dev = intel_crtc->base.dev;
4165 struct drm_i915_private *dev_priv = to_i915(dev);
4166 int pipe = intel_crtc->pipe;
4167 i915_reg_t reg;
4168 u32 temp;
4169
4170 /* Switch from PCDclk to Rawclk */
4171 reg = FDI_RX_CTL(pipe);
4172 temp = I915_READ(reg);
4173 I915_WRITE(reg, temp & ~FDI_PCDCLK);
4174
4175 /* Disable CPU FDI TX PLL */
4176 reg = FDI_TX_CTL(pipe);
4177 temp = I915_READ(reg);
4178 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4179
4180 POSTING_READ(reg);
4181 udelay(100);
4182
4183 reg = FDI_RX_CTL(pipe);
4184 temp = I915_READ(reg);
4185 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4186
4187 /* Wait for the clocks to turn off. */
4188 POSTING_READ(reg);
4189 udelay(100);
4190 }
4191
ironlake_fdi_disable(struct drm_crtc * crtc)4192 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4193 {
4194 struct drm_device *dev = crtc->dev;
4195 struct drm_i915_private *dev_priv = to_i915(dev);
4196 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4197 int pipe = intel_crtc->pipe;
4198 i915_reg_t reg;
4199 u32 temp;
4200
4201 /* disable CPU FDI tx and PCH FDI rx */
4202 reg = FDI_TX_CTL(pipe);
4203 temp = I915_READ(reg);
4204 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4205 POSTING_READ(reg);
4206
4207 reg = FDI_RX_CTL(pipe);
4208 temp = I915_READ(reg);
4209 temp &= ~(0x7 << 16);
4210 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4211 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4212
4213 POSTING_READ(reg);
4214 udelay(100);
4215
4216 /* Ironlake workaround, disable clock pointer after downing FDI */
4217 if (HAS_PCH_IBX(dev))
4218 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4219
4220 /* still set train pattern 1 */
4221 reg = FDI_TX_CTL(pipe);
4222 temp = I915_READ(reg);
4223 temp &= ~FDI_LINK_TRAIN_NONE;
4224 temp |= FDI_LINK_TRAIN_PATTERN_1;
4225 I915_WRITE(reg, temp);
4226
4227 reg = FDI_RX_CTL(pipe);
4228 temp = I915_READ(reg);
4229 if (HAS_PCH_CPT(dev)) {
4230 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4231 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4232 } else {
4233 temp &= ~FDI_LINK_TRAIN_NONE;
4234 temp |= FDI_LINK_TRAIN_PATTERN_1;
4235 }
4236 /* BPC in FDI rx is consistent with that in PIPECONF */
4237 temp &= ~(0x07 << 16);
4238 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4239 I915_WRITE(reg, temp);
4240
4241 POSTING_READ(reg);
4242 udelay(100);
4243 }
4244
intel_has_pending_fb_unpin(struct drm_device * dev)4245 bool intel_has_pending_fb_unpin(struct drm_device *dev)
4246 {
4247 struct intel_crtc *crtc;
4248
4249 /* Note that we don't need to be called with mode_config.lock here
4250 * as our list of CRTC objects is static for the lifetime of the
4251 * device and so cannot disappear as we iterate. Similarly, we can
4252 * happily treat the predicates as racy, atomic checks as userspace
4253 * cannot claim and pin a new fb without at least acquring the
4254 * struct_mutex and so serialising with us.
4255 */
4256 for_each_intel_crtc(dev, crtc) {
4257 if (atomic_read(&crtc->unpin_work_count) == 0)
4258 continue;
4259
4260 if (crtc->flip_work)
4261 intel_wait_for_vblank(dev, crtc->pipe);
4262
4263 return true;
4264 }
4265
4266 return false;
4267 }
4268
page_flip_completed(struct intel_crtc * intel_crtc)4269 static void page_flip_completed(struct intel_crtc *intel_crtc)
4270 {
4271 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4272 struct intel_flip_work *work = intel_crtc->flip_work;
4273
4274 intel_crtc->flip_work = NULL;
4275
4276 if (work->event)
4277 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4278
4279 drm_crtc_vblank_put(&intel_crtc->base);
4280
4281 wake_up_all(&dev_priv->pending_flip_queue);
4282 trace_i915_flip_complete(intel_crtc->plane,
4283 work->pending_flip_obj);
4284
4285 queue_work(dev_priv->wq, &work->unpin_work);
4286 }
4287
intel_crtc_wait_for_pending_flips(struct drm_crtc * crtc)4288 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4289 {
4290 struct drm_device *dev = crtc->dev;
4291 struct drm_i915_private *dev_priv = to_i915(dev);
4292 long ret;
4293
4294 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4295
4296 ret = wait_event_interruptible_timeout(
4297 dev_priv->pending_flip_queue,
4298 !intel_crtc_has_pending_flip(crtc),
4299 60*HZ);
4300
4301 if (ret < 0)
4302 return ret;
4303
4304 if (ret == 0) {
4305 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4306 struct intel_flip_work *work;
4307
4308 spin_lock_irq(&dev->event_lock);
4309 work = intel_crtc->flip_work;
4310 if (work && !is_mmio_work(work)) {
4311 WARN_ONCE(1, "Removing stuck page flip\n");
4312 page_flip_completed(intel_crtc);
4313 }
4314 spin_unlock_irq(&dev->event_lock);
4315 }
4316
4317 return 0;
4318 }
4319
lpt_disable_iclkip(struct drm_i915_private * dev_priv)4320 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4321 {
4322 u32 temp;
4323
4324 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4325
4326 mutex_lock(&dev_priv->sb_lock);
4327
4328 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4329 temp |= SBI_SSCCTL_DISABLE;
4330 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4331
4332 mutex_unlock(&dev_priv->sb_lock);
4333 }
4334
4335 /* Program iCLKIP clock to the desired frequency */
lpt_program_iclkip(struct drm_crtc * crtc)4336 static void lpt_program_iclkip(struct drm_crtc *crtc)
4337 {
4338 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4339 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
4340 u32 divsel, phaseinc, auxdiv, phasedir = 0;
4341 u32 temp;
4342
4343 lpt_disable_iclkip(dev_priv);
4344
4345 /* The iCLK virtual clock root frequency is in MHz,
4346 * but the adjusted_mode->crtc_clock in in KHz. To get the
4347 * divisors, it is necessary to divide one by another, so we
4348 * convert the virtual clock precision to KHz here for higher
4349 * precision.
4350 */
4351 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4352 u32 iclk_virtual_root_freq = 172800 * 1000;
4353 u32 iclk_pi_range = 64;
4354 u32 desired_divisor;
4355
4356 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4357 clock << auxdiv);
4358 divsel = (desired_divisor / iclk_pi_range) - 2;
4359 phaseinc = desired_divisor % iclk_pi_range;
4360
4361 /*
4362 * Near 20MHz is a corner case which is
4363 * out of range for the 7-bit divisor
4364 */
4365 if (divsel <= 0x7f)
4366 break;
4367 }
4368
4369 /* This should not happen with any sane values */
4370 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4371 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4372 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4373 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4374
4375 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4376 clock,
4377 auxdiv,
4378 divsel,
4379 phasedir,
4380 phaseinc);
4381
4382 mutex_lock(&dev_priv->sb_lock);
4383
4384 /* Program SSCDIVINTPHASE6 */
4385 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4386 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4387 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4388 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4389 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4390 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4391 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4392 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4393
4394 /* Program SSCAUXDIV */
4395 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4396 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4397 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4398 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4399
4400 /* Enable modulator and associated divider */
4401 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4402 temp &= ~SBI_SSCCTL_DISABLE;
4403 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4404
4405 mutex_unlock(&dev_priv->sb_lock);
4406
4407 /* Wait for initialization time */
4408 udelay(24);
4409
4410 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4411 }
4412
lpt_get_iclkip(struct drm_i915_private * dev_priv)4413 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4414 {
4415 u32 divsel, phaseinc, auxdiv;
4416 u32 iclk_virtual_root_freq = 172800 * 1000;
4417 u32 iclk_pi_range = 64;
4418 u32 desired_divisor;
4419 u32 temp;
4420
4421 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4422 return 0;
4423
4424 mutex_lock(&dev_priv->sb_lock);
4425
4426 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4427 if (temp & SBI_SSCCTL_DISABLE) {
4428 mutex_unlock(&dev_priv->sb_lock);
4429 return 0;
4430 }
4431
4432 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4433 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4434 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4435 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4436 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4437
4438 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4439 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4440 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4441
4442 mutex_unlock(&dev_priv->sb_lock);
4443
4444 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4445
4446 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4447 desired_divisor << auxdiv);
4448 }
4449
ironlake_pch_transcoder_set_timings(struct intel_crtc * crtc,enum pipe pch_transcoder)4450 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4451 enum pipe pch_transcoder)
4452 {
4453 struct drm_device *dev = crtc->base.dev;
4454 struct drm_i915_private *dev_priv = to_i915(dev);
4455 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4456
4457 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4458 I915_READ(HTOTAL(cpu_transcoder)));
4459 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4460 I915_READ(HBLANK(cpu_transcoder)));
4461 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4462 I915_READ(HSYNC(cpu_transcoder)));
4463
4464 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4465 I915_READ(VTOTAL(cpu_transcoder)));
4466 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4467 I915_READ(VBLANK(cpu_transcoder)));
4468 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4469 I915_READ(VSYNC(cpu_transcoder)));
4470 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4471 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4472 }
4473
cpt_set_fdi_bc_bifurcation(struct drm_device * dev,bool enable)4474 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4475 {
4476 struct drm_i915_private *dev_priv = to_i915(dev);
4477 uint32_t temp;
4478
4479 temp = I915_READ(SOUTH_CHICKEN1);
4480 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4481 return;
4482
4483 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4484 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4485
4486 temp &= ~FDI_BC_BIFURCATION_SELECT;
4487 if (enable)
4488 temp |= FDI_BC_BIFURCATION_SELECT;
4489
4490 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4491 I915_WRITE(SOUTH_CHICKEN1, temp);
4492 POSTING_READ(SOUTH_CHICKEN1);
4493 }
4494
ivybridge_update_fdi_bc_bifurcation(struct intel_crtc * intel_crtc)4495 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4496 {
4497 struct drm_device *dev = intel_crtc->base.dev;
4498
4499 switch (intel_crtc->pipe) {
4500 case PIPE_A:
4501 break;
4502 case PIPE_B:
4503 if (intel_crtc->config->fdi_lanes > 2)
4504 cpt_set_fdi_bc_bifurcation(dev, false);
4505 else
4506 cpt_set_fdi_bc_bifurcation(dev, true);
4507
4508 break;
4509 case PIPE_C:
4510 cpt_set_fdi_bc_bifurcation(dev, true);
4511
4512 break;
4513 default:
4514 BUG();
4515 }
4516 }
4517
4518 /* Return which DP Port should be selected for Transcoder DP control */
4519 static enum port
intel_trans_dp_port_sel(struct drm_crtc * crtc)4520 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4521 {
4522 struct drm_device *dev = crtc->dev;
4523 struct intel_encoder *encoder;
4524
4525 for_each_encoder_on_crtc(dev, crtc, encoder) {
4526 if (encoder->type == INTEL_OUTPUT_DP ||
4527 encoder->type == INTEL_OUTPUT_EDP)
4528 return enc_to_dig_port(&encoder->base)->port;
4529 }
4530
4531 return -1;
4532 }
4533
4534 /*
4535 * Enable PCH resources required for PCH ports:
4536 * - PCH PLLs
4537 * - FDI training & RX/TX
4538 * - update transcoder timings
4539 * - DP transcoding bits
4540 * - transcoder
4541 */
ironlake_pch_enable(struct drm_crtc * crtc)4542 static void ironlake_pch_enable(struct drm_crtc *crtc)
4543 {
4544 struct drm_device *dev = crtc->dev;
4545 struct drm_i915_private *dev_priv = to_i915(dev);
4546 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4547 int pipe = intel_crtc->pipe;
4548 u32 temp;
4549
4550 assert_pch_transcoder_disabled(dev_priv, pipe);
4551
4552 if (IS_IVYBRIDGE(dev))
4553 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4554
4555 /* Write the TU size bits before fdi link training, so that error
4556 * detection works. */
4557 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4558 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4559
4560 /* For PCH output, training FDI link */
4561 dev_priv->display.fdi_link_train(crtc);
4562
4563 /* We need to program the right clock selection before writing the pixel
4564 * mutliplier into the DPLL. */
4565 if (HAS_PCH_CPT(dev)) {
4566 u32 sel;
4567
4568 temp = I915_READ(PCH_DPLL_SEL);
4569 temp |= TRANS_DPLL_ENABLE(pipe);
4570 sel = TRANS_DPLLB_SEL(pipe);
4571 if (intel_crtc->config->shared_dpll ==
4572 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4573 temp |= sel;
4574 else
4575 temp &= ~sel;
4576 I915_WRITE(PCH_DPLL_SEL, temp);
4577 }
4578
4579 /* XXX: pch pll's can be enabled any time before we enable the PCH
4580 * transcoder, and we actually should do this to not upset any PCH
4581 * transcoder that already use the clock when we share it.
4582 *
4583 * Note that enable_shared_dpll tries to do the right thing, but
4584 * get_shared_dpll unconditionally resets the pll - we need that to have
4585 * the right LVDS enable sequence. */
4586 intel_enable_shared_dpll(intel_crtc);
4587
4588 /* set transcoder timing, panel must allow it */
4589 assert_panel_unlocked(dev_priv, pipe);
4590 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4591
4592 intel_fdi_normal_train(crtc);
4593
4594 /* For PCH DP, enable TRANS_DP_CTL */
4595 if (HAS_PCH_CPT(dev) && intel_crtc_has_dp_encoder(intel_crtc->config)) {
4596 const struct drm_display_mode *adjusted_mode =
4597 &intel_crtc->config->base.adjusted_mode;
4598 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4599 i915_reg_t reg = TRANS_DP_CTL(pipe);
4600 temp = I915_READ(reg);
4601 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4602 TRANS_DP_SYNC_MASK |
4603 TRANS_DP_BPC_MASK);
4604 temp |= TRANS_DP_OUTPUT_ENABLE;
4605 temp |= bpc << 9; /* same format but at 11:9 */
4606
4607 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4608 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4609 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4610 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4611
4612 switch (intel_trans_dp_port_sel(crtc)) {
4613 case PORT_B:
4614 temp |= TRANS_DP_PORT_SEL_B;
4615 break;
4616 case PORT_C:
4617 temp |= TRANS_DP_PORT_SEL_C;
4618 break;
4619 case PORT_D:
4620 temp |= TRANS_DP_PORT_SEL_D;
4621 break;
4622 default:
4623 BUG();
4624 }
4625
4626 I915_WRITE(reg, temp);
4627 }
4628
4629 ironlake_enable_pch_transcoder(dev_priv, pipe);
4630 }
4631
lpt_pch_enable(struct drm_crtc * crtc)4632 static void lpt_pch_enable(struct drm_crtc *crtc)
4633 {
4634 struct drm_device *dev = crtc->dev;
4635 struct drm_i915_private *dev_priv = to_i915(dev);
4636 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4637 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4638
4639 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4640
4641 lpt_program_iclkip(crtc);
4642
4643 /* Set transcoder timing. */
4644 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4645
4646 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4647 }
4648
cpt_verify_modeset(struct drm_device * dev,int pipe)4649 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4650 {
4651 struct drm_i915_private *dev_priv = to_i915(dev);
4652 i915_reg_t dslreg = PIPEDSL(pipe);
4653 u32 temp;
4654
4655 temp = I915_READ(dslreg);
4656 udelay(500);
4657 if (wait_for(I915_READ(dslreg) != temp, 5)) {
4658 if (wait_for(I915_READ(dslreg) != temp, 5))
4659 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4660 }
4661 }
4662
4663 static int
skl_update_scaler(struct intel_crtc_state * crtc_state,bool force_detach,unsigned scaler_user,int * scaler_id,unsigned int rotation,int src_w,int src_h,int dst_w,int dst_h)4664 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4665 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4666 int src_w, int src_h, int dst_w, int dst_h)
4667 {
4668 struct intel_crtc_scaler_state *scaler_state =
4669 &crtc_state->scaler_state;
4670 struct intel_crtc *intel_crtc =
4671 to_intel_crtc(crtc_state->base.crtc);
4672 int need_scaling;
4673
4674 need_scaling = intel_rotation_90_or_270(rotation) ?
4675 (src_h != dst_w || src_w != dst_h):
4676 (src_w != dst_w || src_h != dst_h);
4677
4678 /*
4679 * if plane is being disabled or scaler is no more required or force detach
4680 * - free scaler binded to this plane/crtc
4681 * - in order to do this, update crtc->scaler_usage
4682 *
4683 * Here scaler state in crtc_state is set free so that
4684 * scaler can be assigned to other user. Actual register
4685 * update to free the scaler is done in plane/panel-fit programming.
4686 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4687 */
4688 if (force_detach || !need_scaling) {
4689 if (*scaler_id >= 0) {
4690 scaler_state->scaler_users &= ~(1 << scaler_user);
4691 scaler_state->scalers[*scaler_id].in_use = 0;
4692
4693 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4694 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4695 intel_crtc->pipe, scaler_user, *scaler_id,
4696 scaler_state->scaler_users);
4697 *scaler_id = -1;
4698 }
4699 return 0;
4700 }
4701
4702 /* range checks */
4703 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4704 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4705
4706 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4707 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4708 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4709 "size is out of scaler range\n",
4710 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4711 return -EINVAL;
4712 }
4713
4714 /* mark this plane as a scaler user in crtc_state */
4715 scaler_state->scaler_users |= (1 << scaler_user);
4716 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4717 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4718 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4719 scaler_state->scaler_users);
4720
4721 return 0;
4722 }
4723
4724 /**
4725 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4726 *
4727 * @state: crtc's scaler state
4728 *
4729 * Return
4730 * 0 - scaler_usage updated successfully
4731 * error - requested scaling cannot be supported or other error condition
4732 */
skl_update_scaler_crtc(struct intel_crtc_state * state)4733 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4734 {
4735 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4736 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4737
4738 DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4739 intel_crtc->base.base.id, intel_crtc->base.name,
4740 intel_crtc->pipe, SKL_CRTC_INDEX);
4741
4742 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4743 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4744 state->pipe_src_w, state->pipe_src_h,
4745 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4746 }
4747
4748 /**
4749 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4750 *
4751 * @state: crtc's scaler state
4752 * @plane_state: atomic plane state to update
4753 *
4754 * Return
4755 * 0 - scaler_usage updated successfully
4756 * error - requested scaling cannot be supported or other error condition
4757 */
skl_update_scaler_plane(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)4758 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4759 struct intel_plane_state *plane_state)
4760 {
4761
4762 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4763 struct intel_plane *intel_plane =
4764 to_intel_plane(plane_state->base.plane);
4765 struct drm_framebuffer *fb = plane_state->base.fb;
4766 int ret;
4767
4768 bool force_detach = !fb || !plane_state->base.visible;
4769
4770 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4771 intel_plane->base.base.id, intel_plane->base.name,
4772 intel_crtc->pipe, drm_plane_index(&intel_plane->base));
4773
4774 ret = skl_update_scaler(crtc_state, force_detach,
4775 drm_plane_index(&intel_plane->base),
4776 &plane_state->scaler_id,
4777 plane_state->base.rotation,
4778 drm_rect_width(&plane_state->base.src) >> 16,
4779 drm_rect_height(&plane_state->base.src) >> 16,
4780 drm_rect_width(&plane_state->base.dst),
4781 drm_rect_height(&plane_state->base.dst));
4782
4783 if (ret || plane_state->scaler_id < 0)
4784 return ret;
4785
4786 /* check colorkey */
4787 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4788 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4789 intel_plane->base.base.id,
4790 intel_plane->base.name);
4791 return -EINVAL;
4792 }
4793
4794 /* Check src format */
4795 switch (fb->pixel_format) {
4796 case DRM_FORMAT_RGB565:
4797 case DRM_FORMAT_XBGR8888:
4798 case DRM_FORMAT_XRGB8888:
4799 case DRM_FORMAT_ABGR8888:
4800 case DRM_FORMAT_ARGB8888:
4801 case DRM_FORMAT_XRGB2101010:
4802 case DRM_FORMAT_XBGR2101010:
4803 case DRM_FORMAT_YUYV:
4804 case DRM_FORMAT_YVYU:
4805 case DRM_FORMAT_UYVY:
4806 case DRM_FORMAT_VYUY:
4807 break;
4808 default:
4809 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4810 intel_plane->base.base.id, intel_plane->base.name,
4811 fb->base.id, fb->pixel_format);
4812 return -EINVAL;
4813 }
4814
4815 return 0;
4816 }
4817
skylake_scaler_disable(struct intel_crtc * crtc)4818 static void skylake_scaler_disable(struct intel_crtc *crtc)
4819 {
4820 int i;
4821
4822 for (i = 0; i < crtc->num_scalers; i++)
4823 skl_detach_scaler(crtc, i);
4824 }
4825
skylake_pfit_enable(struct intel_crtc * crtc)4826 static void skylake_pfit_enable(struct intel_crtc *crtc)
4827 {
4828 struct drm_device *dev = crtc->base.dev;
4829 struct drm_i915_private *dev_priv = to_i915(dev);
4830 int pipe = crtc->pipe;
4831 struct intel_crtc_scaler_state *scaler_state =
4832 &crtc->config->scaler_state;
4833
4834 if (crtc->config->pch_pfit.enabled) {
4835 int id;
4836
4837 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0))
4838 return;
4839
4840 id = scaler_state->scaler_id;
4841 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4842 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4843 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4844 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4845 }
4846 }
4847
ironlake_pfit_enable(struct intel_crtc * crtc)4848 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4849 {
4850 struct drm_device *dev = crtc->base.dev;
4851 struct drm_i915_private *dev_priv = to_i915(dev);
4852 int pipe = crtc->pipe;
4853
4854 if (crtc->config->pch_pfit.enabled) {
4855 /* Force use of hard-coded filter coefficients
4856 * as some pre-programmed values are broken,
4857 * e.g. x201.
4858 */
4859 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4860 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4861 PF_PIPE_SEL_IVB(pipe));
4862 else
4863 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4864 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4865 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4866 }
4867 }
4868
hsw_enable_ips(struct intel_crtc * crtc)4869 void hsw_enable_ips(struct intel_crtc *crtc)
4870 {
4871 struct drm_device *dev = crtc->base.dev;
4872 struct drm_i915_private *dev_priv = to_i915(dev);
4873
4874 if (!crtc->config->ips_enabled)
4875 return;
4876
4877 /*
4878 * We can only enable IPS after we enable a plane and wait for a vblank
4879 * This function is called from post_plane_update, which is run after
4880 * a vblank wait.
4881 */
4882
4883 assert_plane_enabled(dev_priv, crtc->plane);
4884 if (IS_BROADWELL(dev)) {
4885 mutex_lock(&dev_priv->rps.hw_lock);
4886 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4887 mutex_unlock(&dev_priv->rps.hw_lock);
4888 /* Quoting Art Runyan: "its not safe to expect any particular
4889 * value in IPS_CTL bit 31 after enabling IPS through the
4890 * mailbox." Moreover, the mailbox may return a bogus state,
4891 * so we need to just enable it and continue on.
4892 */
4893 } else {
4894 I915_WRITE(IPS_CTL, IPS_ENABLE);
4895 /* The bit only becomes 1 in the next vblank, so this wait here
4896 * is essentially intel_wait_for_vblank. If we don't have this
4897 * and don't wait for vblanks until the end of crtc_enable, then
4898 * the HW state readout code will complain that the expected
4899 * IPS_CTL value is not the one we read. */
4900 if (intel_wait_for_register(dev_priv,
4901 IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4902 50))
4903 DRM_ERROR("Timed out waiting for IPS enable\n");
4904 }
4905 }
4906
hsw_disable_ips(struct intel_crtc * crtc)4907 void hsw_disable_ips(struct intel_crtc *crtc)
4908 {
4909 struct drm_device *dev = crtc->base.dev;
4910 struct drm_i915_private *dev_priv = to_i915(dev);
4911
4912 if (!crtc->config->ips_enabled)
4913 return;
4914
4915 assert_plane_enabled(dev_priv, crtc->plane);
4916 if (IS_BROADWELL(dev)) {
4917 mutex_lock(&dev_priv->rps.hw_lock);
4918 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4919 mutex_unlock(&dev_priv->rps.hw_lock);
4920 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4921 if (intel_wait_for_register(dev_priv,
4922 IPS_CTL, IPS_ENABLE, 0,
4923 42))
4924 DRM_ERROR("Timed out waiting for IPS disable\n");
4925 } else {
4926 I915_WRITE(IPS_CTL, 0);
4927 POSTING_READ(IPS_CTL);
4928 }
4929
4930 /* We need to wait for a vblank before we can disable the plane. */
4931 intel_wait_for_vblank(dev, crtc->pipe);
4932 }
4933
intel_crtc_dpms_overlay_disable(struct intel_crtc * intel_crtc)4934 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4935 {
4936 if (intel_crtc->overlay) {
4937 struct drm_device *dev = intel_crtc->base.dev;
4938 struct drm_i915_private *dev_priv = to_i915(dev);
4939
4940 mutex_lock(&dev->struct_mutex);
4941 dev_priv->mm.interruptible = false;
4942 (void) intel_overlay_switch_off(intel_crtc->overlay);
4943 dev_priv->mm.interruptible = true;
4944 mutex_unlock(&dev->struct_mutex);
4945 }
4946
4947 /* Let userspace switch the overlay on again. In most cases userspace
4948 * has to recompute where to put it anyway.
4949 */
4950 }
4951
4952 /**
4953 * intel_post_enable_primary - Perform operations after enabling primary plane
4954 * @crtc: the CRTC whose primary plane was just enabled
4955 *
4956 * Performs potentially sleeping operations that must be done after the primary
4957 * plane is enabled, such as updating FBC and IPS. Note that this may be
4958 * called due to an explicit primary plane update, or due to an implicit
4959 * re-enable that is caused when a sprite plane is updated to no longer
4960 * completely hide the primary plane.
4961 */
4962 static void
intel_post_enable_primary(struct drm_crtc * crtc)4963 intel_post_enable_primary(struct drm_crtc *crtc)
4964 {
4965 struct drm_device *dev = crtc->dev;
4966 struct drm_i915_private *dev_priv = to_i915(dev);
4967 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4968 int pipe = intel_crtc->pipe;
4969
4970 /*
4971 * FIXME IPS should be fine as long as one plane is
4972 * enabled, but in practice it seems to have problems
4973 * when going from primary only to sprite only and vice
4974 * versa.
4975 */
4976 hsw_enable_ips(intel_crtc);
4977
4978 /*
4979 * Gen2 reports pipe underruns whenever all planes are disabled.
4980 * So don't enable underrun reporting before at least some planes
4981 * are enabled.
4982 * FIXME: Need to fix the logic to work when we turn off all planes
4983 * but leave the pipe running.
4984 */
4985 if (IS_GEN2(dev))
4986 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4987
4988 /* Underruns don't always raise interrupts, so check manually. */
4989 intel_check_cpu_fifo_underruns(dev_priv);
4990 intel_check_pch_fifo_underruns(dev_priv);
4991 }
4992
4993 /* FIXME move all this to pre_plane_update() with proper state tracking */
4994 static void
intel_pre_disable_primary(struct drm_crtc * crtc)4995 intel_pre_disable_primary(struct drm_crtc *crtc)
4996 {
4997 struct drm_device *dev = crtc->dev;
4998 struct drm_i915_private *dev_priv = to_i915(dev);
4999 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5000 int pipe = intel_crtc->pipe;
5001
5002 /*
5003 * Gen2 reports pipe underruns whenever all planes are disabled.
5004 * So diasble underrun reporting before all the planes get disabled.
5005 * FIXME: Need to fix the logic to work when we turn off all planes
5006 * but leave the pipe running.
5007 */
5008 if (IS_GEN2(dev))
5009 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5010
5011 /*
5012 * FIXME IPS should be fine as long as one plane is
5013 * enabled, but in practice it seems to have problems
5014 * when going from primary only to sprite only and vice
5015 * versa.
5016 */
5017 hsw_disable_ips(intel_crtc);
5018 }
5019
5020 /* FIXME get rid of this and use pre_plane_update */
5021 static void
intel_pre_disable_primary_noatomic(struct drm_crtc * crtc)5022 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
5023 {
5024 struct drm_device *dev = crtc->dev;
5025 struct drm_i915_private *dev_priv = to_i915(dev);
5026 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5027 int pipe = intel_crtc->pipe;
5028
5029 intel_pre_disable_primary(crtc);
5030
5031 /*
5032 * Vblank time updates from the shadow to live plane control register
5033 * are blocked if the memory self-refresh mode is active at that
5034 * moment. So to make sure the plane gets truly disabled, disable
5035 * first the self-refresh mode. The self-refresh enable bit in turn
5036 * will be checked/applied by the HW only at the next frame start
5037 * event which is after the vblank start event, so we need to have a
5038 * wait-for-vblank between disabling the plane and the pipe.
5039 */
5040 if (HAS_GMCH_DISPLAY(dev)) {
5041 intel_set_memory_cxsr(dev_priv, false);
5042 dev_priv->wm.vlv.cxsr = false;
5043 intel_wait_for_vblank(dev, pipe);
5044 }
5045 }
5046
intel_post_plane_update(struct intel_crtc_state * old_crtc_state)5047 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5048 {
5049 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5050 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5051 struct intel_crtc_state *pipe_config =
5052 to_intel_crtc_state(crtc->base.state);
5053 struct drm_plane *primary = crtc->base.primary;
5054 struct drm_plane_state *old_pri_state =
5055 drm_atomic_get_existing_plane_state(old_state, primary);
5056
5057 intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5058
5059 crtc->wm.cxsr_allowed = true;
5060
5061 if (pipe_config->update_wm_post && pipe_config->base.active)
5062 intel_update_watermarks(&crtc->base);
5063
5064 if (old_pri_state) {
5065 struct intel_plane_state *primary_state =
5066 to_intel_plane_state(primary->state);
5067 struct intel_plane_state *old_primary_state =
5068 to_intel_plane_state(old_pri_state);
5069
5070 intel_fbc_post_update(crtc);
5071
5072 if (primary_state->base.visible &&
5073 (needs_modeset(&pipe_config->base) ||
5074 !old_primary_state->base.visible))
5075 intel_post_enable_primary(&crtc->base);
5076 }
5077 }
5078
intel_pre_plane_update(struct intel_crtc_state * old_crtc_state)5079 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
5080 {
5081 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5082 struct drm_device *dev = crtc->base.dev;
5083 struct drm_i915_private *dev_priv = to_i915(dev);
5084 struct intel_crtc_state *pipe_config =
5085 to_intel_crtc_state(crtc->base.state);
5086 struct drm_atomic_state *old_state = old_crtc_state->base.state;
5087 struct drm_plane *primary = crtc->base.primary;
5088 struct drm_plane_state *old_pri_state =
5089 drm_atomic_get_existing_plane_state(old_state, primary);
5090 bool modeset = needs_modeset(&pipe_config->base);
5091
5092 if (old_pri_state) {
5093 struct intel_plane_state *primary_state =
5094 to_intel_plane_state(primary->state);
5095 struct intel_plane_state *old_primary_state =
5096 to_intel_plane_state(old_pri_state);
5097
5098 intel_fbc_pre_update(crtc, pipe_config, primary_state);
5099
5100 if (old_primary_state->base.visible &&
5101 (modeset || !primary_state->base.visible))
5102 intel_pre_disable_primary(&crtc->base);
5103 }
5104
5105 if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) {
5106 crtc->wm.cxsr_allowed = false;
5107
5108 /*
5109 * Vblank time updates from the shadow to live plane control register
5110 * are blocked if the memory self-refresh mode is active at that
5111 * moment. So to make sure the plane gets truly disabled, disable
5112 * first the self-refresh mode. The self-refresh enable bit in turn
5113 * will be checked/applied by the HW only at the next frame start
5114 * event which is after the vblank start event, so we need to have a
5115 * wait-for-vblank between disabling the plane and the pipe.
5116 */
5117 if (old_crtc_state->base.active) {
5118 intel_set_memory_cxsr(dev_priv, false);
5119 dev_priv->wm.vlv.cxsr = false;
5120 intel_wait_for_vblank(dev, crtc->pipe);
5121 }
5122 }
5123
5124 /*
5125 * IVB workaround: must disable low power watermarks for at least
5126 * one frame before enabling scaling. LP watermarks can be re-enabled
5127 * when scaling is disabled.
5128 *
5129 * WaCxSRDisabledForSpriteScaling:ivb
5130 */
5131 if (pipe_config->disable_lp_wm) {
5132 ilk_disable_lp_wm(dev);
5133 intel_wait_for_vblank(dev, crtc->pipe);
5134 }
5135
5136 /*
5137 * If we're doing a modeset, we're done. No need to do any pre-vblank
5138 * watermark programming here.
5139 */
5140 if (needs_modeset(&pipe_config->base))
5141 return;
5142
5143 /*
5144 * For platforms that support atomic watermarks, program the
5145 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
5146 * will be the intermediate values that are safe for both pre- and
5147 * post- vblank; when vblank happens, the 'active' values will be set
5148 * to the final 'target' values and we'll do this again to get the
5149 * optimal watermarks. For gen9+ platforms, the values we program here
5150 * will be the final target values which will get automatically latched
5151 * at vblank time; no further programming will be necessary.
5152 *
5153 * If a platform hasn't been transitioned to atomic watermarks yet,
5154 * we'll continue to update watermarks the old way, if flags tell
5155 * us to.
5156 */
5157 if (dev_priv->display.initial_watermarks != NULL)
5158 dev_priv->display.initial_watermarks(pipe_config);
5159 else if (pipe_config->update_wm_pre)
5160 intel_update_watermarks(&crtc->base);
5161 }
5162
intel_crtc_disable_planes(struct drm_crtc * crtc,unsigned plane_mask)5163 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5164 {
5165 struct drm_device *dev = crtc->dev;
5166 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5167 struct drm_plane *p;
5168 int pipe = intel_crtc->pipe;
5169
5170 intel_crtc_dpms_overlay_disable(intel_crtc);
5171
5172 drm_for_each_plane_mask(p, dev, plane_mask)
5173 to_intel_plane(p)->disable_plane(p, crtc);
5174
5175 /*
5176 * FIXME: Once we grow proper nuclear flip support out of this we need
5177 * to compute the mask of flip planes precisely. For the time being
5178 * consider this a flip to a NULL plane.
5179 */
5180 intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5181 }
5182
intel_encoders_pre_pll_enable(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state,struct drm_atomic_state * old_state)5183 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5184 struct intel_crtc_state *crtc_state,
5185 struct drm_atomic_state *old_state)
5186 {
5187 struct drm_connector_state *old_conn_state;
5188 struct drm_connector *conn;
5189 int i;
5190
5191 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5192 struct drm_connector_state *conn_state = conn->state;
5193 struct intel_encoder *encoder =
5194 to_intel_encoder(conn_state->best_encoder);
5195
5196 if (conn_state->crtc != crtc)
5197 continue;
5198
5199 if (encoder->pre_pll_enable)
5200 encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5201 }
5202 }
5203
intel_encoders_pre_enable(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state,struct drm_atomic_state * old_state)5204 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5205 struct intel_crtc_state *crtc_state,
5206 struct drm_atomic_state *old_state)
5207 {
5208 struct drm_connector_state *old_conn_state;
5209 struct drm_connector *conn;
5210 int i;
5211
5212 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5213 struct drm_connector_state *conn_state = conn->state;
5214 struct intel_encoder *encoder =
5215 to_intel_encoder(conn_state->best_encoder);
5216
5217 if (conn_state->crtc != crtc)
5218 continue;
5219
5220 if (encoder->pre_enable)
5221 encoder->pre_enable(encoder, crtc_state, conn_state);
5222 }
5223 }
5224
intel_encoders_enable(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state,struct drm_atomic_state * old_state)5225 static void intel_encoders_enable(struct drm_crtc *crtc,
5226 struct intel_crtc_state *crtc_state,
5227 struct drm_atomic_state *old_state)
5228 {
5229 struct drm_connector_state *old_conn_state;
5230 struct drm_connector *conn;
5231 int i;
5232
5233 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5234 struct drm_connector_state *conn_state = conn->state;
5235 struct intel_encoder *encoder =
5236 to_intel_encoder(conn_state->best_encoder);
5237
5238 if (conn_state->crtc != crtc)
5239 continue;
5240
5241 encoder->enable(encoder, crtc_state, conn_state);
5242 intel_opregion_notify_encoder(encoder, true);
5243 }
5244 }
5245
intel_encoders_disable(struct drm_crtc * crtc,struct intel_crtc_state * old_crtc_state,struct drm_atomic_state * old_state)5246 static void intel_encoders_disable(struct drm_crtc *crtc,
5247 struct intel_crtc_state *old_crtc_state,
5248 struct drm_atomic_state *old_state)
5249 {
5250 struct drm_connector_state *old_conn_state;
5251 struct drm_connector *conn;
5252 int i;
5253
5254 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5255 struct intel_encoder *encoder =
5256 to_intel_encoder(old_conn_state->best_encoder);
5257
5258 if (old_conn_state->crtc != crtc)
5259 continue;
5260
5261 intel_opregion_notify_encoder(encoder, false);
5262 encoder->disable(encoder, old_crtc_state, old_conn_state);
5263 }
5264 }
5265
intel_encoders_post_disable(struct drm_crtc * crtc,struct intel_crtc_state * old_crtc_state,struct drm_atomic_state * old_state)5266 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5267 struct intel_crtc_state *old_crtc_state,
5268 struct drm_atomic_state *old_state)
5269 {
5270 struct drm_connector_state *old_conn_state;
5271 struct drm_connector *conn;
5272 int i;
5273
5274 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5275 struct intel_encoder *encoder =
5276 to_intel_encoder(old_conn_state->best_encoder);
5277
5278 if (old_conn_state->crtc != crtc)
5279 continue;
5280
5281 if (encoder->post_disable)
5282 encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5283 }
5284 }
5285
intel_encoders_post_pll_disable(struct drm_crtc * crtc,struct intel_crtc_state * old_crtc_state,struct drm_atomic_state * old_state)5286 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5287 struct intel_crtc_state *old_crtc_state,
5288 struct drm_atomic_state *old_state)
5289 {
5290 struct drm_connector_state *old_conn_state;
5291 struct drm_connector *conn;
5292 int i;
5293
5294 for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5295 struct intel_encoder *encoder =
5296 to_intel_encoder(old_conn_state->best_encoder);
5297
5298 if (old_conn_state->crtc != crtc)
5299 continue;
5300
5301 if (encoder->post_pll_disable)
5302 encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5303 }
5304 }
5305
ironlake_crtc_enable(struct intel_crtc_state * pipe_config,struct drm_atomic_state * old_state)5306 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5307 struct drm_atomic_state *old_state)
5308 {
5309 struct drm_crtc *crtc = pipe_config->base.crtc;
5310 struct drm_device *dev = crtc->dev;
5311 struct drm_i915_private *dev_priv = to_i915(dev);
5312 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5313 int pipe = intel_crtc->pipe;
5314
5315 if (WARN_ON(intel_crtc->active))
5316 return;
5317
5318 /*
5319 * Sometimes spurious CPU pipe underruns happen during FDI
5320 * training, at least with VGA+HDMI cloning. Suppress them.
5321 *
5322 * On ILK we get an occasional spurious CPU pipe underruns
5323 * between eDP port A enable and vdd enable. Also PCH port
5324 * enable seems to result in the occasional CPU pipe underrun.
5325 *
5326 * Spurious PCH underruns also occur during PCH enabling.
5327 */
5328 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5329 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5330 if (intel_crtc->config->has_pch_encoder)
5331 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5332
5333 if (intel_crtc->config->has_pch_encoder)
5334 intel_prepare_shared_dpll(intel_crtc);
5335
5336 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5337 intel_dp_set_m_n(intel_crtc, M1_N1);
5338
5339 intel_set_pipe_timings(intel_crtc);
5340 intel_set_pipe_src_size(intel_crtc);
5341
5342 if (intel_crtc->config->has_pch_encoder) {
5343 intel_cpu_transcoder_set_m_n(intel_crtc,
5344 &intel_crtc->config->fdi_m_n, NULL);
5345 }
5346
5347 ironlake_set_pipeconf(crtc);
5348
5349 intel_crtc->active = true;
5350
5351 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5352
5353 if (intel_crtc->config->has_pch_encoder) {
5354 /* Note: FDI PLL enabling _must_ be done before we enable the
5355 * cpu pipes, hence this is separate from all the other fdi/pch
5356 * enabling. */
5357 ironlake_fdi_pll_enable(intel_crtc);
5358 } else {
5359 assert_fdi_tx_disabled(dev_priv, pipe);
5360 assert_fdi_rx_disabled(dev_priv, pipe);
5361 }
5362
5363 ironlake_pfit_enable(intel_crtc);
5364
5365 /*
5366 * On ILK+ LUT must be loaded before the pipe is running but with
5367 * clocks enabled
5368 */
5369 intel_color_load_luts(&pipe_config->base);
5370
5371 if (dev_priv->display.initial_watermarks != NULL)
5372 dev_priv->display.initial_watermarks(intel_crtc->config);
5373 intel_enable_pipe(intel_crtc);
5374
5375 if (intel_crtc->config->has_pch_encoder)
5376 ironlake_pch_enable(crtc);
5377
5378 assert_vblank_disabled(crtc);
5379 drm_crtc_vblank_on(crtc);
5380
5381 intel_encoders_enable(crtc, pipe_config, old_state);
5382
5383 if (HAS_PCH_CPT(dev))
5384 cpt_verify_modeset(dev, intel_crtc->pipe);
5385
5386 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
5387 if (intel_crtc->config->has_pch_encoder)
5388 intel_wait_for_vblank(dev, pipe);
5389 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5390 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5391 }
5392
5393 /* IPS only exists on ULT machines and is tied to pipe A. */
hsw_crtc_supports_ips(struct intel_crtc * crtc)5394 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5395 {
5396 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
5397 }
5398
haswell_crtc_enable(struct intel_crtc_state * pipe_config,struct drm_atomic_state * old_state)5399 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5400 struct drm_atomic_state *old_state)
5401 {
5402 struct drm_crtc *crtc = pipe_config->base.crtc;
5403 struct drm_device *dev = crtc->dev;
5404 struct drm_i915_private *dev_priv = to_i915(dev);
5405 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5406 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5407 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5408
5409 if (WARN_ON(intel_crtc->active))
5410 return;
5411
5412 if (intel_crtc->config->has_pch_encoder)
5413 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5414 false);
5415
5416 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5417
5418 if (intel_crtc->config->shared_dpll)
5419 intel_enable_shared_dpll(intel_crtc);
5420
5421 if (intel_crtc_has_dp_encoder(intel_crtc->config))
5422 intel_dp_set_m_n(intel_crtc, M1_N1);
5423
5424 if (!transcoder_is_dsi(cpu_transcoder))
5425 intel_set_pipe_timings(intel_crtc);
5426
5427 intel_set_pipe_src_size(intel_crtc);
5428
5429 if (cpu_transcoder != TRANSCODER_EDP &&
5430 !transcoder_is_dsi(cpu_transcoder)) {
5431 I915_WRITE(PIPE_MULT(cpu_transcoder),
5432 intel_crtc->config->pixel_multiplier - 1);
5433 }
5434
5435 if (intel_crtc->config->has_pch_encoder) {
5436 intel_cpu_transcoder_set_m_n(intel_crtc,
5437 &intel_crtc->config->fdi_m_n, NULL);
5438 }
5439
5440 if (!transcoder_is_dsi(cpu_transcoder))
5441 haswell_set_pipeconf(crtc);
5442
5443 haswell_set_pipemisc(crtc);
5444
5445 intel_color_set_csc(&pipe_config->base);
5446
5447 intel_crtc->active = true;
5448
5449 if (intel_crtc->config->has_pch_encoder)
5450 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5451 else
5452 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5453
5454 intel_encoders_pre_enable(crtc, pipe_config, old_state);
5455
5456 if (intel_crtc->config->has_pch_encoder)
5457 dev_priv->display.fdi_link_train(crtc);
5458
5459 if (!transcoder_is_dsi(cpu_transcoder))
5460 intel_ddi_enable_pipe_clock(intel_crtc);
5461
5462 if (INTEL_INFO(dev)->gen >= 9)
5463 skylake_pfit_enable(intel_crtc);
5464 else
5465 ironlake_pfit_enable(intel_crtc);
5466
5467 /*
5468 * On ILK+ LUT must be loaded before the pipe is running but with
5469 * clocks enabled
5470 */
5471 intel_color_load_luts(&pipe_config->base);
5472
5473 intel_ddi_set_pipe_settings(crtc);
5474 if (!transcoder_is_dsi(cpu_transcoder))
5475 intel_ddi_enable_transcoder_func(crtc);
5476
5477 if (dev_priv->display.initial_watermarks != NULL)
5478 dev_priv->display.initial_watermarks(pipe_config);
5479 else
5480 intel_update_watermarks(crtc);
5481
5482 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5483 if (!transcoder_is_dsi(cpu_transcoder))
5484 intel_enable_pipe(intel_crtc);
5485
5486 if (intel_crtc->config->has_pch_encoder)
5487 lpt_pch_enable(crtc);
5488
5489 if (intel_crtc->config->dp_encoder_is_mst)
5490 intel_ddi_set_vc_payload_alloc(crtc, true);
5491
5492 assert_vblank_disabled(crtc);
5493 drm_crtc_vblank_on(crtc);
5494
5495 intel_encoders_enable(crtc, pipe_config, old_state);
5496
5497 if (intel_crtc->config->has_pch_encoder) {
5498 intel_wait_for_vblank(dev, pipe);
5499 intel_wait_for_vblank(dev, pipe);
5500 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5501 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5502 true);
5503 }
5504
5505 /* If we change the relative order between pipe/planes enabling, we need
5506 * to change the workaround. */
5507 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5508 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5509 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5510 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5511 }
5512 }
5513
ironlake_pfit_disable(struct intel_crtc * crtc,bool force)5514 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5515 {
5516 struct drm_device *dev = crtc->base.dev;
5517 struct drm_i915_private *dev_priv = to_i915(dev);
5518 int pipe = crtc->pipe;
5519
5520 /* To avoid upsetting the power well on haswell only disable the pfit if
5521 * it's in use. The hw state code will make sure we get this right. */
5522 if (force || crtc->config->pch_pfit.enabled) {
5523 I915_WRITE(PF_CTL(pipe), 0);
5524 I915_WRITE(PF_WIN_POS(pipe), 0);
5525 I915_WRITE(PF_WIN_SZ(pipe), 0);
5526 }
5527 }
5528
ironlake_crtc_disable(struct intel_crtc_state * old_crtc_state,struct drm_atomic_state * old_state)5529 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5530 struct drm_atomic_state *old_state)
5531 {
5532 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5533 struct drm_device *dev = crtc->dev;
5534 struct drm_i915_private *dev_priv = to_i915(dev);
5535 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5536 int pipe = intel_crtc->pipe;
5537
5538 /*
5539 * Sometimes spurious CPU pipe underruns happen when the
5540 * pipe is already disabled, but FDI RX/TX is still enabled.
5541 * Happens at least with VGA+HDMI cloning. Suppress them.
5542 */
5543 if (intel_crtc->config->has_pch_encoder) {
5544 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5545 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5546 }
5547
5548 intel_encoders_disable(crtc, old_crtc_state, old_state);
5549
5550 drm_crtc_vblank_off(crtc);
5551 assert_vblank_disabled(crtc);
5552
5553 intel_disable_pipe(intel_crtc);
5554
5555 ironlake_pfit_disable(intel_crtc, false);
5556
5557 if (intel_crtc->config->has_pch_encoder)
5558 ironlake_fdi_disable(crtc);
5559
5560 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5561
5562 if (intel_crtc->config->has_pch_encoder) {
5563 ironlake_disable_pch_transcoder(dev_priv, pipe);
5564
5565 if (HAS_PCH_CPT(dev)) {
5566 i915_reg_t reg;
5567 u32 temp;
5568
5569 /* disable TRANS_DP_CTL */
5570 reg = TRANS_DP_CTL(pipe);
5571 temp = I915_READ(reg);
5572 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5573 TRANS_DP_PORT_SEL_MASK);
5574 temp |= TRANS_DP_PORT_SEL_NONE;
5575 I915_WRITE(reg, temp);
5576
5577 /* disable DPLL_SEL */
5578 temp = I915_READ(PCH_DPLL_SEL);
5579 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5580 I915_WRITE(PCH_DPLL_SEL, temp);
5581 }
5582
5583 ironlake_fdi_pll_disable(intel_crtc);
5584 }
5585
5586 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5587 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5588 }
5589
haswell_crtc_disable(struct intel_crtc_state * old_crtc_state,struct drm_atomic_state * old_state)5590 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5591 struct drm_atomic_state *old_state)
5592 {
5593 struct drm_crtc *crtc = old_crtc_state->base.crtc;
5594 struct drm_device *dev = crtc->dev;
5595 struct drm_i915_private *dev_priv = to_i915(dev);
5596 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5597 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5598
5599 if (intel_crtc->config->has_pch_encoder)
5600 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5601 false);
5602
5603 intel_encoders_disable(crtc, old_crtc_state, old_state);
5604
5605 drm_crtc_vblank_off(crtc);
5606 assert_vblank_disabled(crtc);
5607
5608 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5609 if (!transcoder_is_dsi(cpu_transcoder))
5610 intel_disable_pipe(intel_crtc);
5611
5612 if (intel_crtc->config->dp_encoder_is_mst)
5613 intel_ddi_set_vc_payload_alloc(crtc, false);
5614
5615 if (!transcoder_is_dsi(cpu_transcoder))
5616 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5617
5618 if (INTEL_INFO(dev)->gen >= 9)
5619 skylake_scaler_disable(intel_crtc);
5620 else
5621 ironlake_pfit_disable(intel_crtc, false);
5622
5623 if (!transcoder_is_dsi(cpu_transcoder))
5624 intel_ddi_disable_pipe_clock(intel_crtc);
5625
5626 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5627
5628 if (old_crtc_state->has_pch_encoder)
5629 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5630 true);
5631 }
5632
i9xx_pfit_enable(struct intel_crtc * crtc)5633 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5634 {
5635 struct drm_device *dev = crtc->base.dev;
5636 struct drm_i915_private *dev_priv = to_i915(dev);
5637 struct intel_crtc_state *pipe_config = crtc->config;
5638
5639 if (!pipe_config->gmch_pfit.control)
5640 return;
5641
5642 /*
5643 * The panel fitter should only be adjusted whilst the pipe is disabled,
5644 * according to register description and PRM.
5645 */
5646 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5647 assert_pipe_disabled(dev_priv, crtc->pipe);
5648
5649 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5650 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5651
5652 /* Border color in case we don't scale up to the full screen. Black by
5653 * default, change to something else for debugging. */
5654 I915_WRITE(BCLRPAT(crtc->pipe), 0);
5655 }
5656
port_to_power_domain(enum port port)5657 static enum intel_display_power_domain port_to_power_domain(enum port port)
5658 {
5659 switch (port) {
5660 case PORT_A:
5661 return POWER_DOMAIN_PORT_DDI_A_LANES;
5662 case PORT_B:
5663 return POWER_DOMAIN_PORT_DDI_B_LANES;
5664 case PORT_C:
5665 return POWER_DOMAIN_PORT_DDI_C_LANES;
5666 case PORT_D:
5667 return POWER_DOMAIN_PORT_DDI_D_LANES;
5668 case PORT_E:
5669 return POWER_DOMAIN_PORT_DDI_E_LANES;
5670 default:
5671 MISSING_CASE(port);
5672 return POWER_DOMAIN_PORT_OTHER;
5673 }
5674 }
5675
port_to_aux_power_domain(enum port port)5676 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5677 {
5678 switch (port) {
5679 case PORT_A:
5680 return POWER_DOMAIN_AUX_A;
5681 case PORT_B:
5682 return POWER_DOMAIN_AUX_B;
5683 case PORT_C:
5684 return POWER_DOMAIN_AUX_C;
5685 case PORT_D:
5686 return POWER_DOMAIN_AUX_D;
5687 case PORT_E:
5688 /* FIXME: Check VBT for actual wiring of PORT E */
5689 return POWER_DOMAIN_AUX_D;
5690 default:
5691 MISSING_CASE(port);
5692 return POWER_DOMAIN_AUX_A;
5693 }
5694 }
5695
5696 enum intel_display_power_domain
intel_display_port_power_domain(struct intel_encoder * intel_encoder)5697 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5698 {
5699 struct drm_device *dev = intel_encoder->base.dev;
5700 struct intel_digital_port *intel_dig_port;
5701
5702 switch (intel_encoder->type) {
5703 case INTEL_OUTPUT_UNKNOWN:
5704 /* Only DDI platforms should ever use this output type */
5705 WARN_ON_ONCE(!HAS_DDI(dev));
5706 case INTEL_OUTPUT_DP:
5707 case INTEL_OUTPUT_HDMI:
5708 case INTEL_OUTPUT_EDP:
5709 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5710 return port_to_power_domain(intel_dig_port->port);
5711 case INTEL_OUTPUT_DP_MST:
5712 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5713 return port_to_power_domain(intel_dig_port->port);
5714 case INTEL_OUTPUT_ANALOG:
5715 return POWER_DOMAIN_PORT_CRT;
5716 case INTEL_OUTPUT_DSI:
5717 return POWER_DOMAIN_PORT_DSI;
5718 default:
5719 return POWER_DOMAIN_PORT_OTHER;
5720 }
5721 }
5722
5723 enum intel_display_power_domain
intel_display_port_aux_power_domain(struct intel_encoder * intel_encoder)5724 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5725 {
5726 struct drm_device *dev = intel_encoder->base.dev;
5727 struct intel_digital_port *intel_dig_port;
5728
5729 switch (intel_encoder->type) {
5730 case INTEL_OUTPUT_UNKNOWN:
5731 case INTEL_OUTPUT_HDMI:
5732 /*
5733 * Only DDI platforms should ever use these output types.
5734 * We can get here after the HDMI detect code has already set
5735 * the type of the shared encoder. Since we can't be sure
5736 * what's the status of the given connectors, play safe and
5737 * run the DP detection too.
5738 */
5739 WARN_ON_ONCE(!HAS_DDI(dev));
5740 case INTEL_OUTPUT_DP:
5741 case INTEL_OUTPUT_EDP:
5742 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5743 return port_to_aux_power_domain(intel_dig_port->port);
5744 case INTEL_OUTPUT_DP_MST:
5745 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5746 return port_to_aux_power_domain(intel_dig_port->port);
5747 default:
5748 MISSING_CASE(intel_encoder->type);
5749 return POWER_DOMAIN_AUX_A;
5750 }
5751 }
5752
get_crtc_power_domains(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state)5753 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5754 struct intel_crtc_state *crtc_state)
5755 {
5756 struct drm_device *dev = crtc->dev;
5757 struct drm_encoder *encoder;
5758 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5759 enum pipe pipe = intel_crtc->pipe;
5760 unsigned long mask;
5761 enum transcoder transcoder = crtc_state->cpu_transcoder;
5762
5763 if (!crtc_state->base.active)
5764 return 0;
5765
5766 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5767 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5768 if (crtc_state->pch_pfit.enabled ||
5769 crtc_state->pch_pfit.force_thru)
5770 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5771
5772 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5773 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5774
5775 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5776 }
5777
5778 if (crtc_state->shared_dpll)
5779 mask |= BIT(POWER_DOMAIN_PLLS);
5780
5781 return mask;
5782 }
5783
5784 static unsigned long
modeset_get_crtc_power_domains(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state)5785 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5786 struct intel_crtc_state *crtc_state)
5787 {
5788 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5789 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5790 enum intel_display_power_domain domain;
5791 unsigned long domains, new_domains, old_domains;
5792
5793 old_domains = intel_crtc->enabled_power_domains;
5794 intel_crtc->enabled_power_domains = new_domains =
5795 get_crtc_power_domains(crtc, crtc_state);
5796
5797 domains = new_domains & ~old_domains;
5798
5799 for_each_power_domain(domain, domains)
5800 intel_display_power_get(dev_priv, domain);
5801
5802 return old_domains & ~new_domains;
5803 }
5804
modeset_put_power_domains(struct drm_i915_private * dev_priv,unsigned long domains)5805 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5806 unsigned long domains)
5807 {
5808 enum intel_display_power_domain domain;
5809
5810 for_each_power_domain(domain, domains)
5811 intel_display_power_put(dev_priv, domain);
5812 }
5813
intel_compute_max_dotclk(struct drm_i915_private * dev_priv)5814 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5815 {
5816 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5817
5818 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5819 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5820 return max_cdclk_freq;
5821 else if (IS_CHERRYVIEW(dev_priv))
5822 return max_cdclk_freq*95/100;
5823 else if (INTEL_INFO(dev_priv)->gen < 4)
5824 return 2*max_cdclk_freq*90/100;
5825 else
5826 return max_cdclk_freq*90/100;
5827 }
5828
5829 static int skl_calc_cdclk(int max_pixclk, int vco);
5830
intel_update_max_cdclk(struct drm_device * dev)5831 static void intel_update_max_cdclk(struct drm_device *dev)
5832 {
5833 struct drm_i915_private *dev_priv = to_i915(dev);
5834
5835 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5836 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5837 int max_cdclk, vco;
5838
5839 vco = dev_priv->skl_preferred_vco_freq;
5840 WARN_ON(vco != 8100000 && vco != 8640000);
5841
5842 /*
5843 * Use the lower (vco 8640) cdclk values as a
5844 * first guess. skl_calc_cdclk() will correct it
5845 * if the preferred vco is 8100 instead.
5846 */
5847 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5848 max_cdclk = 617143;
5849 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5850 max_cdclk = 540000;
5851 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5852 max_cdclk = 432000;
5853 else
5854 max_cdclk = 308571;
5855
5856 dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5857 } else if (IS_BROXTON(dev)) {
5858 dev_priv->max_cdclk_freq = 624000;
5859 } else if (IS_BROADWELL(dev)) {
5860 /*
5861 * FIXME with extra cooling we can allow
5862 * 540 MHz for ULX and 675 Mhz for ULT.
5863 * How can we know if extra cooling is
5864 * available? PCI ID, VTB, something else?
5865 */
5866 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5867 dev_priv->max_cdclk_freq = 450000;
5868 else if (IS_BDW_ULX(dev))
5869 dev_priv->max_cdclk_freq = 450000;
5870 else if (IS_BDW_ULT(dev))
5871 dev_priv->max_cdclk_freq = 540000;
5872 else
5873 dev_priv->max_cdclk_freq = 675000;
5874 } else if (IS_CHERRYVIEW(dev)) {
5875 dev_priv->max_cdclk_freq = 320000;
5876 } else if (IS_VALLEYVIEW(dev)) {
5877 dev_priv->max_cdclk_freq = 400000;
5878 } else {
5879 /* otherwise assume cdclk is fixed */
5880 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5881 }
5882
5883 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5884
5885 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5886 dev_priv->max_cdclk_freq);
5887
5888 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5889 dev_priv->max_dotclk_freq);
5890 }
5891
intel_update_cdclk(struct drm_device * dev)5892 static void intel_update_cdclk(struct drm_device *dev)
5893 {
5894 struct drm_i915_private *dev_priv = to_i915(dev);
5895
5896 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5897
5898 if (INTEL_GEN(dev_priv) >= 9)
5899 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5900 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5901 dev_priv->cdclk_pll.ref);
5902 else
5903 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5904 dev_priv->cdclk_freq);
5905
5906 /*
5907 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5908 * Programmng [sic] note: bit[9:2] should be programmed to the number
5909 * of cdclk that generates 4MHz reference clock freq which is used to
5910 * generate GMBus clock. This will vary with the cdclk freq.
5911 */
5912 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5913 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5914 }
5915
5916 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
skl_cdclk_decimal(int cdclk)5917 static int skl_cdclk_decimal(int cdclk)
5918 {
5919 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5920 }
5921
bxt_de_pll_vco(struct drm_i915_private * dev_priv,int cdclk)5922 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5923 {
5924 int ratio;
5925
5926 if (cdclk == dev_priv->cdclk_pll.ref)
5927 return 0;
5928
5929 switch (cdclk) {
5930 default:
5931 MISSING_CASE(cdclk);
5932 case 144000:
5933 case 288000:
5934 case 384000:
5935 case 576000:
5936 ratio = 60;
5937 break;
5938 case 624000:
5939 ratio = 65;
5940 break;
5941 }
5942
5943 return dev_priv->cdclk_pll.ref * ratio;
5944 }
5945
bxt_de_pll_disable(struct drm_i915_private * dev_priv)5946 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5947 {
5948 I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5949
5950 /* Timeout 200us */
5951 if (intel_wait_for_register(dev_priv,
5952 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5953 1))
5954 DRM_ERROR("timeout waiting for DE PLL unlock\n");
5955
5956 dev_priv->cdclk_pll.vco = 0;
5957 }
5958
bxt_de_pll_enable(struct drm_i915_private * dev_priv,int vco)5959 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5960 {
5961 int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5962 u32 val;
5963
5964 val = I915_READ(BXT_DE_PLL_CTL);
5965 val &= ~BXT_DE_PLL_RATIO_MASK;
5966 val |= BXT_DE_PLL_RATIO(ratio);
5967 I915_WRITE(BXT_DE_PLL_CTL, val);
5968
5969 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5970
5971 /* Timeout 200us */
5972 if (intel_wait_for_register(dev_priv,
5973 BXT_DE_PLL_ENABLE,
5974 BXT_DE_PLL_LOCK,
5975 BXT_DE_PLL_LOCK,
5976 1))
5977 DRM_ERROR("timeout waiting for DE PLL lock\n");
5978
5979 dev_priv->cdclk_pll.vco = vco;
5980 }
5981
bxt_set_cdclk(struct drm_i915_private * dev_priv,int cdclk)5982 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5983 {
5984 u32 val, divider;
5985 int vco, ret;
5986
5987 vco = bxt_de_pll_vco(dev_priv, cdclk);
5988
5989 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5990
5991 /* cdclk = vco / 2 / div{1,1.5,2,4} */
5992 switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5993 case 8:
5994 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5995 break;
5996 case 4:
5997 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5998 break;
5999 case 3:
6000 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
6001 break;
6002 case 2:
6003 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
6004 break;
6005 default:
6006 WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
6007 WARN_ON(vco != 0);
6008
6009 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
6010 break;
6011 }
6012
6013 /* Inform power controller of upcoming frequency change */
6014 mutex_lock(&dev_priv->rps.hw_lock);
6015 ret = sandybridge_pcode_write_timeout(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6016 0x80000000, 2000);
6017 mutex_unlock(&dev_priv->rps.hw_lock);
6018
6019 if (ret) {
6020 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
6021 ret, cdclk);
6022 return;
6023 }
6024
6025 if (dev_priv->cdclk_pll.vco != 0 &&
6026 dev_priv->cdclk_pll.vco != vco)
6027 bxt_de_pll_disable(dev_priv);
6028
6029 if (dev_priv->cdclk_pll.vco != vco)
6030 bxt_de_pll_enable(dev_priv, vco);
6031
6032 val = divider | skl_cdclk_decimal(cdclk);
6033 /*
6034 * FIXME if only the cd2x divider needs changing, it could be done
6035 * without shutting off the pipe (if only one pipe is active).
6036 */
6037 val |= BXT_CDCLK_CD2X_PIPE_NONE;
6038 /*
6039 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6040 * enable otherwise.
6041 */
6042 if (cdclk >= 500000)
6043 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6044 I915_WRITE(CDCLK_CTL, val);
6045
6046 mutex_lock(&dev_priv->rps.hw_lock);
6047 ret = sandybridge_pcode_write_timeout(dev_priv,
6048 HSW_PCODE_DE_WRITE_FREQ_REQ,
6049 DIV_ROUND_UP(cdclk, 25000), 2000);
6050 mutex_unlock(&dev_priv->rps.hw_lock);
6051
6052 if (ret) {
6053 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
6054 ret, cdclk);
6055 return;
6056 }
6057
6058 intel_update_cdclk(&dev_priv->drm);
6059 }
6060
bxt_sanitize_cdclk(struct drm_i915_private * dev_priv)6061 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
6062 {
6063 u32 cdctl, expected;
6064
6065 intel_update_cdclk(&dev_priv->drm);
6066
6067 if (dev_priv->cdclk_pll.vco == 0 ||
6068 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6069 goto sanitize;
6070
6071 /* DPLL okay; verify the cdclock
6072 *
6073 * Some BIOS versions leave an incorrect decimal frequency value and
6074 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
6075 * so sanitize this register.
6076 */
6077 cdctl = I915_READ(CDCLK_CTL);
6078 /*
6079 * Let's ignore the pipe field, since BIOS could have configured the
6080 * dividers both synching to an active pipe, or asynchronously
6081 * (PIPE_NONE).
6082 */
6083 cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
6084
6085 expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
6086 skl_cdclk_decimal(dev_priv->cdclk_freq);
6087 /*
6088 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6089 * enable otherwise.
6090 */
6091 if (dev_priv->cdclk_freq >= 500000)
6092 expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6093
6094 if (cdctl == expected)
6095 /* All well; nothing to sanitize */
6096 return;
6097
6098 sanitize:
6099 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6100
6101 /* force cdclk programming */
6102 dev_priv->cdclk_freq = 0;
6103
6104 /* force full PLL disable + enable */
6105 dev_priv->cdclk_pll.vco = -1;
6106 }
6107
bxt_init_cdclk(struct drm_i915_private * dev_priv)6108 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
6109 {
6110 bxt_sanitize_cdclk(dev_priv);
6111
6112 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
6113 return;
6114
6115 /*
6116 * FIXME:
6117 * - The initial CDCLK needs to be read from VBT.
6118 * Need to make this change after VBT has changes for BXT.
6119 */
6120 bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
6121 }
6122
bxt_uninit_cdclk(struct drm_i915_private * dev_priv)6123 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
6124 {
6125 bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
6126 }
6127
skl_calc_cdclk(int max_pixclk,int vco)6128 static int skl_calc_cdclk(int max_pixclk, int vco)
6129 {
6130 if (vco == 8640000) {
6131 if (max_pixclk > 540000)
6132 return 617143;
6133 else if (max_pixclk > 432000)
6134 return 540000;
6135 else if (max_pixclk > 308571)
6136 return 432000;
6137 else
6138 return 308571;
6139 } else {
6140 if (max_pixclk > 540000)
6141 return 675000;
6142 else if (max_pixclk > 450000)
6143 return 540000;
6144 else if (max_pixclk > 337500)
6145 return 450000;
6146 else
6147 return 337500;
6148 }
6149 }
6150
6151 static void
skl_dpll0_update(struct drm_i915_private * dev_priv)6152 skl_dpll0_update(struct drm_i915_private *dev_priv)
6153 {
6154 u32 val;
6155
6156 dev_priv->cdclk_pll.ref = 24000;
6157 dev_priv->cdclk_pll.vco = 0;
6158
6159 val = I915_READ(LCPLL1_CTL);
6160 if ((val & LCPLL_PLL_ENABLE) == 0)
6161 return;
6162
6163 if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
6164 return;
6165
6166 val = I915_READ(DPLL_CTRL1);
6167
6168 if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
6169 DPLL_CTRL1_SSC(SKL_DPLL0) |
6170 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
6171 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
6172 return;
6173
6174 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
6175 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
6176 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
6177 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
6178 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
6179 dev_priv->cdclk_pll.vco = 8100000;
6180 break;
6181 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
6182 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
6183 dev_priv->cdclk_pll.vco = 8640000;
6184 break;
6185 default:
6186 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6187 break;
6188 }
6189 }
6190
skl_set_preferred_cdclk_vco(struct drm_i915_private * dev_priv,int vco)6191 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
6192 {
6193 bool changed = dev_priv->skl_preferred_vco_freq != vco;
6194
6195 dev_priv->skl_preferred_vco_freq = vco;
6196
6197 if (changed)
6198 intel_update_max_cdclk(&dev_priv->drm);
6199 }
6200
6201 static void
skl_dpll0_enable(struct drm_i915_private * dev_priv,int vco)6202 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
6203 {
6204 int min_cdclk = skl_calc_cdclk(0, vco);
6205 u32 val;
6206
6207 WARN_ON(vco != 8100000 && vco != 8640000);
6208
6209 /* select the minimum CDCLK before enabling DPLL 0 */
6210 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
6211 I915_WRITE(CDCLK_CTL, val);
6212 POSTING_READ(CDCLK_CTL);
6213
6214 /*
6215 * We always enable DPLL0 with the lowest link rate possible, but still
6216 * taking into account the VCO required to operate the eDP panel at the
6217 * desired frequency. The usual DP link rates operate with a VCO of
6218 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6219 * The modeset code is responsible for the selection of the exact link
6220 * rate later on, with the constraint of choosing a frequency that
6221 * works with vco.
6222 */
6223 val = I915_READ(DPLL_CTRL1);
6224
6225 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
6226 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6227 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
6228 if (vco == 8640000)
6229 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
6230 SKL_DPLL0);
6231 else
6232 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
6233 SKL_DPLL0);
6234
6235 I915_WRITE(DPLL_CTRL1, val);
6236 POSTING_READ(DPLL_CTRL1);
6237
6238 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
6239
6240 if (intel_wait_for_register(dev_priv,
6241 LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
6242 5))
6243 DRM_ERROR("DPLL0 not locked\n");
6244
6245 dev_priv->cdclk_pll.vco = vco;
6246
6247 /* We'll want to keep using the current vco from now on. */
6248 skl_set_preferred_cdclk_vco(dev_priv, vco);
6249 }
6250
6251 static void
skl_dpll0_disable(struct drm_i915_private * dev_priv)6252 skl_dpll0_disable(struct drm_i915_private *dev_priv)
6253 {
6254 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
6255 if (intel_wait_for_register(dev_priv,
6256 LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
6257 1))
6258 DRM_ERROR("Couldn't disable DPLL0\n");
6259
6260 dev_priv->cdclk_pll.vco = 0;
6261 }
6262
skl_set_cdclk(struct drm_i915_private * dev_priv,int cdclk,int vco)6263 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
6264 {
6265 struct drm_device *dev = &dev_priv->drm;
6266 u32 freq_select, pcu_ack;
6267 int ret;
6268
6269 WARN_ON((cdclk == 24000) != (vco == 0));
6270
6271 DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
6272
6273 mutex_lock(&dev_priv->rps.hw_lock);
6274 ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL,
6275 SKL_CDCLK_PREPARE_FOR_CHANGE,
6276 SKL_CDCLK_READY_FOR_CHANGE,
6277 SKL_CDCLK_READY_FOR_CHANGE, 3);
6278 mutex_unlock(&dev_priv->rps.hw_lock);
6279 if (ret) {
6280 DRM_ERROR("Failed to inform PCU about cdclk change (%d)\n",
6281 ret);
6282 return;
6283 }
6284
6285 /* set CDCLK_CTL */
6286 switch (cdclk) {
6287 case 450000:
6288 case 432000:
6289 freq_select = CDCLK_FREQ_450_432;
6290 pcu_ack = 1;
6291 break;
6292 case 540000:
6293 freq_select = CDCLK_FREQ_540;
6294 pcu_ack = 2;
6295 break;
6296 case 308571:
6297 case 337500:
6298 default:
6299 freq_select = CDCLK_FREQ_337_308;
6300 pcu_ack = 0;
6301 break;
6302 case 617143:
6303 case 675000:
6304 freq_select = CDCLK_FREQ_675_617;
6305 pcu_ack = 3;
6306 break;
6307 }
6308
6309 if (dev_priv->cdclk_pll.vco != 0 &&
6310 dev_priv->cdclk_pll.vco != vco)
6311 skl_dpll0_disable(dev_priv);
6312
6313 if (dev_priv->cdclk_pll.vco != vco)
6314 skl_dpll0_enable(dev_priv, vco);
6315
6316 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
6317 POSTING_READ(CDCLK_CTL);
6318
6319 /* inform PCU of the change */
6320 mutex_lock(&dev_priv->rps.hw_lock);
6321 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
6322 mutex_unlock(&dev_priv->rps.hw_lock);
6323
6324 intel_update_cdclk(dev);
6325 }
6326
6327 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
6328
skl_uninit_cdclk(struct drm_i915_private * dev_priv)6329 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
6330 {
6331 skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
6332 }
6333
skl_init_cdclk(struct drm_i915_private * dev_priv)6334 void skl_init_cdclk(struct drm_i915_private *dev_priv)
6335 {
6336 int cdclk, vco;
6337
6338 skl_sanitize_cdclk(dev_priv);
6339
6340 if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
6341 /*
6342 * Use the current vco as our initial
6343 * guess as to what the preferred vco is.
6344 */
6345 if (dev_priv->skl_preferred_vco_freq == 0)
6346 skl_set_preferred_cdclk_vco(dev_priv,
6347 dev_priv->cdclk_pll.vco);
6348 return;
6349 }
6350
6351 vco = dev_priv->skl_preferred_vco_freq;
6352 if (vco == 0)
6353 vco = 8100000;
6354 cdclk = skl_calc_cdclk(0, vco);
6355
6356 skl_set_cdclk(dev_priv, cdclk, vco);
6357 }
6358
skl_sanitize_cdclk(struct drm_i915_private * dev_priv)6359 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
6360 {
6361 uint32_t cdctl, expected;
6362
6363 /*
6364 * check if the pre-os intialized the display
6365 * There is SWF18 scratchpad register defined which is set by the
6366 * pre-os which can be used by the OS drivers to check the status
6367 */
6368 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6369 goto sanitize;
6370
6371 intel_update_cdclk(&dev_priv->drm);
6372 /* Is PLL enabled and locked ? */
6373 if (dev_priv->cdclk_pll.vco == 0 ||
6374 dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6375 goto sanitize;
6376
6377 /* DPLL okay; verify the cdclock
6378 *
6379 * Noticed in some instances that the freq selection is correct but
6380 * decimal part is programmed wrong from BIOS where pre-os does not
6381 * enable display. Verify the same as well.
6382 */
6383 cdctl = I915_READ(CDCLK_CTL);
6384 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
6385 skl_cdclk_decimal(dev_priv->cdclk_freq);
6386 if (cdctl == expected)
6387 /* All well; nothing to sanitize */
6388 return;
6389
6390 sanitize:
6391 DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6392
6393 /* force cdclk programming */
6394 dev_priv->cdclk_freq = 0;
6395 /* force full PLL disable + enable */
6396 dev_priv->cdclk_pll.vco = -1;
6397 }
6398
6399 /* Adjust CDclk dividers to allow high res or save power if possible */
valleyview_set_cdclk(struct drm_device * dev,int cdclk)6400 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
6401 {
6402 struct drm_i915_private *dev_priv = to_i915(dev);
6403 u32 val, cmd;
6404
6405 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
6406 != dev_priv->cdclk_freq);
6407
6408 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
6409 cmd = 2;
6410 else if (cdclk == 266667)
6411 cmd = 1;
6412 else
6413 cmd = 0;
6414
6415 mutex_lock(&dev_priv->rps.hw_lock);
6416 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6417 val &= ~DSPFREQGUAR_MASK;
6418 val |= (cmd << DSPFREQGUAR_SHIFT);
6419 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6420 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6421 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
6422 50)) {
6423 DRM_ERROR("timed out waiting for CDclk change\n");
6424 }
6425 mutex_unlock(&dev_priv->rps.hw_lock);
6426
6427 mutex_lock(&dev_priv->sb_lock);
6428
6429 if (cdclk == 400000) {
6430 u32 divider;
6431
6432 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6433
6434 /* adjust cdclk divider */
6435 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6436 val &= ~CCK_FREQUENCY_VALUES;
6437 val |= divider;
6438 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
6439
6440 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
6441 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
6442 50))
6443 DRM_ERROR("timed out waiting for CDclk change\n");
6444 }
6445
6446 /* adjust self-refresh exit latency value */
6447 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
6448 val &= ~0x7f;
6449
6450 /*
6451 * For high bandwidth configs, we set a higher latency in the bunit
6452 * so that the core display fetch happens in time to avoid underruns.
6453 */
6454 if (cdclk == 400000)
6455 val |= 4500 / 250; /* 4.5 usec */
6456 else
6457 val |= 3000 / 250; /* 3.0 usec */
6458 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
6459
6460 mutex_unlock(&dev_priv->sb_lock);
6461
6462 intel_update_cdclk(dev);
6463 }
6464
cherryview_set_cdclk(struct drm_device * dev,int cdclk)6465 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
6466 {
6467 struct drm_i915_private *dev_priv = to_i915(dev);
6468 u32 val, cmd;
6469
6470 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
6471 != dev_priv->cdclk_freq);
6472
6473 switch (cdclk) {
6474 case 333333:
6475 case 320000:
6476 case 266667:
6477 case 200000:
6478 break;
6479 default:
6480 MISSING_CASE(cdclk);
6481 return;
6482 }
6483
6484 /*
6485 * Specs are full of misinformation, but testing on actual
6486 * hardware has shown that we just need to write the desired
6487 * CCK divider into the Punit register.
6488 */
6489 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6490
6491 mutex_lock(&dev_priv->rps.hw_lock);
6492 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6493 val &= ~DSPFREQGUAR_MASK_CHV;
6494 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6495 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6496 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6497 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6498 50)) {
6499 DRM_ERROR("timed out waiting for CDclk change\n");
6500 }
6501 mutex_unlock(&dev_priv->rps.hw_lock);
6502
6503 intel_update_cdclk(dev);
6504 }
6505
valleyview_calc_cdclk(struct drm_i915_private * dev_priv,int max_pixclk)6506 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6507 int max_pixclk)
6508 {
6509 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6510 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6511
6512 /*
6513 * Really only a few cases to deal with, as only 4 CDclks are supported:
6514 * 200MHz
6515 * 267MHz
6516 * 320/333MHz (depends on HPLL freq)
6517 * 400MHz (VLV only)
6518 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6519 * of the lower bin and adjust if needed.
6520 *
6521 * We seem to get an unstable or solid color picture at 200MHz.
6522 * Not sure what's wrong. For now use 200MHz only when all pipes
6523 * are off.
6524 */
6525 if (!IS_CHERRYVIEW(dev_priv) &&
6526 max_pixclk > freq_320*limit/100)
6527 return 400000;
6528 else if (max_pixclk > 266667*limit/100)
6529 return freq_320;
6530 else if (max_pixclk > 0)
6531 return 266667;
6532 else
6533 return 200000;
6534 }
6535
bxt_calc_cdclk(int max_pixclk)6536 static int bxt_calc_cdclk(int max_pixclk)
6537 {
6538 if (max_pixclk > 576000)
6539 return 624000;
6540 else if (max_pixclk > 384000)
6541 return 576000;
6542 else if (max_pixclk > 288000)
6543 return 384000;
6544 else if (max_pixclk > 144000)
6545 return 288000;
6546 else
6547 return 144000;
6548 }
6549
6550 /* Compute the max pixel clock for new configuration. */
intel_mode_max_pixclk(struct drm_device * dev,struct drm_atomic_state * state)6551 static int intel_mode_max_pixclk(struct drm_device *dev,
6552 struct drm_atomic_state *state)
6553 {
6554 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6555 struct drm_i915_private *dev_priv = to_i915(dev);
6556 struct drm_crtc *crtc;
6557 struct drm_crtc_state *crtc_state;
6558 unsigned max_pixclk = 0, i;
6559 enum pipe pipe;
6560
6561 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6562 sizeof(intel_state->min_pixclk));
6563
6564 for_each_crtc_in_state(state, crtc, crtc_state, i) {
6565 int pixclk = 0;
6566
6567 if (crtc_state->enable)
6568 pixclk = crtc_state->adjusted_mode.crtc_clock;
6569
6570 intel_state->min_pixclk[i] = pixclk;
6571 }
6572
6573 for_each_pipe(dev_priv, pipe)
6574 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6575
6576 return max_pixclk;
6577 }
6578
valleyview_modeset_calc_cdclk(struct drm_atomic_state * state)6579 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6580 {
6581 struct drm_device *dev = state->dev;
6582 struct drm_i915_private *dev_priv = to_i915(dev);
6583 int max_pixclk = intel_mode_max_pixclk(dev, state);
6584 struct intel_atomic_state *intel_state =
6585 to_intel_atomic_state(state);
6586
6587 intel_state->cdclk = intel_state->dev_cdclk =
6588 valleyview_calc_cdclk(dev_priv, max_pixclk);
6589
6590 if (!intel_state->active_crtcs)
6591 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6592
6593 return 0;
6594 }
6595
bxt_modeset_calc_cdclk(struct drm_atomic_state * state)6596 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6597 {
6598 int max_pixclk = ilk_max_pixel_rate(state);
6599 struct intel_atomic_state *intel_state =
6600 to_intel_atomic_state(state);
6601
6602 intel_state->cdclk = intel_state->dev_cdclk =
6603 bxt_calc_cdclk(max_pixclk);
6604
6605 if (!intel_state->active_crtcs)
6606 intel_state->dev_cdclk = bxt_calc_cdclk(0);
6607
6608 return 0;
6609 }
6610
vlv_program_pfi_credits(struct drm_i915_private * dev_priv)6611 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6612 {
6613 unsigned int credits, default_credits;
6614
6615 if (IS_CHERRYVIEW(dev_priv))
6616 default_credits = PFI_CREDIT(12);
6617 else
6618 default_credits = PFI_CREDIT(8);
6619
6620 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6621 /* CHV suggested value is 31 or 63 */
6622 if (IS_CHERRYVIEW(dev_priv))
6623 credits = PFI_CREDIT_63;
6624 else
6625 credits = PFI_CREDIT(15);
6626 } else {
6627 credits = default_credits;
6628 }
6629
6630 /*
6631 * WA - write default credits before re-programming
6632 * FIXME: should we also set the resend bit here?
6633 */
6634 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6635 default_credits);
6636
6637 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6638 credits | PFI_CREDIT_RESEND);
6639
6640 /*
6641 * FIXME is this guaranteed to clear
6642 * immediately or should we poll for it?
6643 */
6644 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6645 }
6646
valleyview_modeset_commit_cdclk(struct drm_atomic_state * old_state)6647 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6648 {
6649 struct drm_device *dev = old_state->dev;
6650 struct drm_i915_private *dev_priv = to_i915(dev);
6651 struct intel_atomic_state *old_intel_state =
6652 to_intel_atomic_state(old_state);
6653 unsigned req_cdclk = old_intel_state->dev_cdclk;
6654
6655 /*
6656 * FIXME: We can end up here with all power domains off, yet
6657 * with a CDCLK frequency other than the minimum. To account
6658 * for this take the PIPE-A power domain, which covers the HW
6659 * blocks needed for the following programming. This can be
6660 * removed once it's guaranteed that we get here either with
6661 * the minimum CDCLK set, or the required power domains
6662 * enabled.
6663 */
6664 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6665
6666 if (IS_CHERRYVIEW(dev))
6667 cherryview_set_cdclk(dev, req_cdclk);
6668 else
6669 valleyview_set_cdclk(dev, req_cdclk);
6670
6671 vlv_program_pfi_credits(dev_priv);
6672
6673 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6674 }
6675
valleyview_crtc_enable(struct intel_crtc_state * pipe_config,struct drm_atomic_state * old_state)6676 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6677 struct drm_atomic_state *old_state)
6678 {
6679 struct drm_crtc *crtc = pipe_config->base.crtc;
6680 struct drm_device *dev = crtc->dev;
6681 struct drm_i915_private *dev_priv = to_i915(dev);
6682 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6683 int pipe = intel_crtc->pipe;
6684
6685 if (WARN_ON(intel_crtc->active))
6686 return;
6687
6688 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6689 intel_dp_set_m_n(intel_crtc, M1_N1);
6690
6691 intel_set_pipe_timings(intel_crtc);
6692 intel_set_pipe_src_size(intel_crtc);
6693
6694 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6695 struct drm_i915_private *dev_priv = to_i915(dev);
6696
6697 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6698 I915_WRITE(CHV_CANVAS(pipe), 0);
6699 }
6700
6701 i9xx_set_pipeconf(intel_crtc);
6702
6703 intel_crtc->active = true;
6704
6705 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6706
6707 intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
6708
6709 if (IS_CHERRYVIEW(dev)) {
6710 chv_prepare_pll(intel_crtc, intel_crtc->config);
6711 chv_enable_pll(intel_crtc, intel_crtc->config);
6712 } else {
6713 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6714 vlv_enable_pll(intel_crtc, intel_crtc->config);
6715 }
6716
6717 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6718
6719 i9xx_pfit_enable(intel_crtc);
6720
6721 intel_color_load_luts(&pipe_config->base);
6722
6723 intel_update_watermarks(crtc);
6724 intel_enable_pipe(intel_crtc);
6725
6726 assert_vblank_disabled(crtc);
6727 drm_crtc_vblank_on(crtc);
6728
6729 intel_encoders_enable(crtc, pipe_config, old_state);
6730 }
6731
i9xx_set_pll_dividers(struct intel_crtc * crtc)6732 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6733 {
6734 struct drm_device *dev = crtc->base.dev;
6735 struct drm_i915_private *dev_priv = to_i915(dev);
6736
6737 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6738 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6739 }
6740
i9xx_crtc_enable(struct intel_crtc_state * pipe_config,struct drm_atomic_state * old_state)6741 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6742 struct drm_atomic_state *old_state)
6743 {
6744 struct drm_crtc *crtc = pipe_config->base.crtc;
6745 struct drm_device *dev = crtc->dev;
6746 struct drm_i915_private *dev_priv = to_i915(dev);
6747 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6748 enum pipe pipe = intel_crtc->pipe;
6749
6750 if (WARN_ON(intel_crtc->active))
6751 return;
6752
6753 i9xx_set_pll_dividers(intel_crtc);
6754
6755 if (intel_crtc_has_dp_encoder(intel_crtc->config))
6756 intel_dp_set_m_n(intel_crtc, M1_N1);
6757
6758 intel_set_pipe_timings(intel_crtc);
6759 intel_set_pipe_src_size(intel_crtc);
6760
6761 i9xx_set_pipeconf(intel_crtc);
6762
6763 intel_crtc->active = true;
6764
6765 if (!IS_GEN2(dev))
6766 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6767
6768 intel_encoders_pre_enable(crtc, pipe_config, old_state);
6769
6770 i9xx_enable_pll(intel_crtc);
6771
6772 i9xx_pfit_enable(intel_crtc);
6773
6774 intel_color_load_luts(&pipe_config->base);
6775
6776 intel_update_watermarks(crtc);
6777 intel_enable_pipe(intel_crtc);
6778
6779 assert_vblank_disabled(crtc);
6780 drm_crtc_vblank_on(crtc);
6781
6782 intel_encoders_enable(crtc, pipe_config, old_state);
6783 }
6784
i9xx_pfit_disable(struct intel_crtc * crtc)6785 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6786 {
6787 struct drm_device *dev = crtc->base.dev;
6788 struct drm_i915_private *dev_priv = to_i915(dev);
6789
6790 if (!crtc->config->gmch_pfit.control)
6791 return;
6792
6793 assert_pipe_disabled(dev_priv, crtc->pipe);
6794
6795 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6796 I915_READ(PFIT_CONTROL));
6797 I915_WRITE(PFIT_CONTROL, 0);
6798 }
6799
i9xx_crtc_disable(struct intel_crtc_state * old_crtc_state,struct drm_atomic_state * old_state)6800 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6801 struct drm_atomic_state *old_state)
6802 {
6803 struct drm_crtc *crtc = old_crtc_state->base.crtc;
6804 struct drm_device *dev = crtc->dev;
6805 struct drm_i915_private *dev_priv = to_i915(dev);
6806 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6807 int pipe = intel_crtc->pipe;
6808
6809 /*
6810 * On gen2 planes are double buffered but the pipe isn't, so we must
6811 * wait for planes to fully turn off before disabling the pipe.
6812 */
6813 if (IS_GEN2(dev))
6814 intel_wait_for_vblank(dev, pipe);
6815
6816 intel_encoders_disable(crtc, old_crtc_state, old_state);
6817
6818 drm_crtc_vblank_off(crtc);
6819 assert_vblank_disabled(crtc);
6820
6821 intel_disable_pipe(intel_crtc);
6822
6823 i9xx_pfit_disable(intel_crtc);
6824
6825 intel_encoders_post_disable(crtc, old_crtc_state, old_state);
6826
6827 if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6828 if (IS_CHERRYVIEW(dev))
6829 chv_disable_pll(dev_priv, pipe);
6830 else if (IS_VALLEYVIEW(dev))
6831 vlv_disable_pll(dev_priv, pipe);
6832 else
6833 i9xx_disable_pll(intel_crtc);
6834 }
6835
6836 intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
6837
6838 if (!IS_GEN2(dev))
6839 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6840 }
6841
intel_crtc_disable_noatomic(struct drm_crtc * crtc)6842 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6843 {
6844 struct intel_encoder *encoder;
6845 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6846 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6847 enum intel_display_power_domain domain;
6848 unsigned long domains;
6849 struct drm_atomic_state *state;
6850 struct intel_crtc_state *crtc_state;
6851 int ret;
6852
6853 if (!intel_crtc->active)
6854 return;
6855
6856 if (to_intel_plane_state(crtc->primary->state)->base.visible) {
6857 WARN_ON(intel_crtc->flip_work);
6858
6859 intel_pre_disable_primary_noatomic(crtc);
6860
6861 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6862 to_intel_plane_state(crtc->primary->state)->base.visible = false;
6863 }
6864
6865 state = drm_atomic_state_alloc(crtc->dev);
6866 if (!state) {
6867 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
6868 crtc->base.id, crtc->name);
6869 return;
6870 }
6871
6872 state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
6873
6874 /* Everything's already locked, -EDEADLK can't happen. */
6875 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6876 ret = drm_atomic_add_affected_connectors(state, crtc);
6877
6878 WARN_ON(IS_ERR(crtc_state) || ret);
6879
6880 dev_priv->display.crtc_disable(crtc_state, state);
6881
6882 drm_atomic_state_free(state);
6883
6884 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6885 crtc->base.id, crtc->name);
6886
6887 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6888 crtc->state->active = false;
6889 intel_crtc->active = false;
6890 crtc->enabled = false;
6891 crtc->state->connector_mask = 0;
6892 crtc->state->encoder_mask = 0;
6893
6894 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6895 encoder->base.crtc = NULL;
6896
6897 intel_fbc_disable(intel_crtc);
6898 intel_update_watermarks(crtc);
6899 intel_disable_shared_dpll(intel_crtc);
6900
6901 domains = intel_crtc->enabled_power_domains;
6902 for_each_power_domain(domain, domains)
6903 intel_display_power_put(dev_priv, domain);
6904 intel_crtc->enabled_power_domains = 0;
6905
6906 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6907 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6908 }
6909
6910 /*
6911 * turn all crtc's off, but do not adjust state
6912 * This has to be paired with a call to intel_modeset_setup_hw_state.
6913 */
intel_display_suspend(struct drm_device * dev)6914 int intel_display_suspend(struct drm_device *dev)
6915 {
6916 struct drm_i915_private *dev_priv = to_i915(dev);
6917 struct drm_atomic_state *state;
6918 int ret;
6919
6920 state = drm_atomic_helper_suspend(dev);
6921 ret = PTR_ERR_OR_ZERO(state);
6922 if (ret)
6923 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6924 else
6925 dev_priv->modeset_restore_state = state;
6926 return ret;
6927 }
6928
intel_encoder_destroy(struct drm_encoder * encoder)6929 void intel_encoder_destroy(struct drm_encoder *encoder)
6930 {
6931 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6932
6933 drm_encoder_cleanup(encoder);
6934 kfree(intel_encoder);
6935 }
6936
6937 /* Cross check the actual hw state with our own modeset state tracking (and it's
6938 * internal consistency). */
intel_connector_verify_state(struct intel_connector * connector)6939 static void intel_connector_verify_state(struct intel_connector *connector)
6940 {
6941 struct drm_crtc *crtc = connector->base.state->crtc;
6942
6943 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6944 connector->base.base.id,
6945 connector->base.name);
6946
6947 if (connector->get_hw_state(connector)) {
6948 struct intel_encoder *encoder = connector->encoder;
6949 struct drm_connector_state *conn_state = connector->base.state;
6950
6951 I915_STATE_WARN(!crtc,
6952 "connector enabled without attached crtc\n");
6953
6954 if (!crtc)
6955 return;
6956
6957 I915_STATE_WARN(!crtc->state->active,
6958 "connector is active, but attached crtc isn't\n");
6959
6960 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6961 return;
6962
6963 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6964 "atomic encoder doesn't match attached encoder\n");
6965
6966 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6967 "attached encoder crtc differs from connector crtc\n");
6968 } else {
6969 I915_STATE_WARN(crtc && crtc->state->active,
6970 "attached crtc is active, but connector isn't\n");
6971 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6972 "best encoder set without crtc!\n");
6973 }
6974 }
6975
intel_connector_init(struct intel_connector * connector)6976 int intel_connector_init(struct intel_connector *connector)
6977 {
6978 drm_atomic_helper_connector_reset(&connector->base);
6979
6980 if (!connector->base.state)
6981 return -ENOMEM;
6982
6983 return 0;
6984 }
6985
intel_connector_alloc(void)6986 struct intel_connector *intel_connector_alloc(void)
6987 {
6988 struct intel_connector *connector;
6989
6990 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6991 if (!connector)
6992 return NULL;
6993
6994 if (intel_connector_init(connector) < 0) {
6995 kfree(connector);
6996 return NULL;
6997 }
6998
6999 return connector;
7000 }
7001
7002 /* Simple connector->get_hw_state implementation for encoders that support only
7003 * one connector and no cloning and hence the encoder state determines the state
7004 * of the connector. */
intel_connector_get_hw_state(struct intel_connector * connector)7005 bool intel_connector_get_hw_state(struct intel_connector *connector)
7006 {
7007 enum pipe pipe = 0;
7008 struct intel_encoder *encoder = connector->encoder;
7009
7010 return encoder->get_hw_state(encoder, &pipe);
7011 }
7012
pipe_required_fdi_lanes(struct intel_crtc_state * crtc_state)7013 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7014 {
7015 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
7016 return crtc_state->fdi_lanes;
7017
7018 return 0;
7019 }
7020
ironlake_check_fdi_lanes(struct drm_device * dev,enum pipe pipe,struct intel_crtc_state * pipe_config)7021 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7022 struct intel_crtc_state *pipe_config)
7023 {
7024 struct drm_atomic_state *state = pipe_config->base.state;
7025 struct intel_crtc *other_crtc;
7026 struct intel_crtc_state *other_crtc_state;
7027
7028 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7029 pipe_name(pipe), pipe_config->fdi_lanes);
7030 if (pipe_config->fdi_lanes > 4) {
7031 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7032 pipe_name(pipe), pipe_config->fdi_lanes);
7033 return -EINVAL;
7034 }
7035
7036 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7037 if (pipe_config->fdi_lanes > 2) {
7038 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7039 pipe_config->fdi_lanes);
7040 return -EINVAL;
7041 } else {
7042 return 0;
7043 }
7044 }
7045
7046 if (INTEL_INFO(dev)->num_pipes == 2)
7047 return 0;
7048
7049 /* Ivybridge 3 pipe is really complicated */
7050 switch (pipe) {
7051 case PIPE_A:
7052 return 0;
7053 case PIPE_B:
7054 if (pipe_config->fdi_lanes <= 2)
7055 return 0;
7056
7057 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
7058 other_crtc_state =
7059 intel_atomic_get_crtc_state(state, other_crtc);
7060 if (IS_ERR(other_crtc_state))
7061 return PTR_ERR(other_crtc_state);
7062
7063 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7064 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7065 pipe_name(pipe), pipe_config->fdi_lanes);
7066 return -EINVAL;
7067 }
7068 return 0;
7069 case PIPE_C:
7070 if (pipe_config->fdi_lanes > 2) {
7071 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7072 pipe_name(pipe), pipe_config->fdi_lanes);
7073 return -EINVAL;
7074 }
7075
7076 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
7077 other_crtc_state =
7078 intel_atomic_get_crtc_state(state, other_crtc);
7079 if (IS_ERR(other_crtc_state))
7080 return PTR_ERR(other_crtc_state);
7081
7082 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7083 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7084 return -EINVAL;
7085 }
7086 return 0;
7087 default:
7088 BUG();
7089 }
7090 }
7091
7092 #define RETRY 1
ironlake_fdi_compute_config(struct intel_crtc * intel_crtc,struct intel_crtc_state * pipe_config)7093 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7094 struct intel_crtc_state *pipe_config)
7095 {
7096 struct drm_device *dev = intel_crtc->base.dev;
7097 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7098 int lane, link_bw, fdi_dotclock, ret;
7099 bool needs_recompute = false;
7100
7101 retry:
7102 /* FDI is a binary signal running at ~2.7GHz, encoding
7103 * each output octet as 10 bits. The actual frequency
7104 * is stored as a divider into a 100MHz clock, and the
7105 * mode pixel clock is stored in units of 1KHz.
7106 * Hence the bw of each lane in terms of the mode signal
7107 * is:
7108 */
7109 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7110
7111 fdi_dotclock = adjusted_mode->crtc_clock;
7112
7113 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7114 pipe_config->pipe_bpp);
7115
7116 pipe_config->fdi_lanes = lane;
7117
7118 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7119 link_bw, &pipe_config->fdi_m_n);
7120
7121 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7122 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7123 pipe_config->pipe_bpp -= 2*3;
7124 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7125 pipe_config->pipe_bpp);
7126 needs_recompute = true;
7127 pipe_config->bw_constrained = true;
7128
7129 goto retry;
7130 }
7131
7132 if (needs_recompute)
7133 return RETRY;
7134
7135 return ret;
7136 }
7137
pipe_config_supports_ips(struct drm_i915_private * dev_priv,struct intel_crtc_state * pipe_config)7138 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
7139 struct intel_crtc_state *pipe_config)
7140 {
7141 if (pipe_config->pipe_bpp > 24)
7142 return false;
7143
7144 /* HSW can handle pixel rate up to cdclk? */
7145 if (IS_HASWELL(dev_priv))
7146 return true;
7147
7148 /*
7149 * We compare against max which means we must take
7150 * the increased cdclk requirement into account when
7151 * calculating the new cdclk.
7152 *
7153 * Should measure whether using a lower cdclk w/o IPS
7154 */
7155 return ilk_pipe_pixel_rate(pipe_config) <=
7156 dev_priv->max_cdclk_freq * 95 / 100;
7157 }
7158
hsw_compute_ips_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7159 static void hsw_compute_ips_config(struct intel_crtc *crtc,
7160 struct intel_crtc_state *pipe_config)
7161 {
7162 struct drm_device *dev = crtc->base.dev;
7163 struct drm_i915_private *dev_priv = to_i915(dev);
7164
7165 pipe_config->ips_enabled = i915.enable_ips &&
7166 hsw_crtc_supports_ips(crtc) &&
7167 pipe_config_supports_ips(dev_priv, pipe_config);
7168 }
7169
intel_crtc_supports_double_wide(const struct intel_crtc * crtc)7170 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7171 {
7172 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7173
7174 /* GDG double wide on either pipe, otherwise pipe A only */
7175 return INTEL_INFO(dev_priv)->gen < 4 &&
7176 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7177 }
7178
intel_crtc_compute_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7179 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7180 struct intel_crtc_state *pipe_config)
7181 {
7182 struct drm_device *dev = crtc->base.dev;
7183 struct drm_i915_private *dev_priv = to_i915(dev);
7184 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7185 int clock_limit = dev_priv->max_dotclk_freq;
7186
7187 if (INTEL_INFO(dev)->gen < 4) {
7188 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7189
7190 /*
7191 * Enable double wide mode when the dot clock
7192 * is > 90% of the (display) core speed.
7193 */
7194 if (intel_crtc_supports_double_wide(crtc) &&
7195 adjusted_mode->crtc_clock > clock_limit) {
7196 clock_limit = dev_priv->max_dotclk_freq;
7197 pipe_config->double_wide = true;
7198 }
7199 }
7200
7201 if (adjusted_mode->crtc_clock > clock_limit) {
7202 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7203 adjusted_mode->crtc_clock, clock_limit,
7204 yesno(pipe_config->double_wide));
7205 return -EINVAL;
7206 }
7207
7208 /*
7209 * Pipe horizontal size must be even in:
7210 * - DVO ganged mode
7211 * - LVDS dual channel mode
7212 * - Double wide pipe
7213 */
7214 if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7215 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
7216 pipe_config->pipe_src_w &= ~1;
7217
7218 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7219 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7220 */
7221 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
7222 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7223 return -EINVAL;
7224
7225 if (HAS_IPS(dev))
7226 hsw_compute_ips_config(crtc, pipe_config);
7227
7228 if (pipe_config->has_pch_encoder)
7229 return ironlake_fdi_compute_config(crtc, pipe_config);
7230
7231 return 0;
7232 }
7233
skylake_get_display_clock_speed(struct drm_device * dev)7234 static int skylake_get_display_clock_speed(struct drm_device *dev)
7235 {
7236 struct drm_i915_private *dev_priv = to_i915(dev);
7237 uint32_t cdctl;
7238
7239 skl_dpll0_update(dev_priv);
7240
7241 if (dev_priv->cdclk_pll.vco == 0)
7242 return dev_priv->cdclk_pll.ref;
7243
7244 cdctl = I915_READ(CDCLK_CTL);
7245
7246 if (dev_priv->cdclk_pll.vco == 8640000) {
7247 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7248 case CDCLK_FREQ_450_432:
7249 return 432000;
7250 case CDCLK_FREQ_337_308:
7251 return 308571;
7252 case CDCLK_FREQ_540:
7253 return 540000;
7254 case CDCLK_FREQ_675_617:
7255 return 617143;
7256 default:
7257 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7258 }
7259 } else {
7260 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7261 case CDCLK_FREQ_450_432:
7262 return 450000;
7263 case CDCLK_FREQ_337_308:
7264 return 337500;
7265 case CDCLK_FREQ_540:
7266 return 540000;
7267 case CDCLK_FREQ_675_617:
7268 return 675000;
7269 default:
7270 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7271 }
7272 }
7273
7274 return dev_priv->cdclk_pll.ref;
7275 }
7276
bxt_de_pll_update(struct drm_i915_private * dev_priv)7277 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
7278 {
7279 u32 val;
7280
7281 dev_priv->cdclk_pll.ref = 19200;
7282 dev_priv->cdclk_pll.vco = 0;
7283
7284 val = I915_READ(BXT_DE_PLL_ENABLE);
7285 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
7286 return;
7287
7288 if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
7289 return;
7290
7291 val = I915_READ(BXT_DE_PLL_CTL);
7292 dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
7293 dev_priv->cdclk_pll.ref;
7294 }
7295
broxton_get_display_clock_speed(struct drm_device * dev)7296 static int broxton_get_display_clock_speed(struct drm_device *dev)
7297 {
7298 struct drm_i915_private *dev_priv = to_i915(dev);
7299 u32 divider;
7300 int div, vco;
7301
7302 bxt_de_pll_update(dev_priv);
7303
7304 vco = dev_priv->cdclk_pll.vco;
7305 if (vco == 0)
7306 return dev_priv->cdclk_pll.ref;
7307
7308 divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
7309
7310 switch (divider) {
7311 case BXT_CDCLK_CD2X_DIV_SEL_1:
7312 div = 2;
7313 break;
7314 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
7315 div = 3;
7316 break;
7317 case BXT_CDCLK_CD2X_DIV_SEL_2:
7318 div = 4;
7319 break;
7320 case BXT_CDCLK_CD2X_DIV_SEL_4:
7321 div = 8;
7322 break;
7323 default:
7324 MISSING_CASE(divider);
7325 return dev_priv->cdclk_pll.ref;
7326 }
7327
7328 return DIV_ROUND_CLOSEST(vco, div);
7329 }
7330
broadwell_get_display_clock_speed(struct drm_device * dev)7331 static int broadwell_get_display_clock_speed(struct drm_device *dev)
7332 {
7333 struct drm_i915_private *dev_priv = to_i915(dev);
7334 uint32_t lcpll = I915_READ(LCPLL_CTL);
7335 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7336
7337 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7338 return 800000;
7339 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7340 return 450000;
7341 else if (freq == LCPLL_CLK_FREQ_450)
7342 return 450000;
7343 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
7344 return 540000;
7345 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
7346 return 337500;
7347 else
7348 return 675000;
7349 }
7350
haswell_get_display_clock_speed(struct drm_device * dev)7351 static int haswell_get_display_clock_speed(struct drm_device *dev)
7352 {
7353 struct drm_i915_private *dev_priv = to_i915(dev);
7354 uint32_t lcpll = I915_READ(LCPLL_CTL);
7355 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7356
7357 if (lcpll & LCPLL_CD_SOURCE_FCLK)
7358 return 800000;
7359 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7360 return 450000;
7361 else if (freq == LCPLL_CLK_FREQ_450)
7362 return 450000;
7363 else if (IS_HSW_ULT(dev))
7364 return 337500;
7365 else
7366 return 540000;
7367 }
7368
valleyview_get_display_clock_speed(struct drm_device * dev)7369 static int valleyview_get_display_clock_speed(struct drm_device *dev)
7370 {
7371 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
7372 CCK_DISPLAY_CLOCK_CONTROL);
7373 }
7374
ilk_get_display_clock_speed(struct drm_device * dev)7375 static int ilk_get_display_clock_speed(struct drm_device *dev)
7376 {
7377 return 450000;
7378 }
7379
i945_get_display_clock_speed(struct drm_device * dev)7380 static int i945_get_display_clock_speed(struct drm_device *dev)
7381 {
7382 return 400000;
7383 }
7384
i915_get_display_clock_speed(struct drm_device * dev)7385 static int i915_get_display_clock_speed(struct drm_device *dev)
7386 {
7387 return 333333;
7388 }
7389
i9xx_misc_get_display_clock_speed(struct drm_device * dev)7390 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
7391 {
7392 return 200000;
7393 }
7394
pnv_get_display_clock_speed(struct drm_device * dev)7395 static int pnv_get_display_clock_speed(struct drm_device *dev)
7396 {
7397 struct pci_dev *pdev = dev->pdev;
7398 u16 gcfgc = 0;
7399
7400 pci_read_config_word(pdev, GCFGC, &gcfgc);
7401
7402 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7403 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
7404 return 266667;
7405 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
7406 return 333333;
7407 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
7408 return 444444;
7409 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
7410 return 200000;
7411 default:
7412 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
7413 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
7414 return 133333;
7415 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
7416 return 166667;
7417 }
7418 }
7419
i915gm_get_display_clock_speed(struct drm_device * dev)7420 static int i915gm_get_display_clock_speed(struct drm_device *dev)
7421 {
7422 struct pci_dev *pdev = dev->pdev;
7423 u16 gcfgc = 0;
7424
7425 pci_read_config_word(pdev, GCFGC, &gcfgc);
7426
7427 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
7428 return 133333;
7429 else {
7430 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7431 case GC_DISPLAY_CLOCK_333_MHZ:
7432 return 333333;
7433 default:
7434 case GC_DISPLAY_CLOCK_190_200_MHZ:
7435 return 190000;
7436 }
7437 }
7438 }
7439
i865_get_display_clock_speed(struct drm_device * dev)7440 static int i865_get_display_clock_speed(struct drm_device *dev)
7441 {
7442 return 266667;
7443 }
7444
i85x_get_display_clock_speed(struct drm_device * dev)7445 static int i85x_get_display_clock_speed(struct drm_device *dev)
7446 {
7447 struct pci_dev *pdev = dev->pdev;
7448 u16 hpllcc = 0;
7449
7450 /*
7451 * 852GM/852GMV only supports 133 MHz and the HPLLCC
7452 * encoding is different :(
7453 * FIXME is this the right way to detect 852GM/852GMV?
7454 */
7455 if (pdev->revision == 0x1)
7456 return 133333;
7457
7458 pci_bus_read_config_word(pdev->bus,
7459 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
7460
7461 /* Assume that the hardware is in the high speed state. This
7462 * should be the default.
7463 */
7464 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
7465 case GC_CLOCK_133_200:
7466 case GC_CLOCK_133_200_2:
7467 case GC_CLOCK_100_200:
7468 return 200000;
7469 case GC_CLOCK_166_250:
7470 return 250000;
7471 case GC_CLOCK_100_133:
7472 return 133333;
7473 case GC_CLOCK_133_266:
7474 case GC_CLOCK_133_266_2:
7475 case GC_CLOCK_166_266:
7476 return 266667;
7477 }
7478
7479 /* Shouldn't happen */
7480 return 0;
7481 }
7482
i830_get_display_clock_speed(struct drm_device * dev)7483 static int i830_get_display_clock_speed(struct drm_device *dev)
7484 {
7485 return 133333;
7486 }
7487
intel_hpll_vco(struct drm_device * dev)7488 static unsigned int intel_hpll_vco(struct drm_device *dev)
7489 {
7490 struct drm_i915_private *dev_priv = to_i915(dev);
7491 static const unsigned int blb_vco[8] = {
7492 [0] = 3200000,
7493 [1] = 4000000,
7494 [2] = 5333333,
7495 [3] = 4800000,
7496 [4] = 6400000,
7497 };
7498 static const unsigned int pnv_vco[8] = {
7499 [0] = 3200000,
7500 [1] = 4000000,
7501 [2] = 5333333,
7502 [3] = 4800000,
7503 [4] = 2666667,
7504 };
7505 static const unsigned int cl_vco[8] = {
7506 [0] = 3200000,
7507 [1] = 4000000,
7508 [2] = 5333333,
7509 [3] = 6400000,
7510 [4] = 3333333,
7511 [5] = 3566667,
7512 [6] = 4266667,
7513 };
7514 static const unsigned int elk_vco[8] = {
7515 [0] = 3200000,
7516 [1] = 4000000,
7517 [2] = 5333333,
7518 [3] = 4800000,
7519 };
7520 static const unsigned int ctg_vco[8] = {
7521 [0] = 3200000,
7522 [1] = 4000000,
7523 [2] = 5333333,
7524 [3] = 6400000,
7525 [4] = 2666667,
7526 [5] = 4266667,
7527 };
7528 const unsigned int *vco_table;
7529 unsigned int vco;
7530 uint8_t tmp = 0;
7531
7532 /* FIXME other chipsets? */
7533 if (IS_GM45(dev))
7534 vco_table = ctg_vco;
7535 else if (IS_G4X(dev))
7536 vco_table = elk_vco;
7537 else if (IS_CRESTLINE(dev))
7538 vco_table = cl_vco;
7539 else if (IS_PINEVIEW(dev))
7540 vco_table = pnv_vco;
7541 else if (IS_G33(dev))
7542 vco_table = blb_vco;
7543 else
7544 return 0;
7545
7546 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7547
7548 vco = vco_table[tmp & 0x7];
7549 if (vco == 0)
7550 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7551 else
7552 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7553
7554 return vco;
7555 }
7556
gm45_get_display_clock_speed(struct drm_device * dev)7557 static int gm45_get_display_clock_speed(struct drm_device *dev)
7558 {
7559 struct pci_dev *pdev = dev->pdev;
7560 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7561 uint16_t tmp = 0;
7562
7563 pci_read_config_word(pdev, GCFGC, &tmp);
7564
7565 cdclk_sel = (tmp >> 12) & 0x1;
7566
7567 switch (vco) {
7568 case 2666667:
7569 case 4000000:
7570 case 5333333:
7571 return cdclk_sel ? 333333 : 222222;
7572 case 3200000:
7573 return cdclk_sel ? 320000 : 228571;
7574 default:
7575 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7576 return 222222;
7577 }
7578 }
7579
i965gm_get_display_clock_speed(struct drm_device * dev)7580 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7581 {
7582 struct pci_dev *pdev = dev->pdev;
7583 static const uint8_t div_3200[] = { 16, 10, 8 };
7584 static const uint8_t div_4000[] = { 20, 12, 10 };
7585 static const uint8_t div_5333[] = { 24, 16, 14 };
7586 const uint8_t *div_table;
7587 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7588 uint16_t tmp = 0;
7589
7590 pci_read_config_word(pdev, GCFGC, &tmp);
7591
7592 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7593
7594 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7595 goto fail;
7596
7597 switch (vco) {
7598 case 3200000:
7599 div_table = div_3200;
7600 break;
7601 case 4000000:
7602 div_table = div_4000;
7603 break;
7604 case 5333333:
7605 div_table = div_5333;
7606 break;
7607 default:
7608 goto fail;
7609 }
7610
7611 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7612
7613 fail:
7614 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7615 return 200000;
7616 }
7617
g33_get_display_clock_speed(struct drm_device * dev)7618 static int g33_get_display_clock_speed(struct drm_device *dev)
7619 {
7620 struct pci_dev *pdev = dev->pdev;
7621 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
7622 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
7623 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7624 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7625 const uint8_t *div_table;
7626 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7627 uint16_t tmp = 0;
7628
7629 pci_read_config_word(pdev, GCFGC, &tmp);
7630
7631 cdclk_sel = (tmp >> 4) & 0x7;
7632
7633 if (cdclk_sel >= ARRAY_SIZE(div_3200))
7634 goto fail;
7635
7636 switch (vco) {
7637 case 3200000:
7638 div_table = div_3200;
7639 break;
7640 case 4000000:
7641 div_table = div_4000;
7642 break;
7643 case 4800000:
7644 div_table = div_4800;
7645 break;
7646 case 5333333:
7647 div_table = div_5333;
7648 break;
7649 default:
7650 goto fail;
7651 }
7652
7653 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7654
7655 fail:
7656 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7657 return 190476;
7658 }
7659
7660 static void
intel_reduce_m_n_ratio(uint32_t * num,uint32_t * den)7661 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7662 {
7663 while (*num > DATA_LINK_M_N_MASK ||
7664 *den > DATA_LINK_M_N_MASK) {
7665 *num >>= 1;
7666 *den >>= 1;
7667 }
7668 }
7669
compute_m_n(unsigned int m,unsigned int n,uint32_t * ret_m,uint32_t * ret_n)7670 static void compute_m_n(unsigned int m, unsigned int n,
7671 uint32_t *ret_m, uint32_t *ret_n)
7672 {
7673 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7674 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7675 intel_reduce_m_n_ratio(ret_m, ret_n);
7676 }
7677
7678 void
intel_link_compute_m_n(int bits_per_pixel,int nlanes,int pixel_clock,int link_clock,struct intel_link_m_n * m_n)7679 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7680 int pixel_clock, int link_clock,
7681 struct intel_link_m_n *m_n)
7682 {
7683 m_n->tu = 64;
7684
7685 compute_m_n(bits_per_pixel * pixel_clock,
7686 link_clock * nlanes * 8,
7687 &m_n->gmch_m, &m_n->gmch_n);
7688
7689 compute_m_n(pixel_clock, link_clock,
7690 &m_n->link_m, &m_n->link_n);
7691 }
7692
intel_panel_use_ssc(struct drm_i915_private * dev_priv)7693 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7694 {
7695 if (i915.panel_use_ssc >= 0)
7696 return i915.panel_use_ssc != 0;
7697 return dev_priv->vbt.lvds_use_ssc
7698 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7699 }
7700
pnv_dpll_compute_fp(struct dpll * dpll)7701 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7702 {
7703 return (1 << dpll->n) << 16 | dpll->m2;
7704 }
7705
i9xx_dpll_compute_fp(struct dpll * dpll)7706 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7707 {
7708 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7709 }
7710
i9xx_update_pll_dividers(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)7711 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7712 struct intel_crtc_state *crtc_state,
7713 struct dpll *reduced_clock)
7714 {
7715 struct drm_device *dev = crtc->base.dev;
7716 u32 fp, fp2 = 0;
7717
7718 if (IS_PINEVIEW(dev)) {
7719 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7720 if (reduced_clock)
7721 fp2 = pnv_dpll_compute_fp(reduced_clock);
7722 } else {
7723 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7724 if (reduced_clock)
7725 fp2 = i9xx_dpll_compute_fp(reduced_clock);
7726 }
7727
7728 crtc_state->dpll_hw_state.fp0 = fp;
7729
7730 crtc->lowfreq_avail = false;
7731 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7732 reduced_clock) {
7733 crtc_state->dpll_hw_state.fp1 = fp2;
7734 crtc->lowfreq_avail = true;
7735 } else {
7736 crtc_state->dpll_hw_state.fp1 = fp;
7737 }
7738 }
7739
vlv_pllb_recal_opamp(struct drm_i915_private * dev_priv,enum pipe pipe)7740 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7741 pipe)
7742 {
7743 u32 reg_val;
7744
7745 /*
7746 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7747 * and set it to a reasonable value instead.
7748 */
7749 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7750 reg_val &= 0xffffff00;
7751 reg_val |= 0x00000030;
7752 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7753
7754 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7755 reg_val &= 0x8cffffff;
7756 reg_val = 0x8c000000;
7757 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7758
7759 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7760 reg_val &= 0xffffff00;
7761 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7762
7763 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7764 reg_val &= 0x00ffffff;
7765 reg_val |= 0xb0000000;
7766 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7767 }
7768
intel_pch_transcoder_set_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n)7769 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7770 struct intel_link_m_n *m_n)
7771 {
7772 struct drm_device *dev = crtc->base.dev;
7773 struct drm_i915_private *dev_priv = to_i915(dev);
7774 int pipe = crtc->pipe;
7775
7776 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7777 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7778 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7779 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7780 }
7781
intel_cpu_transcoder_set_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2)7782 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7783 struct intel_link_m_n *m_n,
7784 struct intel_link_m_n *m2_n2)
7785 {
7786 struct drm_device *dev = crtc->base.dev;
7787 struct drm_i915_private *dev_priv = to_i915(dev);
7788 int pipe = crtc->pipe;
7789 enum transcoder transcoder = crtc->config->cpu_transcoder;
7790
7791 if (INTEL_INFO(dev)->gen >= 5) {
7792 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7793 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7794 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7795 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7796 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7797 * for gen < 8) and if DRRS is supported (to make sure the
7798 * registers are not unnecessarily accessed).
7799 */
7800 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7801 crtc->config->has_drrs) {
7802 I915_WRITE(PIPE_DATA_M2(transcoder),
7803 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7804 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7805 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7806 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7807 }
7808 } else {
7809 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7810 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7811 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7812 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7813 }
7814 }
7815
intel_dp_set_m_n(struct intel_crtc * crtc,enum link_m_n_set m_n)7816 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7817 {
7818 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7819
7820 if (m_n == M1_N1) {
7821 dp_m_n = &crtc->config->dp_m_n;
7822 dp_m2_n2 = &crtc->config->dp_m2_n2;
7823 } else if (m_n == M2_N2) {
7824
7825 /*
7826 * M2_N2 registers are not supported. Hence m2_n2 divider value
7827 * needs to be programmed into M1_N1.
7828 */
7829 dp_m_n = &crtc->config->dp_m2_n2;
7830 } else {
7831 DRM_ERROR("Unsupported divider value\n");
7832 return;
7833 }
7834
7835 if (crtc->config->has_pch_encoder)
7836 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7837 else
7838 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7839 }
7840
vlv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7841 static void vlv_compute_dpll(struct intel_crtc *crtc,
7842 struct intel_crtc_state *pipe_config)
7843 {
7844 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7845 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7846 if (crtc->pipe != PIPE_A)
7847 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7848
7849 /* DPLL not used with DSI, but still need the rest set up */
7850 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7851 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7852 DPLL_EXT_BUFFER_ENABLE_VLV;
7853
7854 pipe_config->dpll_hw_state.dpll_md =
7855 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7856 }
7857
chv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7858 static void chv_compute_dpll(struct intel_crtc *crtc,
7859 struct intel_crtc_state *pipe_config)
7860 {
7861 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7862 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7863 if (crtc->pipe != PIPE_A)
7864 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7865
7866 /* DPLL not used with DSI, but still need the rest set up */
7867 if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7868 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7869
7870 pipe_config->dpll_hw_state.dpll_md =
7871 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7872 }
7873
vlv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)7874 static void vlv_prepare_pll(struct intel_crtc *crtc,
7875 const struct intel_crtc_state *pipe_config)
7876 {
7877 struct drm_device *dev = crtc->base.dev;
7878 struct drm_i915_private *dev_priv = to_i915(dev);
7879 enum pipe pipe = crtc->pipe;
7880 u32 mdiv;
7881 u32 bestn, bestm1, bestm2, bestp1, bestp2;
7882 u32 coreclk, reg_val;
7883
7884 /* Enable Refclk */
7885 I915_WRITE(DPLL(pipe),
7886 pipe_config->dpll_hw_state.dpll &
7887 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7888
7889 /* No need to actually set up the DPLL with DSI */
7890 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7891 return;
7892
7893 mutex_lock(&dev_priv->sb_lock);
7894
7895 bestn = pipe_config->dpll.n;
7896 bestm1 = pipe_config->dpll.m1;
7897 bestm2 = pipe_config->dpll.m2;
7898 bestp1 = pipe_config->dpll.p1;
7899 bestp2 = pipe_config->dpll.p2;
7900
7901 /* See eDP HDMI DPIO driver vbios notes doc */
7902
7903 /* PLL B needs special handling */
7904 if (pipe == PIPE_B)
7905 vlv_pllb_recal_opamp(dev_priv, pipe);
7906
7907 /* Set up Tx target for periodic Rcomp update */
7908 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7909
7910 /* Disable target IRef on PLL */
7911 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7912 reg_val &= 0x00ffffff;
7913 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7914
7915 /* Disable fast lock */
7916 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7917
7918 /* Set idtafcrecal before PLL is enabled */
7919 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7920 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7921 mdiv |= ((bestn << DPIO_N_SHIFT));
7922 mdiv |= (1 << DPIO_K_SHIFT);
7923
7924 /*
7925 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7926 * but we don't support that).
7927 * Note: don't use the DAC post divider as it seems unstable.
7928 */
7929 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7930 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7931
7932 mdiv |= DPIO_ENABLE_CALIBRATION;
7933 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7934
7935 /* Set HBR and RBR LPF coefficients */
7936 if (pipe_config->port_clock == 162000 ||
7937 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7938 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7939 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7940 0x009f0003);
7941 else
7942 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7943 0x00d0000f);
7944
7945 if (intel_crtc_has_dp_encoder(pipe_config)) {
7946 /* Use SSC source */
7947 if (pipe == PIPE_A)
7948 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7949 0x0df40000);
7950 else
7951 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7952 0x0df70000);
7953 } else { /* HDMI or VGA */
7954 /* Use bend source */
7955 if (pipe == PIPE_A)
7956 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7957 0x0df70000);
7958 else
7959 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7960 0x0df40000);
7961 }
7962
7963 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7964 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7965 if (intel_crtc_has_dp_encoder(crtc->config))
7966 coreclk |= 0x01000000;
7967 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7968
7969 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7970 mutex_unlock(&dev_priv->sb_lock);
7971 }
7972
chv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)7973 static void chv_prepare_pll(struct intel_crtc *crtc,
7974 const struct intel_crtc_state *pipe_config)
7975 {
7976 struct drm_device *dev = crtc->base.dev;
7977 struct drm_i915_private *dev_priv = to_i915(dev);
7978 enum pipe pipe = crtc->pipe;
7979 enum dpio_channel port = vlv_pipe_to_channel(pipe);
7980 u32 loopfilter, tribuf_calcntr;
7981 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7982 u32 dpio_val;
7983 int vco;
7984
7985 /* Enable Refclk and SSC */
7986 I915_WRITE(DPLL(pipe),
7987 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7988
7989 /* No need to actually set up the DPLL with DSI */
7990 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7991 return;
7992
7993 bestn = pipe_config->dpll.n;
7994 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7995 bestm1 = pipe_config->dpll.m1;
7996 bestm2 = pipe_config->dpll.m2 >> 22;
7997 bestp1 = pipe_config->dpll.p1;
7998 bestp2 = pipe_config->dpll.p2;
7999 vco = pipe_config->dpll.vco;
8000 dpio_val = 0;
8001 loopfilter = 0;
8002
8003 mutex_lock(&dev_priv->sb_lock);
8004
8005 /* p1 and p2 divider */
8006 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8007 5 << DPIO_CHV_S1_DIV_SHIFT |
8008 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8009 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8010 1 << DPIO_CHV_K_DIV_SHIFT);
8011
8012 /* Feedback post-divider - m2 */
8013 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8014
8015 /* Feedback refclk divider - n and m1 */
8016 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8017 DPIO_CHV_M1_DIV_BY_2 |
8018 1 << DPIO_CHV_N_DIV_SHIFT);
8019
8020 /* M2 fraction division */
8021 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8022
8023 /* M2 fraction division enable */
8024 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8025 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8026 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8027 if (bestm2_frac)
8028 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8029 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8030
8031 /* Program digital lock detect threshold */
8032 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8033 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8034 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8035 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8036 if (!bestm2_frac)
8037 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8038 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8039
8040 /* Loop filter */
8041 if (vco == 5400000) {
8042 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8043 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8044 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8045 tribuf_calcntr = 0x9;
8046 } else if (vco <= 6200000) {
8047 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8048 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8049 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8050 tribuf_calcntr = 0x9;
8051 } else if (vco <= 6480000) {
8052 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8053 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8054 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8055 tribuf_calcntr = 0x8;
8056 } else {
8057 /* Not supported. Apply the same limits as in the max case */
8058 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8059 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8060 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8061 tribuf_calcntr = 0;
8062 }
8063 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8064
8065 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8066 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8067 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8068 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8069
8070 /* AFC Recal */
8071 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8072 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8073 DPIO_AFC_RECAL);
8074
8075 mutex_unlock(&dev_priv->sb_lock);
8076 }
8077
8078 /**
8079 * vlv_force_pll_on - forcibly enable just the PLL
8080 * @dev_priv: i915 private structure
8081 * @pipe: pipe PLL to enable
8082 * @dpll: PLL configuration
8083 *
8084 * Enable the PLL for @pipe using the supplied @dpll config. To be used
8085 * in cases where we need the PLL enabled even when @pipe is not going to
8086 * be enabled.
8087 */
vlv_force_pll_on(struct drm_device * dev,enum pipe pipe,const struct dpll * dpll)8088 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
8089 const struct dpll *dpll)
8090 {
8091 struct intel_crtc *crtc =
8092 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
8093 struct intel_crtc_state *pipe_config;
8094
8095 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8096 if (!pipe_config)
8097 return -ENOMEM;
8098
8099 pipe_config->base.crtc = &crtc->base;
8100 pipe_config->pixel_multiplier = 1;
8101 pipe_config->dpll = *dpll;
8102
8103 if (IS_CHERRYVIEW(dev)) {
8104 chv_compute_dpll(crtc, pipe_config);
8105 chv_prepare_pll(crtc, pipe_config);
8106 chv_enable_pll(crtc, pipe_config);
8107 } else {
8108 vlv_compute_dpll(crtc, pipe_config);
8109 vlv_prepare_pll(crtc, pipe_config);
8110 vlv_enable_pll(crtc, pipe_config);
8111 }
8112
8113 kfree(pipe_config);
8114
8115 return 0;
8116 }
8117
8118 /**
8119 * vlv_force_pll_off - forcibly disable just the PLL
8120 * @dev_priv: i915 private structure
8121 * @pipe: pipe PLL to disable
8122 *
8123 * Disable the PLL for @pipe. To be used in cases where we need
8124 * the PLL enabled even when @pipe is not going to be enabled.
8125 */
vlv_force_pll_off(struct drm_device * dev,enum pipe pipe)8126 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
8127 {
8128 if (IS_CHERRYVIEW(dev))
8129 chv_disable_pll(to_i915(dev), pipe);
8130 else
8131 vlv_disable_pll(to_i915(dev), pipe);
8132 }
8133
i9xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)8134 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8135 struct intel_crtc_state *crtc_state,
8136 struct dpll *reduced_clock)
8137 {
8138 struct drm_device *dev = crtc->base.dev;
8139 struct drm_i915_private *dev_priv = to_i915(dev);
8140 u32 dpll;
8141 struct dpll *clock = &crtc_state->dpll;
8142
8143 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8144
8145 dpll = DPLL_VGA_MODE_DIS;
8146
8147 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8148 dpll |= DPLLB_MODE_LVDS;
8149 else
8150 dpll |= DPLLB_MODE_DAC_SERIAL;
8151
8152 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8153 dpll |= (crtc_state->pixel_multiplier - 1)
8154 << SDVO_MULTIPLIER_SHIFT_HIRES;
8155 }
8156
8157 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8158 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8159 dpll |= DPLL_SDVO_HIGH_SPEED;
8160
8161 if (intel_crtc_has_dp_encoder(crtc_state))
8162 dpll |= DPLL_SDVO_HIGH_SPEED;
8163
8164 /* compute bitmask from p1 value */
8165 if (IS_PINEVIEW(dev))
8166 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8167 else {
8168 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8169 if (IS_G4X(dev) && reduced_clock)
8170 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8171 }
8172 switch (clock->p2) {
8173 case 5:
8174 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8175 break;
8176 case 7:
8177 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8178 break;
8179 case 10:
8180 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8181 break;
8182 case 14:
8183 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8184 break;
8185 }
8186 if (INTEL_INFO(dev)->gen >= 4)
8187 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8188
8189 if (crtc_state->sdvo_tv_clock)
8190 dpll |= PLL_REF_INPUT_TVCLKINBC;
8191 else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8192 intel_panel_use_ssc(dev_priv))
8193 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8194 else
8195 dpll |= PLL_REF_INPUT_DREFCLK;
8196
8197 dpll |= DPLL_VCO_ENABLE;
8198 crtc_state->dpll_hw_state.dpll = dpll;
8199
8200 if (INTEL_INFO(dev)->gen >= 4) {
8201 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8202 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8203 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8204 }
8205 }
8206
i8xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)8207 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8208 struct intel_crtc_state *crtc_state,
8209 struct dpll *reduced_clock)
8210 {
8211 struct drm_device *dev = crtc->base.dev;
8212 struct drm_i915_private *dev_priv = to_i915(dev);
8213 u32 dpll;
8214 struct dpll *clock = &crtc_state->dpll;
8215
8216 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8217
8218 dpll = DPLL_VGA_MODE_DIS;
8219
8220 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8221 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8222 } else {
8223 if (clock->p1 == 2)
8224 dpll |= PLL_P1_DIVIDE_BY_TWO;
8225 else
8226 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8227 if (clock->p2 == 4)
8228 dpll |= PLL_P2_DIVIDE_BY_4;
8229 }
8230
8231 if (!IS_I830(dev) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8232 dpll |= DPLL_DVO_2X_MODE;
8233
8234 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8235 intel_panel_use_ssc(dev_priv))
8236 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8237 else
8238 dpll |= PLL_REF_INPUT_DREFCLK;
8239
8240 dpll |= DPLL_VCO_ENABLE;
8241 crtc_state->dpll_hw_state.dpll = dpll;
8242 }
8243
intel_set_pipe_timings(struct intel_crtc * intel_crtc)8244 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
8245 {
8246 struct drm_device *dev = intel_crtc->base.dev;
8247 struct drm_i915_private *dev_priv = to_i915(dev);
8248 enum pipe pipe = intel_crtc->pipe;
8249 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8250 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
8251 uint32_t crtc_vtotal, crtc_vblank_end;
8252 int vsyncshift = 0;
8253
8254 /* We need to be careful not to changed the adjusted mode, for otherwise
8255 * the hw state checker will get angry at the mismatch. */
8256 crtc_vtotal = adjusted_mode->crtc_vtotal;
8257 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8258
8259 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8260 /* the chip adds 2 halflines automatically */
8261 crtc_vtotal -= 1;
8262 crtc_vblank_end -= 1;
8263
8264 if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8265 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8266 else
8267 vsyncshift = adjusted_mode->crtc_hsync_start -
8268 adjusted_mode->crtc_htotal / 2;
8269 if (vsyncshift < 0)
8270 vsyncshift += adjusted_mode->crtc_htotal;
8271 }
8272
8273 if (INTEL_INFO(dev)->gen > 3)
8274 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8275
8276 I915_WRITE(HTOTAL(cpu_transcoder),
8277 (adjusted_mode->crtc_hdisplay - 1) |
8278 ((adjusted_mode->crtc_htotal - 1) << 16));
8279 I915_WRITE(HBLANK(cpu_transcoder),
8280 (adjusted_mode->crtc_hblank_start - 1) |
8281 ((adjusted_mode->crtc_hblank_end - 1) << 16));
8282 I915_WRITE(HSYNC(cpu_transcoder),
8283 (adjusted_mode->crtc_hsync_start - 1) |
8284 ((adjusted_mode->crtc_hsync_end - 1) << 16));
8285
8286 I915_WRITE(VTOTAL(cpu_transcoder),
8287 (adjusted_mode->crtc_vdisplay - 1) |
8288 ((crtc_vtotal - 1) << 16));
8289 I915_WRITE(VBLANK(cpu_transcoder),
8290 (adjusted_mode->crtc_vblank_start - 1) |
8291 ((crtc_vblank_end - 1) << 16));
8292 I915_WRITE(VSYNC(cpu_transcoder),
8293 (adjusted_mode->crtc_vsync_start - 1) |
8294 ((adjusted_mode->crtc_vsync_end - 1) << 16));
8295
8296 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8297 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8298 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8299 * bits. */
8300 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
8301 (pipe == PIPE_B || pipe == PIPE_C))
8302 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8303
8304 }
8305
intel_set_pipe_src_size(struct intel_crtc * intel_crtc)8306 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
8307 {
8308 struct drm_device *dev = intel_crtc->base.dev;
8309 struct drm_i915_private *dev_priv = to_i915(dev);
8310 enum pipe pipe = intel_crtc->pipe;
8311
8312 /* pipesrc controls the size that is scaled from, which should
8313 * always be the user's requested size.
8314 */
8315 I915_WRITE(PIPESRC(pipe),
8316 ((intel_crtc->config->pipe_src_w - 1) << 16) |
8317 (intel_crtc->config->pipe_src_h - 1));
8318 }
8319
intel_get_pipe_timings(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8320 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8321 struct intel_crtc_state *pipe_config)
8322 {
8323 struct drm_device *dev = crtc->base.dev;
8324 struct drm_i915_private *dev_priv = to_i915(dev);
8325 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8326 uint32_t tmp;
8327
8328 tmp = I915_READ(HTOTAL(cpu_transcoder));
8329 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8330 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8331 tmp = I915_READ(HBLANK(cpu_transcoder));
8332 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
8333 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
8334 tmp = I915_READ(HSYNC(cpu_transcoder));
8335 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8336 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8337
8338 tmp = I915_READ(VTOTAL(cpu_transcoder));
8339 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8340 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8341 tmp = I915_READ(VBLANK(cpu_transcoder));
8342 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
8343 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
8344 tmp = I915_READ(VSYNC(cpu_transcoder));
8345 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8346 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8347
8348 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
8349 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8350 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8351 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8352 }
8353 }
8354
intel_get_pipe_src_size(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8355 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8356 struct intel_crtc_state *pipe_config)
8357 {
8358 struct drm_device *dev = crtc->base.dev;
8359 struct drm_i915_private *dev_priv = to_i915(dev);
8360 u32 tmp;
8361
8362 tmp = I915_READ(PIPESRC(crtc->pipe));
8363 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8364 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8365
8366 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8367 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8368 }
8369
intel_mode_from_pipe_config(struct drm_display_mode * mode,struct intel_crtc_state * pipe_config)8370 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8371 struct intel_crtc_state *pipe_config)
8372 {
8373 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8374 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8375 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8376 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8377
8378 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8379 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8380 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8381 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8382
8383 mode->flags = pipe_config->base.adjusted_mode.flags;
8384 mode->type = DRM_MODE_TYPE_DRIVER;
8385
8386 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8387 mode->flags |= pipe_config->base.adjusted_mode.flags;
8388
8389 mode->hsync = drm_mode_hsync(mode);
8390 mode->vrefresh = drm_mode_vrefresh(mode);
8391 drm_mode_set_name(mode);
8392 }
8393
i9xx_set_pipeconf(struct intel_crtc * intel_crtc)8394 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
8395 {
8396 struct drm_device *dev = intel_crtc->base.dev;
8397 struct drm_i915_private *dev_priv = to_i915(dev);
8398 uint32_t pipeconf;
8399
8400 pipeconf = 0;
8401
8402 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
8403 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8404 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
8405
8406 if (intel_crtc->config->double_wide)
8407 pipeconf |= PIPECONF_DOUBLE_WIDE;
8408
8409 /* only g4x and later have fancy bpc/dither controls */
8410 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8411 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8412 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
8413 pipeconf |= PIPECONF_DITHER_EN |
8414 PIPECONF_DITHER_TYPE_SP;
8415
8416 switch (intel_crtc->config->pipe_bpp) {
8417 case 18:
8418 pipeconf |= PIPECONF_6BPC;
8419 break;
8420 case 24:
8421 pipeconf |= PIPECONF_8BPC;
8422 break;
8423 case 30:
8424 pipeconf |= PIPECONF_10BPC;
8425 break;
8426 default:
8427 /* Case prevented by intel_choose_pipe_bpp_dither. */
8428 BUG();
8429 }
8430 }
8431
8432 if (HAS_PIPE_CXSR(dev)) {
8433 if (intel_crtc->lowfreq_avail) {
8434 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8435 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
8436 } else {
8437 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
8438 }
8439 }
8440
8441 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8442 if (INTEL_INFO(dev)->gen < 4 ||
8443 intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8444 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8445 else
8446 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8447 } else
8448 pipeconf |= PIPECONF_PROGRESSIVE;
8449
8450 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8451 intel_crtc->config->limited_color_range)
8452 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8453
8454 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
8455 POSTING_READ(PIPECONF(intel_crtc->pipe));
8456 }
8457
i8xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)8458 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8459 struct intel_crtc_state *crtc_state)
8460 {
8461 struct drm_device *dev = crtc->base.dev;
8462 struct drm_i915_private *dev_priv = to_i915(dev);
8463 const struct intel_limit *limit;
8464 int refclk = 48000;
8465
8466 memset(&crtc_state->dpll_hw_state, 0,
8467 sizeof(crtc_state->dpll_hw_state));
8468
8469 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8470 if (intel_panel_use_ssc(dev_priv)) {
8471 refclk = dev_priv->vbt.lvds_ssc_freq;
8472 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8473 }
8474
8475 limit = &intel_limits_i8xx_lvds;
8476 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8477 limit = &intel_limits_i8xx_dvo;
8478 } else {
8479 limit = &intel_limits_i8xx_dac;
8480 }
8481
8482 if (!crtc_state->clock_set &&
8483 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8484 refclk, NULL, &crtc_state->dpll)) {
8485 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8486 return -EINVAL;
8487 }
8488
8489 i8xx_compute_dpll(crtc, crtc_state, NULL);
8490
8491 return 0;
8492 }
8493
g4x_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)8494 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8495 struct intel_crtc_state *crtc_state)
8496 {
8497 struct drm_device *dev = crtc->base.dev;
8498 struct drm_i915_private *dev_priv = to_i915(dev);
8499 const struct intel_limit *limit;
8500 int refclk = 96000;
8501
8502 memset(&crtc_state->dpll_hw_state, 0,
8503 sizeof(crtc_state->dpll_hw_state));
8504
8505 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8506 if (intel_panel_use_ssc(dev_priv)) {
8507 refclk = dev_priv->vbt.lvds_ssc_freq;
8508 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8509 }
8510
8511 if (intel_is_dual_link_lvds(dev))
8512 limit = &intel_limits_g4x_dual_channel_lvds;
8513 else
8514 limit = &intel_limits_g4x_single_channel_lvds;
8515 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8516 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8517 limit = &intel_limits_g4x_hdmi;
8518 } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8519 limit = &intel_limits_g4x_sdvo;
8520 } else {
8521 /* The option is for other outputs */
8522 limit = &intel_limits_i9xx_sdvo;
8523 }
8524
8525 if (!crtc_state->clock_set &&
8526 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8527 refclk, NULL, &crtc_state->dpll)) {
8528 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8529 return -EINVAL;
8530 }
8531
8532 i9xx_compute_dpll(crtc, crtc_state, NULL);
8533
8534 return 0;
8535 }
8536
pnv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)8537 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8538 struct intel_crtc_state *crtc_state)
8539 {
8540 struct drm_device *dev = crtc->base.dev;
8541 struct drm_i915_private *dev_priv = to_i915(dev);
8542 const struct intel_limit *limit;
8543 int refclk = 96000;
8544
8545 memset(&crtc_state->dpll_hw_state, 0,
8546 sizeof(crtc_state->dpll_hw_state));
8547
8548 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8549 if (intel_panel_use_ssc(dev_priv)) {
8550 refclk = dev_priv->vbt.lvds_ssc_freq;
8551 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8552 }
8553
8554 limit = &intel_limits_pineview_lvds;
8555 } else {
8556 limit = &intel_limits_pineview_sdvo;
8557 }
8558
8559 if (!crtc_state->clock_set &&
8560 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8561 refclk, NULL, &crtc_state->dpll)) {
8562 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8563 return -EINVAL;
8564 }
8565
8566 i9xx_compute_dpll(crtc, crtc_state, NULL);
8567
8568 return 0;
8569 }
8570
i9xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)8571 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8572 struct intel_crtc_state *crtc_state)
8573 {
8574 struct drm_device *dev = crtc->base.dev;
8575 struct drm_i915_private *dev_priv = to_i915(dev);
8576 const struct intel_limit *limit;
8577 int refclk = 96000;
8578
8579 memset(&crtc_state->dpll_hw_state, 0,
8580 sizeof(crtc_state->dpll_hw_state));
8581
8582 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8583 if (intel_panel_use_ssc(dev_priv)) {
8584 refclk = dev_priv->vbt.lvds_ssc_freq;
8585 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8586 }
8587
8588 limit = &intel_limits_i9xx_lvds;
8589 } else {
8590 limit = &intel_limits_i9xx_sdvo;
8591 }
8592
8593 if (!crtc_state->clock_set &&
8594 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8595 refclk, NULL, &crtc_state->dpll)) {
8596 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8597 return -EINVAL;
8598 }
8599
8600 i9xx_compute_dpll(crtc, crtc_state, NULL);
8601
8602 return 0;
8603 }
8604
chv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)8605 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8606 struct intel_crtc_state *crtc_state)
8607 {
8608 int refclk = 100000;
8609 const struct intel_limit *limit = &intel_limits_chv;
8610
8611 memset(&crtc_state->dpll_hw_state, 0,
8612 sizeof(crtc_state->dpll_hw_state));
8613
8614 if (!crtc_state->clock_set &&
8615 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8616 refclk, NULL, &crtc_state->dpll)) {
8617 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8618 return -EINVAL;
8619 }
8620
8621 chv_compute_dpll(crtc, crtc_state);
8622
8623 return 0;
8624 }
8625
vlv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)8626 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8627 struct intel_crtc_state *crtc_state)
8628 {
8629 int refclk = 100000;
8630 const struct intel_limit *limit = &intel_limits_vlv;
8631
8632 memset(&crtc_state->dpll_hw_state, 0,
8633 sizeof(crtc_state->dpll_hw_state));
8634
8635 if (!crtc_state->clock_set &&
8636 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8637 refclk, NULL, &crtc_state->dpll)) {
8638 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8639 return -EINVAL;
8640 }
8641
8642 vlv_compute_dpll(crtc, crtc_state);
8643
8644 return 0;
8645 }
8646
i9xx_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8647 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8648 struct intel_crtc_state *pipe_config)
8649 {
8650 struct drm_device *dev = crtc->base.dev;
8651 struct drm_i915_private *dev_priv = to_i915(dev);
8652 uint32_t tmp;
8653
8654 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8655 return;
8656
8657 tmp = I915_READ(PFIT_CONTROL);
8658 if (!(tmp & PFIT_ENABLE))
8659 return;
8660
8661 /* Check whether the pfit is attached to our pipe. */
8662 if (INTEL_INFO(dev)->gen < 4) {
8663 if (crtc->pipe != PIPE_B)
8664 return;
8665 } else {
8666 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8667 return;
8668 }
8669
8670 pipe_config->gmch_pfit.control = tmp;
8671 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8672 }
8673
vlv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8674 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8675 struct intel_crtc_state *pipe_config)
8676 {
8677 struct drm_device *dev = crtc->base.dev;
8678 struct drm_i915_private *dev_priv = to_i915(dev);
8679 int pipe = pipe_config->cpu_transcoder;
8680 struct dpll clock;
8681 u32 mdiv;
8682 int refclk = 100000;
8683
8684 /* In case of DSI, DPLL will not be used */
8685 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8686 return;
8687
8688 mutex_lock(&dev_priv->sb_lock);
8689 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8690 mutex_unlock(&dev_priv->sb_lock);
8691
8692 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8693 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8694 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8695 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8696 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8697
8698 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8699 }
8700
8701 static void
i9xx_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)8702 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8703 struct intel_initial_plane_config *plane_config)
8704 {
8705 struct drm_device *dev = crtc->base.dev;
8706 struct drm_i915_private *dev_priv = to_i915(dev);
8707 u32 val, base, offset;
8708 int pipe = crtc->pipe, plane = crtc->plane;
8709 int fourcc, pixel_format;
8710 unsigned int aligned_height;
8711 struct drm_framebuffer *fb;
8712 struct intel_framebuffer *intel_fb;
8713
8714 val = I915_READ(DSPCNTR(plane));
8715 if (!(val & DISPLAY_PLANE_ENABLE))
8716 return;
8717
8718 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8719 if (!intel_fb) {
8720 DRM_DEBUG_KMS("failed to alloc fb\n");
8721 return;
8722 }
8723
8724 fb = &intel_fb->base;
8725
8726 if (INTEL_INFO(dev)->gen >= 4) {
8727 if (val & DISPPLANE_TILED) {
8728 plane_config->tiling = I915_TILING_X;
8729 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8730 }
8731 }
8732
8733 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8734 fourcc = i9xx_format_to_fourcc(pixel_format);
8735 fb->pixel_format = fourcc;
8736 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8737
8738 if (INTEL_INFO(dev)->gen >= 4) {
8739 if (plane_config->tiling)
8740 offset = I915_READ(DSPTILEOFF(plane));
8741 else
8742 offset = I915_READ(DSPLINOFF(plane));
8743 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8744 } else {
8745 base = I915_READ(DSPADDR(plane));
8746 }
8747 plane_config->base = base;
8748
8749 val = I915_READ(PIPESRC(pipe));
8750 fb->width = ((val >> 16) & 0xfff) + 1;
8751 fb->height = ((val >> 0) & 0xfff) + 1;
8752
8753 val = I915_READ(DSPSTRIDE(pipe));
8754 fb->pitches[0] = val & 0xffffffc0;
8755
8756 aligned_height = intel_fb_align_height(dev, fb->height,
8757 fb->pixel_format,
8758 fb->modifier[0]);
8759
8760 plane_config->size = fb->pitches[0] * aligned_height;
8761
8762 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8763 pipe_name(pipe), plane, fb->width, fb->height,
8764 fb->bits_per_pixel, base, fb->pitches[0],
8765 plane_config->size);
8766
8767 plane_config->fb = intel_fb;
8768 }
8769
chv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8770 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8771 struct intel_crtc_state *pipe_config)
8772 {
8773 struct drm_device *dev = crtc->base.dev;
8774 struct drm_i915_private *dev_priv = to_i915(dev);
8775 int pipe = pipe_config->cpu_transcoder;
8776 enum dpio_channel port = vlv_pipe_to_channel(pipe);
8777 struct dpll clock;
8778 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8779 int refclk = 100000;
8780
8781 /* In case of DSI, DPLL will not be used */
8782 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8783 return;
8784
8785 mutex_lock(&dev_priv->sb_lock);
8786 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8787 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8788 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8789 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8790 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8791 mutex_unlock(&dev_priv->sb_lock);
8792
8793 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8794 clock.m2 = (pll_dw0 & 0xff) << 22;
8795 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8796 clock.m2 |= pll_dw2 & 0x3fffff;
8797 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8798 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8799 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8800
8801 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8802 }
8803
i9xx_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8804 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8805 struct intel_crtc_state *pipe_config)
8806 {
8807 struct drm_device *dev = crtc->base.dev;
8808 struct drm_i915_private *dev_priv = to_i915(dev);
8809 enum intel_display_power_domain power_domain;
8810 uint32_t tmp;
8811 bool ret;
8812
8813 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8814 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8815 return false;
8816
8817 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8818 pipe_config->shared_dpll = NULL;
8819
8820 ret = false;
8821
8822 tmp = I915_READ(PIPECONF(crtc->pipe));
8823 if (!(tmp & PIPECONF_ENABLE))
8824 goto out;
8825
8826 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8827 switch (tmp & PIPECONF_BPC_MASK) {
8828 case PIPECONF_6BPC:
8829 pipe_config->pipe_bpp = 18;
8830 break;
8831 case PIPECONF_8BPC:
8832 pipe_config->pipe_bpp = 24;
8833 break;
8834 case PIPECONF_10BPC:
8835 pipe_config->pipe_bpp = 30;
8836 break;
8837 default:
8838 break;
8839 }
8840 }
8841
8842 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8843 (tmp & PIPECONF_COLOR_RANGE_SELECT))
8844 pipe_config->limited_color_range = true;
8845
8846 if (INTEL_INFO(dev)->gen < 4)
8847 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8848
8849 intel_get_pipe_timings(crtc, pipe_config);
8850 intel_get_pipe_src_size(crtc, pipe_config);
8851
8852 i9xx_get_pfit_config(crtc, pipe_config);
8853
8854 if (INTEL_INFO(dev)->gen >= 4) {
8855 /* No way to read it out on pipes B and C */
8856 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8857 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8858 else
8859 tmp = I915_READ(DPLL_MD(crtc->pipe));
8860 pipe_config->pixel_multiplier =
8861 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8862 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8863 pipe_config->dpll_hw_state.dpll_md = tmp;
8864 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8865 tmp = I915_READ(DPLL(crtc->pipe));
8866 pipe_config->pixel_multiplier =
8867 ((tmp & SDVO_MULTIPLIER_MASK)
8868 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8869 } else {
8870 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8871 * port and will be fixed up in the encoder->get_config
8872 * function. */
8873 pipe_config->pixel_multiplier = 1;
8874 }
8875 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8876 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8877 /*
8878 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8879 * on 830. Filter it out here so that we don't
8880 * report errors due to that.
8881 */
8882 if (IS_I830(dev))
8883 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8884
8885 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8886 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8887 } else {
8888 /* Mask out read-only status bits. */
8889 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8890 DPLL_PORTC_READY_MASK |
8891 DPLL_PORTB_READY_MASK);
8892 }
8893
8894 if (IS_CHERRYVIEW(dev))
8895 chv_crtc_clock_get(crtc, pipe_config);
8896 else if (IS_VALLEYVIEW(dev))
8897 vlv_crtc_clock_get(crtc, pipe_config);
8898 else
8899 i9xx_crtc_clock_get(crtc, pipe_config);
8900
8901 /*
8902 * Normally the dotclock is filled in by the encoder .get_config()
8903 * but in case the pipe is enabled w/o any ports we need a sane
8904 * default.
8905 */
8906 pipe_config->base.adjusted_mode.crtc_clock =
8907 pipe_config->port_clock / pipe_config->pixel_multiplier;
8908
8909 ret = true;
8910
8911 out:
8912 intel_display_power_put(dev_priv, power_domain);
8913
8914 return ret;
8915 }
8916
ironlake_init_pch_refclk(struct drm_device * dev)8917 static void ironlake_init_pch_refclk(struct drm_device *dev)
8918 {
8919 struct drm_i915_private *dev_priv = to_i915(dev);
8920 struct intel_encoder *encoder;
8921 int i;
8922 u32 val, final;
8923 bool has_lvds = false;
8924 bool has_cpu_edp = false;
8925 bool has_panel = false;
8926 bool has_ck505 = false;
8927 bool can_ssc = false;
8928 bool using_ssc_source = false;
8929
8930 /* We need to take the global config into account */
8931 for_each_intel_encoder(dev, encoder) {
8932 switch (encoder->type) {
8933 case INTEL_OUTPUT_LVDS:
8934 has_panel = true;
8935 has_lvds = true;
8936 break;
8937 case INTEL_OUTPUT_EDP:
8938 has_panel = true;
8939 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8940 has_cpu_edp = true;
8941 break;
8942 default:
8943 break;
8944 }
8945 }
8946
8947 if (HAS_PCH_IBX(dev)) {
8948 has_ck505 = dev_priv->vbt.display_clock_mode;
8949 can_ssc = has_ck505;
8950 } else {
8951 has_ck505 = false;
8952 can_ssc = true;
8953 }
8954
8955 /* Check if any DPLLs are using the SSC source */
8956 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8957 u32 temp = I915_READ(PCH_DPLL(i));
8958
8959 if (!(temp & DPLL_VCO_ENABLE))
8960 continue;
8961
8962 if ((temp & PLL_REF_INPUT_MASK) ==
8963 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8964 using_ssc_source = true;
8965 break;
8966 }
8967 }
8968
8969 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8970 has_panel, has_lvds, has_ck505, using_ssc_source);
8971
8972 /* Ironlake: try to setup display ref clock before DPLL
8973 * enabling. This is only under driver's control after
8974 * PCH B stepping, previous chipset stepping should be
8975 * ignoring this setting.
8976 */
8977 val = I915_READ(PCH_DREF_CONTROL);
8978
8979 /* As we must carefully and slowly disable/enable each source in turn,
8980 * compute the final state we want first and check if we need to
8981 * make any changes at all.
8982 */
8983 final = val;
8984 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8985 if (has_ck505)
8986 final |= DREF_NONSPREAD_CK505_ENABLE;
8987 else
8988 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8989
8990 final &= ~DREF_SSC_SOURCE_MASK;
8991 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8992 final &= ~DREF_SSC1_ENABLE;
8993
8994 if (has_panel) {
8995 final |= DREF_SSC_SOURCE_ENABLE;
8996
8997 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8998 final |= DREF_SSC1_ENABLE;
8999
9000 if (has_cpu_edp) {
9001 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9002 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9003 else
9004 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9005 } else
9006 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9007 } else if (using_ssc_source) {
9008 final |= DREF_SSC_SOURCE_ENABLE;
9009 final |= DREF_SSC1_ENABLE;
9010 }
9011
9012 if (final == val)
9013 return;
9014
9015 /* Always enable nonspread source */
9016 val &= ~DREF_NONSPREAD_SOURCE_MASK;
9017
9018 if (has_ck505)
9019 val |= DREF_NONSPREAD_CK505_ENABLE;
9020 else
9021 val |= DREF_NONSPREAD_SOURCE_ENABLE;
9022
9023 if (has_panel) {
9024 val &= ~DREF_SSC_SOURCE_MASK;
9025 val |= DREF_SSC_SOURCE_ENABLE;
9026
9027 /* SSC must be turned on before enabling the CPU output */
9028 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9029 DRM_DEBUG_KMS("Using SSC on panel\n");
9030 val |= DREF_SSC1_ENABLE;
9031 } else
9032 val &= ~DREF_SSC1_ENABLE;
9033
9034 /* Get SSC going before enabling the outputs */
9035 I915_WRITE(PCH_DREF_CONTROL, val);
9036 POSTING_READ(PCH_DREF_CONTROL);
9037 udelay(200);
9038
9039 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9040
9041 /* Enable CPU source on CPU attached eDP */
9042 if (has_cpu_edp) {
9043 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9044 DRM_DEBUG_KMS("Using SSC on eDP\n");
9045 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9046 } else
9047 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9048 } else
9049 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9050
9051 I915_WRITE(PCH_DREF_CONTROL, val);
9052 POSTING_READ(PCH_DREF_CONTROL);
9053 udelay(200);
9054 } else {
9055 DRM_DEBUG_KMS("Disabling CPU source output\n");
9056
9057 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9058
9059 /* Turn off CPU output */
9060 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9061
9062 I915_WRITE(PCH_DREF_CONTROL, val);
9063 POSTING_READ(PCH_DREF_CONTROL);
9064 udelay(200);
9065
9066 if (!using_ssc_source) {
9067 DRM_DEBUG_KMS("Disabling SSC source\n");
9068
9069 /* Turn off the SSC source */
9070 val &= ~DREF_SSC_SOURCE_MASK;
9071 val |= DREF_SSC_SOURCE_DISABLE;
9072
9073 /* Turn off SSC1 */
9074 val &= ~DREF_SSC1_ENABLE;
9075
9076 I915_WRITE(PCH_DREF_CONTROL, val);
9077 POSTING_READ(PCH_DREF_CONTROL);
9078 udelay(200);
9079 }
9080 }
9081
9082 BUG_ON(val != final);
9083 }
9084
lpt_reset_fdi_mphy(struct drm_i915_private * dev_priv)9085 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9086 {
9087 uint32_t tmp;
9088
9089 tmp = I915_READ(SOUTH_CHICKEN2);
9090 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9091 I915_WRITE(SOUTH_CHICKEN2, tmp);
9092
9093 if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9094 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9095 DRM_ERROR("FDI mPHY reset assert timeout\n");
9096
9097 tmp = I915_READ(SOUTH_CHICKEN2);
9098 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9099 I915_WRITE(SOUTH_CHICKEN2, tmp);
9100
9101 if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9102 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9103 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9104 }
9105
9106 /* WaMPhyProgramming:hsw */
lpt_program_fdi_mphy(struct drm_i915_private * dev_priv)9107 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9108 {
9109 uint32_t tmp;
9110
9111 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9112 tmp &= ~(0xFF << 24);
9113 tmp |= (0x12 << 24);
9114 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9115
9116 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9117 tmp |= (1 << 11);
9118 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9119
9120 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9121 tmp |= (1 << 11);
9122 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9123
9124 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9125 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9126 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9127
9128 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9129 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9130 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9131
9132 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9133 tmp &= ~(7 << 13);
9134 tmp |= (5 << 13);
9135 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9136
9137 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9138 tmp &= ~(7 << 13);
9139 tmp |= (5 << 13);
9140 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9141
9142 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9143 tmp &= ~0xFF;
9144 tmp |= 0x1C;
9145 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9146
9147 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9148 tmp &= ~0xFF;
9149 tmp |= 0x1C;
9150 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9151
9152 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9153 tmp &= ~(0xFF << 16);
9154 tmp |= (0x1C << 16);
9155 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9156
9157 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9158 tmp &= ~(0xFF << 16);
9159 tmp |= (0x1C << 16);
9160 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9161
9162 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9163 tmp |= (1 << 27);
9164 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9165
9166 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9167 tmp |= (1 << 27);
9168 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9169
9170 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9171 tmp &= ~(0xF << 28);
9172 tmp |= (4 << 28);
9173 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9174
9175 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9176 tmp &= ~(0xF << 28);
9177 tmp |= (4 << 28);
9178 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9179 }
9180
9181 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9182 * Programming" based on the parameters passed:
9183 * - Sequence to enable CLKOUT_DP
9184 * - Sequence to enable CLKOUT_DP without spread
9185 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9186 */
lpt_enable_clkout_dp(struct drm_device * dev,bool with_spread,bool with_fdi)9187 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
9188 bool with_fdi)
9189 {
9190 struct drm_i915_private *dev_priv = to_i915(dev);
9191 uint32_t reg, tmp;
9192
9193 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9194 with_spread = true;
9195 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
9196 with_fdi = false;
9197
9198 mutex_lock(&dev_priv->sb_lock);
9199
9200 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9201 tmp &= ~SBI_SSCCTL_DISABLE;
9202 tmp |= SBI_SSCCTL_PATHALT;
9203 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9204
9205 udelay(24);
9206
9207 if (with_spread) {
9208 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9209 tmp &= ~SBI_SSCCTL_PATHALT;
9210 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9211
9212 if (with_fdi) {
9213 lpt_reset_fdi_mphy(dev_priv);
9214 lpt_program_fdi_mphy(dev_priv);
9215 }
9216 }
9217
9218 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
9219 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9220 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9221 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9222
9223 mutex_unlock(&dev_priv->sb_lock);
9224 }
9225
9226 /* Sequence to disable CLKOUT_DP */
lpt_disable_clkout_dp(struct drm_device * dev)9227 static void lpt_disable_clkout_dp(struct drm_device *dev)
9228 {
9229 struct drm_i915_private *dev_priv = to_i915(dev);
9230 uint32_t reg, tmp;
9231
9232 mutex_lock(&dev_priv->sb_lock);
9233
9234 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
9235 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9236 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9237 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9238
9239 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9240 if (!(tmp & SBI_SSCCTL_DISABLE)) {
9241 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9242 tmp |= SBI_SSCCTL_PATHALT;
9243 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9244 udelay(32);
9245 }
9246 tmp |= SBI_SSCCTL_DISABLE;
9247 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9248 }
9249
9250 mutex_unlock(&dev_priv->sb_lock);
9251 }
9252
9253 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9254
9255 static const uint16_t sscdivintphase[] = {
9256 [BEND_IDX( 50)] = 0x3B23,
9257 [BEND_IDX( 45)] = 0x3B23,
9258 [BEND_IDX( 40)] = 0x3C23,
9259 [BEND_IDX( 35)] = 0x3C23,
9260 [BEND_IDX( 30)] = 0x3D23,
9261 [BEND_IDX( 25)] = 0x3D23,
9262 [BEND_IDX( 20)] = 0x3E23,
9263 [BEND_IDX( 15)] = 0x3E23,
9264 [BEND_IDX( 10)] = 0x3F23,
9265 [BEND_IDX( 5)] = 0x3F23,
9266 [BEND_IDX( 0)] = 0x0025,
9267 [BEND_IDX( -5)] = 0x0025,
9268 [BEND_IDX(-10)] = 0x0125,
9269 [BEND_IDX(-15)] = 0x0125,
9270 [BEND_IDX(-20)] = 0x0225,
9271 [BEND_IDX(-25)] = 0x0225,
9272 [BEND_IDX(-30)] = 0x0325,
9273 [BEND_IDX(-35)] = 0x0325,
9274 [BEND_IDX(-40)] = 0x0425,
9275 [BEND_IDX(-45)] = 0x0425,
9276 [BEND_IDX(-50)] = 0x0525,
9277 };
9278
9279 /*
9280 * Bend CLKOUT_DP
9281 * steps -50 to 50 inclusive, in steps of 5
9282 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9283 * change in clock period = -(steps / 10) * 5.787 ps
9284 */
lpt_bend_clkout_dp(struct drm_i915_private * dev_priv,int steps)9285 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9286 {
9287 uint32_t tmp;
9288 int idx = BEND_IDX(steps);
9289
9290 if (WARN_ON(steps % 5 != 0))
9291 return;
9292
9293 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9294 return;
9295
9296 mutex_lock(&dev_priv->sb_lock);
9297
9298 if (steps % 10 != 0)
9299 tmp = 0xAAAAAAAB;
9300 else
9301 tmp = 0x00000000;
9302 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9303
9304 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9305 tmp &= 0xffff0000;
9306 tmp |= sscdivintphase[idx];
9307 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9308
9309 mutex_unlock(&dev_priv->sb_lock);
9310 }
9311
9312 #undef BEND_IDX
9313
lpt_init_pch_refclk(struct drm_device * dev)9314 static void lpt_init_pch_refclk(struct drm_device *dev)
9315 {
9316 struct intel_encoder *encoder;
9317 bool has_vga = false;
9318
9319 for_each_intel_encoder(dev, encoder) {
9320 switch (encoder->type) {
9321 case INTEL_OUTPUT_ANALOG:
9322 has_vga = true;
9323 break;
9324 default:
9325 break;
9326 }
9327 }
9328
9329 if (has_vga) {
9330 lpt_bend_clkout_dp(to_i915(dev), 0);
9331 lpt_enable_clkout_dp(dev, true, true);
9332 } else {
9333 lpt_disable_clkout_dp(dev);
9334 }
9335 }
9336
9337 /*
9338 * Initialize reference clocks when the driver loads
9339 */
intel_init_pch_refclk(struct drm_device * dev)9340 void intel_init_pch_refclk(struct drm_device *dev)
9341 {
9342 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9343 ironlake_init_pch_refclk(dev);
9344 else if (HAS_PCH_LPT(dev))
9345 lpt_init_pch_refclk(dev);
9346 }
9347
ironlake_set_pipeconf(struct drm_crtc * crtc)9348 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
9349 {
9350 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9351 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9352 int pipe = intel_crtc->pipe;
9353 uint32_t val;
9354
9355 val = 0;
9356
9357 switch (intel_crtc->config->pipe_bpp) {
9358 case 18:
9359 val |= PIPECONF_6BPC;
9360 break;
9361 case 24:
9362 val |= PIPECONF_8BPC;
9363 break;
9364 case 30:
9365 val |= PIPECONF_10BPC;
9366 break;
9367 case 36:
9368 val |= PIPECONF_12BPC;
9369 break;
9370 default:
9371 /* Case prevented by intel_choose_pipe_bpp_dither. */
9372 BUG();
9373 }
9374
9375 if (intel_crtc->config->dither)
9376 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9377
9378 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9379 val |= PIPECONF_INTERLACED_ILK;
9380 else
9381 val |= PIPECONF_PROGRESSIVE;
9382
9383 if (intel_crtc->config->limited_color_range)
9384 val |= PIPECONF_COLOR_RANGE_SELECT;
9385
9386 I915_WRITE(PIPECONF(pipe), val);
9387 POSTING_READ(PIPECONF(pipe));
9388 }
9389
haswell_set_pipeconf(struct drm_crtc * crtc)9390 static void haswell_set_pipeconf(struct drm_crtc *crtc)
9391 {
9392 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9393 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9394 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9395 u32 val = 0;
9396
9397 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
9398 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9399
9400 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9401 val |= PIPECONF_INTERLACED_ILK;
9402 else
9403 val |= PIPECONF_PROGRESSIVE;
9404
9405 I915_WRITE(PIPECONF(cpu_transcoder), val);
9406 POSTING_READ(PIPECONF(cpu_transcoder));
9407 }
9408
haswell_set_pipemisc(struct drm_crtc * crtc)9409 static void haswell_set_pipemisc(struct drm_crtc *crtc)
9410 {
9411 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9412 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9413
9414 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
9415 u32 val = 0;
9416
9417 switch (intel_crtc->config->pipe_bpp) {
9418 case 18:
9419 val |= PIPEMISC_DITHER_6_BPC;
9420 break;
9421 case 24:
9422 val |= PIPEMISC_DITHER_8_BPC;
9423 break;
9424 case 30:
9425 val |= PIPEMISC_DITHER_10_BPC;
9426 break;
9427 case 36:
9428 val |= PIPEMISC_DITHER_12_BPC;
9429 break;
9430 default:
9431 /* Case prevented by pipe_config_set_bpp. */
9432 BUG();
9433 }
9434
9435 if (intel_crtc->config->dither)
9436 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9437
9438 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
9439 }
9440 }
9441
ironlake_get_lanes_required(int target_clock,int link_bw,int bpp)9442 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9443 {
9444 /*
9445 * Account for spread spectrum to avoid
9446 * oversubscribing the link. Max center spread
9447 * is 2.5%; use 5% for safety's sake.
9448 */
9449 u32 bps = target_clock * bpp * 21 / 20;
9450 return DIV_ROUND_UP(bps, link_bw * 8);
9451 }
9452
ironlake_needs_fb_cb_tune(struct dpll * dpll,int factor)9453 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9454 {
9455 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9456 }
9457
ironlake_compute_dpll(struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)9458 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
9459 struct intel_crtc_state *crtc_state,
9460 struct dpll *reduced_clock)
9461 {
9462 struct drm_crtc *crtc = &intel_crtc->base;
9463 struct drm_device *dev = crtc->dev;
9464 struct drm_i915_private *dev_priv = to_i915(dev);
9465 u32 dpll, fp, fp2;
9466 int factor;
9467
9468 /* Enable autotuning of the PLL clock (if permissible) */
9469 factor = 21;
9470 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9471 if ((intel_panel_use_ssc(dev_priv) &&
9472 dev_priv->vbt.lvds_ssc_freq == 100000) ||
9473 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
9474 factor = 25;
9475 } else if (crtc_state->sdvo_tv_clock)
9476 factor = 20;
9477
9478 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9479
9480 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9481 fp |= FP_CB_TUNE;
9482
9483 if (reduced_clock) {
9484 fp2 = i9xx_dpll_compute_fp(reduced_clock);
9485
9486 if (reduced_clock->m < factor * reduced_clock->n)
9487 fp2 |= FP_CB_TUNE;
9488 } else {
9489 fp2 = fp;
9490 }
9491
9492 dpll = 0;
9493
9494 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9495 dpll |= DPLLB_MODE_LVDS;
9496 else
9497 dpll |= DPLLB_MODE_DAC_SERIAL;
9498
9499 dpll |= (crtc_state->pixel_multiplier - 1)
9500 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9501
9502 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9503 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9504 dpll |= DPLL_SDVO_HIGH_SPEED;
9505
9506 if (intel_crtc_has_dp_encoder(crtc_state))
9507 dpll |= DPLL_SDVO_HIGH_SPEED;
9508
9509 /*
9510 * The high speed IO clock is only really required for
9511 * SDVO/HDMI/DP, but we also enable it for CRT to make it
9512 * possible to share the DPLL between CRT and HDMI. Enabling
9513 * the clock needlessly does no real harm, except use up a
9514 * bit of power potentially.
9515 *
9516 * We'll limit this to IVB with 3 pipes, since it has only two
9517 * DPLLs and so DPLL sharing is the only way to get three pipes
9518 * driving PCH ports at the same time. On SNB we could do this,
9519 * and potentially avoid enabling the second DPLL, but it's not
9520 * clear if it''s a win or loss power wise. No point in doing
9521 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9522 */
9523 if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
9524 intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9525 dpll |= DPLL_SDVO_HIGH_SPEED;
9526
9527 /* compute bitmask from p1 value */
9528 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9529 /* also FPA1 */
9530 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9531
9532 switch (crtc_state->dpll.p2) {
9533 case 5:
9534 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9535 break;
9536 case 7:
9537 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9538 break;
9539 case 10:
9540 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9541 break;
9542 case 14:
9543 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9544 break;
9545 }
9546
9547 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9548 intel_panel_use_ssc(dev_priv))
9549 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9550 else
9551 dpll |= PLL_REF_INPUT_DREFCLK;
9552
9553 dpll |= DPLL_VCO_ENABLE;
9554
9555 crtc_state->dpll_hw_state.dpll = dpll;
9556 crtc_state->dpll_hw_state.fp0 = fp;
9557 crtc_state->dpll_hw_state.fp1 = fp2;
9558 }
9559
ironlake_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9560 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9561 struct intel_crtc_state *crtc_state)
9562 {
9563 struct drm_device *dev = crtc->base.dev;
9564 struct drm_i915_private *dev_priv = to_i915(dev);
9565 struct dpll reduced_clock;
9566 bool has_reduced_clock = false;
9567 struct intel_shared_dpll *pll;
9568 const struct intel_limit *limit;
9569 int refclk = 120000;
9570
9571 memset(&crtc_state->dpll_hw_state, 0,
9572 sizeof(crtc_state->dpll_hw_state));
9573
9574 crtc->lowfreq_avail = false;
9575
9576 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9577 if (!crtc_state->has_pch_encoder)
9578 return 0;
9579
9580 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9581 if (intel_panel_use_ssc(dev_priv)) {
9582 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9583 dev_priv->vbt.lvds_ssc_freq);
9584 refclk = dev_priv->vbt.lvds_ssc_freq;
9585 }
9586
9587 if (intel_is_dual_link_lvds(dev)) {
9588 if (refclk == 100000)
9589 limit = &intel_limits_ironlake_dual_lvds_100m;
9590 else
9591 limit = &intel_limits_ironlake_dual_lvds;
9592 } else {
9593 if (refclk == 100000)
9594 limit = &intel_limits_ironlake_single_lvds_100m;
9595 else
9596 limit = &intel_limits_ironlake_single_lvds;
9597 }
9598 } else {
9599 limit = &intel_limits_ironlake_dac;
9600 }
9601
9602 if (!crtc_state->clock_set &&
9603 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9604 refclk, NULL, &crtc_state->dpll)) {
9605 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9606 return -EINVAL;
9607 }
9608
9609 ironlake_compute_dpll(crtc, crtc_state,
9610 has_reduced_clock ? &reduced_clock : NULL);
9611
9612 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9613 if (pll == NULL) {
9614 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9615 pipe_name(crtc->pipe));
9616 return -EINVAL;
9617 }
9618
9619 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9620 has_reduced_clock)
9621 crtc->lowfreq_avail = true;
9622
9623 return 0;
9624 }
9625
intel_pch_transcoder_get_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n)9626 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9627 struct intel_link_m_n *m_n)
9628 {
9629 struct drm_device *dev = crtc->base.dev;
9630 struct drm_i915_private *dev_priv = to_i915(dev);
9631 enum pipe pipe = crtc->pipe;
9632
9633 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9634 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9635 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9636 & ~TU_SIZE_MASK;
9637 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9638 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9639 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9640 }
9641
intel_cpu_transcoder_get_m_n(struct intel_crtc * crtc,enum transcoder transcoder,struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2)9642 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9643 enum transcoder transcoder,
9644 struct intel_link_m_n *m_n,
9645 struct intel_link_m_n *m2_n2)
9646 {
9647 struct drm_device *dev = crtc->base.dev;
9648 struct drm_i915_private *dev_priv = to_i915(dev);
9649 enum pipe pipe = crtc->pipe;
9650
9651 if (INTEL_INFO(dev)->gen >= 5) {
9652 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9653 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9654 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9655 & ~TU_SIZE_MASK;
9656 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9657 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9658 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9659 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9660 * gen < 8) and if DRRS is supported (to make sure the
9661 * registers are not unnecessarily read).
9662 */
9663 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9664 crtc->config->has_drrs) {
9665 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9666 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9667 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9668 & ~TU_SIZE_MASK;
9669 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9670 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9671 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9672 }
9673 } else {
9674 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9675 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9676 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9677 & ~TU_SIZE_MASK;
9678 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9679 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9680 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9681 }
9682 }
9683
intel_dp_get_m_n(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9684 void intel_dp_get_m_n(struct intel_crtc *crtc,
9685 struct intel_crtc_state *pipe_config)
9686 {
9687 if (pipe_config->has_pch_encoder)
9688 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9689 else
9690 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9691 &pipe_config->dp_m_n,
9692 &pipe_config->dp_m2_n2);
9693 }
9694
ironlake_get_fdi_m_n_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9695 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9696 struct intel_crtc_state *pipe_config)
9697 {
9698 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9699 &pipe_config->fdi_m_n, NULL);
9700 }
9701
skylake_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9702 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9703 struct intel_crtc_state *pipe_config)
9704 {
9705 struct drm_device *dev = crtc->base.dev;
9706 struct drm_i915_private *dev_priv = to_i915(dev);
9707 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9708 uint32_t ps_ctrl = 0;
9709 int id = -1;
9710 int i;
9711
9712 /* find scaler attached to this pipe */
9713 for (i = 0; i < crtc->num_scalers; i++) {
9714 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9715 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9716 id = i;
9717 pipe_config->pch_pfit.enabled = true;
9718 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9719 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9720 break;
9721 }
9722 }
9723
9724 scaler_state->scaler_id = id;
9725 if (id >= 0) {
9726 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9727 } else {
9728 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9729 }
9730 }
9731
9732 static void
skylake_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)9733 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9734 struct intel_initial_plane_config *plane_config)
9735 {
9736 struct drm_device *dev = crtc->base.dev;
9737 struct drm_i915_private *dev_priv = to_i915(dev);
9738 u32 val, base, offset, stride_mult, tiling;
9739 int pipe = crtc->pipe;
9740 int fourcc, pixel_format;
9741 unsigned int aligned_height;
9742 struct drm_framebuffer *fb;
9743 struct intel_framebuffer *intel_fb;
9744
9745 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9746 if (!intel_fb) {
9747 DRM_DEBUG_KMS("failed to alloc fb\n");
9748 return;
9749 }
9750
9751 fb = &intel_fb->base;
9752
9753 val = I915_READ(PLANE_CTL(pipe, 0));
9754 if (!(val & PLANE_CTL_ENABLE))
9755 goto error;
9756
9757 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9758 fourcc = skl_format_to_fourcc(pixel_format,
9759 val & PLANE_CTL_ORDER_RGBX,
9760 val & PLANE_CTL_ALPHA_MASK);
9761 fb->pixel_format = fourcc;
9762 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9763
9764 tiling = val & PLANE_CTL_TILED_MASK;
9765 switch (tiling) {
9766 case PLANE_CTL_TILED_LINEAR:
9767 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9768 break;
9769 case PLANE_CTL_TILED_X:
9770 plane_config->tiling = I915_TILING_X;
9771 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9772 break;
9773 case PLANE_CTL_TILED_Y:
9774 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9775 break;
9776 case PLANE_CTL_TILED_YF:
9777 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9778 break;
9779 default:
9780 MISSING_CASE(tiling);
9781 goto error;
9782 }
9783
9784 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9785 plane_config->base = base;
9786
9787 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9788
9789 val = I915_READ(PLANE_SIZE(pipe, 0));
9790 fb->height = ((val >> 16) & 0xfff) + 1;
9791 fb->width = ((val >> 0) & 0x1fff) + 1;
9792
9793 val = I915_READ(PLANE_STRIDE(pipe, 0));
9794 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9795 fb->pixel_format);
9796 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9797
9798 aligned_height = intel_fb_align_height(dev, fb->height,
9799 fb->pixel_format,
9800 fb->modifier[0]);
9801
9802 plane_config->size = fb->pitches[0] * aligned_height;
9803
9804 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9805 pipe_name(pipe), fb->width, fb->height,
9806 fb->bits_per_pixel, base, fb->pitches[0],
9807 plane_config->size);
9808
9809 plane_config->fb = intel_fb;
9810 return;
9811
9812 error:
9813 kfree(intel_fb);
9814 }
9815
ironlake_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9816 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9817 struct intel_crtc_state *pipe_config)
9818 {
9819 struct drm_device *dev = crtc->base.dev;
9820 struct drm_i915_private *dev_priv = to_i915(dev);
9821 uint32_t tmp;
9822
9823 tmp = I915_READ(PF_CTL(crtc->pipe));
9824
9825 if (tmp & PF_ENABLE) {
9826 pipe_config->pch_pfit.enabled = true;
9827 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9828 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9829
9830 /* We currently do not free assignements of panel fitters on
9831 * ivb/hsw (since we don't use the higher upscaling modes which
9832 * differentiates them) so just WARN about this case for now. */
9833 if (IS_GEN7(dev)) {
9834 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9835 PF_PIPE_SEL_IVB(crtc->pipe));
9836 }
9837 }
9838 }
9839
9840 static void
ironlake_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)9841 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9842 struct intel_initial_plane_config *plane_config)
9843 {
9844 struct drm_device *dev = crtc->base.dev;
9845 struct drm_i915_private *dev_priv = to_i915(dev);
9846 u32 val, base, offset;
9847 int pipe = crtc->pipe;
9848 int fourcc, pixel_format;
9849 unsigned int aligned_height;
9850 struct drm_framebuffer *fb;
9851 struct intel_framebuffer *intel_fb;
9852
9853 val = I915_READ(DSPCNTR(pipe));
9854 if (!(val & DISPLAY_PLANE_ENABLE))
9855 return;
9856
9857 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9858 if (!intel_fb) {
9859 DRM_DEBUG_KMS("failed to alloc fb\n");
9860 return;
9861 }
9862
9863 fb = &intel_fb->base;
9864
9865 if (INTEL_INFO(dev)->gen >= 4) {
9866 if (val & DISPPLANE_TILED) {
9867 plane_config->tiling = I915_TILING_X;
9868 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9869 }
9870 }
9871
9872 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9873 fourcc = i9xx_format_to_fourcc(pixel_format);
9874 fb->pixel_format = fourcc;
9875 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9876
9877 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9878 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9879 offset = I915_READ(DSPOFFSET(pipe));
9880 } else {
9881 if (plane_config->tiling)
9882 offset = I915_READ(DSPTILEOFF(pipe));
9883 else
9884 offset = I915_READ(DSPLINOFF(pipe));
9885 }
9886 plane_config->base = base;
9887
9888 val = I915_READ(PIPESRC(pipe));
9889 fb->width = ((val >> 16) & 0xfff) + 1;
9890 fb->height = ((val >> 0) & 0xfff) + 1;
9891
9892 val = I915_READ(DSPSTRIDE(pipe));
9893 fb->pitches[0] = val & 0xffffffc0;
9894
9895 aligned_height = intel_fb_align_height(dev, fb->height,
9896 fb->pixel_format,
9897 fb->modifier[0]);
9898
9899 plane_config->size = fb->pitches[0] * aligned_height;
9900
9901 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9902 pipe_name(pipe), fb->width, fb->height,
9903 fb->bits_per_pixel, base, fb->pitches[0],
9904 plane_config->size);
9905
9906 plane_config->fb = intel_fb;
9907 }
9908
ironlake_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9909 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9910 struct intel_crtc_state *pipe_config)
9911 {
9912 struct drm_device *dev = crtc->base.dev;
9913 struct drm_i915_private *dev_priv = to_i915(dev);
9914 enum intel_display_power_domain power_domain;
9915 uint32_t tmp;
9916 bool ret;
9917
9918 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9919 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9920 return false;
9921
9922 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9923 pipe_config->shared_dpll = NULL;
9924
9925 ret = false;
9926 tmp = I915_READ(PIPECONF(crtc->pipe));
9927 if (!(tmp & PIPECONF_ENABLE))
9928 goto out;
9929
9930 switch (tmp & PIPECONF_BPC_MASK) {
9931 case PIPECONF_6BPC:
9932 pipe_config->pipe_bpp = 18;
9933 break;
9934 case PIPECONF_8BPC:
9935 pipe_config->pipe_bpp = 24;
9936 break;
9937 case PIPECONF_10BPC:
9938 pipe_config->pipe_bpp = 30;
9939 break;
9940 case PIPECONF_12BPC:
9941 pipe_config->pipe_bpp = 36;
9942 break;
9943 default:
9944 break;
9945 }
9946
9947 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9948 pipe_config->limited_color_range = true;
9949
9950 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9951 struct intel_shared_dpll *pll;
9952 enum intel_dpll_id pll_id;
9953
9954 pipe_config->has_pch_encoder = true;
9955
9956 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9957 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9958 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9959
9960 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9961
9962 if (HAS_PCH_IBX(dev_priv)) {
9963 /*
9964 * The pipe->pch transcoder and pch transcoder->pll
9965 * mapping is fixed.
9966 */
9967 pll_id = (enum intel_dpll_id) crtc->pipe;
9968 } else {
9969 tmp = I915_READ(PCH_DPLL_SEL);
9970 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9971 pll_id = DPLL_ID_PCH_PLL_B;
9972 else
9973 pll_id= DPLL_ID_PCH_PLL_A;
9974 }
9975
9976 pipe_config->shared_dpll =
9977 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9978 pll = pipe_config->shared_dpll;
9979
9980 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9981 &pipe_config->dpll_hw_state));
9982
9983 tmp = pipe_config->dpll_hw_state.dpll;
9984 pipe_config->pixel_multiplier =
9985 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9986 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9987
9988 ironlake_pch_clock_get(crtc, pipe_config);
9989 } else {
9990 pipe_config->pixel_multiplier = 1;
9991 }
9992
9993 intel_get_pipe_timings(crtc, pipe_config);
9994 intel_get_pipe_src_size(crtc, pipe_config);
9995
9996 ironlake_get_pfit_config(crtc, pipe_config);
9997
9998 ret = true;
9999
10000 out:
10001 intel_display_power_put(dev_priv, power_domain);
10002
10003 return ret;
10004 }
10005
assert_can_disable_lcpll(struct drm_i915_private * dev_priv)10006 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
10007 {
10008 struct drm_device *dev = &dev_priv->drm;
10009 struct intel_crtc *crtc;
10010
10011 for_each_intel_crtc(dev, crtc)
10012 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
10013 pipe_name(crtc->pipe));
10014
10015 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
10016 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
10017 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
10018 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
10019 I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
10020 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
10021 "CPU PWM1 enabled\n");
10022 if (IS_HASWELL(dev))
10023 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
10024 "CPU PWM2 enabled\n");
10025 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
10026 "PCH PWM1 enabled\n");
10027 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
10028 "Utility pin enabled\n");
10029 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
10030
10031 /*
10032 * In theory we can still leave IRQs enabled, as long as only the HPD
10033 * interrupts remain enabled. We used to check for that, but since it's
10034 * gen-specific and since we only disable LCPLL after we fully disable
10035 * the interrupts, the check below should be enough.
10036 */
10037 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
10038 }
10039
hsw_read_dcomp(struct drm_i915_private * dev_priv)10040 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
10041 {
10042 struct drm_device *dev = &dev_priv->drm;
10043
10044 if (IS_HASWELL(dev))
10045 return I915_READ(D_COMP_HSW);
10046 else
10047 return I915_READ(D_COMP_BDW);
10048 }
10049
hsw_write_dcomp(struct drm_i915_private * dev_priv,uint32_t val)10050 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
10051 {
10052 struct drm_device *dev = &dev_priv->drm;
10053
10054 if (IS_HASWELL(dev)) {
10055 mutex_lock(&dev_priv->rps.hw_lock);
10056 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
10057 val))
10058 DRM_DEBUG_KMS("Failed to write to D_COMP\n");
10059 mutex_unlock(&dev_priv->rps.hw_lock);
10060 } else {
10061 I915_WRITE(D_COMP_BDW, val);
10062 POSTING_READ(D_COMP_BDW);
10063 }
10064 }
10065
10066 /*
10067 * This function implements pieces of two sequences from BSpec:
10068 * - Sequence for display software to disable LCPLL
10069 * - Sequence for display software to allow package C8+
10070 * The steps implemented here are just the steps that actually touch the LCPLL
10071 * register. Callers should take care of disabling all the display engine
10072 * functions, doing the mode unset, fixing interrupts, etc.
10073 */
hsw_disable_lcpll(struct drm_i915_private * dev_priv,bool switch_to_fclk,bool allow_power_down)10074 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
10075 bool switch_to_fclk, bool allow_power_down)
10076 {
10077 uint32_t val;
10078
10079 assert_can_disable_lcpll(dev_priv);
10080
10081 val = I915_READ(LCPLL_CTL);
10082
10083 if (switch_to_fclk) {
10084 val |= LCPLL_CD_SOURCE_FCLK;
10085 I915_WRITE(LCPLL_CTL, val);
10086
10087 if (wait_for_us(I915_READ(LCPLL_CTL) &
10088 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10089 DRM_ERROR("Switching to FCLK failed\n");
10090
10091 val = I915_READ(LCPLL_CTL);
10092 }
10093
10094 val |= LCPLL_PLL_DISABLE;
10095 I915_WRITE(LCPLL_CTL, val);
10096 POSTING_READ(LCPLL_CTL);
10097
10098 if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
10099 DRM_ERROR("LCPLL still locked\n");
10100
10101 val = hsw_read_dcomp(dev_priv);
10102 val |= D_COMP_COMP_DISABLE;
10103 hsw_write_dcomp(dev_priv, val);
10104 ndelay(100);
10105
10106 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
10107 1))
10108 DRM_ERROR("D_COMP RCOMP still in progress\n");
10109
10110 if (allow_power_down) {
10111 val = I915_READ(LCPLL_CTL);
10112 val |= LCPLL_POWER_DOWN_ALLOW;
10113 I915_WRITE(LCPLL_CTL, val);
10114 POSTING_READ(LCPLL_CTL);
10115 }
10116 }
10117
10118 /*
10119 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10120 * source.
10121 */
hsw_restore_lcpll(struct drm_i915_private * dev_priv)10122 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
10123 {
10124 uint32_t val;
10125
10126 val = I915_READ(LCPLL_CTL);
10127
10128 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
10129 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
10130 return;
10131
10132 /*
10133 * Make sure we're not on PC8 state before disabling PC8, otherwise
10134 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
10135 */
10136 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
10137
10138 if (val & LCPLL_POWER_DOWN_ALLOW) {
10139 val &= ~LCPLL_POWER_DOWN_ALLOW;
10140 I915_WRITE(LCPLL_CTL, val);
10141 POSTING_READ(LCPLL_CTL);
10142 }
10143
10144 val = hsw_read_dcomp(dev_priv);
10145 val |= D_COMP_COMP_FORCE;
10146 val &= ~D_COMP_COMP_DISABLE;
10147 hsw_write_dcomp(dev_priv, val);
10148
10149 val = I915_READ(LCPLL_CTL);
10150 val &= ~LCPLL_PLL_DISABLE;
10151 I915_WRITE(LCPLL_CTL, val);
10152
10153 if (intel_wait_for_register(dev_priv,
10154 LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10155 5))
10156 DRM_ERROR("LCPLL not locked yet\n");
10157
10158 if (val & LCPLL_CD_SOURCE_FCLK) {
10159 val = I915_READ(LCPLL_CTL);
10160 val &= ~LCPLL_CD_SOURCE_FCLK;
10161 I915_WRITE(LCPLL_CTL, val);
10162
10163 if (wait_for_us((I915_READ(LCPLL_CTL) &
10164 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10165 DRM_ERROR("Switching back to LCPLL failed\n");
10166 }
10167
10168 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
10169 intel_update_cdclk(&dev_priv->drm);
10170 }
10171
10172 /*
10173 * Package states C8 and deeper are really deep PC states that can only be
10174 * reached when all the devices on the system allow it, so even if the graphics
10175 * device allows PC8+, it doesn't mean the system will actually get to these
10176 * states. Our driver only allows PC8+ when going into runtime PM.
10177 *
10178 * The requirements for PC8+ are that all the outputs are disabled, the power
10179 * well is disabled and most interrupts are disabled, and these are also
10180 * requirements for runtime PM. When these conditions are met, we manually do
10181 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10182 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10183 * hang the machine.
10184 *
10185 * When we really reach PC8 or deeper states (not just when we allow it) we lose
10186 * the state of some registers, so when we come back from PC8+ we need to
10187 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10188 * need to take care of the registers kept by RC6. Notice that this happens even
10189 * if we don't put the device in PCI D3 state (which is what currently happens
10190 * because of the runtime PM support).
10191 *
10192 * For more, read "Display Sequences for Package C8" on the hardware
10193 * documentation.
10194 */
hsw_enable_pc8(struct drm_i915_private * dev_priv)10195 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
10196 {
10197 struct drm_device *dev = &dev_priv->drm;
10198 uint32_t val;
10199
10200 DRM_DEBUG_KMS("Enabling package C8+\n");
10201
10202 if (HAS_PCH_LPT_LP(dev)) {
10203 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10204 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10205 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10206 }
10207
10208 lpt_disable_clkout_dp(dev);
10209 hsw_disable_lcpll(dev_priv, true, true);
10210 }
10211
hsw_disable_pc8(struct drm_i915_private * dev_priv)10212 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
10213 {
10214 struct drm_device *dev = &dev_priv->drm;
10215 uint32_t val;
10216
10217 DRM_DEBUG_KMS("Disabling package C8+\n");
10218
10219 hsw_restore_lcpll(dev_priv);
10220 lpt_init_pch_refclk(dev);
10221
10222 if (HAS_PCH_LPT_LP(dev)) {
10223 val = I915_READ(SOUTH_DSPCLK_GATE_D);
10224 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10225 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10226 }
10227 }
10228
bxt_modeset_commit_cdclk(struct drm_atomic_state * old_state)10229 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10230 {
10231 struct drm_device *dev = old_state->dev;
10232 struct intel_atomic_state *old_intel_state =
10233 to_intel_atomic_state(old_state);
10234 unsigned int req_cdclk = old_intel_state->dev_cdclk;
10235
10236 bxt_set_cdclk(to_i915(dev), req_cdclk);
10237 }
10238
bdw_adjust_min_pipe_pixel_rate(struct intel_crtc_state * crtc_state,int pixel_rate)10239 static int bdw_adjust_min_pipe_pixel_rate(struct intel_crtc_state *crtc_state,
10240 int pixel_rate)
10241 {
10242 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
10243
10244 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
10245 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
10246 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10247
10248 /* BSpec says "Do not use DisplayPort with CDCLK less than
10249 * 432 MHz, audio enabled, port width x4, and link rate
10250 * HBR2 (5.4 GHz), or else there may be audio corruption or
10251 * screen corruption."
10252 */
10253 if (intel_crtc_has_dp_encoder(crtc_state) &&
10254 crtc_state->has_audio &&
10255 crtc_state->port_clock >= 540000 &&
10256 crtc_state->lane_count == 4)
10257 pixel_rate = max(432000, pixel_rate);
10258
10259 return pixel_rate;
10260 }
10261
10262 /* compute the max rate for new configuration */
ilk_max_pixel_rate(struct drm_atomic_state * state)10263 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
10264 {
10265 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10266 struct drm_i915_private *dev_priv = to_i915(state->dev);
10267 struct drm_crtc *crtc;
10268 struct drm_crtc_state *cstate;
10269 struct intel_crtc_state *crtc_state;
10270 unsigned max_pixel_rate = 0, i;
10271 enum pipe pipe;
10272
10273 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10274 sizeof(intel_state->min_pixclk));
10275
10276 for_each_crtc_in_state(state, crtc, cstate, i) {
10277 int pixel_rate;
10278
10279 crtc_state = to_intel_crtc_state(cstate);
10280 if (!crtc_state->base.enable) {
10281 intel_state->min_pixclk[i] = 0;
10282 continue;
10283 }
10284
10285 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
10286
10287 if (IS_BROADWELL(dev_priv) || IS_GEN9(dev_priv))
10288 pixel_rate = bdw_adjust_min_pipe_pixel_rate(crtc_state,
10289 pixel_rate);
10290
10291 intel_state->min_pixclk[i] = pixel_rate;
10292 }
10293
10294 for_each_pipe(dev_priv, pipe)
10295 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10296
10297 return max_pixel_rate;
10298 }
10299
broadwell_set_cdclk(struct drm_device * dev,int cdclk)10300 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10301 {
10302 struct drm_i915_private *dev_priv = to_i915(dev);
10303 uint32_t val, data;
10304 int ret;
10305
10306 if (WARN((I915_READ(LCPLL_CTL) &
10307 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10308 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10309 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10310 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10311 "trying to change cdclk frequency with cdclk not enabled\n"))
10312 return;
10313
10314 mutex_lock(&dev_priv->rps.hw_lock);
10315 ret = sandybridge_pcode_write(dev_priv,
10316 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10317 mutex_unlock(&dev_priv->rps.hw_lock);
10318 if (ret) {
10319 DRM_ERROR("failed to inform pcode about cdclk change\n");
10320 return;
10321 }
10322
10323 val = I915_READ(LCPLL_CTL);
10324 val |= LCPLL_CD_SOURCE_FCLK;
10325 I915_WRITE(LCPLL_CTL, val);
10326
10327 if (wait_for_us(I915_READ(LCPLL_CTL) &
10328 LCPLL_CD_SOURCE_FCLK_DONE, 1))
10329 DRM_ERROR("Switching to FCLK failed\n");
10330
10331 val = I915_READ(LCPLL_CTL);
10332 val &= ~LCPLL_CLK_FREQ_MASK;
10333
10334 switch (cdclk) {
10335 case 450000:
10336 val |= LCPLL_CLK_FREQ_450;
10337 data = 0;
10338 break;
10339 case 540000:
10340 val |= LCPLL_CLK_FREQ_54O_BDW;
10341 data = 1;
10342 break;
10343 case 337500:
10344 val |= LCPLL_CLK_FREQ_337_5_BDW;
10345 data = 2;
10346 break;
10347 case 675000:
10348 val |= LCPLL_CLK_FREQ_675_BDW;
10349 data = 3;
10350 break;
10351 default:
10352 WARN(1, "invalid cdclk frequency\n");
10353 return;
10354 }
10355
10356 I915_WRITE(LCPLL_CTL, val);
10357
10358 val = I915_READ(LCPLL_CTL);
10359 val &= ~LCPLL_CD_SOURCE_FCLK;
10360 I915_WRITE(LCPLL_CTL, val);
10361
10362 if (wait_for_us((I915_READ(LCPLL_CTL) &
10363 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10364 DRM_ERROR("Switching back to LCPLL failed\n");
10365
10366 mutex_lock(&dev_priv->rps.hw_lock);
10367 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10368 mutex_unlock(&dev_priv->rps.hw_lock);
10369
10370 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10371
10372 intel_update_cdclk(dev);
10373
10374 WARN(cdclk != dev_priv->cdclk_freq,
10375 "cdclk requested %d kHz but got %d kHz\n",
10376 cdclk, dev_priv->cdclk_freq);
10377 }
10378
broadwell_calc_cdclk(int max_pixclk)10379 static int broadwell_calc_cdclk(int max_pixclk)
10380 {
10381 if (max_pixclk > 540000)
10382 return 675000;
10383 else if (max_pixclk > 450000)
10384 return 540000;
10385 else if (max_pixclk > 337500)
10386 return 450000;
10387 else
10388 return 337500;
10389 }
10390
broadwell_modeset_calc_cdclk(struct drm_atomic_state * state)10391 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
10392 {
10393 struct drm_i915_private *dev_priv = to_i915(state->dev);
10394 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10395 int max_pixclk = ilk_max_pixel_rate(state);
10396 int cdclk;
10397
10398 /*
10399 * FIXME should also account for plane ratio
10400 * once 64bpp pixel formats are supported.
10401 */
10402 cdclk = broadwell_calc_cdclk(max_pixclk);
10403
10404 if (cdclk > dev_priv->max_cdclk_freq) {
10405 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10406 cdclk, dev_priv->max_cdclk_freq);
10407 return -EINVAL;
10408 }
10409
10410 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10411 if (!intel_state->active_crtcs)
10412 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
10413
10414 return 0;
10415 }
10416
broadwell_modeset_commit_cdclk(struct drm_atomic_state * old_state)10417 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10418 {
10419 struct drm_device *dev = old_state->dev;
10420 struct intel_atomic_state *old_intel_state =
10421 to_intel_atomic_state(old_state);
10422 unsigned req_cdclk = old_intel_state->dev_cdclk;
10423
10424 broadwell_set_cdclk(dev, req_cdclk);
10425 }
10426
skl_modeset_calc_cdclk(struct drm_atomic_state * state)10427 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10428 {
10429 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10430 struct drm_i915_private *dev_priv = to_i915(state->dev);
10431 const int max_pixclk = ilk_max_pixel_rate(state);
10432 int vco = intel_state->cdclk_pll_vco;
10433 int cdclk;
10434
10435 /*
10436 * FIXME should also account for plane ratio
10437 * once 64bpp pixel formats are supported.
10438 */
10439 cdclk = skl_calc_cdclk(max_pixclk, vco);
10440
10441 /*
10442 * FIXME move the cdclk caclulation to
10443 * compute_config() so we can fail gracegully.
10444 */
10445 if (cdclk > dev_priv->max_cdclk_freq) {
10446 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10447 cdclk, dev_priv->max_cdclk_freq);
10448 cdclk = dev_priv->max_cdclk_freq;
10449 }
10450
10451 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10452 if (!intel_state->active_crtcs)
10453 intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
10454
10455 return 0;
10456 }
10457
skl_modeset_commit_cdclk(struct drm_atomic_state * old_state)10458 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10459 {
10460 struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10461 struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10462 unsigned int req_cdclk = intel_state->dev_cdclk;
10463 unsigned int req_vco = intel_state->cdclk_pll_vco;
10464
10465 skl_set_cdclk(dev_priv, req_cdclk, req_vco);
10466 }
10467
haswell_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)10468 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10469 struct intel_crtc_state *crtc_state)
10470 {
10471 if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
10472 if (!intel_ddi_pll_select(crtc, crtc_state))
10473 return -EINVAL;
10474 }
10475
10476 crtc->lowfreq_avail = false;
10477
10478 return 0;
10479 }
10480
bxt_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10481 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10482 enum port port,
10483 struct intel_crtc_state *pipe_config)
10484 {
10485 enum intel_dpll_id id;
10486
10487 switch (port) {
10488 case PORT_A:
10489 id = DPLL_ID_SKL_DPLL0;
10490 break;
10491 case PORT_B:
10492 id = DPLL_ID_SKL_DPLL1;
10493 break;
10494 case PORT_C:
10495 id = DPLL_ID_SKL_DPLL2;
10496 break;
10497 default:
10498 DRM_ERROR("Incorrect port type\n");
10499 return;
10500 }
10501
10502 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10503 }
10504
skylake_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10505 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10506 enum port port,
10507 struct intel_crtc_state *pipe_config)
10508 {
10509 enum intel_dpll_id id;
10510 u32 temp;
10511
10512 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10513 id = temp >> (port * 3 + 1);
10514
10515 if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10516 return;
10517
10518 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10519 }
10520
haswell_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10521 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10522 enum port port,
10523 struct intel_crtc_state *pipe_config)
10524 {
10525 enum intel_dpll_id id;
10526 uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10527
10528 switch (ddi_pll_sel) {
10529 case PORT_CLK_SEL_WRPLL1:
10530 id = DPLL_ID_WRPLL1;
10531 break;
10532 case PORT_CLK_SEL_WRPLL2:
10533 id = DPLL_ID_WRPLL2;
10534 break;
10535 case PORT_CLK_SEL_SPLL:
10536 id = DPLL_ID_SPLL;
10537 break;
10538 case PORT_CLK_SEL_LCPLL_810:
10539 id = DPLL_ID_LCPLL_810;
10540 break;
10541 case PORT_CLK_SEL_LCPLL_1350:
10542 id = DPLL_ID_LCPLL_1350;
10543 break;
10544 case PORT_CLK_SEL_LCPLL_2700:
10545 id = DPLL_ID_LCPLL_2700;
10546 break;
10547 default:
10548 MISSING_CASE(ddi_pll_sel);
10549 /* fall through */
10550 case PORT_CLK_SEL_NONE:
10551 return;
10552 }
10553
10554 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10555 }
10556
hsw_get_transcoder_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,unsigned long * power_domain_mask)10557 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10558 struct intel_crtc_state *pipe_config,
10559 unsigned long *power_domain_mask)
10560 {
10561 struct drm_device *dev = crtc->base.dev;
10562 struct drm_i915_private *dev_priv = to_i915(dev);
10563 enum intel_display_power_domain power_domain;
10564 u32 tmp;
10565
10566 /*
10567 * The pipe->transcoder mapping is fixed with the exception of the eDP
10568 * transcoder handled below.
10569 */
10570 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10571
10572 /*
10573 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10574 * consistency and less surprising code; it's in always on power).
10575 */
10576 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10577 if (tmp & TRANS_DDI_FUNC_ENABLE) {
10578 enum pipe trans_edp_pipe;
10579 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10580 default:
10581 WARN(1, "unknown pipe linked to edp transcoder\n");
10582 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10583 case TRANS_DDI_EDP_INPUT_A_ON:
10584 trans_edp_pipe = PIPE_A;
10585 break;
10586 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10587 trans_edp_pipe = PIPE_B;
10588 break;
10589 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10590 trans_edp_pipe = PIPE_C;
10591 break;
10592 }
10593
10594 if (trans_edp_pipe == crtc->pipe)
10595 pipe_config->cpu_transcoder = TRANSCODER_EDP;
10596 }
10597
10598 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10599 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10600 return false;
10601 *power_domain_mask |= BIT(power_domain);
10602
10603 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10604
10605 return tmp & PIPECONF_ENABLE;
10606 }
10607
bxt_get_dsi_transcoder_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,unsigned long * power_domain_mask)10608 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10609 struct intel_crtc_state *pipe_config,
10610 unsigned long *power_domain_mask)
10611 {
10612 struct drm_device *dev = crtc->base.dev;
10613 struct drm_i915_private *dev_priv = to_i915(dev);
10614 enum intel_display_power_domain power_domain;
10615 enum port port;
10616 enum transcoder cpu_transcoder;
10617 u32 tmp;
10618
10619 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10620 if (port == PORT_A)
10621 cpu_transcoder = TRANSCODER_DSI_A;
10622 else
10623 cpu_transcoder = TRANSCODER_DSI_C;
10624
10625 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10626 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10627 continue;
10628 *power_domain_mask |= BIT(power_domain);
10629
10630 /*
10631 * The PLL needs to be enabled with a valid divider
10632 * configuration, otherwise accessing DSI registers will hang
10633 * the machine. See BSpec North Display Engine
10634 * registers/MIPI[BXT]. We can break out here early, since we
10635 * need the same DSI PLL to be enabled for both DSI ports.
10636 */
10637 if (!intel_dsi_pll_is_enabled(dev_priv))
10638 break;
10639
10640 /* XXX: this works for video mode only */
10641 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10642 if (!(tmp & DPI_ENABLE))
10643 continue;
10644
10645 tmp = I915_READ(MIPI_CTRL(port));
10646 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10647 continue;
10648
10649 pipe_config->cpu_transcoder = cpu_transcoder;
10650 break;
10651 }
10652
10653 return transcoder_is_dsi(pipe_config->cpu_transcoder);
10654 }
10655
haswell_get_ddi_port_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10656 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10657 struct intel_crtc_state *pipe_config)
10658 {
10659 struct drm_device *dev = crtc->base.dev;
10660 struct drm_i915_private *dev_priv = to_i915(dev);
10661 struct intel_shared_dpll *pll;
10662 enum port port;
10663 uint32_t tmp;
10664
10665 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10666
10667 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10668
10669 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
10670 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10671 else if (IS_BROXTON(dev))
10672 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10673 else
10674 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10675
10676 pll = pipe_config->shared_dpll;
10677 if (pll) {
10678 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10679 &pipe_config->dpll_hw_state));
10680 }
10681
10682 /*
10683 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10684 * DDI E. So just check whether this pipe is wired to DDI E and whether
10685 * the PCH transcoder is on.
10686 */
10687 if (INTEL_INFO(dev)->gen < 9 &&
10688 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10689 pipe_config->has_pch_encoder = true;
10690
10691 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10692 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10693 FDI_DP_PORT_WIDTH_SHIFT) + 1;
10694
10695 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10696 }
10697 }
10698
haswell_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10699 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10700 struct intel_crtc_state *pipe_config)
10701 {
10702 struct drm_device *dev = crtc->base.dev;
10703 struct drm_i915_private *dev_priv = to_i915(dev);
10704 enum intel_display_power_domain power_domain;
10705 unsigned long power_domain_mask;
10706 bool active;
10707
10708 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10709 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10710 return false;
10711 power_domain_mask = BIT(power_domain);
10712
10713 pipe_config->shared_dpll = NULL;
10714
10715 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10716
10717 if (IS_BROXTON(dev_priv) &&
10718 bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10719 WARN_ON(active);
10720 active = true;
10721 }
10722
10723 if (!active)
10724 goto out;
10725
10726 if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10727 haswell_get_ddi_port_state(crtc, pipe_config);
10728 intel_get_pipe_timings(crtc, pipe_config);
10729 }
10730
10731 intel_get_pipe_src_size(crtc, pipe_config);
10732
10733 pipe_config->gamma_mode =
10734 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10735
10736 if (INTEL_INFO(dev)->gen >= 9) {
10737 skl_init_scalers(dev, crtc, pipe_config);
10738 }
10739
10740 if (INTEL_INFO(dev)->gen >= 9) {
10741 pipe_config->scaler_state.scaler_id = -1;
10742 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10743 }
10744
10745 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10746 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10747 power_domain_mask |= BIT(power_domain);
10748 if (INTEL_INFO(dev)->gen >= 9)
10749 skylake_get_pfit_config(crtc, pipe_config);
10750 else
10751 ironlake_get_pfit_config(crtc, pipe_config);
10752 }
10753
10754 if (IS_HASWELL(dev))
10755 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10756 (I915_READ(IPS_CTL) & IPS_ENABLE);
10757
10758 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10759 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10760 pipe_config->pixel_multiplier =
10761 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10762 } else {
10763 pipe_config->pixel_multiplier = 1;
10764 }
10765
10766 out:
10767 for_each_power_domain(power_domain, power_domain_mask)
10768 intel_display_power_put(dev_priv, power_domain);
10769
10770 return active;
10771 }
10772
i845_update_cursor(struct drm_crtc * crtc,u32 base,const struct intel_plane_state * plane_state)10773 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10774 const struct intel_plane_state *plane_state)
10775 {
10776 struct drm_device *dev = crtc->dev;
10777 struct drm_i915_private *dev_priv = to_i915(dev);
10778 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10779 uint32_t cntl = 0, size = 0;
10780
10781 if (plane_state && plane_state->base.visible) {
10782 unsigned int width = plane_state->base.crtc_w;
10783 unsigned int height = plane_state->base.crtc_h;
10784 unsigned int stride = roundup_pow_of_two(width) * 4;
10785
10786 switch (stride) {
10787 default:
10788 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10789 width, stride);
10790 stride = 256;
10791 /* fallthrough */
10792 case 256:
10793 case 512:
10794 case 1024:
10795 case 2048:
10796 break;
10797 }
10798
10799 cntl |= CURSOR_ENABLE |
10800 CURSOR_GAMMA_ENABLE |
10801 CURSOR_FORMAT_ARGB |
10802 CURSOR_STRIDE(stride);
10803
10804 size = (height << 12) | width;
10805 }
10806
10807 if (intel_crtc->cursor_cntl != 0 &&
10808 (intel_crtc->cursor_base != base ||
10809 intel_crtc->cursor_size != size ||
10810 intel_crtc->cursor_cntl != cntl)) {
10811 /* On these chipsets we can only modify the base/size/stride
10812 * whilst the cursor is disabled.
10813 */
10814 I915_WRITE(CURCNTR(PIPE_A), 0);
10815 POSTING_READ(CURCNTR(PIPE_A));
10816 intel_crtc->cursor_cntl = 0;
10817 }
10818
10819 if (intel_crtc->cursor_base != base) {
10820 I915_WRITE(CURBASE(PIPE_A), base);
10821 intel_crtc->cursor_base = base;
10822 }
10823
10824 if (intel_crtc->cursor_size != size) {
10825 I915_WRITE(CURSIZE, size);
10826 intel_crtc->cursor_size = size;
10827 }
10828
10829 if (intel_crtc->cursor_cntl != cntl) {
10830 I915_WRITE(CURCNTR(PIPE_A), cntl);
10831 POSTING_READ(CURCNTR(PIPE_A));
10832 intel_crtc->cursor_cntl = cntl;
10833 }
10834 }
10835
i9xx_update_cursor(struct drm_crtc * crtc,u32 base,const struct intel_plane_state * plane_state)10836 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10837 const struct intel_plane_state *plane_state)
10838 {
10839 struct drm_device *dev = crtc->dev;
10840 struct drm_i915_private *dev_priv = to_i915(dev);
10841 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10842 const struct skl_wm_values *wm = &dev_priv->wm.skl_results;
10843 int pipe = intel_crtc->pipe;
10844 uint32_t cntl = 0;
10845
10846 if (INTEL_GEN(dev_priv) >= 9 && wm->dirty_pipes & drm_crtc_mask(crtc))
10847 skl_write_cursor_wm(intel_crtc, wm);
10848
10849 if (plane_state && plane_state->base.visible) {
10850 cntl = MCURSOR_GAMMA_ENABLE;
10851 switch (plane_state->base.crtc_w) {
10852 case 64:
10853 cntl |= CURSOR_MODE_64_ARGB_AX;
10854 break;
10855 case 128:
10856 cntl |= CURSOR_MODE_128_ARGB_AX;
10857 break;
10858 case 256:
10859 cntl |= CURSOR_MODE_256_ARGB_AX;
10860 break;
10861 default:
10862 MISSING_CASE(plane_state->base.crtc_w);
10863 return;
10864 }
10865 cntl |= pipe << 28; /* Connect to correct pipe */
10866
10867 if (HAS_DDI(dev))
10868 cntl |= CURSOR_PIPE_CSC_ENABLE;
10869
10870 if (plane_state->base.rotation == DRM_ROTATE_180)
10871 cntl |= CURSOR_ROTATE_180;
10872 }
10873
10874 if (intel_crtc->cursor_cntl != cntl) {
10875 I915_WRITE(CURCNTR(pipe), cntl);
10876 POSTING_READ(CURCNTR(pipe));
10877 intel_crtc->cursor_cntl = cntl;
10878 }
10879
10880 /* and commit changes on next vblank */
10881 I915_WRITE(CURBASE(pipe), base);
10882 POSTING_READ(CURBASE(pipe));
10883
10884 intel_crtc->cursor_base = base;
10885 }
10886
10887 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
intel_crtc_update_cursor(struct drm_crtc * crtc,const struct intel_plane_state * plane_state)10888 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10889 const struct intel_plane_state *plane_state)
10890 {
10891 struct drm_device *dev = crtc->dev;
10892 struct drm_i915_private *dev_priv = to_i915(dev);
10893 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10894 int pipe = intel_crtc->pipe;
10895 u32 base = intel_crtc->cursor_addr;
10896 u32 pos = 0;
10897
10898 if (plane_state) {
10899 int x = plane_state->base.crtc_x;
10900 int y = plane_state->base.crtc_y;
10901
10902 if (x < 0) {
10903 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10904 x = -x;
10905 }
10906 pos |= x << CURSOR_X_SHIFT;
10907
10908 if (y < 0) {
10909 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10910 y = -y;
10911 }
10912 pos |= y << CURSOR_Y_SHIFT;
10913
10914 /* ILK+ do this automagically */
10915 if (HAS_GMCH_DISPLAY(dev) &&
10916 plane_state->base.rotation == DRM_ROTATE_180) {
10917 base += (plane_state->base.crtc_h *
10918 plane_state->base.crtc_w - 1) * 4;
10919 }
10920 }
10921
10922 I915_WRITE(CURPOS(pipe), pos);
10923
10924 if (IS_845G(dev) || IS_I865G(dev))
10925 i845_update_cursor(crtc, base, plane_state);
10926 else
10927 i9xx_update_cursor(crtc, base, plane_state);
10928 }
10929
cursor_size_ok(struct drm_device * dev,uint32_t width,uint32_t height)10930 static bool cursor_size_ok(struct drm_device *dev,
10931 uint32_t width, uint32_t height)
10932 {
10933 if (width == 0 || height == 0)
10934 return false;
10935
10936 /*
10937 * 845g/865g are special in that they are only limited by
10938 * the width of their cursors, the height is arbitrary up to
10939 * the precision of the register. Everything else requires
10940 * square cursors, limited to a few power-of-two sizes.
10941 */
10942 if (IS_845G(dev) || IS_I865G(dev)) {
10943 if ((width & 63) != 0)
10944 return false;
10945
10946 if (width > (IS_845G(dev) ? 64 : 512))
10947 return false;
10948
10949 if (height > 1023)
10950 return false;
10951 } else {
10952 switch (width | height) {
10953 case 256:
10954 case 128:
10955 if (IS_GEN2(dev))
10956 return false;
10957 case 64:
10958 break;
10959 default:
10960 return false;
10961 }
10962 }
10963
10964 return true;
10965 }
10966
10967 /* VESA 640x480x72Hz mode to set on the pipe */
10968 static struct drm_display_mode load_detect_mode = {
10969 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10970 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10971 };
10972
10973 struct drm_framebuffer *
__intel_framebuffer_create(struct drm_device * dev,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)10974 __intel_framebuffer_create(struct drm_device *dev,
10975 struct drm_mode_fb_cmd2 *mode_cmd,
10976 struct drm_i915_gem_object *obj)
10977 {
10978 struct intel_framebuffer *intel_fb;
10979 int ret;
10980
10981 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10982 if (!intel_fb)
10983 return ERR_PTR(-ENOMEM);
10984
10985 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10986 if (ret)
10987 goto err;
10988
10989 return &intel_fb->base;
10990
10991 err:
10992 kfree(intel_fb);
10993 return ERR_PTR(ret);
10994 }
10995
10996 static struct drm_framebuffer *
intel_framebuffer_create(struct drm_device * dev,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)10997 intel_framebuffer_create(struct drm_device *dev,
10998 struct drm_mode_fb_cmd2 *mode_cmd,
10999 struct drm_i915_gem_object *obj)
11000 {
11001 struct drm_framebuffer *fb;
11002 int ret;
11003
11004 ret = i915_mutex_lock_interruptible(dev);
11005 if (ret)
11006 return ERR_PTR(ret);
11007 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
11008 mutex_unlock(&dev->struct_mutex);
11009
11010 return fb;
11011 }
11012
11013 static u32
intel_framebuffer_pitch_for_width(int width,int bpp)11014 intel_framebuffer_pitch_for_width(int width, int bpp)
11015 {
11016 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
11017 return ALIGN(pitch, 64);
11018 }
11019
11020 static u32
intel_framebuffer_size_for_mode(struct drm_display_mode * mode,int bpp)11021 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
11022 {
11023 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
11024 return PAGE_ALIGN(pitch * mode->vdisplay);
11025 }
11026
11027 static struct drm_framebuffer *
intel_framebuffer_create_for_mode(struct drm_device * dev,struct drm_display_mode * mode,int depth,int bpp)11028 intel_framebuffer_create_for_mode(struct drm_device *dev,
11029 struct drm_display_mode *mode,
11030 int depth, int bpp)
11031 {
11032 struct drm_framebuffer *fb;
11033 struct drm_i915_gem_object *obj;
11034 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
11035
11036 obj = i915_gem_object_create(dev,
11037 intel_framebuffer_size_for_mode(mode, bpp));
11038 if (IS_ERR(obj))
11039 return ERR_CAST(obj);
11040
11041 mode_cmd.width = mode->hdisplay;
11042 mode_cmd.height = mode->vdisplay;
11043 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
11044 bpp);
11045 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
11046
11047 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
11048 if (IS_ERR(fb))
11049 i915_gem_object_put_unlocked(obj);
11050
11051 return fb;
11052 }
11053
11054 static struct drm_framebuffer *
mode_fits_in_fbdev(struct drm_device * dev,struct drm_display_mode * mode)11055 mode_fits_in_fbdev(struct drm_device *dev,
11056 struct drm_display_mode *mode)
11057 {
11058 #ifdef CONFIG_DRM_FBDEV_EMULATION
11059 struct drm_i915_private *dev_priv = to_i915(dev);
11060 struct drm_i915_gem_object *obj;
11061 struct drm_framebuffer *fb;
11062
11063 if (!dev_priv->fbdev)
11064 return NULL;
11065
11066 if (!dev_priv->fbdev->fb)
11067 return NULL;
11068
11069 obj = dev_priv->fbdev->fb->obj;
11070 BUG_ON(!obj);
11071
11072 fb = &dev_priv->fbdev->fb->base;
11073 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
11074 fb->bits_per_pixel))
11075 return NULL;
11076
11077 if (obj->base.size < mode->vdisplay * fb->pitches[0])
11078 return NULL;
11079
11080 drm_framebuffer_reference(fb);
11081 return fb;
11082 #else
11083 return NULL;
11084 #endif
11085 }
11086
intel_modeset_setup_plane_state(struct drm_atomic_state * state,struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_framebuffer * fb,int x,int y)11087 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
11088 struct drm_crtc *crtc,
11089 struct drm_display_mode *mode,
11090 struct drm_framebuffer *fb,
11091 int x, int y)
11092 {
11093 struct drm_plane_state *plane_state;
11094 int hdisplay, vdisplay;
11095 int ret;
11096
11097 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
11098 if (IS_ERR(plane_state))
11099 return PTR_ERR(plane_state);
11100
11101 if (mode)
11102 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11103 else
11104 hdisplay = vdisplay = 0;
11105
11106 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
11107 if (ret)
11108 return ret;
11109 drm_atomic_set_fb_for_plane(plane_state, fb);
11110 plane_state->crtc_x = 0;
11111 plane_state->crtc_y = 0;
11112 plane_state->crtc_w = hdisplay;
11113 plane_state->crtc_h = vdisplay;
11114 plane_state->src_x = x << 16;
11115 plane_state->src_y = y << 16;
11116 plane_state->src_w = hdisplay << 16;
11117 plane_state->src_h = vdisplay << 16;
11118
11119 return 0;
11120 }
11121
intel_get_load_detect_pipe(struct drm_connector * connector,struct drm_display_mode * mode,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)11122 bool intel_get_load_detect_pipe(struct drm_connector *connector,
11123 struct drm_display_mode *mode,
11124 struct intel_load_detect_pipe *old,
11125 struct drm_modeset_acquire_ctx *ctx)
11126 {
11127 struct intel_crtc *intel_crtc;
11128 struct intel_encoder *intel_encoder =
11129 intel_attached_encoder(connector);
11130 struct drm_crtc *possible_crtc;
11131 struct drm_encoder *encoder = &intel_encoder->base;
11132 struct drm_crtc *crtc = NULL;
11133 struct drm_device *dev = encoder->dev;
11134 struct drm_framebuffer *fb;
11135 struct drm_mode_config *config = &dev->mode_config;
11136 struct drm_atomic_state *state = NULL, *restore_state = NULL;
11137 struct drm_connector_state *connector_state;
11138 struct intel_crtc_state *crtc_state;
11139 int ret, i = -1;
11140
11141 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11142 connector->base.id, connector->name,
11143 encoder->base.id, encoder->name);
11144
11145 old->restore_state = NULL;
11146
11147 retry:
11148 ret = drm_modeset_lock(&config->connection_mutex, ctx);
11149 if (ret)
11150 goto fail;
11151
11152 /*
11153 * Algorithm gets a little messy:
11154 *
11155 * - if the connector already has an assigned crtc, use it (but make
11156 * sure it's on first)
11157 *
11158 * - try to find the first unused crtc that can drive this connector,
11159 * and use that if we find one
11160 */
11161
11162 /* See if we already have a CRTC for this connector */
11163 if (connector->state->crtc) {
11164 crtc = connector->state->crtc;
11165
11166 ret = drm_modeset_lock(&crtc->mutex, ctx);
11167 if (ret)
11168 goto fail;
11169
11170 /* Make sure the crtc and connector are running */
11171 goto found;
11172 }
11173
11174 /* Find an unused one (if possible) */
11175 for_each_crtc(dev, possible_crtc) {
11176 i++;
11177 if (!(encoder->possible_crtcs & (1 << i)))
11178 continue;
11179
11180 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11181 if (ret)
11182 goto fail;
11183
11184 if (possible_crtc->state->enable) {
11185 drm_modeset_unlock(&possible_crtc->mutex);
11186 continue;
11187 }
11188
11189 crtc = possible_crtc;
11190 break;
11191 }
11192
11193 /*
11194 * If we didn't find an unused CRTC, don't use any.
11195 */
11196 if (!crtc) {
11197 DRM_DEBUG_KMS("no pipe available for load-detect\n");
11198 goto fail;
11199 }
11200
11201 found:
11202 intel_crtc = to_intel_crtc(crtc);
11203
11204 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11205 if (ret)
11206 goto fail;
11207
11208 state = drm_atomic_state_alloc(dev);
11209 restore_state = drm_atomic_state_alloc(dev);
11210 if (!state || !restore_state) {
11211 ret = -ENOMEM;
11212 goto fail;
11213 }
11214
11215 state->acquire_ctx = ctx;
11216 restore_state->acquire_ctx = ctx;
11217
11218 connector_state = drm_atomic_get_connector_state(state, connector);
11219 if (IS_ERR(connector_state)) {
11220 ret = PTR_ERR(connector_state);
11221 goto fail;
11222 }
11223
11224 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11225 if (ret)
11226 goto fail;
11227
11228 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11229 if (IS_ERR(crtc_state)) {
11230 ret = PTR_ERR(crtc_state);
11231 goto fail;
11232 }
11233
11234 crtc_state->base.active = crtc_state->base.enable = true;
11235
11236 if (!mode)
11237 mode = &load_detect_mode;
11238
11239 /* We need a framebuffer large enough to accommodate all accesses
11240 * that the plane may generate whilst we perform load detection.
11241 * We can not rely on the fbcon either being present (we get called
11242 * during its initialisation to detect all boot displays, or it may
11243 * not even exist) or that it is large enough to satisfy the
11244 * requested mode.
11245 */
11246 fb = mode_fits_in_fbdev(dev, mode);
11247 if (fb == NULL) {
11248 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
11249 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
11250 } else
11251 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
11252 if (IS_ERR(fb)) {
11253 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
11254 goto fail;
11255 }
11256
11257 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11258 if (ret)
11259 goto fail;
11260
11261 drm_framebuffer_unreference(fb);
11262
11263 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11264 if (ret)
11265 goto fail;
11266
11267 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11268 if (!ret)
11269 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11270 if (!ret)
11271 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11272 if (ret) {
11273 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11274 goto fail;
11275 }
11276
11277 ret = drm_atomic_commit(state);
11278 if (ret) {
11279 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11280 goto fail;
11281 }
11282
11283 old->restore_state = restore_state;
11284
11285 /* let the connector get through one full cycle before testing */
11286 intel_wait_for_vblank(dev, intel_crtc->pipe);
11287 return true;
11288
11289 fail:
11290 drm_atomic_state_free(state);
11291 drm_atomic_state_free(restore_state);
11292 restore_state = state = NULL;
11293
11294 if (ret == -EDEADLK) {
11295 drm_modeset_backoff(ctx);
11296 goto retry;
11297 }
11298
11299 return false;
11300 }
11301
intel_release_load_detect_pipe(struct drm_connector * connector,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)11302 void intel_release_load_detect_pipe(struct drm_connector *connector,
11303 struct intel_load_detect_pipe *old,
11304 struct drm_modeset_acquire_ctx *ctx)
11305 {
11306 struct intel_encoder *intel_encoder =
11307 intel_attached_encoder(connector);
11308 struct drm_encoder *encoder = &intel_encoder->base;
11309 struct drm_atomic_state *state = old->restore_state;
11310 int ret;
11311
11312 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11313 connector->base.id, connector->name,
11314 encoder->base.id, encoder->name);
11315
11316 if (!state)
11317 return;
11318
11319 ret = drm_atomic_commit(state);
11320 if (ret) {
11321 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11322 drm_atomic_state_free(state);
11323 }
11324 }
11325
i9xx_pll_refclk(struct drm_device * dev,const struct intel_crtc_state * pipe_config)11326 static int i9xx_pll_refclk(struct drm_device *dev,
11327 const struct intel_crtc_state *pipe_config)
11328 {
11329 struct drm_i915_private *dev_priv = to_i915(dev);
11330 u32 dpll = pipe_config->dpll_hw_state.dpll;
11331
11332 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11333 return dev_priv->vbt.lvds_ssc_freq;
11334 else if (HAS_PCH_SPLIT(dev))
11335 return 120000;
11336 else if (!IS_GEN2(dev))
11337 return 96000;
11338 else
11339 return 48000;
11340 }
11341
11342 /* Returns the clock of the currently programmed mode of the given pipe. */
i9xx_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)11343 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11344 struct intel_crtc_state *pipe_config)
11345 {
11346 struct drm_device *dev = crtc->base.dev;
11347 struct drm_i915_private *dev_priv = to_i915(dev);
11348 int pipe = pipe_config->cpu_transcoder;
11349 u32 dpll = pipe_config->dpll_hw_state.dpll;
11350 u32 fp;
11351 struct dpll clock;
11352 int port_clock;
11353 int refclk = i9xx_pll_refclk(dev, pipe_config);
11354
11355 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11356 fp = pipe_config->dpll_hw_state.fp0;
11357 else
11358 fp = pipe_config->dpll_hw_state.fp1;
11359
11360 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11361 if (IS_PINEVIEW(dev)) {
11362 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11363 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11364 } else {
11365 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11366 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11367 }
11368
11369 if (!IS_GEN2(dev)) {
11370 if (IS_PINEVIEW(dev))
11371 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11372 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11373 else
11374 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11375 DPLL_FPA01_P1_POST_DIV_SHIFT);
11376
11377 switch (dpll & DPLL_MODE_MASK) {
11378 case DPLLB_MODE_DAC_SERIAL:
11379 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11380 5 : 10;
11381 break;
11382 case DPLLB_MODE_LVDS:
11383 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11384 7 : 14;
11385 break;
11386 default:
11387 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11388 "mode\n", (int)(dpll & DPLL_MODE_MASK));
11389 return;
11390 }
11391
11392 if (IS_PINEVIEW(dev))
11393 port_clock = pnv_calc_dpll_params(refclk, &clock);
11394 else
11395 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11396 } else {
11397 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
11398 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11399
11400 if (is_lvds) {
11401 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11402 DPLL_FPA01_P1_POST_DIV_SHIFT);
11403
11404 if (lvds & LVDS_CLKB_POWER_UP)
11405 clock.p2 = 7;
11406 else
11407 clock.p2 = 14;
11408 } else {
11409 if (dpll & PLL_P1_DIVIDE_BY_TWO)
11410 clock.p1 = 2;
11411 else {
11412 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11413 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11414 }
11415 if (dpll & PLL_P2_DIVIDE_BY_4)
11416 clock.p2 = 4;
11417 else
11418 clock.p2 = 2;
11419 }
11420
11421 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11422 }
11423
11424 /*
11425 * This value includes pixel_multiplier. We will use
11426 * port_clock to compute adjusted_mode.crtc_clock in the
11427 * encoder's get_config() function.
11428 */
11429 pipe_config->port_clock = port_clock;
11430 }
11431
intel_dotclock_calculate(int link_freq,const struct intel_link_m_n * m_n)11432 int intel_dotclock_calculate(int link_freq,
11433 const struct intel_link_m_n *m_n)
11434 {
11435 /*
11436 * The calculation for the data clock is:
11437 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11438 * But we want to avoid losing precison if possible, so:
11439 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11440 *
11441 * and the link clock is simpler:
11442 * link_clock = (m * link_clock) / n
11443 */
11444
11445 if (!m_n->link_n)
11446 return 0;
11447
11448 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11449 }
11450
ironlake_pch_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)11451 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11452 struct intel_crtc_state *pipe_config)
11453 {
11454 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11455
11456 /* read out port_clock from the DPLL */
11457 i9xx_crtc_clock_get(crtc, pipe_config);
11458
11459 /*
11460 * In case there is an active pipe without active ports,
11461 * we may need some idea for the dotclock anyway.
11462 * Calculate one based on the FDI configuration.
11463 */
11464 pipe_config->base.adjusted_mode.crtc_clock =
11465 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11466 &pipe_config->fdi_m_n);
11467 }
11468
11469 /** Returns the currently programmed mode of the given pipe. */
intel_crtc_mode_get(struct drm_device * dev,struct drm_crtc * crtc)11470 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11471 struct drm_crtc *crtc)
11472 {
11473 struct drm_i915_private *dev_priv = to_i915(dev);
11474 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11475 enum transcoder cpu_transcoder;
11476 struct drm_display_mode *mode;
11477 struct intel_crtc_state *pipe_config;
11478 u32 htot, hsync, vtot, vsync;
11479 enum pipe pipe = intel_crtc->pipe;
11480
11481 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11482 if (!mode)
11483 return NULL;
11484
11485 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11486 if (!pipe_config) {
11487 kfree(mode);
11488 return NULL;
11489 }
11490
11491 /*
11492 * Construct a pipe_config sufficient for getting the clock info
11493 * back out of crtc_clock_get.
11494 *
11495 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11496 * to use a real value here instead.
11497 */
11498 pipe_config->cpu_transcoder = (enum transcoder) pipe;
11499 pipe_config->pixel_multiplier = 1;
11500 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11501 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11502 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11503 i9xx_crtc_clock_get(intel_crtc, pipe_config);
11504
11505 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
11506
11507 cpu_transcoder = pipe_config->cpu_transcoder;
11508 htot = I915_READ(HTOTAL(cpu_transcoder));
11509 hsync = I915_READ(HSYNC(cpu_transcoder));
11510 vtot = I915_READ(VTOTAL(cpu_transcoder));
11511 vsync = I915_READ(VSYNC(cpu_transcoder));
11512
11513 mode->hdisplay = (htot & 0xffff) + 1;
11514 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11515 mode->hsync_start = (hsync & 0xffff) + 1;
11516 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11517 mode->vdisplay = (vtot & 0xffff) + 1;
11518 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11519 mode->vsync_start = (vsync & 0xffff) + 1;
11520 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11521
11522 drm_mode_set_name(mode);
11523
11524 kfree(pipe_config);
11525
11526 return mode;
11527 }
11528
intel_crtc_destroy(struct drm_crtc * crtc)11529 static void intel_crtc_destroy(struct drm_crtc *crtc)
11530 {
11531 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11532 struct drm_device *dev = crtc->dev;
11533 struct intel_flip_work *work;
11534
11535 spin_lock_irq(&dev->event_lock);
11536 work = intel_crtc->flip_work;
11537 intel_crtc->flip_work = NULL;
11538 spin_unlock_irq(&dev->event_lock);
11539
11540 if (work) {
11541 cancel_work_sync(&work->mmio_work);
11542 cancel_work_sync(&work->unpin_work);
11543 kfree(work);
11544 }
11545
11546 drm_crtc_cleanup(crtc);
11547
11548 kfree(intel_crtc);
11549 }
11550
intel_unpin_work_fn(struct work_struct * __work)11551 static void intel_unpin_work_fn(struct work_struct *__work)
11552 {
11553 struct intel_flip_work *work =
11554 container_of(__work, struct intel_flip_work, unpin_work);
11555 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11556 struct drm_device *dev = crtc->base.dev;
11557 struct drm_plane *primary = crtc->base.primary;
11558
11559 if (is_mmio_work(work))
11560 flush_work(&work->mmio_work);
11561
11562 mutex_lock(&dev->struct_mutex);
11563 intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
11564 i915_gem_object_put(work->pending_flip_obj);
11565 mutex_unlock(&dev->struct_mutex);
11566
11567 i915_gem_request_put(work->flip_queued_req);
11568
11569 intel_frontbuffer_flip_complete(to_i915(dev),
11570 to_intel_plane(primary)->frontbuffer_bit);
11571 intel_fbc_post_update(crtc);
11572 drm_framebuffer_unreference(work->old_fb);
11573
11574 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11575 atomic_dec(&crtc->unpin_work_count);
11576
11577 kfree(work);
11578 }
11579
11580 /* Is 'a' after or equal to 'b'? */
g4x_flip_count_after_eq(u32 a,u32 b)11581 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11582 {
11583 return !((a - b) & 0x80000000);
11584 }
11585
__pageflip_finished_cs(struct intel_crtc * crtc,struct intel_flip_work * work)11586 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11587 struct intel_flip_work *work)
11588 {
11589 struct drm_device *dev = crtc->base.dev;
11590 struct drm_i915_private *dev_priv = to_i915(dev);
11591
11592 if (abort_flip_on_reset(crtc))
11593 return true;
11594
11595 /*
11596 * The relevant registers doen't exist on pre-ctg.
11597 * As the flip done interrupt doesn't trigger for mmio
11598 * flips on gmch platforms, a flip count check isn't
11599 * really needed there. But since ctg has the registers,
11600 * include it in the check anyway.
11601 */
11602 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
11603 return true;
11604
11605 /*
11606 * BDW signals flip done immediately if the plane
11607 * is disabled, even if the plane enable is already
11608 * armed to occur at the next vblank :(
11609 */
11610
11611 /*
11612 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11613 * used the same base address. In that case the mmio flip might
11614 * have completed, but the CS hasn't even executed the flip yet.
11615 *
11616 * A flip count check isn't enough as the CS might have updated
11617 * the base address just after start of vblank, but before we
11618 * managed to process the interrupt. This means we'd complete the
11619 * CS flip too soon.
11620 *
11621 * Combining both checks should get us a good enough result. It may
11622 * still happen that the CS flip has been executed, but has not
11623 * yet actually completed. But in case the base address is the same
11624 * anyway, we don't really care.
11625 */
11626 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11627 crtc->flip_work->gtt_offset &&
11628 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11629 crtc->flip_work->flip_count);
11630 }
11631
11632 static bool
__pageflip_finished_mmio(struct intel_crtc * crtc,struct intel_flip_work * work)11633 __pageflip_finished_mmio(struct intel_crtc *crtc,
11634 struct intel_flip_work *work)
11635 {
11636 /*
11637 * MMIO work completes when vblank is different from
11638 * flip_queued_vblank.
11639 *
11640 * Reset counter value doesn't matter, this is handled by
11641 * i915_wait_request finishing early, so no need to handle
11642 * reset here.
11643 */
11644 return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11645 }
11646
11647
pageflip_finished(struct intel_crtc * crtc,struct intel_flip_work * work)11648 static bool pageflip_finished(struct intel_crtc *crtc,
11649 struct intel_flip_work *work)
11650 {
11651 if (!atomic_read(&work->pending))
11652 return false;
11653
11654 smp_rmb();
11655
11656 if (is_mmio_work(work))
11657 return __pageflip_finished_mmio(crtc, work);
11658 else
11659 return __pageflip_finished_cs(crtc, work);
11660 }
11661
intel_finish_page_flip_cs(struct drm_i915_private * dev_priv,int pipe)11662 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11663 {
11664 struct drm_device *dev = &dev_priv->drm;
11665 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11666 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11667 struct intel_flip_work *work;
11668 unsigned long flags;
11669
11670 /* Ignore early vblank irqs */
11671 if (!crtc)
11672 return;
11673
11674 /*
11675 * This is called both by irq handlers and the reset code (to complete
11676 * lost pageflips) so needs the full irqsave spinlocks.
11677 */
11678 spin_lock_irqsave(&dev->event_lock, flags);
11679 work = intel_crtc->flip_work;
11680
11681 if (work != NULL &&
11682 !is_mmio_work(work) &&
11683 pageflip_finished(intel_crtc, work))
11684 page_flip_completed(intel_crtc);
11685
11686 spin_unlock_irqrestore(&dev->event_lock, flags);
11687 }
11688
intel_finish_page_flip_mmio(struct drm_i915_private * dev_priv,int pipe)11689 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11690 {
11691 struct drm_device *dev = &dev_priv->drm;
11692 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11693 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11694 struct intel_flip_work *work;
11695 unsigned long flags;
11696
11697 /* Ignore early vblank irqs */
11698 if (!crtc)
11699 return;
11700
11701 /*
11702 * This is called both by irq handlers and the reset code (to complete
11703 * lost pageflips) so needs the full irqsave spinlocks.
11704 */
11705 spin_lock_irqsave(&dev->event_lock, flags);
11706 work = intel_crtc->flip_work;
11707
11708 if (work != NULL &&
11709 is_mmio_work(work) &&
11710 pageflip_finished(intel_crtc, work))
11711 page_flip_completed(intel_crtc);
11712
11713 spin_unlock_irqrestore(&dev->event_lock, flags);
11714 }
11715
intel_mark_page_flip_active(struct intel_crtc * crtc,struct intel_flip_work * work)11716 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11717 struct intel_flip_work *work)
11718 {
11719 work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11720
11721 /* Ensure that the work item is consistent when activating it ... */
11722 smp_mb__before_atomic();
11723 atomic_set(&work->pending, 1);
11724 }
11725
intel_gen2_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11726 static int intel_gen2_queue_flip(struct drm_device *dev,
11727 struct drm_crtc *crtc,
11728 struct drm_framebuffer *fb,
11729 struct drm_i915_gem_object *obj,
11730 struct drm_i915_gem_request *req,
11731 uint32_t flags)
11732 {
11733 struct intel_ring *ring = req->ring;
11734 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11735 u32 flip_mask;
11736 int ret;
11737
11738 ret = intel_ring_begin(req, 6);
11739 if (ret)
11740 return ret;
11741
11742 /* Can't queue multiple flips, so wait for the previous
11743 * one to finish before executing the next.
11744 */
11745 if (intel_crtc->plane)
11746 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11747 else
11748 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11749 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11750 intel_ring_emit(ring, MI_NOOP);
11751 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11752 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11753 intel_ring_emit(ring, fb->pitches[0]);
11754 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11755 intel_ring_emit(ring, 0); /* aux display base address, unused */
11756
11757 return 0;
11758 }
11759
intel_gen3_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11760 static int intel_gen3_queue_flip(struct drm_device *dev,
11761 struct drm_crtc *crtc,
11762 struct drm_framebuffer *fb,
11763 struct drm_i915_gem_object *obj,
11764 struct drm_i915_gem_request *req,
11765 uint32_t flags)
11766 {
11767 struct intel_ring *ring = req->ring;
11768 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11769 u32 flip_mask;
11770 int ret;
11771
11772 ret = intel_ring_begin(req, 6);
11773 if (ret)
11774 return ret;
11775
11776 if (intel_crtc->plane)
11777 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11778 else
11779 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11780 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11781 intel_ring_emit(ring, MI_NOOP);
11782 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11783 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11784 intel_ring_emit(ring, fb->pitches[0]);
11785 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11786 intel_ring_emit(ring, MI_NOOP);
11787
11788 return 0;
11789 }
11790
intel_gen4_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11791 static int intel_gen4_queue_flip(struct drm_device *dev,
11792 struct drm_crtc *crtc,
11793 struct drm_framebuffer *fb,
11794 struct drm_i915_gem_object *obj,
11795 struct drm_i915_gem_request *req,
11796 uint32_t flags)
11797 {
11798 struct intel_ring *ring = req->ring;
11799 struct drm_i915_private *dev_priv = to_i915(dev);
11800 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11801 uint32_t pf, pipesrc;
11802 int ret;
11803
11804 ret = intel_ring_begin(req, 4);
11805 if (ret)
11806 return ret;
11807
11808 /* i965+ uses the linear or tiled offsets from the
11809 * Display Registers (which do not change across a page-flip)
11810 * so we need only reprogram the base address.
11811 */
11812 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11813 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11814 intel_ring_emit(ring, fb->pitches[0]);
11815 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11816 intel_fb_modifier_to_tiling(fb->modifier[0]));
11817
11818 /* XXX Enabling the panel-fitter across page-flip is so far
11819 * untested on non-native modes, so ignore it for now.
11820 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11821 */
11822 pf = 0;
11823 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11824 intel_ring_emit(ring, pf | pipesrc);
11825
11826 return 0;
11827 }
11828
intel_gen6_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11829 static int intel_gen6_queue_flip(struct drm_device *dev,
11830 struct drm_crtc *crtc,
11831 struct drm_framebuffer *fb,
11832 struct drm_i915_gem_object *obj,
11833 struct drm_i915_gem_request *req,
11834 uint32_t flags)
11835 {
11836 struct intel_ring *ring = req->ring;
11837 struct drm_i915_private *dev_priv = to_i915(dev);
11838 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11839 uint32_t pf, pipesrc;
11840 int ret;
11841
11842 ret = intel_ring_begin(req, 4);
11843 if (ret)
11844 return ret;
11845
11846 intel_ring_emit(ring, MI_DISPLAY_FLIP |
11847 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11848 intel_ring_emit(ring, fb->pitches[0] |
11849 intel_fb_modifier_to_tiling(fb->modifier[0]));
11850 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11851
11852 /* Contrary to the suggestions in the documentation,
11853 * "Enable Panel Fitter" does not seem to be required when page
11854 * flipping with a non-native mode, and worse causes a normal
11855 * modeset to fail.
11856 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11857 */
11858 pf = 0;
11859 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11860 intel_ring_emit(ring, pf | pipesrc);
11861
11862 return 0;
11863 }
11864
intel_gen7_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11865 static int intel_gen7_queue_flip(struct drm_device *dev,
11866 struct drm_crtc *crtc,
11867 struct drm_framebuffer *fb,
11868 struct drm_i915_gem_object *obj,
11869 struct drm_i915_gem_request *req,
11870 uint32_t flags)
11871 {
11872 struct intel_ring *ring = req->ring;
11873 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11874 uint32_t plane_bit = 0;
11875 int len, ret;
11876
11877 switch (intel_crtc->plane) {
11878 case PLANE_A:
11879 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11880 break;
11881 case PLANE_B:
11882 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11883 break;
11884 case PLANE_C:
11885 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11886 break;
11887 default:
11888 WARN_ONCE(1, "unknown plane in flip command\n");
11889 return -ENODEV;
11890 }
11891
11892 len = 4;
11893 if (req->engine->id == RCS) {
11894 len += 6;
11895 /*
11896 * On Gen 8, SRM is now taking an extra dword to accommodate
11897 * 48bits addresses, and we need a NOOP for the batch size to
11898 * stay even.
11899 */
11900 if (IS_GEN8(dev))
11901 len += 2;
11902 }
11903
11904 /*
11905 * BSpec MI_DISPLAY_FLIP for IVB:
11906 * "The full packet must be contained within the same cache line."
11907 *
11908 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11909 * cacheline, if we ever start emitting more commands before
11910 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11911 * then do the cacheline alignment, and finally emit the
11912 * MI_DISPLAY_FLIP.
11913 */
11914 ret = intel_ring_cacheline_align(req);
11915 if (ret)
11916 return ret;
11917
11918 ret = intel_ring_begin(req, len);
11919 if (ret)
11920 return ret;
11921
11922 /* Unmask the flip-done completion message. Note that the bspec says that
11923 * we should do this for both the BCS and RCS, and that we must not unmask
11924 * more than one flip event at any time (or ensure that one flip message
11925 * can be sent by waiting for flip-done prior to queueing new flips).
11926 * Experimentation says that BCS works despite DERRMR masking all
11927 * flip-done completion events and that unmasking all planes at once
11928 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11929 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11930 */
11931 if (req->engine->id == RCS) {
11932 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11933 intel_ring_emit_reg(ring, DERRMR);
11934 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11935 DERRMR_PIPEB_PRI_FLIP_DONE |
11936 DERRMR_PIPEC_PRI_FLIP_DONE));
11937 if (IS_GEN8(dev))
11938 intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11939 MI_SRM_LRM_GLOBAL_GTT);
11940 else
11941 intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11942 MI_SRM_LRM_GLOBAL_GTT);
11943 intel_ring_emit_reg(ring, DERRMR);
11944 intel_ring_emit(ring,
11945 i915_ggtt_offset(req->engine->scratch) + 256);
11946 if (IS_GEN8(dev)) {
11947 intel_ring_emit(ring, 0);
11948 intel_ring_emit(ring, MI_NOOP);
11949 }
11950 }
11951
11952 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11953 intel_ring_emit(ring, fb->pitches[0] |
11954 intel_fb_modifier_to_tiling(fb->modifier[0]));
11955 intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11956 intel_ring_emit(ring, (MI_NOOP));
11957
11958 return 0;
11959 }
11960
use_mmio_flip(struct intel_engine_cs * engine,struct drm_i915_gem_object * obj)11961 static bool use_mmio_flip(struct intel_engine_cs *engine,
11962 struct drm_i915_gem_object *obj)
11963 {
11964 struct reservation_object *resv;
11965
11966 /*
11967 * This is not being used for older platforms, because
11968 * non-availability of flip done interrupt forces us to use
11969 * CS flips. Older platforms derive flip done using some clever
11970 * tricks involving the flip_pending status bits and vblank irqs.
11971 * So using MMIO flips there would disrupt this mechanism.
11972 */
11973
11974 if (engine == NULL)
11975 return true;
11976
11977 if (INTEL_GEN(engine->i915) < 5)
11978 return false;
11979
11980 if (i915.use_mmio_flip < 0)
11981 return false;
11982 else if (i915.use_mmio_flip > 0)
11983 return true;
11984 else if (i915.enable_execlists)
11985 return true;
11986
11987 resv = i915_gem_object_get_dmabuf_resv(obj);
11988 if (resv && !reservation_object_test_signaled_rcu(resv, false))
11989 return true;
11990
11991 return engine != i915_gem_active_get_engine(&obj->last_write,
11992 &obj->base.dev->struct_mutex);
11993 }
11994
skl_do_mmio_flip(struct intel_crtc * intel_crtc,unsigned int rotation,struct intel_flip_work * work)11995 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11996 unsigned int rotation,
11997 struct intel_flip_work *work)
11998 {
11999 struct drm_device *dev = intel_crtc->base.dev;
12000 struct drm_i915_private *dev_priv = to_i915(dev);
12001 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
12002 const enum pipe pipe = intel_crtc->pipe;
12003 u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
12004
12005 ctl = I915_READ(PLANE_CTL(pipe, 0));
12006 ctl &= ~PLANE_CTL_TILED_MASK;
12007 switch (fb->modifier[0]) {
12008 case DRM_FORMAT_MOD_NONE:
12009 break;
12010 case I915_FORMAT_MOD_X_TILED:
12011 ctl |= PLANE_CTL_TILED_X;
12012 break;
12013 case I915_FORMAT_MOD_Y_TILED:
12014 ctl |= PLANE_CTL_TILED_Y;
12015 break;
12016 case I915_FORMAT_MOD_Yf_TILED:
12017 ctl |= PLANE_CTL_TILED_YF;
12018 break;
12019 default:
12020 MISSING_CASE(fb->modifier[0]);
12021 }
12022
12023 /*
12024 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
12025 * PLANE_SURF updates, the update is then guaranteed to be atomic.
12026 */
12027 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
12028 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
12029
12030 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
12031 POSTING_READ(PLANE_SURF(pipe, 0));
12032 }
12033
ilk_do_mmio_flip(struct intel_crtc * intel_crtc,struct intel_flip_work * work)12034 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
12035 struct intel_flip_work *work)
12036 {
12037 struct drm_device *dev = intel_crtc->base.dev;
12038 struct drm_i915_private *dev_priv = to_i915(dev);
12039 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
12040 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
12041 u32 dspcntr;
12042
12043 dspcntr = I915_READ(reg);
12044
12045 if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
12046 dspcntr |= DISPPLANE_TILED;
12047 else
12048 dspcntr &= ~DISPPLANE_TILED;
12049
12050 I915_WRITE(reg, dspcntr);
12051
12052 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
12053 POSTING_READ(DSPSURF(intel_crtc->plane));
12054 }
12055
intel_mmio_flip_work_func(struct work_struct * w)12056 static void intel_mmio_flip_work_func(struct work_struct *w)
12057 {
12058 struct intel_flip_work *work =
12059 container_of(w, struct intel_flip_work, mmio_work);
12060 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
12061 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12062 struct intel_framebuffer *intel_fb =
12063 to_intel_framebuffer(crtc->base.primary->fb);
12064 struct drm_i915_gem_object *obj = intel_fb->obj;
12065 struct reservation_object *resv;
12066
12067 if (work->flip_queued_req)
12068 WARN_ON(i915_wait_request(work->flip_queued_req,
12069 0, NULL, NO_WAITBOOST));
12070
12071 /* For framebuffer backed by dmabuf, wait for fence */
12072 resv = i915_gem_object_get_dmabuf_resv(obj);
12073 if (resv)
12074 WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
12075 MAX_SCHEDULE_TIMEOUT) < 0);
12076
12077 intel_pipe_update_start(crtc);
12078
12079 if (INTEL_GEN(dev_priv) >= 9)
12080 skl_do_mmio_flip(crtc, work->rotation, work);
12081 else
12082 /* use_mmio_flip() retricts MMIO flips to ilk+ */
12083 ilk_do_mmio_flip(crtc, work);
12084
12085 intel_pipe_update_end(crtc, work);
12086 }
12087
intel_default_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)12088 static int intel_default_queue_flip(struct drm_device *dev,
12089 struct drm_crtc *crtc,
12090 struct drm_framebuffer *fb,
12091 struct drm_i915_gem_object *obj,
12092 struct drm_i915_gem_request *req,
12093 uint32_t flags)
12094 {
12095 return -ENODEV;
12096 }
12097
__pageflip_stall_check_cs(struct drm_i915_private * dev_priv,struct intel_crtc * intel_crtc,struct intel_flip_work * work)12098 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
12099 struct intel_crtc *intel_crtc,
12100 struct intel_flip_work *work)
12101 {
12102 u32 addr, vblank;
12103
12104 if (!atomic_read(&work->pending))
12105 return false;
12106
12107 smp_rmb();
12108
12109 vblank = intel_crtc_get_vblank_counter(intel_crtc);
12110 if (work->flip_ready_vblank == 0) {
12111 if (work->flip_queued_req &&
12112 !i915_gem_request_completed(work->flip_queued_req))
12113 return false;
12114
12115 work->flip_ready_vblank = vblank;
12116 }
12117
12118 if (vblank - work->flip_ready_vblank < 3)
12119 return false;
12120
12121 /* Potential stall - if we see that the flip has happened,
12122 * assume a missed interrupt. */
12123 if (INTEL_GEN(dev_priv) >= 4)
12124 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
12125 else
12126 addr = I915_READ(DSPADDR(intel_crtc->plane));
12127
12128 /* There is a potential issue here with a false positive after a flip
12129 * to the same address. We could address this by checking for a
12130 * non-incrementing frame counter.
12131 */
12132 return addr == work->gtt_offset;
12133 }
12134
intel_check_page_flip(struct drm_i915_private * dev_priv,int pipe)12135 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
12136 {
12137 struct drm_device *dev = &dev_priv->drm;
12138 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
12139 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12140 struct intel_flip_work *work;
12141
12142 WARN_ON(!in_interrupt());
12143
12144 if (crtc == NULL)
12145 return;
12146
12147 spin_lock(&dev->event_lock);
12148 work = intel_crtc->flip_work;
12149
12150 if (work != NULL && !is_mmio_work(work) &&
12151 __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
12152 WARN_ONCE(1,
12153 "Kicking stuck page flip: queued at %d, now %d\n",
12154 work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
12155 page_flip_completed(intel_crtc);
12156 work = NULL;
12157 }
12158
12159 if (work != NULL && !is_mmio_work(work) &&
12160 intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
12161 intel_queue_rps_boost_for_request(work->flip_queued_req);
12162 spin_unlock(&dev->event_lock);
12163 }
12164
intel_crtc_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t page_flip_flags)12165 static int intel_crtc_page_flip(struct drm_crtc *crtc,
12166 struct drm_framebuffer *fb,
12167 struct drm_pending_vblank_event *event,
12168 uint32_t page_flip_flags)
12169 {
12170 struct drm_device *dev = crtc->dev;
12171 struct drm_i915_private *dev_priv = to_i915(dev);
12172 struct drm_framebuffer *old_fb = crtc->primary->fb;
12173 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12174 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12175 struct drm_plane *primary = crtc->primary;
12176 enum pipe pipe = intel_crtc->pipe;
12177 struct intel_flip_work *work;
12178 struct intel_engine_cs *engine;
12179 bool mmio_flip;
12180 struct drm_i915_gem_request *request;
12181 struct i915_vma *vma;
12182 int ret;
12183
12184 /*
12185 * drm_mode_page_flip_ioctl() should already catch this, but double
12186 * check to be safe. In the future we may enable pageflipping from
12187 * a disabled primary plane.
12188 */
12189 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12190 return -EBUSY;
12191
12192 /* Can't change pixel format via MI display flips. */
12193 if (fb->pixel_format != crtc->primary->fb->pixel_format)
12194 return -EINVAL;
12195
12196 /*
12197 * TILEOFF/LINOFF registers can't be changed via MI display flips.
12198 * Note that pitch changes could also affect these register.
12199 */
12200 if (INTEL_INFO(dev)->gen > 3 &&
12201 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12202 fb->pitches[0] != crtc->primary->fb->pitches[0]))
12203 return -EINVAL;
12204
12205 if (i915_terminally_wedged(&dev_priv->gpu_error))
12206 goto out_hang;
12207
12208 work = kzalloc(sizeof(*work), GFP_KERNEL);
12209 if (work == NULL)
12210 return -ENOMEM;
12211
12212 work->event = event;
12213 work->crtc = crtc;
12214 work->old_fb = old_fb;
12215 INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12216
12217 ret = drm_crtc_vblank_get(crtc);
12218 if (ret)
12219 goto free_work;
12220
12221 /* We borrow the event spin lock for protecting flip_work */
12222 spin_lock_irq(&dev->event_lock);
12223 if (intel_crtc->flip_work) {
12224 /* Before declaring the flip queue wedged, check if
12225 * the hardware completed the operation behind our backs.
12226 */
12227 if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12228 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12229 page_flip_completed(intel_crtc);
12230 } else {
12231 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12232 spin_unlock_irq(&dev->event_lock);
12233
12234 drm_crtc_vblank_put(crtc);
12235 kfree(work);
12236 return -EBUSY;
12237 }
12238 }
12239 intel_crtc->flip_work = work;
12240 spin_unlock_irq(&dev->event_lock);
12241
12242 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12243 flush_workqueue(dev_priv->wq);
12244
12245 /* Reference the objects for the scheduled work. */
12246 drm_framebuffer_reference(work->old_fb);
12247
12248 crtc->primary->fb = fb;
12249 update_state_fb(crtc->primary);
12250
12251 work->pending_flip_obj = i915_gem_object_get(obj);
12252
12253 ret = i915_mutex_lock_interruptible(dev);
12254 if (ret)
12255 goto cleanup;
12256
12257 intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
12258 if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
12259 ret = -EIO;
12260 goto unlock;
12261 }
12262
12263 atomic_inc(&intel_crtc->unpin_work_count);
12264
12265 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
12266 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12267
12268 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
12269 engine = &dev_priv->engine[BCS];
12270 if (fb->modifier[0] != old_fb->modifier[0])
12271 /* vlv: DISPLAY_FLIP fails to change tiling */
12272 engine = NULL;
12273 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
12274 engine = &dev_priv->engine[BCS];
12275 } else if (INTEL_INFO(dev)->gen >= 7) {
12276 engine = i915_gem_active_get_engine(&obj->last_write,
12277 &obj->base.dev->struct_mutex);
12278 if (engine == NULL || engine->id != RCS)
12279 engine = &dev_priv->engine[BCS];
12280 } else {
12281 engine = &dev_priv->engine[RCS];
12282 }
12283
12284 mmio_flip = use_mmio_flip(engine, obj);
12285
12286 vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12287 if (IS_ERR(vma)) {
12288 ret = PTR_ERR(vma);
12289 goto cleanup_pending;
12290 }
12291
12292 work->gtt_offset = intel_fb_gtt_offset(fb, primary->state->rotation);
12293 work->gtt_offset += intel_crtc->dspaddr_offset;
12294 work->rotation = crtc->primary->state->rotation;
12295
12296 /*
12297 * There's the potential that the next frame will not be compatible with
12298 * FBC, so we want to call pre_update() before the actual page flip.
12299 * The problem is that pre_update() caches some information about the fb
12300 * object, so we want to do this only after the object is pinned. Let's
12301 * be on the safe side and do this immediately before scheduling the
12302 * flip.
12303 */
12304 intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12305 to_intel_plane_state(primary->state));
12306
12307 if (mmio_flip) {
12308 INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12309
12310 work->flip_queued_req = i915_gem_active_get(&obj->last_write,
12311 &obj->base.dev->struct_mutex);
12312 schedule_work(&work->mmio_work);
12313 } else {
12314 request = i915_gem_request_alloc(engine, engine->last_context);
12315 if (IS_ERR(request)) {
12316 ret = PTR_ERR(request);
12317 goto cleanup_unpin;
12318 }
12319
12320 ret = i915_gem_request_await_object(request, obj, false);
12321 if (ret)
12322 goto cleanup_request;
12323
12324 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12325 page_flip_flags);
12326 if (ret)
12327 goto cleanup_request;
12328
12329 intel_mark_page_flip_active(intel_crtc, work);
12330
12331 work->flip_queued_req = i915_gem_request_get(request);
12332 i915_add_request_no_flush(request);
12333 }
12334
12335 i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12336 to_intel_plane(primary)->frontbuffer_bit);
12337 mutex_unlock(&dev->struct_mutex);
12338
12339 intel_frontbuffer_flip_prepare(to_i915(dev),
12340 to_intel_plane(primary)->frontbuffer_bit);
12341
12342 trace_i915_flip_request(intel_crtc->plane, obj);
12343
12344 return 0;
12345
12346 cleanup_request:
12347 i915_add_request_no_flush(request);
12348 cleanup_unpin:
12349 intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
12350 cleanup_pending:
12351 atomic_dec(&intel_crtc->unpin_work_count);
12352 unlock:
12353 mutex_unlock(&dev->struct_mutex);
12354 cleanup:
12355 crtc->primary->fb = old_fb;
12356 update_state_fb(crtc->primary);
12357
12358 i915_gem_object_put_unlocked(obj);
12359 drm_framebuffer_unreference(work->old_fb);
12360
12361 spin_lock_irq(&dev->event_lock);
12362 intel_crtc->flip_work = NULL;
12363 spin_unlock_irq(&dev->event_lock);
12364
12365 drm_crtc_vblank_put(crtc);
12366 free_work:
12367 kfree(work);
12368
12369 if (ret == -EIO) {
12370 struct drm_atomic_state *state;
12371 struct drm_plane_state *plane_state;
12372
12373 out_hang:
12374 state = drm_atomic_state_alloc(dev);
12375 if (!state)
12376 return -ENOMEM;
12377 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12378
12379 retry:
12380 plane_state = drm_atomic_get_plane_state(state, primary);
12381 ret = PTR_ERR_OR_ZERO(plane_state);
12382 if (!ret) {
12383 drm_atomic_set_fb_for_plane(plane_state, fb);
12384
12385 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12386 if (!ret)
12387 ret = drm_atomic_commit(state);
12388 }
12389
12390 if (ret == -EDEADLK) {
12391 drm_modeset_backoff(state->acquire_ctx);
12392 drm_atomic_state_clear(state);
12393 goto retry;
12394 }
12395
12396 if (ret)
12397 drm_atomic_state_free(state);
12398
12399 if (ret == 0 && event) {
12400 spin_lock_irq(&dev->event_lock);
12401 drm_crtc_send_vblank_event(crtc, event);
12402 spin_unlock_irq(&dev->event_lock);
12403 }
12404 }
12405 return ret;
12406 }
12407
12408
12409 /**
12410 * intel_wm_need_update - Check whether watermarks need updating
12411 * @plane: drm plane
12412 * @state: new plane state
12413 *
12414 * Check current plane state versus the new one to determine whether
12415 * watermarks need to be recalculated.
12416 *
12417 * Returns true or false.
12418 */
intel_wm_need_update(struct drm_plane * plane,struct drm_plane_state * state)12419 static bool intel_wm_need_update(struct drm_plane *plane,
12420 struct drm_plane_state *state)
12421 {
12422 struct intel_plane_state *new = to_intel_plane_state(state);
12423 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12424
12425 /* Update watermarks on tiling or size changes. */
12426 if (new->base.visible != cur->base.visible)
12427 return true;
12428
12429 if (!cur->base.fb || !new->base.fb)
12430 return false;
12431
12432 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
12433 cur->base.rotation != new->base.rotation ||
12434 drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12435 drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12436 drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12437 drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
12438 return true;
12439
12440 return false;
12441 }
12442
needs_scaling(struct intel_plane_state * state)12443 static bool needs_scaling(struct intel_plane_state *state)
12444 {
12445 int src_w = drm_rect_width(&state->base.src) >> 16;
12446 int src_h = drm_rect_height(&state->base.src) >> 16;
12447 int dst_w = drm_rect_width(&state->base.dst);
12448 int dst_h = drm_rect_height(&state->base.dst);
12449
12450 return (src_w != dst_w || src_h != dst_h);
12451 }
12452
intel_plane_atomic_calc_changes(struct drm_crtc_state * crtc_state,struct drm_plane_state * plane_state)12453 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12454 struct drm_plane_state *plane_state)
12455 {
12456 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
12457 struct drm_crtc *crtc = crtc_state->crtc;
12458 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12459 struct drm_plane *plane = plane_state->plane;
12460 struct drm_device *dev = crtc->dev;
12461 struct drm_i915_private *dev_priv = to_i915(dev);
12462 struct intel_plane_state *old_plane_state =
12463 to_intel_plane_state(plane->state);
12464 bool mode_changed = needs_modeset(crtc_state);
12465 bool was_crtc_enabled = crtc->state->active;
12466 bool is_crtc_enabled = crtc_state->active;
12467 bool turn_off, turn_on, visible, was_visible;
12468 struct drm_framebuffer *fb = plane_state->fb;
12469 int ret;
12470
12471 if (INTEL_GEN(dev) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
12472 ret = skl_update_scaler_plane(
12473 to_intel_crtc_state(crtc_state),
12474 to_intel_plane_state(plane_state));
12475 if (ret)
12476 return ret;
12477 }
12478
12479 was_visible = old_plane_state->base.visible;
12480 visible = to_intel_plane_state(plane_state)->base.visible;
12481
12482 if (!was_crtc_enabled && WARN_ON(was_visible))
12483 was_visible = false;
12484
12485 /*
12486 * Visibility is calculated as if the crtc was on, but
12487 * after scaler setup everything depends on it being off
12488 * when the crtc isn't active.
12489 *
12490 * FIXME this is wrong for watermarks. Watermarks should also
12491 * be computed as if the pipe would be active. Perhaps move
12492 * per-plane wm computation to the .check_plane() hook, and
12493 * only combine the results from all planes in the current place?
12494 */
12495 if (!is_crtc_enabled)
12496 to_intel_plane_state(plane_state)->base.visible = visible = false;
12497
12498 if (!was_visible && !visible)
12499 return 0;
12500
12501 if (fb != old_plane_state->base.fb)
12502 pipe_config->fb_changed = true;
12503
12504 turn_off = was_visible && (!visible || mode_changed);
12505 turn_on = visible && (!was_visible || mode_changed);
12506
12507 DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12508 intel_crtc->base.base.id,
12509 intel_crtc->base.name,
12510 plane->base.id, plane->name,
12511 fb ? fb->base.id : -1);
12512
12513 DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12514 plane->base.id, plane->name,
12515 was_visible, visible,
12516 turn_off, turn_on, mode_changed);
12517
12518 if (turn_on) {
12519 pipe_config->update_wm_pre = true;
12520
12521 /* must disable cxsr around plane enable/disable */
12522 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12523 pipe_config->disable_cxsr = true;
12524 } else if (turn_off) {
12525 pipe_config->update_wm_post = true;
12526
12527 /* must disable cxsr around plane enable/disable */
12528 if (plane->type != DRM_PLANE_TYPE_CURSOR)
12529 pipe_config->disable_cxsr = true;
12530 } else if (intel_wm_need_update(plane, plane_state)) {
12531 /* FIXME bollocks */
12532 pipe_config->update_wm_pre = true;
12533 pipe_config->update_wm_post = true;
12534 }
12535
12536 /* Pre-gen9 platforms need two-step watermark updates */
12537 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12538 INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
12539 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12540
12541 if (visible || was_visible)
12542 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12543
12544 /*
12545 * WaCxSRDisabledForSpriteScaling:ivb
12546 *
12547 * cstate->update_wm was already set above, so this flag will
12548 * take effect when we commit and program watermarks.
12549 */
12550 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
12551 needs_scaling(to_intel_plane_state(plane_state)) &&
12552 !needs_scaling(old_plane_state))
12553 pipe_config->disable_lp_wm = true;
12554
12555 return 0;
12556 }
12557
encoders_cloneable(const struct intel_encoder * a,const struct intel_encoder * b)12558 static bool encoders_cloneable(const struct intel_encoder *a,
12559 const struct intel_encoder *b)
12560 {
12561 /* masks could be asymmetric, so check both ways */
12562 return a == b || (a->cloneable & (1 << b->type) &&
12563 b->cloneable & (1 << a->type));
12564 }
12565
check_single_encoder_cloning(struct drm_atomic_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder)12566 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12567 struct intel_crtc *crtc,
12568 struct intel_encoder *encoder)
12569 {
12570 struct intel_encoder *source_encoder;
12571 struct drm_connector *connector;
12572 struct drm_connector_state *connector_state;
12573 int i;
12574
12575 for_each_connector_in_state(state, connector, connector_state, i) {
12576 if (connector_state->crtc != &crtc->base)
12577 continue;
12578
12579 source_encoder =
12580 to_intel_encoder(connector_state->best_encoder);
12581 if (!encoders_cloneable(encoder, source_encoder))
12582 return false;
12583 }
12584
12585 return true;
12586 }
12587
intel_crtc_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * crtc_state)12588 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12589 struct drm_crtc_state *crtc_state)
12590 {
12591 struct drm_device *dev = crtc->dev;
12592 struct drm_i915_private *dev_priv = to_i915(dev);
12593 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12594 struct intel_crtc_state *pipe_config =
12595 to_intel_crtc_state(crtc_state);
12596 struct drm_atomic_state *state = crtc_state->state;
12597 int ret;
12598 bool mode_changed = needs_modeset(crtc_state);
12599
12600 if (mode_changed && !crtc_state->active)
12601 pipe_config->update_wm_post = true;
12602
12603 if (mode_changed && crtc_state->enable &&
12604 dev_priv->display.crtc_compute_clock &&
12605 !WARN_ON(pipe_config->shared_dpll)) {
12606 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12607 pipe_config);
12608 if (ret)
12609 return ret;
12610 }
12611
12612 if (crtc_state->color_mgmt_changed) {
12613 ret = intel_color_check(crtc, crtc_state);
12614 if (ret)
12615 return ret;
12616
12617 /*
12618 * Changing color management on Intel hardware is
12619 * handled as part of planes update.
12620 */
12621 crtc_state->planes_changed = true;
12622 }
12623
12624 ret = 0;
12625 if (dev_priv->display.compute_pipe_wm) {
12626 ret = dev_priv->display.compute_pipe_wm(pipe_config);
12627 if (ret) {
12628 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12629 return ret;
12630 }
12631 }
12632
12633 if (dev_priv->display.compute_intermediate_wm &&
12634 !to_intel_atomic_state(state)->skip_intermediate_wm) {
12635 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12636 return 0;
12637
12638 /*
12639 * Calculate 'intermediate' watermarks that satisfy both the
12640 * old state and the new state. We can program these
12641 * immediately.
12642 */
12643 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12644 intel_crtc,
12645 pipe_config);
12646 if (ret) {
12647 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12648 return ret;
12649 }
12650 } else if (dev_priv->display.compute_intermediate_wm) {
12651 if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12652 pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12653 }
12654
12655 if (INTEL_INFO(dev)->gen >= 9) {
12656 if (mode_changed)
12657 ret = skl_update_scaler_crtc(pipe_config);
12658
12659 if (!ret)
12660 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12661 pipe_config);
12662 }
12663
12664 return ret;
12665 }
12666
12667 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12668 .mode_set_base_atomic = intel_pipe_set_base_atomic,
12669 .atomic_begin = intel_begin_crtc_commit,
12670 .atomic_flush = intel_finish_crtc_commit,
12671 .atomic_check = intel_crtc_atomic_check,
12672 };
12673
intel_modeset_update_connector_atomic_state(struct drm_device * dev)12674 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12675 {
12676 struct intel_connector *connector;
12677
12678 for_each_intel_connector(dev, connector) {
12679 if (connector->base.state->crtc)
12680 drm_connector_unreference(&connector->base);
12681
12682 if (connector->base.encoder) {
12683 connector->base.state->best_encoder =
12684 connector->base.encoder;
12685 connector->base.state->crtc =
12686 connector->base.encoder->crtc;
12687
12688 drm_connector_reference(&connector->base);
12689 } else {
12690 connector->base.state->best_encoder = NULL;
12691 connector->base.state->crtc = NULL;
12692 }
12693 }
12694 }
12695
12696 static void
connected_sink_compute_bpp(struct intel_connector * connector,struct intel_crtc_state * pipe_config)12697 connected_sink_compute_bpp(struct intel_connector *connector,
12698 struct intel_crtc_state *pipe_config)
12699 {
12700 const struct drm_display_info *info = &connector->base.display_info;
12701 int bpp = pipe_config->pipe_bpp;
12702
12703 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12704 connector->base.base.id,
12705 connector->base.name);
12706
12707 /* Don't use an invalid EDID bpc value */
12708 if (info->bpc != 0 && info->bpc * 3 < bpp) {
12709 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12710 bpp, info->bpc * 3);
12711 pipe_config->pipe_bpp = info->bpc * 3;
12712 }
12713
12714 /* Clamp bpp to 8 on screens without EDID 1.4 */
12715 if (info->bpc == 0 && bpp > 24) {
12716 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12717 bpp);
12718 pipe_config->pipe_bpp = 24;
12719 }
12720 }
12721
12722 static int
compute_baseline_pipe_bpp(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)12723 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12724 struct intel_crtc_state *pipe_config)
12725 {
12726 struct drm_device *dev = crtc->base.dev;
12727 struct drm_atomic_state *state;
12728 struct drm_connector *connector;
12729 struct drm_connector_state *connector_state;
12730 int bpp, i;
12731
12732 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12733 bpp = 10*3;
12734 else if (INTEL_INFO(dev)->gen >= 5)
12735 bpp = 12*3;
12736 else
12737 bpp = 8*3;
12738
12739
12740 pipe_config->pipe_bpp = bpp;
12741
12742 state = pipe_config->base.state;
12743
12744 /* Clamp display bpp to EDID value */
12745 for_each_connector_in_state(state, connector, connector_state, i) {
12746 if (connector_state->crtc != &crtc->base)
12747 continue;
12748
12749 connected_sink_compute_bpp(to_intel_connector(connector),
12750 pipe_config);
12751 }
12752
12753 return bpp;
12754 }
12755
intel_dump_crtc_timings(const struct drm_display_mode * mode)12756 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12757 {
12758 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12759 "type: 0x%x flags: 0x%x\n",
12760 mode->crtc_clock,
12761 mode->crtc_hdisplay, mode->crtc_hsync_start,
12762 mode->crtc_hsync_end, mode->crtc_htotal,
12763 mode->crtc_vdisplay, mode->crtc_vsync_start,
12764 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12765 }
12766
intel_dump_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,const char * context)12767 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12768 struct intel_crtc_state *pipe_config,
12769 const char *context)
12770 {
12771 struct drm_device *dev = crtc->base.dev;
12772 struct drm_plane *plane;
12773 struct intel_plane *intel_plane;
12774 struct intel_plane_state *state;
12775 struct drm_framebuffer *fb;
12776
12777 DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12778 crtc->base.base.id, crtc->base.name,
12779 context, pipe_config, pipe_name(crtc->pipe));
12780
12781 DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12782 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12783 pipe_config->pipe_bpp, pipe_config->dither);
12784 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12785 pipe_config->has_pch_encoder,
12786 pipe_config->fdi_lanes,
12787 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12788 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12789 pipe_config->fdi_m_n.tu);
12790 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12791 intel_crtc_has_dp_encoder(pipe_config),
12792 pipe_config->lane_count,
12793 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12794 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12795 pipe_config->dp_m_n.tu);
12796
12797 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12798 intel_crtc_has_dp_encoder(pipe_config),
12799 pipe_config->lane_count,
12800 pipe_config->dp_m2_n2.gmch_m,
12801 pipe_config->dp_m2_n2.gmch_n,
12802 pipe_config->dp_m2_n2.link_m,
12803 pipe_config->dp_m2_n2.link_n,
12804 pipe_config->dp_m2_n2.tu);
12805
12806 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12807 pipe_config->has_audio,
12808 pipe_config->has_infoframe);
12809
12810 DRM_DEBUG_KMS("requested mode:\n");
12811 drm_mode_debug_printmodeline(&pipe_config->base.mode);
12812 DRM_DEBUG_KMS("adjusted mode:\n");
12813 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12814 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12815 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12816 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12817 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12818 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12819 crtc->num_scalers,
12820 pipe_config->scaler_state.scaler_users,
12821 pipe_config->scaler_state.scaler_id);
12822 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12823 pipe_config->gmch_pfit.control,
12824 pipe_config->gmch_pfit.pgm_ratios,
12825 pipe_config->gmch_pfit.lvds_border_bits);
12826 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12827 pipe_config->pch_pfit.pos,
12828 pipe_config->pch_pfit.size,
12829 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12830 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12831 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12832
12833 if (IS_BROXTON(dev)) {
12834 DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12835 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12836 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12837 pipe_config->dpll_hw_state.ebb0,
12838 pipe_config->dpll_hw_state.ebb4,
12839 pipe_config->dpll_hw_state.pll0,
12840 pipe_config->dpll_hw_state.pll1,
12841 pipe_config->dpll_hw_state.pll2,
12842 pipe_config->dpll_hw_state.pll3,
12843 pipe_config->dpll_hw_state.pll6,
12844 pipe_config->dpll_hw_state.pll8,
12845 pipe_config->dpll_hw_state.pll9,
12846 pipe_config->dpll_hw_state.pll10,
12847 pipe_config->dpll_hw_state.pcsdw12);
12848 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12849 DRM_DEBUG_KMS("dpll_hw_state: "
12850 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12851 pipe_config->dpll_hw_state.ctrl1,
12852 pipe_config->dpll_hw_state.cfgcr1,
12853 pipe_config->dpll_hw_state.cfgcr2);
12854 } else if (HAS_DDI(dev)) {
12855 DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12856 pipe_config->dpll_hw_state.wrpll,
12857 pipe_config->dpll_hw_state.spll);
12858 } else {
12859 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12860 "fp0: 0x%x, fp1: 0x%x\n",
12861 pipe_config->dpll_hw_state.dpll,
12862 pipe_config->dpll_hw_state.dpll_md,
12863 pipe_config->dpll_hw_state.fp0,
12864 pipe_config->dpll_hw_state.fp1);
12865 }
12866
12867 DRM_DEBUG_KMS("planes on this crtc\n");
12868 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12869 char *format_name;
12870 intel_plane = to_intel_plane(plane);
12871 if (intel_plane->pipe != crtc->pipe)
12872 continue;
12873
12874 state = to_intel_plane_state(plane->state);
12875 fb = state->base.fb;
12876 if (!fb) {
12877 DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12878 plane->base.id, plane->name, state->scaler_id);
12879 continue;
12880 }
12881
12882 format_name = drm_get_format_name(fb->pixel_format);
12883
12884 DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12885 plane->base.id, plane->name);
12886 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
12887 fb->base.id, fb->width, fb->height, format_name);
12888 DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12889 state->scaler_id,
12890 state->base.src.x1 >> 16,
12891 state->base.src.y1 >> 16,
12892 drm_rect_width(&state->base.src) >> 16,
12893 drm_rect_height(&state->base.src) >> 16,
12894 state->base.dst.x1, state->base.dst.y1,
12895 drm_rect_width(&state->base.dst),
12896 drm_rect_height(&state->base.dst));
12897
12898 kfree(format_name);
12899 }
12900 }
12901
check_digital_port_conflicts(struct drm_atomic_state * state)12902 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12903 {
12904 struct drm_device *dev = state->dev;
12905 struct drm_connector *connector;
12906 unsigned int used_ports = 0;
12907 unsigned int used_mst_ports = 0;
12908
12909 /*
12910 * Walk the connector list instead of the encoder
12911 * list to detect the problem on ddi platforms
12912 * where there's just one encoder per digital port.
12913 */
12914 drm_for_each_connector(connector, dev) {
12915 struct drm_connector_state *connector_state;
12916 struct intel_encoder *encoder;
12917
12918 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12919 if (!connector_state)
12920 connector_state = connector->state;
12921
12922 if (!connector_state->best_encoder)
12923 continue;
12924
12925 encoder = to_intel_encoder(connector_state->best_encoder);
12926
12927 WARN_ON(!connector_state->crtc);
12928
12929 switch (encoder->type) {
12930 unsigned int port_mask;
12931 case INTEL_OUTPUT_UNKNOWN:
12932 if (WARN_ON(!HAS_DDI(dev)))
12933 break;
12934 case INTEL_OUTPUT_DP:
12935 case INTEL_OUTPUT_HDMI:
12936 case INTEL_OUTPUT_EDP:
12937 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12938
12939 /* the same port mustn't appear more than once */
12940 if (used_ports & port_mask)
12941 return false;
12942
12943 used_ports |= port_mask;
12944 break;
12945 case INTEL_OUTPUT_DP_MST:
12946 used_mst_ports |=
12947 1 << enc_to_mst(&encoder->base)->primary->port;
12948 break;
12949 default:
12950 break;
12951 }
12952 }
12953
12954 /* can't mix MST and SST/HDMI on the same port */
12955 if (used_ports & used_mst_ports)
12956 return false;
12957
12958 return true;
12959 }
12960
12961 static void
clear_intel_crtc_state(struct intel_crtc_state * crtc_state)12962 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12963 {
12964 struct drm_crtc_state tmp_state;
12965 struct intel_crtc_scaler_state scaler_state;
12966 struct intel_dpll_hw_state dpll_hw_state;
12967 struct intel_shared_dpll *shared_dpll;
12968 bool force_thru;
12969
12970 /* FIXME: before the switch to atomic started, a new pipe_config was
12971 * kzalloc'd. Code that depends on any field being zero should be
12972 * fixed, so that the crtc_state can be safely duplicated. For now,
12973 * only fields that are know to not cause problems are preserved. */
12974
12975 tmp_state = crtc_state->base;
12976 scaler_state = crtc_state->scaler_state;
12977 shared_dpll = crtc_state->shared_dpll;
12978 dpll_hw_state = crtc_state->dpll_hw_state;
12979 force_thru = crtc_state->pch_pfit.force_thru;
12980
12981 memset(crtc_state, 0, sizeof *crtc_state);
12982
12983 crtc_state->base = tmp_state;
12984 crtc_state->scaler_state = scaler_state;
12985 crtc_state->shared_dpll = shared_dpll;
12986 crtc_state->dpll_hw_state = dpll_hw_state;
12987 crtc_state->pch_pfit.force_thru = force_thru;
12988 }
12989
12990 static int
intel_modeset_pipe_config(struct drm_crtc * crtc,struct intel_crtc_state * pipe_config)12991 intel_modeset_pipe_config(struct drm_crtc *crtc,
12992 struct intel_crtc_state *pipe_config)
12993 {
12994 struct drm_atomic_state *state = pipe_config->base.state;
12995 struct intel_encoder *encoder;
12996 struct drm_connector *connector;
12997 struct drm_connector_state *connector_state;
12998 int base_bpp, ret = -EINVAL;
12999 int i;
13000 bool retry = true;
13001
13002 clear_intel_crtc_state(pipe_config);
13003
13004 pipe_config->cpu_transcoder =
13005 (enum transcoder) to_intel_crtc(crtc)->pipe;
13006
13007 /*
13008 * Sanitize sync polarity flags based on requested ones. If neither
13009 * positive or negative polarity is requested, treat this as meaning
13010 * negative polarity.
13011 */
13012 if (!(pipe_config->base.adjusted_mode.flags &
13013 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
13014 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
13015
13016 if (!(pipe_config->base.adjusted_mode.flags &
13017 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
13018 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
13019
13020 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
13021 pipe_config);
13022 if (base_bpp < 0)
13023 goto fail;
13024
13025 /*
13026 * Determine the real pipe dimensions. Note that stereo modes can
13027 * increase the actual pipe size due to the frame doubling and
13028 * insertion of additional space for blanks between the frame. This
13029 * is stored in the crtc timings. We use the requested mode to do this
13030 * computation to clearly distinguish it from the adjusted mode, which
13031 * can be changed by the connectors in the below retry loop.
13032 */
13033 drm_crtc_get_hv_timing(&pipe_config->base.mode,
13034 &pipe_config->pipe_src_w,
13035 &pipe_config->pipe_src_h);
13036
13037 for_each_connector_in_state(state, connector, connector_state, i) {
13038 if (connector_state->crtc != crtc)
13039 continue;
13040
13041 encoder = to_intel_encoder(connector_state->best_encoder);
13042
13043 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13044 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
13045 goto fail;
13046 }
13047
13048 /*
13049 * Determine output_types before calling the .compute_config()
13050 * hooks so that the hooks can use this information safely.
13051 */
13052 pipe_config->output_types |= 1 << encoder->type;
13053 }
13054
13055 encoder_retry:
13056 /* Ensure the port clock defaults are reset when retrying. */
13057 pipe_config->port_clock = 0;
13058 pipe_config->pixel_multiplier = 1;
13059
13060 /* Fill in default crtc timings, allow encoders to overwrite them. */
13061 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
13062 CRTC_STEREO_DOUBLE);
13063
13064 /* Pass our mode to the connectors and the CRTC to give them a chance to
13065 * adjust it according to limitations or connector properties, and also
13066 * a chance to reject the mode entirely.
13067 */
13068 for_each_connector_in_state(state, connector, connector_state, i) {
13069 if (connector_state->crtc != crtc)
13070 continue;
13071
13072 encoder = to_intel_encoder(connector_state->best_encoder);
13073
13074 if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
13075 DRM_DEBUG_KMS("Encoder config failure\n");
13076 goto fail;
13077 }
13078 }
13079
13080 /* Set default port clock if not overwritten by the encoder. Needs to be
13081 * done afterwards in case the encoder adjusts the mode. */
13082 if (!pipe_config->port_clock)
13083 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
13084 * pipe_config->pixel_multiplier;
13085
13086 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13087 if (ret < 0) {
13088 DRM_DEBUG_KMS("CRTC fixup failed\n");
13089 goto fail;
13090 }
13091
13092 if (ret == RETRY) {
13093 if (WARN(!retry, "loop in pipe configuration computation\n")) {
13094 ret = -EINVAL;
13095 goto fail;
13096 }
13097
13098 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13099 retry = false;
13100 goto encoder_retry;
13101 }
13102
13103 /* Dithering seems to not pass-through bits correctly when it should, so
13104 * only enable it on 6bpc panels. */
13105 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
13106 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13107 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13108
13109 fail:
13110 return ret;
13111 }
13112
13113 static void
intel_modeset_update_crtc_state(struct drm_atomic_state * state)13114 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
13115 {
13116 struct drm_crtc *crtc;
13117 struct drm_crtc_state *crtc_state;
13118 int i;
13119
13120 /* Double check state. */
13121 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13122 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
13123
13124 /* Update hwmode for vblank functions */
13125 if (crtc->state->active)
13126 crtc->hwmode = crtc->state->adjusted_mode;
13127 else
13128 crtc->hwmode.crtc_clock = 0;
13129
13130 /*
13131 * Update legacy state to satisfy fbc code. This can
13132 * be removed when fbc uses the atomic state.
13133 */
13134 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
13135 struct drm_plane_state *plane_state = crtc->primary->state;
13136
13137 crtc->primary->fb = plane_state->fb;
13138 crtc->x = plane_state->src_x >> 16;
13139 crtc->y = plane_state->src_y >> 16;
13140 }
13141 }
13142 }
13143
intel_fuzzy_clock_check(int clock1,int clock2)13144 static bool intel_fuzzy_clock_check(int clock1, int clock2)
13145 {
13146 int diff;
13147
13148 if (clock1 == clock2)
13149 return true;
13150
13151 if (!clock1 || !clock2)
13152 return false;
13153
13154 diff = abs(clock1 - clock2);
13155
13156 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13157 return true;
13158
13159 return false;
13160 }
13161
13162 static bool
intel_compare_m_n(unsigned int m,unsigned int n,unsigned int m2,unsigned int n2,bool exact)13163 intel_compare_m_n(unsigned int m, unsigned int n,
13164 unsigned int m2, unsigned int n2,
13165 bool exact)
13166 {
13167 if (m == m2 && n == n2)
13168 return true;
13169
13170 if (exact || !m || !n || !m2 || !n2)
13171 return false;
13172
13173 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13174
13175 if (n > n2) {
13176 while (n > n2) {
13177 m2 <<= 1;
13178 n2 <<= 1;
13179 }
13180 } else if (n < n2) {
13181 while (n < n2) {
13182 m <<= 1;
13183 n <<= 1;
13184 }
13185 }
13186
13187 if (n != n2)
13188 return false;
13189
13190 return intel_fuzzy_clock_check(m, m2);
13191 }
13192
13193 static bool
intel_compare_link_m_n(const struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2,bool adjust)13194 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13195 struct intel_link_m_n *m2_n2,
13196 bool adjust)
13197 {
13198 if (m_n->tu == m2_n2->tu &&
13199 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13200 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13201 intel_compare_m_n(m_n->link_m, m_n->link_n,
13202 m2_n2->link_m, m2_n2->link_n, !adjust)) {
13203 if (adjust)
13204 *m2_n2 = *m_n;
13205
13206 return true;
13207 }
13208
13209 return false;
13210 }
13211
13212 static bool
intel_pipe_config_compare(struct drm_device * dev,struct intel_crtc_state * current_config,struct intel_crtc_state * pipe_config,bool adjust)13213 intel_pipe_config_compare(struct drm_device *dev,
13214 struct intel_crtc_state *current_config,
13215 struct intel_crtc_state *pipe_config,
13216 bool adjust)
13217 {
13218 bool ret = true;
13219
13220 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
13221 do { \
13222 if (!adjust) \
13223 DRM_ERROR(fmt, ##__VA_ARGS__); \
13224 else \
13225 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
13226 } while (0)
13227
13228 #define PIPE_CONF_CHECK_X(name) \
13229 if (current_config->name != pipe_config->name) { \
13230 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13231 "(expected 0x%08x, found 0x%08x)\n", \
13232 current_config->name, \
13233 pipe_config->name); \
13234 ret = false; \
13235 }
13236
13237 #define PIPE_CONF_CHECK_I(name) \
13238 if (current_config->name != pipe_config->name) { \
13239 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13240 "(expected %i, found %i)\n", \
13241 current_config->name, \
13242 pipe_config->name); \
13243 ret = false; \
13244 }
13245
13246 #define PIPE_CONF_CHECK_P(name) \
13247 if (current_config->name != pipe_config->name) { \
13248 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13249 "(expected %p, found %p)\n", \
13250 current_config->name, \
13251 pipe_config->name); \
13252 ret = false; \
13253 }
13254
13255 #define PIPE_CONF_CHECK_M_N(name) \
13256 if (!intel_compare_link_m_n(¤t_config->name, \
13257 &pipe_config->name,\
13258 adjust)) { \
13259 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13260 "(expected tu %i gmch %i/%i link %i/%i, " \
13261 "found tu %i, gmch %i/%i link %i/%i)\n", \
13262 current_config->name.tu, \
13263 current_config->name.gmch_m, \
13264 current_config->name.gmch_n, \
13265 current_config->name.link_m, \
13266 current_config->name.link_n, \
13267 pipe_config->name.tu, \
13268 pipe_config->name.gmch_m, \
13269 pipe_config->name.gmch_n, \
13270 pipe_config->name.link_m, \
13271 pipe_config->name.link_n); \
13272 ret = false; \
13273 }
13274
13275 /* This is required for BDW+ where there is only one set of registers for
13276 * switching between high and low RR.
13277 * This macro can be used whenever a comparison has to be made between one
13278 * hw state and multiple sw state variables.
13279 */
13280 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13281 if (!intel_compare_link_m_n(¤t_config->name, \
13282 &pipe_config->name, adjust) && \
13283 !intel_compare_link_m_n(¤t_config->alt_name, \
13284 &pipe_config->name, adjust)) { \
13285 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13286 "(expected tu %i gmch %i/%i link %i/%i, " \
13287 "or tu %i gmch %i/%i link %i/%i, " \
13288 "found tu %i, gmch %i/%i link %i/%i)\n", \
13289 current_config->name.tu, \
13290 current_config->name.gmch_m, \
13291 current_config->name.gmch_n, \
13292 current_config->name.link_m, \
13293 current_config->name.link_n, \
13294 current_config->alt_name.tu, \
13295 current_config->alt_name.gmch_m, \
13296 current_config->alt_name.gmch_n, \
13297 current_config->alt_name.link_m, \
13298 current_config->alt_name.link_n, \
13299 pipe_config->name.tu, \
13300 pipe_config->name.gmch_m, \
13301 pipe_config->name.gmch_n, \
13302 pipe_config->name.link_m, \
13303 pipe_config->name.link_n); \
13304 ret = false; \
13305 }
13306
13307 #define PIPE_CONF_CHECK_FLAGS(name, mask) \
13308 if ((current_config->name ^ pipe_config->name) & (mask)) { \
13309 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
13310 "(expected %i, found %i)\n", \
13311 current_config->name & (mask), \
13312 pipe_config->name & (mask)); \
13313 ret = false; \
13314 }
13315
13316 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13317 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13318 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13319 "(expected %i, found %i)\n", \
13320 current_config->name, \
13321 pipe_config->name); \
13322 ret = false; \
13323 }
13324
13325 #define PIPE_CONF_QUIRK(quirk) \
13326 ((current_config->quirks | pipe_config->quirks) & (quirk))
13327
13328 PIPE_CONF_CHECK_I(cpu_transcoder);
13329
13330 PIPE_CONF_CHECK_I(has_pch_encoder);
13331 PIPE_CONF_CHECK_I(fdi_lanes);
13332 PIPE_CONF_CHECK_M_N(fdi_m_n);
13333
13334 PIPE_CONF_CHECK_I(lane_count);
13335 PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13336
13337 if (INTEL_INFO(dev)->gen < 8) {
13338 PIPE_CONF_CHECK_M_N(dp_m_n);
13339
13340 if (current_config->has_drrs)
13341 PIPE_CONF_CHECK_M_N(dp_m2_n2);
13342 } else
13343 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13344
13345 PIPE_CONF_CHECK_X(output_types);
13346
13347 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13348 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13349 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13350 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13351 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13352 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13353
13354 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13355 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13356 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13357 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13358 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13359 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13360
13361 PIPE_CONF_CHECK_I(pixel_multiplier);
13362 PIPE_CONF_CHECK_I(has_hdmi_sink);
13363 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
13364 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
13365 PIPE_CONF_CHECK_I(limited_color_range);
13366 PIPE_CONF_CHECK_I(has_infoframe);
13367
13368 PIPE_CONF_CHECK_I(has_audio);
13369
13370 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13371 DRM_MODE_FLAG_INTERLACE);
13372
13373 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13374 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13375 DRM_MODE_FLAG_PHSYNC);
13376 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13377 DRM_MODE_FLAG_NHSYNC);
13378 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13379 DRM_MODE_FLAG_PVSYNC);
13380 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13381 DRM_MODE_FLAG_NVSYNC);
13382 }
13383
13384 PIPE_CONF_CHECK_X(gmch_pfit.control);
13385 /* pfit ratios are autocomputed by the hw on gen4+ */
13386 if (INTEL_INFO(dev)->gen < 4)
13387 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13388 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13389
13390 if (!adjust) {
13391 PIPE_CONF_CHECK_I(pipe_src_w);
13392 PIPE_CONF_CHECK_I(pipe_src_h);
13393
13394 PIPE_CONF_CHECK_I(pch_pfit.enabled);
13395 if (current_config->pch_pfit.enabled) {
13396 PIPE_CONF_CHECK_X(pch_pfit.pos);
13397 PIPE_CONF_CHECK_X(pch_pfit.size);
13398 }
13399
13400 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13401 }
13402
13403 /* BDW+ don't expose a synchronous way to read the state */
13404 if (IS_HASWELL(dev))
13405 PIPE_CONF_CHECK_I(ips_enabled);
13406
13407 PIPE_CONF_CHECK_I(double_wide);
13408
13409 PIPE_CONF_CHECK_P(shared_dpll);
13410 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13411 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13412 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13413 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13414 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13415 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13416 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13417 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13418 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13419
13420 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13421 PIPE_CONF_CHECK_X(dsi_pll.div);
13422
13423 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
13424 PIPE_CONF_CHECK_I(pipe_bpp);
13425
13426 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13427 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13428
13429 #undef PIPE_CONF_CHECK_X
13430 #undef PIPE_CONF_CHECK_I
13431 #undef PIPE_CONF_CHECK_P
13432 #undef PIPE_CONF_CHECK_FLAGS
13433 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13434 #undef PIPE_CONF_QUIRK
13435 #undef INTEL_ERR_OR_DBG_KMS
13436
13437 return ret;
13438 }
13439
intel_pipe_config_sanity_check(struct drm_i915_private * dev_priv,const struct intel_crtc_state * pipe_config)13440 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13441 const struct intel_crtc_state *pipe_config)
13442 {
13443 if (pipe_config->has_pch_encoder) {
13444 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13445 &pipe_config->fdi_m_n);
13446 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13447
13448 /*
13449 * FDI already provided one idea for the dotclock.
13450 * Yell if the encoder disagrees.
13451 */
13452 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13453 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13454 fdi_dotclock, dotclock);
13455 }
13456 }
13457
verify_wm_state(struct drm_crtc * crtc,struct drm_crtc_state * new_state)13458 static void verify_wm_state(struct drm_crtc *crtc,
13459 struct drm_crtc_state *new_state)
13460 {
13461 struct drm_device *dev = crtc->dev;
13462 struct drm_i915_private *dev_priv = to_i915(dev);
13463 struct skl_ddb_allocation hw_ddb, *sw_ddb;
13464 struct skl_ddb_entry *hw_entry, *sw_entry;
13465 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13466 const enum pipe pipe = intel_crtc->pipe;
13467 int plane;
13468
13469 if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
13470 return;
13471
13472 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13473 sw_ddb = &dev_priv->wm.skl_hw.ddb;
13474
13475 /* planes */
13476 for_each_plane(dev_priv, pipe, plane) {
13477 hw_entry = &hw_ddb.plane[pipe][plane];
13478 sw_entry = &sw_ddb->plane[pipe][plane];
13479
13480 if (skl_ddb_entry_equal(hw_entry, sw_entry))
13481 continue;
13482
13483 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
13484 "(expected (%u,%u), found (%u,%u))\n",
13485 pipe_name(pipe), plane + 1,
13486 sw_entry->start, sw_entry->end,
13487 hw_entry->start, hw_entry->end);
13488 }
13489
13490 /*
13491 * cursor
13492 * If the cursor plane isn't active, we may not have updated it's ddb
13493 * allocation. In that case since the ddb allocation will be updated
13494 * once the plane becomes visible, we can skip this check
13495 */
13496 if (intel_crtc->cursor_addr) {
13497 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13498 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13499
13500 if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
13501 DRM_ERROR("mismatch in DDB state pipe %c cursor "
13502 "(expected (%u,%u), found (%u,%u))\n",
13503 pipe_name(pipe),
13504 sw_entry->start, sw_entry->end,
13505 hw_entry->start, hw_entry->end);
13506 }
13507 }
13508 }
13509
13510 static void
verify_connector_state(struct drm_device * dev,struct drm_crtc * crtc)13511 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
13512 {
13513 struct drm_connector *connector;
13514
13515 drm_for_each_connector(connector, dev) {
13516 struct drm_encoder *encoder = connector->encoder;
13517 struct drm_connector_state *state = connector->state;
13518
13519 if (state->crtc != crtc)
13520 continue;
13521
13522 intel_connector_verify_state(to_intel_connector(connector));
13523
13524 I915_STATE_WARN(state->best_encoder != encoder,
13525 "connector's atomic encoder doesn't match legacy encoder\n");
13526 }
13527 }
13528
13529 static void
verify_encoder_state(struct drm_device * dev)13530 verify_encoder_state(struct drm_device *dev)
13531 {
13532 struct intel_encoder *encoder;
13533 struct intel_connector *connector;
13534
13535 for_each_intel_encoder(dev, encoder) {
13536 bool enabled = false;
13537 enum pipe pipe;
13538
13539 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13540 encoder->base.base.id,
13541 encoder->base.name);
13542
13543 for_each_intel_connector(dev, connector) {
13544 if (connector->base.state->best_encoder != &encoder->base)
13545 continue;
13546 enabled = true;
13547
13548 I915_STATE_WARN(connector->base.state->crtc !=
13549 encoder->base.crtc,
13550 "connector's crtc doesn't match encoder crtc\n");
13551 }
13552
13553 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13554 "encoder's enabled state mismatch "
13555 "(expected %i, found %i)\n",
13556 !!encoder->base.crtc, enabled);
13557
13558 if (!encoder->base.crtc) {
13559 bool active;
13560
13561 active = encoder->get_hw_state(encoder, &pipe);
13562 I915_STATE_WARN(active,
13563 "encoder detached but still enabled on pipe %c.\n",
13564 pipe_name(pipe));
13565 }
13566 }
13567 }
13568
13569 static void
verify_crtc_state(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state,struct drm_crtc_state * new_crtc_state)13570 verify_crtc_state(struct drm_crtc *crtc,
13571 struct drm_crtc_state *old_crtc_state,
13572 struct drm_crtc_state *new_crtc_state)
13573 {
13574 struct drm_device *dev = crtc->dev;
13575 struct drm_i915_private *dev_priv = to_i915(dev);
13576 struct intel_encoder *encoder;
13577 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13578 struct intel_crtc_state *pipe_config, *sw_config;
13579 struct drm_atomic_state *old_state;
13580 bool active;
13581
13582 old_state = old_crtc_state->state;
13583 __drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13584 pipe_config = to_intel_crtc_state(old_crtc_state);
13585 memset(pipe_config, 0, sizeof(*pipe_config));
13586 pipe_config->base.crtc = crtc;
13587 pipe_config->base.state = old_state;
13588
13589 DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13590
13591 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13592
13593 /* hw state is inconsistent with the pipe quirk */
13594 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13595 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13596 active = new_crtc_state->active;
13597
13598 I915_STATE_WARN(new_crtc_state->active != active,
13599 "crtc active state doesn't match with hw state "
13600 "(expected %i, found %i)\n", new_crtc_state->active, active);
13601
13602 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13603 "transitional active state does not match atomic hw state "
13604 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13605
13606 for_each_encoder_on_crtc(dev, crtc, encoder) {
13607 enum pipe pipe;
13608
13609 active = encoder->get_hw_state(encoder, &pipe);
13610 I915_STATE_WARN(active != new_crtc_state->active,
13611 "[ENCODER:%i] active %i with crtc active %i\n",
13612 encoder->base.base.id, active, new_crtc_state->active);
13613
13614 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13615 "Encoder connected to wrong pipe %c\n",
13616 pipe_name(pipe));
13617
13618 if (active) {
13619 pipe_config->output_types |= 1 << encoder->type;
13620 encoder->get_config(encoder, pipe_config);
13621 }
13622 }
13623
13624 if (!new_crtc_state->active)
13625 return;
13626
13627 intel_pipe_config_sanity_check(dev_priv, pipe_config);
13628
13629 sw_config = to_intel_crtc_state(crtc->state);
13630 if (!intel_pipe_config_compare(dev, sw_config,
13631 pipe_config, false)) {
13632 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13633 intel_dump_pipe_config(intel_crtc, pipe_config,
13634 "[hw state]");
13635 intel_dump_pipe_config(intel_crtc, sw_config,
13636 "[sw state]");
13637 }
13638 }
13639
13640 static void
verify_single_dpll_state(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll,struct drm_crtc * crtc,struct drm_crtc_state * new_state)13641 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13642 struct intel_shared_dpll *pll,
13643 struct drm_crtc *crtc,
13644 struct drm_crtc_state *new_state)
13645 {
13646 struct intel_dpll_hw_state dpll_hw_state;
13647 unsigned crtc_mask;
13648 bool active;
13649
13650 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13651
13652 DRM_DEBUG_KMS("%s\n", pll->name);
13653
13654 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13655
13656 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13657 I915_STATE_WARN(!pll->on && pll->active_mask,
13658 "pll in active use but not on in sw tracking\n");
13659 I915_STATE_WARN(pll->on && !pll->active_mask,
13660 "pll is on but not used by any active crtc\n");
13661 I915_STATE_WARN(pll->on != active,
13662 "pll on state mismatch (expected %i, found %i)\n",
13663 pll->on, active);
13664 }
13665
13666 if (!crtc) {
13667 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13668 "more active pll users than references: %x vs %x\n",
13669 pll->active_mask, pll->config.crtc_mask);
13670
13671 return;
13672 }
13673
13674 crtc_mask = 1 << drm_crtc_index(crtc);
13675
13676 if (new_state->active)
13677 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13678 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13679 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13680 else
13681 I915_STATE_WARN(pll->active_mask & crtc_mask,
13682 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13683 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13684
13685 I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13686 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13687 crtc_mask, pll->config.crtc_mask);
13688
13689 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13690 &dpll_hw_state,
13691 sizeof(dpll_hw_state)),
13692 "pll hw state mismatch\n");
13693 }
13694
13695 static void
verify_shared_dpll_state(struct drm_device * dev,struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state,struct drm_crtc_state * new_crtc_state)13696 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13697 struct drm_crtc_state *old_crtc_state,
13698 struct drm_crtc_state *new_crtc_state)
13699 {
13700 struct drm_i915_private *dev_priv = to_i915(dev);
13701 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13702 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13703
13704 if (new_state->shared_dpll)
13705 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13706
13707 if (old_state->shared_dpll &&
13708 old_state->shared_dpll != new_state->shared_dpll) {
13709 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13710 struct intel_shared_dpll *pll = old_state->shared_dpll;
13711
13712 I915_STATE_WARN(pll->active_mask & crtc_mask,
13713 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13714 pipe_name(drm_crtc_index(crtc)));
13715 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13716 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13717 pipe_name(drm_crtc_index(crtc)));
13718 }
13719 }
13720
13721 static void
intel_modeset_verify_crtc(struct drm_crtc * crtc,struct drm_crtc_state * old_state,struct drm_crtc_state * new_state)13722 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13723 struct drm_crtc_state *old_state,
13724 struct drm_crtc_state *new_state)
13725 {
13726 if (!needs_modeset(new_state) &&
13727 !to_intel_crtc_state(new_state)->update_pipe)
13728 return;
13729
13730 verify_wm_state(crtc, new_state);
13731 verify_connector_state(crtc->dev, crtc);
13732 verify_crtc_state(crtc, old_state, new_state);
13733 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13734 }
13735
13736 static void
verify_disabled_dpll_state(struct drm_device * dev)13737 verify_disabled_dpll_state(struct drm_device *dev)
13738 {
13739 struct drm_i915_private *dev_priv = to_i915(dev);
13740 int i;
13741
13742 for (i = 0; i < dev_priv->num_shared_dpll; i++)
13743 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13744 }
13745
13746 static void
intel_modeset_verify_disabled(struct drm_device * dev)13747 intel_modeset_verify_disabled(struct drm_device *dev)
13748 {
13749 verify_encoder_state(dev);
13750 verify_connector_state(dev, NULL);
13751 verify_disabled_dpll_state(dev);
13752 }
13753
update_scanline_offset(struct intel_crtc * crtc)13754 static void update_scanline_offset(struct intel_crtc *crtc)
13755 {
13756 struct drm_device *dev = crtc->base.dev;
13757
13758 /*
13759 * The scanline counter increments at the leading edge of hsync.
13760 *
13761 * On most platforms it starts counting from vtotal-1 on the
13762 * first active line. That means the scanline counter value is
13763 * always one less than what we would expect. Ie. just after
13764 * start of vblank, which also occurs at start of hsync (on the
13765 * last active line), the scanline counter will read vblank_start-1.
13766 *
13767 * On gen2 the scanline counter starts counting from 1 instead
13768 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13769 * to keep the value positive), instead of adding one.
13770 *
13771 * On HSW+ the behaviour of the scanline counter depends on the output
13772 * type. For DP ports it behaves like most other platforms, but on HDMI
13773 * there's an extra 1 line difference. So we need to add two instead of
13774 * one to the value.
13775 *
13776 * On VLV/CHV DSI the scanline counter would appear to increment
13777 * approx. 1/3 of a scanline before start of vblank. Unfortunately
13778 * that means we can't tell whether we're in vblank or not while
13779 * we're on that particular line. We must still set scanline_offset
13780 * to 1 so that the vblank timestamps come out correct when we query
13781 * the scanline counter from within the vblank interrupt handler.
13782 * However if queried just before the start of vblank we'll get an
13783 * answer that's slightly in the future.
13784 */
13785 if (IS_GEN2(dev)) {
13786 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13787 int vtotal;
13788
13789 vtotal = adjusted_mode->crtc_vtotal;
13790 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13791 vtotal /= 2;
13792
13793 crtc->scanline_offset = vtotal - 1;
13794 } else if (HAS_DDI(dev) &&
13795 intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13796 crtc->scanline_offset = 2;
13797 } else
13798 crtc->scanline_offset = 1;
13799 }
13800
intel_modeset_clear_plls(struct drm_atomic_state * state)13801 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13802 {
13803 struct drm_device *dev = state->dev;
13804 struct drm_i915_private *dev_priv = to_i915(dev);
13805 struct intel_shared_dpll_config *shared_dpll = NULL;
13806 struct drm_crtc *crtc;
13807 struct drm_crtc_state *crtc_state;
13808 int i;
13809
13810 if (!dev_priv->display.crtc_compute_clock)
13811 return;
13812
13813 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13814 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13815 struct intel_shared_dpll *old_dpll =
13816 to_intel_crtc_state(crtc->state)->shared_dpll;
13817
13818 if (!needs_modeset(crtc_state))
13819 continue;
13820
13821 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13822
13823 if (!old_dpll)
13824 continue;
13825
13826 if (!shared_dpll)
13827 shared_dpll = intel_atomic_get_shared_dpll_state(state);
13828
13829 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13830 }
13831 }
13832
13833 /*
13834 * This implements the workaround described in the "notes" section of the mode
13835 * set sequence documentation. When going from no pipes or single pipe to
13836 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13837 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13838 */
haswell_mode_set_planes_workaround(struct drm_atomic_state * state)13839 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13840 {
13841 struct drm_crtc_state *crtc_state;
13842 struct intel_crtc *intel_crtc;
13843 struct drm_crtc *crtc;
13844 struct intel_crtc_state *first_crtc_state = NULL;
13845 struct intel_crtc_state *other_crtc_state = NULL;
13846 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13847 int i;
13848
13849 /* look at all crtc's that are going to be enabled in during modeset */
13850 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13851 intel_crtc = to_intel_crtc(crtc);
13852
13853 if (!crtc_state->active || !needs_modeset(crtc_state))
13854 continue;
13855
13856 if (first_crtc_state) {
13857 other_crtc_state = to_intel_crtc_state(crtc_state);
13858 break;
13859 } else {
13860 first_crtc_state = to_intel_crtc_state(crtc_state);
13861 first_pipe = intel_crtc->pipe;
13862 }
13863 }
13864
13865 /* No workaround needed? */
13866 if (!first_crtc_state)
13867 return 0;
13868
13869 /* w/a possibly needed, check how many crtc's are already enabled. */
13870 for_each_intel_crtc(state->dev, intel_crtc) {
13871 struct intel_crtc_state *pipe_config;
13872
13873 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13874 if (IS_ERR(pipe_config))
13875 return PTR_ERR(pipe_config);
13876
13877 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13878
13879 if (!pipe_config->base.active ||
13880 needs_modeset(&pipe_config->base))
13881 continue;
13882
13883 /* 2 or more enabled crtcs means no need for w/a */
13884 if (enabled_pipe != INVALID_PIPE)
13885 return 0;
13886
13887 enabled_pipe = intel_crtc->pipe;
13888 }
13889
13890 if (enabled_pipe != INVALID_PIPE)
13891 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13892 else if (other_crtc_state)
13893 other_crtc_state->hsw_workaround_pipe = first_pipe;
13894
13895 return 0;
13896 }
13897
intel_modeset_all_pipes(struct drm_atomic_state * state)13898 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13899 {
13900 struct drm_crtc *crtc;
13901 struct drm_crtc_state *crtc_state;
13902 int ret = 0;
13903
13904 /* add all active pipes to the state */
13905 for_each_crtc(state->dev, crtc) {
13906 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13907 if (IS_ERR(crtc_state))
13908 return PTR_ERR(crtc_state);
13909
13910 if (!crtc_state->active || needs_modeset(crtc_state))
13911 continue;
13912
13913 crtc_state->mode_changed = true;
13914
13915 ret = drm_atomic_add_affected_connectors(state, crtc);
13916 if (ret)
13917 break;
13918
13919 ret = drm_atomic_add_affected_planes(state, crtc);
13920 if (ret)
13921 break;
13922 }
13923
13924 return ret;
13925 }
13926
intel_modeset_checks(struct drm_atomic_state * state)13927 static int intel_modeset_checks(struct drm_atomic_state *state)
13928 {
13929 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13930 struct drm_i915_private *dev_priv = to_i915(state->dev);
13931 struct drm_crtc *crtc;
13932 struct drm_crtc_state *crtc_state;
13933 int ret = 0, i;
13934
13935 if (!check_digital_port_conflicts(state)) {
13936 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13937 return -EINVAL;
13938 }
13939
13940 intel_state->modeset = true;
13941 intel_state->active_crtcs = dev_priv->active_crtcs;
13942
13943 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13944 if (crtc_state->active)
13945 intel_state->active_crtcs |= 1 << i;
13946 else
13947 intel_state->active_crtcs &= ~(1 << i);
13948
13949 if (crtc_state->active != crtc->state->active)
13950 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13951 }
13952
13953 /*
13954 * See if the config requires any additional preparation, e.g.
13955 * to adjust global state with pipes off. We need to do this
13956 * here so we can get the modeset_pipe updated config for the new
13957 * mode set on this crtc. For other crtcs we need to use the
13958 * adjusted_mode bits in the crtc directly.
13959 */
13960 if (dev_priv->display.modeset_calc_cdclk) {
13961 if (!intel_state->cdclk_pll_vco)
13962 intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13963 if (!intel_state->cdclk_pll_vco)
13964 intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13965
13966 ret = dev_priv->display.modeset_calc_cdclk(state);
13967 if (ret < 0)
13968 return ret;
13969
13970 if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13971 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13972 ret = intel_modeset_all_pipes(state);
13973
13974 if (ret < 0)
13975 return ret;
13976
13977 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13978 intel_state->cdclk, intel_state->dev_cdclk);
13979 } else {
13980 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13981 }
13982
13983 intel_modeset_clear_plls(state);
13984
13985 if (IS_HASWELL(dev_priv))
13986 return haswell_mode_set_planes_workaround(state);
13987
13988 return 0;
13989 }
13990
13991 /*
13992 * Handle calculation of various watermark data at the end of the atomic check
13993 * phase. The code here should be run after the per-crtc and per-plane 'check'
13994 * handlers to ensure that all derived state has been updated.
13995 */
calc_watermark_data(struct drm_atomic_state * state)13996 static int calc_watermark_data(struct drm_atomic_state *state)
13997 {
13998 struct drm_device *dev = state->dev;
13999 struct drm_i915_private *dev_priv = to_i915(dev);
14000
14001 /* Is there platform-specific watermark information to calculate? */
14002 if (dev_priv->display.compute_global_watermarks)
14003 return dev_priv->display.compute_global_watermarks(state);
14004
14005 return 0;
14006 }
14007
14008 /**
14009 * intel_atomic_check - validate state object
14010 * @dev: drm device
14011 * @state: state to validate
14012 */
intel_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)14013 static int intel_atomic_check(struct drm_device *dev,
14014 struct drm_atomic_state *state)
14015 {
14016 struct drm_i915_private *dev_priv = to_i915(dev);
14017 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14018 struct drm_crtc *crtc;
14019 struct drm_crtc_state *crtc_state;
14020 int ret, i;
14021 bool any_ms = false;
14022
14023 ret = drm_atomic_helper_check_modeset(dev, state);
14024 if (ret)
14025 return ret;
14026
14027 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14028 struct intel_crtc_state *pipe_config =
14029 to_intel_crtc_state(crtc_state);
14030
14031 /* Catch I915_MODE_FLAG_INHERITED */
14032 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
14033 crtc_state->mode_changed = true;
14034
14035 if (!needs_modeset(crtc_state))
14036 continue;
14037
14038 if (!crtc_state->enable) {
14039 any_ms = true;
14040 continue;
14041 }
14042
14043 /* FIXME: For only active_changed we shouldn't need to do any
14044 * state recomputation at all. */
14045
14046 ret = drm_atomic_add_affected_connectors(state, crtc);
14047 if (ret)
14048 return ret;
14049
14050 ret = intel_modeset_pipe_config(crtc, pipe_config);
14051 if (ret) {
14052 intel_dump_pipe_config(to_intel_crtc(crtc),
14053 pipe_config, "[failed]");
14054 return ret;
14055 }
14056
14057 if (i915.fastboot &&
14058 intel_pipe_config_compare(dev,
14059 to_intel_crtc_state(crtc->state),
14060 pipe_config, true)) {
14061 crtc_state->mode_changed = false;
14062 to_intel_crtc_state(crtc_state)->update_pipe = true;
14063 }
14064
14065 if (needs_modeset(crtc_state))
14066 any_ms = true;
14067
14068 ret = drm_atomic_add_affected_planes(state, crtc);
14069 if (ret)
14070 return ret;
14071
14072 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
14073 needs_modeset(crtc_state) ?
14074 "[modeset]" : "[fastset]");
14075 }
14076
14077 if (any_ms) {
14078 ret = intel_modeset_checks(state);
14079
14080 if (ret)
14081 return ret;
14082 } else {
14083 intel_state->cdclk = dev_priv->atomic_cdclk_freq;
14084 }
14085
14086 ret = drm_atomic_helper_check_planes(dev, state);
14087 if (ret)
14088 return ret;
14089
14090 intel_fbc_choose_crtc(dev_priv, state);
14091 return calc_watermark_data(state);
14092 }
14093
intel_atomic_prepare_commit(struct drm_device * dev,struct drm_atomic_state * state,bool nonblock)14094 static int intel_atomic_prepare_commit(struct drm_device *dev,
14095 struct drm_atomic_state *state,
14096 bool nonblock)
14097 {
14098 struct drm_i915_private *dev_priv = to_i915(dev);
14099 struct drm_plane_state *plane_state;
14100 struct drm_crtc_state *crtc_state;
14101 struct drm_plane *plane;
14102 struct drm_crtc *crtc;
14103 int i, ret;
14104
14105 for_each_crtc_in_state(state, crtc, crtc_state, i) {
14106 if (state->legacy_cursor_update)
14107 continue;
14108
14109 ret = intel_crtc_wait_for_pending_flips(crtc);
14110 if (ret)
14111 return ret;
14112
14113 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
14114 flush_workqueue(dev_priv->wq);
14115 }
14116
14117 ret = mutex_lock_interruptible(&dev->struct_mutex);
14118 if (ret)
14119 return ret;
14120
14121 ret = drm_atomic_helper_prepare_planes(dev, state);
14122 mutex_unlock(&dev->struct_mutex);
14123
14124 if (!ret && !nonblock) {
14125 for_each_plane_in_state(state, plane, plane_state, i) {
14126 struct intel_plane_state *intel_plane_state =
14127 to_intel_plane_state(plane_state);
14128
14129 if (!intel_plane_state->wait_req)
14130 continue;
14131
14132 ret = i915_wait_request(intel_plane_state->wait_req,
14133 I915_WAIT_INTERRUPTIBLE,
14134 NULL, NULL);
14135 if (ret) {
14136 /* Any hang should be swallowed by the wait */
14137 WARN_ON(ret == -EIO);
14138 mutex_lock(&dev->struct_mutex);
14139 drm_atomic_helper_cleanup_planes(dev, state);
14140 mutex_unlock(&dev->struct_mutex);
14141 break;
14142 }
14143 }
14144 }
14145
14146 return ret;
14147 }
14148
intel_crtc_get_vblank_counter(struct intel_crtc * crtc)14149 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14150 {
14151 struct drm_device *dev = crtc->base.dev;
14152
14153 if (!dev->max_vblank_count)
14154 return drm_accurate_vblank_count(&crtc->base);
14155
14156 return dev->driver->get_vblank_counter(dev, crtc->pipe);
14157 }
14158
intel_atomic_wait_for_vblanks(struct drm_device * dev,struct drm_i915_private * dev_priv,unsigned crtc_mask)14159 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
14160 struct drm_i915_private *dev_priv,
14161 unsigned crtc_mask)
14162 {
14163 unsigned last_vblank_count[I915_MAX_PIPES];
14164 enum pipe pipe;
14165 int ret;
14166
14167 if (!crtc_mask)
14168 return;
14169
14170 for_each_pipe(dev_priv, pipe) {
14171 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
14172
14173 if (!((1 << pipe) & crtc_mask))
14174 continue;
14175
14176 ret = drm_crtc_vblank_get(crtc);
14177 if (WARN_ON(ret != 0)) {
14178 crtc_mask &= ~(1 << pipe);
14179 continue;
14180 }
14181
14182 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
14183 }
14184
14185 for_each_pipe(dev_priv, pipe) {
14186 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
14187 long lret;
14188
14189 if (!((1 << pipe) & crtc_mask))
14190 continue;
14191
14192 lret = wait_event_timeout(dev->vblank[pipe].queue,
14193 last_vblank_count[pipe] !=
14194 drm_crtc_vblank_count(crtc),
14195 msecs_to_jiffies(50));
14196
14197 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
14198
14199 drm_crtc_vblank_put(crtc);
14200 }
14201 }
14202
needs_vblank_wait(struct intel_crtc_state * crtc_state)14203 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
14204 {
14205 /* fb updated, need to unpin old fb */
14206 if (crtc_state->fb_changed)
14207 return true;
14208
14209 /* wm changes, need vblank before final wm's */
14210 if (crtc_state->update_wm_post)
14211 return true;
14212
14213 /*
14214 * cxsr is re-enabled after vblank.
14215 * This is already handled by crtc_state->update_wm_post,
14216 * but added for clarity.
14217 */
14218 if (crtc_state->disable_cxsr)
14219 return true;
14220
14221 return false;
14222 }
14223
intel_update_crtc(struct drm_crtc * crtc,struct drm_atomic_state * state,struct drm_crtc_state * old_crtc_state,unsigned int * crtc_vblank_mask)14224 static void intel_update_crtc(struct drm_crtc *crtc,
14225 struct drm_atomic_state *state,
14226 struct drm_crtc_state *old_crtc_state,
14227 unsigned int *crtc_vblank_mask)
14228 {
14229 struct drm_device *dev = crtc->dev;
14230 struct drm_i915_private *dev_priv = to_i915(dev);
14231 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14232 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
14233 bool modeset = needs_modeset(crtc->state);
14234
14235 if (modeset) {
14236 update_scanline_offset(intel_crtc);
14237 dev_priv->display.crtc_enable(pipe_config, state);
14238 } else {
14239 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14240 }
14241
14242 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
14243 intel_fbc_enable(
14244 intel_crtc, pipe_config,
14245 to_intel_plane_state(crtc->primary->state));
14246 }
14247
14248 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14249
14250 if (needs_vblank_wait(pipe_config))
14251 *crtc_vblank_mask |= drm_crtc_mask(crtc);
14252 }
14253
intel_update_crtcs(struct drm_atomic_state * state,unsigned int * crtc_vblank_mask)14254 static void intel_update_crtcs(struct drm_atomic_state *state,
14255 unsigned int *crtc_vblank_mask)
14256 {
14257 struct drm_crtc *crtc;
14258 struct drm_crtc_state *old_crtc_state;
14259 int i;
14260
14261 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14262 if (!crtc->state->active)
14263 continue;
14264
14265 intel_update_crtc(crtc, state, old_crtc_state,
14266 crtc_vblank_mask);
14267 }
14268 }
14269
skl_update_crtcs(struct drm_atomic_state * state,unsigned int * crtc_vblank_mask)14270 static void skl_update_crtcs(struct drm_atomic_state *state,
14271 unsigned int *crtc_vblank_mask)
14272 {
14273 struct drm_device *dev = state->dev;
14274 struct drm_i915_private *dev_priv = to_i915(dev);
14275 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14276 struct drm_crtc *crtc;
14277 struct drm_crtc_state *old_crtc_state;
14278 struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
14279 struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
14280 unsigned int updated = 0;
14281 bool progress;
14282 enum pipe pipe;
14283
14284 /*
14285 * Whenever the number of active pipes changes, we need to make sure we
14286 * update the pipes in the right order so that their ddb allocations
14287 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14288 * cause pipe underruns and other bad stuff.
14289 */
14290 do {
14291 int i;
14292 progress = false;
14293
14294 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14295 bool vbl_wait = false;
14296 unsigned int cmask = drm_crtc_mask(crtc);
14297 pipe = to_intel_crtc(crtc)->pipe;
14298
14299 if (updated & cmask || !crtc->state->active)
14300 continue;
14301 if (skl_ddb_allocation_overlaps(state, cur_ddb, new_ddb,
14302 pipe))
14303 continue;
14304
14305 updated |= cmask;
14306
14307 /*
14308 * If this is an already active pipe, it's DDB changed,
14309 * and this isn't the last pipe that needs updating
14310 * then we need to wait for a vblank to pass for the
14311 * new ddb allocation to take effect.
14312 */
14313 if (!skl_ddb_allocation_equals(cur_ddb, new_ddb, pipe) &&
14314 !crtc->state->active_changed &&
14315 intel_state->wm_results.dirty_pipes != updated)
14316 vbl_wait = true;
14317
14318 intel_update_crtc(crtc, state, old_crtc_state,
14319 crtc_vblank_mask);
14320
14321 if (vbl_wait)
14322 intel_wait_for_vblank(dev, pipe);
14323
14324 progress = true;
14325 }
14326 } while (progress);
14327 }
14328
intel_atomic_commit_tail(struct drm_atomic_state * state)14329 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
14330 {
14331 struct drm_device *dev = state->dev;
14332 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14333 struct drm_i915_private *dev_priv = to_i915(dev);
14334 struct drm_crtc_state *old_crtc_state;
14335 struct drm_crtc *crtc;
14336 struct intel_crtc_state *intel_cstate;
14337 struct drm_plane *plane;
14338 struct drm_plane_state *plane_state;
14339 bool hw_check = intel_state->modeset;
14340 unsigned long put_domains[I915_MAX_PIPES] = {};
14341 unsigned crtc_vblank_mask = 0;
14342 int i, ret;
14343
14344 for_each_plane_in_state(state, plane, plane_state, i) {
14345 struct intel_plane_state *intel_plane_state =
14346 to_intel_plane_state(plane->state);
14347
14348 if (!intel_plane_state->wait_req)
14349 continue;
14350
14351 ret = i915_wait_request(intel_plane_state->wait_req,
14352 0, NULL, NULL);
14353 /* EIO should be eaten, and we can't get interrupted in the
14354 * worker, and blocking commits have waited already. */
14355 WARN_ON(ret);
14356 }
14357
14358 drm_atomic_helper_wait_for_dependencies(state);
14359
14360 if (intel_state->modeset) {
14361 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14362 sizeof(intel_state->min_pixclk));
14363 dev_priv->active_crtcs = intel_state->active_crtcs;
14364 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
14365
14366 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14367 }
14368
14369 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14370 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14371
14372 if (needs_modeset(crtc->state) ||
14373 to_intel_crtc_state(crtc->state)->update_pipe) {
14374 hw_check = true;
14375
14376 put_domains[to_intel_crtc(crtc)->pipe] =
14377 modeset_get_crtc_power_domains(crtc,
14378 to_intel_crtc_state(crtc->state));
14379 }
14380
14381 if (!needs_modeset(crtc->state))
14382 continue;
14383
14384 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14385
14386 if (old_crtc_state->active) {
14387 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
14388 dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
14389 intel_crtc->active = false;
14390 intel_fbc_disable(intel_crtc);
14391 intel_disable_shared_dpll(intel_crtc);
14392
14393 /*
14394 * Underruns don't always raise
14395 * interrupts, so check manually.
14396 */
14397 intel_check_cpu_fifo_underruns(dev_priv);
14398 intel_check_pch_fifo_underruns(dev_priv);
14399
14400 if (!crtc->state->active)
14401 intel_update_watermarks(crtc);
14402 }
14403 }
14404
14405 /* Only after disabling all output pipelines that will be changed can we
14406 * update the the output configuration. */
14407 intel_modeset_update_crtc_state(state);
14408
14409 if (intel_state->modeset) {
14410 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
14411
14412 if (dev_priv->display.modeset_commit_cdclk &&
14413 (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14414 intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
14415 dev_priv->display.modeset_commit_cdclk(state);
14416
14417 /*
14418 * SKL workaround: bspec recommends we disable the SAGV when we
14419 * have more then one pipe enabled
14420 */
14421 if (!intel_can_enable_sagv(state))
14422 intel_disable_sagv(dev_priv);
14423
14424 intel_modeset_verify_disabled(dev);
14425 }
14426
14427 /* Complete the events for pipes that have now been disabled */
14428 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14429 bool modeset = needs_modeset(crtc->state);
14430
14431 /* Complete events for now disable pipes here. */
14432 if (modeset && !crtc->state->active && crtc->state->event) {
14433 spin_lock_irq(&dev->event_lock);
14434 drm_crtc_send_vblank_event(crtc, crtc->state->event);
14435 spin_unlock_irq(&dev->event_lock);
14436
14437 crtc->state->event = NULL;
14438 }
14439 }
14440
14441 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
14442 dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
14443
14444 /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14445 * already, but still need the state for the delayed optimization. To
14446 * fix this:
14447 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14448 * - schedule that vblank worker _before_ calling hw_done
14449 * - at the start of commit_tail, cancel it _synchrously
14450 * - switch over to the vblank wait helper in the core after that since
14451 * we don't need out special handling any more.
14452 */
14453 if (!state->legacy_cursor_update)
14454 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14455
14456 /*
14457 * Now that the vblank has passed, we can go ahead and program the
14458 * optimal watermarks on platforms that need two-step watermark
14459 * programming.
14460 *
14461 * TODO: Move this (and other cleanup) to an async worker eventually.
14462 */
14463 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14464 intel_cstate = to_intel_crtc_state(crtc->state);
14465
14466 if (dev_priv->display.optimize_watermarks)
14467 dev_priv->display.optimize_watermarks(intel_cstate);
14468 }
14469
14470 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14471 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14472
14473 if (put_domains[i])
14474 modeset_put_power_domains(dev_priv, put_domains[i]);
14475
14476 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
14477 }
14478
14479 if (intel_state->modeset && intel_can_enable_sagv(state))
14480 intel_enable_sagv(dev_priv);
14481
14482 drm_atomic_helper_commit_hw_done(state);
14483
14484 if (intel_state->modeset)
14485 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14486
14487 mutex_lock(&dev->struct_mutex);
14488 drm_atomic_helper_cleanup_planes(dev, state);
14489 mutex_unlock(&dev->struct_mutex);
14490
14491 drm_atomic_helper_commit_cleanup_done(state);
14492
14493 drm_atomic_state_free(state);
14494
14495 /* As one of the primary mmio accessors, KMS has a high likelihood
14496 * of triggering bugs in unclaimed access. After we finish
14497 * modesetting, see if an error has been flagged, and if so
14498 * enable debugging for the next modeset - and hope we catch
14499 * the culprit.
14500 *
14501 * XXX note that we assume display power is on at this point.
14502 * This might hold true now but we need to add pm helper to check
14503 * unclaimed only when the hardware is on, as atomic commits
14504 * can happen also when the device is completely off.
14505 */
14506 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
14507 }
14508
intel_atomic_commit_work(struct work_struct * work)14509 static void intel_atomic_commit_work(struct work_struct *work)
14510 {
14511 struct drm_atomic_state *state = container_of(work,
14512 struct drm_atomic_state,
14513 commit_work);
14514 intel_atomic_commit_tail(state);
14515 }
14516
intel_atomic_track_fbs(struct drm_atomic_state * state)14517 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14518 {
14519 struct drm_plane_state *old_plane_state;
14520 struct drm_plane *plane;
14521 int i;
14522
14523 for_each_plane_in_state(state, plane, old_plane_state, i)
14524 i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14525 intel_fb_obj(plane->state->fb),
14526 to_intel_plane(plane)->frontbuffer_bit);
14527 }
14528
14529 /**
14530 * intel_atomic_commit - commit validated state object
14531 * @dev: DRM device
14532 * @state: the top-level driver state object
14533 * @nonblock: nonblocking commit
14534 *
14535 * This function commits a top-level state object that has been validated
14536 * with drm_atomic_helper_check().
14537 *
14538 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
14539 * nonblocking commits are only safe for pure plane updates. Everything else
14540 * should work though.
14541 *
14542 * RETURNS
14543 * Zero for success or -errno.
14544 */
intel_atomic_commit(struct drm_device * dev,struct drm_atomic_state * state,bool nonblock)14545 static int intel_atomic_commit(struct drm_device *dev,
14546 struct drm_atomic_state *state,
14547 bool nonblock)
14548 {
14549 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14550 struct drm_i915_private *dev_priv = to_i915(dev);
14551 int ret = 0;
14552
14553 if (intel_state->modeset && nonblock) {
14554 DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
14555 return -EINVAL;
14556 }
14557
14558 ret = drm_atomic_helper_setup_commit(state, nonblock);
14559 if (ret)
14560 return ret;
14561
14562 INIT_WORK(&state->commit_work, intel_atomic_commit_work);
14563
14564 ret = intel_atomic_prepare_commit(dev, state, nonblock);
14565 if (ret) {
14566 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14567 return ret;
14568 }
14569
14570 drm_atomic_helper_swap_state(state, true);
14571 dev_priv->wm.distrust_bios_wm = false;
14572 dev_priv->wm.skl_results = intel_state->wm_results;
14573 intel_shared_dpll_commit(state);
14574 intel_atomic_track_fbs(state);
14575
14576 if (nonblock)
14577 queue_work(system_unbound_wq, &state->commit_work);
14578 else
14579 intel_atomic_commit_tail(state);
14580
14581 return 0;
14582 }
14583
intel_crtc_restore_mode(struct drm_crtc * crtc)14584 void intel_crtc_restore_mode(struct drm_crtc *crtc)
14585 {
14586 struct drm_device *dev = crtc->dev;
14587 struct drm_atomic_state *state;
14588 struct drm_crtc_state *crtc_state;
14589 int ret;
14590
14591 state = drm_atomic_state_alloc(dev);
14592 if (!state) {
14593 DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14594 crtc->base.id, crtc->name);
14595 return;
14596 }
14597
14598 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
14599
14600 retry:
14601 crtc_state = drm_atomic_get_crtc_state(state, crtc);
14602 ret = PTR_ERR_OR_ZERO(crtc_state);
14603 if (!ret) {
14604 if (!crtc_state->active)
14605 goto out;
14606
14607 crtc_state->mode_changed = true;
14608 ret = drm_atomic_commit(state);
14609 }
14610
14611 if (ret == -EDEADLK) {
14612 drm_atomic_state_clear(state);
14613 drm_modeset_backoff(state->acquire_ctx);
14614 goto retry;
14615 }
14616
14617 if (ret)
14618 out:
14619 drm_atomic_state_free(state);
14620 }
14621
14622 /*
14623 * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14624 * drm_atomic_helper_legacy_gamma_set() directly.
14625 */
intel_atomic_legacy_gamma_set(struct drm_crtc * crtc,u16 * red,u16 * green,u16 * blue,uint32_t size)14626 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14627 u16 *red, u16 *green, u16 *blue,
14628 uint32_t size)
14629 {
14630 struct drm_device *dev = crtc->dev;
14631 struct drm_mode_config *config = &dev->mode_config;
14632 struct drm_crtc_state *state;
14633 int ret;
14634
14635 ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14636 if (ret)
14637 return ret;
14638
14639 /*
14640 * Make sure we update the legacy properties so this works when
14641 * atomic is not enabled.
14642 */
14643
14644 state = crtc->state;
14645
14646 drm_object_property_set_value(&crtc->base,
14647 config->degamma_lut_property,
14648 (state->degamma_lut) ?
14649 state->degamma_lut->base.id : 0);
14650
14651 drm_object_property_set_value(&crtc->base,
14652 config->ctm_property,
14653 (state->ctm) ?
14654 state->ctm->base.id : 0);
14655
14656 drm_object_property_set_value(&crtc->base,
14657 config->gamma_lut_property,
14658 (state->gamma_lut) ?
14659 state->gamma_lut->base.id : 0);
14660
14661 return 0;
14662 }
14663
14664 static const struct drm_crtc_funcs intel_crtc_funcs = {
14665 .gamma_set = intel_atomic_legacy_gamma_set,
14666 .set_config = drm_atomic_helper_set_config,
14667 .set_property = drm_atomic_helper_crtc_set_property,
14668 .destroy = intel_crtc_destroy,
14669 .page_flip = intel_crtc_page_flip,
14670 .atomic_duplicate_state = intel_crtc_duplicate_state,
14671 .atomic_destroy_state = intel_crtc_destroy_state,
14672 };
14673
14674 /**
14675 * intel_prepare_plane_fb - Prepare fb for usage on plane
14676 * @plane: drm plane to prepare for
14677 * @fb: framebuffer to prepare for presentation
14678 *
14679 * Prepares a framebuffer for usage on a display plane. Generally this
14680 * involves pinning the underlying object and updating the frontbuffer tracking
14681 * bits. Some older platforms need special physical address handling for
14682 * cursor planes.
14683 *
14684 * Must be called with struct_mutex held.
14685 *
14686 * Returns 0 on success, negative error code on failure.
14687 */
14688 int
intel_prepare_plane_fb(struct drm_plane * plane,struct drm_plane_state * new_state)14689 intel_prepare_plane_fb(struct drm_plane *plane,
14690 struct drm_plane_state *new_state)
14691 {
14692 struct drm_device *dev = plane->dev;
14693 struct drm_framebuffer *fb = new_state->fb;
14694 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14695 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14696 struct reservation_object *resv;
14697 int ret = 0;
14698
14699 if (!obj && !old_obj)
14700 return 0;
14701
14702 if (old_obj) {
14703 struct drm_crtc_state *crtc_state =
14704 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
14705
14706 /* Big Hammer, we also need to ensure that any pending
14707 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14708 * current scanout is retired before unpinning the old
14709 * framebuffer. Note that we rely on userspace rendering
14710 * into the buffer attached to the pipe they are waiting
14711 * on. If not, userspace generates a GPU hang with IPEHR
14712 * point to the MI_WAIT_FOR_EVENT.
14713 *
14714 * This should only fail upon a hung GPU, in which case we
14715 * can safely continue.
14716 */
14717 if (needs_modeset(crtc_state))
14718 ret = i915_gem_object_wait_rendering(old_obj, true);
14719 if (ret) {
14720 /* GPU hangs should have been swallowed by the wait */
14721 WARN_ON(ret == -EIO);
14722 return ret;
14723 }
14724 }
14725
14726 if (!obj)
14727 return 0;
14728
14729 /* For framebuffer backed by dmabuf, wait for fence */
14730 resv = i915_gem_object_get_dmabuf_resv(obj);
14731 if (resv) {
14732 long lret;
14733
14734 lret = reservation_object_wait_timeout_rcu(resv, false, true,
14735 MAX_SCHEDULE_TIMEOUT);
14736 if (lret == -ERESTARTSYS)
14737 return lret;
14738
14739 WARN(lret < 0, "waiting returns %li\n", lret);
14740 }
14741
14742 if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14743 INTEL_INFO(dev)->cursor_needs_physical) {
14744 int align = IS_I830(dev) ? 16 * 1024 : 256;
14745 ret = i915_gem_object_attach_phys(obj, align);
14746 if (ret)
14747 DRM_DEBUG_KMS("failed to attach phys object\n");
14748 } else {
14749 struct i915_vma *vma;
14750
14751 vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14752 if (IS_ERR(vma))
14753 ret = PTR_ERR(vma);
14754 }
14755
14756 if (ret == 0) {
14757 to_intel_plane_state(new_state)->wait_req =
14758 i915_gem_active_get(&obj->last_write,
14759 &obj->base.dev->struct_mutex);
14760 }
14761
14762 return ret;
14763 }
14764
14765 /**
14766 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14767 * @plane: drm plane to clean up for
14768 * @fb: old framebuffer that was on plane
14769 *
14770 * Cleans up a framebuffer that has just been removed from a plane.
14771 *
14772 * Must be called with struct_mutex held.
14773 */
14774 void
intel_cleanup_plane_fb(struct drm_plane * plane,struct drm_plane_state * old_state)14775 intel_cleanup_plane_fb(struct drm_plane *plane,
14776 struct drm_plane_state *old_state)
14777 {
14778 struct drm_device *dev = plane->dev;
14779 struct intel_plane_state *old_intel_state;
14780 struct intel_plane_state *intel_state = to_intel_plane_state(plane->state);
14781 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14782 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
14783
14784 old_intel_state = to_intel_plane_state(old_state);
14785
14786 if (!obj && !old_obj)
14787 return;
14788
14789 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14790 !INTEL_INFO(dev)->cursor_needs_physical))
14791 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
14792
14793 i915_gem_request_assign(&intel_state->wait_req, NULL);
14794 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
14795 }
14796
14797 int
skl_max_scale(struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state)14798 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14799 {
14800 int max_scale;
14801 int crtc_clock, cdclk;
14802
14803 if (!intel_crtc || !crtc_state->base.enable)
14804 return DRM_PLANE_HELPER_NO_SCALING;
14805
14806 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14807 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14808
14809 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14810 return DRM_PLANE_HELPER_NO_SCALING;
14811
14812 /*
14813 * skl max scale is lower of:
14814 * close to 3 but not 3, -1 is for that purpose
14815 * or
14816 * cdclk/crtc_clock
14817 */
14818 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14819
14820 return max_scale;
14821 }
14822
14823 static int
intel_check_primary_plane(struct drm_plane * plane,struct intel_crtc_state * crtc_state,struct intel_plane_state * state)14824 intel_check_primary_plane(struct drm_plane *plane,
14825 struct intel_crtc_state *crtc_state,
14826 struct intel_plane_state *state)
14827 {
14828 struct drm_i915_private *dev_priv = to_i915(plane->dev);
14829 struct drm_crtc *crtc = state->base.crtc;
14830 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14831 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14832 bool can_position = false;
14833 int ret;
14834
14835 if (INTEL_GEN(dev_priv) >= 9) {
14836 /* use scaler when colorkey is not required */
14837 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14838 min_scale = 1;
14839 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14840 }
14841 can_position = true;
14842 }
14843
14844 ret = drm_plane_helper_check_state(&state->base,
14845 &state->clip,
14846 min_scale, max_scale,
14847 can_position, true);
14848 if (ret)
14849 return ret;
14850
14851 if (!state->base.fb)
14852 return 0;
14853
14854 if (INTEL_GEN(dev_priv) >= 9) {
14855 ret = skl_check_plane_surface(state);
14856 if (ret)
14857 return ret;
14858 }
14859
14860 return 0;
14861 }
14862
intel_begin_crtc_commit(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)14863 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14864 struct drm_crtc_state *old_crtc_state)
14865 {
14866 struct drm_device *dev = crtc->dev;
14867 struct drm_i915_private *dev_priv = to_i915(dev);
14868 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14869 struct intel_crtc_state *old_intel_state =
14870 to_intel_crtc_state(old_crtc_state);
14871 bool modeset = needs_modeset(crtc->state);
14872 enum pipe pipe = intel_crtc->pipe;
14873
14874 /* Perform vblank evasion around commit operation */
14875 intel_pipe_update_start(intel_crtc);
14876
14877 if (modeset)
14878 return;
14879
14880 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14881 intel_color_set_csc(crtc->state);
14882 intel_color_load_luts(crtc->state);
14883 }
14884
14885 if (to_intel_crtc_state(crtc->state)->update_pipe)
14886 intel_update_pipe_config(intel_crtc, old_intel_state);
14887 else if (INTEL_GEN(dev_priv) >= 9) {
14888 skl_detach_scalers(intel_crtc);
14889
14890 I915_WRITE(PIPE_WM_LINETIME(pipe),
14891 dev_priv->wm.skl_hw.wm_linetime[pipe]);
14892 }
14893 }
14894
intel_finish_crtc_commit(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)14895 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14896 struct drm_crtc_state *old_crtc_state)
14897 {
14898 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14899
14900 intel_pipe_update_end(intel_crtc, NULL);
14901 }
14902
14903 /**
14904 * intel_plane_destroy - destroy a plane
14905 * @plane: plane to destroy
14906 *
14907 * Common destruction function for all types of planes (primary, cursor,
14908 * sprite).
14909 */
intel_plane_destroy(struct drm_plane * plane)14910 void intel_plane_destroy(struct drm_plane *plane)
14911 {
14912 if (!plane)
14913 return;
14914
14915 drm_plane_cleanup(plane);
14916 kfree(to_intel_plane(plane));
14917 }
14918
14919 const struct drm_plane_funcs intel_plane_funcs = {
14920 .update_plane = drm_atomic_helper_update_plane,
14921 .disable_plane = drm_atomic_helper_disable_plane,
14922 .destroy = intel_plane_destroy,
14923 .set_property = drm_atomic_helper_plane_set_property,
14924 .atomic_get_property = intel_plane_atomic_get_property,
14925 .atomic_set_property = intel_plane_atomic_set_property,
14926 .atomic_duplicate_state = intel_plane_duplicate_state,
14927 .atomic_destroy_state = intel_plane_destroy_state,
14928
14929 };
14930
intel_primary_plane_create(struct drm_device * dev,int pipe)14931 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14932 int pipe)
14933 {
14934 struct intel_plane *primary = NULL;
14935 struct intel_plane_state *state = NULL;
14936 const uint32_t *intel_primary_formats;
14937 unsigned int num_formats;
14938 int ret;
14939
14940 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14941 if (!primary)
14942 goto fail;
14943
14944 state = intel_create_plane_state(&primary->base);
14945 if (!state)
14946 goto fail;
14947 primary->base.state = &state->base;
14948
14949 primary->can_scale = false;
14950 primary->max_downscale = 1;
14951 if (INTEL_INFO(dev)->gen >= 9) {
14952 primary->can_scale = true;
14953 state->scaler_id = -1;
14954 }
14955 primary->pipe = pipe;
14956 primary->plane = pipe;
14957 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14958 primary->check_plane = intel_check_primary_plane;
14959 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14960 primary->plane = !pipe;
14961
14962 if (INTEL_INFO(dev)->gen >= 9) {
14963 intel_primary_formats = skl_primary_formats;
14964 num_formats = ARRAY_SIZE(skl_primary_formats);
14965
14966 primary->update_plane = skylake_update_primary_plane;
14967 primary->disable_plane = skylake_disable_primary_plane;
14968 } else if (HAS_PCH_SPLIT(dev)) {
14969 intel_primary_formats = i965_primary_formats;
14970 num_formats = ARRAY_SIZE(i965_primary_formats);
14971
14972 primary->update_plane = ironlake_update_primary_plane;
14973 primary->disable_plane = i9xx_disable_primary_plane;
14974 } else if (INTEL_INFO(dev)->gen >= 4) {
14975 intel_primary_formats = i965_primary_formats;
14976 num_formats = ARRAY_SIZE(i965_primary_formats);
14977
14978 primary->update_plane = i9xx_update_primary_plane;
14979 primary->disable_plane = i9xx_disable_primary_plane;
14980 } else {
14981 intel_primary_formats = i8xx_primary_formats;
14982 num_formats = ARRAY_SIZE(i8xx_primary_formats);
14983
14984 primary->update_plane = i9xx_update_primary_plane;
14985 primary->disable_plane = i9xx_disable_primary_plane;
14986 }
14987
14988 if (INTEL_INFO(dev)->gen >= 9)
14989 ret = drm_universal_plane_init(dev, &primary->base, 0,
14990 &intel_plane_funcs,
14991 intel_primary_formats, num_formats,
14992 DRM_PLANE_TYPE_PRIMARY,
14993 "plane 1%c", pipe_name(pipe));
14994 else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
14995 ret = drm_universal_plane_init(dev, &primary->base, 0,
14996 &intel_plane_funcs,
14997 intel_primary_formats, num_formats,
14998 DRM_PLANE_TYPE_PRIMARY,
14999 "primary %c", pipe_name(pipe));
15000 else
15001 ret = drm_universal_plane_init(dev, &primary->base, 0,
15002 &intel_plane_funcs,
15003 intel_primary_formats, num_formats,
15004 DRM_PLANE_TYPE_PRIMARY,
15005 "plane %c", plane_name(primary->plane));
15006 if (ret)
15007 goto fail;
15008
15009 if (INTEL_INFO(dev)->gen >= 4)
15010 intel_create_rotation_property(dev, primary);
15011
15012 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
15013
15014 return &primary->base;
15015
15016 fail:
15017 kfree(state);
15018 kfree(primary);
15019
15020 return NULL;
15021 }
15022
intel_create_rotation_property(struct drm_device * dev,struct intel_plane * plane)15023 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
15024 {
15025 if (!dev->mode_config.rotation_property) {
15026 unsigned long flags = DRM_ROTATE_0 |
15027 DRM_ROTATE_180;
15028
15029 if (INTEL_INFO(dev)->gen >= 9)
15030 flags |= DRM_ROTATE_90 | DRM_ROTATE_270;
15031
15032 dev->mode_config.rotation_property =
15033 drm_mode_create_rotation_property(dev, flags);
15034 }
15035 if (dev->mode_config.rotation_property)
15036 drm_object_attach_property(&plane->base.base,
15037 dev->mode_config.rotation_property,
15038 plane->base.state->rotation);
15039 }
15040
15041 static int
intel_check_cursor_plane(struct drm_plane * plane,struct intel_crtc_state * crtc_state,struct intel_plane_state * state)15042 intel_check_cursor_plane(struct drm_plane *plane,
15043 struct intel_crtc_state *crtc_state,
15044 struct intel_plane_state *state)
15045 {
15046 struct drm_framebuffer *fb = state->base.fb;
15047 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15048 enum pipe pipe = to_intel_plane(plane)->pipe;
15049 unsigned stride;
15050 int ret;
15051
15052 ret = drm_plane_helper_check_state(&state->base,
15053 &state->clip,
15054 DRM_PLANE_HELPER_NO_SCALING,
15055 DRM_PLANE_HELPER_NO_SCALING,
15056 true, true);
15057 if (ret)
15058 return ret;
15059
15060 /* if we want to turn off the cursor ignore width and height */
15061 if (!obj)
15062 return 0;
15063
15064 /* Check for which cursor types we support */
15065 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
15066 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15067 state->base.crtc_w, state->base.crtc_h);
15068 return -EINVAL;
15069 }
15070
15071 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
15072 if (obj->base.size < stride * state->base.crtc_h) {
15073 DRM_DEBUG_KMS("buffer is too small\n");
15074 return -ENOMEM;
15075 }
15076
15077 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
15078 DRM_DEBUG_KMS("cursor cannot be tiled\n");
15079 return -EINVAL;
15080 }
15081
15082 /*
15083 * There's something wrong with the cursor on CHV pipe C.
15084 * If it straddles the left edge of the screen then
15085 * moving it away from the edge or disabling it often
15086 * results in a pipe underrun, and often that can lead to
15087 * dead pipe (constant underrun reported, and it scans
15088 * out just a solid color). To recover from that, the
15089 * display power well must be turned off and on again.
15090 * Refuse the put the cursor into that compromised position.
15091 */
15092 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
15093 state->base.visible && state->base.crtc_x < 0) {
15094 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15095 return -EINVAL;
15096 }
15097
15098 return 0;
15099 }
15100
15101 static void
intel_disable_cursor_plane(struct drm_plane * plane,struct drm_crtc * crtc)15102 intel_disable_cursor_plane(struct drm_plane *plane,
15103 struct drm_crtc *crtc)
15104 {
15105 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15106
15107 intel_crtc->cursor_addr = 0;
15108 intel_crtc_update_cursor(crtc, NULL);
15109 }
15110
15111 static void
intel_update_cursor_plane(struct drm_plane * plane,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * state)15112 intel_update_cursor_plane(struct drm_plane *plane,
15113 const struct intel_crtc_state *crtc_state,
15114 const struct intel_plane_state *state)
15115 {
15116 struct drm_crtc *crtc = crtc_state->base.crtc;
15117 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15118 struct drm_device *dev = plane->dev;
15119 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
15120 uint32_t addr;
15121
15122 if (!obj)
15123 addr = 0;
15124 else if (!INTEL_INFO(dev)->cursor_needs_physical)
15125 addr = i915_gem_object_ggtt_offset(obj, NULL);
15126 else
15127 addr = obj->phys_handle->busaddr;
15128
15129 intel_crtc->cursor_addr = addr;
15130 intel_crtc_update_cursor(crtc, state);
15131 }
15132
intel_cursor_plane_create(struct drm_device * dev,int pipe)15133 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
15134 int pipe)
15135 {
15136 struct intel_plane *cursor = NULL;
15137 struct intel_plane_state *state = NULL;
15138 int ret;
15139
15140 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
15141 if (!cursor)
15142 goto fail;
15143
15144 state = intel_create_plane_state(&cursor->base);
15145 if (!state)
15146 goto fail;
15147 cursor->base.state = &state->base;
15148
15149 cursor->can_scale = false;
15150 cursor->max_downscale = 1;
15151 cursor->pipe = pipe;
15152 cursor->plane = pipe;
15153 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
15154 cursor->check_plane = intel_check_cursor_plane;
15155 cursor->update_plane = intel_update_cursor_plane;
15156 cursor->disable_plane = intel_disable_cursor_plane;
15157
15158 ret = drm_universal_plane_init(dev, &cursor->base, 0,
15159 &intel_plane_funcs,
15160 intel_cursor_formats,
15161 ARRAY_SIZE(intel_cursor_formats),
15162 DRM_PLANE_TYPE_CURSOR,
15163 "cursor %c", pipe_name(pipe));
15164 if (ret)
15165 goto fail;
15166
15167 if (INTEL_INFO(dev)->gen >= 4) {
15168 if (!dev->mode_config.rotation_property)
15169 dev->mode_config.rotation_property =
15170 drm_mode_create_rotation_property(dev,
15171 DRM_ROTATE_0 |
15172 DRM_ROTATE_180);
15173 if (dev->mode_config.rotation_property)
15174 drm_object_attach_property(&cursor->base.base,
15175 dev->mode_config.rotation_property,
15176 state->base.rotation);
15177 }
15178
15179 if (INTEL_INFO(dev)->gen >=9)
15180 state->scaler_id = -1;
15181
15182 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15183
15184 return &cursor->base;
15185
15186 fail:
15187 kfree(state);
15188 kfree(cursor);
15189
15190 return NULL;
15191 }
15192
skl_init_scalers(struct drm_device * dev,struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state)15193 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
15194 struct intel_crtc_state *crtc_state)
15195 {
15196 int i;
15197 struct intel_scaler *intel_scaler;
15198 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
15199
15200 for (i = 0; i < intel_crtc->num_scalers; i++) {
15201 intel_scaler = &scaler_state->scalers[i];
15202 intel_scaler->in_use = 0;
15203 intel_scaler->mode = PS_SCALER_MODE_DYN;
15204 }
15205
15206 scaler_state->scaler_id = -1;
15207 }
15208
intel_crtc_init(struct drm_device * dev,int pipe)15209 static void intel_crtc_init(struct drm_device *dev, int pipe)
15210 {
15211 struct drm_i915_private *dev_priv = to_i915(dev);
15212 struct intel_crtc *intel_crtc;
15213 struct intel_crtc_state *crtc_state = NULL;
15214 struct drm_plane *primary = NULL;
15215 struct drm_plane *cursor = NULL;
15216 int ret;
15217
15218 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15219 if (intel_crtc == NULL)
15220 return;
15221
15222 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15223 if (!crtc_state)
15224 goto fail;
15225 intel_crtc->config = crtc_state;
15226 intel_crtc->base.state = &crtc_state->base;
15227 crtc_state->base.crtc = &intel_crtc->base;
15228
15229 /* initialize shared scalers */
15230 if (INTEL_INFO(dev)->gen >= 9) {
15231 if (pipe == PIPE_C)
15232 intel_crtc->num_scalers = 1;
15233 else
15234 intel_crtc->num_scalers = SKL_NUM_SCALERS;
15235
15236 skl_init_scalers(dev, intel_crtc, crtc_state);
15237 }
15238
15239 primary = intel_primary_plane_create(dev, pipe);
15240 if (!primary)
15241 goto fail;
15242
15243 cursor = intel_cursor_plane_create(dev, pipe);
15244 if (!cursor)
15245 goto fail;
15246
15247 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
15248 cursor, &intel_crtc_funcs,
15249 "pipe %c", pipe_name(pipe));
15250 if (ret)
15251 goto fail;
15252
15253 /*
15254 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
15255 * is hooked to pipe B. Hence we want plane A feeding pipe B.
15256 */
15257 intel_crtc->pipe = pipe;
15258 intel_crtc->plane = pipe;
15259 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
15260 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
15261 intel_crtc->plane = !pipe;
15262 }
15263
15264 intel_crtc->cursor_base = ~0;
15265 intel_crtc->cursor_cntl = ~0;
15266 intel_crtc->cursor_size = ~0;
15267
15268 intel_crtc->wm.cxsr_allowed = true;
15269
15270 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15271 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
15272 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
15273 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
15274
15275 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
15276
15277 intel_color_init(&intel_crtc->base);
15278
15279 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15280 return;
15281
15282 fail:
15283 intel_plane_destroy(primary);
15284 intel_plane_destroy(cursor);
15285 kfree(crtc_state);
15286 kfree(intel_crtc);
15287 }
15288
intel_get_pipe_from_connector(struct intel_connector * connector)15289 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15290 {
15291 struct drm_encoder *encoder = connector->base.encoder;
15292 struct drm_device *dev = connector->base.dev;
15293
15294 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
15295
15296 if (!encoder || WARN_ON(!encoder->crtc))
15297 return INVALID_PIPE;
15298
15299 return to_intel_crtc(encoder->crtc)->pipe;
15300 }
15301
intel_get_pipe_from_crtc_id(struct drm_device * dev,void * data,struct drm_file * file)15302 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
15303 struct drm_file *file)
15304 {
15305 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15306 struct drm_crtc *drmmode_crtc;
15307 struct intel_crtc *crtc;
15308
15309 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
15310 if (!drmmode_crtc)
15311 return -ENOENT;
15312
15313 crtc = to_intel_crtc(drmmode_crtc);
15314 pipe_from_crtc_id->pipe = crtc->pipe;
15315
15316 return 0;
15317 }
15318
intel_encoder_clones(struct intel_encoder * encoder)15319 static int intel_encoder_clones(struct intel_encoder *encoder)
15320 {
15321 struct drm_device *dev = encoder->base.dev;
15322 struct intel_encoder *source_encoder;
15323 int index_mask = 0;
15324 int entry = 0;
15325
15326 for_each_intel_encoder(dev, source_encoder) {
15327 if (encoders_cloneable(encoder, source_encoder))
15328 index_mask |= (1 << entry);
15329
15330 entry++;
15331 }
15332
15333 return index_mask;
15334 }
15335
has_edp_a(struct drm_device * dev)15336 static bool has_edp_a(struct drm_device *dev)
15337 {
15338 struct drm_i915_private *dev_priv = to_i915(dev);
15339
15340 if (!IS_MOBILE(dev))
15341 return false;
15342
15343 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15344 return false;
15345
15346 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15347 return false;
15348
15349 return true;
15350 }
15351
intel_crt_present(struct drm_device * dev)15352 static bool intel_crt_present(struct drm_device *dev)
15353 {
15354 struct drm_i915_private *dev_priv = to_i915(dev);
15355
15356 if (INTEL_INFO(dev)->gen >= 9)
15357 return false;
15358
15359 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
15360 return false;
15361
15362 if (IS_CHERRYVIEW(dev))
15363 return false;
15364
15365 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15366 return false;
15367
15368 /* DDI E can't be used if DDI A requires 4 lanes */
15369 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15370 return false;
15371
15372 if (!dev_priv->vbt.int_crt_support)
15373 return false;
15374
15375 return true;
15376 }
15377
intel_pps_unlock_regs_wa(struct drm_i915_private * dev_priv)15378 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15379 {
15380 int pps_num;
15381 int pps_idx;
15382
15383 if (HAS_DDI(dev_priv))
15384 return;
15385 /*
15386 * This w/a is needed at least on CPT/PPT, but to be sure apply it
15387 * everywhere where registers can be write protected.
15388 */
15389 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15390 pps_num = 2;
15391 else
15392 pps_num = 1;
15393
15394 for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15395 u32 val = I915_READ(PP_CONTROL(pps_idx));
15396
15397 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15398 I915_WRITE(PP_CONTROL(pps_idx), val);
15399 }
15400 }
15401
intel_pps_init(struct drm_i915_private * dev_priv)15402 static void intel_pps_init(struct drm_i915_private *dev_priv)
15403 {
15404 if (HAS_PCH_SPLIT(dev_priv) || IS_BROXTON(dev_priv))
15405 dev_priv->pps_mmio_base = PCH_PPS_BASE;
15406 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15407 dev_priv->pps_mmio_base = VLV_PPS_BASE;
15408 else
15409 dev_priv->pps_mmio_base = PPS_BASE;
15410
15411 intel_pps_unlock_regs_wa(dev_priv);
15412 }
15413
intel_setup_outputs(struct drm_device * dev)15414 static void intel_setup_outputs(struct drm_device *dev)
15415 {
15416 struct drm_i915_private *dev_priv = to_i915(dev);
15417 struct intel_encoder *encoder;
15418 bool dpd_is_edp = false;
15419
15420 intel_pps_init(dev_priv);
15421
15422 /*
15423 * intel_edp_init_connector() depends on this completing first, to
15424 * prevent the registeration of both eDP and LVDS and the incorrect
15425 * sharing of the PPS.
15426 */
15427 intel_lvds_init(dev);
15428
15429 if (intel_crt_present(dev))
15430 intel_crt_init(dev);
15431
15432 if (IS_BROXTON(dev)) {
15433 /*
15434 * FIXME: Broxton doesn't support port detection via the
15435 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15436 * detect the ports.
15437 */
15438 intel_ddi_init(dev, PORT_A);
15439 intel_ddi_init(dev, PORT_B);
15440 intel_ddi_init(dev, PORT_C);
15441
15442 intel_dsi_init(dev);
15443 } else if (HAS_DDI(dev)) {
15444 int found;
15445
15446 /*
15447 * Haswell uses DDI functions to detect digital outputs.
15448 * On SKL pre-D0 the strap isn't connected, so we assume
15449 * it's there.
15450 */
15451 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15452 /* WaIgnoreDDIAStrap: skl */
15453 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
15454 intel_ddi_init(dev, PORT_A);
15455
15456 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
15457 * register */
15458 found = I915_READ(SFUSE_STRAP);
15459
15460 if (found & SFUSE_STRAP_DDIB_DETECTED)
15461 intel_ddi_init(dev, PORT_B);
15462 if (found & SFUSE_STRAP_DDIC_DETECTED)
15463 intel_ddi_init(dev, PORT_C);
15464 if (found & SFUSE_STRAP_DDID_DETECTED)
15465 intel_ddi_init(dev, PORT_D);
15466 /*
15467 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15468 */
15469 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
15470 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15471 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15472 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15473 intel_ddi_init(dev, PORT_E);
15474
15475 } else if (HAS_PCH_SPLIT(dev)) {
15476 int found;
15477 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
15478
15479 if (has_edp_a(dev))
15480 intel_dp_init(dev, DP_A, PORT_A);
15481
15482 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15483 /* PCH SDVOB multiplex with HDMIB */
15484 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
15485 if (!found)
15486 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
15487 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15488 intel_dp_init(dev, PCH_DP_B, PORT_B);
15489 }
15490
15491 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15492 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
15493
15494 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15495 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
15496
15497 if (I915_READ(PCH_DP_C) & DP_DETECTED)
15498 intel_dp_init(dev, PCH_DP_C, PORT_C);
15499
15500 if (I915_READ(PCH_DP_D) & DP_DETECTED)
15501 intel_dp_init(dev, PCH_DP_D, PORT_D);
15502 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
15503 bool has_edp, has_port;
15504
15505 /*
15506 * The DP_DETECTED bit is the latched state of the DDC
15507 * SDA pin at boot. However since eDP doesn't require DDC
15508 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15509 * eDP ports may have been muxed to an alternate function.
15510 * Thus we can't rely on the DP_DETECTED bit alone to detect
15511 * eDP ports. Consult the VBT as well as DP_DETECTED to
15512 * detect eDP ports.
15513 *
15514 * Sadly the straps seem to be missing sometimes even for HDMI
15515 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15516 * and VBT for the presence of the port. Additionally we can't
15517 * trust the port type the VBT declares as we've seen at least
15518 * HDMI ports that the VBT claim are DP or eDP.
15519 */
15520 has_edp = intel_dp_is_edp(dev, PORT_B);
15521 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15522 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15523 has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
15524 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15525 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
15526
15527 has_edp = intel_dp_is_edp(dev, PORT_C);
15528 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15529 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15530 has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
15531 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15532 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
15533
15534 if (IS_CHERRYVIEW(dev)) {
15535 /*
15536 * eDP not supported on port D,
15537 * so no need to worry about it
15538 */
15539 has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15540 if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15541 intel_dp_init(dev, CHV_DP_D, PORT_D);
15542 if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15543 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
15544 }
15545
15546 intel_dsi_init(dev);
15547 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
15548 bool found = false;
15549
15550 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15551 DRM_DEBUG_KMS("probing SDVOB\n");
15552 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
15553 if (!found && IS_G4X(dev)) {
15554 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15555 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
15556 }
15557
15558 if (!found && IS_G4X(dev))
15559 intel_dp_init(dev, DP_B, PORT_B);
15560 }
15561
15562 /* Before G4X SDVOC doesn't have its own detect register */
15563
15564 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15565 DRM_DEBUG_KMS("probing SDVOC\n");
15566 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
15567 }
15568
15569 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15570
15571 if (IS_G4X(dev)) {
15572 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15573 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
15574 }
15575 if (IS_G4X(dev))
15576 intel_dp_init(dev, DP_C, PORT_C);
15577 }
15578
15579 if (IS_G4X(dev) &&
15580 (I915_READ(DP_D) & DP_DETECTED))
15581 intel_dp_init(dev, DP_D, PORT_D);
15582 } else if (IS_GEN2(dev))
15583 intel_dvo_init(dev);
15584
15585 if (SUPPORTS_TV(dev))
15586 intel_tv_init(dev);
15587
15588 intel_psr_init(dev);
15589
15590 for_each_intel_encoder(dev, encoder) {
15591 encoder->base.possible_crtcs = encoder->crtc_mask;
15592 encoder->base.possible_clones =
15593 intel_encoder_clones(encoder);
15594 }
15595
15596 intel_init_pch_refclk(dev);
15597
15598 drm_helper_move_panel_connectors_to_head(dev);
15599 }
15600
intel_user_framebuffer_destroy(struct drm_framebuffer * fb)15601 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15602 {
15603 struct drm_device *dev = fb->dev;
15604 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15605
15606 drm_framebuffer_cleanup(fb);
15607 mutex_lock(&dev->struct_mutex);
15608 WARN_ON(!intel_fb->obj->framebuffer_references--);
15609 i915_gem_object_put(intel_fb->obj);
15610 mutex_unlock(&dev->struct_mutex);
15611 kfree(intel_fb);
15612 }
15613
intel_user_framebuffer_create_handle(struct drm_framebuffer * fb,struct drm_file * file,unsigned int * handle)15614 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15615 struct drm_file *file,
15616 unsigned int *handle)
15617 {
15618 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15619 struct drm_i915_gem_object *obj = intel_fb->obj;
15620
15621 if (obj->userptr.mm) {
15622 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15623 return -EINVAL;
15624 }
15625
15626 return drm_gem_handle_create(file, &obj->base, handle);
15627 }
15628
intel_user_framebuffer_dirty(struct drm_framebuffer * fb,struct drm_file * file,unsigned flags,unsigned color,struct drm_clip_rect * clips,unsigned num_clips)15629 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15630 struct drm_file *file,
15631 unsigned flags, unsigned color,
15632 struct drm_clip_rect *clips,
15633 unsigned num_clips)
15634 {
15635 struct drm_device *dev = fb->dev;
15636 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15637 struct drm_i915_gem_object *obj = intel_fb->obj;
15638
15639 mutex_lock(&dev->struct_mutex);
15640 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
15641 mutex_unlock(&dev->struct_mutex);
15642
15643 return 0;
15644 }
15645
15646 static const struct drm_framebuffer_funcs intel_fb_funcs = {
15647 .destroy = intel_user_framebuffer_destroy,
15648 .create_handle = intel_user_framebuffer_create_handle,
15649 .dirty = intel_user_framebuffer_dirty,
15650 };
15651
15652 static
intel_fb_pitch_limit(struct drm_device * dev,uint64_t fb_modifier,uint32_t pixel_format)15653 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
15654 uint32_t pixel_format)
15655 {
15656 u32 gen = INTEL_INFO(dev)->gen;
15657
15658 if (gen >= 9) {
15659 int cpp = drm_format_plane_cpp(pixel_format, 0);
15660
15661 /* "The stride in bytes must not exceed the of the size of 8K
15662 * pixels and 32K bytes."
15663 */
15664 return min(8192 * cpp, 32768);
15665 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
15666 return 32*1024;
15667 } else if (gen >= 4) {
15668 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15669 return 16*1024;
15670 else
15671 return 32*1024;
15672 } else if (gen >= 3) {
15673 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15674 return 8*1024;
15675 else
15676 return 16*1024;
15677 } else {
15678 /* XXX DSPC is limited to 4k tiled */
15679 return 8*1024;
15680 }
15681 }
15682
intel_framebuffer_init(struct drm_device * dev,struct intel_framebuffer * intel_fb,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)15683 static int intel_framebuffer_init(struct drm_device *dev,
15684 struct intel_framebuffer *intel_fb,
15685 struct drm_mode_fb_cmd2 *mode_cmd,
15686 struct drm_i915_gem_object *obj)
15687 {
15688 struct drm_i915_private *dev_priv = to_i915(dev);
15689 unsigned int tiling = i915_gem_object_get_tiling(obj);
15690 int ret;
15691 u32 pitch_limit, stride_alignment;
15692 char *format_name;
15693
15694 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15695
15696 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15697 /*
15698 * If there's a fence, enforce that
15699 * the fb modifier and tiling mode match.
15700 */
15701 if (tiling != I915_TILING_NONE &&
15702 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15703 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15704 return -EINVAL;
15705 }
15706 } else {
15707 if (tiling == I915_TILING_X) {
15708 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15709 } else if (tiling == I915_TILING_Y) {
15710 DRM_DEBUG("No Y tiling for legacy addfb\n");
15711 return -EINVAL;
15712 }
15713 }
15714
15715 /* Passed in modifier sanity checking. */
15716 switch (mode_cmd->modifier[0]) {
15717 case I915_FORMAT_MOD_Y_TILED:
15718 case I915_FORMAT_MOD_Yf_TILED:
15719 if (INTEL_INFO(dev)->gen < 9) {
15720 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15721 mode_cmd->modifier[0]);
15722 return -EINVAL;
15723 }
15724 case DRM_FORMAT_MOD_NONE:
15725 case I915_FORMAT_MOD_X_TILED:
15726 break;
15727 default:
15728 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15729 mode_cmd->modifier[0]);
15730 return -EINVAL;
15731 }
15732
15733 /*
15734 * gen2/3 display engine uses the fence if present,
15735 * so the tiling mode must match the fb modifier exactly.
15736 */
15737 if (INTEL_INFO(dev_priv)->gen < 4 &&
15738 tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15739 DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15740 return -EINVAL;
15741 }
15742
15743 stride_alignment = intel_fb_stride_alignment(dev_priv,
15744 mode_cmd->modifier[0],
15745 mode_cmd->pixel_format);
15746 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15747 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15748 mode_cmd->pitches[0], stride_alignment);
15749 return -EINVAL;
15750 }
15751
15752 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
15753 mode_cmd->pixel_format);
15754 if (mode_cmd->pitches[0] > pitch_limit) {
15755 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15756 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15757 "tiled" : "linear",
15758 mode_cmd->pitches[0], pitch_limit);
15759 return -EINVAL;
15760 }
15761
15762 /*
15763 * If there's a fence, enforce that
15764 * the fb pitch and fence stride match.
15765 */
15766 if (tiling != I915_TILING_NONE &&
15767 mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
15768 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15769 mode_cmd->pitches[0],
15770 i915_gem_object_get_stride(obj));
15771 return -EINVAL;
15772 }
15773
15774 /* Reject formats not supported by any plane early. */
15775 switch (mode_cmd->pixel_format) {
15776 case DRM_FORMAT_C8:
15777 case DRM_FORMAT_RGB565:
15778 case DRM_FORMAT_XRGB8888:
15779 case DRM_FORMAT_ARGB8888:
15780 break;
15781 case DRM_FORMAT_XRGB1555:
15782 if (INTEL_INFO(dev)->gen > 3) {
15783 format_name = drm_get_format_name(mode_cmd->pixel_format);
15784 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15785 kfree(format_name);
15786 return -EINVAL;
15787 }
15788 break;
15789 case DRM_FORMAT_ABGR8888:
15790 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
15791 INTEL_INFO(dev)->gen < 9) {
15792 format_name = drm_get_format_name(mode_cmd->pixel_format);
15793 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15794 kfree(format_name);
15795 return -EINVAL;
15796 }
15797 break;
15798 case DRM_FORMAT_XBGR8888:
15799 case DRM_FORMAT_XRGB2101010:
15800 case DRM_FORMAT_XBGR2101010:
15801 if (INTEL_INFO(dev)->gen < 4) {
15802 format_name = drm_get_format_name(mode_cmd->pixel_format);
15803 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15804 kfree(format_name);
15805 return -EINVAL;
15806 }
15807 break;
15808 case DRM_FORMAT_ABGR2101010:
15809 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
15810 format_name = drm_get_format_name(mode_cmd->pixel_format);
15811 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15812 kfree(format_name);
15813 return -EINVAL;
15814 }
15815 break;
15816 case DRM_FORMAT_YUYV:
15817 case DRM_FORMAT_UYVY:
15818 case DRM_FORMAT_YVYU:
15819 case DRM_FORMAT_VYUY:
15820 if (INTEL_INFO(dev)->gen < 5) {
15821 format_name = drm_get_format_name(mode_cmd->pixel_format);
15822 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15823 kfree(format_name);
15824 return -EINVAL;
15825 }
15826 break;
15827 default:
15828 format_name = drm_get_format_name(mode_cmd->pixel_format);
15829 DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15830 kfree(format_name);
15831 return -EINVAL;
15832 }
15833
15834 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15835 if (mode_cmd->offsets[0] != 0)
15836 return -EINVAL;
15837
15838 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15839 intel_fb->obj = obj;
15840
15841 ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
15842 if (ret)
15843 return ret;
15844
15845 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15846 if (ret) {
15847 DRM_ERROR("framebuffer init failed %d\n", ret);
15848 return ret;
15849 }
15850
15851 intel_fb->obj->framebuffer_references++;
15852
15853 return 0;
15854 }
15855
15856 static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device * dev,struct drm_file * filp,const struct drm_mode_fb_cmd2 * user_mode_cmd)15857 intel_user_framebuffer_create(struct drm_device *dev,
15858 struct drm_file *filp,
15859 const struct drm_mode_fb_cmd2 *user_mode_cmd)
15860 {
15861 struct drm_framebuffer *fb;
15862 struct drm_i915_gem_object *obj;
15863 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15864
15865 obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15866 if (!obj)
15867 return ERR_PTR(-ENOENT);
15868
15869 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15870 if (IS_ERR(fb))
15871 i915_gem_object_put_unlocked(obj);
15872
15873 return fb;
15874 }
15875
15876 #ifndef CONFIG_DRM_FBDEV_EMULATION
intel_fbdev_output_poll_changed(struct drm_device * dev)15877 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
15878 {
15879 }
15880 #endif
15881
15882 static const struct drm_mode_config_funcs intel_mode_funcs = {
15883 .fb_create = intel_user_framebuffer_create,
15884 .output_poll_changed = intel_fbdev_output_poll_changed,
15885 .atomic_check = intel_atomic_check,
15886 .atomic_commit = intel_atomic_commit,
15887 .atomic_state_alloc = intel_atomic_state_alloc,
15888 .atomic_state_clear = intel_atomic_state_clear,
15889 };
15890
15891 /**
15892 * intel_init_display_hooks - initialize the display modesetting hooks
15893 * @dev_priv: device private
15894 */
intel_init_display_hooks(struct drm_i915_private * dev_priv)15895 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15896 {
15897 if (INTEL_INFO(dev_priv)->gen >= 9) {
15898 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15899 dev_priv->display.get_initial_plane_config =
15900 skylake_get_initial_plane_config;
15901 dev_priv->display.crtc_compute_clock =
15902 haswell_crtc_compute_clock;
15903 dev_priv->display.crtc_enable = haswell_crtc_enable;
15904 dev_priv->display.crtc_disable = haswell_crtc_disable;
15905 } else if (HAS_DDI(dev_priv)) {
15906 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15907 dev_priv->display.get_initial_plane_config =
15908 ironlake_get_initial_plane_config;
15909 dev_priv->display.crtc_compute_clock =
15910 haswell_crtc_compute_clock;
15911 dev_priv->display.crtc_enable = haswell_crtc_enable;
15912 dev_priv->display.crtc_disable = haswell_crtc_disable;
15913 } else if (HAS_PCH_SPLIT(dev_priv)) {
15914 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15915 dev_priv->display.get_initial_plane_config =
15916 ironlake_get_initial_plane_config;
15917 dev_priv->display.crtc_compute_clock =
15918 ironlake_crtc_compute_clock;
15919 dev_priv->display.crtc_enable = ironlake_crtc_enable;
15920 dev_priv->display.crtc_disable = ironlake_crtc_disable;
15921 } else if (IS_CHERRYVIEW(dev_priv)) {
15922 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15923 dev_priv->display.get_initial_plane_config =
15924 i9xx_get_initial_plane_config;
15925 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15926 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15927 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15928 } else if (IS_VALLEYVIEW(dev_priv)) {
15929 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15930 dev_priv->display.get_initial_plane_config =
15931 i9xx_get_initial_plane_config;
15932 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15933 dev_priv->display.crtc_enable = valleyview_crtc_enable;
15934 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15935 } else if (IS_G4X(dev_priv)) {
15936 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15937 dev_priv->display.get_initial_plane_config =
15938 i9xx_get_initial_plane_config;
15939 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15940 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15941 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15942 } else if (IS_PINEVIEW(dev_priv)) {
15943 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15944 dev_priv->display.get_initial_plane_config =
15945 i9xx_get_initial_plane_config;
15946 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15947 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15948 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15949 } else if (!IS_GEN2(dev_priv)) {
15950 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15951 dev_priv->display.get_initial_plane_config =
15952 i9xx_get_initial_plane_config;
15953 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15954 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15955 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15956 } else {
15957 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15958 dev_priv->display.get_initial_plane_config =
15959 i9xx_get_initial_plane_config;
15960 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15961 dev_priv->display.crtc_enable = i9xx_crtc_enable;
15962 dev_priv->display.crtc_disable = i9xx_crtc_disable;
15963 }
15964
15965 /* Returns the core display clock speed */
15966 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15967 dev_priv->display.get_display_clock_speed =
15968 skylake_get_display_clock_speed;
15969 else if (IS_BROXTON(dev_priv))
15970 dev_priv->display.get_display_clock_speed =
15971 broxton_get_display_clock_speed;
15972 else if (IS_BROADWELL(dev_priv))
15973 dev_priv->display.get_display_clock_speed =
15974 broadwell_get_display_clock_speed;
15975 else if (IS_HASWELL(dev_priv))
15976 dev_priv->display.get_display_clock_speed =
15977 haswell_get_display_clock_speed;
15978 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15979 dev_priv->display.get_display_clock_speed =
15980 valleyview_get_display_clock_speed;
15981 else if (IS_GEN5(dev_priv))
15982 dev_priv->display.get_display_clock_speed =
15983 ilk_get_display_clock_speed;
15984 else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15985 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
15986 dev_priv->display.get_display_clock_speed =
15987 i945_get_display_clock_speed;
15988 else if (IS_GM45(dev_priv))
15989 dev_priv->display.get_display_clock_speed =
15990 gm45_get_display_clock_speed;
15991 else if (IS_CRESTLINE(dev_priv))
15992 dev_priv->display.get_display_clock_speed =
15993 i965gm_get_display_clock_speed;
15994 else if (IS_PINEVIEW(dev_priv))
15995 dev_priv->display.get_display_clock_speed =
15996 pnv_get_display_clock_speed;
15997 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15998 dev_priv->display.get_display_clock_speed =
15999 g33_get_display_clock_speed;
16000 else if (IS_I915G(dev_priv))
16001 dev_priv->display.get_display_clock_speed =
16002 i915_get_display_clock_speed;
16003 else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
16004 dev_priv->display.get_display_clock_speed =
16005 i9xx_misc_get_display_clock_speed;
16006 else if (IS_I915GM(dev_priv))
16007 dev_priv->display.get_display_clock_speed =
16008 i915gm_get_display_clock_speed;
16009 else if (IS_I865G(dev_priv))
16010 dev_priv->display.get_display_clock_speed =
16011 i865_get_display_clock_speed;
16012 else if (IS_I85X(dev_priv))
16013 dev_priv->display.get_display_clock_speed =
16014 i85x_get_display_clock_speed;
16015 else { /* 830 */
16016 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
16017 dev_priv->display.get_display_clock_speed =
16018 i830_get_display_clock_speed;
16019 }
16020
16021 if (IS_GEN5(dev_priv)) {
16022 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
16023 } else if (IS_GEN6(dev_priv)) {
16024 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
16025 } else if (IS_IVYBRIDGE(dev_priv)) {
16026 /* FIXME: detect B0+ stepping and use auto training */
16027 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
16028 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
16029 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
16030 }
16031
16032 if (IS_BROADWELL(dev_priv)) {
16033 dev_priv->display.modeset_commit_cdclk =
16034 broadwell_modeset_commit_cdclk;
16035 dev_priv->display.modeset_calc_cdclk =
16036 broadwell_modeset_calc_cdclk;
16037 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16038 dev_priv->display.modeset_commit_cdclk =
16039 valleyview_modeset_commit_cdclk;
16040 dev_priv->display.modeset_calc_cdclk =
16041 valleyview_modeset_calc_cdclk;
16042 } else if (IS_BROXTON(dev_priv)) {
16043 dev_priv->display.modeset_commit_cdclk =
16044 bxt_modeset_commit_cdclk;
16045 dev_priv->display.modeset_calc_cdclk =
16046 bxt_modeset_calc_cdclk;
16047 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
16048 dev_priv->display.modeset_commit_cdclk =
16049 skl_modeset_commit_cdclk;
16050 dev_priv->display.modeset_calc_cdclk =
16051 skl_modeset_calc_cdclk;
16052 }
16053
16054 if (dev_priv->info.gen >= 9)
16055 dev_priv->display.update_crtcs = skl_update_crtcs;
16056 else
16057 dev_priv->display.update_crtcs = intel_update_crtcs;
16058
16059 switch (INTEL_INFO(dev_priv)->gen) {
16060 case 2:
16061 dev_priv->display.queue_flip = intel_gen2_queue_flip;
16062 break;
16063
16064 case 3:
16065 dev_priv->display.queue_flip = intel_gen3_queue_flip;
16066 break;
16067
16068 case 4:
16069 case 5:
16070 dev_priv->display.queue_flip = intel_gen4_queue_flip;
16071 break;
16072
16073 case 6:
16074 dev_priv->display.queue_flip = intel_gen6_queue_flip;
16075 break;
16076 case 7:
16077 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16078 dev_priv->display.queue_flip = intel_gen7_queue_flip;
16079 break;
16080 case 9:
16081 /* Drop through - unsupported since execlist only. */
16082 default:
16083 /* Default just returns -ENODEV to indicate unsupported */
16084 dev_priv->display.queue_flip = intel_default_queue_flip;
16085 }
16086 }
16087
16088 /*
16089 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16090 * resume, or other times. This quirk makes sure that's the case for
16091 * affected systems.
16092 */
quirk_pipea_force(struct drm_device * dev)16093 static void quirk_pipea_force(struct drm_device *dev)
16094 {
16095 struct drm_i915_private *dev_priv = to_i915(dev);
16096
16097 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
16098 DRM_INFO("applying pipe a force quirk\n");
16099 }
16100
quirk_pipeb_force(struct drm_device * dev)16101 static void quirk_pipeb_force(struct drm_device *dev)
16102 {
16103 struct drm_i915_private *dev_priv = to_i915(dev);
16104
16105 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
16106 DRM_INFO("applying pipe b force quirk\n");
16107 }
16108
16109 /*
16110 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16111 */
quirk_ssc_force_disable(struct drm_device * dev)16112 static void quirk_ssc_force_disable(struct drm_device *dev)
16113 {
16114 struct drm_i915_private *dev_priv = to_i915(dev);
16115 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
16116 DRM_INFO("applying lvds SSC disable quirk\n");
16117 }
16118
16119 /*
16120 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16121 * brightness value
16122 */
quirk_invert_brightness(struct drm_device * dev)16123 static void quirk_invert_brightness(struct drm_device *dev)
16124 {
16125 struct drm_i915_private *dev_priv = to_i915(dev);
16126 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
16127 DRM_INFO("applying inverted panel brightness quirk\n");
16128 }
16129
16130 /* Some VBT's incorrectly indicate no backlight is present */
quirk_backlight_present(struct drm_device * dev)16131 static void quirk_backlight_present(struct drm_device *dev)
16132 {
16133 struct drm_i915_private *dev_priv = to_i915(dev);
16134 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
16135 DRM_INFO("applying backlight present quirk\n");
16136 }
16137
16138 struct intel_quirk {
16139 int device;
16140 int subsystem_vendor;
16141 int subsystem_device;
16142 void (*hook)(struct drm_device *dev);
16143 };
16144
16145 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16146 struct intel_dmi_quirk {
16147 void (*hook)(struct drm_device *dev);
16148 const struct dmi_system_id (*dmi_id_list)[];
16149 };
16150
intel_dmi_reverse_brightness(const struct dmi_system_id * id)16151 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
16152 {
16153 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
16154 return 1;
16155 }
16156
16157 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
16158 {
16159 .dmi_id_list = &(const struct dmi_system_id[]) {
16160 {
16161 .callback = intel_dmi_reverse_brightness,
16162 .ident = "NCR Corporation",
16163 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
16164 DMI_MATCH(DMI_PRODUCT_NAME, ""),
16165 },
16166 },
16167 { } /* terminating entry */
16168 },
16169 .hook = quirk_invert_brightness,
16170 },
16171 };
16172
16173 static struct intel_quirk intel_quirks[] = {
16174 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16175 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
16176
16177 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16178 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
16179
16180 /* 830 needs to leave pipe A & dpll A up */
16181 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
16182
16183 /* 830 needs to leave pipe B & dpll B up */
16184 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
16185
16186 /* Lenovo U160 cannot use SSC on LVDS */
16187 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
16188
16189 /* Sony Vaio Y cannot use SSC on LVDS */
16190 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
16191
16192 /* Acer Aspire 5734Z must invert backlight brightness */
16193 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
16194
16195 /* Acer/eMachines G725 */
16196 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
16197
16198 /* Acer/eMachines e725 */
16199 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
16200
16201 /* Acer/Packard Bell NCL20 */
16202 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
16203
16204 /* Acer Aspire 4736Z */
16205 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
16206
16207 /* Acer Aspire 5336 */
16208 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
16209
16210 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16211 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
16212
16213 /* Acer C720 Chromebook (Core i3 4005U) */
16214 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
16215
16216 /* Apple Macbook 2,1 (Core 2 T7400) */
16217 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
16218
16219 /* Apple Macbook 4,1 */
16220 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
16221
16222 /* Toshiba CB35 Chromebook (Celeron 2955U) */
16223 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
16224
16225 /* HP Chromebook 14 (Celeron 2955U) */
16226 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
16227
16228 /* Dell Chromebook 11 */
16229 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
16230
16231 /* Dell Chromebook 11 (2015 version) */
16232 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
16233 };
16234
intel_init_quirks(struct drm_device * dev)16235 static void intel_init_quirks(struct drm_device *dev)
16236 {
16237 struct pci_dev *d = dev->pdev;
16238 int i;
16239
16240 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
16241 struct intel_quirk *q = &intel_quirks[i];
16242
16243 if (d->device == q->device &&
16244 (d->subsystem_vendor == q->subsystem_vendor ||
16245 q->subsystem_vendor == PCI_ANY_ID) &&
16246 (d->subsystem_device == q->subsystem_device ||
16247 q->subsystem_device == PCI_ANY_ID))
16248 q->hook(dev);
16249 }
16250 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
16251 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
16252 intel_dmi_quirks[i].hook(dev);
16253 }
16254 }
16255
16256 /* Disable the VGA plane that we never use */
i915_disable_vga(struct drm_device * dev)16257 static void i915_disable_vga(struct drm_device *dev)
16258 {
16259 struct drm_i915_private *dev_priv = to_i915(dev);
16260 struct pci_dev *pdev = dev_priv->drm.pdev;
16261 u8 sr1;
16262 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
16263
16264 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
16265 vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
16266 outb(SR01, VGA_SR_INDEX);
16267 sr1 = inb(VGA_SR_DATA);
16268 outb(sr1 | 1<<5, VGA_SR_DATA);
16269 vga_put(pdev, VGA_RSRC_LEGACY_IO);
16270 udelay(300);
16271
16272 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
16273 POSTING_READ(vga_reg);
16274 }
16275
intel_modeset_init_hw(struct drm_device * dev)16276 void intel_modeset_init_hw(struct drm_device *dev)
16277 {
16278 struct drm_i915_private *dev_priv = to_i915(dev);
16279
16280 intel_update_cdclk(dev);
16281
16282 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16283
16284 intel_init_clock_gating(dev);
16285 }
16286
16287 /*
16288 * Calculate what we think the watermarks should be for the state we've read
16289 * out of the hardware and then immediately program those watermarks so that
16290 * we ensure the hardware settings match our internal state.
16291 *
16292 * We can calculate what we think WM's should be by creating a duplicate of the
16293 * current state (which was constructed during hardware readout) and running it
16294 * through the atomic check code to calculate new watermark values in the
16295 * state object.
16296 */
sanitize_watermarks(struct drm_device * dev)16297 static void sanitize_watermarks(struct drm_device *dev)
16298 {
16299 struct drm_i915_private *dev_priv = to_i915(dev);
16300 struct drm_atomic_state *state;
16301 struct drm_crtc *crtc;
16302 struct drm_crtc_state *cstate;
16303 struct drm_modeset_acquire_ctx ctx;
16304 int ret;
16305 int i;
16306
16307 /* Only supported on platforms that use atomic watermark design */
16308 if (!dev_priv->display.optimize_watermarks)
16309 return;
16310
16311 /*
16312 * We need to hold connection_mutex before calling duplicate_state so
16313 * that the connector loop is protected.
16314 */
16315 drm_modeset_acquire_init(&ctx, 0);
16316 retry:
16317 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16318 if (ret == -EDEADLK) {
16319 drm_modeset_backoff(&ctx);
16320 goto retry;
16321 } else if (WARN_ON(ret)) {
16322 goto fail;
16323 }
16324
16325 state = drm_atomic_helper_duplicate_state(dev, &ctx);
16326 if (WARN_ON(IS_ERR(state)))
16327 goto fail;
16328
16329 /*
16330 * Hardware readout is the only time we don't want to calculate
16331 * intermediate watermarks (since we don't trust the current
16332 * watermarks).
16333 */
16334 to_intel_atomic_state(state)->skip_intermediate_wm = true;
16335
16336 ret = intel_atomic_check(dev, state);
16337 if (ret) {
16338 /*
16339 * If we fail here, it means that the hardware appears to be
16340 * programmed in a way that shouldn't be possible, given our
16341 * understanding of watermark requirements. This might mean a
16342 * mistake in the hardware readout code or a mistake in the
16343 * watermark calculations for a given platform. Raise a WARN
16344 * so that this is noticeable.
16345 *
16346 * If this actually happens, we'll have to just leave the
16347 * BIOS-programmed watermarks untouched and hope for the best.
16348 */
16349 WARN(true, "Could not determine valid watermarks for inherited state\n");
16350 goto fail;
16351 }
16352
16353 /* Write calculated watermark values back */
16354 for_each_crtc_in_state(state, crtc, cstate, i) {
16355 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16356
16357 cs->wm.need_postvbl_update = true;
16358 dev_priv->display.optimize_watermarks(cs);
16359 }
16360
16361 drm_atomic_state_free(state);
16362 fail:
16363 drm_modeset_drop_locks(&ctx);
16364 drm_modeset_acquire_fini(&ctx);
16365 }
16366
intel_modeset_init(struct drm_device * dev)16367 void intel_modeset_init(struct drm_device *dev)
16368 {
16369 struct drm_i915_private *dev_priv = to_i915(dev);
16370 struct i915_ggtt *ggtt = &dev_priv->ggtt;
16371 int sprite, ret;
16372 enum pipe pipe;
16373 struct intel_crtc *crtc;
16374
16375 drm_mode_config_init(dev);
16376
16377 dev->mode_config.min_width = 0;
16378 dev->mode_config.min_height = 0;
16379
16380 dev->mode_config.preferred_depth = 24;
16381 dev->mode_config.prefer_shadow = 1;
16382
16383 dev->mode_config.allow_fb_modifiers = true;
16384
16385 dev->mode_config.funcs = &intel_mode_funcs;
16386
16387 intel_init_quirks(dev);
16388
16389 intel_init_pm(dev);
16390
16391 if (INTEL_INFO(dev)->num_pipes == 0)
16392 return;
16393
16394 /*
16395 * There may be no VBT; and if the BIOS enabled SSC we can
16396 * just keep using it to avoid unnecessary flicker. Whereas if the
16397 * BIOS isn't using it, don't assume it will work even if the VBT
16398 * indicates as much.
16399 */
16400 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
16401 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16402 DREF_SSC1_ENABLE);
16403
16404 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16405 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16406 bios_lvds_use_ssc ? "en" : "dis",
16407 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16408 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16409 }
16410 }
16411
16412 if (IS_GEN2(dev)) {
16413 dev->mode_config.max_width = 2048;
16414 dev->mode_config.max_height = 2048;
16415 } else if (IS_GEN3(dev)) {
16416 dev->mode_config.max_width = 4096;
16417 dev->mode_config.max_height = 4096;
16418 } else {
16419 dev->mode_config.max_width = 8192;
16420 dev->mode_config.max_height = 8192;
16421 }
16422
16423 if (IS_845G(dev) || IS_I865G(dev)) {
16424 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
16425 dev->mode_config.cursor_height = 1023;
16426 } else if (IS_GEN2(dev)) {
16427 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16428 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16429 } else {
16430 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16431 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16432 }
16433
16434 dev->mode_config.fb_base = ggtt->mappable_base;
16435
16436 DRM_DEBUG_KMS("%d display pipe%s available.\n",
16437 INTEL_INFO(dev)->num_pipes,
16438 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
16439
16440 for_each_pipe(dev_priv, pipe) {
16441 intel_crtc_init(dev, pipe);
16442 for_each_sprite(dev_priv, pipe, sprite) {
16443 ret = intel_plane_init(dev, pipe, sprite);
16444 if (ret)
16445 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
16446 pipe_name(pipe), sprite_name(pipe, sprite), ret);
16447 }
16448 }
16449
16450 intel_update_czclk(dev_priv);
16451 intel_update_cdclk(dev);
16452 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16453
16454 intel_shared_dpll_init(dev);
16455
16456 if (dev_priv->max_cdclk_freq == 0)
16457 intel_update_max_cdclk(dev);
16458
16459 /* Just disable it once at startup */
16460 i915_disable_vga(dev);
16461 intel_setup_outputs(dev);
16462
16463 drm_modeset_lock_all(dev);
16464 intel_modeset_setup_hw_state(dev);
16465 drm_modeset_unlock_all(dev);
16466
16467 for_each_intel_crtc(dev, crtc) {
16468 struct intel_initial_plane_config plane_config = {};
16469
16470 if (!crtc->active)
16471 continue;
16472
16473 /*
16474 * Note that reserving the BIOS fb up front prevents us
16475 * from stuffing other stolen allocations like the ring
16476 * on top. This prevents some ugliness at boot time, and
16477 * can even allow for smooth boot transitions if the BIOS
16478 * fb is large enough for the active pipe configuration.
16479 */
16480 dev_priv->display.get_initial_plane_config(crtc,
16481 &plane_config);
16482
16483 /*
16484 * If the fb is shared between multiple heads, we'll
16485 * just get the first one.
16486 */
16487 intel_find_initial_plane_obj(crtc, &plane_config);
16488 }
16489
16490 /*
16491 * Make sure hardware watermarks really match the state we read out.
16492 * Note that we need to do this after reconstructing the BIOS fb's
16493 * since the watermark calculation done here will use pstate->fb.
16494 */
16495 sanitize_watermarks(dev);
16496 }
16497
intel_enable_pipe_a(struct drm_device * dev)16498 static void intel_enable_pipe_a(struct drm_device *dev)
16499 {
16500 struct intel_connector *connector;
16501 struct drm_connector *crt = NULL;
16502 struct intel_load_detect_pipe load_detect_temp;
16503 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
16504
16505 /* We can't just switch on the pipe A, we need to set things up with a
16506 * proper mode and output configuration. As a gross hack, enable pipe A
16507 * by enabling the load detect pipe once. */
16508 for_each_intel_connector(dev, connector) {
16509 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16510 crt = &connector->base;
16511 break;
16512 }
16513 }
16514
16515 if (!crt)
16516 return;
16517
16518 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
16519 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
16520 }
16521
16522 static bool
intel_check_plane_mapping(struct intel_crtc * crtc)16523 intel_check_plane_mapping(struct intel_crtc *crtc)
16524 {
16525 struct drm_device *dev = crtc->base.dev;
16526 struct drm_i915_private *dev_priv = to_i915(dev);
16527 u32 val;
16528
16529 if (INTEL_INFO(dev)->num_pipes == 1)
16530 return true;
16531
16532 val = I915_READ(DSPCNTR(!crtc->plane));
16533
16534 if ((val & DISPLAY_PLANE_ENABLE) &&
16535 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16536 return false;
16537
16538 return true;
16539 }
16540
intel_crtc_has_encoders(struct intel_crtc * crtc)16541 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16542 {
16543 struct drm_device *dev = crtc->base.dev;
16544 struct intel_encoder *encoder;
16545
16546 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16547 return true;
16548
16549 return false;
16550 }
16551
intel_encoder_find_connector(struct intel_encoder * encoder)16552 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16553 {
16554 struct drm_device *dev = encoder->base.dev;
16555 struct intel_connector *connector;
16556
16557 for_each_connector_on_encoder(dev, &encoder->base, connector)
16558 return connector;
16559
16560 return NULL;
16561 }
16562
has_pch_trancoder(struct drm_i915_private * dev_priv,enum transcoder pch_transcoder)16563 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16564 enum transcoder pch_transcoder)
16565 {
16566 return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16567 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16568 }
16569
intel_sanitize_crtc(struct intel_crtc * crtc)16570 static void intel_sanitize_crtc(struct intel_crtc *crtc)
16571 {
16572 struct drm_device *dev = crtc->base.dev;
16573 struct drm_i915_private *dev_priv = to_i915(dev);
16574 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
16575
16576 /* Clear any frame start delays used for debugging left by the BIOS */
16577 if (!transcoder_is_dsi(cpu_transcoder)) {
16578 i915_reg_t reg = PIPECONF(cpu_transcoder);
16579
16580 I915_WRITE(reg,
16581 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16582 }
16583
16584 /* restore vblank interrupts to correct state */
16585 drm_crtc_vblank_reset(&crtc->base);
16586 if (crtc->active) {
16587 struct intel_plane *plane;
16588
16589 drm_crtc_vblank_on(&crtc->base);
16590
16591 /* Disable everything but the primary plane */
16592 for_each_intel_plane_on_crtc(dev, crtc, plane) {
16593 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16594 continue;
16595
16596 plane->disable_plane(&plane->base, &crtc->base);
16597 }
16598 }
16599
16600 /* We need to sanitize the plane -> pipe mapping first because this will
16601 * disable the crtc (and hence change the state) if it is wrong. Note
16602 * that gen4+ has a fixed plane -> pipe mapping. */
16603 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
16604 bool plane;
16605
16606 DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16607 crtc->base.base.id, crtc->base.name);
16608
16609 /* Pipe has the wrong plane attached and the plane is active.
16610 * Temporarily change the plane mapping and disable everything
16611 * ... */
16612 plane = crtc->plane;
16613 to_intel_plane_state(crtc->base.primary->state)->base.visible = true;
16614 crtc->plane = !plane;
16615 intel_crtc_disable_noatomic(&crtc->base);
16616 crtc->plane = plane;
16617 }
16618
16619 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16620 crtc->pipe == PIPE_A && !crtc->active) {
16621 /* BIOS forgot to enable pipe A, this mostly happens after
16622 * resume. Force-enable the pipe to fix this, the update_dpms
16623 * call below we restore the pipe to the right state, but leave
16624 * the required bits on. */
16625 intel_enable_pipe_a(dev);
16626 }
16627
16628 /* Adjust the state of the output pipe according to whether we
16629 * have active connectors/encoders. */
16630 if (crtc->active && !intel_crtc_has_encoders(crtc))
16631 intel_crtc_disable_noatomic(&crtc->base);
16632
16633 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
16634 /*
16635 * We start out with underrun reporting disabled to avoid races.
16636 * For correct bookkeeping mark this on active crtcs.
16637 *
16638 * Also on gmch platforms we dont have any hardware bits to
16639 * disable the underrun reporting. Which means we need to start
16640 * out with underrun reporting disabled also on inactive pipes,
16641 * since otherwise we'll complain about the garbage we read when
16642 * e.g. coming up after runtime pm.
16643 *
16644 * No protection against concurrent access is required - at
16645 * worst a fifo underrun happens which also sets this to false.
16646 */
16647 crtc->cpu_fifo_underrun_disabled = true;
16648 /*
16649 * We track the PCH trancoder underrun reporting state
16650 * within the crtc. With crtc for pipe A housing the underrun
16651 * reporting state for PCH transcoder A, crtc for pipe B housing
16652 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16653 * and marking underrun reporting as disabled for the non-existing
16654 * PCH transcoders B and C would prevent enabling the south
16655 * error interrupt (see cpt_can_enable_serr_int()).
16656 */
16657 if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16658 crtc->pch_fifo_underrun_disabled = true;
16659 }
16660 }
16661
intel_sanitize_encoder(struct intel_encoder * encoder)16662 static void intel_sanitize_encoder(struct intel_encoder *encoder)
16663 {
16664 struct intel_connector *connector;
16665
16666 /* We need to check both for a crtc link (meaning that the
16667 * encoder is active and trying to read from a pipe) and the
16668 * pipe itself being active. */
16669 bool has_active_crtc = encoder->base.crtc &&
16670 to_intel_crtc(encoder->base.crtc)->active;
16671
16672 connector = intel_encoder_find_connector(encoder);
16673 if (connector && !has_active_crtc) {
16674 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16675 encoder->base.base.id,
16676 encoder->base.name);
16677
16678 /* Connector is active, but has no active pipe. This is
16679 * fallout from our resume register restoring. Disable
16680 * the encoder manually again. */
16681 if (encoder->base.crtc) {
16682 struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
16683
16684 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16685 encoder->base.base.id,
16686 encoder->base.name);
16687 encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16688 if (encoder->post_disable)
16689 encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16690 }
16691 encoder->base.crtc = NULL;
16692
16693 /* Inconsistent output/port/pipe state happens presumably due to
16694 * a bug in one of the get_hw_state functions. Or someplace else
16695 * in our code, like the register restore mess on resume. Clamp
16696 * things to off as a safer default. */
16697
16698 connector->base.dpms = DRM_MODE_DPMS_OFF;
16699 connector->base.encoder = NULL;
16700 }
16701 /* Enabled encoders without active connectors will be fixed in
16702 * the crtc fixup. */
16703 }
16704
i915_redisable_vga_power_on(struct drm_device * dev)16705 void i915_redisable_vga_power_on(struct drm_device *dev)
16706 {
16707 struct drm_i915_private *dev_priv = to_i915(dev);
16708 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
16709
16710 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16711 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16712 i915_disable_vga(dev);
16713 }
16714 }
16715
i915_redisable_vga(struct drm_device * dev)16716 void i915_redisable_vga(struct drm_device *dev)
16717 {
16718 struct drm_i915_private *dev_priv = to_i915(dev);
16719
16720 /* This function can be called both from intel_modeset_setup_hw_state or
16721 * at a very early point in our resume sequence, where the power well
16722 * structures are not yet restored. Since this function is at a very
16723 * paranoid "someone might have enabled VGA while we were not looking"
16724 * level, just check if the power well is enabled instead of trying to
16725 * follow the "don't touch the power well if we don't need it" policy
16726 * the rest of the driver uses. */
16727 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16728 return;
16729
16730 i915_redisable_vga_power_on(dev);
16731
16732 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16733 }
16734
primary_get_hw_state(struct intel_plane * plane)16735 static bool primary_get_hw_state(struct intel_plane *plane)
16736 {
16737 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16738
16739 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16740 }
16741
16742 /* FIXME read out full plane state for all planes */
readout_plane_state(struct intel_crtc * crtc)16743 static void readout_plane_state(struct intel_crtc *crtc)
16744 {
16745 struct drm_plane *primary = crtc->base.primary;
16746 struct intel_plane_state *plane_state =
16747 to_intel_plane_state(primary->state);
16748
16749 plane_state->base.visible = crtc->active &&
16750 primary_get_hw_state(to_intel_plane(primary));
16751
16752 if (plane_state->base.visible)
16753 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16754 }
16755
intel_modeset_readout_hw_state(struct drm_device * dev)16756 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16757 {
16758 struct drm_i915_private *dev_priv = to_i915(dev);
16759 enum pipe pipe;
16760 struct intel_crtc *crtc;
16761 struct intel_encoder *encoder;
16762 struct intel_connector *connector;
16763 int i;
16764
16765 dev_priv->active_crtcs = 0;
16766
16767 for_each_intel_crtc(dev, crtc) {
16768 struct intel_crtc_state *crtc_state = crtc->config;
16769
16770 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16771 memset(crtc_state, 0, sizeof(*crtc_state));
16772 crtc_state->base.crtc = &crtc->base;
16773
16774 crtc_state->base.active = crtc_state->base.enable =
16775 dev_priv->display.get_pipe_config(crtc, crtc_state);
16776
16777 crtc->base.enabled = crtc_state->base.enable;
16778 crtc->active = crtc_state->base.active;
16779
16780 if (crtc_state->base.active)
16781 dev_priv->active_crtcs |= 1 << crtc->pipe;
16782
16783 readout_plane_state(crtc);
16784
16785 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16786 crtc->base.base.id, crtc->base.name,
16787 crtc->active ? "enabled" : "disabled");
16788 }
16789
16790 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16791 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16792
16793 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16794 &pll->config.hw_state);
16795 pll->config.crtc_mask = 0;
16796 for_each_intel_crtc(dev, crtc) {
16797 if (crtc->active && crtc->config->shared_dpll == pll)
16798 pll->config.crtc_mask |= 1 << crtc->pipe;
16799 }
16800 pll->active_mask = pll->config.crtc_mask;
16801
16802 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16803 pll->name, pll->config.crtc_mask, pll->on);
16804 }
16805
16806 for_each_intel_encoder(dev, encoder) {
16807 pipe = 0;
16808
16809 if (encoder->get_hw_state(encoder, &pipe)) {
16810 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16811 encoder->base.crtc = &crtc->base;
16812 crtc->config->output_types |= 1 << encoder->type;
16813 encoder->get_config(encoder, crtc->config);
16814 } else {
16815 encoder->base.crtc = NULL;
16816 }
16817
16818 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16819 encoder->base.base.id,
16820 encoder->base.name,
16821 encoder->base.crtc ? "enabled" : "disabled",
16822 pipe_name(pipe));
16823 }
16824
16825 for_each_intel_connector(dev, connector) {
16826 if (connector->get_hw_state(connector)) {
16827 connector->base.dpms = DRM_MODE_DPMS_ON;
16828
16829 encoder = connector->encoder;
16830 connector->base.encoder = &encoder->base;
16831
16832 if (encoder->base.crtc &&
16833 encoder->base.crtc->state->active) {
16834 /*
16835 * This has to be done during hardware readout
16836 * because anything calling .crtc_disable may
16837 * rely on the connector_mask being accurate.
16838 */
16839 encoder->base.crtc->state->connector_mask |=
16840 1 << drm_connector_index(&connector->base);
16841 encoder->base.crtc->state->encoder_mask |=
16842 1 << drm_encoder_index(&encoder->base);
16843 }
16844
16845 } else {
16846 connector->base.dpms = DRM_MODE_DPMS_OFF;
16847 connector->base.encoder = NULL;
16848 }
16849 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16850 connector->base.base.id,
16851 connector->base.name,
16852 connector->base.encoder ? "enabled" : "disabled");
16853 }
16854
16855 for_each_intel_crtc(dev, crtc) {
16856 int pixclk = 0;
16857
16858 crtc->base.hwmode = crtc->config->base.adjusted_mode;
16859
16860 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16861 if (crtc->base.state->active) {
16862 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16863 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16864 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16865
16866 /*
16867 * The initial mode needs to be set in order to keep
16868 * the atomic core happy. It wants a valid mode if the
16869 * crtc's enabled, so we do the above call.
16870 *
16871 * At this point some state updated by the connectors
16872 * in their ->detect() callback has not run yet, so
16873 * no recalculation can be done yet.
16874 *
16875 * Even if we could do a recalculation and modeset
16876 * right now it would cause a double modeset if
16877 * fbdev or userspace chooses a different initial mode.
16878 *
16879 * If that happens, someone indicated they wanted a
16880 * mode change, which means it's safe to do a full
16881 * recalculation.
16882 */
16883 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16884
16885 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
16886 pixclk = ilk_pipe_pixel_rate(crtc->config);
16887 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16888 pixclk = crtc->config->base.adjusted_mode.crtc_clock;
16889 else
16890 WARN_ON(dev_priv->display.modeset_calc_cdclk);
16891
16892 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16893 if (IS_BROADWELL(dev_priv) && crtc->config->ips_enabled)
16894 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16895
16896 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16897 update_scanline_offset(crtc);
16898 }
16899
16900 dev_priv->min_pixclk[crtc->pipe] = pixclk;
16901
16902 intel_pipe_config_sanity_check(dev_priv, crtc->config);
16903 }
16904 }
16905
16906 /* Scan out the current hw modeset state,
16907 * and sanitizes it to the current state
16908 */
16909 static void
intel_modeset_setup_hw_state(struct drm_device * dev)16910 intel_modeset_setup_hw_state(struct drm_device *dev)
16911 {
16912 struct drm_i915_private *dev_priv = to_i915(dev);
16913 enum pipe pipe;
16914 struct intel_crtc *crtc;
16915 struct intel_encoder *encoder;
16916 int i;
16917
16918 intel_modeset_readout_hw_state(dev);
16919
16920 /* HW state is read out, now we need to sanitize this mess. */
16921 for_each_intel_encoder(dev, encoder) {
16922 intel_sanitize_encoder(encoder);
16923 }
16924
16925 for_each_pipe(dev_priv, pipe) {
16926 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16927 intel_sanitize_crtc(crtc);
16928 intel_dump_pipe_config(crtc, crtc->config,
16929 "[setup_hw_state]");
16930 }
16931
16932 intel_modeset_update_connector_atomic_state(dev);
16933
16934 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16935 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16936
16937 if (!pll->on || pll->active_mask)
16938 continue;
16939
16940 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16941
16942 pll->funcs.disable(dev_priv, pll);
16943 pll->on = false;
16944 }
16945
16946 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
16947 vlv_wm_get_hw_state(dev);
16948 else if (IS_GEN9(dev))
16949 skl_wm_get_hw_state(dev);
16950 else if (HAS_PCH_SPLIT(dev))
16951 ilk_wm_get_hw_state(dev);
16952
16953 for_each_intel_crtc(dev, crtc) {
16954 unsigned long put_domains;
16955
16956 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
16957 if (WARN_ON(put_domains))
16958 modeset_put_power_domains(dev_priv, put_domains);
16959 }
16960 intel_display_set_init_power(dev_priv, false);
16961
16962 intel_fbc_init_pipe_state(dev_priv);
16963 }
16964
intel_display_resume(struct drm_device * dev)16965 void intel_display_resume(struct drm_device *dev)
16966 {
16967 struct drm_i915_private *dev_priv = to_i915(dev);
16968 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16969 struct drm_modeset_acquire_ctx ctx;
16970 int ret;
16971
16972 dev_priv->modeset_restore_state = NULL;
16973 if (state)
16974 state->acquire_ctx = &ctx;
16975
16976 /*
16977 * This is a cludge because with real atomic modeset mode_config.mutex
16978 * won't be taken. Unfortunately some probed state like
16979 * audio_codec_enable is still protected by mode_config.mutex, so lock
16980 * it here for now.
16981 */
16982 mutex_lock(&dev->mode_config.mutex);
16983 drm_modeset_acquire_init(&ctx, 0);
16984
16985 while (1) {
16986 ret = drm_modeset_lock_all_ctx(dev, &ctx);
16987 if (ret != -EDEADLK)
16988 break;
16989
16990 drm_modeset_backoff(&ctx);
16991 }
16992
16993 if (!ret)
16994 ret = __intel_display_resume(dev, state);
16995
16996 drm_modeset_drop_locks(&ctx);
16997 drm_modeset_acquire_fini(&ctx);
16998 mutex_unlock(&dev->mode_config.mutex);
16999
17000 if (ret) {
17001 DRM_ERROR("Restoring old state failed with %i\n", ret);
17002 drm_atomic_state_free(state);
17003 }
17004 }
17005
intel_modeset_gem_init(struct drm_device * dev)17006 void intel_modeset_gem_init(struct drm_device *dev)
17007 {
17008 struct drm_i915_private *dev_priv = to_i915(dev);
17009 struct drm_crtc *c;
17010 struct drm_i915_gem_object *obj;
17011
17012 intel_init_gt_powersave(dev_priv);
17013
17014 intel_modeset_init_hw(dev);
17015
17016 intel_setup_overlay(dev_priv);
17017
17018 /*
17019 * Make sure any fbs we allocated at startup are properly
17020 * pinned & fenced. When we do the allocation it's too early
17021 * for this.
17022 */
17023 for_each_crtc(dev, c) {
17024 struct i915_vma *vma;
17025
17026 obj = intel_fb_obj(c->primary->fb);
17027 if (obj == NULL)
17028 continue;
17029
17030 mutex_lock(&dev->struct_mutex);
17031 vma = intel_pin_and_fence_fb_obj(c->primary->fb,
17032 c->primary->state->rotation);
17033 mutex_unlock(&dev->struct_mutex);
17034 if (IS_ERR(vma)) {
17035 DRM_ERROR("failed to pin boot fb on pipe %d\n",
17036 to_intel_crtc(c)->pipe);
17037 drm_framebuffer_unreference(c->primary->fb);
17038 c->primary->fb = NULL;
17039 c->primary->crtc = c->primary->state->crtc = NULL;
17040 update_state_fb(c->primary);
17041 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
17042 }
17043 }
17044 }
17045
intel_connector_register(struct drm_connector * connector)17046 int intel_connector_register(struct drm_connector *connector)
17047 {
17048 struct intel_connector *intel_connector = to_intel_connector(connector);
17049 int ret;
17050
17051 ret = intel_backlight_device_register(intel_connector);
17052 if (ret)
17053 goto err;
17054
17055 return 0;
17056
17057 err:
17058 return ret;
17059 }
17060
intel_connector_unregister(struct drm_connector * connector)17061 void intel_connector_unregister(struct drm_connector *connector)
17062 {
17063 struct intel_connector *intel_connector = to_intel_connector(connector);
17064
17065 intel_backlight_device_unregister(intel_connector);
17066 intel_panel_destroy_backlight(connector);
17067 }
17068
intel_modeset_cleanup(struct drm_device * dev)17069 void intel_modeset_cleanup(struct drm_device *dev)
17070 {
17071 struct drm_i915_private *dev_priv = to_i915(dev);
17072
17073 intel_disable_gt_powersave(dev_priv);
17074
17075 /*
17076 * Interrupts and polling as the first thing to avoid creating havoc.
17077 * Too much stuff here (turning of connectors, ...) would
17078 * experience fancy races otherwise.
17079 */
17080 intel_irq_uninstall(dev_priv);
17081
17082 /*
17083 * Due to the hpd irq storm handling the hotplug work can re-arm the
17084 * poll handlers. Hence disable polling after hpd handling is shut down.
17085 */
17086 drm_kms_helper_poll_fini(dev);
17087
17088 intel_unregister_dsm_handler();
17089
17090 intel_fbc_global_disable(dev_priv);
17091
17092 /* flush any delayed tasks or pending work */
17093 flush_scheduled_work();
17094
17095 drm_mode_config_cleanup(dev);
17096
17097 intel_cleanup_overlay(dev_priv);
17098
17099 intel_cleanup_gt_powersave(dev_priv);
17100
17101 intel_teardown_gmbus(dev);
17102 }
17103
intel_connector_attach_encoder(struct intel_connector * connector,struct intel_encoder * encoder)17104 void intel_connector_attach_encoder(struct intel_connector *connector,
17105 struct intel_encoder *encoder)
17106 {
17107 connector->encoder = encoder;
17108 drm_mode_connector_attach_encoder(&connector->base,
17109 &encoder->base);
17110 }
17111
17112 /*
17113 * set vga decode state - true == enable VGA decode
17114 */
intel_modeset_vga_set_state(struct drm_device * dev,bool state)17115 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
17116 {
17117 struct drm_i915_private *dev_priv = to_i915(dev);
17118 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
17119 u16 gmch_ctrl;
17120
17121 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17122 DRM_ERROR("failed to read control word\n");
17123 return -EIO;
17124 }
17125
17126 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17127 return 0;
17128
17129 if (state)
17130 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17131 else
17132 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
17133
17134 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17135 DRM_ERROR("failed to write control word\n");
17136 return -EIO;
17137 }
17138
17139 return 0;
17140 }
17141
17142 struct intel_display_error_state {
17143
17144 u32 power_well_driver;
17145
17146 int num_transcoders;
17147
17148 struct intel_cursor_error_state {
17149 u32 control;
17150 u32 position;
17151 u32 base;
17152 u32 size;
17153 } cursor[I915_MAX_PIPES];
17154
17155 struct intel_pipe_error_state {
17156 bool power_domain_on;
17157 u32 source;
17158 u32 stat;
17159 } pipe[I915_MAX_PIPES];
17160
17161 struct intel_plane_error_state {
17162 u32 control;
17163 u32 stride;
17164 u32 size;
17165 u32 pos;
17166 u32 addr;
17167 u32 surface;
17168 u32 tile_offset;
17169 } plane[I915_MAX_PIPES];
17170
17171 struct intel_transcoder_error_state {
17172 bool power_domain_on;
17173 enum transcoder cpu_transcoder;
17174
17175 u32 conf;
17176
17177 u32 htotal;
17178 u32 hblank;
17179 u32 hsync;
17180 u32 vtotal;
17181 u32 vblank;
17182 u32 vsync;
17183 } transcoder[4];
17184 };
17185
17186 struct intel_display_error_state *
intel_display_capture_error_state(struct drm_i915_private * dev_priv)17187 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17188 {
17189 struct intel_display_error_state *error;
17190 int transcoders[] = {
17191 TRANSCODER_A,
17192 TRANSCODER_B,
17193 TRANSCODER_C,
17194 TRANSCODER_EDP,
17195 };
17196 int i;
17197
17198 if (INTEL_INFO(dev_priv)->num_pipes == 0)
17199 return NULL;
17200
17201 error = kzalloc(sizeof(*error), GFP_ATOMIC);
17202 if (error == NULL)
17203 return NULL;
17204
17205 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17206 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
17207
17208 for_each_pipe(dev_priv, i) {
17209 error->pipe[i].power_domain_on =
17210 __intel_display_power_is_enabled(dev_priv,
17211 POWER_DOMAIN_PIPE(i));
17212 if (!error->pipe[i].power_domain_on)
17213 continue;
17214
17215 error->cursor[i].control = I915_READ(CURCNTR(i));
17216 error->cursor[i].position = I915_READ(CURPOS(i));
17217 error->cursor[i].base = I915_READ(CURBASE(i));
17218
17219 error->plane[i].control = I915_READ(DSPCNTR(i));
17220 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17221 if (INTEL_GEN(dev_priv) <= 3) {
17222 error->plane[i].size = I915_READ(DSPSIZE(i));
17223 error->plane[i].pos = I915_READ(DSPPOS(i));
17224 }
17225 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17226 error->plane[i].addr = I915_READ(DSPADDR(i));
17227 if (INTEL_GEN(dev_priv) >= 4) {
17228 error->plane[i].surface = I915_READ(DSPSURF(i));
17229 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17230 }
17231
17232 error->pipe[i].source = I915_READ(PIPESRC(i));
17233
17234 if (HAS_GMCH_DISPLAY(dev_priv))
17235 error->pipe[i].stat = I915_READ(PIPESTAT(i));
17236 }
17237
17238 /* Note: this does not include DSI transcoders. */
17239 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
17240 if (HAS_DDI(dev_priv))
17241 error->num_transcoders++; /* Account for eDP. */
17242
17243 for (i = 0; i < error->num_transcoders; i++) {
17244 enum transcoder cpu_transcoder = transcoders[i];
17245
17246 error->transcoder[i].power_domain_on =
17247 __intel_display_power_is_enabled(dev_priv,
17248 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17249 if (!error->transcoder[i].power_domain_on)
17250 continue;
17251
17252 error->transcoder[i].cpu_transcoder = cpu_transcoder;
17253
17254 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17255 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17256 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17257 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17258 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17259 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17260 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17261 }
17262
17263 return error;
17264 }
17265
17266 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17267
17268 void
intel_display_print_error_state(struct drm_i915_error_state_buf * m,struct drm_device * dev,struct intel_display_error_state * error)17269 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17270 struct drm_device *dev,
17271 struct intel_display_error_state *error)
17272 {
17273 struct drm_i915_private *dev_priv = to_i915(dev);
17274 int i;
17275
17276 if (!error)
17277 return;
17278
17279 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
17280 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
17281 err_printf(m, "PWR_WELL_CTL2: %08x\n",
17282 error->power_well_driver);
17283 for_each_pipe(dev_priv, i) {
17284 err_printf(m, "Pipe [%d]:\n", i);
17285 err_printf(m, " Power: %s\n",
17286 onoff(error->pipe[i].power_domain_on));
17287 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
17288 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
17289
17290 err_printf(m, "Plane [%d]:\n", i);
17291 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
17292 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
17293 if (INTEL_INFO(dev)->gen <= 3) {
17294 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
17295 err_printf(m, " POS: %08x\n", error->plane[i].pos);
17296 }
17297 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
17298 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
17299 if (INTEL_INFO(dev)->gen >= 4) {
17300 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
17301 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
17302 }
17303
17304 err_printf(m, "Cursor [%d]:\n", i);
17305 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
17306 err_printf(m, " POS: %08x\n", error->cursor[i].position);
17307 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
17308 }
17309
17310 for (i = 0; i < error->num_transcoders; i++) {
17311 err_printf(m, "CPU transcoder: %s\n",
17312 transcoder_name(error->transcoder[i].cpu_transcoder));
17313 err_printf(m, " Power: %s\n",
17314 onoff(error->transcoder[i].power_domain_on));
17315 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
17316 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
17317 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
17318 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
17319 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
17320 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
17321 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
17322 }
17323 }
17324