• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *	Eric Anholt <eric@anholt.net>
25  */
26 
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include "intel_frontbuffer.h"
38 #include <drm/i915_drm.h>
39 #include "i915_drv.h"
40 #include "i915_gem_dmabuf.h"
41 #include "intel_dsi.h"
42 #include "i915_trace.h"
43 #include <drm/drm_atomic.h>
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_dp_helper.h>
46 #include <drm/drm_crtc_helper.h>
47 #include <drm/drm_plane_helper.h>
48 #include <drm/drm_rect.h>
49 #include <linux/dma_remapping.h>
50 #include <linux/reservation.h>
51 
is_mmio_work(struct intel_flip_work * work)52 static bool is_mmio_work(struct intel_flip_work *work)
53 {
54 	return work->mmio_work.func;
55 }
56 
57 /* Primary plane formats for gen <= 3 */
58 static const uint32_t i8xx_primary_formats[] = {
59 	DRM_FORMAT_C8,
60 	DRM_FORMAT_RGB565,
61 	DRM_FORMAT_XRGB1555,
62 	DRM_FORMAT_XRGB8888,
63 };
64 
65 /* Primary plane formats for gen >= 4 */
66 static const uint32_t i965_primary_formats[] = {
67 	DRM_FORMAT_C8,
68 	DRM_FORMAT_RGB565,
69 	DRM_FORMAT_XRGB8888,
70 	DRM_FORMAT_XBGR8888,
71 	DRM_FORMAT_XRGB2101010,
72 	DRM_FORMAT_XBGR2101010,
73 };
74 
75 static const uint32_t skl_primary_formats[] = {
76 	DRM_FORMAT_C8,
77 	DRM_FORMAT_RGB565,
78 	DRM_FORMAT_XRGB8888,
79 	DRM_FORMAT_XBGR8888,
80 	DRM_FORMAT_ARGB8888,
81 	DRM_FORMAT_ABGR8888,
82 	DRM_FORMAT_XRGB2101010,
83 	DRM_FORMAT_XBGR2101010,
84 	DRM_FORMAT_YUYV,
85 	DRM_FORMAT_YVYU,
86 	DRM_FORMAT_UYVY,
87 	DRM_FORMAT_VYUY,
88 };
89 
90 /* Cursor formats */
91 static const uint32_t intel_cursor_formats[] = {
92 	DRM_FORMAT_ARGB8888,
93 };
94 
95 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
96 				struct intel_crtc_state *pipe_config);
97 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
98 				   struct intel_crtc_state *pipe_config);
99 
100 static int intel_framebuffer_init(struct drm_device *dev,
101 				  struct intel_framebuffer *ifb,
102 				  struct drm_mode_fb_cmd2 *mode_cmd,
103 				  struct drm_i915_gem_object *obj);
104 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
105 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
106 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
107 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
108 					 struct intel_link_m_n *m_n,
109 					 struct intel_link_m_n *m2_n2);
110 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
111 static void haswell_set_pipeconf(struct drm_crtc *crtc);
112 static void haswell_set_pipemisc(struct drm_crtc *crtc);
113 static void vlv_prepare_pll(struct intel_crtc *crtc,
114 			    const struct intel_crtc_state *pipe_config);
115 static void chv_prepare_pll(struct intel_crtc *crtc,
116 			    const struct intel_crtc_state *pipe_config);
117 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
118 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
119 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
120 	struct intel_crtc_state *crtc_state);
121 static void skylake_pfit_enable(struct intel_crtc *crtc);
122 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
123 static void ironlake_pfit_enable(struct intel_crtc *crtc);
124 static void intel_modeset_setup_hw_state(struct drm_device *dev);
125 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
126 static int ilk_max_pixel_rate(struct drm_atomic_state *state);
127 static int bxt_calc_cdclk(int max_pixclk);
128 
129 struct intel_limit {
130 	struct {
131 		int min, max;
132 	} dot, vco, n, m, m1, m2, p, p1;
133 
134 	struct {
135 		int dot_limit;
136 		int p2_slow, p2_fast;
137 	} p2;
138 };
139 
140 /* returns HPLL frequency in kHz */
valleyview_get_vco(struct drm_i915_private * dev_priv)141 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
142 {
143 	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
144 
145 	/* Obtain SKU information */
146 	mutex_lock(&dev_priv->sb_lock);
147 	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
148 		CCK_FUSE_HPLL_FREQ_MASK;
149 	mutex_unlock(&dev_priv->sb_lock);
150 
151 	return vco_freq[hpll_freq] * 1000;
152 }
153 
vlv_get_cck_clock(struct drm_i915_private * dev_priv,const char * name,u32 reg,int ref_freq)154 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
155 		      const char *name, u32 reg, int ref_freq)
156 {
157 	u32 val;
158 	int divider;
159 
160 	mutex_lock(&dev_priv->sb_lock);
161 	val = vlv_cck_read(dev_priv, reg);
162 	mutex_unlock(&dev_priv->sb_lock);
163 
164 	divider = val & CCK_FREQUENCY_VALUES;
165 
166 	WARN((val & CCK_FREQUENCY_STATUS) !=
167 	     (divider << CCK_FREQUENCY_STATUS_SHIFT),
168 	     "%s change in progress\n", name);
169 
170 	return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
171 }
172 
vlv_get_cck_clock_hpll(struct drm_i915_private * dev_priv,const char * name,u32 reg)173 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
174 				  const char *name, u32 reg)
175 {
176 	if (dev_priv->hpll_freq == 0)
177 		dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
178 
179 	return vlv_get_cck_clock(dev_priv, name, reg,
180 				 dev_priv->hpll_freq);
181 }
182 
183 static int
intel_pch_rawclk(struct drm_i915_private * dev_priv)184 intel_pch_rawclk(struct drm_i915_private *dev_priv)
185 {
186 	return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
187 }
188 
189 static int
intel_vlv_hrawclk(struct drm_i915_private * dev_priv)190 intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
191 {
192 	/* RAWCLK_FREQ_VLV register updated from power well code */
193 	return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
194 				      CCK_DISPLAY_REF_CLOCK_CONTROL);
195 }
196 
197 static int
intel_g4x_hrawclk(struct drm_i915_private * dev_priv)198 intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
199 {
200 	uint32_t clkcfg;
201 
202 	/* hrawclock is 1/4 the FSB frequency */
203 	clkcfg = I915_READ(CLKCFG);
204 	switch (clkcfg & CLKCFG_FSB_MASK) {
205 	case CLKCFG_FSB_400:
206 		return 100000;
207 	case CLKCFG_FSB_533:
208 		return 133333;
209 	case CLKCFG_FSB_667:
210 		return 166667;
211 	case CLKCFG_FSB_800:
212 		return 200000;
213 	case CLKCFG_FSB_1067:
214 		return 266667;
215 	case CLKCFG_FSB_1333:
216 		return 333333;
217 	/* these two are just a guess; one of them might be right */
218 	case CLKCFG_FSB_1600:
219 	case CLKCFG_FSB_1600_ALT:
220 		return 400000;
221 	default:
222 		return 133333;
223 	}
224 }
225 
intel_update_rawclk(struct drm_i915_private * dev_priv)226 void intel_update_rawclk(struct drm_i915_private *dev_priv)
227 {
228 	if (HAS_PCH_SPLIT(dev_priv))
229 		dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
230 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
231 		dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
232 	else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
233 		dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
234 	else
235 		return; /* no rawclk on other platforms, or no need to know it */
236 
237 	DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
238 }
239 
intel_update_czclk(struct drm_i915_private * dev_priv)240 static void intel_update_czclk(struct drm_i915_private *dev_priv)
241 {
242 	if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
243 		return;
244 
245 	dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
246 						      CCK_CZ_CLOCK_CONTROL);
247 
248 	DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
249 }
250 
251 static inline u32 /* units of 100MHz */
intel_fdi_link_freq(struct drm_i915_private * dev_priv,const struct intel_crtc_state * pipe_config)252 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
253 		    const struct intel_crtc_state *pipe_config)
254 {
255 	if (HAS_DDI(dev_priv))
256 		return pipe_config->port_clock; /* SPLL */
257 	else if (IS_GEN5(dev_priv))
258 		return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
259 	else
260 		return 270000;
261 }
262 
263 static const struct intel_limit intel_limits_i8xx_dac = {
264 	.dot = { .min = 25000, .max = 350000 },
265 	.vco = { .min = 908000, .max = 1512000 },
266 	.n = { .min = 2, .max = 16 },
267 	.m = { .min = 96, .max = 140 },
268 	.m1 = { .min = 18, .max = 26 },
269 	.m2 = { .min = 6, .max = 16 },
270 	.p = { .min = 4, .max = 128 },
271 	.p1 = { .min = 2, .max = 33 },
272 	.p2 = { .dot_limit = 165000,
273 		.p2_slow = 4, .p2_fast = 2 },
274 };
275 
276 static const struct intel_limit intel_limits_i8xx_dvo = {
277 	.dot = { .min = 25000, .max = 350000 },
278 	.vco = { .min = 908000, .max = 1512000 },
279 	.n = { .min = 2, .max = 16 },
280 	.m = { .min = 96, .max = 140 },
281 	.m1 = { .min = 18, .max = 26 },
282 	.m2 = { .min = 6, .max = 16 },
283 	.p = { .min = 4, .max = 128 },
284 	.p1 = { .min = 2, .max = 33 },
285 	.p2 = { .dot_limit = 165000,
286 		.p2_slow = 4, .p2_fast = 4 },
287 };
288 
289 static const struct intel_limit intel_limits_i8xx_lvds = {
290 	.dot = { .min = 25000, .max = 350000 },
291 	.vco = { .min = 908000, .max = 1512000 },
292 	.n = { .min = 2, .max = 16 },
293 	.m = { .min = 96, .max = 140 },
294 	.m1 = { .min = 18, .max = 26 },
295 	.m2 = { .min = 6, .max = 16 },
296 	.p = { .min = 4, .max = 128 },
297 	.p1 = { .min = 1, .max = 6 },
298 	.p2 = { .dot_limit = 165000,
299 		.p2_slow = 14, .p2_fast = 7 },
300 };
301 
302 static const struct intel_limit intel_limits_i9xx_sdvo = {
303 	.dot = { .min = 20000, .max = 400000 },
304 	.vco = { .min = 1400000, .max = 2800000 },
305 	.n = { .min = 1, .max = 6 },
306 	.m = { .min = 70, .max = 120 },
307 	.m1 = { .min = 8, .max = 18 },
308 	.m2 = { .min = 3, .max = 7 },
309 	.p = { .min = 5, .max = 80 },
310 	.p1 = { .min = 1, .max = 8 },
311 	.p2 = { .dot_limit = 200000,
312 		.p2_slow = 10, .p2_fast = 5 },
313 };
314 
315 static const struct intel_limit intel_limits_i9xx_lvds = {
316 	.dot = { .min = 20000, .max = 400000 },
317 	.vco = { .min = 1400000, .max = 2800000 },
318 	.n = { .min = 1, .max = 6 },
319 	.m = { .min = 70, .max = 120 },
320 	.m1 = { .min = 8, .max = 18 },
321 	.m2 = { .min = 3, .max = 7 },
322 	.p = { .min = 7, .max = 98 },
323 	.p1 = { .min = 1, .max = 8 },
324 	.p2 = { .dot_limit = 112000,
325 		.p2_slow = 14, .p2_fast = 7 },
326 };
327 
328 
329 static const struct intel_limit intel_limits_g4x_sdvo = {
330 	.dot = { .min = 25000, .max = 270000 },
331 	.vco = { .min = 1750000, .max = 3500000},
332 	.n = { .min = 1, .max = 4 },
333 	.m = { .min = 104, .max = 138 },
334 	.m1 = { .min = 17, .max = 23 },
335 	.m2 = { .min = 5, .max = 11 },
336 	.p = { .min = 10, .max = 30 },
337 	.p1 = { .min = 1, .max = 3},
338 	.p2 = { .dot_limit = 270000,
339 		.p2_slow = 10,
340 		.p2_fast = 10
341 	},
342 };
343 
344 static const struct intel_limit intel_limits_g4x_hdmi = {
345 	.dot = { .min = 22000, .max = 400000 },
346 	.vco = { .min = 1750000, .max = 3500000},
347 	.n = { .min = 1, .max = 4 },
348 	.m = { .min = 104, .max = 138 },
349 	.m1 = { .min = 16, .max = 23 },
350 	.m2 = { .min = 5, .max = 11 },
351 	.p = { .min = 5, .max = 80 },
352 	.p1 = { .min = 1, .max = 8},
353 	.p2 = { .dot_limit = 165000,
354 		.p2_slow = 10, .p2_fast = 5 },
355 };
356 
357 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
358 	.dot = { .min = 20000, .max = 115000 },
359 	.vco = { .min = 1750000, .max = 3500000 },
360 	.n = { .min = 1, .max = 3 },
361 	.m = { .min = 104, .max = 138 },
362 	.m1 = { .min = 17, .max = 23 },
363 	.m2 = { .min = 5, .max = 11 },
364 	.p = { .min = 28, .max = 112 },
365 	.p1 = { .min = 2, .max = 8 },
366 	.p2 = { .dot_limit = 0,
367 		.p2_slow = 14, .p2_fast = 14
368 	},
369 };
370 
371 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
372 	.dot = { .min = 80000, .max = 224000 },
373 	.vco = { .min = 1750000, .max = 3500000 },
374 	.n = { .min = 1, .max = 3 },
375 	.m = { .min = 104, .max = 138 },
376 	.m1 = { .min = 17, .max = 23 },
377 	.m2 = { .min = 5, .max = 11 },
378 	.p = { .min = 14, .max = 42 },
379 	.p1 = { .min = 2, .max = 6 },
380 	.p2 = { .dot_limit = 0,
381 		.p2_slow = 7, .p2_fast = 7
382 	},
383 };
384 
385 static const struct intel_limit intel_limits_pineview_sdvo = {
386 	.dot = { .min = 20000, .max = 400000},
387 	.vco = { .min = 1700000, .max = 3500000 },
388 	/* Pineview's Ncounter is a ring counter */
389 	.n = { .min = 3, .max = 6 },
390 	.m = { .min = 2, .max = 256 },
391 	/* Pineview only has one combined m divider, which we treat as m2. */
392 	.m1 = { .min = 0, .max = 0 },
393 	.m2 = { .min = 0, .max = 254 },
394 	.p = { .min = 5, .max = 80 },
395 	.p1 = { .min = 1, .max = 8 },
396 	.p2 = { .dot_limit = 200000,
397 		.p2_slow = 10, .p2_fast = 5 },
398 };
399 
400 static const struct intel_limit intel_limits_pineview_lvds = {
401 	.dot = { .min = 20000, .max = 400000 },
402 	.vco = { .min = 1700000, .max = 3500000 },
403 	.n = { .min = 3, .max = 6 },
404 	.m = { .min = 2, .max = 256 },
405 	.m1 = { .min = 0, .max = 0 },
406 	.m2 = { .min = 0, .max = 254 },
407 	.p = { .min = 7, .max = 112 },
408 	.p1 = { .min = 1, .max = 8 },
409 	.p2 = { .dot_limit = 112000,
410 		.p2_slow = 14, .p2_fast = 14 },
411 };
412 
413 /* Ironlake / Sandybridge
414  *
415  * We calculate clock using (register_value + 2) for N/M1/M2, so here
416  * the range value for them is (actual_value - 2).
417  */
418 static const struct intel_limit intel_limits_ironlake_dac = {
419 	.dot = { .min = 25000, .max = 350000 },
420 	.vco = { .min = 1760000, .max = 3510000 },
421 	.n = { .min = 1, .max = 5 },
422 	.m = { .min = 79, .max = 127 },
423 	.m1 = { .min = 12, .max = 22 },
424 	.m2 = { .min = 5, .max = 9 },
425 	.p = { .min = 5, .max = 80 },
426 	.p1 = { .min = 1, .max = 8 },
427 	.p2 = { .dot_limit = 225000,
428 		.p2_slow = 10, .p2_fast = 5 },
429 };
430 
431 static const struct intel_limit intel_limits_ironlake_single_lvds = {
432 	.dot = { .min = 25000, .max = 350000 },
433 	.vco = { .min = 1760000, .max = 3510000 },
434 	.n = { .min = 1, .max = 3 },
435 	.m = { .min = 79, .max = 118 },
436 	.m1 = { .min = 12, .max = 22 },
437 	.m2 = { .min = 5, .max = 9 },
438 	.p = { .min = 28, .max = 112 },
439 	.p1 = { .min = 2, .max = 8 },
440 	.p2 = { .dot_limit = 225000,
441 		.p2_slow = 14, .p2_fast = 14 },
442 };
443 
444 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
445 	.dot = { .min = 25000, .max = 350000 },
446 	.vco = { .min = 1760000, .max = 3510000 },
447 	.n = { .min = 1, .max = 3 },
448 	.m = { .min = 79, .max = 127 },
449 	.m1 = { .min = 12, .max = 22 },
450 	.m2 = { .min = 5, .max = 9 },
451 	.p = { .min = 14, .max = 56 },
452 	.p1 = { .min = 2, .max = 8 },
453 	.p2 = { .dot_limit = 225000,
454 		.p2_slow = 7, .p2_fast = 7 },
455 };
456 
457 /* LVDS 100mhz refclk limits. */
458 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
459 	.dot = { .min = 25000, .max = 350000 },
460 	.vco = { .min = 1760000, .max = 3510000 },
461 	.n = { .min = 1, .max = 2 },
462 	.m = { .min = 79, .max = 126 },
463 	.m1 = { .min = 12, .max = 22 },
464 	.m2 = { .min = 5, .max = 9 },
465 	.p = { .min = 28, .max = 112 },
466 	.p1 = { .min = 2, .max = 8 },
467 	.p2 = { .dot_limit = 225000,
468 		.p2_slow = 14, .p2_fast = 14 },
469 };
470 
471 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
472 	.dot = { .min = 25000, .max = 350000 },
473 	.vco = { .min = 1760000, .max = 3510000 },
474 	.n = { .min = 1, .max = 3 },
475 	.m = { .min = 79, .max = 126 },
476 	.m1 = { .min = 12, .max = 22 },
477 	.m2 = { .min = 5, .max = 9 },
478 	.p = { .min = 14, .max = 42 },
479 	.p1 = { .min = 2, .max = 6 },
480 	.p2 = { .dot_limit = 225000,
481 		.p2_slow = 7, .p2_fast = 7 },
482 };
483 
484 static const struct intel_limit intel_limits_vlv = {
485 	 /*
486 	  * These are the data rate limits (measured in fast clocks)
487 	  * since those are the strictest limits we have. The fast
488 	  * clock and actual rate limits are more relaxed, so checking
489 	  * them would make no difference.
490 	  */
491 	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
492 	.vco = { .min = 4000000, .max = 6000000 },
493 	.n = { .min = 1, .max = 7 },
494 	.m1 = { .min = 2, .max = 3 },
495 	.m2 = { .min = 11, .max = 156 },
496 	.p1 = { .min = 2, .max = 3 },
497 	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
498 };
499 
500 static const struct intel_limit intel_limits_chv = {
501 	/*
502 	 * These are the data rate limits (measured in fast clocks)
503 	 * since those are the strictest limits we have.  The fast
504 	 * clock and actual rate limits are more relaxed, so checking
505 	 * them would make no difference.
506 	 */
507 	.dot = { .min = 25000 * 5, .max = 540000 * 5},
508 	.vco = { .min = 4800000, .max = 6480000 },
509 	.n = { .min = 1, .max = 1 },
510 	.m1 = { .min = 2, .max = 2 },
511 	.m2 = { .min = 24 << 22, .max = 175 << 22 },
512 	.p1 = { .min = 2, .max = 4 },
513 	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
514 };
515 
516 static const struct intel_limit intel_limits_bxt = {
517 	/* FIXME: find real dot limits */
518 	.dot = { .min = 0, .max = INT_MAX },
519 	.vco = { .min = 4800000, .max = 6700000 },
520 	.n = { .min = 1, .max = 1 },
521 	.m1 = { .min = 2, .max = 2 },
522 	/* FIXME: find real m2 limits */
523 	.m2 = { .min = 2 << 22, .max = 255 << 22 },
524 	.p1 = { .min = 2, .max = 4 },
525 	.p2 = { .p2_slow = 1, .p2_fast = 20 },
526 };
527 
528 static bool
needs_modeset(struct drm_crtc_state * state)529 needs_modeset(struct drm_crtc_state *state)
530 {
531 	return drm_atomic_crtc_needs_modeset(state);
532 }
533 
534 /*
535  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
536  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
537  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
538  * The helpers' return value is the rate of the clock that is fed to the
539  * display engine's pipe which can be the above fast dot clock rate or a
540  * divided-down version of it.
541  */
542 /* m1 is reserved as 0 in Pineview, n is a ring counter */
pnv_calc_dpll_params(int refclk,struct dpll * clock)543 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
544 {
545 	clock->m = clock->m2 + 2;
546 	clock->p = clock->p1 * clock->p2;
547 	if (WARN_ON(clock->n == 0 || clock->p == 0))
548 		return 0;
549 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
550 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
551 
552 	return clock->dot;
553 }
554 
i9xx_dpll_compute_m(struct dpll * dpll)555 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
556 {
557 	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
558 }
559 
i9xx_calc_dpll_params(int refclk,struct dpll * clock)560 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
561 {
562 	clock->m = i9xx_dpll_compute_m(clock);
563 	clock->p = clock->p1 * clock->p2;
564 	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
565 		return 0;
566 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
567 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
568 
569 	return clock->dot;
570 }
571 
vlv_calc_dpll_params(int refclk,struct dpll * clock)572 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
573 {
574 	clock->m = clock->m1 * clock->m2;
575 	clock->p = clock->p1 * clock->p2;
576 	if (WARN_ON(clock->n == 0 || clock->p == 0))
577 		return 0;
578 	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
579 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
580 
581 	return clock->dot / 5;
582 }
583 
chv_calc_dpll_params(int refclk,struct dpll * clock)584 int chv_calc_dpll_params(int refclk, struct dpll *clock)
585 {
586 	clock->m = clock->m1 * clock->m2;
587 	clock->p = clock->p1 * clock->p2;
588 	if (WARN_ON(clock->n == 0 || clock->p == 0))
589 		return 0;
590 	clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
591 			clock->n << 22);
592 	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
593 
594 	return clock->dot / 5;
595 }
596 
597 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
598 /**
599  * Returns whether the given set of divisors are valid for a given refclk with
600  * the given connectors.
601  */
602 
intel_PLL_is_valid(struct drm_device * dev,const struct intel_limit * limit,const struct dpll * clock)603 static bool intel_PLL_is_valid(struct drm_device *dev,
604 			       const struct intel_limit *limit,
605 			       const struct dpll *clock)
606 {
607 	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
608 		INTELPllInvalid("n out of range\n");
609 	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
610 		INTELPllInvalid("p1 out of range\n");
611 	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
612 		INTELPllInvalid("m2 out of range\n");
613 	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
614 		INTELPllInvalid("m1 out of range\n");
615 
616 	if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
617 	    !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
618 		if (clock->m1 <= clock->m2)
619 			INTELPllInvalid("m1 <= m2\n");
620 
621 	if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
622 		if (clock->p < limit->p.min || limit->p.max < clock->p)
623 			INTELPllInvalid("p out of range\n");
624 		if (clock->m < limit->m.min || limit->m.max < clock->m)
625 			INTELPllInvalid("m out of range\n");
626 	}
627 
628 	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
629 		INTELPllInvalid("vco out of range\n");
630 	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
631 	 * connector, etc., rather than just a single range.
632 	 */
633 	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
634 		INTELPllInvalid("dot out of range\n");
635 
636 	return true;
637 }
638 
639 static int
i9xx_select_p2_div(const struct intel_limit * limit,const struct intel_crtc_state * crtc_state,int target)640 i9xx_select_p2_div(const struct intel_limit *limit,
641 		   const struct intel_crtc_state *crtc_state,
642 		   int target)
643 {
644 	struct drm_device *dev = crtc_state->base.crtc->dev;
645 
646 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
647 		/*
648 		 * For LVDS just rely on its current settings for dual-channel.
649 		 * We haven't figured out how to reliably set up different
650 		 * single/dual channel state, if we even can.
651 		 */
652 		if (intel_is_dual_link_lvds(dev))
653 			return limit->p2.p2_fast;
654 		else
655 			return limit->p2.p2_slow;
656 	} else {
657 		if (target < limit->p2.dot_limit)
658 			return limit->p2.p2_slow;
659 		else
660 			return limit->p2.p2_fast;
661 	}
662 }
663 
664 /*
665  * Returns a set of divisors for the desired target clock with the given
666  * refclk, or FALSE.  The returned values represent the clock equation:
667  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
668  *
669  * Target and reference clocks are specified in kHz.
670  *
671  * If match_clock is provided, then best_clock P divider must match the P
672  * divider from @match_clock used for LVDS downclocking.
673  */
674 static bool
i9xx_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)675 i9xx_find_best_dpll(const struct intel_limit *limit,
676 		    struct intel_crtc_state *crtc_state,
677 		    int target, int refclk, struct dpll *match_clock,
678 		    struct dpll *best_clock)
679 {
680 	struct drm_device *dev = crtc_state->base.crtc->dev;
681 	struct dpll clock;
682 	int err = target;
683 
684 	memset(best_clock, 0, sizeof(*best_clock));
685 
686 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
687 
688 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
689 	     clock.m1++) {
690 		for (clock.m2 = limit->m2.min;
691 		     clock.m2 <= limit->m2.max; clock.m2++) {
692 			if (clock.m2 >= clock.m1)
693 				break;
694 			for (clock.n = limit->n.min;
695 			     clock.n <= limit->n.max; clock.n++) {
696 				for (clock.p1 = limit->p1.min;
697 					clock.p1 <= limit->p1.max; clock.p1++) {
698 					int this_err;
699 
700 					i9xx_calc_dpll_params(refclk, &clock);
701 					if (!intel_PLL_is_valid(dev, limit,
702 								&clock))
703 						continue;
704 					if (match_clock &&
705 					    clock.p != match_clock->p)
706 						continue;
707 
708 					this_err = abs(clock.dot - target);
709 					if (this_err < err) {
710 						*best_clock = clock;
711 						err = this_err;
712 					}
713 				}
714 			}
715 		}
716 	}
717 
718 	return (err != target);
719 }
720 
721 /*
722  * Returns a set of divisors for the desired target clock with the given
723  * refclk, or FALSE.  The returned values represent the clock equation:
724  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
725  *
726  * Target and reference clocks are specified in kHz.
727  *
728  * If match_clock is provided, then best_clock P divider must match the P
729  * divider from @match_clock used for LVDS downclocking.
730  */
731 static bool
pnv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)732 pnv_find_best_dpll(const struct intel_limit *limit,
733 		   struct intel_crtc_state *crtc_state,
734 		   int target, int refclk, struct dpll *match_clock,
735 		   struct dpll *best_clock)
736 {
737 	struct drm_device *dev = crtc_state->base.crtc->dev;
738 	struct dpll clock;
739 	int err = target;
740 
741 	memset(best_clock, 0, sizeof(*best_clock));
742 
743 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
744 
745 	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
746 	     clock.m1++) {
747 		for (clock.m2 = limit->m2.min;
748 		     clock.m2 <= limit->m2.max; clock.m2++) {
749 			for (clock.n = limit->n.min;
750 			     clock.n <= limit->n.max; clock.n++) {
751 				for (clock.p1 = limit->p1.min;
752 					clock.p1 <= limit->p1.max; clock.p1++) {
753 					int this_err;
754 
755 					pnv_calc_dpll_params(refclk, &clock);
756 					if (!intel_PLL_is_valid(dev, limit,
757 								&clock))
758 						continue;
759 					if (match_clock &&
760 					    clock.p != match_clock->p)
761 						continue;
762 
763 					this_err = abs(clock.dot - target);
764 					if (this_err < err) {
765 						*best_clock = clock;
766 						err = this_err;
767 					}
768 				}
769 			}
770 		}
771 	}
772 
773 	return (err != target);
774 }
775 
776 /*
777  * Returns a set of divisors for the desired target clock with the given
778  * refclk, or FALSE.  The returned values represent the clock equation:
779  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
780  *
781  * Target and reference clocks are specified in kHz.
782  *
783  * If match_clock is provided, then best_clock P divider must match the P
784  * divider from @match_clock used for LVDS downclocking.
785  */
786 static bool
g4x_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)787 g4x_find_best_dpll(const struct intel_limit *limit,
788 		   struct intel_crtc_state *crtc_state,
789 		   int target, int refclk, struct dpll *match_clock,
790 		   struct dpll *best_clock)
791 {
792 	struct drm_device *dev = crtc_state->base.crtc->dev;
793 	struct dpll clock;
794 	int max_n;
795 	bool found = false;
796 	/* approximately equals target * 0.00585 */
797 	int err_most = (target >> 8) + (target >> 9);
798 
799 	memset(best_clock, 0, sizeof(*best_clock));
800 
801 	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
802 
803 	max_n = limit->n.max;
804 	/* based on hardware requirement, prefer smaller n to precision */
805 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
806 		/* based on hardware requirement, prefere larger m1,m2 */
807 		for (clock.m1 = limit->m1.max;
808 		     clock.m1 >= limit->m1.min; clock.m1--) {
809 			for (clock.m2 = limit->m2.max;
810 			     clock.m2 >= limit->m2.min; clock.m2--) {
811 				for (clock.p1 = limit->p1.max;
812 				     clock.p1 >= limit->p1.min; clock.p1--) {
813 					int this_err;
814 
815 					i9xx_calc_dpll_params(refclk, &clock);
816 					if (!intel_PLL_is_valid(dev, limit,
817 								&clock))
818 						continue;
819 
820 					this_err = abs(clock.dot - target);
821 					if (this_err < err_most) {
822 						*best_clock = clock;
823 						err_most = this_err;
824 						max_n = clock.n;
825 						found = true;
826 					}
827 				}
828 			}
829 		}
830 	}
831 	return found;
832 }
833 
834 /*
835  * Check if the calculated PLL configuration is more optimal compared to the
836  * best configuration and error found so far. Return the calculated error.
837  */
vlv_PLL_is_optimal(struct drm_device * dev,int target_freq,const struct dpll * calculated_clock,const struct dpll * best_clock,unsigned int best_error_ppm,unsigned int * error_ppm)838 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
839 			       const struct dpll *calculated_clock,
840 			       const struct dpll *best_clock,
841 			       unsigned int best_error_ppm,
842 			       unsigned int *error_ppm)
843 {
844 	/*
845 	 * For CHV ignore the error and consider only the P value.
846 	 * Prefer a bigger P value based on HW requirements.
847 	 */
848 	if (IS_CHERRYVIEW(dev)) {
849 		*error_ppm = 0;
850 
851 		return calculated_clock->p > best_clock->p;
852 	}
853 
854 	if (WARN_ON_ONCE(!target_freq))
855 		return false;
856 
857 	*error_ppm = div_u64(1000000ULL *
858 				abs(target_freq - calculated_clock->dot),
859 			     target_freq);
860 	/*
861 	 * Prefer a better P value over a better (smaller) error if the error
862 	 * is small. Ensure this preference for future configurations too by
863 	 * setting the error to 0.
864 	 */
865 	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
866 		*error_ppm = 0;
867 
868 		return true;
869 	}
870 
871 	return *error_ppm + 10 < best_error_ppm;
872 }
873 
874 /*
875  * Returns a set of divisors for the desired target clock with the given
876  * refclk, or FALSE.  The returned values represent the clock equation:
877  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
878  */
879 static bool
vlv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)880 vlv_find_best_dpll(const struct intel_limit *limit,
881 		   struct intel_crtc_state *crtc_state,
882 		   int target, int refclk, struct dpll *match_clock,
883 		   struct dpll *best_clock)
884 {
885 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
886 	struct drm_device *dev = crtc->base.dev;
887 	struct dpll clock;
888 	unsigned int bestppm = 1000000;
889 	/* min update 19.2 MHz */
890 	int max_n = min(limit->n.max, refclk / 19200);
891 	bool found = false;
892 
893 	target *= 5; /* fast clock */
894 
895 	memset(best_clock, 0, sizeof(*best_clock));
896 
897 	/* based on hardware requirement, prefer smaller n to precision */
898 	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
899 		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
900 			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
901 			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
902 				clock.p = clock.p1 * clock.p2;
903 				/* based on hardware requirement, prefer bigger m1,m2 values */
904 				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
905 					unsigned int ppm;
906 
907 					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
908 								     refclk * clock.m1);
909 
910 					vlv_calc_dpll_params(refclk, &clock);
911 
912 					if (!intel_PLL_is_valid(dev, limit,
913 								&clock))
914 						continue;
915 
916 					if (!vlv_PLL_is_optimal(dev, target,
917 								&clock,
918 								best_clock,
919 								bestppm, &ppm))
920 						continue;
921 
922 					*best_clock = clock;
923 					bestppm = ppm;
924 					found = true;
925 				}
926 			}
927 		}
928 	}
929 
930 	return found;
931 }
932 
933 /*
934  * Returns a set of divisors for the desired target clock with the given
935  * refclk, or FALSE.  The returned values represent the clock equation:
936  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
937  */
938 static bool
chv_find_best_dpll(const struct intel_limit * limit,struct intel_crtc_state * crtc_state,int target,int refclk,struct dpll * match_clock,struct dpll * best_clock)939 chv_find_best_dpll(const struct intel_limit *limit,
940 		   struct intel_crtc_state *crtc_state,
941 		   int target, int refclk, struct dpll *match_clock,
942 		   struct dpll *best_clock)
943 {
944 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
945 	struct drm_device *dev = crtc->base.dev;
946 	unsigned int best_error_ppm;
947 	struct dpll clock;
948 	uint64_t m2;
949 	int found = false;
950 
951 	memset(best_clock, 0, sizeof(*best_clock));
952 	best_error_ppm = 1000000;
953 
954 	/*
955 	 * Based on hardware doc, the n always set to 1, and m1 always
956 	 * set to 2.  If requires to support 200Mhz refclk, we need to
957 	 * revisit this because n may not 1 anymore.
958 	 */
959 	clock.n = 1, clock.m1 = 2;
960 	target *= 5;	/* fast clock */
961 
962 	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
963 		for (clock.p2 = limit->p2.p2_fast;
964 				clock.p2 >= limit->p2.p2_slow;
965 				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
966 			unsigned int error_ppm;
967 
968 			clock.p = clock.p1 * clock.p2;
969 
970 			m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
971 					clock.n) << 22, refclk * clock.m1);
972 
973 			if (m2 > INT_MAX/clock.m1)
974 				continue;
975 
976 			clock.m2 = m2;
977 
978 			chv_calc_dpll_params(refclk, &clock);
979 
980 			if (!intel_PLL_is_valid(dev, limit, &clock))
981 				continue;
982 
983 			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
984 						best_error_ppm, &error_ppm))
985 				continue;
986 
987 			*best_clock = clock;
988 			best_error_ppm = error_ppm;
989 			found = true;
990 		}
991 	}
992 
993 	return found;
994 }
995 
bxt_find_best_dpll(struct intel_crtc_state * crtc_state,int target_clock,struct dpll * best_clock)996 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
997 			struct dpll *best_clock)
998 {
999 	int refclk = 100000;
1000 	const struct intel_limit *limit = &intel_limits_bxt;
1001 
1002 	return chv_find_best_dpll(limit, crtc_state,
1003 				  target_clock, refclk, NULL, best_clock);
1004 }
1005 
intel_crtc_active(struct drm_crtc * crtc)1006 bool intel_crtc_active(struct drm_crtc *crtc)
1007 {
1008 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1009 
1010 	/* Be paranoid as we can arrive here with only partial
1011 	 * state retrieved from the hardware during setup.
1012 	 *
1013 	 * We can ditch the adjusted_mode.crtc_clock check as soon
1014 	 * as Haswell has gained clock readout/fastboot support.
1015 	 *
1016 	 * We can ditch the crtc->primary->fb check as soon as we can
1017 	 * properly reconstruct framebuffers.
1018 	 *
1019 	 * FIXME: The intel_crtc->active here should be switched to
1020 	 * crtc->state->active once we have proper CRTC states wired up
1021 	 * for atomic.
1022 	 */
1023 	return intel_crtc->active && crtc->primary->state->fb &&
1024 		intel_crtc->config->base.adjusted_mode.crtc_clock;
1025 }
1026 
intel_pipe_to_cpu_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1027 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1028 					     enum pipe pipe)
1029 {
1030 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1031 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1032 
1033 	return intel_crtc->config->cpu_transcoder;
1034 }
1035 
pipe_dsl_stopped(struct drm_device * dev,enum pipe pipe)1036 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1037 {
1038 	struct drm_i915_private *dev_priv = to_i915(dev);
1039 	i915_reg_t reg = PIPEDSL(pipe);
1040 	u32 line1, line2;
1041 	u32 line_mask;
1042 
1043 	if (IS_GEN2(dev))
1044 		line_mask = DSL_LINEMASK_GEN2;
1045 	else
1046 		line_mask = DSL_LINEMASK_GEN3;
1047 
1048 	line1 = I915_READ(reg) & line_mask;
1049 	msleep(5);
1050 	line2 = I915_READ(reg) & line_mask;
1051 
1052 	return line1 == line2;
1053 }
1054 
1055 /*
1056  * intel_wait_for_pipe_off - wait for pipe to turn off
1057  * @crtc: crtc whose pipe to wait for
1058  *
1059  * After disabling a pipe, we can't wait for vblank in the usual way,
1060  * spinning on the vblank interrupt status bit, since we won't actually
1061  * see an interrupt when the pipe is disabled.
1062  *
1063  * On Gen4 and above:
1064  *   wait for the pipe register state bit to turn off
1065  *
1066  * Otherwise:
1067  *   wait for the display line value to settle (it usually
1068  *   ends up stopping at the start of the next frame).
1069  *
1070  */
intel_wait_for_pipe_off(struct intel_crtc * crtc)1071 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1072 {
1073 	struct drm_device *dev = crtc->base.dev;
1074 	struct drm_i915_private *dev_priv = to_i915(dev);
1075 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1076 	enum pipe pipe = crtc->pipe;
1077 
1078 	if (INTEL_INFO(dev)->gen >= 4) {
1079 		i915_reg_t reg = PIPECONF(cpu_transcoder);
1080 
1081 		/* Wait for the Pipe State to go off */
1082 		if (intel_wait_for_register(dev_priv,
1083 					    reg, I965_PIPECONF_ACTIVE, 0,
1084 					    100))
1085 			WARN(1, "pipe_off wait timed out\n");
1086 	} else {
1087 		/* Wait for the display line to settle */
1088 		if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1089 			WARN(1, "pipe_off wait timed out\n");
1090 	}
1091 }
1092 
1093 /* Only for pre-ILK configs */
assert_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1094 void assert_pll(struct drm_i915_private *dev_priv,
1095 		enum pipe pipe, bool state)
1096 {
1097 	u32 val;
1098 	bool cur_state;
1099 
1100 	val = I915_READ(DPLL(pipe));
1101 	cur_state = !!(val & DPLL_VCO_ENABLE);
1102 	I915_STATE_WARN(cur_state != state,
1103 	     "PLL state assertion failure (expected %s, current %s)\n",
1104 			onoff(state), onoff(cur_state));
1105 }
1106 
1107 /* XXX: the dsi pll is shared between MIPI DSI ports */
assert_dsi_pll(struct drm_i915_private * dev_priv,bool state)1108 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1109 {
1110 	u32 val;
1111 	bool cur_state;
1112 
1113 	mutex_lock(&dev_priv->sb_lock);
1114 	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1115 	mutex_unlock(&dev_priv->sb_lock);
1116 
1117 	cur_state = val & DSI_PLL_VCO_EN;
1118 	I915_STATE_WARN(cur_state != state,
1119 	     "DSI PLL state assertion failure (expected %s, current %s)\n",
1120 			onoff(state), onoff(cur_state));
1121 }
1122 
assert_fdi_tx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1123 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1124 			  enum pipe pipe, bool state)
1125 {
1126 	bool cur_state;
1127 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 								      pipe);
1129 
1130 	if (HAS_DDI(dev_priv)) {
1131 		/* DDI does not have a specific FDI_TX register */
1132 		u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1133 		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1134 	} else {
1135 		u32 val = I915_READ(FDI_TX_CTL(pipe));
1136 		cur_state = !!(val & FDI_TX_ENABLE);
1137 	}
1138 	I915_STATE_WARN(cur_state != state,
1139 	     "FDI TX state assertion failure (expected %s, current %s)\n",
1140 			onoff(state), onoff(cur_state));
1141 }
1142 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1143 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1144 
assert_fdi_rx(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1145 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1146 			  enum pipe pipe, bool state)
1147 {
1148 	u32 val;
1149 	bool cur_state;
1150 
1151 	val = I915_READ(FDI_RX_CTL(pipe));
1152 	cur_state = !!(val & FDI_RX_ENABLE);
1153 	I915_STATE_WARN(cur_state != state,
1154 	     "FDI RX state assertion failure (expected %s, current %s)\n",
1155 			onoff(state), onoff(cur_state));
1156 }
1157 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1158 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1159 
assert_fdi_tx_pll_enabled(struct drm_i915_private * dev_priv,enum pipe pipe)1160 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1161 				      enum pipe pipe)
1162 {
1163 	u32 val;
1164 
1165 	/* ILK FDI PLL is always enabled */
1166 	if (IS_GEN5(dev_priv))
1167 		return;
1168 
1169 	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
1170 	if (HAS_DDI(dev_priv))
1171 		return;
1172 
1173 	val = I915_READ(FDI_TX_CTL(pipe));
1174 	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1175 }
1176 
assert_fdi_rx_pll(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1177 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1178 		       enum pipe pipe, bool state)
1179 {
1180 	u32 val;
1181 	bool cur_state;
1182 
1183 	val = I915_READ(FDI_RX_CTL(pipe));
1184 	cur_state = !!(val & FDI_RX_PLL_ENABLE);
1185 	I915_STATE_WARN(cur_state != state,
1186 	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
1187 			onoff(state), onoff(cur_state));
1188 }
1189 
assert_panel_unlocked(struct drm_i915_private * dev_priv,enum pipe pipe)1190 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1191 			   enum pipe pipe)
1192 {
1193 	struct drm_device *dev = &dev_priv->drm;
1194 	i915_reg_t pp_reg;
1195 	u32 val;
1196 	enum pipe panel_pipe = PIPE_A;
1197 	bool locked = true;
1198 
1199 	if (WARN_ON(HAS_DDI(dev)))
1200 		return;
1201 
1202 	if (HAS_PCH_SPLIT(dev)) {
1203 		u32 port_sel;
1204 
1205 		pp_reg = PP_CONTROL(0);
1206 		port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1207 
1208 		if (port_sel == PANEL_PORT_SELECT_LVDS &&
1209 		    I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1210 			panel_pipe = PIPE_B;
1211 		/* XXX: else fix for eDP */
1212 	} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1213 		/* presumably write lock depends on pipe, not port select */
1214 		pp_reg = PP_CONTROL(pipe);
1215 		panel_pipe = pipe;
1216 	} else {
1217 		pp_reg = PP_CONTROL(0);
1218 		if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1219 			panel_pipe = PIPE_B;
1220 	}
1221 
1222 	val = I915_READ(pp_reg);
1223 	if (!(val & PANEL_POWER_ON) ||
1224 	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1225 		locked = false;
1226 
1227 	I915_STATE_WARN(panel_pipe == pipe && locked,
1228 	     "panel assertion failure, pipe %c regs locked\n",
1229 	     pipe_name(pipe));
1230 }
1231 
assert_cursor(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1232 static void assert_cursor(struct drm_i915_private *dev_priv,
1233 			  enum pipe pipe, bool state)
1234 {
1235 	struct drm_device *dev = &dev_priv->drm;
1236 	bool cur_state;
1237 
1238 	if (IS_845G(dev) || IS_I865G(dev))
1239 		cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1240 	else
1241 		cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1242 
1243 	I915_STATE_WARN(cur_state != state,
1244 	     "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1245 			pipe_name(pipe), onoff(state), onoff(cur_state));
1246 }
1247 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1248 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1249 
assert_pipe(struct drm_i915_private * dev_priv,enum pipe pipe,bool state)1250 void assert_pipe(struct drm_i915_private *dev_priv,
1251 		 enum pipe pipe, bool state)
1252 {
1253 	bool cur_state;
1254 	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1255 								      pipe);
1256 	enum intel_display_power_domain power_domain;
1257 
1258 	/* if we need the pipe quirk it must be always on */
1259 	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1260 	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1261 		state = true;
1262 
1263 	power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1264 	if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
1265 		u32 val = I915_READ(PIPECONF(cpu_transcoder));
1266 		cur_state = !!(val & PIPECONF_ENABLE);
1267 
1268 		intel_display_power_put(dev_priv, power_domain);
1269 	} else {
1270 		cur_state = false;
1271 	}
1272 
1273 	I915_STATE_WARN(cur_state != state,
1274 	     "pipe %c assertion failure (expected %s, current %s)\n",
1275 			pipe_name(pipe), onoff(state), onoff(cur_state));
1276 }
1277 
assert_plane(struct drm_i915_private * dev_priv,enum plane plane,bool state)1278 static void assert_plane(struct drm_i915_private *dev_priv,
1279 			 enum plane plane, bool state)
1280 {
1281 	u32 val;
1282 	bool cur_state;
1283 
1284 	val = I915_READ(DSPCNTR(plane));
1285 	cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1286 	I915_STATE_WARN(cur_state != state,
1287 	     "plane %c assertion failure (expected %s, current %s)\n",
1288 			plane_name(plane), onoff(state), onoff(cur_state));
1289 }
1290 
1291 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1292 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1293 
assert_planes_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1294 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1295 				   enum pipe pipe)
1296 {
1297 	struct drm_device *dev = &dev_priv->drm;
1298 	int i;
1299 
1300 	/* Primary planes are fixed to pipes on gen4+ */
1301 	if (INTEL_INFO(dev)->gen >= 4) {
1302 		u32 val = I915_READ(DSPCNTR(pipe));
1303 		I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1304 		     "plane %c assertion failure, should be disabled but not\n",
1305 		     plane_name(pipe));
1306 		return;
1307 	}
1308 
1309 	/* Need to check both planes against the pipe */
1310 	for_each_pipe(dev_priv, i) {
1311 		u32 val = I915_READ(DSPCNTR(i));
1312 		enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1313 			DISPPLANE_SEL_PIPE_SHIFT;
1314 		I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1315 		     "plane %c assertion failure, should be off on pipe %c but is still active\n",
1316 		     plane_name(i), pipe_name(pipe));
1317 	}
1318 }
1319 
assert_sprites_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1320 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1321 				    enum pipe pipe)
1322 {
1323 	struct drm_device *dev = &dev_priv->drm;
1324 	int sprite;
1325 
1326 	if (INTEL_INFO(dev)->gen >= 9) {
1327 		for_each_sprite(dev_priv, pipe, sprite) {
1328 			u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1329 			I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1330 			     "plane %d assertion failure, should be off on pipe %c but is still active\n",
1331 			     sprite, pipe_name(pipe));
1332 		}
1333 	} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1334 		for_each_sprite(dev_priv, pipe, sprite) {
1335 			u32 val = I915_READ(SPCNTR(pipe, sprite));
1336 			I915_STATE_WARN(val & SP_ENABLE,
1337 			     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1338 			     sprite_name(pipe, sprite), pipe_name(pipe));
1339 		}
1340 	} else if (INTEL_INFO(dev)->gen >= 7) {
1341 		u32 val = I915_READ(SPRCTL(pipe));
1342 		I915_STATE_WARN(val & SPRITE_ENABLE,
1343 		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1344 		     plane_name(pipe), pipe_name(pipe));
1345 	} else if (INTEL_INFO(dev)->gen >= 5) {
1346 		u32 val = I915_READ(DVSCNTR(pipe));
1347 		I915_STATE_WARN(val & DVS_ENABLE,
1348 		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1349 		     plane_name(pipe), pipe_name(pipe));
1350 	}
1351 }
1352 
assert_vblank_disabled(struct drm_crtc * crtc)1353 static void assert_vblank_disabled(struct drm_crtc *crtc)
1354 {
1355 	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1356 		drm_crtc_vblank_put(crtc);
1357 }
1358 
assert_pch_transcoder_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1359 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1360 				    enum pipe pipe)
1361 {
1362 	u32 val;
1363 	bool enabled;
1364 
1365 	val = I915_READ(PCH_TRANSCONF(pipe));
1366 	enabled = !!(val & TRANS_ENABLE);
1367 	I915_STATE_WARN(enabled,
1368 	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
1369 	     pipe_name(pipe));
1370 }
1371 
dp_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 port_sel,u32 val)1372 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1373 			    enum pipe pipe, u32 port_sel, u32 val)
1374 {
1375 	if ((val & DP_PORT_EN) == 0)
1376 		return false;
1377 
1378 	if (HAS_PCH_CPT(dev_priv)) {
1379 		u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1380 		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1381 			return false;
1382 	} else if (IS_CHERRYVIEW(dev_priv)) {
1383 		if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1384 			return false;
1385 	} else {
1386 		if ((val & DP_PIPE_MASK) != (pipe << 30))
1387 			return false;
1388 	}
1389 	return true;
1390 }
1391 
hdmi_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1392 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1393 			      enum pipe pipe, u32 val)
1394 {
1395 	if ((val & SDVO_ENABLE) == 0)
1396 		return false;
1397 
1398 	if (HAS_PCH_CPT(dev_priv)) {
1399 		if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1400 			return false;
1401 	} else if (IS_CHERRYVIEW(dev_priv)) {
1402 		if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1403 			return false;
1404 	} else {
1405 		if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1406 			return false;
1407 	}
1408 	return true;
1409 }
1410 
lvds_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1411 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1412 			      enum pipe pipe, u32 val)
1413 {
1414 	if ((val & LVDS_PORT_EN) == 0)
1415 		return false;
1416 
1417 	if (HAS_PCH_CPT(dev_priv)) {
1418 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1419 			return false;
1420 	} else {
1421 		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1422 			return false;
1423 	}
1424 	return true;
1425 }
1426 
adpa_pipe_enabled(struct drm_i915_private * dev_priv,enum pipe pipe,u32 val)1427 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1428 			      enum pipe pipe, u32 val)
1429 {
1430 	if ((val & ADPA_DAC_ENABLE) == 0)
1431 		return false;
1432 	if (HAS_PCH_CPT(dev_priv)) {
1433 		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1434 			return false;
1435 	} else {
1436 		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1437 			return false;
1438 	}
1439 	return true;
1440 }
1441 
assert_pch_dp_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,i915_reg_t reg,u32 port_sel)1442 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1443 				   enum pipe pipe, i915_reg_t reg,
1444 				   u32 port_sel)
1445 {
1446 	u32 val = I915_READ(reg);
1447 	I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1448 	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1449 	     i915_mmio_reg_offset(reg), pipe_name(pipe));
1450 
1451 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
1452 	     && (val & DP_PIPEB_SELECT),
1453 	     "IBX PCH dp port still using transcoder B\n");
1454 }
1455 
assert_pch_hdmi_disabled(struct drm_i915_private * dev_priv,enum pipe pipe,i915_reg_t reg)1456 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1457 				     enum pipe pipe, i915_reg_t reg)
1458 {
1459 	u32 val = I915_READ(reg);
1460 	I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1461 	     "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1462 	     i915_mmio_reg_offset(reg), pipe_name(pipe));
1463 
1464 	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
1465 	     && (val & SDVO_PIPE_B_SELECT),
1466 	     "IBX PCH hdmi port still using transcoder B\n");
1467 }
1468 
assert_pch_ports_disabled(struct drm_i915_private * dev_priv,enum pipe pipe)1469 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1470 				      enum pipe pipe)
1471 {
1472 	u32 val;
1473 
1474 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1475 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1476 	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1477 
1478 	val = I915_READ(PCH_ADPA);
1479 	I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1480 	     "PCH VGA enabled on transcoder %c, should be disabled\n",
1481 	     pipe_name(pipe));
1482 
1483 	val = I915_READ(PCH_LVDS);
1484 	I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1485 	     "PCH LVDS enabled on transcoder %c, should be disabled\n",
1486 	     pipe_name(pipe));
1487 
1488 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1489 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1490 	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1491 }
1492 
_vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1493 static void _vlv_enable_pll(struct intel_crtc *crtc,
1494 			    const struct intel_crtc_state *pipe_config)
1495 {
1496 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1497 	enum pipe pipe = crtc->pipe;
1498 
1499 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1500 	POSTING_READ(DPLL(pipe));
1501 	udelay(150);
1502 
1503 	if (intel_wait_for_register(dev_priv,
1504 				    DPLL(pipe),
1505 				    DPLL_LOCK_VLV,
1506 				    DPLL_LOCK_VLV,
1507 				    1))
1508 		DRM_ERROR("DPLL %d failed to lock\n", pipe);
1509 }
1510 
vlv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1511 static void vlv_enable_pll(struct intel_crtc *crtc,
1512 			   const struct intel_crtc_state *pipe_config)
1513 {
1514 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1515 	enum pipe pipe = crtc->pipe;
1516 
1517 	assert_pipe_disabled(dev_priv, pipe);
1518 
1519 	/* PLL is protected by panel, make sure we can write it */
1520 	assert_panel_unlocked(dev_priv, pipe);
1521 
1522 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1523 		_vlv_enable_pll(crtc, pipe_config);
1524 
1525 	I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1526 	POSTING_READ(DPLL_MD(pipe));
1527 }
1528 
1529 
_chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1530 static void _chv_enable_pll(struct intel_crtc *crtc,
1531 			    const struct intel_crtc_state *pipe_config)
1532 {
1533 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1534 	enum pipe pipe = crtc->pipe;
1535 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1536 	u32 tmp;
1537 
1538 	mutex_lock(&dev_priv->sb_lock);
1539 
1540 	/* Enable back the 10bit clock to display controller */
1541 	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1542 	tmp |= DPIO_DCLKP_EN;
1543 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1544 
1545 	mutex_unlock(&dev_priv->sb_lock);
1546 
1547 	/*
1548 	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1549 	 */
1550 	udelay(1);
1551 
1552 	/* Enable PLL */
1553 	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1554 
1555 	/* Check PLL is locked */
1556 	if (intel_wait_for_register(dev_priv,
1557 				    DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
1558 				    1))
1559 		DRM_ERROR("PLL %d failed to lock\n", pipe);
1560 }
1561 
chv_enable_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)1562 static void chv_enable_pll(struct intel_crtc *crtc,
1563 			   const struct intel_crtc_state *pipe_config)
1564 {
1565 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1566 	enum pipe pipe = crtc->pipe;
1567 
1568 	assert_pipe_disabled(dev_priv, pipe);
1569 
1570 	/* PLL is protected by panel, make sure we can write it */
1571 	assert_panel_unlocked(dev_priv, pipe);
1572 
1573 	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1574 		_chv_enable_pll(crtc, pipe_config);
1575 
1576 	if (pipe != PIPE_A) {
1577 		/*
1578 		 * WaPixelRepeatModeFixForC0:chv
1579 		 *
1580 		 * DPLLCMD is AWOL. Use chicken bits to propagate
1581 		 * the value from DPLLBMD to either pipe B or C.
1582 		 */
1583 		I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1584 		I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1585 		I915_WRITE(CBR4_VLV, 0);
1586 		dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1587 
1588 		/*
1589 		 * DPLLB VGA mode also seems to cause problems.
1590 		 * We should always have it disabled.
1591 		 */
1592 		WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1593 	} else {
1594 		I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1595 		POSTING_READ(DPLL_MD(pipe));
1596 	}
1597 }
1598 
intel_num_dvo_pipes(struct drm_device * dev)1599 static int intel_num_dvo_pipes(struct drm_device *dev)
1600 {
1601 	struct intel_crtc *crtc;
1602 	int count = 0;
1603 
1604 	for_each_intel_crtc(dev, crtc) {
1605 		count += crtc->base.state->active &&
1606 			intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
1607 	}
1608 
1609 	return count;
1610 }
1611 
i9xx_enable_pll(struct intel_crtc * crtc)1612 static void i9xx_enable_pll(struct intel_crtc *crtc)
1613 {
1614 	struct drm_device *dev = crtc->base.dev;
1615 	struct drm_i915_private *dev_priv = to_i915(dev);
1616 	i915_reg_t reg = DPLL(crtc->pipe);
1617 	u32 dpll = crtc->config->dpll_hw_state.dpll;
1618 
1619 	assert_pipe_disabled(dev_priv, crtc->pipe);
1620 
1621 	/* PLL is protected by panel, make sure we can write it */
1622 	if (IS_MOBILE(dev) && !IS_I830(dev))
1623 		assert_panel_unlocked(dev_priv, crtc->pipe);
1624 
1625 	/* Enable DVO 2x clock on both PLLs if necessary */
1626 	if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1627 		/*
1628 		 * It appears to be important that we don't enable this
1629 		 * for the current pipe before otherwise configuring the
1630 		 * PLL. No idea how this should be handled if multiple
1631 		 * DVO outputs are enabled simultaneosly.
1632 		 */
1633 		dpll |= DPLL_DVO_2X_MODE;
1634 		I915_WRITE(DPLL(!crtc->pipe),
1635 			   I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1636 	}
1637 
1638 	/*
1639 	 * Apparently we need to have VGA mode enabled prior to changing
1640 	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1641 	 * dividers, even though the register value does change.
1642 	 */
1643 	I915_WRITE(reg, 0);
1644 
1645 	I915_WRITE(reg, dpll);
1646 
1647 	/* Wait for the clocks to stabilize. */
1648 	POSTING_READ(reg);
1649 	udelay(150);
1650 
1651 	if (INTEL_INFO(dev)->gen >= 4) {
1652 		I915_WRITE(DPLL_MD(crtc->pipe),
1653 			   crtc->config->dpll_hw_state.dpll_md);
1654 	} else {
1655 		/* The pixel multiplier can only be updated once the
1656 		 * DPLL is enabled and the clocks are stable.
1657 		 *
1658 		 * So write it again.
1659 		 */
1660 		I915_WRITE(reg, dpll);
1661 	}
1662 
1663 	/* We do this three times for luck */
1664 	I915_WRITE(reg, dpll);
1665 	POSTING_READ(reg);
1666 	udelay(150); /* wait for warmup */
1667 	I915_WRITE(reg, dpll);
1668 	POSTING_READ(reg);
1669 	udelay(150); /* wait for warmup */
1670 	I915_WRITE(reg, dpll);
1671 	POSTING_READ(reg);
1672 	udelay(150); /* wait for warmup */
1673 }
1674 
1675 /**
1676  * i9xx_disable_pll - disable a PLL
1677  * @dev_priv: i915 private structure
1678  * @pipe: pipe PLL to disable
1679  *
1680  * Disable the PLL for @pipe, making sure the pipe is off first.
1681  *
1682  * Note!  This is for pre-ILK only.
1683  */
i9xx_disable_pll(struct intel_crtc * crtc)1684 static void i9xx_disable_pll(struct intel_crtc *crtc)
1685 {
1686 	struct drm_device *dev = crtc->base.dev;
1687 	struct drm_i915_private *dev_priv = to_i915(dev);
1688 	enum pipe pipe = crtc->pipe;
1689 
1690 	/* Disable DVO 2x clock on both PLLs if necessary */
1691 	if (IS_I830(dev) &&
1692 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
1693 	    !intel_num_dvo_pipes(dev)) {
1694 		I915_WRITE(DPLL(PIPE_B),
1695 			   I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1696 		I915_WRITE(DPLL(PIPE_A),
1697 			   I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1698 	}
1699 
1700 	/* Don't disable pipe or pipe PLLs if needed */
1701 	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1702 	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1703 		return;
1704 
1705 	/* Make sure the pipe isn't still relying on us */
1706 	assert_pipe_disabled(dev_priv, pipe);
1707 
1708 	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1709 	POSTING_READ(DPLL(pipe));
1710 }
1711 
vlv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1712 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1713 {
1714 	u32 val;
1715 
1716 	/* Make sure the pipe isn't still relying on us */
1717 	assert_pipe_disabled(dev_priv, pipe);
1718 
1719 	val = DPLL_INTEGRATED_REF_CLK_VLV |
1720 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1721 	if (pipe != PIPE_A)
1722 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1723 
1724 	I915_WRITE(DPLL(pipe), val);
1725 	POSTING_READ(DPLL(pipe));
1726 }
1727 
chv_disable_pll(struct drm_i915_private * dev_priv,enum pipe pipe)1728 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1729 {
1730 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
1731 	u32 val;
1732 
1733 	/* Make sure the pipe isn't still relying on us */
1734 	assert_pipe_disabled(dev_priv, pipe);
1735 
1736 	val = DPLL_SSC_REF_CLK_CHV |
1737 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1738 	if (pipe != PIPE_A)
1739 		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1740 
1741 	I915_WRITE(DPLL(pipe), val);
1742 	POSTING_READ(DPLL(pipe));
1743 
1744 	mutex_lock(&dev_priv->sb_lock);
1745 
1746 	/* Disable 10bit clock to display controller */
1747 	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1748 	val &= ~DPIO_DCLKP_EN;
1749 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1750 
1751 	mutex_unlock(&dev_priv->sb_lock);
1752 }
1753 
vlv_wait_port_ready(struct drm_i915_private * dev_priv,struct intel_digital_port * dport,unsigned int expected_mask)1754 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1755 			 struct intel_digital_port *dport,
1756 			 unsigned int expected_mask)
1757 {
1758 	u32 port_mask;
1759 	i915_reg_t dpll_reg;
1760 
1761 	switch (dport->port) {
1762 	case PORT_B:
1763 		port_mask = DPLL_PORTB_READY_MASK;
1764 		dpll_reg = DPLL(0);
1765 		break;
1766 	case PORT_C:
1767 		port_mask = DPLL_PORTC_READY_MASK;
1768 		dpll_reg = DPLL(0);
1769 		expected_mask <<= 4;
1770 		break;
1771 	case PORT_D:
1772 		port_mask = DPLL_PORTD_READY_MASK;
1773 		dpll_reg = DPIO_PHY_STATUS;
1774 		break;
1775 	default:
1776 		BUG();
1777 	}
1778 
1779 	if (intel_wait_for_register(dev_priv,
1780 				    dpll_reg, port_mask, expected_mask,
1781 				    1000))
1782 		WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1783 		     port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1784 }
1785 
ironlake_enable_pch_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1786 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1787 					   enum pipe pipe)
1788 {
1789 	struct drm_device *dev = &dev_priv->drm;
1790 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1791 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1792 	i915_reg_t reg;
1793 	uint32_t val, pipeconf_val;
1794 
1795 	/* Make sure PCH DPLL is enabled */
1796 	assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
1797 
1798 	/* FDI must be feeding us bits for PCH ports */
1799 	assert_fdi_tx_enabled(dev_priv, pipe);
1800 	assert_fdi_rx_enabled(dev_priv, pipe);
1801 
1802 	if (HAS_PCH_CPT(dev)) {
1803 		/* Workaround: Set the timing override bit before enabling the
1804 		 * pch transcoder. */
1805 		reg = TRANS_CHICKEN2(pipe);
1806 		val = I915_READ(reg);
1807 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1808 		I915_WRITE(reg, val);
1809 	}
1810 
1811 	reg = PCH_TRANSCONF(pipe);
1812 	val = I915_READ(reg);
1813 	pipeconf_val = I915_READ(PIPECONF(pipe));
1814 
1815 	if (HAS_PCH_IBX(dev_priv)) {
1816 		/*
1817 		 * Make the BPC in transcoder be consistent with
1818 		 * that in pipeconf reg. For HDMI we must use 8bpc
1819 		 * here for both 8bpc and 12bpc.
1820 		 */
1821 		val &= ~PIPECONF_BPC_MASK;
1822 		if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
1823 			val |= PIPECONF_8BPC;
1824 		else
1825 			val |= pipeconf_val & PIPECONF_BPC_MASK;
1826 	}
1827 
1828 	val &= ~TRANS_INTERLACE_MASK;
1829 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1830 		if (HAS_PCH_IBX(dev_priv) &&
1831 		    intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
1832 			val |= TRANS_LEGACY_INTERLACED_ILK;
1833 		else
1834 			val |= TRANS_INTERLACED;
1835 	else
1836 		val |= TRANS_PROGRESSIVE;
1837 
1838 	I915_WRITE(reg, val | TRANS_ENABLE);
1839 	if (intel_wait_for_register(dev_priv,
1840 				    reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
1841 				    100))
1842 		DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1843 }
1844 
lpt_enable_pch_transcoder(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder)1845 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1846 				      enum transcoder cpu_transcoder)
1847 {
1848 	u32 val, pipeconf_val;
1849 
1850 	/* FDI must be feeding us bits for PCH ports */
1851 	assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1852 	assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1853 
1854 	/* Workaround: set timing override bit. */
1855 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1856 	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1857 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1858 
1859 	val = TRANS_ENABLE;
1860 	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1861 
1862 	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1863 	    PIPECONF_INTERLACED_ILK)
1864 		val |= TRANS_INTERLACED;
1865 	else
1866 		val |= TRANS_PROGRESSIVE;
1867 
1868 	I915_WRITE(LPT_TRANSCONF, val);
1869 	if (intel_wait_for_register(dev_priv,
1870 				    LPT_TRANSCONF,
1871 				    TRANS_STATE_ENABLE,
1872 				    TRANS_STATE_ENABLE,
1873 				    100))
1874 		DRM_ERROR("Failed to enable PCH transcoder\n");
1875 }
1876 
ironlake_disable_pch_transcoder(struct drm_i915_private * dev_priv,enum pipe pipe)1877 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1878 					    enum pipe pipe)
1879 {
1880 	struct drm_device *dev = &dev_priv->drm;
1881 	i915_reg_t reg;
1882 	uint32_t val;
1883 
1884 	/* FDI relies on the transcoder */
1885 	assert_fdi_tx_disabled(dev_priv, pipe);
1886 	assert_fdi_rx_disabled(dev_priv, pipe);
1887 
1888 	/* Ports must be off as well */
1889 	assert_pch_ports_disabled(dev_priv, pipe);
1890 
1891 	reg = PCH_TRANSCONF(pipe);
1892 	val = I915_READ(reg);
1893 	val &= ~TRANS_ENABLE;
1894 	I915_WRITE(reg, val);
1895 	/* wait for PCH transcoder off, transcoder state */
1896 	if (intel_wait_for_register(dev_priv,
1897 				    reg, TRANS_STATE_ENABLE, 0,
1898 				    50))
1899 		DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1900 
1901 	if (HAS_PCH_CPT(dev)) {
1902 		/* Workaround: Clear the timing override chicken bit again. */
1903 		reg = TRANS_CHICKEN2(pipe);
1904 		val = I915_READ(reg);
1905 		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1906 		I915_WRITE(reg, val);
1907 	}
1908 }
1909 
lpt_disable_pch_transcoder(struct drm_i915_private * dev_priv)1910 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1911 {
1912 	u32 val;
1913 
1914 	val = I915_READ(LPT_TRANSCONF);
1915 	val &= ~TRANS_ENABLE;
1916 	I915_WRITE(LPT_TRANSCONF, val);
1917 	/* wait for PCH transcoder off, transcoder state */
1918 	if (intel_wait_for_register(dev_priv,
1919 				    LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
1920 				    50))
1921 		DRM_ERROR("Failed to disable PCH transcoder\n");
1922 
1923 	/* Workaround: clear timing override bit. */
1924 	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1925 	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1926 	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1927 }
1928 
1929 /**
1930  * intel_enable_pipe - enable a pipe, asserting requirements
1931  * @crtc: crtc responsible for the pipe
1932  *
1933  * Enable @crtc's pipe, making sure that various hardware specific requirements
1934  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1935  */
intel_enable_pipe(struct intel_crtc * crtc)1936 static void intel_enable_pipe(struct intel_crtc *crtc)
1937 {
1938 	struct drm_device *dev = crtc->base.dev;
1939 	struct drm_i915_private *dev_priv = to_i915(dev);
1940 	enum pipe pipe = crtc->pipe;
1941 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1942 	enum pipe pch_transcoder;
1943 	i915_reg_t reg;
1944 	u32 val;
1945 
1946 	DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1947 
1948 	assert_planes_disabled(dev_priv, pipe);
1949 	assert_cursor_disabled(dev_priv, pipe);
1950 	assert_sprites_disabled(dev_priv, pipe);
1951 
1952 	if (HAS_PCH_LPT(dev_priv))
1953 		pch_transcoder = TRANSCODER_A;
1954 	else
1955 		pch_transcoder = pipe;
1956 
1957 	/*
1958 	 * A pipe without a PLL won't actually be able to drive bits from
1959 	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1960 	 * need the check.
1961 	 */
1962 	if (HAS_GMCH_DISPLAY(dev_priv)) {
1963 		if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
1964 			assert_dsi_pll_enabled(dev_priv);
1965 		else
1966 			assert_pll_enabled(dev_priv, pipe);
1967 	} else {
1968 		if (crtc->config->has_pch_encoder) {
1969 			/* if driving the PCH, we need FDI enabled */
1970 			assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1971 			assert_fdi_tx_pll_enabled(dev_priv,
1972 						  (enum pipe) cpu_transcoder);
1973 		}
1974 		/* FIXME: assert CPU port conditions for SNB+ */
1975 	}
1976 
1977 	reg = PIPECONF(cpu_transcoder);
1978 	val = I915_READ(reg);
1979 	if (val & PIPECONF_ENABLE) {
1980 		WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1981 			  (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
1982 		return;
1983 	}
1984 
1985 	I915_WRITE(reg, val | PIPECONF_ENABLE);
1986 	POSTING_READ(reg);
1987 
1988 	/*
1989 	 * Until the pipe starts DSL will read as 0, which would cause
1990 	 * an apparent vblank timestamp jump, which messes up also the
1991 	 * frame count when it's derived from the timestamps. So let's
1992 	 * wait for the pipe to start properly before we call
1993 	 * drm_crtc_vblank_on()
1994 	 */
1995 	if (dev->max_vblank_count == 0 &&
1996 	    wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
1997 		DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
1998 }
1999 
2000 /**
2001  * intel_disable_pipe - disable a pipe, asserting requirements
2002  * @crtc: crtc whose pipes is to be disabled
2003  *
2004  * Disable the pipe of @crtc, making sure that various hardware
2005  * specific requirements are met, if applicable, e.g. plane
2006  * disabled, panel fitter off, etc.
2007  *
2008  * Will wait until the pipe has shut down before returning.
2009  */
intel_disable_pipe(struct intel_crtc * crtc)2010 static void intel_disable_pipe(struct intel_crtc *crtc)
2011 {
2012 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2013 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2014 	enum pipe pipe = crtc->pipe;
2015 	i915_reg_t reg;
2016 	u32 val;
2017 
2018 	DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2019 
2020 	/*
2021 	 * Make sure planes won't keep trying to pump pixels to us,
2022 	 * or we might hang the display.
2023 	 */
2024 	assert_planes_disabled(dev_priv, pipe);
2025 	assert_cursor_disabled(dev_priv, pipe);
2026 	assert_sprites_disabled(dev_priv, pipe);
2027 
2028 	reg = PIPECONF(cpu_transcoder);
2029 	val = I915_READ(reg);
2030 	if ((val & PIPECONF_ENABLE) == 0)
2031 		return;
2032 
2033 	/*
2034 	 * Double wide has implications for planes
2035 	 * so best keep it disabled when not needed.
2036 	 */
2037 	if (crtc->config->double_wide)
2038 		val &= ~PIPECONF_DOUBLE_WIDE;
2039 
2040 	/* Don't disable pipe or pipe PLLs if needed */
2041 	if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2042 	    !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2043 		val &= ~PIPECONF_ENABLE;
2044 
2045 	I915_WRITE(reg, val);
2046 	if ((val & PIPECONF_ENABLE) == 0)
2047 		intel_wait_for_pipe_off(crtc);
2048 }
2049 
intel_tile_size(const struct drm_i915_private * dev_priv)2050 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2051 {
2052 	return IS_GEN2(dev_priv) ? 2048 : 4096;
2053 }
2054 
intel_tile_width_bytes(const struct drm_i915_private * dev_priv,uint64_t fb_modifier,unsigned int cpp)2055 static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2056 					   uint64_t fb_modifier, unsigned int cpp)
2057 {
2058 	switch (fb_modifier) {
2059 	case DRM_FORMAT_MOD_NONE:
2060 		return cpp;
2061 	case I915_FORMAT_MOD_X_TILED:
2062 		if (IS_GEN2(dev_priv))
2063 			return 128;
2064 		else
2065 			return 512;
2066 	case I915_FORMAT_MOD_Y_TILED:
2067 		if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2068 			return 128;
2069 		else
2070 			return 512;
2071 	case I915_FORMAT_MOD_Yf_TILED:
2072 		switch (cpp) {
2073 		case 1:
2074 			return 64;
2075 		case 2:
2076 		case 4:
2077 			return 128;
2078 		case 8:
2079 		case 16:
2080 			return 256;
2081 		default:
2082 			MISSING_CASE(cpp);
2083 			return cpp;
2084 		}
2085 		break;
2086 	default:
2087 		MISSING_CASE(fb_modifier);
2088 		return cpp;
2089 	}
2090 }
2091 
intel_tile_height(const struct drm_i915_private * dev_priv,uint64_t fb_modifier,unsigned int cpp)2092 unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2093 			       uint64_t fb_modifier, unsigned int cpp)
2094 {
2095 	if (fb_modifier == DRM_FORMAT_MOD_NONE)
2096 		return 1;
2097 	else
2098 		return intel_tile_size(dev_priv) /
2099 			intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2100 }
2101 
2102 /* Return the tile dimensions in pixel units */
intel_tile_dims(const struct drm_i915_private * dev_priv,unsigned int * tile_width,unsigned int * tile_height,uint64_t fb_modifier,unsigned int cpp)2103 static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2104 			    unsigned int *tile_width,
2105 			    unsigned int *tile_height,
2106 			    uint64_t fb_modifier,
2107 			    unsigned int cpp)
2108 {
2109 	unsigned int tile_width_bytes =
2110 		intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2111 
2112 	*tile_width = tile_width_bytes / cpp;
2113 	*tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2114 }
2115 
2116 unsigned int
intel_fb_align_height(struct drm_device * dev,unsigned int height,uint32_t pixel_format,uint64_t fb_modifier)2117 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2118 		      uint32_t pixel_format, uint64_t fb_modifier)
2119 {
2120 	unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2121 	unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2122 
2123 	return ALIGN(height, tile_height);
2124 }
2125 
intel_rotation_info_size(const struct intel_rotation_info * rot_info)2126 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2127 {
2128 	unsigned int size = 0;
2129 	int i;
2130 
2131 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2132 		size += rot_info->plane[i].width * rot_info->plane[i].height;
2133 
2134 	return size;
2135 }
2136 
2137 static void
intel_fill_fb_ggtt_view(struct i915_ggtt_view * view,const struct drm_framebuffer * fb,unsigned int rotation)2138 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2139 			const struct drm_framebuffer *fb,
2140 			unsigned int rotation)
2141 {
2142 	if (intel_rotation_90_or_270(rotation)) {
2143 		*view = i915_ggtt_view_rotated;
2144 		view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2145 	} else {
2146 		*view = i915_ggtt_view_normal;
2147 	}
2148 }
2149 
intel_linear_alignment(const struct drm_i915_private * dev_priv)2150 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2151 {
2152 	if (INTEL_INFO(dev_priv)->gen >= 9)
2153 		return 256 * 1024;
2154 	else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2155 		 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2156 		return 128 * 1024;
2157 	else if (INTEL_INFO(dev_priv)->gen >= 4)
2158 		return 4 * 1024;
2159 	else
2160 		return 0;
2161 }
2162 
intel_surf_alignment(const struct drm_i915_private * dev_priv,uint64_t fb_modifier)2163 static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2164 					 uint64_t fb_modifier)
2165 {
2166 	switch (fb_modifier) {
2167 	case DRM_FORMAT_MOD_NONE:
2168 		return intel_linear_alignment(dev_priv);
2169 	case I915_FORMAT_MOD_X_TILED:
2170 		if (INTEL_INFO(dev_priv)->gen >= 9)
2171 			return 256 * 1024;
2172 		return 0;
2173 	case I915_FORMAT_MOD_Y_TILED:
2174 	case I915_FORMAT_MOD_Yf_TILED:
2175 		return 1 * 1024 * 1024;
2176 	default:
2177 		MISSING_CASE(fb_modifier);
2178 		return 0;
2179 	}
2180 }
2181 
2182 struct i915_vma *
intel_pin_and_fence_fb_obj(struct drm_framebuffer * fb,unsigned int rotation)2183 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2184 {
2185 	struct drm_device *dev = fb->dev;
2186 	struct drm_i915_private *dev_priv = to_i915(dev);
2187 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2188 	struct i915_ggtt_view view;
2189 	struct i915_vma *vma;
2190 	u32 alignment;
2191 
2192 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2193 
2194 	alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2195 
2196 	intel_fill_fb_ggtt_view(&view, fb, rotation);
2197 
2198 	/* Note that the w/a also requires 64 PTE of padding following the
2199 	 * bo. We currently fill all unused PTE with the shadow page and so
2200 	 * we should always have valid PTE following the scanout preventing
2201 	 * the VT-d warning.
2202 	 */
2203 	if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2204 		alignment = 256 * 1024;
2205 
2206 	/*
2207 	 * Global gtt pte registers are special registers which actually forward
2208 	 * writes to a chunk of system memory. Which means that there is no risk
2209 	 * that the register values disappear as soon as we call
2210 	 * intel_runtime_pm_put(), so it is correct to wrap only the
2211 	 * pin/unpin/fence and not more.
2212 	 */
2213 	intel_runtime_pm_get(dev_priv);
2214 
2215 	vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
2216 	if (IS_ERR(vma))
2217 		goto err;
2218 
2219 	if (i915_vma_is_map_and_fenceable(vma)) {
2220 		/* Install a fence for tiled scan-out. Pre-i965 always needs a
2221 		 * fence, whereas 965+ only requires a fence if using
2222 		 * framebuffer compression.  For simplicity, we always, when
2223 		 * possible, install a fence as the cost is not that onerous.
2224 		 *
2225 		 * If we fail to fence the tiled scanout, then either the
2226 		 * modeset will reject the change (which is highly unlikely as
2227 		 * the affected systems, all but one, do not have unmappable
2228 		 * space) or we will not be able to enable full powersaving
2229 		 * techniques (also likely not to apply due to various limits
2230 		 * FBC and the like impose on the size of the buffer, which
2231 		 * presumably we violated anyway with this unmappable buffer).
2232 		 * Anyway, it is presumably better to stumble onwards with
2233 		 * something and try to run the system in a "less than optimal"
2234 		 * mode that matches the user configuration.
2235 		 */
2236 		if (i915_vma_get_fence(vma) == 0)
2237 			i915_vma_pin_fence(vma);
2238 	}
2239 
2240 err:
2241 	intel_runtime_pm_put(dev_priv);
2242 	return vma;
2243 }
2244 
intel_unpin_fb_obj(struct drm_framebuffer * fb,unsigned int rotation)2245 void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
2246 {
2247 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2248 	struct i915_ggtt_view view;
2249 	struct i915_vma *vma;
2250 
2251 	WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2252 
2253 	intel_fill_fb_ggtt_view(&view, fb, rotation);
2254 	vma = i915_gem_object_to_ggtt(obj, &view);
2255 
2256 	if (WARN_ON_ONCE(!vma))
2257 		return;
2258 
2259 	i915_vma_unpin_fence(vma);
2260 	i915_gem_object_unpin_from_display_plane(vma);
2261 }
2262 
intel_fb_pitch(const struct drm_framebuffer * fb,int plane,unsigned int rotation)2263 static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
2264 			  unsigned int rotation)
2265 {
2266 	if (intel_rotation_90_or_270(rotation))
2267 		return to_intel_framebuffer(fb)->rotated[plane].pitch;
2268 	else
2269 		return fb->pitches[plane];
2270 }
2271 
2272 /*
2273  * Convert the x/y offsets into a linear offset.
2274  * Only valid with 0/180 degree rotation, which is fine since linear
2275  * offset is only used with linear buffers on pre-hsw and tiled buffers
2276  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2277  */
intel_fb_xy_to_linear(int x,int y,const struct intel_plane_state * state,int plane)2278 u32 intel_fb_xy_to_linear(int x, int y,
2279 			  const struct intel_plane_state *state,
2280 			  int plane)
2281 {
2282 	const struct drm_framebuffer *fb = state->base.fb;
2283 	unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2284 	unsigned int pitch = fb->pitches[plane];
2285 
2286 	return y * pitch + x * cpp;
2287 }
2288 
2289 /*
2290  * Add the x/y offsets derived from fb->offsets[] to the user
2291  * specified plane src x/y offsets. The resulting x/y offsets
2292  * specify the start of scanout from the beginning of the gtt mapping.
2293  */
intel_add_fb_offsets(int * x,int * y,const struct intel_plane_state * state,int plane)2294 void intel_add_fb_offsets(int *x, int *y,
2295 			  const struct intel_plane_state *state,
2296 			  int plane)
2297 
2298 {
2299 	const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
2300 	unsigned int rotation = state->base.rotation;
2301 
2302 	if (intel_rotation_90_or_270(rotation)) {
2303 		*x += intel_fb->rotated[plane].x;
2304 		*y += intel_fb->rotated[plane].y;
2305 	} else {
2306 		*x += intel_fb->normal[plane].x;
2307 		*y += intel_fb->normal[plane].y;
2308 	}
2309 }
2310 
2311 /*
2312  * Input tile dimensions and pitch must already be
2313  * rotated to match x and y, and in pixel units.
2314  */
_intel_adjust_tile_offset(int * x,int * y,unsigned int tile_width,unsigned int tile_height,unsigned int tile_size,unsigned int pitch_tiles,u32 old_offset,u32 new_offset)2315 static u32 _intel_adjust_tile_offset(int *x, int *y,
2316 				     unsigned int tile_width,
2317 				     unsigned int tile_height,
2318 				     unsigned int tile_size,
2319 				     unsigned int pitch_tiles,
2320 				     u32 old_offset,
2321 				     u32 new_offset)
2322 {
2323 	unsigned int pitch_pixels = pitch_tiles * tile_width;
2324 	unsigned int tiles;
2325 
2326 	WARN_ON(old_offset & (tile_size - 1));
2327 	WARN_ON(new_offset & (tile_size - 1));
2328 	WARN_ON(new_offset > old_offset);
2329 
2330 	tiles = (old_offset - new_offset) / tile_size;
2331 
2332 	*y += tiles / pitch_tiles * tile_height;
2333 	*x += tiles % pitch_tiles * tile_width;
2334 
2335 	/* minimize x in case it got needlessly big */
2336 	*y += *x / pitch_pixels * tile_height;
2337 	*x %= pitch_pixels;
2338 
2339 	return new_offset;
2340 }
2341 
2342 /*
2343  * Adjust the tile offset by moving the difference into
2344  * the x/y offsets.
2345  */
intel_adjust_tile_offset(int * x,int * y,const struct intel_plane_state * state,int plane,u32 old_offset,u32 new_offset)2346 static u32 intel_adjust_tile_offset(int *x, int *y,
2347 				    const struct intel_plane_state *state, int plane,
2348 				    u32 old_offset, u32 new_offset)
2349 {
2350 	const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2351 	const struct drm_framebuffer *fb = state->base.fb;
2352 	unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2353 	unsigned int rotation = state->base.rotation;
2354 	unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
2355 
2356 	WARN_ON(new_offset > old_offset);
2357 
2358 	if (fb->modifier[plane] != DRM_FORMAT_MOD_NONE) {
2359 		unsigned int tile_size, tile_width, tile_height;
2360 		unsigned int pitch_tiles;
2361 
2362 		tile_size = intel_tile_size(dev_priv);
2363 		intel_tile_dims(dev_priv, &tile_width, &tile_height,
2364 				fb->modifier[plane], cpp);
2365 
2366 		if (intel_rotation_90_or_270(rotation)) {
2367 			pitch_tiles = pitch / tile_height;
2368 			swap(tile_width, tile_height);
2369 		} else {
2370 			pitch_tiles = pitch / (tile_width * cpp);
2371 		}
2372 
2373 		_intel_adjust_tile_offset(x, y, tile_width, tile_height,
2374 					  tile_size, pitch_tiles,
2375 					  old_offset, new_offset);
2376 	} else {
2377 		old_offset += *y * pitch + *x * cpp;
2378 
2379 		*y = (old_offset - new_offset) / pitch;
2380 		*x = ((old_offset - new_offset) - *y * pitch) / cpp;
2381 	}
2382 
2383 	return new_offset;
2384 }
2385 
2386 /*
2387  * Computes the linear offset to the base tile and adjusts
2388  * x, y. bytes per pixel is assumed to be a power-of-two.
2389  *
2390  * In the 90/270 rotated case, x and y are assumed
2391  * to be already rotated to match the rotated GTT view, and
2392  * pitch is the tile_height aligned framebuffer height.
2393  *
2394  * This function is used when computing the derived information
2395  * under intel_framebuffer, so using any of that information
2396  * here is not allowed. Anything under drm_framebuffer can be
2397  * used. This is why the user has to pass in the pitch since it
2398  * is specified in the rotated orientation.
2399  */
_intel_compute_tile_offset(const struct drm_i915_private * dev_priv,int * x,int * y,const struct drm_framebuffer * fb,int plane,unsigned int pitch,unsigned int rotation,u32 alignment)2400 static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
2401 				      int *x, int *y,
2402 				      const struct drm_framebuffer *fb, int plane,
2403 				      unsigned int pitch,
2404 				      unsigned int rotation,
2405 				      u32 alignment)
2406 {
2407 	uint64_t fb_modifier = fb->modifier[plane];
2408 	unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2409 	u32 offset, offset_aligned;
2410 
2411 	if (alignment)
2412 		alignment--;
2413 
2414 	if (fb_modifier != DRM_FORMAT_MOD_NONE) {
2415 		unsigned int tile_size, tile_width, tile_height;
2416 		unsigned int tile_rows, tiles, pitch_tiles;
2417 
2418 		tile_size = intel_tile_size(dev_priv);
2419 		intel_tile_dims(dev_priv, &tile_width, &tile_height,
2420 				fb_modifier, cpp);
2421 
2422 		if (intel_rotation_90_or_270(rotation)) {
2423 			pitch_tiles = pitch / tile_height;
2424 			swap(tile_width, tile_height);
2425 		} else {
2426 			pitch_tiles = pitch / (tile_width * cpp);
2427 		}
2428 
2429 		tile_rows = *y / tile_height;
2430 		*y %= tile_height;
2431 
2432 		tiles = *x / tile_width;
2433 		*x %= tile_width;
2434 
2435 		offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2436 		offset_aligned = offset & ~alignment;
2437 
2438 		_intel_adjust_tile_offset(x, y, tile_width, tile_height,
2439 					  tile_size, pitch_tiles,
2440 					  offset, offset_aligned);
2441 	} else {
2442 		offset = *y * pitch + *x * cpp;
2443 		offset_aligned = offset & ~alignment;
2444 
2445 		*y = (offset & alignment) / pitch;
2446 		*x = ((offset & alignment) - *y * pitch) / cpp;
2447 	}
2448 
2449 	return offset_aligned;
2450 }
2451 
intel_compute_tile_offset(int * x,int * y,const struct intel_plane_state * state,int plane)2452 u32 intel_compute_tile_offset(int *x, int *y,
2453 			      const struct intel_plane_state *state,
2454 			      int plane)
2455 {
2456 	const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
2457 	const struct drm_framebuffer *fb = state->base.fb;
2458 	unsigned int rotation = state->base.rotation;
2459 	int pitch = intel_fb_pitch(fb, plane, rotation);
2460 	u32 alignment;
2461 
2462 	/* AUX_DIST needs only 4K alignment */
2463 	if (fb->pixel_format == DRM_FORMAT_NV12 && plane == 1)
2464 		alignment = 4096;
2465 	else
2466 		alignment = intel_surf_alignment(dev_priv, fb->modifier[plane]);
2467 
2468 	return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
2469 					  rotation, alignment);
2470 }
2471 
2472 /* Convert the fb->offset[] linear offset into x/y offsets */
intel_fb_offset_to_xy(int * x,int * y,const struct drm_framebuffer * fb,int plane)2473 static void intel_fb_offset_to_xy(int *x, int *y,
2474 				  const struct drm_framebuffer *fb, int plane)
2475 {
2476 	unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2477 	unsigned int pitch = fb->pitches[plane];
2478 	u32 linear_offset = fb->offsets[plane];
2479 
2480 	*y = linear_offset / pitch;
2481 	*x = linear_offset % pitch / cpp;
2482 }
2483 
intel_fb_modifier_to_tiling(uint64_t fb_modifier)2484 static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
2485 {
2486 	switch (fb_modifier) {
2487 	case I915_FORMAT_MOD_X_TILED:
2488 		return I915_TILING_X;
2489 	case I915_FORMAT_MOD_Y_TILED:
2490 		return I915_TILING_Y;
2491 	default:
2492 		return I915_TILING_NONE;
2493 	}
2494 }
2495 
2496 static int
intel_fill_fb_info(struct drm_i915_private * dev_priv,struct drm_framebuffer * fb)2497 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2498 		   struct drm_framebuffer *fb)
2499 {
2500 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2501 	struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2502 	u32 gtt_offset_rotated = 0;
2503 	unsigned int max_size = 0;
2504 	uint32_t format = fb->pixel_format;
2505 	int i, num_planes = drm_format_num_planes(format);
2506 	unsigned int tile_size = intel_tile_size(dev_priv);
2507 
2508 	for (i = 0; i < num_planes; i++) {
2509 		unsigned int width, height;
2510 		unsigned int cpp, size;
2511 		u32 offset;
2512 		int x, y;
2513 
2514 		cpp = drm_format_plane_cpp(format, i);
2515 		width = drm_format_plane_width(fb->width, format, i);
2516 		height = drm_format_plane_height(fb->height, format, i);
2517 
2518 		intel_fb_offset_to_xy(&x, &y, fb, i);
2519 
2520 		/*
2521 		 * The fence (if used) is aligned to the start of the object
2522 		 * so having the framebuffer wrap around across the edge of the
2523 		 * fenced region doesn't really work. We have no API to configure
2524 		 * the fence start offset within the object (nor could we probably
2525 		 * on gen2/3). So it's just easier if we just require that the
2526 		 * fb layout agrees with the fence layout. We already check that the
2527 		 * fb stride matches the fence stride elsewhere.
2528 		 */
2529 		if (i915_gem_object_is_tiled(intel_fb->obj) &&
2530 		    (x + width) * cpp > fb->pitches[i]) {
2531 			DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
2532 				  i, fb->offsets[i]);
2533 			return -EINVAL;
2534 		}
2535 
2536 		/*
2537 		 * First pixel of the framebuffer from
2538 		 * the start of the normal gtt mapping.
2539 		 */
2540 		intel_fb->normal[i].x = x;
2541 		intel_fb->normal[i].y = y;
2542 
2543 		offset = _intel_compute_tile_offset(dev_priv, &x, &y,
2544 						    fb, 0, fb->pitches[i],
2545 						    DRM_ROTATE_0, tile_size);
2546 		offset /= tile_size;
2547 
2548 		if (fb->modifier[i] != DRM_FORMAT_MOD_NONE) {
2549 			unsigned int tile_width, tile_height;
2550 			unsigned int pitch_tiles;
2551 			struct drm_rect r;
2552 
2553 			intel_tile_dims(dev_priv, &tile_width, &tile_height,
2554 					fb->modifier[i], cpp);
2555 
2556 			rot_info->plane[i].offset = offset;
2557 			rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2558 			rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2559 			rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2560 
2561 			intel_fb->rotated[i].pitch =
2562 				rot_info->plane[i].height * tile_height;
2563 
2564 			/* how many tiles does this plane need */
2565 			size = rot_info->plane[i].stride * rot_info->plane[i].height;
2566 			/*
2567 			 * If the plane isn't horizontally tile aligned,
2568 			 * we need one more tile.
2569 			 */
2570 			if (x != 0)
2571 				size++;
2572 
2573 			/* rotate the x/y offsets to match the GTT view */
2574 			r.x1 = x;
2575 			r.y1 = y;
2576 			r.x2 = x + width;
2577 			r.y2 = y + height;
2578 			drm_rect_rotate(&r,
2579 					rot_info->plane[i].width * tile_width,
2580 					rot_info->plane[i].height * tile_height,
2581 					DRM_ROTATE_270);
2582 			x = r.x1;
2583 			y = r.y1;
2584 
2585 			/* rotate the tile dimensions to match the GTT view */
2586 			pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2587 			swap(tile_width, tile_height);
2588 
2589 			/*
2590 			 * We only keep the x/y offsets, so push all of the
2591 			 * gtt offset into the x/y offsets.
2592 			 */
2593 			_intel_adjust_tile_offset(&x, &y,
2594 						  tile_width, tile_height,
2595 						  tile_size, pitch_tiles,
2596 						  gtt_offset_rotated * tile_size, 0);
2597 
2598 			gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2599 
2600 			/*
2601 			 * First pixel of the framebuffer from
2602 			 * the start of the rotated gtt mapping.
2603 			 */
2604 			intel_fb->rotated[i].x = x;
2605 			intel_fb->rotated[i].y = y;
2606 		} else {
2607 			size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2608 					    x * cpp, tile_size);
2609 		}
2610 
2611 		/* how many tiles in total needed in the bo */
2612 		max_size = max(max_size, offset + size);
2613 	}
2614 
2615 	if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
2616 		DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
2617 			  max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
2618 		return -EINVAL;
2619 	}
2620 
2621 	return 0;
2622 }
2623 
i9xx_format_to_fourcc(int format)2624 static int i9xx_format_to_fourcc(int format)
2625 {
2626 	switch (format) {
2627 	case DISPPLANE_8BPP:
2628 		return DRM_FORMAT_C8;
2629 	case DISPPLANE_BGRX555:
2630 		return DRM_FORMAT_XRGB1555;
2631 	case DISPPLANE_BGRX565:
2632 		return DRM_FORMAT_RGB565;
2633 	default:
2634 	case DISPPLANE_BGRX888:
2635 		return DRM_FORMAT_XRGB8888;
2636 	case DISPPLANE_RGBX888:
2637 		return DRM_FORMAT_XBGR8888;
2638 	case DISPPLANE_BGRX101010:
2639 		return DRM_FORMAT_XRGB2101010;
2640 	case DISPPLANE_RGBX101010:
2641 		return DRM_FORMAT_XBGR2101010;
2642 	}
2643 }
2644 
skl_format_to_fourcc(int format,bool rgb_order,bool alpha)2645 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2646 {
2647 	switch (format) {
2648 	case PLANE_CTL_FORMAT_RGB_565:
2649 		return DRM_FORMAT_RGB565;
2650 	default:
2651 	case PLANE_CTL_FORMAT_XRGB_8888:
2652 		if (rgb_order) {
2653 			if (alpha)
2654 				return DRM_FORMAT_ABGR8888;
2655 			else
2656 				return DRM_FORMAT_XBGR8888;
2657 		} else {
2658 			if (alpha)
2659 				return DRM_FORMAT_ARGB8888;
2660 			else
2661 				return DRM_FORMAT_XRGB8888;
2662 		}
2663 	case PLANE_CTL_FORMAT_XRGB_2101010:
2664 		if (rgb_order)
2665 			return DRM_FORMAT_XBGR2101010;
2666 		else
2667 			return DRM_FORMAT_XRGB2101010;
2668 	}
2669 }
2670 
2671 static bool
intel_alloc_initial_plane_obj(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)2672 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2673 			      struct intel_initial_plane_config *plane_config)
2674 {
2675 	struct drm_device *dev = crtc->base.dev;
2676 	struct drm_i915_private *dev_priv = to_i915(dev);
2677 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2678 	struct drm_i915_gem_object *obj = NULL;
2679 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2680 	struct drm_framebuffer *fb = &plane_config->fb->base;
2681 	u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2682 	u32 size_aligned = round_up(plane_config->base + plane_config->size,
2683 				    PAGE_SIZE);
2684 
2685 	size_aligned -= base_aligned;
2686 
2687 	if (plane_config->size == 0)
2688 		return false;
2689 
2690 	/* If the FB is too big, just don't use it since fbdev is not very
2691 	 * important and we should probably use that space with FBC or other
2692 	 * features. */
2693 	if (size_aligned * 2 > ggtt->stolen_usable_size)
2694 		return false;
2695 
2696 	mutex_lock(&dev->struct_mutex);
2697 
2698 	obj = i915_gem_object_create_stolen_for_preallocated(dev,
2699 							     base_aligned,
2700 							     base_aligned,
2701 							     size_aligned);
2702 	if (!obj) {
2703 		mutex_unlock(&dev->struct_mutex);
2704 		return false;
2705 	}
2706 
2707 	if (plane_config->tiling == I915_TILING_X)
2708 		obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
2709 
2710 	mode_cmd.pixel_format = fb->pixel_format;
2711 	mode_cmd.width = fb->width;
2712 	mode_cmd.height = fb->height;
2713 	mode_cmd.pitches[0] = fb->pitches[0];
2714 	mode_cmd.modifier[0] = fb->modifier[0];
2715 	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2716 
2717 	if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2718 				   &mode_cmd, obj)) {
2719 		DRM_DEBUG_KMS("intel fb init failed\n");
2720 		goto out_unref_obj;
2721 	}
2722 
2723 	mutex_unlock(&dev->struct_mutex);
2724 
2725 	DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2726 	return true;
2727 
2728 out_unref_obj:
2729 	i915_gem_object_put(obj);
2730 	mutex_unlock(&dev->struct_mutex);
2731 	return false;
2732 }
2733 
2734 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2735 static void
update_state_fb(struct drm_plane * plane)2736 update_state_fb(struct drm_plane *plane)
2737 {
2738 	if (plane->fb == plane->state->fb)
2739 		return;
2740 
2741 	if (plane->state->fb)
2742 		drm_framebuffer_unreference(plane->state->fb);
2743 	plane->state->fb = plane->fb;
2744 	if (plane->state->fb)
2745 		drm_framebuffer_reference(plane->state->fb);
2746 }
2747 
2748 static void
intel_find_initial_plane_obj(struct intel_crtc * intel_crtc,struct intel_initial_plane_config * plane_config)2749 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2750 			     struct intel_initial_plane_config *plane_config)
2751 {
2752 	struct drm_device *dev = intel_crtc->base.dev;
2753 	struct drm_i915_private *dev_priv = to_i915(dev);
2754 	struct drm_crtc *c;
2755 	struct intel_crtc *i;
2756 	struct drm_i915_gem_object *obj;
2757 	struct drm_plane *primary = intel_crtc->base.primary;
2758 	struct drm_plane_state *plane_state = primary->state;
2759 	struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2760 	struct intel_plane *intel_plane = to_intel_plane(primary);
2761 	struct intel_plane_state *intel_state =
2762 		to_intel_plane_state(plane_state);
2763 	struct drm_framebuffer *fb;
2764 
2765 	if (!plane_config->fb)
2766 		return;
2767 
2768 	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2769 		fb = &plane_config->fb->base;
2770 		goto valid_fb;
2771 	}
2772 
2773 	kfree(plane_config->fb);
2774 
2775 	/*
2776 	 * Failed to alloc the obj, check to see if we should share
2777 	 * an fb with another CRTC instead
2778 	 */
2779 	for_each_crtc(dev, c) {
2780 		i = to_intel_crtc(c);
2781 
2782 		if (c == &intel_crtc->base)
2783 			continue;
2784 
2785 		if (!i->active)
2786 			continue;
2787 
2788 		fb = c->primary->fb;
2789 		if (!fb)
2790 			continue;
2791 
2792 		obj = intel_fb_obj(fb);
2793 		if (i915_gem_object_ggtt_offset(obj, NULL) == plane_config->base) {
2794 			drm_framebuffer_reference(fb);
2795 			goto valid_fb;
2796 		}
2797 	}
2798 
2799 	/*
2800 	 * We've failed to reconstruct the BIOS FB.  Current display state
2801 	 * indicates that the primary plane is visible, but has a NULL FB,
2802 	 * which will lead to problems later if we don't fix it up.  The
2803 	 * simplest solution is to just disable the primary plane now and
2804 	 * pretend the BIOS never had it enabled.
2805 	 */
2806 	to_intel_plane_state(plane_state)->base.visible = false;
2807 	crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2808 	intel_pre_disable_primary_noatomic(&intel_crtc->base);
2809 	intel_plane->disable_plane(primary, &intel_crtc->base);
2810 
2811 	return;
2812 
2813 valid_fb:
2814 	plane_state->src_x = 0;
2815 	plane_state->src_y = 0;
2816 	plane_state->src_w = fb->width << 16;
2817 	plane_state->src_h = fb->height << 16;
2818 
2819 	plane_state->crtc_x = 0;
2820 	plane_state->crtc_y = 0;
2821 	plane_state->crtc_w = fb->width;
2822 	plane_state->crtc_h = fb->height;
2823 
2824 	intel_state->base.src.x1 = plane_state->src_x;
2825 	intel_state->base.src.y1 = plane_state->src_y;
2826 	intel_state->base.src.x2 = plane_state->src_x + plane_state->src_w;
2827 	intel_state->base.src.y2 = plane_state->src_y + plane_state->src_h;
2828 	intel_state->base.dst.x1 = plane_state->crtc_x;
2829 	intel_state->base.dst.y1 = plane_state->crtc_y;
2830 	intel_state->base.dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2831 	intel_state->base.dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2832 
2833 	obj = intel_fb_obj(fb);
2834 	if (i915_gem_object_is_tiled(obj))
2835 		dev_priv->preserve_bios_swizzle = true;
2836 
2837 	drm_framebuffer_reference(fb);
2838 	primary->fb = primary->state->fb = fb;
2839 	primary->crtc = primary->state->crtc = &intel_crtc->base;
2840 	intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2841 	atomic_or(to_intel_plane(primary)->frontbuffer_bit,
2842 		  &obj->frontbuffer_bits);
2843 }
2844 
skl_max_plane_width(const struct drm_framebuffer * fb,int plane,unsigned int rotation)2845 static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
2846 			       unsigned int rotation)
2847 {
2848 	int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
2849 
2850 	switch (fb->modifier[plane]) {
2851 	case DRM_FORMAT_MOD_NONE:
2852 	case I915_FORMAT_MOD_X_TILED:
2853 		switch (cpp) {
2854 		case 8:
2855 			return 4096;
2856 		case 4:
2857 		case 2:
2858 		case 1:
2859 			return 8192;
2860 		default:
2861 			MISSING_CASE(cpp);
2862 			break;
2863 		}
2864 		break;
2865 	case I915_FORMAT_MOD_Y_TILED:
2866 	case I915_FORMAT_MOD_Yf_TILED:
2867 		switch (cpp) {
2868 		case 8:
2869 			return 2048;
2870 		case 4:
2871 			return 4096;
2872 		case 2:
2873 		case 1:
2874 			return 8192;
2875 		default:
2876 			MISSING_CASE(cpp);
2877 			break;
2878 		}
2879 		break;
2880 	default:
2881 		MISSING_CASE(fb->modifier[plane]);
2882 	}
2883 
2884 	return 2048;
2885 }
2886 
skl_check_main_surface(struct intel_plane_state * plane_state)2887 static int skl_check_main_surface(struct intel_plane_state *plane_state)
2888 {
2889 	const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
2890 	const struct drm_framebuffer *fb = plane_state->base.fb;
2891 	unsigned int rotation = plane_state->base.rotation;
2892 	int x = plane_state->base.src.x1 >> 16;
2893 	int y = plane_state->base.src.y1 >> 16;
2894 	int w = drm_rect_width(&plane_state->base.src) >> 16;
2895 	int h = drm_rect_height(&plane_state->base.src) >> 16;
2896 	int max_width = skl_max_plane_width(fb, 0, rotation);
2897 	int max_height = 4096;
2898 	u32 alignment, offset, aux_offset = plane_state->aux.offset;
2899 
2900 	if (w > max_width || h > max_height) {
2901 		DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
2902 			      w, h, max_width, max_height);
2903 		return -EINVAL;
2904 	}
2905 
2906 	intel_add_fb_offsets(&x, &y, plane_state, 0);
2907 	offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
2908 
2909 	alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
2910 
2911 	/*
2912 	 * AUX surface offset is specified as the distance from the
2913 	 * main surface offset, and it must be non-negative. Make
2914 	 * sure that is what we will get.
2915 	 */
2916 	if (offset > aux_offset)
2917 		offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2918 						  offset, aux_offset & ~(alignment - 1));
2919 
2920 	/*
2921 	 * When using an X-tiled surface, the plane blows up
2922 	 * if the x offset + width exceed the stride.
2923 	 *
2924 	 * TODO: linear and Y-tiled seem fine, Yf untested,
2925 	 */
2926 	if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED) {
2927 		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
2928 
2929 		while ((x + w) * cpp > fb->pitches[0]) {
2930 			if (offset == 0) {
2931 				DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
2932 				return -EINVAL;
2933 			}
2934 
2935 			offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
2936 							  offset, offset - alignment);
2937 		}
2938 	}
2939 
2940 	plane_state->main.offset = offset;
2941 	plane_state->main.x = x;
2942 	plane_state->main.y = y;
2943 
2944 	return 0;
2945 }
2946 
skl_check_nv12_aux_surface(struct intel_plane_state * plane_state)2947 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
2948 {
2949 	const struct drm_framebuffer *fb = plane_state->base.fb;
2950 	unsigned int rotation = plane_state->base.rotation;
2951 	int max_width = skl_max_plane_width(fb, 1, rotation);
2952 	int max_height = 4096;
2953 	int x = plane_state->base.src.x1 >> 17;
2954 	int y = plane_state->base.src.y1 >> 17;
2955 	int w = drm_rect_width(&plane_state->base.src) >> 17;
2956 	int h = drm_rect_height(&plane_state->base.src) >> 17;
2957 	u32 offset;
2958 
2959 	intel_add_fb_offsets(&x, &y, plane_state, 1);
2960 	offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
2961 
2962 	/* FIXME not quite sure how/if these apply to the chroma plane */
2963 	if (w > max_width || h > max_height) {
2964 		DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
2965 			      w, h, max_width, max_height);
2966 		return -EINVAL;
2967 	}
2968 
2969 	plane_state->aux.offset = offset;
2970 	plane_state->aux.x = x;
2971 	plane_state->aux.y = y;
2972 
2973 	return 0;
2974 }
2975 
skl_check_plane_surface(struct intel_plane_state * plane_state)2976 int skl_check_plane_surface(struct intel_plane_state *plane_state)
2977 {
2978 	const struct drm_framebuffer *fb = plane_state->base.fb;
2979 	unsigned int rotation = plane_state->base.rotation;
2980 	int ret;
2981 
2982 	if (!plane_state->base.visible)
2983 		return 0;
2984 
2985 	/* Rotate src coordinates to match rotated GTT view */
2986 	if (intel_rotation_90_or_270(rotation))
2987 		drm_rect_rotate(&plane_state->base.src,
2988 				fb->width << 16, fb->height << 16,
2989 				DRM_ROTATE_270);
2990 
2991 	/*
2992 	 * Handle the AUX surface first since
2993 	 * the main surface setup depends on it.
2994 	 */
2995 	if (fb->pixel_format == DRM_FORMAT_NV12) {
2996 		ret = skl_check_nv12_aux_surface(plane_state);
2997 		if (ret)
2998 			return ret;
2999 	} else {
3000 		plane_state->aux.offset = ~0xfff;
3001 		plane_state->aux.x = 0;
3002 		plane_state->aux.y = 0;
3003 	}
3004 
3005 	ret = skl_check_main_surface(plane_state);
3006 	if (ret)
3007 		return ret;
3008 
3009 	return 0;
3010 }
3011 
i9xx_update_primary_plane(struct drm_plane * primary,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)3012 static void i9xx_update_primary_plane(struct drm_plane *primary,
3013 				      const struct intel_crtc_state *crtc_state,
3014 				      const struct intel_plane_state *plane_state)
3015 {
3016 	struct drm_device *dev = primary->dev;
3017 	struct drm_i915_private *dev_priv = to_i915(dev);
3018 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3019 	struct drm_framebuffer *fb = plane_state->base.fb;
3020 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3021 	int plane = intel_crtc->plane;
3022 	u32 linear_offset;
3023 	u32 dspcntr;
3024 	i915_reg_t reg = DSPCNTR(plane);
3025 	unsigned int rotation = plane_state->base.rotation;
3026 	int x = plane_state->base.src.x1 >> 16;
3027 	int y = plane_state->base.src.y1 >> 16;
3028 
3029 	dspcntr = DISPPLANE_GAMMA_ENABLE;
3030 
3031 	dspcntr |= DISPLAY_PLANE_ENABLE;
3032 
3033 	if (INTEL_INFO(dev)->gen < 4) {
3034 		if (intel_crtc->pipe == PIPE_B)
3035 			dspcntr |= DISPPLANE_SEL_PIPE_B;
3036 
3037 		/* pipesrc and dspsize control the size that is scaled from,
3038 		 * which should always be the user's requested size.
3039 		 */
3040 		I915_WRITE(DSPSIZE(plane),
3041 			   ((crtc_state->pipe_src_h - 1) << 16) |
3042 			   (crtc_state->pipe_src_w - 1));
3043 		I915_WRITE(DSPPOS(plane), 0);
3044 	} else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
3045 		I915_WRITE(PRIMSIZE(plane),
3046 			   ((crtc_state->pipe_src_h - 1) << 16) |
3047 			   (crtc_state->pipe_src_w - 1));
3048 		I915_WRITE(PRIMPOS(plane), 0);
3049 		I915_WRITE(PRIMCNSTALPHA(plane), 0);
3050 	}
3051 
3052 	switch (fb->pixel_format) {
3053 	case DRM_FORMAT_C8:
3054 		dspcntr |= DISPPLANE_8BPP;
3055 		break;
3056 	case DRM_FORMAT_XRGB1555:
3057 		dspcntr |= DISPPLANE_BGRX555;
3058 		break;
3059 	case DRM_FORMAT_RGB565:
3060 		dspcntr |= DISPPLANE_BGRX565;
3061 		break;
3062 	case DRM_FORMAT_XRGB8888:
3063 		dspcntr |= DISPPLANE_BGRX888;
3064 		break;
3065 	case DRM_FORMAT_XBGR8888:
3066 		dspcntr |= DISPPLANE_RGBX888;
3067 		break;
3068 	case DRM_FORMAT_XRGB2101010:
3069 		dspcntr |= DISPPLANE_BGRX101010;
3070 		break;
3071 	case DRM_FORMAT_XBGR2101010:
3072 		dspcntr |= DISPPLANE_RGBX101010;
3073 		break;
3074 	default:
3075 		BUG();
3076 	}
3077 
3078 	if (INTEL_GEN(dev_priv) >= 4 &&
3079 	    fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3080 		dspcntr |= DISPPLANE_TILED;
3081 
3082 	if (IS_G4X(dev))
3083 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3084 
3085 	intel_add_fb_offsets(&x, &y, plane_state, 0);
3086 
3087 	if (INTEL_INFO(dev)->gen >= 4)
3088 		intel_crtc->dspaddr_offset =
3089 			intel_compute_tile_offset(&x, &y, plane_state, 0);
3090 
3091 	if (rotation == DRM_ROTATE_180) {
3092 		dspcntr |= DISPPLANE_ROTATE_180;
3093 
3094 		x += (crtc_state->pipe_src_w - 1);
3095 		y += (crtc_state->pipe_src_h - 1);
3096 	}
3097 
3098 	linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3099 
3100 	if (INTEL_INFO(dev)->gen < 4)
3101 		intel_crtc->dspaddr_offset = linear_offset;
3102 
3103 	intel_crtc->adjusted_x = x;
3104 	intel_crtc->adjusted_y = y;
3105 
3106 	I915_WRITE(reg, dspcntr);
3107 
3108 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3109 	if (INTEL_INFO(dev)->gen >= 4) {
3110 		I915_WRITE(DSPSURF(plane),
3111 			   intel_fb_gtt_offset(fb, rotation) +
3112 			   intel_crtc->dspaddr_offset);
3113 		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3114 		I915_WRITE(DSPLINOFF(plane), linear_offset);
3115 	} else
3116 		I915_WRITE(DSPADDR(plane), i915_gem_object_ggtt_offset(obj, NULL) + linear_offset);
3117 	POSTING_READ(reg);
3118 }
3119 
i9xx_disable_primary_plane(struct drm_plane * primary,struct drm_crtc * crtc)3120 static void i9xx_disable_primary_plane(struct drm_plane *primary,
3121 				       struct drm_crtc *crtc)
3122 {
3123 	struct drm_device *dev = crtc->dev;
3124 	struct drm_i915_private *dev_priv = to_i915(dev);
3125 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3126 	int plane = intel_crtc->plane;
3127 
3128 	I915_WRITE(DSPCNTR(plane), 0);
3129 	if (INTEL_INFO(dev_priv)->gen >= 4)
3130 		I915_WRITE(DSPSURF(plane), 0);
3131 	else
3132 		I915_WRITE(DSPADDR(plane), 0);
3133 	POSTING_READ(DSPCNTR(plane));
3134 }
3135 
ironlake_update_primary_plane(struct drm_plane * primary,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)3136 static void ironlake_update_primary_plane(struct drm_plane *primary,
3137 					  const struct intel_crtc_state *crtc_state,
3138 					  const struct intel_plane_state *plane_state)
3139 {
3140 	struct drm_device *dev = primary->dev;
3141 	struct drm_i915_private *dev_priv = to_i915(dev);
3142 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3143 	struct drm_framebuffer *fb = plane_state->base.fb;
3144 	int plane = intel_crtc->plane;
3145 	u32 linear_offset;
3146 	u32 dspcntr;
3147 	i915_reg_t reg = DSPCNTR(plane);
3148 	unsigned int rotation = plane_state->base.rotation;
3149 	int x = plane_state->base.src.x1 >> 16;
3150 	int y = plane_state->base.src.y1 >> 16;
3151 
3152 	dspcntr = DISPPLANE_GAMMA_ENABLE;
3153 	dspcntr |= DISPLAY_PLANE_ENABLE;
3154 
3155 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3156 		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3157 
3158 	switch (fb->pixel_format) {
3159 	case DRM_FORMAT_C8:
3160 		dspcntr |= DISPPLANE_8BPP;
3161 		break;
3162 	case DRM_FORMAT_RGB565:
3163 		dspcntr |= DISPPLANE_BGRX565;
3164 		break;
3165 	case DRM_FORMAT_XRGB8888:
3166 		dspcntr |= DISPPLANE_BGRX888;
3167 		break;
3168 	case DRM_FORMAT_XBGR8888:
3169 		dspcntr |= DISPPLANE_RGBX888;
3170 		break;
3171 	case DRM_FORMAT_XRGB2101010:
3172 		dspcntr |= DISPPLANE_BGRX101010;
3173 		break;
3174 	case DRM_FORMAT_XBGR2101010:
3175 		dspcntr |= DISPPLANE_RGBX101010;
3176 		break;
3177 	default:
3178 		BUG();
3179 	}
3180 
3181 	if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3182 		dspcntr |= DISPPLANE_TILED;
3183 
3184 	if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
3185 		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3186 
3187 	intel_add_fb_offsets(&x, &y, plane_state, 0);
3188 
3189 	intel_crtc->dspaddr_offset =
3190 		intel_compute_tile_offset(&x, &y, plane_state, 0);
3191 
3192 	if (rotation == DRM_ROTATE_180) {
3193 		dspcntr |= DISPPLANE_ROTATE_180;
3194 
3195 		if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
3196 			x += (crtc_state->pipe_src_w - 1);
3197 			y += (crtc_state->pipe_src_h - 1);
3198 		}
3199 	}
3200 
3201 	linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3202 
3203 	intel_crtc->adjusted_x = x;
3204 	intel_crtc->adjusted_y = y;
3205 
3206 	I915_WRITE(reg, dspcntr);
3207 
3208 	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
3209 	I915_WRITE(DSPSURF(plane),
3210 		   intel_fb_gtt_offset(fb, rotation) +
3211 		   intel_crtc->dspaddr_offset);
3212 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
3213 		I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
3214 	} else {
3215 		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
3216 		I915_WRITE(DSPLINOFF(plane), linear_offset);
3217 	}
3218 	POSTING_READ(reg);
3219 }
3220 
intel_fb_stride_alignment(const struct drm_i915_private * dev_priv,uint64_t fb_modifier,uint32_t pixel_format)3221 u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
3222 			      uint64_t fb_modifier, uint32_t pixel_format)
3223 {
3224 	if (fb_modifier == DRM_FORMAT_MOD_NONE) {
3225 		return 64;
3226 	} else {
3227 		int cpp = drm_format_plane_cpp(pixel_format, 0);
3228 
3229 		return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
3230 	}
3231 }
3232 
intel_fb_gtt_offset(struct drm_framebuffer * fb,unsigned int rotation)3233 u32 intel_fb_gtt_offset(struct drm_framebuffer *fb,
3234 			unsigned int rotation)
3235 {
3236 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
3237 	struct i915_ggtt_view view;
3238 	struct i915_vma *vma;
3239 
3240 	intel_fill_fb_ggtt_view(&view, fb, rotation);
3241 
3242 	vma = i915_gem_object_to_ggtt(obj, &view);
3243 	if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
3244 		 view.type))
3245 		return -1;
3246 
3247 	return i915_ggtt_offset(vma);
3248 }
3249 
skl_detach_scaler(struct intel_crtc * intel_crtc,int id)3250 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
3251 {
3252 	struct drm_device *dev = intel_crtc->base.dev;
3253 	struct drm_i915_private *dev_priv = to_i915(dev);
3254 
3255 	I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
3256 	I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
3257 	I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
3258 }
3259 
3260 /*
3261  * This function detaches (aka. unbinds) unused scalers in hardware
3262  */
skl_detach_scalers(struct intel_crtc * intel_crtc)3263 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
3264 {
3265 	struct intel_crtc_scaler_state *scaler_state;
3266 	int i;
3267 
3268 	scaler_state = &intel_crtc->config->scaler_state;
3269 
3270 	/* loop through and disable scalers that aren't in use */
3271 	for (i = 0; i < intel_crtc->num_scalers; i++) {
3272 		if (!scaler_state->scalers[i].in_use)
3273 			skl_detach_scaler(intel_crtc, i);
3274 	}
3275 }
3276 
skl_plane_stride(const struct drm_framebuffer * fb,int plane,unsigned int rotation)3277 u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
3278 		     unsigned int rotation)
3279 {
3280 	const struct drm_i915_private *dev_priv = to_i915(fb->dev);
3281 	u32 stride = intel_fb_pitch(fb, plane, rotation);
3282 
3283 	/*
3284 	 * The stride is either expressed as a multiple of 64 bytes chunks for
3285 	 * linear buffers or in number of tiles for tiled buffers.
3286 	 */
3287 	if (intel_rotation_90_or_270(rotation)) {
3288 		int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
3289 
3290 		stride /= intel_tile_height(dev_priv, fb->modifier[0], cpp);
3291 	} else {
3292 		stride /= intel_fb_stride_alignment(dev_priv, fb->modifier[0],
3293 						    fb->pixel_format);
3294 	}
3295 
3296 	return stride;
3297 }
3298 
skl_plane_ctl_format(uint32_t pixel_format)3299 u32 skl_plane_ctl_format(uint32_t pixel_format)
3300 {
3301 	switch (pixel_format) {
3302 	case DRM_FORMAT_C8:
3303 		return PLANE_CTL_FORMAT_INDEXED;
3304 	case DRM_FORMAT_RGB565:
3305 		return PLANE_CTL_FORMAT_RGB_565;
3306 	case DRM_FORMAT_XBGR8888:
3307 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
3308 	case DRM_FORMAT_XRGB8888:
3309 		return PLANE_CTL_FORMAT_XRGB_8888;
3310 	/*
3311 	 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
3312 	 * to be already pre-multiplied. We need to add a knob (or a different
3313 	 * DRM_FORMAT) for user-space to configure that.
3314 	 */
3315 	case DRM_FORMAT_ABGR8888:
3316 		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3317 			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3318 	case DRM_FORMAT_ARGB8888:
3319 		return PLANE_CTL_FORMAT_XRGB_8888 |
3320 			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3321 	case DRM_FORMAT_XRGB2101010:
3322 		return PLANE_CTL_FORMAT_XRGB_2101010;
3323 	case DRM_FORMAT_XBGR2101010:
3324 		return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3325 	case DRM_FORMAT_YUYV:
3326 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3327 	case DRM_FORMAT_YVYU:
3328 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3329 	case DRM_FORMAT_UYVY:
3330 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3331 	case DRM_FORMAT_VYUY:
3332 		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3333 	default:
3334 		MISSING_CASE(pixel_format);
3335 	}
3336 
3337 	return 0;
3338 }
3339 
skl_plane_ctl_tiling(uint64_t fb_modifier)3340 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3341 {
3342 	switch (fb_modifier) {
3343 	case DRM_FORMAT_MOD_NONE:
3344 		break;
3345 	case I915_FORMAT_MOD_X_TILED:
3346 		return PLANE_CTL_TILED_X;
3347 	case I915_FORMAT_MOD_Y_TILED:
3348 		return PLANE_CTL_TILED_Y;
3349 	case I915_FORMAT_MOD_Yf_TILED:
3350 		return PLANE_CTL_TILED_YF;
3351 	default:
3352 		MISSING_CASE(fb_modifier);
3353 	}
3354 
3355 	return 0;
3356 }
3357 
skl_plane_ctl_rotation(unsigned int rotation)3358 u32 skl_plane_ctl_rotation(unsigned int rotation)
3359 {
3360 	switch (rotation) {
3361 	case DRM_ROTATE_0:
3362 		break;
3363 	/*
3364 	 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3365 	 * while i915 HW rotation is clockwise, thats why this swapping.
3366 	 */
3367 	case DRM_ROTATE_90:
3368 		return PLANE_CTL_ROTATE_270;
3369 	case DRM_ROTATE_180:
3370 		return PLANE_CTL_ROTATE_180;
3371 	case DRM_ROTATE_270:
3372 		return PLANE_CTL_ROTATE_90;
3373 	default:
3374 		MISSING_CASE(rotation);
3375 	}
3376 
3377 	return 0;
3378 }
3379 
skylake_update_primary_plane(struct drm_plane * plane,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)3380 static void skylake_update_primary_plane(struct drm_plane *plane,
3381 					 const struct intel_crtc_state *crtc_state,
3382 					 const struct intel_plane_state *plane_state)
3383 {
3384 	struct drm_device *dev = plane->dev;
3385 	struct drm_i915_private *dev_priv = to_i915(dev);
3386 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3387 	struct drm_framebuffer *fb = plane_state->base.fb;
3388 	const struct skl_wm_values *wm = &dev_priv->wm.skl_results;
3389 	int pipe = intel_crtc->pipe;
3390 	u32 plane_ctl;
3391 	unsigned int rotation = plane_state->base.rotation;
3392 	u32 stride = skl_plane_stride(fb, 0, rotation);
3393 	u32 surf_addr = plane_state->main.offset;
3394 	int scaler_id = plane_state->scaler_id;
3395 	int src_x = plane_state->main.x;
3396 	int src_y = plane_state->main.y;
3397 	int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3398 	int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3399 	int dst_x = plane_state->base.dst.x1;
3400 	int dst_y = plane_state->base.dst.y1;
3401 	int dst_w = drm_rect_width(&plane_state->base.dst);
3402 	int dst_h = drm_rect_height(&plane_state->base.dst);
3403 
3404 	plane_ctl = PLANE_CTL_ENABLE |
3405 		    PLANE_CTL_PIPE_GAMMA_ENABLE |
3406 		    PLANE_CTL_PIPE_CSC_ENABLE;
3407 
3408 	plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3409 	plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3410 	plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3411 	plane_ctl |= skl_plane_ctl_rotation(rotation);
3412 
3413 	/* Sizes are 0 based */
3414 	src_w--;
3415 	src_h--;
3416 	dst_w--;
3417 	dst_h--;
3418 
3419 	intel_crtc->dspaddr_offset = surf_addr;
3420 
3421 	intel_crtc->adjusted_x = src_x;
3422 	intel_crtc->adjusted_y = src_y;
3423 
3424 	if (wm->dirty_pipes & drm_crtc_mask(&intel_crtc->base))
3425 		skl_write_plane_wm(intel_crtc, wm, 0);
3426 
3427 	I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3428 	I915_WRITE(PLANE_OFFSET(pipe, 0), (src_y << 16) | src_x);
3429 	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3430 	I915_WRITE(PLANE_SIZE(pipe, 0), (src_h << 16) | src_w);
3431 
3432 	if (scaler_id >= 0) {
3433 		uint32_t ps_ctrl = 0;
3434 
3435 		WARN_ON(!dst_w || !dst_h);
3436 		ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3437 			crtc_state->scaler_state.scalers[scaler_id].mode;
3438 		I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3439 		I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3440 		I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3441 		I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3442 		I915_WRITE(PLANE_POS(pipe, 0), 0);
3443 	} else {
3444 		I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3445 	}
3446 
3447 	I915_WRITE(PLANE_SURF(pipe, 0),
3448 		   intel_fb_gtt_offset(fb, rotation) + surf_addr);
3449 
3450 	POSTING_READ(PLANE_SURF(pipe, 0));
3451 }
3452 
skylake_disable_primary_plane(struct drm_plane * primary,struct drm_crtc * crtc)3453 static void skylake_disable_primary_plane(struct drm_plane *primary,
3454 					  struct drm_crtc *crtc)
3455 {
3456 	struct drm_device *dev = crtc->dev;
3457 	struct drm_i915_private *dev_priv = to_i915(dev);
3458 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3459 	int pipe = intel_crtc->pipe;
3460 
3461 	/*
3462 	 * We only populate skl_results on watermark updates, and if the
3463 	 * plane's visiblity isn't actually changing neither is its watermarks.
3464 	 */
3465 	if (!crtc->primary->state->visible)
3466 		skl_write_plane_wm(intel_crtc, &dev_priv->wm.skl_results, 0);
3467 
3468 	I915_WRITE(PLANE_CTL(pipe, 0), 0);
3469 	I915_WRITE(PLANE_SURF(pipe, 0), 0);
3470 	POSTING_READ(PLANE_SURF(pipe, 0));
3471 }
3472 
3473 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3474 static int
intel_pipe_set_base_atomic(struct drm_crtc * crtc,struct drm_framebuffer * fb,int x,int y,enum mode_set_atomic state)3475 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3476 			   int x, int y, enum mode_set_atomic state)
3477 {
3478 	/* Support for kgdboc is disabled, this needs a major rework. */
3479 	DRM_ERROR("legacy panic handler not supported any more.\n");
3480 
3481 	return -ENODEV;
3482 }
3483 
intel_complete_page_flips(struct drm_i915_private * dev_priv)3484 static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
3485 {
3486 	struct intel_crtc *crtc;
3487 
3488 	for_each_intel_crtc(&dev_priv->drm, crtc)
3489 		intel_finish_page_flip_cs(dev_priv, crtc->pipe);
3490 }
3491 
intel_update_primary_planes(struct drm_device * dev)3492 static void intel_update_primary_planes(struct drm_device *dev)
3493 {
3494 	struct drm_crtc *crtc;
3495 
3496 	for_each_crtc(dev, crtc) {
3497 		struct intel_plane *plane = to_intel_plane(crtc->primary);
3498 		struct intel_plane_state *plane_state =
3499 			to_intel_plane_state(plane->base.state);
3500 
3501 		if (plane_state->base.visible)
3502 			plane->update_plane(&plane->base,
3503 					    to_intel_crtc_state(crtc->state),
3504 					    plane_state);
3505 	}
3506 }
3507 
3508 static int
__intel_display_resume(struct drm_device * dev,struct drm_atomic_state * state)3509 __intel_display_resume(struct drm_device *dev,
3510 		       struct drm_atomic_state *state)
3511 {
3512 	struct drm_crtc_state *crtc_state;
3513 	struct drm_crtc *crtc;
3514 	int i, ret;
3515 
3516 	intel_modeset_setup_hw_state(dev);
3517 	i915_redisable_vga(dev);
3518 
3519 	if (!state)
3520 		return 0;
3521 
3522 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
3523 		/*
3524 		 * Force recalculation even if we restore
3525 		 * current state. With fast modeset this may not result
3526 		 * in a modeset when the state is compatible.
3527 		 */
3528 		crtc_state->mode_changed = true;
3529 	}
3530 
3531 	/* ignore any reset values/BIOS leftovers in the WM registers */
3532 	to_intel_atomic_state(state)->skip_intermediate_wm = true;
3533 
3534 	ret = drm_atomic_commit(state);
3535 
3536 	WARN_ON(ret == -EDEADLK);
3537 	return ret;
3538 }
3539 
gpu_reset_clobbers_display(struct drm_i915_private * dev_priv)3540 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
3541 {
3542 	return intel_has_gpu_reset(dev_priv) &&
3543 		INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
3544 }
3545 
intel_prepare_reset(struct drm_i915_private * dev_priv)3546 void intel_prepare_reset(struct drm_i915_private *dev_priv)
3547 {
3548 	struct drm_device *dev = &dev_priv->drm;
3549 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3550 	struct drm_atomic_state *state;
3551 	int ret;
3552 
3553 	/*
3554 	 * Need mode_config.mutex so that we don't
3555 	 * trample ongoing ->detect() and whatnot.
3556 	 */
3557 	mutex_lock(&dev->mode_config.mutex);
3558 	drm_modeset_acquire_init(ctx, 0);
3559 	while (1) {
3560 		ret = drm_modeset_lock_all_ctx(dev, ctx);
3561 		if (ret != -EDEADLK)
3562 			break;
3563 
3564 		drm_modeset_backoff(ctx);
3565 	}
3566 
3567 	/* reset doesn't touch the display, but flips might get nuked anyway, */
3568 	if (!i915.force_reset_modeset_test &&
3569 	    !gpu_reset_clobbers_display(dev_priv))
3570 		return;
3571 
3572 	/*
3573 	 * Disabling the crtcs gracefully seems nicer. Also the
3574 	 * g33 docs say we should at least disable all the planes.
3575 	 */
3576 	state = drm_atomic_helper_duplicate_state(dev, ctx);
3577 	if (IS_ERR(state)) {
3578 		ret = PTR_ERR(state);
3579 		state = NULL;
3580 		DRM_ERROR("Duplicating state failed with %i\n", ret);
3581 		goto err;
3582 	}
3583 
3584 	ret = drm_atomic_helper_disable_all(dev, ctx);
3585 	if (ret) {
3586 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
3587 		goto err;
3588 	}
3589 
3590 	dev_priv->modeset_restore_state = state;
3591 	state->acquire_ctx = ctx;
3592 	return;
3593 
3594 err:
3595 	drm_atomic_state_free(state);
3596 }
3597 
intel_finish_reset(struct drm_i915_private * dev_priv)3598 void intel_finish_reset(struct drm_i915_private *dev_priv)
3599 {
3600 	struct drm_device *dev = &dev_priv->drm;
3601 	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
3602 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
3603 	int ret;
3604 
3605 	/*
3606 	 * Flips in the rings will be nuked by the reset,
3607 	 * so complete all pending flips so that user space
3608 	 * will get its events and not get stuck.
3609 	 */
3610 	intel_complete_page_flips(dev_priv);
3611 
3612 	dev_priv->modeset_restore_state = NULL;
3613 
3614 	dev_priv->modeset_restore_state = NULL;
3615 
3616 	/* reset doesn't touch the display */
3617 	if (!gpu_reset_clobbers_display(dev_priv)) {
3618 		if (!state) {
3619 			/*
3620 			 * Flips in the rings have been nuked by the reset,
3621 			 * so update the base address of all primary
3622 			 * planes to the the last fb to make sure we're
3623 			 * showing the correct fb after a reset.
3624 			 *
3625 			 * FIXME: Atomic will make this obsolete since we won't schedule
3626 			 * CS-based flips (which might get lost in gpu resets) any more.
3627 			 */
3628 			intel_update_primary_planes(dev);
3629 		} else {
3630 			ret = __intel_display_resume(dev, state);
3631 			if (ret)
3632 				DRM_ERROR("Restoring old state failed with %i\n", ret);
3633 		}
3634 	} else {
3635 		/*
3636 		 * The display has been reset as well,
3637 		 * so need a full re-initialization.
3638 		 */
3639 		intel_runtime_pm_disable_interrupts(dev_priv);
3640 		intel_runtime_pm_enable_interrupts(dev_priv);
3641 
3642 		intel_pps_unlock_regs_wa(dev_priv);
3643 		intel_modeset_init_hw(dev);
3644 
3645 		spin_lock_irq(&dev_priv->irq_lock);
3646 		if (dev_priv->display.hpd_irq_setup)
3647 			dev_priv->display.hpd_irq_setup(dev_priv);
3648 		spin_unlock_irq(&dev_priv->irq_lock);
3649 
3650 		ret = __intel_display_resume(dev, state);
3651 		if (ret)
3652 			DRM_ERROR("Restoring old state failed with %i\n", ret);
3653 
3654 		intel_hpd_init(dev_priv);
3655 	}
3656 
3657 	drm_modeset_drop_locks(ctx);
3658 	drm_modeset_acquire_fini(ctx);
3659 	mutex_unlock(&dev->mode_config.mutex);
3660 }
3661 
abort_flip_on_reset(struct intel_crtc * crtc)3662 static bool abort_flip_on_reset(struct intel_crtc *crtc)
3663 {
3664 	struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
3665 
3666 	if (i915_reset_in_progress(error))
3667 		return true;
3668 
3669 	if (crtc->reset_count != i915_reset_count(error))
3670 		return true;
3671 
3672 	return false;
3673 }
3674 
intel_crtc_has_pending_flip(struct drm_crtc * crtc)3675 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3676 {
3677 	struct drm_device *dev = crtc->dev;
3678 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3679 	bool pending;
3680 
3681 	if (abort_flip_on_reset(intel_crtc))
3682 		return false;
3683 
3684 	spin_lock_irq(&dev->event_lock);
3685 	pending = to_intel_crtc(crtc)->flip_work != NULL;
3686 	spin_unlock_irq(&dev->event_lock);
3687 
3688 	return pending;
3689 }
3690 
intel_update_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * old_crtc_state)3691 static void intel_update_pipe_config(struct intel_crtc *crtc,
3692 				     struct intel_crtc_state *old_crtc_state)
3693 {
3694 	struct drm_device *dev = crtc->base.dev;
3695 	struct drm_i915_private *dev_priv = to_i915(dev);
3696 	struct intel_crtc_state *pipe_config =
3697 		to_intel_crtc_state(crtc->base.state);
3698 
3699 	/* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3700 	crtc->base.mode = crtc->base.state->mode;
3701 
3702 	/*
3703 	 * Update pipe size and adjust fitter if needed: the reason for this is
3704 	 * that in compute_mode_changes we check the native mode (not the pfit
3705 	 * mode) to see if we can flip rather than do a full mode set. In the
3706 	 * fastboot case, we'll flip, but if we don't update the pipesrc and
3707 	 * pfit state, we'll end up with a big fb scanned out into the wrong
3708 	 * sized surface.
3709 	 */
3710 
3711 	I915_WRITE(PIPESRC(crtc->pipe),
3712 		   ((pipe_config->pipe_src_w - 1) << 16) |
3713 		   (pipe_config->pipe_src_h - 1));
3714 
3715 	/* on skylake this is done by detaching scalers */
3716 	if (INTEL_INFO(dev)->gen >= 9) {
3717 		skl_detach_scalers(crtc);
3718 
3719 		if (pipe_config->pch_pfit.enabled)
3720 			skylake_pfit_enable(crtc);
3721 	} else if (HAS_PCH_SPLIT(dev)) {
3722 		if (pipe_config->pch_pfit.enabled)
3723 			ironlake_pfit_enable(crtc);
3724 		else if (old_crtc_state->pch_pfit.enabled)
3725 			ironlake_pfit_disable(crtc, true);
3726 	}
3727 }
3728 
intel_fdi_normal_train(struct drm_crtc * crtc)3729 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3730 {
3731 	struct drm_device *dev = crtc->dev;
3732 	struct drm_i915_private *dev_priv = to_i915(dev);
3733 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3734 	int pipe = intel_crtc->pipe;
3735 	i915_reg_t reg;
3736 	u32 temp;
3737 
3738 	/* enable normal train */
3739 	reg = FDI_TX_CTL(pipe);
3740 	temp = I915_READ(reg);
3741 	if (IS_IVYBRIDGE(dev)) {
3742 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3743 		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3744 	} else {
3745 		temp &= ~FDI_LINK_TRAIN_NONE;
3746 		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3747 	}
3748 	I915_WRITE(reg, temp);
3749 
3750 	reg = FDI_RX_CTL(pipe);
3751 	temp = I915_READ(reg);
3752 	if (HAS_PCH_CPT(dev)) {
3753 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3754 		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3755 	} else {
3756 		temp &= ~FDI_LINK_TRAIN_NONE;
3757 		temp |= FDI_LINK_TRAIN_NONE;
3758 	}
3759 	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3760 
3761 	/* wait one idle pattern time */
3762 	POSTING_READ(reg);
3763 	udelay(1000);
3764 
3765 	/* IVB wants error correction enabled */
3766 	if (IS_IVYBRIDGE(dev))
3767 		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3768 			   FDI_FE_ERRC_ENABLE);
3769 }
3770 
3771 /* The FDI link training functions for ILK/Ibexpeak. */
ironlake_fdi_link_train(struct drm_crtc * crtc)3772 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3773 {
3774 	struct drm_device *dev = crtc->dev;
3775 	struct drm_i915_private *dev_priv = to_i915(dev);
3776 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3777 	int pipe = intel_crtc->pipe;
3778 	i915_reg_t reg;
3779 	u32 temp, tries;
3780 
3781 	/* FDI needs bits from pipe first */
3782 	assert_pipe_enabled(dev_priv, pipe);
3783 
3784 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3785 	   for train result */
3786 	reg = FDI_RX_IMR(pipe);
3787 	temp = I915_READ(reg);
3788 	temp &= ~FDI_RX_SYMBOL_LOCK;
3789 	temp &= ~FDI_RX_BIT_LOCK;
3790 	I915_WRITE(reg, temp);
3791 	I915_READ(reg);
3792 	udelay(150);
3793 
3794 	/* enable CPU FDI TX and PCH FDI RX */
3795 	reg = FDI_TX_CTL(pipe);
3796 	temp = I915_READ(reg);
3797 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3798 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3799 	temp &= ~FDI_LINK_TRAIN_NONE;
3800 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3801 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
3802 
3803 	reg = FDI_RX_CTL(pipe);
3804 	temp = I915_READ(reg);
3805 	temp &= ~FDI_LINK_TRAIN_NONE;
3806 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3807 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
3808 
3809 	POSTING_READ(reg);
3810 	udelay(150);
3811 
3812 	/* Ironlake workaround, enable clock pointer after FDI enable*/
3813 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3814 	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3815 		   FDI_RX_PHASE_SYNC_POINTER_EN);
3816 
3817 	reg = FDI_RX_IIR(pipe);
3818 	for (tries = 0; tries < 5; tries++) {
3819 		temp = I915_READ(reg);
3820 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3821 
3822 		if ((temp & FDI_RX_BIT_LOCK)) {
3823 			DRM_DEBUG_KMS("FDI train 1 done.\n");
3824 			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3825 			break;
3826 		}
3827 	}
3828 	if (tries == 5)
3829 		DRM_ERROR("FDI train 1 fail!\n");
3830 
3831 	/* Train 2 */
3832 	reg = FDI_TX_CTL(pipe);
3833 	temp = I915_READ(reg);
3834 	temp &= ~FDI_LINK_TRAIN_NONE;
3835 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3836 	I915_WRITE(reg, temp);
3837 
3838 	reg = FDI_RX_CTL(pipe);
3839 	temp = I915_READ(reg);
3840 	temp &= ~FDI_LINK_TRAIN_NONE;
3841 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3842 	I915_WRITE(reg, temp);
3843 
3844 	POSTING_READ(reg);
3845 	udelay(150);
3846 
3847 	reg = FDI_RX_IIR(pipe);
3848 	for (tries = 0; tries < 5; tries++) {
3849 		temp = I915_READ(reg);
3850 		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3851 
3852 		if (temp & FDI_RX_SYMBOL_LOCK) {
3853 			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3854 			DRM_DEBUG_KMS("FDI train 2 done.\n");
3855 			break;
3856 		}
3857 	}
3858 	if (tries == 5)
3859 		DRM_ERROR("FDI train 2 fail!\n");
3860 
3861 	DRM_DEBUG_KMS("FDI train done\n");
3862 
3863 }
3864 
3865 static const int snb_b_fdi_train_param[] = {
3866 	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3867 	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3868 	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3869 	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3870 };
3871 
3872 /* The FDI link training functions for SNB/Cougarpoint. */
gen6_fdi_link_train(struct drm_crtc * crtc)3873 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3874 {
3875 	struct drm_device *dev = crtc->dev;
3876 	struct drm_i915_private *dev_priv = to_i915(dev);
3877 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3878 	int pipe = intel_crtc->pipe;
3879 	i915_reg_t reg;
3880 	u32 temp, i, retry;
3881 
3882 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3883 	   for train result */
3884 	reg = FDI_RX_IMR(pipe);
3885 	temp = I915_READ(reg);
3886 	temp &= ~FDI_RX_SYMBOL_LOCK;
3887 	temp &= ~FDI_RX_BIT_LOCK;
3888 	I915_WRITE(reg, temp);
3889 
3890 	POSTING_READ(reg);
3891 	udelay(150);
3892 
3893 	/* enable CPU FDI TX and PCH FDI RX */
3894 	reg = FDI_TX_CTL(pipe);
3895 	temp = I915_READ(reg);
3896 	temp &= ~FDI_DP_PORT_WIDTH_MASK;
3897 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3898 	temp &= ~FDI_LINK_TRAIN_NONE;
3899 	temp |= FDI_LINK_TRAIN_PATTERN_1;
3900 	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3901 	/* SNB-B */
3902 	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3903 	I915_WRITE(reg, temp | FDI_TX_ENABLE);
3904 
3905 	I915_WRITE(FDI_RX_MISC(pipe),
3906 		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3907 
3908 	reg = FDI_RX_CTL(pipe);
3909 	temp = I915_READ(reg);
3910 	if (HAS_PCH_CPT(dev)) {
3911 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3912 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3913 	} else {
3914 		temp &= ~FDI_LINK_TRAIN_NONE;
3915 		temp |= FDI_LINK_TRAIN_PATTERN_1;
3916 	}
3917 	I915_WRITE(reg, temp | FDI_RX_ENABLE);
3918 
3919 	POSTING_READ(reg);
3920 	udelay(150);
3921 
3922 	for (i = 0; i < 4; i++) {
3923 		reg = FDI_TX_CTL(pipe);
3924 		temp = I915_READ(reg);
3925 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3926 		temp |= snb_b_fdi_train_param[i];
3927 		I915_WRITE(reg, temp);
3928 
3929 		POSTING_READ(reg);
3930 		udelay(500);
3931 
3932 		for (retry = 0; retry < 5; retry++) {
3933 			reg = FDI_RX_IIR(pipe);
3934 			temp = I915_READ(reg);
3935 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3936 			if (temp & FDI_RX_BIT_LOCK) {
3937 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3938 				DRM_DEBUG_KMS("FDI train 1 done.\n");
3939 				break;
3940 			}
3941 			udelay(50);
3942 		}
3943 		if (retry < 5)
3944 			break;
3945 	}
3946 	if (i == 4)
3947 		DRM_ERROR("FDI train 1 fail!\n");
3948 
3949 	/* Train 2 */
3950 	reg = FDI_TX_CTL(pipe);
3951 	temp = I915_READ(reg);
3952 	temp &= ~FDI_LINK_TRAIN_NONE;
3953 	temp |= FDI_LINK_TRAIN_PATTERN_2;
3954 	if (IS_GEN6(dev)) {
3955 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3956 		/* SNB-B */
3957 		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3958 	}
3959 	I915_WRITE(reg, temp);
3960 
3961 	reg = FDI_RX_CTL(pipe);
3962 	temp = I915_READ(reg);
3963 	if (HAS_PCH_CPT(dev)) {
3964 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3965 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3966 	} else {
3967 		temp &= ~FDI_LINK_TRAIN_NONE;
3968 		temp |= FDI_LINK_TRAIN_PATTERN_2;
3969 	}
3970 	I915_WRITE(reg, temp);
3971 
3972 	POSTING_READ(reg);
3973 	udelay(150);
3974 
3975 	for (i = 0; i < 4; i++) {
3976 		reg = FDI_TX_CTL(pipe);
3977 		temp = I915_READ(reg);
3978 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3979 		temp |= snb_b_fdi_train_param[i];
3980 		I915_WRITE(reg, temp);
3981 
3982 		POSTING_READ(reg);
3983 		udelay(500);
3984 
3985 		for (retry = 0; retry < 5; retry++) {
3986 			reg = FDI_RX_IIR(pipe);
3987 			temp = I915_READ(reg);
3988 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3989 			if (temp & FDI_RX_SYMBOL_LOCK) {
3990 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3991 				DRM_DEBUG_KMS("FDI train 2 done.\n");
3992 				break;
3993 			}
3994 			udelay(50);
3995 		}
3996 		if (retry < 5)
3997 			break;
3998 	}
3999 	if (i == 4)
4000 		DRM_ERROR("FDI train 2 fail!\n");
4001 
4002 	DRM_DEBUG_KMS("FDI train done.\n");
4003 }
4004 
4005 /* Manual link training for Ivy Bridge A0 parts */
ivb_manual_fdi_link_train(struct drm_crtc * crtc)4006 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
4007 {
4008 	struct drm_device *dev = crtc->dev;
4009 	struct drm_i915_private *dev_priv = to_i915(dev);
4010 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4011 	int pipe = intel_crtc->pipe;
4012 	i915_reg_t reg;
4013 	u32 temp, i, j;
4014 
4015 	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4016 	   for train result */
4017 	reg = FDI_RX_IMR(pipe);
4018 	temp = I915_READ(reg);
4019 	temp &= ~FDI_RX_SYMBOL_LOCK;
4020 	temp &= ~FDI_RX_BIT_LOCK;
4021 	I915_WRITE(reg, temp);
4022 
4023 	POSTING_READ(reg);
4024 	udelay(150);
4025 
4026 	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4027 		      I915_READ(FDI_RX_IIR(pipe)));
4028 
4029 	/* Try each vswing and preemphasis setting twice before moving on */
4030 	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4031 		/* disable first in case we need to retry */
4032 		reg = FDI_TX_CTL(pipe);
4033 		temp = I915_READ(reg);
4034 		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4035 		temp &= ~FDI_TX_ENABLE;
4036 		I915_WRITE(reg, temp);
4037 
4038 		reg = FDI_RX_CTL(pipe);
4039 		temp = I915_READ(reg);
4040 		temp &= ~FDI_LINK_TRAIN_AUTO;
4041 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4042 		temp &= ~FDI_RX_ENABLE;
4043 		I915_WRITE(reg, temp);
4044 
4045 		/* enable CPU FDI TX and PCH FDI RX */
4046 		reg = FDI_TX_CTL(pipe);
4047 		temp = I915_READ(reg);
4048 		temp &= ~FDI_DP_PORT_WIDTH_MASK;
4049 		temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4050 		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4051 		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4052 		temp |= snb_b_fdi_train_param[j/2];
4053 		temp |= FDI_COMPOSITE_SYNC;
4054 		I915_WRITE(reg, temp | FDI_TX_ENABLE);
4055 
4056 		I915_WRITE(FDI_RX_MISC(pipe),
4057 			   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4058 
4059 		reg = FDI_RX_CTL(pipe);
4060 		temp = I915_READ(reg);
4061 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4062 		temp |= FDI_COMPOSITE_SYNC;
4063 		I915_WRITE(reg, temp | FDI_RX_ENABLE);
4064 
4065 		POSTING_READ(reg);
4066 		udelay(1); /* should be 0.5us */
4067 
4068 		for (i = 0; i < 4; i++) {
4069 			reg = FDI_RX_IIR(pipe);
4070 			temp = I915_READ(reg);
4071 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4072 
4073 			if (temp & FDI_RX_BIT_LOCK ||
4074 			    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4075 				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4076 				DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4077 					      i);
4078 				break;
4079 			}
4080 			udelay(1); /* should be 0.5us */
4081 		}
4082 		if (i == 4) {
4083 			DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4084 			continue;
4085 		}
4086 
4087 		/* Train 2 */
4088 		reg = FDI_TX_CTL(pipe);
4089 		temp = I915_READ(reg);
4090 		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4091 		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4092 		I915_WRITE(reg, temp);
4093 
4094 		reg = FDI_RX_CTL(pipe);
4095 		temp = I915_READ(reg);
4096 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4097 		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4098 		I915_WRITE(reg, temp);
4099 
4100 		POSTING_READ(reg);
4101 		udelay(2); /* should be 1.5us */
4102 
4103 		for (i = 0; i < 4; i++) {
4104 			reg = FDI_RX_IIR(pipe);
4105 			temp = I915_READ(reg);
4106 			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4107 
4108 			if (temp & FDI_RX_SYMBOL_LOCK ||
4109 			    (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4110 				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4111 				DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4112 					      i);
4113 				goto train_done;
4114 			}
4115 			udelay(2); /* should be 1.5us */
4116 		}
4117 		if (i == 4)
4118 			DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4119 	}
4120 
4121 train_done:
4122 	DRM_DEBUG_KMS("FDI train done.\n");
4123 }
4124 
ironlake_fdi_pll_enable(struct intel_crtc * intel_crtc)4125 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
4126 {
4127 	struct drm_device *dev = intel_crtc->base.dev;
4128 	struct drm_i915_private *dev_priv = to_i915(dev);
4129 	int pipe = intel_crtc->pipe;
4130 	i915_reg_t reg;
4131 	u32 temp;
4132 
4133 	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4134 	reg = FDI_RX_CTL(pipe);
4135 	temp = I915_READ(reg);
4136 	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4137 	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
4138 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4139 	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4140 
4141 	POSTING_READ(reg);
4142 	udelay(200);
4143 
4144 	/* Switch from Rawclk to PCDclk */
4145 	temp = I915_READ(reg);
4146 	I915_WRITE(reg, temp | FDI_PCDCLK);
4147 
4148 	POSTING_READ(reg);
4149 	udelay(200);
4150 
4151 	/* Enable CPU FDI TX PLL, always on for Ironlake */
4152 	reg = FDI_TX_CTL(pipe);
4153 	temp = I915_READ(reg);
4154 	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4155 		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4156 
4157 		POSTING_READ(reg);
4158 		udelay(100);
4159 	}
4160 }
4161 
ironlake_fdi_pll_disable(struct intel_crtc * intel_crtc)4162 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4163 {
4164 	struct drm_device *dev = intel_crtc->base.dev;
4165 	struct drm_i915_private *dev_priv = to_i915(dev);
4166 	int pipe = intel_crtc->pipe;
4167 	i915_reg_t reg;
4168 	u32 temp;
4169 
4170 	/* Switch from PCDclk to Rawclk */
4171 	reg = FDI_RX_CTL(pipe);
4172 	temp = I915_READ(reg);
4173 	I915_WRITE(reg, temp & ~FDI_PCDCLK);
4174 
4175 	/* Disable CPU FDI TX PLL */
4176 	reg = FDI_TX_CTL(pipe);
4177 	temp = I915_READ(reg);
4178 	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4179 
4180 	POSTING_READ(reg);
4181 	udelay(100);
4182 
4183 	reg = FDI_RX_CTL(pipe);
4184 	temp = I915_READ(reg);
4185 	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4186 
4187 	/* Wait for the clocks to turn off. */
4188 	POSTING_READ(reg);
4189 	udelay(100);
4190 }
4191 
ironlake_fdi_disable(struct drm_crtc * crtc)4192 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4193 {
4194 	struct drm_device *dev = crtc->dev;
4195 	struct drm_i915_private *dev_priv = to_i915(dev);
4196 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4197 	int pipe = intel_crtc->pipe;
4198 	i915_reg_t reg;
4199 	u32 temp;
4200 
4201 	/* disable CPU FDI tx and PCH FDI rx */
4202 	reg = FDI_TX_CTL(pipe);
4203 	temp = I915_READ(reg);
4204 	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
4205 	POSTING_READ(reg);
4206 
4207 	reg = FDI_RX_CTL(pipe);
4208 	temp = I915_READ(reg);
4209 	temp &= ~(0x7 << 16);
4210 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4211 	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
4212 
4213 	POSTING_READ(reg);
4214 	udelay(100);
4215 
4216 	/* Ironlake workaround, disable clock pointer after downing FDI */
4217 	if (HAS_PCH_IBX(dev))
4218 		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4219 
4220 	/* still set train pattern 1 */
4221 	reg = FDI_TX_CTL(pipe);
4222 	temp = I915_READ(reg);
4223 	temp &= ~FDI_LINK_TRAIN_NONE;
4224 	temp |= FDI_LINK_TRAIN_PATTERN_1;
4225 	I915_WRITE(reg, temp);
4226 
4227 	reg = FDI_RX_CTL(pipe);
4228 	temp = I915_READ(reg);
4229 	if (HAS_PCH_CPT(dev)) {
4230 		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4231 		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4232 	} else {
4233 		temp &= ~FDI_LINK_TRAIN_NONE;
4234 		temp |= FDI_LINK_TRAIN_PATTERN_1;
4235 	}
4236 	/* BPC in FDI rx is consistent with that in PIPECONF */
4237 	temp &= ~(0x07 << 16);
4238 	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4239 	I915_WRITE(reg, temp);
4240 
4241 	POSTING_READ(reg);
4242 	udelay(100);
4243 }
4244 
intel_has_pending_fb_unpin(struct drm_device * dev)4245 bool intel_has_pending_fb_unpin(struct drm_device *dev)
4246 {
4247 	struct intel_crtc *crtc;
4248 
4249 	/* Note that we don't need to be called with mode_config.lock here
4250 	 * as our list of CRTC objects is static for the lifetime of the
4251 	 * device and so cannot disappear as we iterate. Similarly, we can
4252 	 * happily treat the predicates as racy, atomic checks as userspace
4253 	 * cannot claim and pin a new fb without at least acquring the
4254 	 * struct_mutex and so serialising with us.
4255 	 */
4256 	for_each_intel_crtc(dev, crtc) {
4257 		if (atomic_read(&crtc->unpin_work_count) == 0)
4258 			continue;
4259 
4260 		if (crtc->flip_work)
4261 			intel_wait_for_vblank(dev, crtc->pipe);
4262 
4263 		return true;
4264 	}
4265 
4266 	return false;
4267 }
4268 
page_flip_completed(struct intel_crtc * intel_crtc)4269 static void page_flip_completed(struct intel_crtc *intel_crtc)
4270 {
4271 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4272 	struct intel_flip_work *work = intel_crtc->flip_work;
4273 
4274 	intel_crtc->flip_work = NULL;
4275 
4276 	if (work->event)
4277 		drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
4278 
4279 	drm_crtc_vblank_put(&intel_crtc->base);
4280 
4281 	wake_up_all(&dev_priv->pending_flip_queue);
4282 	trace_i915_flip_complete(intel_crtc->plane,
4283 				 work->pending_flip_obj);
4284 
4285 	queue_work(dev_priv->wq, &work->unpin_work);
4286 }
4287 
intel_crtc_wait_for_pending_flips(struct drm_crtc * crtc)4288 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
4289 {
4290 	struct drm_device *dev = crtc->dev;
4291 	struct drm_i915_private *dev_priv = to_i915(dev);
4292 	long ret;
4293 
4294 	WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
4295 
4296 	ret = wait_event_interruptible_timeout(
4297 					dev_priv->pending_flip_queue,
4298 					!intel_crtc_has_pending_flip(crtc),
4299 					60*HZ);
4300 
4301 	if (ret < 0)
4302 		return ret;
4303 
4304 	if (ret == 0) {
4305 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4306 		struct intel_flip_work *work;
4307 
4308 		spin_lock_irq(&dev->event_lock);
4309 		work = intel_crtc->flip_work;
4310 		if (work && !is_mmio_work(work)) {
4311 			WARN_ONCE(1, "Removing stuck page flip\n");
4312 			page_flip_completed(intel_crtc);
4313 		}
4314 		spin_unlock_irq(&dev->event_lock);
4315 	}
4316 
4317 	return 0;
4318 }
4319 
lpt_disable_iclkip(struct drm_i915_private * dev_priv)4320 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
4321 {
4322 	u32 temp;
4323 
4324 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
4325 
4326 	mutex_lock(&dev_priv->sb_lock);
4327 
4328 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4329 	temp |= SBI_SSCCTL_DISABLE;
4330 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4331 
4332 	mutex_unlock(&dev_priv->sb_lock);
4333 }
4334 
4335 /* Program iCLKIP clock to the desired frequency */
lpt_program_iclkip(struct drm_crtc * crtc)4336 static void lpt_program_iclkip(struct drm_crtc *crtc)
4337 {
4338 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4339 	int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
4340 	u32 divsel, phaseinc, auxdiv, phasedir = 0;
4341 	u32 temp;
4342 
4343 	lpt_disable_iclkip(dev_priv);
4344 
4345 	/* The iCLK virtual clock root frequency is in MHz,
4346 	 * but the adjusted_mode->crtc_clock in in KHz. To get the
4347 	 * divisors, it is necessary to divide one by another, so we
4348 	 * convert the virtual clock precision to KHz here for higher
4349 	 * precision.
4350 	 */
4351 	for (auxdiv = 0; auxdiv < 2; auxdiv++) {
4352 		u32 iclk_virtual_root_freq = 172800 * 1000;
4353 		u32 iclk_pi_range = 64;
4354 		u32 desired_divisor;
4355 
4356 		desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4357 						    clock << auxdiv);
4358 		divsel = (desired_divisor / iclk_pi_range) - 2;
4359 		phaseinc = desired_divisor % iclk_pi_range;
4360 
4361 		/*
4362 		 * Near 20MHz is a corner case which is
4363 		 * out of range for the 7-bit divisor
4364 		 */
4365 		if (divsel <= 0x7f)
4366 			break;
4367 	}
4368 
4369 	/* This should not happen with any sane values */
4370 	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
4371 		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
4372 	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
4373 		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
4374 
4375 	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
4376 			clock,
4377 			auxdiv,
4378 			divsel,
4379 			phasedir,
4380 			phaseinc);
4381 
4382 	mutex_lock(&dev_priv->sb_lock);
4383 
4384 	/* Program SSCDIVINTPHASE6 */
4385 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4386 	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4387 	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4388 	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4389 	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4390 	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4391 	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4392 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4393 
4394 	/* Program SSCAUXDIV */
4395 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4396 	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4397 	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4398 	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4399 
4400 	/* Enable modulator and associated divider */
4401 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4402 	temp &= ~SBI_SSCCTL_DISABLE;
4403 	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4404 
4405 	mutex_unlock(&dev_priv->sb_lock);
4406 
4407 	/* Wait for initialization time */
4408 	udelay(24);
4409 
4410 	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4411 }
4412 
lpt_get_iclkip(struct drm_i915_private * dev_priv)4413 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
4414 {
4415 	u32 divsel, phaseinc, auxdiv;
4416 	u32 iclk_virtual_root_freq = 172800 * 1000;
4417 	u32 iclk_pi_range = 64;
4418 	u32 desired_divisor;
4419 	u32 temp;
4420 
4421 	if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
4422 		return 0;
4423 
4424 	mutex_lock(&dev_priv->sb_lock);
4425 
4426 	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4427 	if (temp & SBI_SSCCTL_DISABLE) {
4428 		mutex_unlock(&dev_priv->sb_lock);
4429 		return 0;
4430 	}
4431 
4432 	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4433 	divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
4434 		SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
4435 	phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
4436 		SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
4437 
4438 	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4439 	auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
4440 		SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
4441 
4442 	mutex_unlock(&dev_priv->sb_lock);
4443 
4444 	desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
4445 
4446 	return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
4447 				 desired_divisor << auxdiv);
4448 }
4449 
ironlake_pch_transcoder_set_timings(struct intel_crtc * crtc,enum pipe pch_transcoder)4450 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4451 						enum pipe pch_transcoder)
4452 {
4453 	struct drm_device *dev = crtc->base.dev;
4454 	struct drm_i915_private *dev_priv = to_i915(dev);
4455 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4456 
4457 	I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4458 		   I915_READ(HTOTAL(cpu_transcoder)));
4459 	I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4460 		   I915_READ(HBLANK(cpu_transcoder)));
4461 	I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4462 		   I915_READ(HSYNC(cpu_transcoder)));
4463 
4464 	I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4465 		   I915_READ(VTOTAL(cpu_transcoder)));
4466 	I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4467 		   I915_READ(VBLANK(cpu_transcoder)));
4468 	I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4469 		   I915_READ(VSYNC(cpu_transcoder)));
4470 	I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4471 		   I915_READ(VSYNCSHIFT(cpu_transcoder)));
4472 }
4473 
cpt_set_fdi_bc_bifurcation(struct drm_device * dev,bool enable)4474 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4475 {
4476 	struct drm_i915_private *dev_priv = to_i915(dev);
4477 	uint32_t temp;
4478 
4479 	temp = I915_READ(SOUTH_CHICKEN1);
4480 	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4481 		return;
4482 
4483 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4484 	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4485 
4486 	temp &= ~FDI_BC_BIFURCATION_SELECT;
4487 	if (enable)
4488 		temp |= FDI_BC_BIFURCATION_SELECT;
4489 
4490 	DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4491 	I915_WRITE(SOUTH_CHICKEN1, temp);
4492 	POSTING_READ(SOUTH_CHICKEN1);
4493 }
4494 
ivybridge_update_fdi_bc_bifurcation(struct intel_crtc * intel_crtc)4495 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4496 {
4497 	struct drm_device *dev = intel_crtc->base.dev;
4498 
4499 	switch (intel_crtc->pipe) {
4500 	case PIPE_A:
4501 		break;
4502 	case PIPE_B:
4503 		if (intel_crtc->config->fdi_lanes > 2)
4504 			cpt_set_fdi_bc_bifurcation(dev, false);
4505 		else
4506 			cpt_set_fdi_bc_bifurcation(dev, true);
4507 
4508 		break;
4509 	case PIPE_C:
4510 		cpt_set_fdi_bc_bifurcation(dev, true);
4511 
4512 		break;
4513 	default:
4514 		BUG();
4515 	}
4516 }
4517 
4518 /* Return which DP Port should be selected for Transcoder DP control */
4519 static enum port
intel_trans_dp_port_sel(struct drm_crtc * crtc)4520 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4521 {
4522 	struct drm_device *dev = crtc->dev;
4523 	struct intel_encoder *encoder;
4524 
4525 	for_each_encoder_on_crtc(dev, crtc, encoder) {
4526 		if (encoder->type == INTEL_OUTPUT_DP ||
4527 		    encoder->type == INTEL_OUTPUT_EDP)
4528 			return enc_to_dig_port(&encoder->base)->port;
4529 	}
4530 
4531 	return -1;
4532 }
4533 
4534 /*
4535  * Enable PCH resources required for PCH ports:
4536  *   - PCH PLLs
4537  *   - FDI training & RX/TX
4538  *   - update transcoder timings
4539  *   - DP transcoding bits
4540  *   - transcoder
4541  */
ironlake_pch_enable(struct drm_crtc * crtc)4542 static void ironlake_pch_enable(struct drm_crtc *crtc)
4543 {
4544 	struct drm_device *dev = crtc->dev;
4545 	struct drm_i915_private *dev_priv = to_i915(dev);
4546 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4547 	int pipe = intel_crtc->pipe;
4548 	u32 temp;
4549 
4550 	assert_pch_transcoder_disabled(dev_priv, pipe);
4551 
4552 	if (IS_IVYBRIDGE(dev))
4553 		ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4554 
4555 	/* Write the TU size bits before fdi link training, so that error
4556 	 * detection works. */
4557 	I915_WRITE(FDI_RX_TUSIZE1(pipe),
4558 		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4559 
4560 	/* For PCH output, training FDI link */
4561 	dev_priv->display.fdi_link_train(crtc);
4562 
4563 	/* We need to program the right clock selection before writing the pixel
4564 	 * mutliplier into the DPLL. */
4565 	if (HAS_PCH_CPT(dev)) {
4566 		u32 sel;
4567 
4568 		temp = I915_READ(PCH_DPLL_SEL);
4569 		temp |= TRANS_DPLL_ENABLE(pipe);
4570 		sel = TRANS_DPLLB_SEL(pipe);
4571 		if (intel_crtc->config->shared_dpll ==
4572 		    intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
4573 			temp |= sel;
4574 		else
4575 			temp &= ~sel;
4576 		I915_WRITE(PCH_DPLL_SEL, temp);
4577 	}
4578 
4579 	/* XXX: pch pll's can be enabled any time before we enable the PCH
4580 	 * transcoder, and we actually should do this to not upset any PCH
4581 	 * transcoder that already use the clock when we share it.
4582 	 *
4583 	 * Note that enable_shared_dpll tries to do the right thing, but
4584 	 * get_shared_dpll unconditionally resets the pll - we need that to have
4585 	 * the right LVDS enable sequence. */
4586 	intel_enable_shared_dpll(intel_crtc);
4587 
4588 	/* set transcoder timing, panel must allow it */
4589 	assert_panel_unlocked(dev_priv, pipe);
4590 	ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4591 
4592 	intel_fdi_normal_train(crtc);
4593 
4594 	/* For PCH DP, enable TRANS_DP_CTL */
4595 	if (HAS_PCH_CPT(dev) && intel_crtc_has_dp_encoder(intel_crtc->config)) {
4596 		const struct drm_display_mode *adjusted_mode =
4597 			&intel_crtc->config->base.adjusted_mode;
4598 		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4599 		i915_reg_t reg = TRANS_DP_CTL(pipe);
4600 		temp = I915_READ(reg);
4601 		temp &= ~(TRANS_DP_PORT_SEL_MASK |
4602 			  TRANS_DP_SYNC_MASK |
4603 			  TRANS_DP_BPC_MASK);
4604 		temp |= TRANS_DP_OUTPUT_ENABLE;
4605 		temp |= bpc << 9; /* same format but at 11:9 */
4606 
4607 		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4608 			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4609 		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4610 			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4611 
4612 		switch (intel_trans_dp_port_sel(crtc)) {
4613 		case PORT_B:
4614 			temp |= TRANS_DP_PORT_SEL_B;
4615 			break;
4616 		case PORT_C:
4617 			temp |= TRANS_DP_PORT_SEL_C;
4618 			break;
4619 		case PORT_D:
4620 			temp |= TRANS_DP_PORT_SEL_D;
4621 			break;
4622 		default:
4623 			BUG();
4624 		}
4625 
4626 		I915_WRITE(reg, temp);
4627 	}
4628 
4629 	ironlake_enable_pch_transcoder(dev_priv, pipe);
4630 }
4631 
lpt_pch_enable(struct drm_crtc * crtc)4632 static void lpt_pch_enable(struct drm_crtc *crtc)
4633 {
4634 	struct drm_device *dev = crtc->dev;
4635 	struct drm_i915_private *dev_priv = to_i915(dev);
4636 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4637 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4638 
4639 	assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4640 
4641 	lpt_program_iclkip(crtc);
4642 
4643 	/* Set transcoder timing. */
4644 	ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4645 
4646 	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4647 }
4648 
cpt_verify_modeset(struct drm_device * dev,int pipe)4649 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4650 {
4651 	struct drm_i915_private *dev_priv = to_i915(dev);
4652 	i915_reg_t dslreg = PIPEDSL(pipe);
4653 	u32 temp;
4654 
4655 	temp = I915_READ(dslreg);
4656 	udelay(500);
4657 	if (wait_for(I915_READ(dslreg) != temp, 5)) {
4658 		if (wait_for(I915_READ(dslreg) != temp, 5))
4659 			DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4660 	}
4661 }
4662 
4663 static int
skl_update_scaler(struct intel_crtc_state * crtc_state,bool force_detach,unsigned scaler_user,int * scaler_id,unsigned int rotation,int src_w,int src_h,int dst_w,int dst_h)4664 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4665 		  unsigned scaler_user, int *scaler_id, unsigned int rotation,
4666 		  int src_w, int src_h, int dst_w, int dst_h)
4667 {
4668 	struct intel_crtc_scaler_state *scaler_state =
4669 		&crtc_state->scaler_state;
4670 	struct intel_crtc *intel_crtc =
4671 		to_intel_crtc(crtc_state->base.crtc);
4672 	int need_scaling;
4673 
4674 	need_scaling = intel_rotation_90_or_270(rotation) ?
4675 		(src_h != dst_w || src_w != dst_h):
4676 		(src_w != dst_w || src_h != dst_h);
4677 
4678 	/*
4679 	 * if plane is being disabled or scaler is no more required or force detach
4680 	 *  - free scaler binded to this plane/crtc
4681 	 *  - in order to do this, update crtc->scaler_usage
4682 	 *
4683 	 * Here scaler state in crtc_state is set free so that
4684 	 * scaler can be assigned to other user. Actual register
4685 	 * update to free the scaler is done in plane/panel-fit programming.
4686 	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4687 	 */
4688 	if (force_detach || !need_scaling) {
4689 		if (*scaler_id >= 0) {
4690 			scaler_state->scaler_users &= ~(1 << scaler_user);
4691 			scaler_state->scalers[*scaler_id].in_use = 0;
4692 
4693 			DRM_DEBUG_KMS("scaler_user index %u.%u: "
4694 				"Staged freeing scaler id %d scaler_users = 0x%x\n",
4695 				intel_crtc->pipe, scaler_user, *scaler_id,
4696 				scaler_state->scaler_users);
4697 			*scaler_id = -1;
4698 		}
4699 		return 0;
4700 	}
4701 
4702 	/* range checks */
4703 	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4704 		dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4705 
4706 		src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4707 		dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4708 		DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4709 			"size is out of scaler range\n",
4710 			intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4711 		return -EINVAL;
4712 	}
4713 
4714 	/* mark this plane as a scaler user in crtc_state */
4715 	scaler_state->scaler_users |= (1 << scaler_user);
4716 	DRM_DEBUG_KMS("scaler_user index %u.%u: "
4717 		"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4718 		intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4719 		scaler_state->scaler_users);
4720 
4721 	return 0;
4722 }
4723 
4724 /**
4725  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4726  *
4727  * @state: crtc's scaler state
4728  *
4729  * Return
4730  *     0 - scaler_usage updated successfully
4731  *    error - requested scaling cannot be supported or other error condition
4732  */
skl_update_scaler_crtc(struct intel_crtc_state * state)4733 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4734 {
4735 	struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4736 	const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4737 
4738 	DRM_DEBUG_KMS("Updating scaler for [CRTC:%d:%s] scaler_user index %u.%u\n",
4739 		      intel_crtc->base.base.id, intel_crtc->base.name,
4740 		      intel_crtc->pipe, SKL_CRTC_INDEX);
4741 
4742 	return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4743 		&state->scaler_state.scaler_id, DRM_ROTATE_0,
4744 		state->pipe_src_w, state->pipe_src_h,
4745 		adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4746 }
4747 
4748 /**
4749  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4750  *
4751  * @state: crtc's scaler state
4752  * @plane_state: atomic plane state to update
4753  *
4754  * Return
4755  *     0 - scaler_usage updated successfully
4756  *    error - requested scaling cannot be supported or other error condition
4757  */
skl_update_scaler_plane(struct intel_crtc_state * crtc_state,struct intel_plane_state * plane_state)4758 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4759 				   struct intel_plane_state *plane_state)
4760 {
4761 
4762 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4763 	struct intel_plane *intel_plane =
4764 		to_intel_plane(plane_state->base.plane);
4765 	struct drm_framebuffer *fb = plane_state->base.fb;
4766 	int ret;
4767 
4768 	bool force_detach = !fb || !plane_state->base.visible;
4769 
4770 	DRM_DEBUG_KMS("Updating scaler for [PLANE:%d:%s] scaler_user index %u.%u\n",
4771 		      intel_plane->base.base.id, intel_plane->base.name,
4772 		      intel_crtc->pipe, drm_plane_index(&intel_plane->base));
4773 
4774 	ret = skl_update_scaler(crtc_state, force_detach,
4775 				drm_plane_index(&intel_plane->base),
4776 				&plane_state->scaler_id,
4777 				plane_state->base.rotation,
4778 				drm_rect_width(&plane_state->base.src) >> 16,
4779 				drm_rect_height(&plane_state->base.src) >> 16,
4780 				drm_rect_width(&plane_state->base.dst),
4781 				drm_rect_height(&plane_state->base.dst));
4782 
4783 	if (ret || plane_state->scaler_id < 0)
4784 		return ret;
4785 
4786 	/* check colorkey */
4787 	if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4788 		DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
4789 			      intel_plane->base.base.id,
4790 			      intel_plane->base.name);
4791 		return -EINVAL;
4792 	}
4793 
4794 	/* Check src format */
4795 	switch (fb->pixel_format) {
4796 	case DRM_FORMAT_RGB565:
4797 	case DRM_FORMAT_XBGR8888:
4798 	case DRM_FORMAT_XRGB8888:
4799 	case DRM_FORMAT_ABGR8888:
4800 	case DRM_FORMAT_ARGB8888:
4801 	case DRM_FORMAT_XRGB2101010:
4802 	case DRM_FORMAT_XBGR2101010:
4803 	case DRM_FORMAT_YUYV:
4804 	case DRM_FORMAT_YVYU:
4805 	case DRM_FORMAT_UYVY:
4806 	case DRM_FORMAT_VYUY:
4807 		break;
4808 	default:
4809 		DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
4810 			      intel_plane->base.base.id, intel_plane->base.name,
4811 			      fb->base.id, fb->pixel_format);
4812 		return -EINVAL;
4813 	}
4814 
4815 	return 0;
4816 }
4817 
skylake_scaler_disable(struct intel_crtc * crtc)4818 static void skylake_scaler_disable(struct intel_crtc *crtc)
4819 {
4820 	int i;
4821 
4822 	for (i = 0; i < crtc->num_scalers; i++)
4823 		skl_detach_scaler(crtc, i);
4824 }
4825 
skylake_pfit_enable(struct intel_crtc * crtc)4826 static void skylake_pfit_enable(struct intel_crtc *crtc)
4827 {
4828 	struct drm_device *dev = crtc->base.dev;
4829 	struct drm_i915_private *dev_priv = to_i915(dev);
4830 	int pipe = crtc->pipe;
4831 	struct intel_crtc_scaler_state *scaler_state =
4832 		&crtc->config->scaler_state;
4833 
4834 	if (crtc->config->pch_pfit.enabled) {
4835 		int id;
4836 
4837 		if (WARN_ON(crtc->config->scaler_state.scaler_id < 0))
4838 			return;
4839 
4840 		id = scaler_state->scaler_id;
4841 		I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4842 			PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4843 		I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4844 		I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4845 	}
4846 }
4847 
ironlake_pfit_enable(struct intel_crtc * crtc)4848 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4849 {
4850 	struct drm_device *dev = crtc->base.dev;
4851 	struct drm_i915_private *dev_priv = to_i915(dev);
4852 	int pipe = crtc->pipe;
4853 
4854 	if (crtc->config->pch_pfit.enabled) {
4855 		/* Force use of hard-coded filter coefficients
4856 		 * as some pre-programmed values are broken,
4857 		 * e.g. x201.
4858 		 */
4859 		if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4860 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4861 						 PF_PIPE_SEL_IVB(pipe));
4862 		else
4863 			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4864 		I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4865 		I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4866 	}
4867 }
4868 
hsw_enable_ips(struct intel_crtc * crtc)4869 void hsw_enable_ips(struct intel_crtc *crtc)
4870 {
4871 	struct drm_device *dev = crtc->base.dev;
4872 	struct drm_i915_private *dev_priv = to_i915(dev);
4873 
4874 	if (!crtc->config->ips_enabled)
4875 		return;
4876 
4877 	/*
4878 	 * We can only enable IPS after we enable a plane and wait for a vblank
4879 	 * This function is called from post_plane_update, which is run after
4880 	 * a vblank wait.
4881 	 */
4882 
4883 	assert_plane_enabled(dev_priv, crtc->plane);
4884 	if (IS_BROADWELL(dev)) {
4885 		mutex_lock(&dev_priv->rps.hw_lock);
4886 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4887 		mutex_unlock(&dev_priv->rps.hw_lock);
4888 		/* Quoting Art Runyan: "its not safe to expect any particular
4889 		 * value in IPS_CTL bit 31 after enabling IPS through the
4890 		 * mailbox." Moreover, the mailbox may return a bogus state,
4891 		 * so we need to just enable it and continue on.
4892 		 */
4893 	} else {
4894 		I915_WRITE(IPS_CTL, IPS_ENABLE);
4895 		/* The bit only becomes 1 in the next vblank, so this wait here
4896 		 * is essentially intel_wait_for_vblank. If we don't have this
4897 		 * and don't wait for vblanks until the end of crtc_enable, then
4898 		 * the HW state readout code will complain that the expected
4899 		 * IPS_CTL value is not the one we read. */
4900 		if (intel_wait_for_register(dev_priv,
4901 					    IPS_CTL, IPS_ENABLE, IPS_ENABLE,
4902 					    50))
4903 			DRM_ERROR("Timed out waiting for IPS enable\n");
4904 	}
4905 }
4906 
hsw_disable_ips(struct intel_crtc * crtc)4907 void hsw_disable_ips(struct intel_crtc *crtc)
4908 {
4909 	struct drm_device *dev = crtc->base.dev;
4910 	struct drm_i915_private *dev_priv = to_i915(dev);
4911 
4912 	if (!crtc->config->ips_enabled)
4913 		return;
4914 
4915 	assert_plane_enabled(dev_priv, crtc->plane);
4916 	if (IS_BROADWELL(dev)) {
4917 		mutex_lock(&dev_priv->rps.hw_lock);
4918 		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4919 		mutex_unlock(&dev_priv->rps.hw_lock);
4920 		/* wait for pcode to finish disabling IPS, which may take up to 42ms */
4921 		if (intel_wait_for_register(dev_priv,
4922 					    IPS_CTL, IPS_ENABLE, 0,
4923 					    42))
4924 			DRM_ERROR("Timed out waiting for IPS disable\n");
4925 	} else {
4926 		I915_WRITE(IPS_CTL, 0);
4927 		POSTING_READ(IPS_CTL);
4928 	}
4929 
4930 	/* We need to wait for a vblank before we can disable the plane. */
4931 	intel_wait_for_vblank(dev, crtc->pipe);
4932 }
4933 
intel_crtc_dpms_overlay_disable(struct intel_crtc * intel_crtc)4934 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4935 {
4936 	if (intel_crtc->overlay) {
4937 		struct drm_device *dev = intel_crtc->base.dev;
4938 		struct drm_i915_private *dev_priv = to_i915(dev);
4939 
4940 		mutex_lock(&dev->struct_mutex);
4941 		dev_priv->mm.interruptible = false;
4942 		(void) intel_overlay_switch_off(intel_crtc->overlay);
4943 		dev_priv->mm.interruptible = true;
4944 		mutex_unlock(&dev->struct_mutex);
4945 	}
4946 
4947 	/* Let userspace switch the overlay on again. In most cases userspace
4948 	 * has to recompute where to put it anyway.
4949 	 */
4950 }
4951 
4952 /**
4953  * intel_post_enable_primary - Perform operations after enabling primary plane
4954  * @crtc: the CRTC whose primary plane was just enabled
4955  *
4956  * Performs potentially sleeping operations that must be done after the primary
4957  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4958  * called due to an explicit primary plane update, or due to an implicit
4959  * re-enable that is caused when a sprite plane is updated to no longer
4960  * completely hide the primary plane.
4961  */
4962 static void
intel_post_enable_primary(struct drm_crtc * crtc)4963 intel_post_enable_primary(struct drm_crtc *crtc)
4964 {
4965 	struct drm_device *dev = crtc->dev;
4966 	struct drm_i915_private *dev_priv = to_i915(dev);
4967 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4968 	int pipe = intel_crtc->pipe;
4969 
4970 	/*
4971 	 * FIXME IPS should be fine as long as one plane is
4972 	 * enabled, but in practice it seems to have problems
4973 	 * when going from primary only to sprite only and vice
4974 	 * versa.
4975 	 */
4976 	hsw_enable_ips(intel_crtc);
4977 
4978 	/*
4979 	 * Gen2 reports pipe underruns whenever all planes are disabled.
4980 	 * So don't enable underrun reporting before at least some planes
4981 	 * are enabled.
4982 	 * FIXME: Need to fix the logic to work when we turn off all planes
4983 	 * but leave the pipe running.
4984 	 */
4985 	if (IS_GEN2(dev))
4986 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4987 
4988 	/* Underruns don't always raise interrupts, so check manually. */
4989 	intel_check_cpu_fifo_underruns(dev_priv);
4990 	intel_check_pch_fifo_underruns(dev_priv);
4991 }
4992 
4993 /* FIXME move all this to pre_plane_update() with proper state tracking */
4994 static void
intel_pre_disable_primary(struct drm_crtc * crtc)4995 intel_pre_disable_primary(struct drm_crtc *crtc)
4996 {
4997 	struct drm_device *dev = crtc->dev;
4998 	struct drm_i915_private *dev_priv = to_i915(dev);
4999 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5000 	int pipe = intel_crtc->pipe;
5001 
5002 	/*
5003 	 * Gen2 reports pipe underruns whenever all planes are disabled.
5004 	 * So diasble underrun reporting before all the planes get disabled.
5005 	 * FIXME: Need to fix the logic to work when we turn off all planes
5006 	 * but leave the pipe running.
5007 	 */
5008 	if (IS_GEN2(dev))
5009 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5010 
5011 	/*
5012 	 * FIXME IPS should be fine as long as one plane is
5013 	 * enabled, but in practice it seems to have problems
5014 	 * when going from primary only to sprite only and vice
5015 	 * versa.
5016 	 */
5017 	hsw_disable_ips(intel_crtc);
5018 }
5019 
5020 /* FIXME get rid of this and use pre_plane_update */
5021 static void
intel_pre_disable_primary_noatomic(struct drm_crtc * crtc)5022 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
5023 {
5024 	struct drm_device *dev = crtc->dev;
5025 	struct drm_i915_private *dev_priv = to_i915(dev);
5026 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5027 	int pipe = intel_crtc->pipe;
5028 
5029 	intel_pre_disable_primary(crtc);
5030 
5031 	/*
5032 	 * Vblank time updates from the shadow to live plane control register
5033 	 * are blocked if the memory self-refresh mode is active at that
5034 	 * moment. So to make sure the plane gets truly disabled, disable
5035 	 * first the self-refresh mode. The self-refresh enable bit in turn
5036 	 * will be checked/applied by the HW only at the next frame start
5037 	 * event which is after the vblank start event, so we need to have a
5038 	 * wait-for-vblank between disabling the plane and the pipe.
5039 	 */
5040 	if (HAS_GMCH_DISPLAY(dev)) {
5041 		intel_set_memory_cxsr(dev_priv, false);
5042 		dev_priv->wm.vlv.cxsr = false;
5043 		intel_wait_for_vblank(dev, pipe);
5044 	}
5045 }
5046 
intel_post_plane_update(struct intel_crtc_state * old_crtc_state)5047 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5048 {
5049 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5050 	struct drm_atomic_state *old_state = old_crtc_state->base.state;
5051 	struct intel_crtc_state *pipe_config =
5052 		to_intel_crtc_state(crtc->base.state);
5053 	struct drm_plane *primary = crtc->base.primary;
5054 	struct drm_plane_state *old_pri_state =
5055 		drm_atomic_get_existing_plane_state(old_state, primary);
5056 
5057 	intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
5058 
5059 	crtc->wm.cxsr_allowed = true;
5060 
5061 	if (pipe_config->update_wm_post && pipe_config->base.active)
5062 		intel_update_watermarks(&crtc->base);
5063 
5064 	if (old_pri_state) {
5065 		struct intel_plane_state *primary_state =
5066 			to_intel_plane_state(primary->state);
5067 		struct intel_plane_state *old_primary_state =
5068 			to_intel_plane_state(old_pri_state);
5069 
5070 		intel_fbc_post_update(crtc);
5071 
5072 		if (primary_state->base.visible &&
5073 		    (needs_modeset(&pipe_config->base) ||
5074 		     !old_primary_state->base.visible))
5075 			intel_post_enable_primary(&crtc->base);
5076 	}
5077 }
5078 
intel_pre_plane_update(struct intel_crtc_state * old_crtc_state)5079 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
5080 {
5081 	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5082 	struct drm_device *dev = crtc->base.dev;
5083 	struct drm_i915_private *dev_priv = to_i915(dev);
5084 	struct intel_crtc_state *pipe_config =
5085 		to_intel_crtc_state(crtc->base.state);
5086 	struct drm_atomic_state *old_state = old_crtc_state->base.state;
5087 	struct drm_plane *primary = crtc->base.primary;
5088 	struct drm_plane_state *old_pri_state =
5089 		drm_atomic_get_existing_plane_state(old_state, primary);
5090 	bool modeset = needs_modeset(&pipe_config->base);
5091 
5092 	if (old_pri_state) {
5093 		struct intel_plane_state *primary_state =
5094 			to_intel_plane_state(primary->state);
5095 		struct intel_plane_state *old_primary_state =
5096 			to_intel_plane_state(old_pri_state);
5097 
5098 		intel_fbc_pre_update(crtc, pipe_config, primary_state);
5099 
5100 		if (old_primary_state->base.visible &&
5101 		    (modeset || !primary_state->base.visible))
5102 			intel_pre_disable_primary(&crtc->base);
5103 	}
5104 
5105 	if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev)) {
5106 		crtc->wm.cxsr_allowed = false;
5107 
5108 		/*
5109 		 * Vblank time updates from the shadow to live plane control register
5110 		 * are blocked if the memory self-refresh mode is active at that
5111 		 * moment. So to make sure the plane gets truly disabled, disable
5112 		 * first the self-refresh mode. The self-refresh enable bit in turn
5113 		 * will be checked/applied by the HW only at the next frame start
5114 		 * event which is after the vblank start event, so we need to have a
5115 		 * wait-for-vblank between disabling the plane and the pipe.
5116 		 */
5117 		if (old_crtc_state->base.active) {
5118 			intel_set_memory_cxsr(dev_priv, false);
5119 			dev_priv->wm.vlv.cxsr = false;
5120 			intel_wait_for_vblank(dev, crtc->pipe);
5121 		}
5122 	}
5123 
5124 	/*
5125 	 * IVB workaround: must disable low power watermarks for at least
5126 	 * one frame before enabling scaling.  LP watermarks can be re-enabled
5127 	 * when scaling is disabled.
5128 	 *
5129 	 * WaCxSRDisabledForSpriteScaling:ivb
5130 	 */
5131 	if (pipe_config->disable_lp_wm) {
5132 		ilk_disable_lp_wm(dev);
5133 		intel_wait_for_vblank(dev, crtc->pipe);
5134 	}
5135 
5136 	/*
5137 	 * If we're doing a modeset, we're done.  No need to do any pre-vblank
5138 	 * watermark programming here.
5139 	 */
5140 	if (needs_modeset(&pipe_config->base))
5141 		return;
5142 
5143 	/*
5144 	 * For platforms that support atomic watermarks, program the
5145 	 * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
5146 	 * will be the intermediate values that are safe for both pre- and
5147 	 * post- vblank; when vblank happens, the 'active' values will be set
5148 	 * to the final 'target' values and we'll do this again to get the
5149 	 * optimal watermarks.  For gen9+ platforms, the values we program here
5150 	 * will be the final target values which will get automatically latched
5151 	 * at vblank time; no further programming will be necessary.
5152 	 *
5153 	 * If a platform hasn't been transitioned to atomic watermarks yet,
5154 	 * we'll continue to update watermarks the old way, if flags tell
5155 	 * us to.
5156 	 */
5157 	if (dev_priv->display.initial_watermarks != NULL)
5158 		dev_priv->display.initial_watermarks(pipe_config);
5159 	else if (pipe_config->update_wm_pre)
5160 		intel_update_watermarks(&crtc->base);
5161 }
5162 
intel_crtc_disable_planes(struct drm_crtc * crtc,unsigned plane_mask)5163 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
5164 {
5165 	struct drm_device *dev = crtc->dev;
5166 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5167 	struct drm_plane *p;
5168 	int pipe = intel_crtc->pipe;
5169 
5170 	intel_crtc_dpms_overlay_disable(intel_crtc);
5171 
5172 	drm_for_each_plane_mask(p, dev, plane_mask)
5173 		to_intel_plane(p)->disable_plane(p, crtc);
5174 
5175 	/*
5176 	 * FIXME: Once we grow proper nuclear flip support out of this we need
5177 	 * to compute the mask of flip planes precisely. For the time being
5178 	 * consider this a flip to a NULL plane.
5179 	 */
5180 	intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
5181 }
5182 
intel_encoders_pre_pll_enable(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state,struct drm_atomic_state * old_state)5183 static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
5184 					  struct intel_crtc_state *crtc_state,
5185 					  struct drm_atomic_state *old_state)
5186 {
5187 	struct drm_connector_state *old_conn_state;
5188 	struct drm_connector *conn;
5189 	int i;
5190 
5191 	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5192 		struct drm_connector_state *conn_state = conn->state;
5193 		struct intel_encoder *encoder =
5194 			to_intel_encoder(conn_state->best_encoder);
5195 
5196 		if (conn_state->crtc != crtc)
5197 			continue;
5198 
5199 		if (encoder->pre_pll_enable)
5200 			encoder->pre_pll_enable(encoder, crtc_state, conn_state);
5201 	}
5202 }
5203 
intel_encoders_pre_enable(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state,struct drm_atomic_state * old_state)5204 static void intel_encoders_pre_enable(struct drm_crtc *crtc,
5205 				      struct intel_crtc_state *crtc_state,
5206 				      struct drm_atomic_state *old_state)
5207 {
5208 	struct drm_connector_state *old_conn_state;
5209 	struct drm_connector *conn;
5210 	int i;
5211 
5212 	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5213 		struct drm_connector_state *conn_state = conn->state;
5214 		struct intel_encoder *encoder =
5215 			to_intel_encoder(conn_state->best_encoder);
5216 
5217 		if (conn_state->crtc != crtc)
5218 			continue;
5219 
5220 		if (encoder->pre_enable)
5221 			encoder->pre_enable(encoder, crtc_state, conn_state);
5222 	}
5223 }
5224 
intel_encoders_enable(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state,struct drm_atomic_state * old_state)5225 static void intel_encoders_enable(struct drm_crtc *crtc,
5226 				  struct intel_crtc_state *crtc_state,
5227 				  struct drm_atomic_state *old_state)
5228 {
5229 	struct drm_connector_state *old_conn_state;
5230 	struct drm_connector *conn;
5231 	int i;
5232 
5233 	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5234 		struct drm_connector_state *conn_state = conn->state;
5235 		struct intel_encoder *encoder =
5236 			to_intel_encoder(conn_state->best_encoder);
5237 
5238 		if (conn_state->crtc != crtc)
5239 			continue;
5240 
5241 		encoder->enable(encoder, crtc_state, conn_state);
5242 		intel_opregion_notify_encoder(encoder, true);
5243 	}
5244 }
5245 
intel_encoders_disable(struct drm_crtc * crtc,struct intel_crtc_state * old_crtc_state,struct drm_atomic_state * old_state)5246 static void intel_encoders_disable(struct drm_crtc *crtc,
5247 				   struct intel_crtc_state *old_crtc_state,
5248 				   struct drm_atomic_state *old_state)
5249 {
5250 	struct drm_connector_state *old_conn_state;
5251 	struct drm_connector *conn;
5252 	int i;
5253 
5254 	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5255 		struct intel_encoder *encoder =
5256 			to_intel_encoder(old_conn_state->best_encoder);
5257 
5258 		if (old_conn_state->crtc != crtc)
5259 			continue;
5260 
5261 		intel_opregion_notify_encoder(encoder, false);
5262 		encoder->disable(encoder, old_crtc_state, old_conn_state);
5263 	}
5264 }
5265 
intel_encoders_post_disable(struct drm_crtc * crtc,struct intel_crtc_state * old_crtc_state,struct drm_atomic_state * old_state)5266 static void intel_encoders_post_disable(struct drm_crtc *crtc,
5267 					struct intel_crtc_state *old_crtc_state,
5268 					struct drm_atomic_state *old_state)
5269 {
5270 	struct drm_connector_state *old_conn_state;
5271 	struct drm_connector *conn;
5272 	int i;
5273 
5274 	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5275 		struct intel_encoder *encoder =
5276 			to_intel_encoder(old_conn_state->best_encoder);
5277 
5278 		if (old_conn_state->crtc != crtc)
5279 			continue;
5280 
5281 		if (encoder->post_disable)
5282 			encoder->post_disable(encoder, old_crtc_state, old_conn_state);
5283 	}
5284 }
5285 
intel_encoders_post_pll_disable(struct drm_crtc * crtc,struct intel_crtc_state * old_crtc_state,struct drm_atomic_state * old_state)5286 static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
5287 					    struct intel_crtc_state *old_crtc_state,
5288 					    struct drm_atomic_state *old_state)
5289 {
5290 	struct drm_connector_state *old_conn_state;
5291 	struct drm_connector *conn;
5292 	int i;
5293 
5294 	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
5295 		struct intel_encoder *encoder =
5296 			to_intel_encoder(old_conn_state->best_encoder);
5297 
5298 		if (old_conn_state->crtc != crtc)
5299 			continue;
5300 
5301 		if (encoder->post_pll_disable)
5302 			encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
5303 	}
5304 }
5305 
ironlake_crtc_enable(struct intel_crtc_state * pipe_config,struct drm_atomic_state * old_state)5306 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
5307 				 struct drm_atomic_state *old_state)
5308 {
5309 	struct drm_crtc *crtc = pipe_config->base.crtc;
5310 	struct drm_device *dev = crtc->dev;
5311 	struct drm_i915_private *dev_priv = to_i915(dev);
5312 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5313 	int pipe = intel_crtc->pipe;
5314 
5315 	if (WARN_ON(intel_crtc->active))
5316 		return;
5317 
5318 	/*
5319 	 * Sometimes spurious CPU pipe underruns happen during FDI
5320 	 * training, at least with VGA+HDMI cloning. Suppress them.
5321 	 *
5322 	 * On ILK we get an occasional spurious CPU pipe underruns
5323 	 * between eDP port A enable and vdd enable. Also PCH port
5324 	 * enable seems to result in the occasional CPU pipe underrun.
5325 	 *
5326 	 * Spurious PCH underruns also occur during PCH enabling.
5327 	 */
5328 	if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
5329 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5330 	if (intel_crtc->config->has_pch_encoder)
5331 		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5332 
5333 	if (intel_crtc->config->has_pch_encoder)
5334 		intel_prepare_shared_dpll(intel_crtc);
5335 
5336 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
5337 		intel_dp_set_m_n(intel_crtc, M1_N1);
5338 
5339 	intel_set_pipe_timings(intel_crtc);
5340 	intel_set_pipe_src_size(intel_crtc);
5341 
5342 	if (intel_crtc->config->has_pch_encoder) {
5343 		intel_cpu_transcoder_set_m_n(intel_crtc,
5344 				     &intel_crtc->config->fdi_m_n, NULL);
5345 	}
5346 
5347 	ironlake_set_pipeconf(crtc);
5348 
5349 	intel_crtc->active = true;
5350 
5351 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
5352 
5353 	if (intel_crtc->config->has_pch_encoder) {
5354 		/* Note: FDI PLL enabling _must_ be done before we enable the
5355 		 * cpu pipes, hence this is separate from all the other fdi/pch
5356 		 * enabling. */
5357 		ironlake_fdi_pll_enable(intel_crtc);
5358 	} else {
5359 		assert_fdi_tx_disabled(dev_priv, pipe);
5360 		assert_fdi_rx_disabled(dev_priv, pipe);
5361 	}
5362 
5363 	ironlake_pfit_enable(intel_crtc);
5364 
5365 	/*
5366 	 * On ILK+ LUT must be loaded before the pipe is running but with
5367 	 * clocks enabled
5368 	 */
5369 	intel_color_load_luts(&pipe_config->base);
5370 
5371 	if (dev_priv->display.initial_watermarks != NULL)
5372 		dev_priv->display.initial_watermarks(intel_crtc->config);
5373 	intel_enable_pipe(intel_crtc);
5374 
5375 	if (intel_crtc->config->has_pch_encoder)
5376 		ironlake_pch_enable(crtc);
5377 
5378 	assert_vblank_disabled(crtc);
5379 	drm_crtc_vblank_on(crtc);
5380 
5381 	intel_encoders_enable(crtc, pipe_config, old_state);
5382 
5383 	if (HAS_PCH_CPT(dev))
5384 		cpt_verify_modeset(dev, intel_crtc->pipe);
5385 
5386 	/* Must wait for vblank to avoid spurious PCH FIFO underruns */
5387 	if (intel_crtc->config->has_pch_encoder)
5388 		intel_wait_for_vblank(dev, pipe);
5389 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5390 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5391 }
5392 
5393 /* IPS only exists on ULT machines and is tied to pipe A. */
hsw_crtc_supports_ips(struct intel_crtc * crtc)5394 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
5395 {
5396 	return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
5397 }
5398 
haswell_crtc_enable(struct intel_crtc_state * pipe_config,struct drm_atomic_state * old_state)5399 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
5400 				struct drm_atomic_state *old_state)
5401 {
5402 	struct drm_crtc *crtc = pipe_config->base.crtc;
5403 	struct drm_device *dev = crtc->dev;
5404 	struct drm_i915_private *dev_priv = to_i915(dev);
5405 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5406 	int pipe = intel_crtc->pipe, hsw_workaround_pipe;
5407 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5408 
5409 	if (WARN_ON(intel_crtc->active))
5410 		return;
5411 
5412 	if (intel_crtc->config->has_pch_encoder)
5413 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5414 						      false);
5415 
5416 	intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
5417 
5418 	if (intel_crtc->config->shared_dpll)
5419 		intel_enable_shared_dpll(intel_crtc);
5420 
5421 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
5422 		intel_dp_set_m_n(intel_crtc, M1_N1);
5423 
5424 	if (!transcoder_is_dsi(cpu_transcoder))
5425 		intel_set_pipe_timings(intel_crtc);
5426 
5427 	intel_set_pipe_src_size(intel_crtc);
5428 
5429 	if (cpu_transcoder != TRANSCODER_EDP &&
5430 	    !transcoder_is_dsi(cpu_transcoder)) {
5431 		I915_WRITE(PIPE_MULT(cpu_transcoder),
5432 			   intel_crtc->config->pixel_multiplier - 1);
5433 	}
5434 
5435 	if (intel_crtc->config->has_pch_encoder) {
5436 		intel_cpu_transcoder_set_m_n(intel_crtc,
5437 				     &intel_crtc->config->fdi_m_n, NULL);
5438 	}
5439 
5440 	if (!transcoder_is_dsi(cpu_transcoder))
5441 		haswell_set_pipeconf(crtc);
5442 
5443 	haswell_set_pipemisc(crtc);
5444 
5445 	intel_color_set_csc(&pipe_config->base);
5446 
5447 	intel_crtc->active = true;
5448 
5449 	if (intel_crtc->config->has_pch_encoder)
5450 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5451 	else
5452 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5453 
5454 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
5455 
5456 	if (intel_crtc->config->has_pch_encoder)
5457 		dev_priv->display.fdi_link_train(crtc);
5458 
5459 	if (!transcoder_is_dsi(cpu_transcoder))
5460 		intel_ddi_enable_pipe_clock(intel_crtc);
5461 
5462 	if (INTEL_INFO(dev)->gen >= 9)
5463 		skylake_pfit_enable(intel_crtc);
5464 	else
5465 		ironlake_pfit_enable(intel_crtc);
5466 
5467 	/*
5468 	 * On ILK+ LUT must be loaded before the pipe is running but with
5469 	 * clocks enabled
5470 	 */
5471 	intel_color_load_luts(&pipe_config->base);
5472 
5473 	intel_ddi_set_pipe_settings(crtc);
5474 	if (!transcoder_is_dsi(cpu_transcoder))
5475 		intel_ddi_enable_transcoder_func(crtc);
5476 
5477 	if (dev_priv->display.initial_watermarks != NULL)
5478 		dev_priv->display.initial_watermarks(pipe_config);
5479 	else
5480 		intel_update_watermarks(crtc);
5481 
5482 	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
5483 	if (!transcoder_is_dsi(cpu_transcoder))
5484 		intel_enable_pipe(intel_crtc);
5485 
5486 	if (intel_crtc->config->has_pch_encoder)
5487 		lpt_pch_enable(crtc);
5488 
5489 	if (intel_crtc->config->dp_encoder_is_mst)
5490 		intel_ddi_set_vc_payload_alloc(crtc, true);
5491 
5492 	assert_vblank_disabled(crtc);
5493 	drm_crtc_vblank_on(crtc);
5494 
5495 	intel_encoders_enable(crtc, pipe_config, old_state);
5496 
5497 	if (intel_crtc->config->has_pch_encoder) {
5498 		intel_wait_for_vblank(dev, pipe);
5499 		intel_wait_for_vblank(dev, pipe);
5500 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5501 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5502 						      true);
5503 	}
5504 
5505 	/* If we change the relative order between pipe/planes enabling, we need
5506 	 * to change the workaround. */
5507 	hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5508 	if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5509 		intel_wait_for_vblank(dev, hsw_workaround_pipe);
5510 		intel_wait_for_vblank(dev, hsw_workaround_pipe);
5511 	}
5512 }
5513 
ironlake_pfit_disable(struct intel_crtc * crtc,bool force)5514 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5515 {
5516 	struct drm_device *dev = crtc->base.dev;
5517 	struct drm_i915_private *dev_priv = to_i915(dev);
5518 	int pipe = crtc->pipe;
5519 
5520 	/* To avoid upsetting the power well on haswell only disable the pfit if
5521 	 * it's in use. The hw state code will make sure we get this right. */
5522 	if (force || crtc->config->pch_pfit.enabled) {
5523 		I915_WRITE(PF_CTL(pipe), 0);
5524 		I915_WRITE(PF_WIN_POS(pipe), 0);
5525 		I915_WRITE(PF_WIN_SZ(pipe), 0);
5526 	}
5527 }
5528 
ironlake_crtc_disable(struct intel_crtc_state * old_crtc_state,struct drm_atomic_state * old_state)5529 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
5530 				  struct drm_atomic_state *old_state)
5531 {
5532 	struct drm_crtc *crtc = old_crtc_state->base.crtc;
5533 	struct drm_device *dev = crtc->dev;
5534 	struct drm_i915_private *dev_priv = to_i915(dev);
5535 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5536 	int pipe = intel_crtc->pipe;
5537 
5538 	/*
5539 	 * Sometimes spurious CPU pipe underruns happen when the
5540 	 * pipe is already disabled, but FDI RX/TX is still enabled.
5541 	 * Happens at least with VGA+HDMI cloning. Suppress them.
5542 	 */
5543 	if (intel_crtc->config->has_pch_encoder) {
5544 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5545 		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5546 	}
5547 
5548 	intel_encoders_disable(crtc, old_crtc_state, old_state);
5549 
5550 	drm_crtc_vblank_off(crtc);
5551 	assert_vblank_disabled(crtc);
5552 
5553 	intel_disable_pipe(intel_crtc);
5554 
5555 	ironlake_pfit_disable(intel_crtc, false);
5556 
5557 	if (intel_crtc->config->has_pch_encoder)
5558 		ironlake_fdi_disable(crtc);
5559 
5560 	intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5561 
5562 	if (intel_crtc->config->has_pch_encoder) {
5563 		ironlake_disable_pch_transcoder(dev_priv, pipe);
5564 
5565 		if (HAS_PCH_CPT(dev)) {
5566 			i915_reg_t reg;
5567 			u32 temp;
5568 
5569 			/* disable TRANS_DP_CTL */
5570 			reg = TRANS_DP_CTL(pipe);
5571 			temp = I915_READ(reg);
5572 			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5573 				  TRANS_DP_PORT_SEL_MASK);
5574 			temp |= TRANS_DP_PORT_SEL_NONE;
5575 			I915_WRITE(reg, temp);
5576 
5577 			/* disable DPLL_SEL */
5578 			temp = I915_READ(PCH_DPLL_SEL);
5579 			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5580 			I915_WRITE(PCH_DPLL_SEL, temp);
5581 		}
5582 
5583 		ironlake_fdi_pll_disable(intel_crtc);
5584 	}
5585 
5586 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5587 	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5588 }
5589 
haswell_crtc_disable(struct intel_crtc_state * old_crtc_state,struct drm_atomic_state * old_state)5590 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
5591 				 struct drm_atomic_state *old_state)
5592 {
5593 	struct drm_crtc *crtc = old_crtc_state->base.crtc;
5594 	struct drm_device *dev = crtc->dev;
5595 	struct drm_i915_private *dev_priv = to_i915(dev);
5596 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5597 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5598 
5599 	if (intel_crtc->config->has_pch_encoder)
5600 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5601 						      false);
5602 
5603 	intel_encoders_disable(crtc, old_crtc_state, old_state);
5604 
5605 	drm_crtc_vblank_off(crtc);
5606 	assert_vblank_disabled(crtc);
5607 
5608 	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
5609 	if (!transcoder_is_dsi(cpu_transcoder))
5610 		intel_disable_pipe(intel_crtc);
5611 
5612 	if (intel_crtc->config->dp_encoder_is_mst)
5613 		intel_ddi_set_vc_payload_alloc(crtc, false);
5614 
5615 	if (!transcoder_is_dsi(cpu_transcoder))
5616 		intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5617 
5618 	if (INTEL_INFO(dev)->gen >= 9)
5619 		skylake_scaler_disable(intel_crtc);
5620 	else
5621 		ironlake_pfit_disable(intel_crtc, false);
5622 
5623 	if (!transcoder_is_dsi(cpu_transcoder))
5624 		intel_ddi_disable_pipe_clock(intel_crtc);
5625 
5626 	intel_encoders_post_disable(crtc, old_crtc_state, old_state);
5627 
5628 	if (old_crtc_state->has_pch_encoder)
5629 		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5630 						      true);
5631 }
5632 
i9xx_pfit_enable(struct intel_crtc * crtc)5633 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5634 {
5635 	struct drm_device *dev = crtc->base.dev;
5636 	struct drm_i915_private *dev_priv = to_i915(dev);
5637 	struct intel_crtc_state *pipe_config = crtc->config;
5638 
5639 	if (!pipe_config->gmch_pfit.control)
5640 		return;
5641 
5642 	/*
5643 	 * The panel fitter should only be adjusted whilst the pipe is disabled,
5644 	 * according to register description and PRM.
5645 	 */
5646 	WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5647 	assert_pipe_disabled(dev_priv, crtc->pipe);
5648 
5649 	I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5650 	I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5651 
5652 	/* Border color in case we don't scale up to the full screen. Black by
5653 	 * default, change to something else for debugging. */
5654 	I915_WRITE(BCLRPAT(crtc->pipe), 0);
5655 }
5656 
port_to_power_domain(enum port port)5657 static enum intel_display_power_domain port_to_power_domain(enum port port)
5658 {
5659 	switch (port) {
5660 	case PORT_A:
5661 		return POWER_DOMAIN_PORT_DDI_A_LANES;
5662 	case PORT_B:
5663 		return POWER_DOMAIN_PORT_DDI_B_LANES;
5664 	case PORT_C:
5665 		return POWER_DOMAIN_PORT_DDI_C_LANES;
5666 	case PORT_D:
5667 		return POWER_DOMAIN_PORT_DDI_D_LANES;
5668 	case PORT_E:
5669 		return POWER_DOMAIN_PORT_DDI_E_LANES;
5670 	default:
5671 		MISSING_CASE(port);
5672 		return POWER_DOMAIN_PORT_OTHER;
5673 	}
5674 }
5675 
port_to_aux_power_domain(enum port port)5676 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5677 {
5678 	switch (port) {
5679 	case PORT_A:
5680 		return POWER_DOMAIN_AUX_A;
5681 	case PORT_B:
5682 		return POWER_DOMAIN_AUX_B;
5683 	case PORT_C:
5684 		return POWER_DOMAIN_AUX_C;
5685 	case PORT_D:
5686 		return POWER_DOMAIN_AUX_D;
5687 	case PORT_E:
5688 		/* FIXME: Check VBT for actual wiring of PORT E */
5689 		return POWER_DOMAIN_AUX_D;
5690 	default:
5691 		MISSING_CASE(port);
5692 		return POWER_DOMAIN_AUX_A;
5693 	}
5694 }
5695 
5696 enum intel_display_power_domain
intel_display_port_power_domain(struct intel_encoder * intel_encoder)5697 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5698 {
5699 	struct drm_device *dev = intel_encoder->base.dev;
5700 	struct intel_digital_port *intel_dig_port;
5701 
5702 	switch (intel_encoder->type) {
5703 	case INTEL_OUTPUT_UNKNOWN:
5704 		/* Only DDI platforms should ever use this output type */
5705 		WARN_ON_ONCE(!HAS_DDI(dev));
5706 	case INTEL_OUTPUT_DP:
5707 	case INTEL_OUTPUT_HDMI:
5708 	case INTEL_OUTPUT_EDP:
5709 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5710 		return port_to_power_domain(intel_dig_port->port);
5711 	case INTEL_OUTPUT_DP_MST:
5712 		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5713 		return port_to_power_domain(intel_dig_port->port);
5714 	case INTEL_OUTPUT_ANALOG:
5715 		return POWER_DOMAIN_PORT_CRT;
5716 	case INTEL_OUTPUT_DSI:
5717 		return POWER_DOMAIN_PORT_DSI;
5718 	default:
5719 		return POWER_DOMAIN_PORT_OTHER;
5720 	}
5721 }
5722 
5723 enum intel_display_power_domain
intel_display_port_aux_power_domain(struct intel_encoder * intel_encoder)5724 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5725 {
5726 	struct drm_device *dev = intel_encoder->base.dev;
5727 	struct intel_digital_port *intel_dig_port;
5728 
5729 	switch (intel_encoder->type) {
5730 	case INTEL_OUTPUT_UNKNOWN:
5731 	case INTEL_OUTPUT_HDMI:
5732 		/*
5733 		 * Only DDI platforms should ever use these output types.
5734 		 * We can get here after the HDMI detect code has already set
5735 		 * the type of the shared encoder. Since we can't be sure
5736 		 * what's the status of the given connectors, play safe and
5737 		 * run the DP detection too.
5738 		 */
5739 		WARN_ON_ONCE(!HAS_DDI(dev));
5740 	case INTEL_OUTPUT_DP:
5741 	case INTEL_OUTPUT_EDP:
5742 		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5743 		return port_to_aux_power_domain(intel_dig_port->port);
5744 	case INTEL_OUTPUT_DP_MST:
5745 		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5746 		return port_to_aux_power_domain(intel_dig_port->port);
5747 	default:
5748 		MISSING_CASE(intel_encoder->type);
5749 		return POWER_DOMAIN_AUX_A;
5750 	}
5751 }
5752 
get_crtc_power_domains(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state)5753 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5754 					    struct intel_crtc_state *crtc_state)
5755 {
5756 	struct drm_device *dev = crtc->dev;
5757 	struct drm_encoder *encoder;
5758 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5759 	enum pipe pipe = intel_crtc->pipe;
5760 	unsigned long mask;
5761 	enum transcoder transcoder = crtc_state->cpu_transcoder;
5762 
5763 	if (!crtc_state->base.active)
5764 		return 0;
5765 
5766 	mask = BIT(POWER_DOMAIN_PIPE(pipe));
5767 	mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5768 	if (crtc_state->pch_pfit.enabled ||
5769 	    crtc_state->pch_pfit.force_thru)
5770 		mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5771 
5772 	drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5773 		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5774 
5775 		mask |= BIT(intel_display_port_power_domain(intel_encoder));
5776 	}
5777 
5778 	if (crtc_state->shared_dpll)
5779 		mask |= BIT(POWER_DOMAIN_PLLS);
5780 
5781 	return mask;
5782 }
5783 
5784 static unsigned long
modeset_get_crtc_power_domains(struct drm_crtc * crtc,struct intel_crtc_state * crtc_state)5785 modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5786 			       struct intel_crtc_state *crtc_state)
5787 {
5788 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
5789 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5790 	enum intel_display_power_domain domain;
5791 	unsigned long domains, new_domains, old_domains;
5792 
5793 	old_domains = intel_crtc->enabled_power_domains;
5794 	intel_crtc->enabled_power_domains = new_domains =
5795 		get_crtc_power_domains(crtc, crtc_state);
5796 
5797 	domains = new_domains & ~old_domains;
5798 
5799 	for_each_power_domain(domain, domains)
5800 		intel_display_power_get(dev_priv, domain);
5801 
5802 	return old_domains & ~new_domains;
5803 }
5804 
modeset_put_power_domains(struct drm_i915_private * dev_priv,unsigned long domains)5805 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5806 				      unsigned long domains)
5807 {
5808 	enum intel_display_power_domain domain;
5809 
5810 	for_each_power_domain(domain, domains)
5811 		intel_display_power_put(dev_priv, domain);
5812 }
5813 
intel_compute_max_dotclk(struct drm_i915_private * dev_priv)5814 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5815 {
5816 	int max_cdclk_freq = dev_priv->max_cdclk_freq;
5817 
5818 	if (INTEL_INFO(dev_priv)->gen >= 9 ||
5819 	    IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5820 		return max_cdclk_freq;
5821 	else if (IS_CHERRYVIEW(dev_priv))
5822 		return max_cdclk_freq*95/100;
5823 	else if (INTEL_INFO(dev_priv)->gen < 4)
5824 		return 2*max_cdclk_freq*90/100;
5825 	else
5826 		return max_cdclk_freq*90/100;
5827 }
5828 
5829 static int skl_calc_cdclk(int max_pixclk, int vco);
5830 
intel_update_max_cdclk(struct drm_device * dev)5831 static void intel_update_max_cdclk(struct drm_device *dev)
5832 {
5833 	struct drm_i915_private *dev_priv = to_i915(dev);
5834 
5835 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5836 		u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5837 		int max_cdclk, vco;
5838 
5839 		vco = dev_priv->skl_preferred_vco_freq;
5840 		WARN_ON(vco != 8100000 && vco != 8640000);
5841 
5842 		/*
5843 		 * Use the lower (vco 8640) cdclk values as a
5844 		 * first guess. skl_calc_cdclk() will correct it
5845 		 * if the preferred vco is 8100 instead.
5846 		 */
5847 		if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5848 			max_cdclk = 617143;
5849 		else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5850 			max_cdclk = 540000;
5851 		else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5852 			max_cdclk = 432000;
5853 		else
5854 			max_cdclk = 308571;
5855 
5856 		dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
5857 	} else if (IS_BROXTON(dev)) {
5858 		dev_priv->max_cdclk_freq = 624000;
5859 	} else if (IS_BROADWELL(dev))  {
5860 		/*
5861 		 * FIXME with extra cooling we can allow
5862 		 * 540 MHz for ULX and 675 Mhz for ULT.
5863 		 * How can we know if extra cooling is
5864 		 * available? PCI ID, VTB, something else?
5865 		 */
5866 		if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5867 			dev_priv->max_cdclk_freq = 450000;
5868 		else if (IS_BDW_ULX(dev))
5869 			dev_priv->max_cdclk_freq = 450000;
5870 		else if (IS_BDW_ULT(dev))
5871 			dev_priv->max_cdclk_freq = 540000;
5872 		else
5873 			dev_priv->max_cdclk_freq = 675000;
5874 	} else if (IS_CHERRYVIEW(dev)) {
5875 		dev_priv->max_cdclk_freq = 320000;
5876 	} else if (IS_VALLEYVIEW(dev)) {
5877 		dev_priv->max_cdclk_freq = 400000;
5878 	} else {
5879 		/* otherwise assume cdclk is fixed */
5880 		dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5881 	}
5882 
5883 	dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5884 
5885 	DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5886 			 dev_priv->max_cdclk_freq);
5887 
5888 	DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5889 			 dev_priv->max_dotclk_freq);
5890 }
5891 
intel_update_cdclk(struct drm_device * dev)5892 static void intel_update_cdclk(struct drm_device *dev)
5893 {
5894 	struct drm_i915_private *dev_priv = to_i915(dev);
5895 
5896 	dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5897 
5898 	if (INTEL_GEN(dev_priv) >= 9)
5899 		DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
5900 				 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
5901 				 dev_priv->cdclk_pll.ref);
5902 	else
5903 		DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5904 				 dev_priv->cdclk_freq);
5905 
5906 	/*
5907 	 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5908 	 * Programmng [sic] note: bit[9:2] should be programmed to the number
5909 	 * of cdclk that generates 4MHz reference clock freq which is used to
5910 	 * generate GMBus clock. This will vary with the cdclk freq.
5911 	 */
5912 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5913 		I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5914 }
5915 
5916 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
skl_cdclk_decimal(int cdclk)5917 static int skl_cdclk_decimal(int cdclk)
5918 {
5919 	return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5920 }
5921 
bxt_de_pll_vco(struct drm_i915_private * dev_priv,int cdclk)5922 static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
5923 {
5924 	int ratio;
5925 
5926 	if (cdclk == dev_priv->cdclk_pll.ref)
5927 		return 0;
5928 
5929 	switch (cdclk) {
5930 	default:
5931 		MISSING_CASE(cdclk);
5932 	case 144000:
5933 	case 288000:
5934 	case 384000:
5935 	case 576000:
5936 		ratio = 60;
5937 		break;
5938 	case 624000:
5939 		ratio = 65;
5940 		break;
5941 	}
5942 
5943 	return dev_priv->cdclk_pll.ref * ratio;
5944 }
5945 
bxt_de_pll_disable(struct drm_i915_private * dev_priv)5946 static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
5947 {
5948 	I915_WRITE(BXT_DE_PLL_ENABLE, 0);
5949 
5950 	/* Timeout 200us */
5951 	if (intel_wait_for_register(dev_priv,
5952 				    BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
5953 				    1))
5954 		DRM_ERROR("timeout waiting for DE PLL unlock\n");
5955 
5956 	dev_priv->cdclk_pll.vco = 0;
5957 }
5958 
bxt_de_pll_enable(struct drm_i915_private * dev_priv,int vco)5959 static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
5960 {
5961 	int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
5962 	u32 val;
5963 
5964 	val = I915_READ(BXT_DE_PLL_CTL);
5965 	val &= ~BXT_DE_PLL_RATIO_MASK;
5966 	val |= BXT_DE_PLL_RATIO(ratio);
5967 	I915_WRITE(BXT_DE_PLL_CTL, val);
5968 
5969 	I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5970 
5971 	/* Timeout 200us */
5972 	if (intel_wait_for_register(dev_priv,
5973 				    BXT_DE_PLL_ENABLE,
5974 				    BXT_DE_PLL_LOCK,
5975 				    BXT_DE_PLL_LOCK,
5976 				    1))
5977 		DRM_ERROR("timeout waiting for DE PLL lock\n");
5978 
5979 	dev_priv->cdclk_pll.vco = vco;
5980 }
5981 
bxt_set_cdclk(struct drm_i915_private * dev_priv,int cdclk)5982 static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
5983 {
5984 	u32 val, divider;
5985 	int vco, ret;
5986 
5987 	vco = bxt_de_pll_vco(dev_priv, cdclk);
5988 
5989 	DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
5990 
5991 	/* cdclk = vco / 2 / div{1,1.5,2,4} */
5992 	switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
5993 	case 8:
5994 		divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5995 		break;
5996 	case 4:
5997 		divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5998 		break;
5999 	case 3:
6000 		divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
6001 		break;
6002 	case 2:
6003 		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
6004 		break;
6005 	default:
6006 		WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
6007 		WARN_ON(vco != 0);
6008 
6009 		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
6010 		break;
6011 	}
6012 
6013 	/* Inform power controller of upcoming frequency change */
6014 	mutex_lock(&dev_priv->rps.hw_lock);
6015 	ret = sandybridge_pcode_write_timeout(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
6016 					      0x80000000, 2000);
6017 	mutex_unlock(&dev_priv->rps.hw_lock);
6018 
6019 	if (ret) {
6020 		DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
6021 			  ret, cdclk);
6022 		return;
6023 	}
6024 
6025 	if (dev_priv->cdclk_pll.vco != 0 &&
6026 	    dev_priv->cdclk_pll.vco != vco)
6027 		bxt_de_pll_disable(dev_priv);
6028 
6029 	if (dev_priv->cdclk_pll.vco != vco)
6030 		bxt_de_pll_enable(dev_priv, vco);
6031 
6032 	val = divider | skl_cdclk_decimal(cdclk);
6033 	/*
6034 	 * FIXME if only the cd2x divider needs changing, it could be done
6035 	 * without shutting off the pipe (if only one pipe is active).
6036 	 */
6037 	val |= BXT_CDCLK_CD2X_PIPE_NONE;
6038 	/*
6039 	 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6040 	 * enable otherwise.
6041 	 */
6042 	if (cdclk >= 500000)
6043 		val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6044 	I915_WRITE(CDCLK_CTL, val);
6045 
6046 	mutex_lock(&dev_priv->rps.hw_lock);
6047 	ret = sandybridge_pcode_write_timeout(dev_priv,
6048 					      HSW_PCODE_DE_WRITE_FREQ_REQ,
6049 					      DIV_ROUND_UP(cdclk, 25000), 2000);
6050 	mutex_unlock(&dev_priv->rps.hw_lock);
6051 
6052 	if (ret) {
6053 		DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
6054 			  ret, cdclk);
6055 		return;
6056 	}
6057 
6058 	intel_update_cdclk(&dev_priv->drm);
6059 }
6060 
bxt_sanitize_cdclk(struct drm_i915_private * dev_priv)6061 static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
6062 {
6063 	u32 cdctl, expected;
6064 
6065 	intel_update_cdclk(&dev_priv->drm);
6066 
6067 	if (dev_priv->cdclk_pll.vco == 0 ||
6068 	    dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6069 		goto sanitize;
6070 
6071 	/* DPLL okay; verify the cdclock
6072 	 *
6073 	 * Some BIOS versions leave an incorrect decimal frequency value and
6074 	 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
6075 	 * so sanitize this register.
6076 	 */
6077 	cdctl = I915_READ(CDCLK_CTL);
6078 	/*
6079 	 * Let's ignore the pipe field, since BIOS could have configured the
6080 	 * dividers both synching to an active pipe, or asynchronously
6081 	 * (PIPE_NONE).
6082 	 */
6083 	cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
6084 
6085 	expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
6086 		   skl_cdclk_decimal(dev_priv->cdclk_freq);
6087 	/*
6088 	 * Disable SSA Precharge when CD clock frequency < 500 MHz,
6089 	 * enable otherwise.
6090 	 */
6091 	if (dev_priv->cdclk_freq >= 500000)
6092 		expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
6093 
6094 	if (cdctl == expected)
6095 		/* All well; nothing to sanitize */
6096 		return;
6097 
6098 sanitize:
6099 	DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6100 
6101 	/* force cdclk programming */
6102 	dev_priv->cdclk_freq = 0;
6103 
6104 	/* force full PLL disable + enable */
6105 	dev_priv->cdclk_pll.vco = -1;
6106 }
6107 
bxt_init_cdclk(struct drm_i915_private * dev_priv)6108 void bxt_init_cdclk(struct drm_i915_private *dev_priv)
6109 {
6110 	bxt_sanitize_cdclk(dev_priv);
6111 
6112 	if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
6113 		return;
6114 
6115 	/*
6116 	 * FIXME:
6117 	 * - The initial CDCLK needs to be read from VBT.
6118 	 *   Need to make this change after VBT has changes for BXT.
6119 	 */
6120 	bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
6121 }
6122 
bxt_uninit_cdclk(struct drm_i915_private * dev_priv)6123 void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
6124 {
6125 	bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
6126 }
6127 
skl_calc_cdclk(int max_pixclk,int vco)6128 static int skl_calc_cdclk(int max_pixclk, int vco)
6129 {
6130 	if (vco == 8640000) {
6131 		if (max_pixclk > 540000)
6132 			return 617143;
6133 		else if (max_pixclk > 432000)
6134 			return 540000;
6135 		else if (max_pixclk > 308571)
6136 			return 432000;
6137 		else
6138 			return 308571;
6139 	} else {
6140 		if (max_pixclk > 540000)
6141 			return 675000;
6142 		else if (max_pixclk > 450000)
6143 			return 540000;
6144 		else if (max_pixclk > 337500)
6145 			return 450000;
6146 		else
6147 			return 337500;
6148 	}
6149 }
6150 
6151 static void
skl_dpll0_update(struct drm_i915_private * dev_priv)6152 skl_dpll0_update(struct drm_i915_private *dev_priv)
6153 {
6154 	u32 val;
6155 
6156 	dev_priv->cdclk_pll.ref = 24000;
6157 	dev_priv->cdclk_pll.vco = 0;
6158 
6159 	val = I915_READ(LCPLL1_CTL);
6160 	if ((val & LCPLL_PLL_ENABLE) == 0)
6161 		return;
6162 
6163 	if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
6164 		return;
6165 
6166 	val = I915_READ(DPLL_CTRL1);
6167 
6168 	if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
6169 			    DPLL_CTRL1_SSC(SKL_DPLL0) |
6170 			    DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
6171 		    DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
6172 		return;
6173 
6174 	switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
6175 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
6176 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
6177 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
6178 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
6179 		dev_priv->cdclk_pll.vco = 8100000;
6180 		break;
6181 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
6182 	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
6183 		dev_priv->cdclk_pll.vco = 8640000;
6184 		break;
6185 	default:
6186 		MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6187 		break;
6188 	}
6189 }
6190 
skl_set_preferred_cdclk_vco(struct drm_i915_private * dev_priv,int vco)6191 void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
6192 {
6193 	bool changed = dev_priv->skl_preferred_vco_freq != vco;
6194 
6195 	dev_priv->skl_preferred_vco_freq = vco;
6196 
6197 	if (changed)
6198 		intel_update_max_cdclk(&dev_priv->drm);
6199 }
6200 
6201 static void
skl_dpll0_enable(struct drm_i915_private * dev_priv,int vco)6202 skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
6203 {
6204 	int min_cdclk = skl_calc_cdclk(0, vco);
6205 	u32 val;
6206 
6207 	WARN_ON(vco != 8100000 && vco != 8640000);
6208 
6209 	/* select the minimum CDCLK before enabling DPLL 0 */
6210 	val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
6211 	I915_WRITE(CDCLK_CTL, val);
6212 	POSTING_READ(CDCLK_CTL);
6213 
6214 	/*
6215 	 * We always enable DPLL0 with the lowest link rate possible, but still
6216 	 * taking into account the VCO required to operate the eDP panel at the
6217 	 * desired frequency. The usual DP link rates operate with a VCO of
6218 	 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
6219 	 * The modeset code is responsible for the selection of the exact link
6220 	 * rate later on, with the constraint of choosing a frequency that
6221 	 * works with vco.
6222 	 */
6223 	val = I915_READ(DPLL_CTRL1);
6224 
6225 	val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
6226 		 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
6227 	val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
6228 	if (vco == 8640000)
6229 		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
6230 					    SKL_DPLL0);
6231 	else
6232 		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
6233 					    SKL_DPLL0);
6234 
6235 	I915_WRITE(DPLL_CTRL1, val);
6236 	POSTING_READ(DPLL_CTRL1);
6237 
6238 	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
6239 
6240 	if (intel_wait_for_register(dev_priv,
6241 				    LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
6242 				    5))
6243 		DRM_ERROR("DPLL0 not locked\n");
6244 
6245 	dev_priv->cdclk_pll.vco = vco;
6246 
6247 	/* We'll want to keep using the current vco from now on. */
6248 	skl_set_preferred_cdclk_vco(dev_priv, vco);
6249 }
6250 
6251 static void
skl_dpll0_disable(struct drm_i915_private * dev_priv)6252 skl_dpll0_disable(struct drm_i915_private *dev_priv)
6253 {
6254 	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
6255 	if (intel_wait_for_register(dev_priv,
6256 				   LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
6257 				   1))
6258 		DRM_ERROR("Couldn't disable DPLL0\n");
6259 
6260 	dev_priv->cdclk_pll.vco = 0;
6261 }
6262 
skl_set_cdclk(struct drm_i915_private * dev_priv,int cdclk,int vco)6263 static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
6264 {
6265 	struct drm_device *dev = &dev_priv->drm;
6266 	u32 freq_select, pcu_ack;
6267 	int ret;
6268 
6269 	WARN_ON((cdclk == 24000) != (vco == 0));
6270 
6271 	DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
6272 
6273 	mutex_lock(&dev_priv->rps.hw_lock);
6274 	ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL,
6275 				SKL_CDCLK_PREPARE_FOR_CHANGE,
6276 				SKL_CDCLK_READY_FOR_CHANGE,
6277 				SKL_CDCLK_READY_FOR_CHANGE, 3);
6278 	mutex_unlock(&dev_priv->rps.hw_lock);
6279 	if (ret) {
6280 		DRM_ERROR("Failed to inform PCU about cdclk change (%d)\n",
6281 			  ret);
6282 		return;
6283 	}
6284 
6285 	/* set CDCLK_CTL */
6286 	switch (cdclk) {
6287 	case 450000:
6288 	case 432000:
6289 		freq_select = CDCLK_FREQ_450_432;
6290 		pcu_ack = 1;
6291 		break;
6292 	case 540000:
6293 		freq_select = CDCLK_FREQ_540;
6294 		pcu_ack = 2;
6295 		break;
6296 	case 308571:
6297 	case 337500:
6298 	default:
6299 		freq_select = CDCLK_FREQ_337_308;
6300 		pcu_ack = 0;
6301 		break;
6302 	case 617143:
6303 	case 675000:
6304 		freq_select = CDCLK_FREQ_675_617;
6305 		pcu_ack = 3;
6306 		break;
6307 	}
6308 
6309 	if (dev_priv->cdclk_pll.vco != 0 &&
6310 	    dev_priv->cdclk_pll.vco != vco)
6311 		skl_dpll0_disable(dev_priv);
6312 
6313 	if (dev_priv->cdclk_pll.vco != vco)
6314 		skl_dpll0_enable(dev_priv, vco);
6315 
6316 	I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
6317 	POSTING_READ(CDCLK_CTL);
6318 
6319 	/* inform PCU of the change */
6320 	mutex_lock(&dev_priv->rps.hw_lock);
6321 	sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
6322 	mutex_unlock(&dev_priv->rps.hw_lock);
6323 
6324 	intel_update_cdclk(dev);
6325 }
6326 
6327 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
6328 
skl_uninit_cdclk(struct drm_i915_private * dev_priv)6329 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
6330 {
6331 	skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
6332 }
6333 
skl_init_cdclk(struct drm_i915_private * dev_priv)6334 void skl_init_cdclk(struct drm_i915_private *dev_priv)
6335 {
6336 	int cdclk, vco;
6337 
6338 	skl_sanitize_cdclk(dev_priv);
6339 
6340 	if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
6341 		/*
6342 		 * Use the current vco as our initial
6343 		 * guess as to what the preferred vco is.
6344 		 */
6345 		if (dev_priv->skl_preferred_vco_freq == 0)
6346 			skl_set_preferred_cdclk_vco(dev_priv,
6347 						    dev_priv->cdclk_pll.vco);
6348 		return;
6349 	}
6350 
6351 	vco = dev_priv->skl_preferred_vco_freq;
6352 	if (vco == 0)
6353 		vco = 8100000;
6354 	cdclk = skl_calc_cdclk(0, vco);
6355 
6356 	skl_set_cdclk(dev_priv, cdclk, vco);
6357 }
6358 
skl_sanitize_cdclk(struct drm_i915_private * dev_priv)6359 static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
6360 {
6361 	uint32_t cdctl, expected;
6362 
6363 	/*
6364 	 * check if the pre-os intialized the display
6365 	 * There is SWF18 scratchpad register defined which is set by the
6366 	 * pre-os which can be used by the OS drivers to check the status
6367 	 */
6368 	if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
6369 		goto sanitize;
6370 
6371 	intel_update_cdclk(&dev_priv->drm);
6372 	/* Is PLL enabled and locked ? */
6373 	if (dev_priv->cdclk_pll.vco == 0 ||
6374 	    dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
6375 		goto sanitize;
6376 
6377 	/* DPLL okay; verify the cdclock
6378 	 *
6379 	 * Noticed in some instances that the freq selection is correct but
6380 	 * decimal part is programmed wrong from BIOS where pre-os does not
6381 	 * enable display. Verify the same as well.
6382 	 */
6383 	cdctl = I915_READ(CDCLK_CTL);
6384 	expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
6385 		skl_cdclk_decimal(dev_priv->cdclk_freq);
6386 	if (cdctl == expected)
6387 		/* All well; nothing to sanitize */
6388 		return;
6389 
6390 sanitize:
6391 	DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
6392 
6393 	/* force cdclk programming */
6394 	dev_priv->cdclk_freq = 0;
6395 	/* force full PLL disable + enable */
6396 	dev_priv->cdclk_pll.vco = -1;
6397 }
6398 
6399 /* Adjust CDclk dividers to allow high res or save power if possible */
valleyview_set_cdclk(struct drm_device * dev,int cdclk)6400 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
6401 {
6402 	struct drm_i915_private *dev_priv = to_i915(dev);
6403 	u32 val, cmd;
6404 
6405 	WARN_ON(dev_priv->display.get_display_clock_speed(dev)
6406 					!= dev_priv->cdclk_freq);
6407 
6408 	if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
6409 		cmd = 2;
6410 	else if (cdclk == 266667)
6411 		cmd = 1;
6412 	else
6413 		cmd = 0;
6414 
6415 	mutex_lock(&dev_priv->rps.hw_lock);
6416 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6417 	val &= ~DSPFREQGUAR_MASK;
6418 	val |= (cmd << DSPFREQGUAR_SHIFT);
6419 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6420 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6421 		      DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
6422 		     50)) {
6423 		DRM_ERROR("timed out waiting for CDclk change\n");
6424 	}
6425 	mutex_unlock(&dev_priv->rps.hw_lock);
6426 
6427 	mutex_lock(&dev_priv->sb_lock);
6428 
6429 	if (cdclk == 400000) {
6430 		u32 divider;
6431 
6432 		divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6433 
6434 		/* adjust cdclk divider */
6435 		val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6436 		val &= ~CCK_FREQUENCY_VALUES;
6437 		val |= divider;
6438 		vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
6439 
6440 		if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
6441 			      CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
6442 			     50))
6443 			DRM_ERROR("timed out waiting for CDclk change\n");
6444 	}
6445 
6446 	/* adjust self-refresh exit latency value */
6447 	val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
6448 	val &= ~0x7f;
6449 
6450 	/*
6451 	 * For high bandwidth configs, we set a higher latency in the bunit
6452 	 * so that the core display fetch happens in time to avoid underruns.
6453 	 */
6454 	if (cdclk == 400000)
6455 		val |= 4500 / 250; /* 4.5 usec */
6456 	else
6457 		val |= 3000 / 250; /* 3.0 usec */
6458 	vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
6459 
6460 	mutex_unlock(&dev_priv->sb_lock);
6461 
6462 	intel_update_cdclk(dev);
6463 }
6464 
cherryview_set_cdclk(struct drm_device * dev,int cdclk)6465 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
6466 {
6467 	struct drm_i915_private *dev_priv = to_i915(dev);
6468 	u32 val, cmd;
6469 
6470 	WARN_ON(dev_priv->display.get_display_clock_speed(dev)
6471 						!= dev_priv->cdclk_freq);
6472 
6473 	switch (cdclk) {
6474 	case 333333:
6475 	case 320000:
6476 	case 266667:
6477 	case 200000:
6478 		break;
6479 	default:
6480 		MISSING_CASE(cdclk);
6481 		return;
6482 	}
6483 
6484 	/*
6485 	 * Specs are full of misinformation, but testing on actual
6486 	 * hardware has shown that we just need to write the desired
6487 	 * CCK divider into the Punit register.
6488 	 */
6489 	cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
6490 
6491 	mutex_lock(&dev_priv->rps.hw_lock);
6492 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
6493 	val &= ~DSPFREQGUAR_MASK_CHV;
6494 	val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
6495 	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
6496 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
6497 		      DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
6498 		     50)) {
6499 		DRM_ERROR("timed out waiting for CDclk change\n");
6500 	}
6501 	mutex_unlock(&dev_priv->rps.hw_lock);
6502 
6503 	intel_update_cdclk(dev);
6504 }
6505 
valleyview_calc_cdclk(struct drm_i915_private * dev_priv,int max_pixclk)6506 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
6507 				 int max_pixclk)
6508 {
6509 	int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
6510 	int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
6511 
6512 	/*
6513 	 * Really only a few cases to deal with, as only 4 CDclks are supported:
6514 	 *   200MHz
6515 	 *   267MHz
6516 	 *   320/333MHz (depends on HPLL freq)
6517 	 *   400MHz (VLV only)
6518 	 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
6519 	 * of the lower bin and adjust if needed.
6520 	 *
6521 	 * We seem to get an unstable or solid color picture at 200MHz.
6522 	 * Not sure what's wrong. For now use 200MHz only when all pipes
6523 	 * are off.
6524 	 */
6525 	if (!IS_CHERRYVIEW(dev_priv) &&
6526 	    max_pixclk > freq_320*limit/100)
6527 		return 400000;
6528 	else if (max_pixclk > 266667*limit/100)
6529 		return freq_320;
6530 	else if (max_pixclk > 0)
6531 		return 266667;
6532 	else
6533 		return 200000;
6534 }
6535 
bxt_calc_cdclk(int max_pixclk)6536 static int bxt_calc_cdclk(int max_pixclk)
6537 {
6538 	if (max_pixclk > 576000)
6539 		return 624000;
6540 	else if (max_pixclk > 384000)
6541 		return 576000;
6542 	else if (max_pixclk > 288000)
6543 		return 384000;
6544 	else if (max_pixclk > 144000)
6545 		return 288000;
6546 	else
6547 		return 144000;
6548 }
6549 
6550 /* Compute the max pixel clock for new configuration. */
intel_mode_max_pixclk(struct drm_device * dev,struct drm_atomic_state * state)6551 static int intel_mode_max_pixclk(struct drm_device *dev,
6552 				 struct drm_atomic_state *state)
6553 {
6554 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
6555 	struct drm_i915_private *dev_priv = to_i915(dev);
6556 	struct drm_crtc *crtc;
6557 	struct drm_crtc_state *crtc_state;
6558 	unsigned max_pixclk = 0, i;
6559 	enum pipe pipe;
6560 
6561 	memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
6562 	       sizeof(intel_state->min_pixclk));
6563 
6564 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
6565 		int pixclk = 0;
6566 
6567 		if (crtc_state->enable)
6568 			pixclk = crtc_state->adjusted_mode.crtc_clock;
6569 
6570 		intel_state->min_pixclk[i] = pixclk;
6571 	}
6572 
6573 	for_each_pipe(dev_priv, pipe)
6574 		max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
6575 
6576 	return max_pixclk;
6577 }
6578 
valleyview_modeset_calc_cdclk(struct drm_atomic_state * state)6579 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6580 {
6581 	struct drm_device *dev = state->dev;
6582 	struct drm_i915_private *dev_priv = to_i915(dev);
6583 	int max_pixclk = intel_mode_max_pixclk(dev, state);
6584 	struct intel_atomic_state *intel_state =
6585 		to_intel_atomic_state(state);
6586 
6587 	intel_state->cdclk = intel_state->dev_cdclk =
6588 		valleyview_calc_cdclk(dev_priv, max_pixclk);
6589 
6590 	if (!intel_state->active_crtcs)
6591 		intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
6592 
6593 	return 0;
6594 }
6595 
bxt_modeset_calc_cdclk(struct drm_atomic_state * state)6596 static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
6597 {
6598 	int max_pixclk = ilk_max_pixel_rate(state);
6599 	struct intel_atomic_state *intel_state =
6600 		to_intel_atomic_state(state);
6601 
6602 	intel_state->cdclk = intel_state->dev_cdclk =
6603 		bxt_calc_cdclk(max_pixclk);
6604 
6605 	if (!intel_state->active_crtcs)
6606 		intel_state->dev_cdclk = bxt_calc_cdclk(0);
6607 
6608 	return 0;
6609 }
6610 
vlv_program_pfi_credits(struct drm_i915_private * dev_priv)6611 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6612 {
6613 	unsigned int credits, default_credits;
6614 
6615 	if (IS_CHERRYVIEW(dev_priv))
6616 		default_credits = PFI_CREDIT(12);
6617 	else
6618 		default_credits = PFI_CREDIT(8);
6619 
6620 	if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6621 		/* CHV suggested value is 31 or 63 */
6622 		if (IS_CHERRYVIEW(dev_priv))
6623 			credits = PFI_CREDIT_63;
6624 		else
6625 			credits = PFI_CREDIT(15);
6626 	} else {
6627 		credits = default_credits;
6628 	}
6629 
6630 	/*
6631 	 * WA - write default credits before re-programming
6632 	 * FIXME: should we also set the resend bit here?
6633 	 */
6634 	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6635 		   default_credits);
6636 
6637 	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6638 		   credits | PFI_CREDIT_RESEND);
6639 
6640 	/*
6641 	 * FIXME is this guaranteed to clear
6642 	 * immediately or should we poll for it?
6643 	 */
6644 	WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6645 }
6646 
valleyview_modeset_commit_cdclk(struct drm_atomic_state * old_state)6647 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6648 {
6649 	struct drm_device *dev = old_state->dev;
6650 	struct drm_i915_private *dev_priv = to_i915(dev);
6651 	struct intel_atomic_state *old_intel_state =
6652 		to_intel_atomic_state(old_state);
6653 	unsigned req_cdclk = old_intel_state->dev_cdclk;
6654 
6655 	/*
6656 	 * FIXME: We can end up here with all power domains off, yet
6657 	 * with a CDCLK frequency other than the minimum. To account
6658 	 * for this take the PIPE-A power domain, which covers the HW
6659 	 * blocks needed for the following programming. This can be
6660 	 * removed once it's guaranteed that we get here either with
6661 	 * the minimum CDCLK set, or the required power domains
6662 	 * enabled.
6663 	 */
6664 	intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6665 
6666 	if (IS_CHERRYVIEW(dev))
6667 		cherryview_set_cdclk(dev, req_cdclk);
6668 	else
6669 		valleyview_set_cdclk(dev, req_cdclk);
6670 
6671 	vlv_program_pfi_credits(dev_priv);
6672 
6673 	intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6674 }
6675 
valleyview_crtc_enable(struct intel_crtc_state * pipe_config,struct drm_atomic_state * old_state)6676 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6677 				   struct drm_atomic_state *old_state)
6678 {
6679 	struct drm_crtc *crtc = pipe_config->base.crtc;
6680 	struct drm_device *dev = crtc->dev;
6681 	struct drm_i915_private *dev_priv = to_i915(dev);
6682 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6683 	int pipe = intel_crtc->pipe;
6684 
6685 	if (WARN_ON(intel_crtc->active))
6686 		return;
6687 
6688 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
6689 		intel_dp_set_m_n(intel_crtc, M1_N1);
6690 
6691 	intel_set_pipe_timings(intel_crtc);
6692 	intel_set_pipe_src_size(intel_crtc);
6693 
6694 	if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6695 		struct drm_i915_private *dev_priv = to_i915(dev);
6696 
6697 		I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6698 		I915_WRITE(CHV_CANVAS(pipe), 0);
6699 	}
6700 
6701 	i9xx_set_pipeconf(intel_crtc);
6702 
6703 	intel_crtc->active = true;
6704 
6705 	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6706 
6707 	intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
6708 
6709 	if (IS_CHERRYVIEW(dev)) {
6710 		chv_prepare_pll(intel_crtc, intel_crtc->config);
6711 		chv_enable_pll(intel_crtc, intel_crtc->config);
6712 	} else {
6713 		vlv_prepare_pll(intel_crtc, intel_crtc->config);
6714 		vlv_enable_pll(intel_crtc, intel_crtc->config);
6715 	}
6716 
6717 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
6718 
6719 	i9xx_pfit_enable(intel_crtc);
6720 
6721 	intel_color_load_luts(&pipe_config->base);
6722 
6723 	intel_update_watermarks(crtc);
6724 	intel_enable_pipe(intel_crtc);
6725 
6726 	assert_vblank_disabled(crtc);
6727 	drm_crtc_vblank_on(crtc);
6728 
6729 	intel_encoders_enable(crtc, pipe_config, old_state);
6730 }
6731 
i9xx_set_pll_dividers(struct intel_crtc * crtc)6732 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6733 {
6734 	struct drm_device *dev = crtc->base.dev;
6735 	struct drm_i915_private *dev_priv = to_i915(dev);
6736 
6737 	I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6738 	I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6739 }
6740 
i9xx_crtc_enable(struct intel_crtc_state * pipe_config,struct drm_atomic_state * old_state)6741 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
6742 			     struct drm_atomic_state *old_state)
6743 {
6744 	struct drm_crtc *crtc = pipe_config->base.crtc;
6745 	struct drm_device *dev = crtc->dev;
6746 	struct drm_i915_private *dev_priv = to_i915(dev);
6747 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6748 	enum pipe pipe = intel_crtc->pipe;
6749 
6750 	if (WARN_ON(intel_crtc->active))
6751 		return;
6752 
6753 	i9xx_set_pll_dividers(intel_crtc);
6754 
6755 	if (intel_crtc_has_dp_encoder(intel_crtc->config))
6756 		intel_dp_set_m_n(intel_crtc, M1_N1);
6757 
6758 	intel_set_pipe_timings(intel_crtc);
6759 	intel_set_pipe_src_size(intel_crtc);
6760 
6761 	i9xx_set_pipeconf(intel_crtc);
6762 
6763 	intel_crtc->active = true;
6764 
6765 	if (!IS_GEN2(dev))
6766 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6767 
6768 	intel_encoders_pre_enable(crtc, pipe_config, old_state);
6769 
6770 	i9xx_enable_pll(intel_crtc);
6771 
6772 	i9xx_pfit_enable(intel_crtc);
6773 
6774 	intel_color_load_luts(&pipe_config->base);
6775 
6776 	intel_update_watermarks(crtc);
6777 	intel_enable_pipe(intel_crtc);
6778 
6779 	assert_vblank_disabled(crtc);
6780 	drm_crtc_vblank_on(crtc);
6781 
6782 	intel_encoders_enable(crtc, pipe_config, old_state);
6783 }
6784 
i9xx_pfit_disable(struct intel_crtc * crtc)6785 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6786 {
6787 	struct drm_device *dev = crtc->base.dev;
6788 	struct drm_i915_private *dev_priv = to_i915(dev);
6789 
6790 	if (!crtc->config->gmch_pfit.control)
6791 		return;
6792 
6793 	assert_pipe_disabled(dev_priv, crtc->pipe);
6794 
6795 	DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6796 			 I915_READ(PFIT_CONTROL));
6797 	I915_WRITE(PFIT_CONTROL, 0);
6798 }
6799 
i9xx_crtc_disable(struct intel_crtc_state * old_crtc_state,struct drm_atomic_state * old_state)6800 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
6801 			      struct drm_atomic_state *old_state)
6802 {
6803 	struct drm_crtc *crtc = old_crtc_state->base.crtc;
6804 	struct drm_device *dev = crtc->dev;
6805 	struct drm_i915_private *dev_priv = to_i915(dev);
6806 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6807 	int pipe = intel_crtc->pipe;
6808 
6809 	/*
6810 	 * On gen2 planes are double buffered but the pipe isn't, so we must
6811 	 * wait for planes to fully turn off before disabling the pipe.
6812 	 */
6813 	if (IS_GEN2(dev))
6814 		intel_wait_for_vblank(dev, pipe);
6815 
6816 	intel_encoders_disable(crtc, old_crtc_state, old_state);
6817 
6818 	drm_crtc_vblank_off(crtc);
6819 	assert_vblank_disabled(crtc);
6820 
6821 	intel_disable_pipe(intel_crtc);
6822 
6823 	i9xx_pfit_disable(intel_crtc);
6824 
6825 	intel_encoders_post_disable(crtc, old_crtc_state, old_state);
6826 
6827 	if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
6828 		if (IS_CHERRYVIEW(dev))
6829 			chv_disable_pll(dev_priv, pipe);
6830 		else if (IS_VALLEYVIEW(dev))
6831 			vlv_disable_pll(dev_priv, pipe);
6832 		else
6833 			i9xx_disable_pll(intel_crtc);
6834 	}
6835 
6836 	intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
6837 
6838 	if (!IS_GEN2(dev))
6839 		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6840 }
6841 
intel_crtc_disable_noatomic(struct drm_crtc * crtc)6842 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6843 {
6844 	struct intel_encoder *encoder;
6845 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6846 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6847 	enum intel_display_power_domain domain;
6848 	unsigned long domains;
6849 	struct drm_atomic_state *state;
6850 	struct intel_crtc_state *crtc_state;
6851 	int ret;
6852 
6853 	if (!intel_crtc->active)
6854 		return;
6855 
6856 	if (to_intel_plane_state(crtc->primary->state)->base.visible) {
6857 		WARN_ON(intel_crtc->flip_work);
6858 
6859 		intel_pre_disable_primary_noatomic(crtc);
6860 
6861 		intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6862 		to_intel_plane_state(crtc->primary->state)->base.visible = false;
6863 	}
6864 
6865 	state = drm_atomic_state_alloc(crtc->dev);
6866 	if (!state) {
6867 		DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
6868 			      crtc->base.id, crtc->name);
6869 		return;
6870 	}
6871 
6872 	state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
6873 
6874 	/* Everything's already locked, -EDEADLK can't happen. */
6875 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6876 	ret = drm_atomic_add_affected_connectors(state, crtc);
6877 
6878 	WARN_ON(IS_ERR(crtc_state) || ret);
6879 
6880 	dev_priv->display.crtc_disable(crtc_state, state);
6881 
6882 	drm_atomic_state_free(state);
6883 
6884 	DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
6885 		      crtc->base.id, crtc->name);
6886 
6887 	WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6888 	crtc->state->active = false;
6889 	intel_crtc->active = false;
6890 	crtc->enabled = false;
6891 	crtc->state->connector_mask = 0;
6892 	crtc->state->encoder_mask = 0;
6893 
6894 	for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6895 		encoder->base.crtc = NULL;
6896 
6897 	intel_fbc_disable(intel_crtc);
6898 	intel_update_watermarks(crtc);
6899 	intel_disable_shared_dpll(intel_crtc);
6900 
6901 	domains = intel_crtc->enabled_power_domains;
6902 	for_each_power_domain(domain, domains)
6903 		intel_display_power_put(dev_priv, domain);
6904 	intel_crtc->enabled_power_domains = 0;
6905 
6906 	dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6907 	dev_priv->min_pixclk[intel_crtc->pipe] = 0;
6908 }
6909 
6910 /*
6911  * turn all crtc's off, but do not adjust state
6912  * This has to be paired with a call to intel_modeset_setup_hw_state.
6913  */
intel_display_suspend(struct drm_device * dev)6914 int intel_display_suspend(struct drm_device *dev)
6915 {
6916 	struct drm_i915_private *dev_priv = to_i915(dev);
6917 	struct drm_atomic_state *state;
6918 	int ret;
6919 
6920 	state = drm_atomic_helper_suspend(dev);
6921 	ret = PTR_ERR_OR_ZERO(state);
6922 	if (ret)
6923 		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6924 	else
6925 		dev_priv->modeset_restore_state = state;
6926 	return ret;
6927 }
6928 
intel_encoder_destroy(struct drm_encoder * encoder)6929 void intel_encoder_destroy(struct drm_encoder *encoder)
6930 {
6931 	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6932 
6933 	drm_encoder_cleanup(encoder);
6934 	kfree(intel_encoder);
6935 }
6936 
6937 /* Cross check the actual hw state with our own modeset state tracking (and it's
6938  * internal consistency). */
intel_connector_verify_state(struct intel_connector * connector)6939 static void intel_connector_verify_state(struct intel_connector *connector)
6940 {
6941 	struct drm_crtc *crtc = connector->base.state->crtc;
6942 
6943 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6944 		      connector->base.base.id,
6945 		      connector->base.name);
6946 
6947 	if (connector->get_hw_state(connector)) {
6948 		struct intel_encoder *encoder = connector->encoder;
6949 		struct drm_connector_state *conn_state = connector->base.state;
6950 
6951 		I915_STATE_WARN(!crtc,
6952 			 "connector enabled without attached crtc\n");
6953 
6954 		if (!crtc)
6955 			return;
6956 
6957 		I915_STATE_WARN(!crtc->state->active,
6958 		      "connector is active, but attached crtc isn't\n");
6959 
6960 		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6961 			return;
6962 
6963 		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6964 			"atomic encoder doesn't match attached encoder\n");
6965 
6966 		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6967 			"attached encoder crtc differs from connector crtc\n");
6968 	} else {
6969 		I915_STATE_WARN(crtc && crtc->state->active,
6970 			"attached crtc is active, but connector isn't\n");
6971 		I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6972 			"best encoder set without crtc!\n");
6973 	}
6974 }
6975 
intel_connector_init(struct intel_connector * connector)6976 int intel_connector_init(struct intel_connector *connector)
6977 {
6978 	drm_atomic_helper_connector_reset(&connector->base);
6979 
6980 	if (!connector->base.state)
6981 		return -ENOMEM;
6982 
6983 	return 0;
6984 }
6985 
intel_connector_alloc(void)6986 struct intel_connector *intel_connector_alloc(void)
6987 {
6988 	struct intel_connector *connector;
6989 
6990 	connector = kzalloc(sizeof *connector, GFP_KERNEL);
6991 	if (!connector)
6992 		return NULL;
6993 
6994 	if (intel_connector_init(connector) < 0) {
6995 		kfree(connector);
6996 		return NULL;
6997 	}
6998 
6999 	return connector;
7000 }
7001 
7002 /* Simple connector->get_hw_state implementation for encoders that support only
7003  * one connector and no cloning and hence the encoder state determines the state
7004  * of the connector. */
intel_connector_get_hw_state(struct intel_connector * connector)7005 bool intel_connector_get_hw_state(struct intel_connector *connector)
7006 {
7007 	enum pipe pipe = 0;
7008 	struct intel_encoder *encoder = connector->encoder;
7009 
7010 	return encoder->get_hw_state(encoder, &pipe);
7011 }
7012 
pipe_required_fdi_lanes(struct intel_crtc_state * crtc_state)7013 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7014 {
7015 	if (crtc_state->base.enable && crtc_state->has_pch_encoder)
7016 		return crtc_state->fdi_lanes;
7017 
7018 	return 0;
7019 }
7020 
ironlake_check_fdi_lanes(struct drm_device * dev,enum pipe pipe,struct intel_crtc_state * pipe_config)7021 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7022 				     struct intel_crtc_state *pipe_config)
7023 {
7024 	struct drm_atomic_state *state = pipe_config->base.state;
7025 	struct intel_crtc *other_crtc;
7026 	struct intel_crtc_state *other_crtc_state;
7027 
7028 	DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7029 		      pipe_name(pipe), pipe_config->fdi_lanes);
7030 	if (pipe_config->fdi_lanes > 4) {
7031 		DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7032 			      pipe_name(pipe), pipe_config->fdi_lanes);
7033 		return -EINVAL;
7034 	}
7035 
7036 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
7037 		if (pipe_config->fdi_lanes > 2) {
7038 			DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7039 				      pipe_config->fdi_lanes);
7040 			return -EINVAL;
7041 		} else {
7042 			return 0;
7043 		}
7044 	}
7045 
7046 	if (INTEL_INFO(dev)->num_pipes == 2)
7047 		return 0;
7048 
7049 	/* Ivybridge 3 pipe is really complicated */
7050 	switch (pipe) {
7051 	case PIPE_A:
7052 		return 0;
7053 	case PIPE_B:
7054 		if (pipe_config->fdi_lanes <= 2)
7055 			return 0;
7056 
7057 		other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
7058 		other_crtc_state =
7059 			intel_atomic_get_crtc_state(state, other_crtc);
7060 		if (IS_ERR(other_crtc_state))
7061 			return PTR_ERR(other_crtc_state);
7062 
7063 		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7064 			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7065 				      pipe_name(pipe), pipe_config->fdi_lanes);
7066 			return -EINVAL;
7067 		}
7068 		return 0;
7069 	case PIPE_C:
7070 		if (pipe_config->fdi_lanes > 2) {
7071 			DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7072 				      pipe_name(pipe), pipe_config->fdi_lanes);
7073 			return -EINVAL;
7074 		}
7075 
7076 		other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
7077 		other_crtc_state =
7078 			intel_atomic_get_crtc_state(state, other_crtc);
7079 		if (IS_ERR(other_crtc_state))
7080 			return PTR_ERR(other_crtc_state);
7081 
7082 		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7083 			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7084 			return -EINVAL;
7085 		}
7086 		return 0;
7087 	default:
7088 		BUG();
7089 	}
7090 }
7091 
7092 #define RETRY 1
ironlake_fdi_compute_config(struct intel_crtc * intel_crtc,struct intel_crtc_state * pipe_config)7093 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7094 				       struct intel_crtc_state *pipe_config)
7095 {
7096 	struct drm_device *dev = intel_crtc->base.dev;
7097 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7098 	int lane, link_bw, fdi_dotclock, ret;
7099 	bool needs_recompute = false;
7100 
7101 retry:
7102 	/* FDI is a binary signal running at ~2.7GHz, encoding
7103 	 * each output octet as 10 bits. The actual frequency
7104 	 * is stored as a divider into a 100MHz clock, and the
7105 	 * mode pixel clock is stored in units of 1KHz.
7106 	 * Hence the bw of each lane in terms of the mode signal
7107 	 * is:
7108 	 */
7109 	link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7110 
7111 	fdi_dotclock = adjusted_mode->crtc_clock;
7112 
7113 	lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7114 					   pipe_config->pipe_bpp);
7115 
7116 	pipe_config->fdi_lanes = lane;
7117 
7118 	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7119 			       link_bw, &pipe_config->fdi_m_n);
7120 
7121 	ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7122 	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7123 		pipe_config->pipe_bpp -= 2*3;
7124 		DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7125 			      pipe_config->pipe_bpp);
7126 		needs_recompute = true;
7127 		pipe_config->bw_constrained = true;
7128 
7129 		goto retry;
7130 	}
7131 
7132 	if (needs_recompute)
7133 		return RETRY;
7134 
7135 	return ret;
7136 }
7137 
pipe_config_supports_ips(struct drm_i915_private * dev_priv,struct intel_crtc_state * pipe_config)7138 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
7139 				     struct intel_crtc_state *pipe_config)
7140 {
7141 	if (pipe_config->pipe_bpp > 24)
7142 		return false;
7143 
7144 	/* HSW can handle pixel rate up to cdclk? */
7145 	if (IS_HASWELL(dev_priv))
7146 		return true;
7147 
7148 	/*
7149 	 * We compare against max which means we must take
7150 	 * the increased cdclk requirement into account when
7151 	 * calculating the new cdclk.
7152 	 *
7153 	 * Should measure whether using a lower cdclk w/o IPS
7154 	 */
7155 	return ilk_pipe_pixel_rate(pipe_config) <=
7156 		dev_priv->max_cdclk_freq * 95 / 100;
7157 }
7158 
hsw_compute_ips_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7159 static void hsw_compute_ips_config(struct intel_crtc *crtc,
7160 				   struct intel_crtc_state *pipe_config)
7161 {
7162 	struct drm_device *dev = crtc->base.dev;
7163 	struct drm_i915_private *dev_priv = to_i915(dev);
7164 
7165 	pipe_config->ips_enabled = i915.enable_ips &&
7166 		hsw_crtc_supports_ips(crtc) &&
7167 		pipe_config_supports_ips(dev_priv, pipe_config);
7168 }
7169 
intel_crtc_supports_double_wide(const struct intel_crtc * crtc)7170 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7171 {
7172 	const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7173 
7174 	/* GDG double wide on either pipe, otherwise pipe A only */
7175 	return INTEL_INFO(dev_priv)->gen < 4 &&
7176 		(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7177 }
7178 
intel_crtc_compute_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7179 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7180 				     struct intel_crtc_state *pipe_config)
7181 {
7182 	struct drm_device *dev = crtc->base.dev;
7183 	struct drm_i915_private *dev_priv = to_i915(dev);
7184 	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7185 	int clock_limit = dev_priv->max_dotclk_freq;
7186 
7187 	if (INTEL_INFO(dev)->gen < 4) {
7188 		clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7189 
7190 		/*
7191 		 * Enable double wide mode when the dot clock
7192 		 * is > 90% of the (display) core speed.
7193 		 */
7194 		if (intel_crtc_supports_double_wide(crtc) &&
7195 		    adjusted_mode->crtc_clock > clock_limit) {
7196 			clock_limit = dev_priv->max_dotclk_freq;
7197 			pipe_config->double_wide = true;
7198 		}
7199 	}
7200 
7201 	if (adjusted_mode->crtc_clock > clock_limit) {
7202 		DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7203 			      adjusted_mode->crtc_clock, clock_limit,
7204 			      yesno(pipe_config->double_wide));
7205 		return -EINVAL;
7206 	}
7207 
7208 	/*
7209 	 * Pipe horizontal size must be even in:
7210 	 * - DVO ganged mode
7211 	 * - LVDS dual channel mode
7212 	 * - Double wide pipe
7213 	 */
7214 	if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7215 	     intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
7216 		pipe_config->pipe_src_w &= ~1;
7217 
7218 	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
7219 	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7220 	 */
7221 	if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
7222 		adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7223 		return -EINVAL;
7224 
7225 	if (HAS_IPS(dev))
7226 		hsw_compute_ips_config(crtc, pipe_config);
7227 
7228 	if (pipe_config->has_pch_encoder)
7229 		return ironlake_fdi_compute_config(crtc, pipe_config);
7230 
7231 	return 0;
7232 }
7233 
skylake_get_display_clock_speed(struct drm_device * dev)7234 static int skylake_get_display_clock_speed(struct drm_device *dev)
7235 {
7236 	struct drm_i915_private *dev_priv = to_i915(dev);
7237 	uint32_t cdctl;
7238 
7239 	skl_dpll0_update(dev_priv);
7240 
7241 	if (dev_priv->cdclk_pll.vco == 0)
7242 		return dev_priv->cdclk_pll.ref;
7243 
7244 	cdctl = I915_READ(CDCLK_CTL);
7245 
7246 	if (dev_priv->cdclk_pll.vco == 8640000) {
7247 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7248 		case CDCLK_FREQ_450_432:
7249 			return 432000;
7250 		case CDCLK_FREQ_337_308:
7251 			return 308571;
7252 		case CDCLK_FREQ_540:
7253 			return 540000;
7254 		case CDCLK_FREQ_675_617:
7255 			return 617143;
7256 		default:
7257 			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7258 		}
7259 	} else {
7260 		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
7261 		case CDCLK_FREQ_450_432:
7262 			return 450000;
7263 		case CDCLK_FREQ_337_308:
7264 			return 337500;
7265 		case CDCLK_FREQ_540:
7266 			return 540000;
7267 		case CDCLK_FREQ_675_617:
7268 			return 675000;
7269 		default:
7270 			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
7271 		}
7272 	}
7273 
7274 	return dev_priv->cdclk_pll.ref;
7275 }
7276 
bxt_de_pll_update(struct drm_i915_private * dev_priv)7277 static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
7278 {
7279 	u32 val;
7280 
7281 	dev_priv->cdclk_pll.ref = 19200;
7282 	dev_priv->cdclk_pll.vco = 0;
7283 
7284 	val = I915_READ(BXT_DE_PLL_ENABLE);
7285 	if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
7286 		return;
7287 
7288 	if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
7289 		return;
7290 
7291 	val = I915_READ(BXT_DE_PLL_CTL);
7292 	dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
7293 		dev_priv->cdclk_pll.ref;
7294 }
7295 
broxton_get_display_clock_speed(struct drm_device * dev)7296 static int broxton_get_display_clock_speed(struct drm_device *dev)
7297 {
7298 	struct drm_i915_private *dev_priv = to_i915(dev);
7299 	u32 divider;
7300 	int div, vco;
7301 
7302 	bxt_de_pll_update(dev_priv);
7303 
7304 	vco = dev_priv->cdclk_pll.vco;
7305 	if (vco == 0)
7306 		return dev_priv->cdclk_pll.ref;
7307 
7308 	divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
7309 
7310 	switch (divider) {
7311 	case BXT_CDCLK_CD2X_DIV_SEL_1:
7312 		div = 2;
7313 		break;
7314 	case BXT_CDCLK_CD2X_DIV_SEL_1_5:
7315 		div = 3;
7316 		break;
7317 	case BXT_CDCLK_CD2X_DIV_SEL_2:
7318 		div = 4;
7319 		break;
7320 	case BXT_CDCLK_CD2X_DIV_SEL_4:
7321 		div = 8;
7322 		break;
7323 	default:
7324 		MISSING_CASE(divider);
7325 		return dev_priv->cdclk_pll.ref;
7326 	}
7327 
7328 	return DIV_ROUND_CLOSEST(vco, div);
7329 }
7330 
broadwell_get_display_clock_speed(struct drm_device * dev)7331 static int broadwell_get_display_clock_speed(struct drm_device *dev)
7332 {
7333 	struct drm_i915_private *dev_priv = to_i915(dev);
7334 	uint32_t lcpll = I915_READ(LCPLL_CTL);
7335 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7336 
7337 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
7338 		return 800000;
7339 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7340 		return 450000;
7341 	else if (freq == LCPLL_CLK_FREQ_450)
7342 		return 450000;
7343 	else if (freq == LCPLL_CLK_FREQ_54O_BDW)
7344 		return 540000;
7345 	else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
7346 		return 337500;
7347 	else
7348 		return 675000;
7349 }
7350 
haswell_get_display_clock_speed(struct drm_device * dev)7351 static int haswell_get_display_clock_speed(struct drm_device *dev)
7352 {
7353 	struct drm_i915_private *dev_priv = to_i915(dev);
7354 	uint32_t lcpll = I915_READ(LCPLL_CTL);
7355 	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
7356 
7357 	if (lcpll & LCPLL_CD_SOURCE_FCLK)
7358 		return 800000;
7359 	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
7360 		return 450000;
7361 	else if (freq == LCPLL_CLK_FREQ_450)
7362 		return 450000;
7363 	else if (IS_HSW_ULT(dev))
7364 		return 337500;
7365 	else
7366 		return 540000;
7367 }
7368 
valleyview_get_display_clock_speed(struct drm_device * dev)7369 static int valleyview_get_display_clock_speed(struct drm_device *dev)
7370 {
7371 	return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
7372 				      CCK_DISPLAY_CLOCK_CONTROL);
7373 }
7374 
ilk_get_display_clock_speed(struct drm_device * dev)7375 static int ilk_get_display_clock_speed(struct drm_device *dev)
7376 {
7377 	return 450000;
7378 }
7379 
i945_get_display_clock_speed(struct drm_device * dev)7380 static int i945_get_display_clock_speed(struct drm_device *dev)
7381 {
7382 	return 400000;
7383 }
7384 
i915_get_display_clock_speed(struct drm_device * dev)7385 static int i915_get_display_clock_speed(struct drm_device *dev)
7386 {
7387 	return 333333;
7388 }
7389 
i9xx_misc_get_display_clock_speed(struct drm_device * dev)7390 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
7391 {
7392 	return 200000;
7393 }
7394 
pnv_get_display_clock_speed(struct drm_device * dev)7395 static int pnv_get_display_clock_speed(struct drm_device *dev)
7396 {
7397 	struct pci_dev *pdev = dev->pdev;
7398 	u16 gcfgc = 0;
7399 
7400 	pci_read_config_word(pdev, GCFGC, &gcfgc);
7401 
7402 	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7403 	case GC_DISPLAY_CLOCK_267_MHZ_PNV:
7404 		return 266667;
7405 	case GC_DISPLAY_CLOCK_333_MHZ_PNV:
7406 		return 333333;
7407 	case GC_DISPLAY_CLOCK_444_MHZ_PNV:
7408 		return 444444;
7409 	case GC_DISPLAY_CLOCK_200_MHZ_PNV:
7410 		return 200000;
7411 	default:
7412 		DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
7413 	case GC_DISPLAY_CLOCK_133_MHZ_PNV:
7414 		return 133333;
7415 	case GC_DISPLAY_CLOCK_167_MHZ_PNV:
7416 		return 166667;
7417 	}
7418 }
7419 
i915gm_get_display_clock_speed(struct drm_device * dev)7420 static int i915gm_get_display_clock_speed(struct drm_device *dev)
7421 {
7422 	struct pci_dev *pdev = dev->pdev;
7423 	u16 gcfgc = 0;
7424 
7425 	pci_read_config_word(pdev, GCFGC, &gcfgc);
7426 
7427 	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
7428 		return 133333;
7429 	else {
7430 		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
7431 		case GC_DISPLAY_CLOCK_333_MHZ:
7432 			return 333333;
7433 		default:
7434 		case GC_DISPLAY_CLOCK_190_200_MHZ:
7435 			return 190000;
7436 		}
7437 	}
7438 }
7439 
i865_get_display_clock_speed(struct drm_device * dev)7440 static int i865_get_display_clock_speed(struct drm_device *dev)
7441 {
7442 	return 266667;
7443 }
7444 
i85x_get_display_clock_speed(struct drm_device * dev)7445 static int i85x_get_display_clock_speed(struct drm_device *dev)
7446 {
7447 	struct pci_dev *pdev = dev->pdev;
7448 	u16 hpllcc = 0;
7449 
7450 	/*
7451 	 * 852GM/852GMV only supports 133 MHz and the HPLLCC
7452 	 * encoding is different :(
7453 	 * FIXME is this the right way to detect 852GM/852GMV?
7454 	 */
7455 	if (pdev->revision == 0x1)
7456 		return 133333;
7457 
7458 	pci_bus_read_config_word(pdev->bus,
7459 				 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
7460 
7461 	/* Assume that the hardware is in the high speed state.  This
7462 	 * should be the default.
7463 	 */
7464 	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
7465 	case GC_CLOCK_133_200:
7466 	case GC_CLOCK_133_200_2:
7467 	case GC_CLOCK_100_200:
7468 		return 200000;
7469 	case GC_CLOCK_166_250:
7470 		return 250000;
7471 	case GC_CLOCK_100_133:
7472 		return 133333;
7473 	case GC_CLOCK_133_266:
7474 	case GC_CLOCK_133_266_2:
7475 	case GC_CLOCK_166_266:
7476 		return 266667;
7477 	}
7478 
7479 	/* Shouldn't happen */
7480 	return 0;
7481 }
7482 
i830_get_display_clock_speed(struct drm_device * dev)7483 static int i830_get_display_clock_speed(struct drm_device *dev)
7484 {
7485 	return 133333;
7486 }
7487 
intel_hpll_vco(struct drm_device * dev)7488 static unsigned int intel_hpll_vco(struct drm_device *dev)
7489 {
7490 	struct drm_i915_private *dev_priv = to_i915(dev);
7491 	static const unsigned int blb_vco[8] = {
7492 		[0] = 3200000,
7493 		[1] = 4000000,
7494 		[2] = 5333333,
7495 		[3] = 4800000,
7496 		[4] = 6400000,
7497 	};
7498 	static const unsigned int pnv_vco[8] = {
7499 		[0] = 3200000,
7500 		[1] = 4000000,
7501 		[2] = 5333333,
7502 		[3] = 4800000,
7503 		[4] = 2666667,
7504 	};
7505 	static const unsigned int cl_vco[8] = {
7506 		[0] = 3200000,
7507 		[1] = 4000000,
7508 		[2] = 5333333,
7509 		[3] = 6400000,
7510 		[4] = 3333333,
7511 		[5] = 3566667,
7512 		[6] = 4266667,
7513 	};
7514 	static const unsigned int elk_vco[8] = {
7515 		[0] = 3200000,
7516 		[1] = 4000000,
7517 		[2] = 5333333,
7518 		[3] = 4800000,
7519 	};
7520 	static const unsigned int ctg_vco[8] = {
7521 		[0] = 3200000,
7522 		[1] = 4000000,
7523 		[2] = 5333333,
7524 		[3] = 6400000,
7525 		[4] = 2666667,
7526 		[5] = 4266667,
7527 	};
7528 	const unsigned int *vco_table;
7529 	unsigned int vco;
7530 	uint8_t tmp = 0;
7531 
7532 	/* FIXME other chipsets? */
7533 	if (IS_GM45(dev))
7534 		vco_table = ctg_vco;
7535 	else if (IS_G4X(dev))
7536 		vco_table = elk_vco;
7537 	else if (IS_CRESTLINE(dev))
7538 		vco_table = cl_vco;
7539 	else if (IS_PINEVIEW(dev))
7540 		vco_table = pnv_vco;
7541 	else if (IS_G33(dev))
7542 		vco_table = blb_vco;
7543 	else
7544 		return 0;
7545 
7546 	tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
7547 
7548 	vco = vco_table[tmp & 0x7];
7549 	if (vco == 0)
7550 		DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7551 	else
7552 		DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7553 
7554 	return vco;
7555 }
7556 
gm45_get_display_clock_speed(struct drm_device * dev)7557 static int gm45_get_display_clock_speed(struct drm_device *dev)
7558 {
7559 	struct pci_dev *pdev = dev->pdev;
7560 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7561 	uint16_t tmp = 0;
7562 
7563 	pci_read_config_word(pdev, GCFGC, &tmp);
7564 
7565 	cdclk_sel = (tmp >> 12) & 0x1;
7566 
7567 	switch (vco) {
7568 	case 2666667:
7569 	case 4000000:
7570 	case 5333333:
7571 		return cdclk_sel ? 333333 : 222222;
7572 	case 3200000:
7573 		return cdclk_sel ? 320000 : 228571;
7574 	default:
7575 		DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7576 		return 222222;
7577 	}
7578 }
7579 
i965gm_get_display_clock_speed(struct drm_device * dev)7580 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7581 {
7582 	struct pci_dev *pdev = dev->pdev;
7583 	static const uint8_t div_3200[] = { 16, 10,  8 };
7584 	static const uint8_t div_4000[] = { 20, 12, 10 };
7585 	static const uint8_t div_5333[] = { 24, 16, 14 };
7586 	const uint8_t *div_table;
7587 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7588 	uint16_t tmp = 0;
7589 
7590 	pci_read_config_word(pdev, GCFGC, &tmp);
7591 
7592 	cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7593 
7594 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
7595 		goto fail;
7596 
7597 	switch (vco) {
7598 	case 3200000:
7599 		div_table = div_3200;
7600 		break;
7601 	case 4000000:
7602 		div_table = div_4000;
7603 		break;
7604 	case 5333333:
7605 		div_table = div_5333;
7606 		break;
7607 	default:
7608 		goto fail;
7609 	}
7610 
7611 	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7612 
7613 fail:
7614 	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7615 	return 200000;
7616 }
7617 
g33_get_display_clock_speed(struct drm_device * dev)7618 static int g33_get_display_clock_speed(struct drm_device *dev)
7619 {
7620 	struct pci_dev *pdev = dev->pdev;
7621 	static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7622 	static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7623 	static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7624 	static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7625 	const uint8_t *div_table;
7626 	unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7627 	uint16_t tmp = 0;
7628 
7629 	pci_read_config_word(pdev, GCFGC, &tmp);
7630 
7631 	cdclk_sel = (tmp >> 4) & 0x7;
7632 
7633 	if (cdclk_sel >= ARRAY_SIZE(div_3200))
7634 		goto fail;
7635 
7636 	switch (vco) {
7637 	case 3200000:
7638 		div_table = div_3200;
7639 		break;
7640 	case 4000000:
7641 		div_table = div_4000;
7642 		break;
7643 	case 4800000:
7644 		div_table = div_4800;
7645 		break;
7646 	case 5333333:
7647 		div_table = div_5333;
7648 		break;
7649 	default:
7650 		goto fail;
7651 	}
7652 
7653 	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7654 
7655 fail:
7656 	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7657 	return 190476;
7658 }
7659 
7660 static void
intel_reduce_m_n_ratio(uint32_t * num,uint32_t * den)7661 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7662 {
7663 	while (*num > DATA_LINK_M_N_MASK ||
7664 	       *den > DATA_LINK_M_N_MASK) {
7665 		*num >>= 1;
7666 		*den >>= 1;
7667 	}
7668 }
7669 
compute_m_n(unsigned int m,unsigned int n,uint32_t * ret_m,uint32_t * ret_n)7670 static void compute_m_n(unsigned int m, unsigned int n,
7671 			uint32_t *ret_m, uint32_t *ret_n)
7672 {
7673 	*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7674 	*ret_m = div_u64((uint64_t) m * *ret_n, n);
7675 	intel_reduce_m_n_ratio(ret_m, ret_n);
7676 }
7677 
7678 void
intel_link_compute_m_n(int bits_per_pixel,int nlanes,int pixel_clock,int link_clock,struct intel_link_m_n * m_n)7679 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7680 		       int pixel_clock, int link_clock,
7681 		       struct intel_link_m_n *m_n)
7682 {
7683 	m_n->tu = 64;
7684 
7685 	compute_m_n(bits_per_pixel * pixel_clock,
7686 		    link_clock * nlanes * 8,
7687 		    &m_n->gmch_m, &m_n->gmch_n);
7688 
7689 	compute_m_n(pixel_clock, link_clock,
7690 		    &m_n->link_m, &m_n->link_n);
7691 }
7692 
intel_panel_use_ssc(struct drm_i915_private * dev_priv)7693 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7694 {
7695 	if (i915.panel_use_ssc >= 0)
7696 		return i915.panel_use_ssc != 0;
7697 	return dev_priv->vbt.lvds_use_ssc
7698 		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7699 }
7700 
pnv_dpll_compute_fp(struct dpll * dpll)7701 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7702 {
7703 	return (1 << dpll->n) << 16 | dpll->m2;
7704 }
7705 
i9xx_dpll_compute_fp(struct dpll * dpll)7706 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7707 {
7708 	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7709 }
7710 
i9xx_update_pll_dividers(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)7711 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7712 				     struct intel_crtc_state *crtc_state,
7713 				     struct dpll *reduced_clock)
7714 {
7715 	struct drm_device *dev = crtc->base.dev;
7716 	u32 fp, fp2 = 0;
7717 
7718 	if (IS_PINEVIEW(dev)) {
7719 		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7720 		if (reduced_clock)
7721 			fp2 = pnv_dpll_compute_fp(reduced_clock);
7722 	} else {
7723 		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7724 		if (reduced_clock)
7725 			fp2 = i9xx_dpll_compute_fp(reduced_clock);
7726 	}
7727 
7728 	crtc_state->dpll_hw_state.fp0 = fp;
7729 
7730 	crtc->lowfreq_avail = false;
7731 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7732 	    reduced_clock) {
7733 		crtc_state->dpll_hw_state.fp1 = fp2;
7734 		crtc->lowfreq_avail = true;
7735 	} else {
7736 		crtc_state->dpll_hw_state.fp1 = fp;
7737 	}
7738 }
7739 
vlv_pllb_recal_opamp(struct drm_i915_private * dev_priv,enum pipe pipe)7740 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7741 		pipe)
7742 {
7743 	u32 reg_val;
7744 
7745 	/*
7746 	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7747 	 * and set it to a reasonable value instead.
7748 	 */
7749 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7750 	reg_val &= 0xffffff00;
7751 	reg_val |= 0x00000030;
7752 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7753 
7754 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7755 	reg_val &= 0x8cffffff;
7756 	reg_val = 0x8c000000;
7757 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7758 
7759 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7760 	reg_val &= 0xffffff00;
7761 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7762 
7763 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7764 	reg_val &= 0x00ffffff;
7765 	reg_val |= 0xb0000000;
7766 	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7767 }
7768 
intel_pch_transcoder_set_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n)7769 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7770 					 struct intel_link_m_n *m_n)
7771 {
7772 	struct drm_device *dev = crtc->base.dev;
7773 	struct drm_i915_private *dev_priv = to_i915(dev);
7774 	int pipe = crtc->pipe;
7775 
7776 	I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7777 	I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7778 	I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7779 	I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7780 }
7781 
intel_cpu_transcoder_set_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2)7782 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7783 					 struct intel_link_m_n *m_n,
7784 					 struct intel_link_m_n *m2_n2)
7785 {
7786 	struct drm_device *dev = crtc->base.dev;
7787 	struct drm_i915_private *dev_priv = to_i915(dev);
7788 	int pipe = crtc->pipe;
7789 	enum transcoder transcoder = crtc->config->cpu_transcoder;
7790 
7791 	if (INTEL_INFO(dev)->gen >= 5) {
7792 		I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7793 		I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7794 		I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7795 		I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7796 		/* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7797 		 * for gen < 8) and if DRRS is supported (to make sure the
7798 		 * registers are not unnecessarily accessed).
7799 		 */
7800 		if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7801 			crtc->config->has_drrs) {
7802 			I915_WRITE(PIPE_DATA_M2(transcoder),
7803 					TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7804 			I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7805 			I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7806 			I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7807 		}
7808 	} else {
7809 		I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7810 		I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7811 		I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7812 		I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7813 	}
7814 }
7815 
intel_dp_set_m_n(struct intel_crtc * crtc,enum link_m_n_set m_n)7816 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7817 {
7818 	struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7819 
7820 	if (m_n == M1_N1) {
7821 		dp_m_n = &crtc->config->dp_m_n;
7822 		dp_m2_n2 = &crtc->config->dp_m2_n2;
7823 	} else if (m_n == M2_N2) {
7824 
7825 		/*
7826 		 * M2_N2 registers are not supported. Hence m2_n2 divider value
7827 		 * needs to be programmed into M1_N1.
7828 		 */
7829 		dp_m_n = &crtc->config->dp_m2_n2;
7830 	} else {
7831 		DRM_ERROR("Unsupported divider value\n");
7832 		return;
7833 	}
7834 
7835 	if (crtc->config->has_pch_encoder)
7836 		intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7837 	else
7838 		intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7839 }
7840 
vlv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7841 static void vlv_compute_dpll(struct intel_crtc *crtc,
7842 			     struct intel_crtc_state *pipe_config)
7843 {
7844 	pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7845 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7846 	if (crtc->pipe != PIPE_A)
7847 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7848 
7849 	/* DPLL not used with DSI, but still need the rest set up */
7850 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7851 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7852 			DPLL_EXT_BUFFER_ENABLE_VLV;
7853 
7854 	pipe_config->dpll_hw_state.dpll_md =
7855 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7856 }
7857 
chv_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)7858 static void chv_compute_dpll(struct intel_crtc *crtc,
7859 			     struct intel_crtc_state *pipe_config)
7860 {
7861 	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7862 		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7863 	if (crtc->pipe != PIPE_A)
7864 		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7865 
7866 	/* DPLL not used with DSI, but still need the rest set up */
7867 	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7868 		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7869 
7870 	pipe_config->dpll_hw_state.dpll_md =
7871 		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7872 }
7873 
vlv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)7874 static void vlv_prepare_pll(struct intel_crtc *crtc,
7875 			    const struct intel_crtc_state *pipe_config)
7876 {
7877 	struct drm_device *dev = crtc->base.dev;
7878 	struct drm_i915_private *dev_priv = to_i915(dev);
7879 	enum pipe pipe = crtc->pipe;
7880 	u32 mdiv;
7881 	u32 bestn, bestm1, bestm2, bestp1, bestp2;
7882 	u32 coreclk, reg_val;
7883 
7884 	/* Enable Refclk */
7885 	I915_WRITE(DPLL(pipe),
7886 		   pipe_config->dpll_hw_state.dpll &
7887 		   ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7888 
7889 	/* No need to actually set up the DPLL with DSI */
7890 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7891 		return;
7892 
7893 	mutex_lock(&dev_priv->sb_lock);
7894 
7895 	bestn = pipe_config->dpll.n;
7896 	bestm1 = pipe_config->dpll.m1;
7897 	bestm2 = pipe_config->dpll.m2;
7898 	bestp1 = pipe_config->dpll.p1;
7899 	bestp2 = pipe_config->dpll.p2;
7900 
7901 	/* See eDP HDMI DPIO driver vbios notes doc */
7902 
7903 	/* PLL B needs special handling */
7904 	if (pipe == PIPE_B)
7905 		vlv_pllb_recal_opamp(dev_priv, pipe);
7906 
7907 	/* Set up Tx target for periodic Rcomp update */
7908 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7909 
7910 	/* Disable target IRef on PLL */
7911 	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7912 	reg_val &= 0x00ffffff;
7913 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7914 
7915 	/* Disable fast lock */
7916 	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7917 
7918 	/* Set idtafcrecal before PLL is enabled */
7919 	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7920 	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7921 	mdiv |= ((bestn << DPIO_N_SHIFT));
7922 	mdiv |= (1 << DPIO_K_SHIFT);
7923 
7924 	/*
7925 	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7926 	 * but we don't support that).
7927 	 * Note: don't use the DAC post divider as it seems unstable.
7928 	 */
7929 	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7930 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7931 
7932 	mdiv |= DPIO_ENABLE_CALIBRATION;
7933 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7934 
7935 	/* Set HBR and RBR LPF coefficients */
7936 	if (pipe_config->port_clock == 162000 ||
7937 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
7938 	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
7939 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7940 				 0x009f0003);
7941 	else
7942 		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7943 				 0x00d0000f);
7944 
7945 	if (intel_crtc_has_dp_encoder(pipe_config)) {
7946 		/* Use SSC source */
7947 		if (pipe == PIPE_A)
7948 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7949 					 0x0df40000);
7950 		else
7951 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7952 					 0x0df70000);
7953 	} else { /* HDMI or VGA */
7954 		/* Use bend source */
7955 		if (pipe == PIPE_A)
7956 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7957 					 0x0df70000);
7958 		else
7959 			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7960 					 0x0df40000);
7961 	}
7962 
7963 	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7964 	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7965 	if (intel_crtc_has_dp_encoder(crtc->config))
7966 		coreclk |= 0x01000000;
7967 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7968 
7969 	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7970 	mutex_unlock(&dev_priv->sb_lock);
7971 }
7972 
chv_prepare_pll(struct intel_crtc * crtc,const struct intel_crtc_state * pipe_config)7973 static void chv_prepare_pll(struct intel_crtc *crtc,
7974 			    const struct intel_crtc_state *pipe_config)
7975 {
7976 	struct drm_device *dev = crtc->base.dev;
7977 	struct drm_i915_private *dev_priv = to_i915(dev);
7978 	enum pipe pipe = crtc->pipe;
7979 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
7980 	u32 loopfilter, tribuf_calcntr;
7981 	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7982 	u32 dpio_val;
7983 	int vco;
7984 
7985 	/* Enable Refclk and SSC */
7986 	I915_WRITE(DPLL(pipe),
7987 		   pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7988 
7989 	/* No need to actually set up the DPLL with DSI */
7990 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7991 		return;
7992 
7993 	bestn = pipe_config->dpll.n;
7994 	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7995 	bestm1 = pipe_config->dpll.m1;
7996 	bestm2 = pipe_config->dpll.m2 >> 22;
7997 	bestp1 = pipe_config->dpll.p1;
7998 	bestp2 = pipe_config->dpll.p2;
7999 	vco = pipe_config->dpll.vco;
8000 	dpio_val = 0;
8001 	loopfilter = 0;
8002 
8003 	mutex_lock(&dev_priv->sb_lock);
8004 
8005 	/* p1 and p2 divider */
8006 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
8007 			5 << DPIO_CHV_S1_DIV_SHIFT |
8008 			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8009 			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8010 			1 << DPIO_CHV_K_DIV_SHIFT);
8011 
8012 	/* Feedback post-divider - m2 */
8013 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8014 
8015 	/* Feedback refclk divider - n and m1 */
8016 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8017 			DPIO_CHV_M1_DIV_BY_2 |
8018 			1 << DPIO_CHV_N_DIV_SHIFT);
8019 
8020 	/* M2 fraction division */
8021 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8022 
8023 	/* M2 fraction division enable */
8024 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8025 	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8026 	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8027 	if (bestm2_frac)
8028 		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8029 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8030 
8031 	/* Program digital lock detect threshold */
8032 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8033 	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8034 					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8035 	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8036 	if (!bestm2_frac)
8037 		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8038 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8039 
8040 	/* Loop filter */
8041 	if (vco == 5400000) {
8042 		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8043 		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8044 		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8045 		tribuf_calcntr = 0x9;
8046 	} else if (vco <= 6200000) {
8047 		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8048 		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8049 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8050 		tribuf_calcntr = 0x9;
8051 	} else if (vco <= 6480000) {
8052 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8053 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8054 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8055 		tribuf_calcntr = 0x8;
8056 	} else {
8057 		/* Not supported. Apply the same limits as in the max case */
8058 		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8059 		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8060 		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8061 		tribuf_calcntr = 0;
8062 	}
8063 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8064 
8065 	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8066 	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8067 	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8068 	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8069 
8070 	/* AFC Recal */
8071 	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8072 			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8073 			DPIO_AFC_RECAL);
8074 
8075 	mutex_unlock(&dev_priv->sb_lock);
8076 }
8077 
8078 /**
8079  * vlv_force_pll_on - forcibly enable just the PLL
8080  * @dev_priv: i915 private structure
8081  * @pipe: pipe PLL to enable
8082  * @dpll: PLL configuration
8083  *
8084  * Enable the PLL for @pipe using the supplied @dpll config. To be used
8085  * in cases where we need the PLL enabled even when @pipe is not going to
8086  * be enabled.
8087  */
vlv_force_pll_on(struct drm_device * dev,enum pipe pipe,const struct dpll * dpll)8088 int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
8089 		     const struct dpll *dpll)
8090 {
8091 	struct intel_crtc *crtc =
8092 		to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
8093 	struct intel_crtc_state *pipe_config;
8094 
8095 	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8096 	if (!pipe_config)
8097 		return -ENOMEM;
8098 
8099 	pipe_config->base.crtc = &crtc->base;
8100 	pipe_config->pixel_multiplier = 1;
8101 	pipe_config->dpll = *dpll;
8102 
8103 	if (IS_CHERRYVIEW(dev)) {
8104 		chv_compute_dpll(crtc, pipe_config);
8105 		chv_prepare_pll(crtc, pipe_config);
8106 		chv_enable_pll(crtc, pipe_config);
8107 	} else {
8108 		vlv_compute_dpll(crtc, pipe_config);
8109 		vlv_prepare_pll(crtc, pipe_config);
8110 		vlv_enable_pll(crtc, pipe_config);
8111 	}
8112 
8113 	kfree(pipe_config);
8114 
8115 	return 0;
8116 }
8117 
8118 /**
8119  * vlv_force_pll_off - forcibly disable just the PLL
8120  * @dev_priv: i915 private structure
8121  * @pipe: pipe PLL to disable
8122  *
8123  * Disable the PLL for @pipe. To be used in cases where we need
8124  * the PLL enabled even when @pipe is not going to be enabled.
8125  */
vlv_force_pll_off(struct drm_device * dev,enum pipe pipe)8126 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
8127 {
8128 	if (IS_CHERRYVIEW(dev))
8129 		chv_disable_pll(to_i915(dev), pipe);
8130 	else
8131 		vlv_disable_pll(to_i915(dev), pipe);
8132 }
8133 
i9xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)8134 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8135 			      struct intel_crtc_state *crtc_state,
8136 			      struct dpll *reduced_clock)
8137 {
8138 	struct drm_device *dev = crtc->base.dev;
8139 	struct drm_i915_private *dev_priv = to_i915(dev);
8140 	u32 dpll;
8141 	struct dpll *clock = &crtc_state->dpll;
8142 
8143 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8144 
8145 	dpll = DPLL_VGA_MODE_DIS;
8146 
8147 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8148 		dpll |= DPLLB_MODE_LVDS;
8149 	else
8150 		dpll |= DPLLB_MODE_DAC_SERIAL;
8151 
8152 	if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8153 		dpll |= (crtc_state->pixel_multiplier - 1)
8154 			<< SDVO_MULTIPLIER_SHIFT_HIRES;
8155 	}
8156 
8157 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8158 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8159 		dpll |= DPLL_SDVO_HIGH_SPEED;
8160 
8161 	if (intel_crtc_has_dp_encoder(crtc_state))
8162 		dpll |= DPLL_SDVO_HIGH_SPEED;
8163 
8164 	/* compute bitmask from p1 value */
8165 	if (IS_PINEVIEW(dev))
8166 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8167 	else {
8168 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8169 		if (IS_G4X(dev) && reduced_clock)
8170 			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8171 	}
8172 	switch (clock->p2) {
8173 	case 5:
8174 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8175 		break;
8176 	case 7:
8177 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8178 		break;
8179 	case 10:
8180 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8181 		break;
8182 	case 14:
8183 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8184 		break;
8185 	}
8186 	if (INTEL_INFO(dev)->gen >= 4)
8187 		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8188 
8189 	if (crtc_state->sdvo_tv_clock)
8190 		dpll |= PLL_REF_INPUT_TVCLKINBC;
8191 	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8192 		 intel_panel_use_ssc(dev_priv))
8193 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8194 	else
8195 		dpll |= PLL_REF_INPUT_DREFCLK;
8196 
8197 	dpll |= DPLL_VCO_ENABLE;
8198 	crtc_state->dpll_hw_state.dpll = dpll;
8199 
8200 	if (INTEL_INFO(dev)->gen >= 4) {
8201 		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8202 			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
8203 		crtc_state->dpll_hw_state.dpll_md = dpll_md;
8204 	}
8205 }
8206 
i8xx_compute_dpll(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)8207 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8208 			      struct intel_crtc_state *crtc_state,
8209 			      struct dpll *reduced_clock)
8210 {
8211 	struct drm_device *dev = crtc->base.dev;
8212 	struct drm_i915_private *dev_priv = to_i915(dev);
8213 	u32 dpll;
8214 	struct dpll *clock = &crtc_state->dpll;
8215 
8216 	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8217 
8218 	dpll = DPLL_VGA_MODE_DIS;
8219 
8220 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8221 		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8222 	} else {
8223 		if (clock->p1 == 2)
8224 			dpll |= PLL_P1_DIVIDE_BY_TWO;
8225 		else
8226 			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8227 		if (clock->p2 == 4)
8228 			dpll |= PLL_P2_DIVIDE_BY_4;
8229 	}
8230 
8231 	if (!IS_I830(dev) && intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8232 		dpll |= DPLL_DVO_2X_MODE;
8233 
8234 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8235 	    intel_panel_use_ssc(dev_priv))
8236 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8237 	else
8238 		dpll |= PLL_REF_INPUT_DREFCLK;
8239 
8240 	dpll |= DPLL_VCO_ENABLE;
8241 	crtc_state->dpll_hw_state.dpll = dpll;
8242 }
8243 
intel_set_pipe_timings(struct intel_crtc * intel_crtc)8244 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
8245 {
8246 	struct drm_device *dev = intel_crtc->base.dev;
8247 	struct drm_i915_private *dev_priv = to_i915(dev);
8248 	enum pipe pipe = intel_crtc->pipe;
8249 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8250 	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
8251 	uint32_t crtc_vtotal, crtc_vblank_end;
8252 	int vsyncshift = 0;
8253 
8254 	/* We need to be careful not to changed the adjusted mode, for otherwise
8255 	 * the hw state checker will get angry at the mismatch. */
8256 	crtc_vtotal = adjusted_mode->crtc_vtotal;
8257 	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8258 
8259 	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8260 		/* the chip adds 2 halflines automatically */
8261 		crtc_vtotal -= 1;
8262 		crtc_vblank_end -= 1;
8263 
8264 		if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8265 			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8266 		else
8267 			vsyncshift = adjusted_mode->crtc_hsync_start -
8268 				adjusted_mode->crtc_htotal / 2;
8269 		if (vsyncshift < 0)
8270 			vsyncshift += adjusted_mode->crtc_htotal;
8271 	}
8272 
8273 	if (INTEL_INFO(dev)->gen > 3)
8274 		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8275 
8276 	I915_WRITE(HTOTAL(cpu_transcoder),
8277 		   (adjusted_mode->crtc_hdisplay - 1) |
8278 		   ((adjusted_mode->crtc_htotal - 1) << 16));
8279 	I915_WRITE(HBLANK(cpu_transcoder),
8280 		   (adjusted_mode->crtc_hblank_start - 1) |
8281 		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
8282 	I915_WRITE(HSYNC(cpu_transcoder),
8283 		   (adjusted_mode->crtc_hsync_start - 1) |
8284 		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
8285 
8286 	I915_WRITE(VTOTAL(cpu_transcoder),
8287 		   (adjusted_mode->crtc_vdisplay - 1) |
8288 		   ((crtc_vtotal - 1) << 16));
8289 	I915_WRITE(VBLANK(cpu_transcoder),
8290 		   (adjusted_mode->crtc_vblank_start - 1) |
8291 		   ((crtc_vblank_end - 1) << 16));
8292 	I915_WRITE(VSYNC(cpu_transcoder),
8293 		   (adjusted_mode->crtc_vsync_start - 1) |
8294 		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
8295 
8296 	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8297 	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8298 	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
8299 	 * bits. */
8300 	if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
8301 	    (pipe == PIPE_B || pipe == PIPE_C))
8302 		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8303 
8304 }
8305 
intel_set_pipe_src_size(struct intel_crtc * intel_crtc)8306 static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
8307 {
8308 	struct drm_device *dev = intel_crtc->base.dev;
8309 	struct drm_i915_private *dev_priv = to_i915(dev);
8310 	enum pipe pipe = intel_crtc->pipe;
8311 
8312 	/* pipesrc controls the size that is scaled from, which should
8313 	 * always be the user's requested size.
8314 	 */
8315 	I915_WRITE(PIPESRC(pipe),
8316 		   ((intel_crtc->config->pipe_src_w - 1) << 16) |
8317 		   (intel_crtc->config->pipe_src_h - 1));
8318 }
8319 
intel_get_pipe_timings(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8320 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8321 				   struct intel_crtc_state *pipe_config)
8322 {
8323 	struct drm_device *dev = crtc->base.dev;
8324 	struct drm_i915_private *dev_priv = to_i915(dev);
8325 	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8326 	uint32_t tmp;
8327 
8328 	tmp = I915_READ(HTOTAL(cpu_transcoder));
8329 	pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8330 	pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8331 	tmp = I915_READ(HBLANK(cpu_transcoder));
8332 	pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
8333 	pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
8334 	tmp = I915_READ(HSYNC(cpu_transcoder));
8335 	pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8336 	pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8337 
8338 	tmp = I915_READ(VTOTAL(cpu_transcoder));
8339 	pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8340 	pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8341 	tmp = I915_READ(VBLANK(cpu_transcoder));
8342 	pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
8343 	pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
8344 	tmp = I915_READ(VSYNC(cpu_transcoder));
8345 	pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8346 	pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8347 
8348 	if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
8349 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8350 		pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8351 		pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8352 	}
8353 }
8354 
intel_get_pipe_src_size(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8355 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8356 				    struct intel_crtc_state *pipe_config)
8357 {
8358 	struct drm_device *dev = crtc->base.dev;
8359 	struct drm_i915_private *dev_priv = to_i915(dev);
8360 	u32 tmp;
8361 
8362 	tmp = I915_READ(PIPESRC(crtc->pipe));
8363 	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8364 	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8365 
8366 	pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8367 	pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8368 }
8369 
intel_mode_from_pipe_config(struct drm_display_mode * mode,struct intel_crtc_state * pipe_config)8370 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8371 				 struct intel_crtc_state *pipe_config)
8372 {
8373 	mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8374 	mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8375 	mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8376 	mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8377 
8378 	mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8379 	mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8380 	mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8381 	mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8382 
8383 	mode->flags = pipe_config->base.adjusted_mode.flags;
8384 	mode->type = DRM_MODE_TYPE_DRIVER;
8385 
8386 	mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8387 	mode->flags |= pipe_config->base.adjusted_mode.flags;
8388 
8389 	mode->hsync = drm_mode_hsync(mode);
8390 	mode->vrefresh = drm_mode_vrefresh(mode);
8391 	drm_mode_set_name(mode);
8392 }
8393 
i9xx_set_pipeconf(struct intel_crtc * intel_crtc)8394 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
8395 {
8396 	struct drm_device *dev = intel_crtc->base.dev;
8397 	struct drm_i915_private *dev_priv = to_i915(dev);
8398 	uint32_t pipeconf;
8399 
8400 	pipeconf = 0;
8401 
8402 	if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
8403 	    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8404 		pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
8405 
8406 	if (intel_crtc->config->double_wide)
8407 		pipeconf |= PIPECONF_DOUBLE_WIDE;
8408 
8409 	/* only g4x and later have fancy bpc/dither controls */
8410 	if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8411 		/* Bspec claims that we can't use dithering for 30bpp pipes. */
8412 		if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
8413 			pipeconf |= PIPECONF_DITHER_EN |
8414 				    PIPECONF_DITHER_TYPE_SP;
8415 
8416 		switch (intel_crtc->config->pipe_bpp) {
8417 		case 18:
8418 			pipeconf |= PIPECONF_6BPC;
8419 			break;
8420 		case 24:
8421 			pipeconf |= PIPECONF_8BPC;
8422 			break;
8423 		case 30:
8424 			pipeconf |= PIPECONF_10BPC;
8425 			break;
8426 		default:
8427 			/* Case prevented by intel_choose_pipe_bpp_dither. */
8428 			BUG();
8429 		}
8430 	}
8431 
8432 	if (HAS_PIPE_CXSR(dev)) {
8433 		if (intel_crtc->lowfreq_avail) {
8434 			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
8435 			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
8436 		} else {
8437 			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
8438 		}
8439 	}
8440 
8441 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8442 		if (INTEL_INFO(dev)->gen < 4 ||
8443 		    intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
8444 			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8445 		else
8446 			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8447 	} else
8448 		pipeconf |= PIPECONF_PROGRESSIVE;
8449 
8450 	if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8451 	     intel_crtc->config->limited_color_range)
8452 		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8453 
8454 	I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
8455 	POSTING_READ(PIPECONF(intel_crtc->pipe));
8456 }
8457 
i8xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)8458 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8459 				   struct intel_crtc_state *crtc_state)
8460 {
8461 	struct drm_device *dev = crtc->base.dev;
8462 	struct drm_i915_private *dev_priv = to_i915(dev);
8463 	const struct intel_limit *limit;
8464 	int refclk = 48000;
8465 
8466 	memset(&crtc_state->dpll_hw_state, 0,
8467 	       sizeof(crtc_state->dpll_hw_state));
8468 
8469 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8470 		if (intel_panel_use_ssc(dev_priv)) {
8471 			refclk = dev_priv->vbt.lvds_ssc_freq;
8472 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8473 		}
8474 
8475 		limit = &intel_limits_i8xx_lvds;
8476 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8477 		limit = &intel_limits_i8xx_dvo;
8478 	} else {
8479 		limit = &intel_limits_i8xx_dac;
8480 	}
8481 
8482 	if (!crtc_state->clock_set &&
8483 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8484 				 refclk, NULL, &crtc_state->dpll)) {
8485 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8486 		return -EINVAL;
8487 	}
8488 
8489 	i8xx_compute_dpll(crtc, crtc_state, NULL);
8490 
8491 	return 0;
8492 }
8493 
g4x_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)8494 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8495 				  struct intel_crtc_state *crtc_state)
8496 {
8497 	struct drm_device *dev = crtc->base.dev;
8498 	struct drm_i915_private *dev_priv = to_i915(dev);
8499 	const struct intel_limit *limit;
8500 	int refclk = 96000;
8501 
8502 	memset(&crtc_state->dpll_hw_state, 0,
8503 	       sizeof(crtc_state->dpll_hw_state));
8504 
8505 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8506 		if (intel_panel_use_ssc(dev_priv)) {
8507 			refclk = dev_priv->vbt.lvds_ssc_freq;
8508 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8509 		}
8510 
8511 		if (intel_is_dual_link_lvds(dev))
8512 			limit = &intel_limits_g4x_dual_channel_lvds;
8513 		else
8514 			limit = &intel_limits_g4x_single_channel_lvds;
8515 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8516 		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8517 		limit = &intel_limits_g4x_hdmi;
8518 	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8519 		limit = &intel_limits_g4x_sdvo;
8520 	} else {
8521 		/* The option is for other outputs */
8522 		limit = &intel_limits_i9xx_sdvo;
8523 	}
8524 
8525 	if (!crtc_state->clock_set &&
8526 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8527 				refclk, NULL, &crtc_state->dpll)) {
8528 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8529 		return -EINVAL;
8530 	}
8531 
8532 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8533 
8534 	return 0;
8535 }
8536 
pnv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)8537 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8538 				  struct intel_crtc_state *crtc_state)
8539 {
8540 	struct drm_device *dev = crtc->base.dev;
8541 	struct drm_i915_private *dev_priv = to_i915(dev);
8542 	const struct intel_limit *limit;
8543 	int refclk = 96000;
8544 
8545 	memset(&crtc_state->dpll_hw_state, 0,
8546 	       sizeof(crtc_state->dpll_hw_state));
8547 
8548 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8549 		if (intel_panel_use_ssc(dev_priv)) {
8550 			refclk = dev_priv->vbt.lvds_ssc_freq;
8551 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8552 		}
8553 
8554 		limit = &intel_limits_pineview_lvds;
8555 	} else {
8556 		limit = &intel_limits_pineview_sdvo;
8557 	}
8558 
8559 	if (!crtc_state->clock_set &&
8560 	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8561 				refclk, NULL, &crtc_state->dpll)) {
8562 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8563 		return -EINVAL;
8564 	}
8565 
8566 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8567 
8568 	return 0;
8569 }
8570 
i9xx_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)8571 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8572 				   struct intel_crtc_state *crtc_state)
8573 {
8574 	struct drm_device *dev = crtc->base.dev;
8575 	struct drm_i915_private *dev_priv = to_i915(dev);
8576 	const struct intel_limit *limit;
8577 	int refclk = 96000;
8578 
8579 	memset(&crtc_state->dpll_hw_state, 0,
8580 	       sizeof(crtc_state->dpll_hw_state));
8581 
8582 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8583 		if (intel_panel_use_ssc(dev_priv)) {
8584 			refclk = dev_priv->vbt.lvds_ssc_freq;
8585 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8586 		}
8587 
8588 		limit = &intel_limits_i9xx_lvds;
8589 	} else {
8590 		limit = &intel_limits_i9xx_sdvo;
8591 	}
8592 
8593 	if (!crtc_state->clock_set &&
8594 	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8595 				 refclk, NULL, &crtc_state->dpll)) {
8596 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8597 		return -EINVAL;
8598 	}
8599 
8600 	i9xx_compute_dpll(crtc, crtc_state, NULL);
8601 
8602 	return 0;
8603 }
8604 
chv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)8605 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8606 				  struct intel_crtc_state *crtc_state)
8607 {
8608 	int refclk = 100000;
8609 	const struct intel_limit *limit = &intel_limits_chv;
8610 
8611 	memset(&crtc_state->dpll_hw_state, 0,
8612 	       sizeof(crtc_state->dpll_hw_state));
8613 
8614 	if (!crtc_state->clock_set &&
8615 	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8616 				refclk, NULL, &crtc_state->dpll)) {
8617 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8618 		return -EINVAL;
8619 	}
8620 
8621 	chv_compute_dpll(crtc, crtc_state);
8622 
8623 	return 0;
8624 }
8625 
vlv_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)8626 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8627 				  struct intel_crtc_state *crtc_state)
8628 {
8629 	int refclk = 100000;
8630 	const struct intel_limit *limit = &intel_limits_vlv;
8631 
8632 	memset(&crtc_state->dpll_hw_state, 0,
8633 	       sizeof(crtc_state->dpll_hw_state));
8634 
8635 	if (!crtc_state->clock_set &&
8636 	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8637 				refclk, NULL, &crtc_state->dpll)) {
8638 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
8639 		return -EINVAL;
8640 	}
8641 
8642 	vlv_compute_dpll(crtc, crtc_state);
8643 
8644 	return 0;
8645 }
8646 
i9xx_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8647 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8648 				 struct intel_crtc_state *pipe_config)
8649 {
8650 	struct drm_device *dev = crtc->base.dev;
8651 	struct drm_i915_private *dev_priv = to_i915(dev);
8652 	uint32_t tmp;
8653 
8654 	if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
8655 		return;
8656 
8657 	tmp = I915_READ(PFIT_CONTROL);
8658 	if (!(tmp & PFIT_ENABLE))
8659 		return;
8660 
8661 	/* Check whether the pfit is attached to our pipe. */
8662 	if (INTEL_INFO(dev)->gen < 4) {
8663 		if (crtc->pipe != PIPE_B)
8664 			return;
8665 	} else {
8666 		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8667 			return;
8668 	}
8669 
8670 	pipe_config->gmch_pfit.control = tmp;
8671 	pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8672 }
8673 
vlv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8674 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8675 			       struct intel_crtc_state *pipe_config)
8676 {
8677 	struct drm_device *dev = crtc->base.dev;
8678 	struct drm_i915_private *dev_priv = to_i915(dev);
8679 	int pipe = pipe_config->cpu_transcoder;
8680 	struct dpll clock;
8681 	u32 mdiv;
8682 	int refclk = 100000;
8683 
8684 	/* In case of DSI, DPLL will not be used */
8685 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8686 		return;
8687 
8688 	mutex_lock(&dev_priv->sb_lock);
8689 	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8690 	mutex_unlock(&dev_priv->sb_lock);
8691 
8692 	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8693 	clock.m2 = mdiv & DPIO_M2DIV_MASK;
8694 	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8695 	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8696 	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8697 
8698 	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8699 }
8700 
8701 static void
i9xx_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)8702 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8703 			      struct intel_initial_plane_config *plane_config)
8704 {
8705 	struct drm_device *dev = crtc->base.dev;
8706 	struct drm_i915_private *dev_priv = to_i915(dev);
8707 	u32 val, base, offset;
8708 	int pipe = crtc->pipe, plane = crtc->plane;
8709 	int fourcc, pixel_format;
8710 	unsigned int aligned_height;
8711 	struct drm_framebuffer *fb;
8712 	struct intel_framebuffer *intel_fb;
8713 
8714 	val = I915_READ(DSPCNTR(plane));
8715 	if (!(val & DISPLAY_PLANE_ENABLE))
8716 		return;
8717 
8718 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8719 	if (!intel_fb) {
8720 		DRM_DEBUG_KMS("failed to alloc fb\n");
8721 		return;
8722 	}
8723 
8724 	fb = &intel_fb->base;
8725 
8726 	if (INTEL_INFO(dev)->gen >= 4) {
8727 		if (val & DISPPLANE_TILED) {
8728 			plane_config->tiling = I915_TILING_X;
8729 			fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8730 		}
8731 	}
8732 
8733 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8734 	fourcc = i9xx_format_to_fourcc(pixel_format);
8735 	fb->pixel_format = fourcc;
8736 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8737 
8738 	if (INTEL_INFO(dev)->gen >= 4) {
8739 		if (plane_config->tiling)
8740 			offset = I915_READ(DSPTILEOFF(plane));
8741 		else
8742 			offset = I915_READ(DSPLINOFF(plane));
8743 		base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8744 	} else {
8745 		base = I915_READ(DSPADDR(plane));
8746 	}
8747 	plane_config->base = base;
8748 
8749 	val = I915_READ(PIPESRC(pipe));
8750 	fb->width = ((val >> 16) & 0xfff) + 1;
8751 	fb->height = ((val >> 0) & 0xfff) + 1;
8752 
8753 	val = I915_READ(DSPSTRIDE(pipe));
8754 	fb->pitches[0] = val & 0xffffffc0;
8755 
8756 	aligned_height = intel_fb_align_height(dev, fb->height,
8757 					       fb->pixel_format,
8758 					       fb->modifier[0]);
8759 
8760 	plane_config->size = fb->pitches[0] * aligned_height;
8761 
8762 	DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8763 		      pipe_name(pipe), plane, fb->width, fb->height,
8764 		      fb->bits_per_pixel, base, fb->pitches[0],
8765 		      plane_config->size);
8766 
8767 	plane_config->fb = intel_fb;
8768 }
8769 
chv_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8770 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8771 			       struct intel_crtc_state *pipe_config)
8772 {
8773 	struct drm_device *dev = crtc->base.dev;
8774 	struct drm_i915_private *dev_priv = to_i915(dev);
8775 	int pipe = pipe_config->cpu_transcoder;
8776 	enum dpio_channel port = vlv_pipe_to_channel(pipe);
8777 	struct dpll clock;
8778 	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8779 	int refclk = 100000;
8780 
8781 	/* In case of DSI, DPLL will not be used */
8782 	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8783 		return;
8784 
8785 	mutex_lock(&dev_priv->sb_lock);
8786 	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8787 	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8788 	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8789 	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8790 	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8791 	mutex_unlock(&dev_priv->sb_lock);
8792 
8793 	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8794 	clock.m2 = (pll_dw0 & 0xff) << 22;
8795 	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8796 		clock.m2 |= pll_dw2 & 0x3fffff;
8797 	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8798 	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8799 	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8800 
8801 	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8802 }
8803 
i9xx_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)8804 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8805 				 struct intel_crtc_state *pipe_config)
8806 {
8807 	struct drm_device *dev = crtc->base.dev;
8808 	struct drm_i915_private *dev_priv = to_i915(dev);
8809 	enum intel_display_power_domain power_domain;
8810 	uint32_t tmp;
8811 	bool ret;
8812 
8813 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8814 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
8815 		return false;
8816 
8817 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8818 	pipe_config->shared_dpll = NULL;
8819 
8820 	ret = false;
8821 
8822 	tmp = I915_READ(PIPECONF(crtc->pipe));
8823 	if (!(tmp & PIPECONF_ENABLE))
8824 		goto out;
8825 
8826 	if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
8827 		switch (tmp & PIPECONF_BPC_MASK) {
8828 		case PIPECONF_6BPC:
8829 			pipe_config->pipe_bpp = 18;
8830 			break;
8831 		case PIPECONF_8BPC:
8832 			pipe_config->pipe_bpp = 24;
8833 			break;
8834 		case PIPECONF_10BPC:
8835 			pipe_config->pipe_bpp = 30;
8836 			break;
8837 		default:
8838 			break;
8839 		}
8840 	}
8841 
8842 	if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8843 	    (tmp & PIPECONF_COLOR_RANGE_SELECT))
8844 		pipe_config->limited_color_range = true;
8845 
8846 	if (INTEL_INFO(dev)->gen < 4)
8847 		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8848 
8849 	intel_get_pipe_timings(crtc, pipe_config);
8850 	intel_get_pipe_src_size(crtc, pipe_config);
8851 
8852 	i9xx_get_pfit_config(crtc, pipe_config);
8853 
8854 	if (INTEL_INFO(dev)->gen >= 4) {
8855 		/* No way to read it out on pipes B and C */
8856 		if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8857 			tmp = dev_priv->chv_dpll_md[crtc->pipe];
8858 		else
8859 			tmp = I915_READ(DPLL_MD(crtc->pipe));
8860 		pipe_config->pixel_multiplier =
8861 			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8862 			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8863 		pipe_config->dpll_hw_state.dpll_md = tmp;
8864 	} else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8865 		tmp = I915_READ(DPLL(crtc->pipe));
8866 		pipe_config->pixel_multiplier =
8867 			((tmp & SDVO_MULTIPLIER_MASK)
8868 			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8869 	} else {
8870 		/* Note that on i915G/GM the pixel multiplier is in the sdvo
8871 		 * port and will be fixed up in the encoder->get_config
8872 		 * function. */
8873 		pipe_config->pixel_multiplier = 1;
8874 	}
8875 	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8876 	if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
8877 		/*
8878 		 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8879 		 * on 830. Filter it out here so that we don't
8880 		 * report errors due to that.
8881 		 */
8882 		if (IS_I830(dev))
8883 			pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8884 
8885 		pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8886 		pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8887 	} else {
8888 		/* Mask out read-only status bits. */
8889 		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8890 						     DPLL_PORTC_READY_MASK |
8891 						     DPLL_PORTB_READY_MASK);
8892 	}
8893 
8894 	if (IS_CHERRYVIEW(dev))
8895 		chv_crtc_clock_get(crtc, pipe_config);
8896 	else if (IS_VALLEYVIEW(dev))
8897 		vlv_crtc_clock_get(crtc, pipe_config);
8898 	else
8899 		i9xx_crtc_clock_get(crtc, pipe_config);
8900 
8901 	/*
8902 	 * Normally the dotclock is filled in by the encoder .get_config()
8903 	 * but in case the pipe is enabled w/o any ports we need a sane
8904 	 * default.
8905 	 */
8906 	pipe_config->base.adjusted_mode.crtc_clock =
8907 		pipe_config->port_clock / pipe_config->pixel_multiplier;
8908 
8909 	ret = true;
8910 
8911 out:
8912 	intel_display_power_put(dev_priv, power_domain);
8913 
8914 	return ret;
8915 }
8916 
ironlake_init_pch_refclk(struct drm_device * dev)8917 static void ironlake_init_pch_refclk(struct drm_device *dev)
8918 {
8919 	struct drm_i915_private *dev_priv = to_i915(dev);
8920 	struct intel_encoder *encoder;
8921 	int i;
8922 	u32 val, final;
8923 	bool has_lvds = false;
8924 	bool has_cpu_edp = false;
8925 	bool has_panel = false;
8926 	bool has_ck505 = false;
8927 	bool can_ssc = false;
8928 	bool using_ssc_source = false;
8929 
8930 	/* We need to take the global config into account */
8931 	for_each_intel_encoder(dev, encoder) {
8932 		switch (encoder->type) {
8933 		case INTEL_OUTPUT_LVDS:
8934 			has_panel = true;
8935 			has_lvds = true;
8936 			break;
8937 		case INTEL_OUTPUT_EDP:
8938 			has_panel = true;
8939 			if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8940 				has_cpu_edp = true;
8941 			break;
8942 		default:
8943 			break;
8944 		}
8945 	}
8946 
8947 	if (HAS_PCH_IBX(dev)) {
8948 		has_ck505 = dev_priv->vbt.display_clock_mode;
8949 		can_ssc = has_ck505;
8950 	} else {
8951 		has_ck505 = false;
8952 		can_ssc = true;
8953 	}
8954 
8955 	/* Check if any DPLLs are using the SSC source */
8956 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
8957 		u32 temp = I915_READ(PCH_DPLL(i));
8958 
8959 		if (!(temp & DPLL_VCO_ENABLE))
8960 			continue;
8961 
8962 		if ((temp & PLL_REF_INPUT_MASK) ==
8963 		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
8964 			using_ssc_source = true;
8965 			break;
8966 		}
8967 	}
8968 
8969 	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
8970 		      has_panel, has_lvds, has_ck505, using_ssc_source);
8971 
8972 	/* Ironlake: try to setup display ref clock before DPLL
8973 	 * enabling. This is only under driver's control after
8974 	 * PCH B stepping, previous chipset stepping should be
8975 	 * ignoring this setting.
8976 	 */
8977 	val = I915_READ(PCH_DREF_CONTROL);
8978 
8979 	/* As we must carefully and slowly disable/enable each source in turn,
8980 	 * compute the final state we want first and check if we need to
8981 	 * make any changes at all.
8982 	 */
8983 	final = val;
8984 	final &= ~DREF_NONSPREAD_SOURCE_MASK;
8985 	if (has_ck505)
8986 		final |= DREF_NONSPREAD_CK505_ENABLE;
8987 	else
8988 		final |= DREF_NONSPREAD_SOURCE_ENABLE;
8989 
8990 	final &= ~DREF_SSC_SOURCE_MASK;
8991 	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8992 	final &= ~DREF_SSC1_ENABLE;
8993 
8994 	if (has_panel) {
8995 		final |= DREF_SSC_SOURCE_ENABLE;
8996 
8997 		if (intel_panel_use_ssc(dev_priv) && can_ssc)
8998 			final |= DREF_SSC1_ENABLE;
8999 
9000 		if (has_cpu_edp) {
9001 			if (intel_panel_use_ssc(dev_priv) && can_ssc)
9002 				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9003 			else
9004 				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9005 		} else
9006 			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9007 	} else if (using_ssc_source) {
9008 		final |= DREF_SSC_SOURCE_ENABLE;
9009 		final |= DREF_SSC1_ENABLE;
9010 	}
9011 
9012 	if (final == val)
9013 		return;
9014 
9015 	/* Always enable nonspread source */
9016 	val &= ~DREF_NONSPREAD_SOURCE_MASK;
9017 
9018 	if (has_ck505)
9019 		val |= DREF_NONSPREAD_CK505_ENABLE;
9020 	else
9021 		val |= DREF_NONSPREAD_SOURCE_ENABLE;
9022 
9023 	if (has_panel) {
9024 		val &= ~DREF_SSC_SOURCE_MASK;
9025 		val |= DREF_SSC_SOURCE_ENABLE;
9026 
9027 		/* SSC must be turned on before enabling the CPU output  */
9028 		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9029 			DRM_DEBUG_KMS("Using SSC on panel\n");
9030 			val |= DREF_SSC1_ENABLE;
9031 		} else
9032 			val &= ~DREF_SSC1_ENABLE;
9033 
9034 		/* Get SSC going before enabling the outputs */
9035 		I915_WRITE(PCH_DREF_CONTROL, val);
9036 		POSTING_READ(PCH_DREF_CONTROL);
9037 		udelay(200);
9038 
9039 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9040 
9041 		/* Enable CPU source on CPU attached eDP */
9042 		if (has_cpu_edp) {
9043 			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9044 				DRM_DEBUG_KMS("Using SSC on eDP\n");
9045 				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9046 			} else
9047 				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9048 		} else
9049 			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9050 
9051 		I915_WRITE(PCH_DREF_CONTROL, val);
9052 		POSTING_READ(PCH_DREF_CONTROL);
9053 		udelay(200);
9054 	} else {
9055 		DRM_DEBUG_KMS("Disabling CPU source output\n");
9056 
9057 		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9058 
9059 		/* Turn off CPU output */
9060 		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9061 
9062 		I915_WRITE(PCH_DREF_CONTROL, val);
9063 		POSTING_READ(PCH_DREF_CONTROL);
9064 		udelay(200);
9065 
9066 		if (!using_ssc_source) {
9067 			DRM_DEBUG_KMS("Disabling SSC source\n");
9068 
9069 			/* Turn off the SSC source */
9070 			val &= ~DREF_SSC_SOURCE_MASK;
9071 			val |= DREF_SSC_SOURCE_DISABLE;
9072 
9073 			/* Turn off SSC1 */
9074 			val &= ~DREF_SSC1_ENABLE;
9075 
9076 			I915_WRITE(PCH_DREF_CONTROL, val);
9077 			POSTING_READ(PCH_DREF_CONTROL);
9078 			udelay(200);
9079 		}
9080 	}
9081 
9082 	BUG_ON(val != final);
9083 }
9084 
lpt_reset_fdi_mphy(struct drm_i915_private * dev_priv)9085 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9086 {
9087 	uint32_t tmp;
9088 
9089 	tmp = I915_READ(SOUTH_CHICKEN2);
9090 	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9091 	I915_WRITE(SOUTH_CHICKEN2, tmp);
9092 
9093 	if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9094 			FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9095 		DRM_ERROR("FDI mPHY reset assert timeout\n");
9096 
9097 	tmp = I915_READ(SOUTH_CHICKEN2);
9098 	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9099 	I915_WRITE(SOUTH_CHICKEN2, tmp);
9100 
9101 	if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9102 			 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9103 		DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9104 }
9105 
9106 /* WaMPhyProgramming:hsw */
lpt_program_fdi_mphy(struct drm_i915_private * dev_priv)9107 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9108 {
9109 	uint32_t tmp;
9110 
9111 	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9112 	tmp &= ~(0xFF << 24);
9113 	tmp |= (0x12 << 24);
9114 	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9115 
9116 	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9117 	tmp |= (1 << 11);
9118 	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9119 
9120 	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9121 	tmp |= (1 << 11);
9122 	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9123 
9124 	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9125 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9126 	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9127 
9128 	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9129 	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9130 	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9131 
9132 	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9133 	tmp &= ~(7 << 13);
9134 	tmp |= (5 << 13);
9135 	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9136 
9137 	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9138 	tmp &= ~(7 << 13);
9139 	tmp |= (5 << 13);
9140 	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9141 
9142 	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9143 	tmp &= ~0xFF;
9144 	tmp |= 0x1C;
9145 	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9146 
9147 	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9148 	tmp &= ~0xFF;
9149 	tmp |= 0x1C;
9150 	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9151 
9152 	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9153 	tmp &= ~(0xFF << 16);
9154 	tmp |= (0x1C << 16);
9155 	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9156 
9157 	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9158 	tmp &= ~(0xFF << 16);
9159 	tmp |= (0x1C << 16);
9160 	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9161 
9162 	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9163 	tmp |= (1 << 27);
9164 	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9165 
9166 	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9167 	tmp |= (1 << 27);
9168 	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9169 
9170 	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9171 	tmp &= ~(0xF << 28);
9172 	tmp |= (4 << 28);
9173 	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9174 
9175 	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9176 	tmp &= ~(0xF << 28);
9177 	tmp |= (4 << 28);
9178 	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9179 }
9180 
9181 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9182  * Programming" based on the parameters passed:
9183  * - Sequence to enable CLKOUT_DP
9184  * - Sequence to enable CLKOUT_DP without spread
9185  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9186  */
lpt_enable_clkout_dp(struct drm_device * dev,bool with_spread,bool with_fdi)9187 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
9188 				 bool with_fdi)
9189 {
9190 	struct drm_i915_private *dev_priv = to_i915(dev);
9191 	uint32_t reg, tmp;
9192 
9193 	if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9194 		with_spread = true;
9195 	if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
9196 		with_fdi = false;
9197 
9198 	mutex_lock(&dev_priv->sb_lock);
9199 
9200 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9201 	tmp &= ~SBI_SSCCTL_DISABLE;
9202 	tmp |= SBI_SSCCTL_PATHALT;
9203 	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9204 
9205 	udelay(24);
9206 
9207 	if (with_spread) {
9208 		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9209 		tmp &= ~SBI_SSCCTL_PATHALT;
9210 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9211 
9212 		if (with_fdi) {
9213 			lpt_reset_fdi_mphy(dev_priv);
9214 			lpt_program_fdi_mphy(dev_priv);
9215 		}
9216 	}
9217 
9218 	reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
9219 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9220 	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9221 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9222 
9223 	mutex_unlock(&dev_priv->sb_lock);
9224 }
9225 
9226 /* Sequence to disable CLKOUT_DP */
lpt_disable_clkout_dp(struct drm_device * dev)9227 static void lpt_disable_clkout_dp(struct drm_device *dev)
9228 {
9229 	struct drm_i915_private *dev_priv = to_i915(dev);
9230 	uint32_t reg, tmp;
9231 
9232 	mutex_lock(&dev_priv->sb_lock);
9233 
9234 	reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
9235 	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9236 	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9237 	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9238 
9239 	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9240 	if (!(tmp & SBI_SSCCTL_DISABLE)) {
9241 		if (!(tmp & SBI_SSCCTL_PATHALT)) {
9242 			tmp |= SBI_SSCCTL_PATHALT;
9243 			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9244 			udelay(32);
9245 		}
9246 		tmp |= SBI_SSCCTL_DISABLE;
9247 		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9248 	}
9249 
9250 	mutex_unlock(&dev_priv->sb_lock);
9251 }
9252 
9253 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9254 
9255 static const uint16_t sscdivintphase[] = {
9256 	[BEND_IDX( 50)] = 0x3B23,
9257 	[BEND_IDX( 45)] = 0x3B23,
9258 	[BEND_IDX( 40)] = 0x3C23,
9259 	[BEND_IDX( 35)] = 0x3C23,
9260 	[BEND_IDX( 30)] = 0x3D23,
9261 	[BEND_IDX( 25)] = 0x3D23,
9262 	[BEND_IDX( 20)] = 0x3E23,
9263 	[BEND_IDX( 15)] = 0x3E23,
9264 	[BEND_IDX( 10)] = 0x3F23,
9265 	[BEND_IDX(  5)] = 0x3F23,
9266 	[BEND_IDX(  0)] = 0x0025,
9267 	[BEND_IDX( -5)] = 0x0025,
9268 	[BEND_IDX(-10)] = 0x0125,
9269 	[BEND_IDX(-15)] = 0x0125,
9270 	[BEND_IDX(-20)] = 0x0225,
9271 	[BEND_IDX(-25)] = 0x0225,
9272 	[BEND_IDX(-30)] = 0x0325,
9273 	[BEND_IDX(-35)] = 0x0325,
9274 	[BEND_IDX(-40)] = 0x0425,
9275 	[BEND_IDX(-45)] = 0x0425,
9276 	[BEND_IDX(-50)] = 0x0525,
9277 };
9278 
9279 /*
9280  * Bend CLKOUT_DP
9281  * steps -50 to 50 inclusive, in steps of 5
9282  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9283  * change in clock period = -(steps / 10) * 5.787 ps
9284  */
lpt_bend_clkout_dp(struct drm_i915_private * dev_priv,int steps)9285 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9286 {
9287 	uint32_t tmp;
9288 	int idx = BEND_IDX(steps);
9289 
9290 	if (WARN_ON(steps % 5 != 0))
9291 		return;
9292 
9293 	if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9294 		return;
9295 
9296 	mutex_lock(&dev_priv->sb_lock);
9297 
9298 	if (steps % 10 != 0)
9299 		tmp = 0xAAAAAAAB;
9300 	else
9301 		tmp = 0x00000000;
9302 	intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9303 
9304 	tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9305 	tmp &= 0xffff0000;
9306 	tmp |= sscdivintphase[idx];
9307 	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9308 
9309 	mutex_unlock(&dev_priv->sb_lock);
9310 }
9311 
9312 #undef BEND_IDX
9313 
lpt_init_pch_refclk(struct drm_device * dev)9314 static void lpt_init_pch_refclk(struct drm_device *dev)
9315 {
9316 	struct intel_encoder *encoder;
9317 	bool has_vga = false;
9318 
9319 	for_each_intel_encoder(dev, encoder) {
9320 		switch (encoder->type) {
9321 		case INTEL_OUTPUT_ANALOG:
9322 			has_vga = true;
9323 			break;
9324 		default:
9325 			break;
9326 		}
9327 	}
9328 
9329 	if (has_vga) {
9330 		lpt_bend_clkout_dp(to_i915(dev), 0);
9331 		lpt_enable_clkout_dp(dev, true, true);
9332 	} else {
9333 		lpt_disable_clkout_dp(dev);
9334 	}
9335 }
9336 
9337 /*
9338  * Initialize reference clocks when the driver loads
9339  */
intel_init_pch_refclk(struct drm_device * dev)9340 void intel_init_pch_refclk(struct drm_device *dev)
9341 {
9342 	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
9343 		ironlake_init_pch_refclk(dev);
9344 	else if (HAS_PCH_LPT(dev))
9345 		lpt_init_pch_refclk(dev);
9346 }
9347 
ironlake_set_pipeconf(struct drm_crtc * crtc)9348 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
9349 {
9350 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9351 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9352 	int pipe = intel_crtc->pipe;
9353 	uint32_t val;
9354 
9355 	val = 0;
9356 
9357 	switch (intel_crtc->config->pipe_bpp) {
9358 	case 18:
9359 		val |= PIPECONF_6BPC;
9360 		break;
9361 	case 24:
9362 		val |= PIPECONF_8BPC;
9363 		break;
9364 	case 30:
9365 		val |= PIPECONF_10BPC;
9366 		break;
9367 	case 36:
9368 		val |= PIPECONF_12BPC;
9369 		break;
9370 	default:
9371 		/* Case prevented by intel_choose_pipe_bpp_dither. */
9372 		BUG();
9373 	}
9374 
9375 	if (intel_crtc->config->dither)
9376 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9377 
9378 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9379 		val |= PIPECONF_INTERLACED_ILK;
9380 	else
9381 		val |= PIPECONF_PROGRESSIVE;
9382 
9383 	if (intel_crtc->config->limited_color_range)
9384 		val |= PIPECONF_COLOR_RANGE_SELECT;
9385 
9386 	I915_WRITE(PIPECONF(pipe), val);
9387 	POSTING_READ(PIPECONF(pipe));
9388 }
9389 
haswell_set_pipeconf(struct drm_crtc * crtc)9390 static void haswell_set_pipeconf(struct drm_crtc *crtc)
9391 {
9392 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9393 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9394 	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
9395 	u32 val = 0;
9396 
9397 	if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
9398 		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9399 
9400 	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9401 		val |= PIPECONF_INTERLACED_ILK;
9402 	else
9403 		val |= PIPECONF_PROGRESSIVE;
9404 
9405 	I915_WRITE(PIPECONF(cpu_transcoder), val);
9406 	POSTING_READ(PIPECONF(cpu_transcoder));
9407 }
9408 
haswell_set_pipemisc(struct drm_crtc * crtc)9409 static void haswell_set_pipemisc(struct drm_crtc *crtc)
9410 {
9411 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
9412 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9413 
9414 	if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
9415 		u32 val = 0;
9416 
9417 		switch (intel_crtc->config->pipe_bpp) {
9418 		case 18:
9419 			val |= PIPEMISC_DITHER_6_BPC;
9420 			break;
9421 		case 24:
9422 			val |= PIPEMISC_DITHER_8_BPC;
9423 			break;
9424 		case 30:
9425 			val |= PIPEMISC_DITHER_10_BPC;
9426 			break;
9427 		case 36:
9428 			val |= PIPEMISC_DITHER_12_BPC;
9429 			break;
9430 		default:
9431 			/* Case prevented by pipe_config_set_bpp. */
9432 			BUG();
9433 		}
9434 
9435 		if (intel_crtc->config->dither)
9436 			val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9437 
9438 		I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
9439 	}
9440 }
9441 
ironlake_get_lanes_required(int target_clock,int link_bw,int bpp)9442 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9443 {
9444 	/*
9445 	 * Account for spread spectrum to avoid
9446 	 * oversubscribing the link. Max center spread
9447 	 * is 2.5%; use 5% for safety's sake.
9448 	 */
9449 	u32 bps = target_clock * bpp * 21 / 20;
9450 	return DIV_ROUND_UP(bps, link_bw * 8);
9451 }
9452 
ironlake_needs_fb_cb_tune(struct dpll * dpll,int factor)9453 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9454 {
9455 	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9456 }
9457 
ironlake_compute_dpll(struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state,struct dpll * reduced_clock)9458 static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
9459 				  struct intel_crtc_state *crtc_state,
9460 				  struct dpll *reduced_clock)
9461 {
9462 	struct drm_crtc *crtc = &intel_crtc->base;
9463 	struct drm_device *dev = crtc->dev;
9464 	struct drm_i915_private *dev_priv = to_i915(dev);
9465 	u32 dpll, fp, fp2;
9466 	int factor;
9467 
9468 	/* Enable autotuning of the PLL clock (if permissible) */
9469 	factor = 21;
9470 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9471 		if ((intel_panel_use_ssc(dev_priv) &&
9472 		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
9473 		    (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
9474 			factor = 25;
9475 	} else if (crtc_state->sdvo_tv_clock)
9476 		factor = 20;
9477 
9478 	fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9479 
9480 	if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9481 		fp |= FP_CB_TUNE;
9482 
9483 	if (reduced_clock) {
9484 		fp2 = i9xx_dpll_compute_fp(reduced_clock);
9485 
9486 		if (reduced_clock->m < factor * reduced_clock->n)
9487 			fp2 |= FP_CB_TUNE;
9488 	} else {
9489 		fp2 = fp;
9490 	}
9491 
9492 	dpll = 0;
9493 
9494 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9495 		dpll |= DPLLB_MODE_LVDS;
9496 	else
9497 		dpll |= DPLLB_MODE_DAC_SERIAL;
9498 
9499 	dpll |= (crtc_state->pixel_multiplier - 1)
9500 		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9501 
9502 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9503 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9504 		dpll |= DPLL_SDVO_HIGH_SPEED;
9505 
9506 	if (intel_crtc_has_dp_encoder(crtc_state))
9507 		dpll |= DPLL_SDVO_HIGH_SPEED;
9508 
9509 	/*
9510 	 * The high speed IO clock is only really required for
9511 	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
9512 	 * possible to share the DPLL between CRT and HDMI. Enabling
9513 	 * the clock needlessly does no real harm, except use up a
9514 	 * bit of power potentially.
9515 	 *
9516 	 * We'll limit this to IVB with 3 pipes, since it has only two
9517 	 * DPLLs and so DPLL sharing is the only way to get three pipes
9518 	 * driving PCH ports at the same time. On SNB we could do this,
9519 	 * and potentially avoid enabling the second DPLL, but it's not
9520 	 * clear if it''s a win or loss power wise. No point in doing
9521 	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9522 	 */
9523 	if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
9524 	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9525 		dpll |= DPLL_SDVO_HIGH_SPEED;
9526 
9527 	/* compute bitmask from p1 value */
9528 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9529 	/* also FPA1 */
9530 	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9531 
9532 	switch (crtc_state->dpll.p2) {
9533 	case 5:
9534 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9535 		break;
9536 	case 7:
9537 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9538 		break;
9539 	case 10:
9540 		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9541 		break;
9542 	case 14:
9543 		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9544 		break;
9545 	}
9546 
9547 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9548 	    intel_panel_use_ssc(dev_priv))
9549 		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9550 	else
9551 		dpll |= PLL_REF_INPUT_DREFCLK;
9552 
9553 	dpll |= DPLL_VCO_ENABLE;
9554 
9555 	crtc_state->dpll_hw_state.dpll = dpll;
9556 	crtc_state->dpll_hw_state.fp0 = fp;
9557 	crtc_state->dpll_hw_state.fp1 = fp2;
9558 }
9559 
ironlake_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)9560 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9561 				       struct intel_crtc_state *crtc_state)
9562 {
9563 	struct drm_device *dev = crtc->base.dev;
9564 	struct drm_i915_private *dev_priv = to_i915(dev);
9565 	struct dpll reduced_clock;
9566 	bool has_reduced_clock = false;
9567 	struct intel_shared_dpll *pll;
9568 	const struct intel_limit *limit;
9569 	int refclk = 120000;
9570 
9571 	memset(&crtc_state->dpll_hw_state, 0,
9572 	       sizeof(crtc_state->dpll_hw_state));
9573 
9574 	crtc->lowfreq_avail = false;
9575 
9576 	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9577 	if (!crtc_state->has_pch_encoder)
9578 		return 0;
9579 
9580 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9581 		if (intel_panel_use_ssc(dev_priv)) {
9582 			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9583 				      dev_priv->vbt.lvds_ssc_freq);
9584 			refclk = dev_priv->vbt.lvds_ssc_freq;
9585 		}
9586 
9587 		if (intel_is_dual_link_lvds(dev)) {
9588 			if (refclk == 100000)
9589 				limit = &intel_limits_ironlake_dual_lvds_100m;
9590 			else
9591 				limit = &intel_limits_ironlake_dual_lvds;
9592 		} else {
9593 			if (refclk == 100000)
9594 				limit = &intel_limits_ironlake_single_lvds_100m;
9595 			else
9596 				limit = &intel_limits_ironlake_single_lvds;
9597 		}
9598 	} else {
9599 		limit = &intel_limits_ironlake_dac;
9600 	}
9601 
9602 	if (!crtc_state->clock_set &&
9603 	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9604 				refclk, NULL, &crtc_state->dpll)) {
9605 		DRM_ERROR("Couldn't find PLL settings for mode!\n");
9606 		return -EINVAL;
9607 	}
9608 
9609 	ironlake_compute_dpll(crtc, crtc_state,
9610 			      has_reduced_clock ? &reduced_clock : NULL);
9611 
9612 	pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
9613 	if (pll == NULL) {
9614 		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
9615 				 pipe_name(crtc->pipe));
9616 		return -EINVAL;
9617 	}
9618 
9619 	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9620 	    has_reduced_clock)
9621 		crtc->lowfreq_avail = true;
9622 
9623 	return 0;
9624 }
9625 
intel_pch_transcoder_get_m_n(struct intel_crtc * crtc,struct intel_link_m_n * m_n)9626 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9627 					 struct intel_link_m_n *m_n)
9628 {
9629 	struct drm_device *dev = crtc->base.dev;
9630 	struct drm_i915_private *dev_priv = to_i915(dev);
9631 	enum pipe pipe = crtc->pipe;
9632 
9633 	m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9634 	m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9635 	m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9636 		& ~TU_SIZE_MASK;
9637 	m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9638 	m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9639 		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9640 }
9641 
intel_cpu_transcoder_get_m_n(struct intel_crtc * crtc,enum transcoder transcoder,struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2)9642 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9643 					 enum transcoder transcoder,
9644 					 struct intel_link_m_n *m_n,
9645 					 struct intel_link_m_n *m2_n2)
9646 {
9647 	struct drm_device *dev = crtc->base.dev;
9648 	struct drm_i915_private *dev_priv = to_i915(dev);
9649 	enum pipe pipe = crtc->pipe;
9650 
9651 	if (INTEL_INFO(dev)->gen >= 5) {
9652 		m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9653 		m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9654 		m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9655 			& ~TU_SIZE_MASK;
9656 		m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9657 		m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9658 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9659 		/* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9660 		 * gen < 8) and if DRRS is supported (to make sure the
9661 		 * registers are not unnecessarily read).
9662 		 */
9663 		if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9664 			crtc->config->has_drrs) {
9665 			m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9666 			m2_n2->link_n =	I915_READ(PIPE_LINK_N2(transcoder));
9667 			m2_n2->gmch_m =	I915_READ(PIPE_DATA_M2(transcoder))
9668 					& ~TU_SIZE_MASK;
9669 			m2_n2->gmch_n =	I915_READ(PIPE_DATA_N2(transcoder));
9670 			m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9671 					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9672 		}
9673 	} else {
9674 		m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9675 		m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9676 		m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9677 			& ~TU_SIZE_MASK;
9678 		m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9679 		m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9680 			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9681 	}
9682 }
9683 
intel_dp_get_m_n(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9684 void intel_dp_get_m_n(struct intel_crtc *crtc,
9685 		      struct intel_crtc_state *pipe_config)
9686 {
9687 	if (pipe_config->has_pch_encoder)
9688 		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9689 	else
9690 		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9691 					     &pipe_config->dp_m_n,
9692 					     &pipe_config->dp_m2_n2);
9693 }
9694 
ironlake_get_fdi_m_n_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9695 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9696 					struct intel_crtc_state *pipe_config)
9697 {
9698 	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9699 				     &pipe_config->fdi_m_n, NULL);
9700 }
9701 
skylake_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9702 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9703 				    struct intel_crtc_state *pipe_config)
9704 {
9705 	struct drm_device *dev = crtc->base.dev;
9706 	struct drm_i915_private *dev_priv = to_i915(dev);
9707 	struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9708 	uint32_t ps_ctrl = 0;
9709 	int id = -1;
9710 	int i;
9711 
9712 	/* find scaler attached to this pipe */
9713 	for (i = 0; i < crtc->num_scalers; i++) {
9714 		ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9715 		if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9716 			id = i;
9717 			pipe_config->pch_pfit.enabled = true;
9718 			pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9719 			pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9720 			break;
9721 		}
9722 	}
9723 
9724 	scaler_state->scaler_id = id;
9725 	if (id >= 0) {
9726 		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9727 	} else {
9728 		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9729 	}
9730 }
9731 
9732 static void
skylake_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)9733 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9734 				 struct intel_initial_plane_config *plane_config)
9735 {
9736 	struct drm_device *dev = crtc->base.dev;
9737 	struct drm_i915_private *dev_priv = to_i915(dev);
9738 	u32 val, base, offset, stride_mult, tiling;
9739 	int pipe = crtc->pipe;
9740 	int fourcc, pixel_format;
9741 	unsigned int aligned_height;
9742 	struct drm_framebuffer *fb;
9743 	struct intel_framebuffer *intel_fb;
9744 
9745 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9746 	if (!intel_fb) {
9747 		DRM_DEBUG_KMS("failed to alloc fb\n");
9748 		return;
9749 	}
9750 
9751 	fb = &intel_fb->base;
9752 
9753 	val = I915_READ(PLANE_CTL(pipe, 0));
9754 	if (!(val & PLANE_CTL_ENABLE))
9755 		goto error;
9756 
9757 	pixel_format = val & PLANE_CTL_FORMAT_MASK;
9758 	fourcc = skl_format_to_fourcc(pixel_format,
9759 				      val & PLANE_CTL_ORDER_RGBX,
9760 				      val & PLANE_CTL_ALPHA_MASK);
9761 	fb->pixel_format = fourcc;
9762 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9763 
9764 	tiling = val & PLANE_CTL_TILED_MASK;
9765 	switch (tiling) {
9766 	case PLANE_CTL_TILED_LINEAR:
9767 		fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9768 		break;
9769 	case PLANE_CTL_TILED_X:
9770 		plane_config->tiling = I915_TILING_X;
9771 		fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9772 		break;
9773 	case PLANE_CTL_TILED_Y:
9774 		fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9775 		break;
9776 	case PLANE_CTL_TILED_YF:
9777 		fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9778 		break;
9779 	default:
9780 		MISSING_CASE(tiling);
9781 		goto error;
9782 	}
9783 
9784 	base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9785 	plane_config->base = base;
9786 
9787 	offset = I915_READ(PLANE_OFFSET(pipe, 0));
9788 
9789 	val = I915_READ(PLANE_SIZE(pipe, 0));
9790 	fb->height = ((val >> 16) & 0xfff) + 1;
9791 	fb->width = ((val >> 0) & 0x1fff) + 1;
9792 
9793 	val = I915_READ(PLANE_STRIDE(pipe, 0));
9794 	stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
9795 						fb->pixel_format);
9796 	fb->pitches[0] = (val & 0x3ff) * stride_mult;
9797 
9798 	aligned_height = intel_fb_align_height(dev, fb->height,
9799 					       fb->pixel_format,
9800 					       fb->modifier[0]);
9801 
9802 	plane_config->size = fb->pitches[0] * aligned_height;
9803 
9804 	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9805 		      pipe_name(pipe), fb->width, fb->height,
9806 		      fb->bits_per_pixel, base, fb->pitches[0],
9807 		      plane_config->size);
9808 
9809 	plane_config->fb = intel_fb;
9810 	return;
9811 
9812 error:
9813 	kfree(intel_fb);
9814 }
9815 
ironlake_get_pfit_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9816 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9817 				     struct intel_crtc_state *pipe_config)
9818 {
9819 	struct drm_device *dev = crtc->base.dev;
9820 	struct drm_i915_private *dev_priv = to_i915(dev);
9821 	uint32_t tmp;
9822 
9823 	tmp = I915_READ(PF_CTL(crtc->pipe));
9824 
9825 	if (tmp & PF_ENABLE) {
9826 		pipe_config->pch_pfit.enabled = true;
9827 		pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9828 		pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9829 
9830 		/* We currently do not free assignements of panel fitters on
9831 		 * ivb/hsw (since we don't use the higher upscaling modes which
9832 		 * differentiates them) so just WARN about this case for now. */
9833 		if (IS_GEN7(dev)) {
9834 			WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9835 				PF_PIPE_SEL_IVB(crtc->pipe));
9836 		}
9837 	}
9838 }
9839 
9840 static void
ironlake_get_initial_plane_config(struct intel_crtc * crtc,struct intel_initial_plane_config * plane_config)9841 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9842 				  struct intel_initial_plane_config *plane_config)
9843 {
9844 	struct drm_device *dev = crtc->base.dev;
9845 	struct drm_i915_private *dev_priv = to_i915(dev);
9846 	u32 val, base, offset;
9847 	int pipe = crtc->pipe;
9848 	int fourcc, pixel_format;
9849 	unsigned int aligned_height;
9850 	struct drm_framebuffer *fb;
9851 	struct intel_framebuffer *intel_fb;
9852 
9853 	val = I915_READ(DSPCNTR(pipe));
9854 	if (!(val & DISPLAY_PLANE_ENABLE))
9855 		return;
9856 
9857 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9858 	if (!intel_fb) {
9859 		DRM_DEBUG_KMS("failed to alloc fb\n");
9860 		return;
9861 	}
9862 
9863 	fb = &intel_fb->base;
9864 
9865 	if (INTEL_INFO(dev)->gen >= 4) {
9866 		if (val & DISPPLANE_TILED) {
9867 			plane_config->tiling = I915_TILING_X;
9868 			fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9869 		}
9870 	}
9871 
9872 	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9873 	fourcc = i9xx_format_to_fourcc(pixel_format);
9874 	fb->pixel_format = fourcc;
9875 	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9876 
9877 	base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9878 	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9879 		offset = I915_READ(DSPOFFSET(pipe));
9880 	} else {
9881 		if (plane_config->tiling)
9882 			offset = I915_READ(DSPTILEOFF(pipe));
9883 		else
9884 			offset = I915_READ(DSPLINOFF(pipe));
9885 	}
9886 	plane_config->base = base;
9887 
9888 	val = I915_READ(PIPESRC(pipe));
9889 	fb->width = ((val >> 16) & 0xfff) + 1;
9890 	fb->height = ((val >> 0) & 0xfff) + 1;
9891 
9892 	val = I915_READ(DSPSTRIDE(pipe));
9893 	fb->pitches[0] = val & 0xffffffc0;
9894 
9895 	aligned_height = intel_fb_align_height(dev, fb->height,
9896 					       fb->pixel_format,
9897 					       fb->modifier[0]);
9898 
9899 	plane_config->size = fb->pitches[0] * aligned_height;
9900 
9901 	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9902 		      pipe_name(pipe), fb->width, fb->height,
9903 		      fb->bits_per_pixel, base, fb->pitches[0],
9904 		      plane_config->size);
9905 
9906 	plane_config->fb = intel_fb;
9907 }
9908 
ironlake_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)9909 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9910 				     struct intel_crtc_state *pipe_config)
9911 {
9912 	struct drm_device *dev = crtc->base.dev;
9913 	struct drm_i915_private *dev_priv = to_i915(dev);
9914 	enum intel_display_power_domain power_domain;
9915 	uint32_t tmp;
9916 	bool ret;
9917 
9918 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9919 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9920 		return false;
9921 
9922 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9923 	pipe_config->shared_dpll = NULL;
9924 
9925 	ret = false;
9926 	tmp = I915_READ(PIPECONF(crtc->pipe));
9927 	if (!(tmp & PIPECONF_ENABLE))
9928 		goto out;
9929 
9930 	switch (tmp & PIPECONF_BPC_MASK) {
9931 	case PIPECONF_6BPC:
9932 		pipe_config->pipe_bpp = 18;
9933 		break;
9934 	case PIPECONF_8BPC:
9935 		pipe_config->pipe_bpp = 24;
9936 		break;
9937 	case PIPECONF_10BPC:
9938 		pipe_config->pipe_bpp = 30;
9939 		break;
9940 	case PIPECONF_12BPC:
9941 		pipe_config->pipe_bpp = 36;
9942 		break;
9943 	default:
9944 		break;
9945 	}
9946 
9947 	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9948 		pipe_config->limited_color_range = true;
9949 
9950 	if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9951 		struct intel_shared_dpll *pll;
9952 		enum intel_dpll_id pll_id;
9953 
9954 		pipe_config->has_pch_encoder = true;
9955 
9956 		tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9957 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9958 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
9959 
9960 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
9961 
9962 		if (HAS_PCH_IBX(dev_priv)) {
9963 			/*
9964 			 * The pipe->pch transcoder and pch transcoder->pll
9965 			 * mapping is fixed.
9966 			 */
9967 			pll_id = (enum intel_dpll_id) crtc->pipe;
9968 		} else {
9969 			tmp = I915_READ(PCH_DPLL_SEL);
9970 			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9971 				pll_id = DPLL_ID_PCH_PLL_B;
9972 			else
9973 				pll_id= DPLL_ID_PCH_PLL_A;
9974 		}
9975 
9976 		pipe_config->shared_dpll =
9977 			intel_get_shared_dpll_by_id(dev_priv, pll_id);
9978 		pll = pipe_config->shared_dpll;
9979 
9980 		WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9981 						 &pipe_config->dpll_hw_state));
9982 
9983 		tmp = pipe_config->dpll_hw_state.dpll;
9984 		pipe_config->pixel_multiplier =
9985 			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9986 			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9987 
9988 		ironlake_pch_clock_get(crtc, pipe_config);
9989 	} else {
9990 		pipe_config->pixel_multiplier = 1;
9991 	}
9992 
9993 	intel_get_pipe_timings(crtc, pipe_config);
9994 	intel_get_pipe_src_size(crtc, pipe_config);
9995 
9996 	ironlake_get_pfit_config(crtc, pipe_config);
9997 
9998 	ret = true;
9999 
10000 out:
10001 	intel_display_power_put(dev_priv, power_domain);
10002 
10003 	return ret;
10004 }
10005 
assert_can_disable_lcpll(struct drm_i915_private * dev_priv)10006 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
10007 {
10008 	struct drm_device *dev = &dev_priv->drm;
10009 	struct intel_crtc *crtc;
10010 
10011 	for_each_intel_crtc(dev, crtc)
10012 		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
10013 		     pipe_name(crtc->pipe));
10014 
10015 	I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
10016 	I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
10017 	I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
10018 	I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
10019 	I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
10020 	I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
10021 	     "CPU PWM1 enabled\n");
10022 	if (IS_HASWELL(dev))
10023 		I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
10024 		     "CPU PWM2 enabled\n");
10025 	I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
10026 	     "PCH PWM1 enabled\n");
10027 	I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
10028 	     "Utility pin enabled\n");
10029 	I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
10030 
10031 	/*
10032 	 * In theory we can still leave IRQs enabled, as long as only the HPD
10033 	 * interrupts remain enabled. We used to check for that, but since it's
10034 	 * gen-specific and since we only disable LCPLL after we fully disable
10035 	 * the interrupts, the check below should be enough.
10036 	 */
10037 	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
10038 }
10039 
hsw_read_dcomp(struct drm_i915_private * dev_priv)10040 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
10041 {
10042 	struct drm_device *dev = &dev_priv->drm;
10043 
10044 	if (IS_HASWELL(dev))
10045 		return I915_READ(D_COMP_HSW);
10046 	else
10047 		return I915_READ(D_COMP_BDW);
10048 }
10049 
hsw_write_dcomp(struct drm_i915_private * dev_priv,uint32_t val)10050 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
10051 {
10052 	struct drm_device *dev = &dev_priv->drm;
10053 
10054 	if (IS_HASWELL(dev)) {
10055 		mutex_lock(&dev_priv->rps.hw_lock);
10056 		if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
10057 					    val))
10058 			DRM_DEBUG_KMS("Failed to write to D_COMP\n");
10059 		mutex_unlock(&dev_priv->rps.hw_lock);
10060 	} else {
10061 		I915_WRITE(D_COMP_BDW, val);
10062 		POSTING_READ(D_COMP_BDW);
10063 	}
10064 }
10065 
10066 /*
10067  * This function implements pieces of two sequences from BSpec:
10068  * - Sequence for display software to disable LCPLL
10069  * - Sequence for display software to allow package C8+
10070  * The steps implemented here are just the steps that actually touch the LCPLL
10071  * register. Callers should take care of disabling all the display engine
10072  * functions, doing the mode unset, fixing interrupts, etc.
10073  */
hsw_disable_lcpll(struct drm_i915_private * dev_priv,bool switch_to_fclk,bool allow_power_down)10074 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
10075 			      bool switch_to_fclk, bool allow_power_down)
10076 {
10077 	uint32_t val;
10078 
10079 	assert_can_disable_lcpll(dev_priv);
10080 
10081 	val = I915_READ(LCPLL_CTL);
10082 
10083 	if (switch_to_fclk) {
10084 		val |= LCPLL_CD_SOURCE_FCLK;
10085 		I915_WRITE(LCPLL_CTL, val);
10086 
10087 		if (wait_for_us(I915_READ(LCPLL_CTL) &
10088 				LCPLL_CD_SOURCE_FCLK_DONE, 1))
10089 			DRM_ERROR("Switching to FCLK failed\n");
10090 
10091 		val = I915_READ(LCPLL_CTL);
10092 	}
10093 
10094 	val |= LCPLL_PLL_DISABLE;
10095 	I915_WRITE(LCPLL_CTL, val);
10096 	POSTING_READ(LCPLL_CTL);
10097 
10098 	if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
10099 		DRM_ERROR("LCPLL still locked\n");
10100 
10101 	val = hsw_read_dcomp(dev_priv);
10102 	val |= D_COMP_COMP_DISABLE;
10103 	hsw_write_dcomp(dev_priv, val);
10104 	ndelay(100);
10105 
10106 	if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
10107 		     1))
10108 		DRM_ERROR("D_COMP RCOMP still in progress\n");
10109 
10110 	if (allow_power_down) {
10111 		val = I915_READ(LCPLL_CTL);
10112 		val |= LCPLL_POWER_DOWN_ALLOW;
10113 		I915_WRITE(LCPLL_CTL, val);
10114 		POSTING_READ(LCPLL_CTL);
10115 	}
10116 }
10117 
10118 /*
10119  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10120  * source.
10121  */
hsw_restore_lcpll(struct drm_i915_private * dev_priv)10122 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
10123 {
10124 	uint32_t val;
10125 
10126 	val = I915_READ(LCPLL_CTL);
10127 
10128 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
10129 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
10130 		return;
10131 
10132 	/*
10133 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
10134 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
10135 	 */
10136 	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
10137 
10138 	if (val & LCPLL_POWER_DOWN_ALLOW) {
10139 		val &= ~LCPLL_POWER_DOWN_ALLOW;
10140 		I915_WRITE(LCPLL_CTL, val);
10141 		POSTING_READ(LCPLL_CTL);
10142 	}
10143 
10144 	val = hsw_read_dcomp(dev_priv);
10145 	val |= D_COMP_COMP_FORCE;
10146 	val &= ~D_COMP_COMP_DISABLE;
10147 	hsw_write_dcomp(dev_priv, val);
10148 
10149 	val = I915_READ(LCPLL_CTL);
10150 	val &= ~LCPLL_PLL_DISABLE;
10151 	I915_WRITE(LCPLL_CTL, val);
10152 
10153 	if (intel_wait_for_register(dev_priv,
10154 				    LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10155 				    5))
10156 		DRM_ERROR("LCPLL not locked yet\n");
10157 
10158 	if (val & LCPLL_CD_SOURCE_FCLK) {
10159 		val = I915_READ(LCPLL_CTL);
10160 		val &= ~LCPLL_CD_SOURCE_FCLK;
10161 		I915_WRITE(LCPLL_CTL, val);
10162 
10163 		if (wait_for_us((I915_READ(LCPLL_CTL) &
10164 				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10165 			DRM_ERROR("Switching back to LCPLL failed\n");
10166 	}
10167 
10168 	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
10169 	intel_update_cdclk(&dev_priv->drm);
10170 }
10171 
10172 /*
10173  * Package states C8 and deeper are really deep PC states that can only be
10174  * reached when all the devices on the system allow it, so even if the graphics
10175  * device allows PC8+, it doesn't mean the system will actually get to these
10176  * states. Our driver only allows PC8+ when going into runtime PM.
10177  *
10178  * The requirements for PC8+ are that all the outputs are disabled, the power
10179  * well is disabled and most interrupts are disabled, and these are also
10180  * requirements for runtime PM. When these conditions are met, we manually do
10181  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10182  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10183  * hang the machine.
10184  *
10185  * When we really reach PC8 or deeper states (not just when we allow it) we lose
10186  * the state of some registers, so when we come back from PC8+ we need to
10187  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10188  * need to take care of the registers kept by RC6. Notice that this happens even
10189  * if we don't put the device in PCI D3 state (which is what currently happens
10190  * because of the runtime PM support).
10191  *
10192  * For more, read "Display Sequences for Package C8" on the hardware
10193  * documentation.
10194  */
hsw_enable_pc8(struct drm_i915_private * dev_priv)10195 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
10196 {
10197 	struct drm_device *dev = &dev_priv->drm;
10198 	uint32_t val;
10199 
10200 	DRM_DEBUG_KMS("Enabling package C8+\n");
10201 
10202 	if (HAS_PCH_LPT_LP(dev)) {
10203 		val = I915_READ(SOUTH_DSPCLK_GATE_D);
10204 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10205 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10206 	}
10207 
10208 	lpt_disable_clkout_dp(dev);
10209 	hsw_disable_lcpll(dev_priv, true, true);
10210 }
10211 
hsw_disable_pc8(struct drm_i915_private * dev_priv)10212 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
10213 {
10214 	struct drm_device *dev = &dev_priv->drm;
10215 	uint32_t val;
10216 
10217 	DRM_DEBUG_KMS("Disabling package C8+\n");
10218 
10219 	hsw_restore_lcpll(dev_priv);
10220 	lpt_init_pch_refclk(dev);
10221 
10222 	if (HAS_PCH_LPT_LP(dev)) {
10223 		val = I915_READ(SOUTH_DSPCLK_GATE_D);
10224 		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10225 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10226 	}
10227 }
10228 
bxt_modeset_commit_cdclk(struct drm_atomic_state * old_state)10229 static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10230 {
10231 	struct drm_device *dev = old_state->dev;
10232 	struct intel_atomic_state *old_intel_state =
10233 		to_intel_atomic_state(old_state);
10234 	unsigned int req_cdclk = old_intel_state->dev_cdclk;
10235 
10236 	bxt_set_cdclk(to_i915(dev), req_cdclk);
10237 }
10238 
bdw_adjust_min_pipe_pixel_rate(struct intel_crtc_state * crtc_state,int pixel_rate)10239 static int bdw_adjust_min_pipe_pixel_rate(struct intel_crtc_state *crtc_state,
10240 					  int pixel_rate)
10241 {
10242 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
10243 
10244 	/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
10245 	if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
10246 		pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10247 
10248 	/* BSpec says "Do not use DisplayPort with CDCLK less than
10249 	 * 432 MHz, audio enabled, port width x4, and link rate
10250 	 * HBR2 (5.4 GHz), or else there may be audio corruption or
10251 	 * screen corruption."
10252 	 */
10253 	if (intel_crtc_has_dp_encoder(crtc_state) &&
10254 	    crtc_state->has_audio &&
10255 	    crtc_state->port_clock >= 540000 &&
10256 	    crtc_state->lane_count == 4)
10257 		pixel_rate = max(432000, pixel_rate);
10258 
10259 	return pixel_rate;
10260 }
10261 
10262 /* compute the max rate for new configuration */
ilk_max_pixel_rate(struct drm_atomic_state * state)10263 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
10264 {
10265 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10266 	struct drm_i915_private *dev_priv = to_i915(state->dev);
10267 	struct drm_crtc *crtc;
10268 	struct drm_crtc_state *cstate;
10269 	struct intel_crtc_state *crtc_state;
10270 	unsigned max_pixel_rate = 0, i;
10271 	enum pipe pipe;
10272 
10273 	memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10274 	       sizeof(intel_state->min_pixclk));
10275 
10276 	for_each_crtc_in_state(state, crtc, cstate, i) {
10277 		int pixel_rate;
10278 
10279 		crtc_state = to_intel_crtc_state(cstate);
10280 		if (!crtc_state->base.enable) {
10281 			intel_state->min_pixclk[i] = 0;
10282 			continue;
10283 		}
10284 
10285 		pixel_rate = ilk_pipe_pixel_rate(crtc_state);
10286 
10287 		if (IS_BROADWELL(dev_priv) || IS_GEN9(dev_priv))
10288 			pixel_rate = bdw_adjust_min_pipe_pixel_rate(crtc_state,
10289 								    pixel_rate);
10290 
10291 		intel_state->min_pixclk[i] = pixel_rate;
10292 	}
10293 
10294 	for_each_pipe(dev_priv, pipe)
10295 		max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10296 
10297 	return max_pixel_rate;
10298 }
10299 
broadwell_set_cdclk(struct drm_device * dev,int cdclk)10300 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10301 {
10302 	struct drm_i915_private *dev_priv = to_i915(dev);
10303 	uint32_t val, data;
10304 	int ret;
10305 
10306 	if (WARN((I915_READ(LCPLL_CTL) &
10307 		  (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10308 		   LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10309 		   LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10310 		   LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10311 		 "trying to change cdclk frequency with cdclk not enabled\n"))
10312 		return;
10313 
10314 	mutex_lock(&dev_priv->rps.hw_lock);
10315 	ret = sandybridge_pcode_write(dev_priv,
10316 				      BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10317 	mutex_unlock(&dev_priv->rps.hw_lock);
10318 	if (ret) {
10319 		DRM_ERROR("failed to inform pcode about cdclk change\n");
10320 		return;
10321 	}
10322 
10323 	val = I915_READ(LCPLL_CTL);
10324 	val |= LCPLL_CD_SOURCE_FCLK;
10325 	I915_WRITE(LCPLL_CTL, val);
10326 
10327 	if (wait_for_us(I915_READ(LCPLL_CTL) &
10328 			LCPLL_CD_SOURCE_FCLK_DONE, 1))
10329 		DRM_ERROR("Switching to FCLK failed\n");
10330 
10331 	val = I915_READ(LCPLL_CTL);
10332 	val &= ~LCPLL_CLK_FREQ_MASK;
10333 
10334 	switch (cdclk) {
10335 	case 450000:
10336 		val |= LCPLL_CLK_FREQ_450;
10337 		data = 0;
10338 		break;
10339 	case 540000:
10340 		val |= LCPLL_CLK_FREQ_54O_BDW;
10341 		data = 1;
10342 		break;
10343 	case 337500:
10344 		val |= LCPLL_CLK_FREQ_337_5_BDW;
10345 		data = 2;
10346 		break;
10347 	case 675000:
10348 		val |= LCPLL_CLK_FREQ_675_BDW;
10349 		data = 3;
10350 		break;
10351 	default:
10352 		WARN(1, "invalid cdclk frequency\n");
10353 		return;
10354 	}
10355 
10356 	I915_WRITE(LCPLL_CTL, val);
10357 
10358 	val = I915_READ(LCPLL_CTL);
10359 	val &= ~LCPLL_CD_SOURCE_FCLK;
10360 	I915_WRITE(LCPLL_CTL, val);
10361 
10362 	if (wait_for_us((I915_READ(LCPLL_CTL) &
10363 			LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10364 		DRM_ERROR("Switching back to LCPLL failed\n");
10365 
10366 	mutex_lock(&dev_priv->rps.hw_lock);
10367 	sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10368 	mutex_unlock(&dev_priv->rps.hw_lock);
10369 
10370 	I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10371 
10372 	intel_update_cdclk(dev);
10373 
10374 	WARN(cdclk != dev_priv->cdclk_freq,
10375 	     "cdclk requested %d kHz but got %d kHz\n",
10376 	     cdclk, dev_priv->cdclk_freq);
10377 }
10378 
broadwell_calc_cdclk(int max_pixclk)10379 static int broadwell_calc_cdclk(int max_pixclk)
10380 {
10381 	if (max_pixclk > 540000)
10382 		return 675000;
10383 	else if (max_pixclk > 450000)
10384 		return 540000;
10385 	else if (max_pixclk > 337500)
10386 		return 450000;
10387 	else
10388 		return 337500;
10389 }
10390 
broadwell_modeset_calc_cdclk(struct drm_atomic_state * state)10391 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
10392 {
10393 	struct drm_i915_private *dev_priv = to_i915(state->dev);
10394 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10395 	int max_pixclk = ilk_max_pixel_rate(state);
10396 	int cdclk;
10397 
10398 	/*
10399 	 * FIXME should also account for plane ratio
10400 	 * once 64bpp pixel formats are supported.
10401 	 */
10402 	cdclk = broadwell_calc_cdclk(max_pixclk);
10403 
10404 	if (cdclk > dev_priv->max_cdclk_freq) {
10405 		DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10406 			      cdclk, dev_priv->max_cdclk_freq);
10407 		return -EINVAL;
10408 	}
10409 
10410 	intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10411 	if (!intel_state->active_crtcs)
10412 		intel_state->dev_cdclk = broadwell_calc_cdclk(0);
10413 
10414 	return 0;
10415 }
10416 
broadwell_modeset_commit_cdclk(struct drm_atomic_state * old_state)10417 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10418 {
10419 	struct drm_device *dev = old_state->dev;
10420 	struct intel_atomic_state *old_intel_state =
10421 		to_intel_atomic_state(old_state);
10422 	unsigned req_cdclk = old_intel_state->dev_cdclk;
10423 
10424 	broadwell_set_cdclk(dev, req_cdclk);
10425 }
10426 
skl_modeset_calc_cdclk(struct drm_atomic_state * state)10427 static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10428 {
10429 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10430 	struct drm_i915_private *dev_priv = to_i915(state->dev);
10431 	const int max_pixclk = ilk_max_pixel_rate(state);
10432 	int vco = intel_state->cdclk_pll_vco;
10433 	int cdclk;
10434 
10435 	/*
10436 	 * FIXME should also account for plane ratio
10437 	 * once 64bpp pixel formats are supported.
10438 	 */
10439 	cdclk = skl_calc_cdclk(max_pixclk, vco);
10440 
10441 	/*
10442 	 * FIXME move the cdclk caclulation to
10443 	 * compute_config() so we can fail gracegully.
10444 	 */
10445 	if (cdclk > dev_priv->max_cdclk_freq) {
10446 		DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10447 			  cdclk, dev_priv->max_cdclk_freq);
10448 		cdclk = dev_priv->max_cdclk_freq;
10449 	}
10450 
10451 	intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10452 	if (!intel_state->active_crtcs)
10453 		intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
10454 
10455 	return 0;
10456 }
10457 
skl_modeset_commit_cdclk(struct drm_atomic_state * old_state)10458 static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10459 {
10460 	struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10461 	struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10462 	unsigned int req_cdclk = intel_state->dev_cdclk;
10463 	unsigned int req_vco = intel_state->cdclk_pll_vco;
10464 
10465 	skl_set_cdclk(dev_priv, req_cdclk, req_vco);
10466 }
10467 
haswell_crtc_compute_clock(struct intel_crtc * crtc,struct intel_crtc_state * crtc_state)10468 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10469 				      struct intel_crtc_state *crtc_state)
10470 {
10471 	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
10472 		if (!intel_ddi_pll_select(crtc, crtc_state))
10473 			return -EINVAL;
10474 	}
10475 
10476 	crtc->lowfreq_avail = false;
10477 
10478 	return 0;
10479 }
10480 
bxt_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10481 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10482 				enum port port,
10483 				struct intel_crtc_state *pipe_config)
10484 {
10485 	enum intel_dpll_id id;
10486 
10487 	switch (port) {
10488 	case PORT_A:
10489 		id = DPLL_ID_SKL_DPLL0;
10490 		break;
10491 	case PORT_B:
10492 		id = DPLL_ID_SKL_DPLL1;
10493 		break;
10494 	case PORT_C:
10495 		id = DPLL_ID_SKL_DPLL2;
10496 		break;
10497 	default:
10498 		DRM_ERROR("Incorrect port type\n");
10499 		return;
10500 	}
10501 
10502 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10503 }
10504 
skylake_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10505 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10506 				enum port port,
10507 				struct intel_crtc_state *pipe_config)
10508 {
10509 	enum intel_dpll_id id;
10510 	u32 temp;
10511 
10512 	temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10513 	id = temp >> (port * 3 + 1);
10514 
10515 	if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10516 		return;
10517 
10518 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10519 }
10520 
haswell_get_ddi_pll(struct drm_i915_private * dev_priv,enum port port,struct intel_crtc_state * pipe_config)10521 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10522 				enum port port,
10523 				struct intel_crtc_state *pipe_config)
10524 {
10525 	enum intel_dpll_id id;
10526 	uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10527 
10528 	switch (ddi_pll_sel) {
10529 	case PORT_CLK_SEL_WRPLL1:
10530 		id = DPLL_ID_WRPLL1;
10531 		break;
10532 	case PORT_CLK_SEL_WRPLL2:
10533 		id = DPLL_ID_WRPLL2;
10534 		break;
10535 	case PORT_CLK_SEL_SPLL:
10536 		id = DPLL_ID_SPLL;
10537 		break;
10538 	case PORT_CLK_SEL_LCPLL_810:
10539 		id = DPLL_ID_LCPLL_810;
10540 		break;
10541 	case PORT_CLK_SEL_LCPLL_1350:
10542 		id = DPLL_ID_LCPLL_1350;
10543 		break;
10544 	case PORT_CLK_SEL_LCPLL_2700:
10545 		id = DPLL_ID_LCPLL_2700;
10546 		break;
10547 	default:
10548 		MISSING_CASE(ddi_pll_sel);
10549 		/* fall through */
10550 	case PORT_CLK_SEL_NONE:
10551 		return;
10552 	}
10553 
10554 	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10555 }
10556 
hsw_get_transcoder_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,unsigned long * power_domain_mask)10557 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10558 				     struct intel_crtc_state *pipe_config,
10559 				     unsigned long *power_domain_mask)
10560 {
10561 	struct drm_device *dev = crtc->base.dev;
10562 	struct drm_i915_private *dev_priv = to_i915(dev);
10563 	enum intel_display_power_domain power_domain;
10564 	u32 tmp;
10565 
10566 	/*
10567 	 * The pipe->transcoder mapping is fixed with the exception of the eDP
10568 	 * transcoder handled below.
10569 	 */
10570 	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10571 
10572 	/*
10573 	 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10574 	 * consistency and less surprising code; it's in always on power).
10575 	 */
10576 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10577 	if (tmp & TRANS_DDI_FUNC_ENABLE) {
10578 		enum pipe trans_edp_pipe;
10579 		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10580 		default:
10581 			WARN(1, "unknown pipe linked to edp transcoder\n");
10582 		case TRANS_DDI_EDP_INPUT_A_ONOFF:
10583 		case TRANS_DDI_EDP_INPUT_A_ON:
10584 			trans_edp_pipe = PIPE_A;
10585 			break;
10586 		case TRANS_DDI_EDP_INPUT_B_ONOFF:
10587 			trans_edp_pipe = PIPE_B;
10588 			break;
10589 		case TRANS_DDI_EDP_INPUT_C_ONOFF:
10590 			trans_edp_pipe = PIPE_C;
10591 			break;
10592 		}
10593 
10594 		if (trans_edp_pipe == crtc->pipe)
10595 			pipe_config->cpu_transcoder = TRANSCODER_EDP;
10596 	}
10597 
10598 	power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10599 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10600 		return false;
10601 	*power_domain_mask |= BIT(power_domain);
10602 
10603 	tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10604 
10605 	return tmp & PIPECONF_ENABLE;
10606 }
10607 
bxt_get_dsi_transcoder_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,unsigned long * power_domain_mask)10608 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10609 					 struct intel_crtc_state *pipe_config,
10610 					 unsigned long *power_domain_mask)
10611 {
10612 	struct drm_device *dev = crtc->base.dev;
10613 	struct drm_i915_private *dev_priv = to_i915(dev);
10614 	enum intel_display_power_domain power_domain;
10615 	enum port port;
10616 	enum transcoder cpu_transcoder;
10617 	u32 tmp;
10618 
10619 	for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10620 		if (port == PORT_A)
10621 			cpu_transcoder = TRANSCODER_DSI_A;
10622 		else
10623 			cpu_transcoder = TRANSCODER_DSI_C;
10624 
10625 		power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10626 		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10627 			continue;
10628 		*power_domain_mask |= BIT(power_domain);
10629 
10630 		/*
10631 		 * The PLL needs to be enabled with a valid divider
10632 		 * configuration, otherwise accessing DSI registers will hang
10633 		 * the machine. See BSpec North Display Engine
10634 		 * registers/MIPI[BXT]. We can break out here early, since we
10635 		 * need the same DSI PLL to be enabled for both DSI ports.
10636 		 */
10637 		if (!intel_dsi_pll_is_enabled(dev_priv))
10638 			break;
10639 
10640 		/* XXX: this works for video mode only */
10641 		tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10642 		if (!(tmp & DPI_ENABLE))
10643 			continue;
10644 
10645 		tmp = I915_READ(MIPI_CTRL(port));
10646 		if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10647 			continue;
10648 
10649 		pipe_config->cpu_transcoder = cpu_transcoder;
10650 		break;
10651 	}
10652 
10653 	return transcoder_is_dsi(pipe_config->cpu_transcoder);
10654 }
10655 
haswell_get_ddi_port_state(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10656 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10657 				       struct intel_crtc_state *pipe_config)
10658 {
10659 	struct drm_device *dev = crtc->base.dev;
10660 	struct drm_i915_private *dev_priv = to_i915(dev);
10661 	struct intel_shared_dpll *pll;
10662 	enum port port;
10663 	uint32_t tmp;
10664 
10665 	tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10666 
10667 	port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10668 
10669 	if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
10670 		skylake_get_ddi_pll(dev_priv, port, pipe_config);
10671 	else if (IS_BROXTON(dev))
10672 		bxt_get_ddi_pll(dev_priv, port, pipe_config);
10673 	else
10674 		haswell_get_ddi_pll(dev_priv, port, pipe_config);
10675 
10676 	pll = pipe_config->shared_dpll;
10677 	if (pll) {
10678 		WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10679 						 &pipe_config->dpll_hw_state));
10680 	}
10681 
10682 	/*
10683 	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10684 	 * DDI E. So just check whether this pipe is wired to DDI E and whether
10685 	 * the PCH transcoder is on.
10686 	 */
10687 	if (INTEL_INFO(dev)->gen < 9 &&
10688 	    (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10689 		pipe_config->has_pch_encoder = true;
10690 
10691 		tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10692 		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10693 					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
10694 
10695 		ironlake_get_fdi_m_n_config(crtc, pipe_config);
10696 	}
10697 }
10698 
haswell_get_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)10699 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10700 				    struct intel_crtc_state *pipe_config)
10701 {
10702 	struct drm_device *dev = crtc->base.dev;
10703 	struct drm_i915_private *dev_priv = to_i915(dev);
10704 	enum intel_display_power_domain power_domain;
10705 	unsigned long power_domain_mask;
10706 	bool active;
10707 
10708 	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10709 	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10710 		return false;
10711 	power_domain_mask = BIT(power_domain);
10712 
10713 	pipe_config->shared_dpll = NULL;
10714 
10715 	active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10716 
10717 	if (IS_BROXTON(dev_priv) &&
10718 	    bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10719 		WARN_ON(active);
10720 		active = true;
10721 	}
10722 
10723 	if (!active)
10724 		goto out;
10725 
10726 	if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10727 		haswell_get_ddi_port_state(crtc, pipe_config);
10728 		intel_get_pipe_timings(crtc, pipe_config);
10729 	}
10730 
10731 	intel_get_pipe_src_size(crtc, pipe_config);
10732 
10733 	pipe_config->gamma_mode =
10734 		I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10735 
10736 	if (INTEL_INFO(dev)->gen >= 9) {
10737 		skl_init_scalers(dev, crtc, pipe_config);
10738 	}
10739 
10740 	if (INTEL_INFO(dev)->gen >= 9) {
10741 		pipe_config->scaler_state.scaler_id = -1;
10742 		pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10743 	}
10744 
10745 	power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10746 	if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10747 		power_domain_mask |= BIT(power_domain);
10748 		if (INTEL_INFO(dev)->gen >= 9)
10749 			skylake_get_pfit_config(crtc, pipe_config);
10750 		else
10751 			ironlake_get_pfit_config(crtc, pipe_config);
10752 	}
10753 
10754 	if (IS_HASWELL(dev))
10755 		pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10756 			(I915_READ(IPS_CTL) & IPS_ENABLE);
10757 
10758 	if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10759 	    !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10760 		pipe_config->pixel_multiplier =
10761 			I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10762 	} else {
10763 		pipe_config->pixel_multiplier = 1;
10764 	}
10765 
10766 out:
10767 	for_each_power_domain(power_domain, power_domain_mask)
10768 		intel_display_power_put(dev_priv, power_domain);
10769 
10770 	return active;
10771 }
10772 
i845_update_cursor(struct drm_crtc * crtc,u32 base,const struct intel_plane_state * plane_state)10773 static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10774 			       const struct intel_plane_state *plane_state)
10775 {
10776 	struct drm_device *dev = crtc->dev;
10777 	struct drm_i915_private *dev_priv = to_i915(dev);
10778 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10779 	uint32_t cntl = 0, size = 0;
10780 
10781 	if (plane_state && plane_state->base.visible) {
10782 		unsigned int width = plane_state->base.crtc_w;
10783 		unsigned int height = plane_state->base.crtc_h;
10784 		unsigned int stride = roundup_pow_of_two(width) * 4;
10785 
10786 		switch (stride) {
10787 		default:
10788 			WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10789 				  width, stride);
10790 			stride = 256;
10791 			/* fallthrough */
10792 		case 256:
10793 		case 512:
10794 		case 1024:
10795 		case 2048:
10796 			break;
10797 		}
10798 
10799 		cntl |= CURSOR_ENABLE |
10800 			CURSOR_GAMMA_ENABLE |
10801 			CURSOR_FORMAT_ARGB |
10802 			CURSOR_STRIDE(stride);
10803 
10804 		size = (height << 12) | width;
10805 	}
10806 
10807 	if (intel_crtc->cursor_cntl != 0 &&
10808 	    (intel_crtc->cursor_base != base ||
10809 	     intel_crtc->cursor_size != size ||
10810 	     intel_crtc->cursor_cntl != cntl)) {
10811 		/* On these chipsets we can only modify the base/size/stride
10812 		 * whilst the cursor is disabled.
10813 		 */
10814 		I915_WRITE(CURCNTR(PIPE_A), 0);
10815 		POSTING_READ(CURCNTR(PIPE_A));
10816 		intel_crtc->cursor_cntl = 0;
10817 	}
10818 
10819 	if (intel_crtc->cursor_base != base) {
10820 		I915_WRITE(CURBASE(PIPE_A), base);
10821 		intel_crtc->cursor_base = base;
10822 	}
10823 
10824 	if (intel_crtc->cursor_size != size) {
10825 		I915_WRITE(CURSIZE, size);
10826 		intel_crtc->cursor_size = size;
10827 	}
10828 
10829 	if (intel_crtc->cursor_cntl != cntl) {
10830 		I915_WRITE(CURCNTR(PIPE_A), cntl);
10831 		POSTING_READ(CURCNTR(PIPE_A));
10832 		intel_crtc->cursor_cntl = cntl;
10833 	}
10834 }
10835 
i9xx_update_cursor(struct drm_crtc * crtc,u32 base,const struct intel_plane_state * plane_state)10836 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10837 			       const struct intel_plane_state *plane_state)
10838 {
10839 	struct drm_device *dev = crtc->dev;
10840 	struct drm_i915_private *dev_priv = to_i915(dev);
10841 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10842 	const struct skl_wm_values *wm = &dev_priv->wm.skl_results;
10843 	int pipe = intel_crtc->pipe;
10844 	uint32_t cntl = 0;
10845 
10846 	if (INTEL_GEN(dev_priv) >= 9 && wm->dirty_pipes & drm_crtc_mask(crtc))
10847 		skl_write_cursor_wm(intel_crtc, wm);
10848 
10849 	if (plane_state && plane_state->base.visible) {
10850 		cntl = MCURSOR_GAMMA_ENABLE;
10851 		switch (plane_state->base.crtc_w) {
10852 			case 64:
10853 				cntl |= CURSOR_MODE_64_ARGB_AX;
10854 				break;
10855 			case 128:
10856 				cntl |= CURSOR_MODE_128_ARGB_AX;
10857 				break;
10858 			case 256:
10859 				cntl |= CURSOR_MODE_256_ARGB_AX;
10860 				break;
10861 			default:
10862 				MISSING_CASE(plane_state->base.crtc_w);
10863 				return;
10864 		}
10865 		cntl |= pipe << 28; /* Connect to correct pipe */
10866 
10867 		if (HAS_DDI(dev))
10868 			cntl |= CURSOR_PIPE_CSC_ENABLE;
10869 
10870 		if (plane_state->base.rotation == DRM_ROTATE_180)
10871 			cntl |= CURSOR_ROTATE_180;
10872 	}
10873 
10874 	if (intel_crtc->cursor_cntl != cntl) {
10875 		I915_WRITE(CURCNTR(pipe), cntl);
10876 		POSTING_READ(CURCNTR(pipe));
10877 		intel_crtc->cursor_cntl = cntl;
10878 	}
10879 
10880 	/* and commit changes on next vblank */
10881 	I915_WRITE(CURBASE(pipe), base);
10882 	POSTING_READ(CURBASE(pipe));
10883 
10884 	intel_crtc->cursor_base = base;
10885 }
10886 
10887 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
intel_crtc_update_cursor(struct drm_crtc * crtc,const struct intel_plane_state * plane_state)10888 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10889 				     const struct intel_plane_state *plane_state)
10890 {
10891 	struct drm_device *dev = crtc->dev;
10892 	struct drm_i915_private *dev_priv = to_i915(dev);
10893 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10894 	int pipe = intel_crtc->pipe;
10895 	u32 base = intel_crtc->cursor_addr;
10896 	u32 pos = 0;
10897 
10898 	if (plane_state) {
10899 		int x = plane_state->base.crtc_x;
10900 		int y = plane_state->base.crtc_y;
10901 
10902 		if (x < 0) {
10903 			pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10904 			x = -x;
10905 		}
10906 		pos |= x << CURSOR_X_SHIFT;
10907 
10908 		if (y < 0) {
10909 			pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10910 			y = -y;
10911 		}
10912 		pos |= y << CURSOR_Y_SHIFT;
10913 
10914 		/* ILK+ do this automagically */
10915 		if (HAS_GMCH_DISPLAY(dev) &&
10916 		    plane_state->base.rotation == DRM_ROTATE_180) {
10917 			base += (plane_state->base.crtc_h *
10918 				 plane_state->base.crtc_w - 1) * 4;
10919 		}
10920 	}
10921 
10922 	I915_WRITE(CURPOS(pipe), pos);
10923 
10924 	if (IS_845G(dev) || IS_I865G(dev))
10925 		i845_update_cursor(crtc, base, plane_state);
10926 	else
10927 		i9xx_update_cursor(crtc, base, plane_state);
10928 }
10929 
cursor_size_ok(struct drm_device * dev,uint32_t width,uint32_t height)10930 static bool cursor_size_ok(struct drm_device *dev,
10931 			   uint32_t width, uint32_t height)
10932 {
10933 	if (width == 0 || height == 0)
10934 		return false;
10935 
10936 	/*
10937 	 * 845g/865g are special in that they are only limited by
10938 	 * the width of their cursors, the height is arbitrary up to
10939 	 * the precision of the register. Everything else requires
10940 	 * square cursors, limited to a few power-of-two sizes.
10941 	 */
10942 	if (IS_845G(dev) || IS_I865G(dev)) {
10943 		if ((width & 63) != 0)
10944 			return false;
10945 
10946 		if (width > (IS_845G(dev) ? 64 : 512))
10947 			return false;
10948 
10949 		if (height > 1023)
10950 			return false;
10951 	} else {
10952 		switch (width | height) {
10953 		case 256:
10954 		case 128:
10955 			if (IS_GEN2(dev))
10956 				return false;
10957 		case 64:
10958 			break;
10959 		default:
10960 			return false;
10961 		}
10962 	}
10963 
10964 	return true;
10965 }
10966 
10967 /* VESA 640x480x72Hz mode to set on the pipe */
10968 static struct drm_display_mode load_detect_mode = {
10969 	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10970 		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10971 };
10972 
10973 struct drm_framebuffer *
__intel_framebuffer_create(struct drm_device * dev,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)10974 __intel_framebuffer_create(struct drm_device *dev,
10975 			   struct drm_mode_fb_cmd2 *mode_cmd,
10976 			   struct drm_i915_gem_object *obj)
10977 {
10978 	struct intel_framebuffer *intel_fb;
10979 	int ret;
10980 
10981 	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10982 	if (!intel_fb)
10983 		return ERR_PTR(-ENOMEM);
10984 
10985 	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10986 	if (ret)
10987 		goto err;
10988 
10989 	return &intel_fb->base;
10990 
10991 err:
10992 	kfree(intel_fb);
10993 	return ERR_PTR(ret);
10994 }
10995 
10996 static struct drm_framebuffer *
intel_framebuffer_create(struct drm_device * dev,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)10997 intel_framebuffer_create(struct drm_device *dev,
10998 			 struct drm_mode_fb_cmd2 *mode_cmd,
10999 			 struct drm_i915_gem_object *obj)
11000 {
11001 	struct drm_framebuffer *fb;
11002 	int ret;
11003 
11004 	ret = i915_mutex_lock_interruptible(dev);
11005 	if (ret)
11006 		return ERR_PTR(ret);
11007 	fb = __intel_framebuffer_create(dev, mode_cmd, obj);
11008 	mutex_unlock(&dev->struct_mutex);
11009 
11010 	return fb;
11011 }
11012 
11013 static u32
intel_framebuffer_pitch_for_width(int width,int bpp)11014 intel_framebuffer_pitch_for_width(int width, int bpp)
11015 {
11016 	u32 pitch = DIV_ROUND_UP(width * bpp, 8);
11017 	return ALIGN(pitch, 64);
11018 }
11019 
11020 static u32
intel_framebuffer_size_for_mode(struct drm_display_mode * mode,int bpp)11021 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
11022 {
11023 	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
11024 	return PAGE_ALIGN(pitch * mode->vdisplay);
11025 }
11026 
11027 static struct drm_framebuffer *
intel_framebuffer_create_for_mode(struct drm_device * dev,struct drm_display_mode * mode,int depth,int bpp)11028 intel_framebuffer_create_for_mode(struct drm_device *dev,
11029 				  struct drm_display_mode *mode,
11030 				  int depth, int bpp)
11031 {
11032 	struct drm_framebuffer *fb;
11033 	struct drm_i915_gem_object *obj;
11034 	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
11035 
11036 	obj = i915_gem_object_create(dev,
11037 				    intel_framebuffer_size_for_mode(mode, bpp));
11038 	if (IS_ERR(obj))
11039 		return ERR_CAST(obj);
11040 
11041 	mode_cmd.width = mode->hdisplay;
11042 	mode_cmd.height = mode->vdisplay;
11043 	mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
11044 								bpp);
11045 	mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
11046 
11047 	fb = intel_framebuffer_create(dev, &mode_cmd, obj);
11048 	if (IS_ERR(fb))
11049 		i915_gem_object_put_unlocked(obj);
11050 
11051 	return fb;
11052 }
11053 
11054 static struct drm_framebuffer *
mode_fits_in_fbdev(struct drm_device * dev,struct drm_display_mode * mode)11055 mode_fits_in_fbdev(struct drm_device *dev,
11056 		   struct drm_display_mode *mode)
11057 {
11058 #ifdef CONFIG_DRM_FBDEV_EMULATION
11059 	struct drm_i915_private *dev_priv = to_i915(dev);
11060 	struct drm_i915_gem_object *obj;
11061 	struct drm_framebuffer *fb;
11062 
11063 	if (!dev_priv->fbdev)
11064 		return NULL;
11065 
11066 	if (!dev_priv->fbdev->fb)
11067 		return NULL;
11068 
11069 	obj = dev_priv->fbdev->fb->obj;
11070 	BUG_ON(!obj);
11071 
11072 	fb = &dev_priv->fbdev->fb->base;
11073 	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
11074 							       fb->bits_per_pixel))
11075 		return NULL;
11076 
11077 	if (obj->base.size < mode->vdisplay * fb->pitches[0])
11078 		return NULL;
11079 
11080 	drm_framebuffer_reference(fb);
11081 	return fb;
11082 #else
11083 	return NULL;
11084 #endif
11085 }
11086 
intel_modeset_setup_plane_state(struct drm_atomic_state * state,struct drm_crtc * crtc,struct drm_display_mode * mode,struct drm_framebuffer * fb,int x,int y)11087 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
11088 					   struct drm_crtc *crtc,
11089 					   struct drm_display_mode *mode,
11090 					   struct drm_framebuffer *fb,
11091 					   int x, int y)
11092 {
11093 	struct drm_plane_state *plane_state;
11094 	int hdisplay, vdisplay;
11095 	int ret;
11096 
11097 	plane_state = drm_atomic_get_plane_state(state, crtc->primary);
11098 	if (IS_ERR(plane_state))
11099 		return PTR_ERR(plane_state);
11100 
11101 	if (mode)
11102 		drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11103 	else
11104 		hdisplay = vdisplay = 0;
11105 
11106 	ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
11107 	if (ret)
11108 		return ret;
11109 	drm_atomic_set_fb_for_plane(plane_state, fb);
11110 	plane_state->crtc_x = 0;
11111 	plane_state->crtc_y = 0;
11112 	plane_state->crtc_w = hdisplay;
11113 	plane_state->crtc_h = vdisplay;
11114 	plane_state->src_x = x << 16;
11115 	plane_state->src_y = y << 16;
11116 	plane_state->src_w = hdisplay << 16;
11117 	plane_state->src_h = vdisplay << 16;
11118 
11119 	return 0;
11120 }
11121 
intel_get_load_detect_pipe(struct drm_connector * connector,struct drm_display_mode * mode,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)11122 bool intel_get_load_detect_pipe(struct drm_connector *connector,
11123 				struct drm_display_mode *mode,
11124 				struct intel_load_detect_pipe *old,
11125 				struct drm_modeset_acquire_ctx *ctx)
11126 {
11127 	struct intel_crtc *intel_crtc;
11128 	struct intel_encoder *intel_encoder =
11129 		intel_attached_encoder(connector);
11130 	struct drm_crtc *possible_crtc;
11131 	struct drm_encoder *encoder = &intel_encoder->base;
11132 	struct drm_crtc *crtc = NULL;
11133 	struct drm_device *dev = encoder->dev;
11134 	struct drm_framebuffer *fb;
11135 	struct drm_mode_config *config = &dev->mode_config;
11136 	struct drm_atomic_state *state = NULL, *restore_state = NULL;
11137 	struct drm_connector_state *connector_state;
11138 	struct intel_crtc_state *crtc_state;
11139 	int ret, i = -1;
11140 
11141 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11142 		      connector->base.id, connector->name,
11143 		      encoder->base.id, encoder->name);
11144 
11145 	old->restore_state = NULL;
11146 
11147 retry:
11148 	ret = drm_modeset_lock(&config->connection_mutex, ctx);
11149 	if (ret)
11150 		goto fail;
11151 
11152 	/*
11153 	 * Algorithm gets a little messy:
11154 	 *
11155 	 *   - if the connector already has an assigned crtc, use it (but make
11156 	 *     sure it's on first)
11157 	 *
11158 	 *   - try to find the first unused crtc that can drive this connector,
11159 	 *     and use that if we find one
11160 	 */
11161 
11162 	/* See if we already have a CRTC for this connector */
11163 	if (connector->state->crtc) {
11164 		crtc = connector->state->crtc;
11165 
11166 		ret = drm_modeset_lock(&crtc->mutex, ctx);
11167 		if (ret)
11168 			goto fail;
11169 
11170 		/* Make sure the crtc and connector are running */
11171 		goto found;
11172 	}
11173 
11174 	/* Find an unused one (if possible) */
11175 	for_each_crtc(dev, possible_crtc) {
11176 		i++;
11177 		if (!(encoder->possible_crtcs & (1 << i)))
11178 			continue;
11179 
11180 		ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11181 		if (ret)
11182 			goto fail;
11183 
11184 		if (possible_crtc->state->enable) {
11185 			drm_modeset_unlock(&possible_crtc->mutex);
11186 			continue;
11187 		}
11188 
11189 		crtc = possible_crtc;
11190 		break;
11191 	}
11192 
11193 	/*
11194 	 * If we didn't find an unused CRTC, don't use any.
11195 	 */
11196 	if (!crtc) {
11197 		DRM_DEBUG_KMS("no pipe available for load-detect\n");
11198 		goto fail;
11199 	}
11200 
11201 found:
11202 	intel_crtc = to_intel_crtc(crtc);
11203 
11204 	ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11205 	if (ret)
11206 		goto fail;
11207 
11208 	state = drm_atomic_state_alloc(dev);
11209 	restore_state = drm_atomic_state_alloc(dev);
11210 	if (!state || !restore_state) {
11211 		ret = -ENOMEM;
11212 		goto fail;
11213 	}
11214 
11215 	state->acquire_ctx = ctx;
11216 	restore_state->acquire_ctx = ctx;
11217 
11218 	connector_state = drm_atomic_get_connector_state(state, connector);
11219 	if (IS_ERR(connector_state)) {
11220 		ret = PTR_ERR(connector_state);
11221 		goto fail;
11222 	}
11223 
11224 	ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11225 	if (ret)
11226 		goto fail;
11227 
11228 	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11229 	if (IS_ERR(crtc_state)) {
11230 		ret = PTR_ERR(crtc_state);
11231 		goto fail;
11232 	}
11233 
11234 	crtc_state->base.active = crtc_state->base.enable = true;
11235 
11236 	if (!mode)
11237 		mode = &load_detect_mode;
11238 
11239 	/* We need a framebuffer large enough to accommodate all accesses
11240 	 * that the plane may generate whilst we perform load detection.
11241 	 * We can not rely on the fbcon either being present (we get called
11242 	 * during its initialisation to detect all boot displays, or it may
11243 	 * not even exist) or that it is large enough to satisfy the
11244 	 * requested mode.
11245 	 */
11246 	fb = mode_fits_in_fbdev(dev, mode);
11247 	if (fb == NULL) {
11248 		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
11249 		fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
11250 	} else
11251 		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
11252 	if (IS_ERR(fb)) {
11253 		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
11254 		goto fail;
11255 	}
11256 
11257 	ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11258 	if (ret)
11259 		goto fail;
11260 
11261 	drm_framebuffer_unreference(fb);
11262 
11263 	ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11264 	if (ret)
11265 		goto fail;
11266 
11267 	ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11268 	if (!ret)
11269 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11270 	if (!ret)
11271 		ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11272 	if (ret) {
11273 		DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11274 		goto fail;
11275 	}
11276 
11277 	ret = drm_atomic_commit(state);
11278 	if (ret) {
11279 		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11280 		goto fail;
11281 	}
11282 
11283 	old->restore_state = restore_state;
11284 
11285 	/* let the connector get through one full cycle before testing */
11286 	intel_wait_for_vblank(dev, intel_crtc->pipe);
11287 	return true;
11288 
11289 fail:
11290 	drm_atomic_state_free(state);
11291 	drm_atomic_state_free(restore_state);
11292 	restore_state = state = NULL;
11293 
11294 	if (ret == -EDEADLK) {
11295 		drm_modeset_backoff(ctx);
11296 		goto retry;
11297 	}
11298 
11299 	return false;
11300 }
11301 
intel_release_load_detect_pipe(struct drm_connector * connector,struct intel_load_detect_pipe * old,struct drm_modeset_acquire_ctx * ctx)11302 void intel_release_load_detect_pipe(struct drm_connector *connector,
11303 				    struct intel_load_detect_pipe *old,
11304 				    struct drm_modeset_acquire_ctx *ctx)
11305 {
11306 	struct intel_encoder *intel_encoder =
11307 		intel_attached_encoder(connector);
11308 	struct drm_encoder *encoder = &intel_encoder->base;
11309 	struct drm_atomic_state *state = old->restore_state;
11310 	int ret;
11311 
11312 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11313 		      connector->base.id, connector->name,
11314 		      encoder->base.id, encoder->name);
11315 
11316 	if (!state)
11317 		return;
11318 
11319 	ret = drm_atomic_commit(state);
11320 	if (ret) {
11321 		DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11322 		drm_atomic_state_free(state);
11323 	}
11324 }
11325 
i9xx_pll_refclk(struct drm_device * dev,const struct intel_crtc_state * pipe_config)11326 static int i9xx_pll_refclk(struct drm_device *dev,
11327 			   const struct intel_crtc_state *pipe_config)
11328 {
11329 	struct drm_i915_private *dev_priv = to_i915(dev);
11330 	u32 dpll = pipe_config->dpll_hw_state.dpll;
11331 
11332 	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11333 		return dev_priv->vbt.lvds_ssc_freq;
11334 	else if (HAS_PCH_SPLIT(dev))
11335 		return 120000;
11336 	else if (!IS_GEN2(dev))
11337 		return 96000;
11338 	else
11339 		return 48000;
11340 }
11341 
11342 /* Returns the clock of the currently programmed mode of the given pipe. */
i9xx_crtc_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)11343 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11344 				struct intel_crtc_state *pipe_config)
11345 {
11346 	struct drm_device *dev = crtc->base.dev;
11347 	struct drm_i915_private *dev_priv = to_i915(dev);
11348 	int pipe = pipe_config->cpu_transcoder;
11349 	u32 dpll = pipe_config->dpll_hw_state.dpll;
11350 	u32 fp;
11351 	struct dpll clock;
11352 	int port_clock;
11353 	int refclk = i9xx_pll_refclk(dev, pipe_config);
11354 
11355 	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11356 		fp = pipe_config->dpll_hw_state.fp0;
11357 	else
11358 		fp = pipe_config->dpll_hw_state.fp1;
11359 
11360 	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11361 	if (IS_PINEVIEW(dev)) {
11362 		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11363 		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11364 	} else {
11365 		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11366 		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11367 	}
11368 
11369 	if (!IS_GEN2(dev)) {
11370 		if (IS_PINEVIEW(dev))
11371 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11372 				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11373 		else
11374 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11375 			       DPLL_FPA01_P1_POST_DIV_SHIFT);
11376 
11377 		switch (dpll & DPLL_MODE_MASK) {
11378 		case DPLLB_MODE_DAC_SERIAL:
11379 			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11380 				5 : 10;
11381 			break;
11382 		case DPLLB_MODE_LVDS:
11383 			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11384 				7 : 14;
11385 			break;
11386 		default:
11387 			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11388 				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
11389 			return;
11390 		}
11391 
11392 		if (IS_PINEVIEW(dev))
11393 			port_clock = pnv_calc_dpll_params(refclk, &clock);
11394 		else
11395 			port_clock = i9xx_calc_dpll_params(refclk, &clock);
11396 	} else {
11397 		u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
11398 		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11399 
11400 		if (is_lvds) {
11401 			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11402 				       DPLL_FPA01_P1_POST_DIV_SHIFT);
11403 
11404 			if (lvds & LVDS_CLKB_POWER_UP)
11405 				clock.p2 = 7;
11406 			else
11407 				clock.p2 = 14;
11408 		} else {
11409 			if (dpll & PLL_P1_DIVIDE_BY_TWO)
11410 				clock.p1 = 2;
11411 			else {
11412 				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11413 					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11414 			}
11415 			if (dpll & PLL_P2_DIVIDE_BY_4)
11416 				clock.p2 = 4;
11417 			else
11418 				clock.p2 = 2;
11419 		}
11420 
11421 		port_clock = i9xx_calc_dpll_params(refclk, &clock);
11422 	}
11423 
11424 	/*
11425 	 * This value includes pixel_multiplier. We will use
11426 	 * port_clock to compute adjusted_mode.crtc_clock in the
11427 	 * encoder's get_config() function.
11428 	 */
11429 	pipe_config->port_clock = port_clock;
11430 }
11431 
intel_dotclock_calculate(int link_freq,const struct intel_link_m_n * m_n)11432 int intel_dotclock_calculate(int link_freq,
11433 			     const struct intel_link_m_n *m_n)
11434 {
11435 	/*
11436 	 * The calculation for the data clock is:
11437 	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11438 	 * But we want to avoid losing precison if possible, so:
11439 	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11440 	 *
11441 	 * and the link clock is simpler:
11442 	 * link_clock = (m * link_clock) / n
11443 	 */
11444 
11445 	if (!m_n->link_n)
11446 		return 0;
11447 
11448 	return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11449 }
11450 
ironlake_pch_clock_get(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)11451 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11452 				   struct intel_crtc_state *pipe_config)
11453 {
11454 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11455 
11456 	/* read out port_clock from the DPLL */
11457 	i9xx_crtc_clock_get(crtc, pipe_config);
11458 
11459 	/*
11460 	 * In case there is an active pipe without active ports,
11461 	 * we may need some idea for the dotclock anyway.
11462 	 * Calculate one based on the FDI configuration.
11463 	 */
11464 	pipe_config->base.adjusted_mode.crtc_clock =
11465 		intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11466 					 &pipe_config->fdi_m_n);
11467 }
11468 
11469 /** Returns the currently programmed mode of the given pipe. */
intel_crtc_mode_get(struct drm_device * dev,struct drm_crtc * crtc)11470 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11471 					     struct drm_crtc *crtc)
11472 {
11473 	struct drm_i915_private *dev_priv = to_i915(dev);
11474 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11475 	enum transcoder cpu_transcoder;
11476 	struct drm_display_mode *mode;
11477 	struct intel_crtc_state *pipe_config;
11478 	u32 htot, hsync, vtot, vsync;
11479 	enum pipe pipe = intel_crtc->pipe;
11480 
11481 	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11482 	if (!mode)
11483 		return NULL;
11484 
11485 	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11486 	if (!pipe_config) {
11487 		kfree(mode);
11488 		return NULL;
11489 	}
11490 
11491 	/*
11492 	 * Construct a pipe_config sufficient for getting the clock info
11493 	 * back out of crtc_clock_get.
11494 	 *
11495 	 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11496 	 * to use a real value here instead.
11497 	 */
11498 	pipe_config->cpu_transcoder = (enum transcoder) pipe;
11499 	pipe_config->pixel_multiplier = 1;
11500 	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11501 	pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11502 	pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11503 	i9xx_crtc_clock_get(intel_crtc, pipe_config);
11504 
11505 	mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
11506 
11507 	cpu_transcoder = pipe_config->cpu_transcoder;
11508 	htot = I915_READ(HTOTAL(cpu_transcoder));
11509 	hsync = I915_READ(HSYNC(cpu_transcoder));
11510 	vtot = I915_READ(VTOTAL(cpu_transcoder));
11511 	vsync = I915_READ(VSYNC(cpu_transcoder));
11512 
11513 	mode->hdisplay = (htot & 0xffff) + 1;
11514 	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11515 	mode->hsync_start = (hsync & 0xffff) + 1;
11516 	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11517 	mode->vdisplay = (vtot & 0xffff) + 1;
11518 	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11519 	mode->vsync_start = (vsync & 0xffff) + 1;
11520 	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11521 
11522 	drm_mode_set_name(mode);
11523 
11524 	kfree(pipe_config);
11525 
11526 	return mode;
11527 }
11528 
intel_crtc_destroy(struct drm_crtc * crtc)11529 static void intel_crtc_destroy(struct drm_crtc *crtc)
11530 {
11531 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11532 	struct drm_device *dev = crtc->dev;
11533 	struct intel_flip_work *work;
11534 
11535 	spin_lock_irq(&dev->event_lock);
11536 	work = intel_crtc->flip_work;
11537 	intel_crtc->flip_work = NULL;
11538 	spin_unlock_irq(&dev->event_lock);
11539 
11540 	if (work) {
11541 		cancel_work_sync(&work->mmio_work);
11542 		cancel_work_sync(&work->unpin_work);
11543 		kfree(work);
11544 	}
11545 
11546 	drm_crtc_cleanup(crtc);
11547 
11548 	kfree(intel_crtc);
11549 }
11550 
intel_unpin_work_fn(struct work_struct * __work)11551 static void intel_unpin_work_fn(struct work_struct *__work)
11552 {
11553 	struct intel_flip_work *work =
11554 		container_of(__work, struct intel_flip_work, unpin_work);
11555 	struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11556 	struct drm_device *dev = crtc->base.dev;
11557 	struct drm_plane *primary = crtc->base.primary;
11558 
11559 	if (is_mmio_work(work))
11560 		flush_work(&work->mmio_work);
11561 
11562 	mutex_lock(&dev->struct_mutex);
11563 	intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
11564 	i915_gem_object_put(work->pending_flip_obj);
11565 	mutex_unlock(&dev->struct_mutex);
11566 
11567 	i915_gem_request_put(work->flip_queued_req);
11568 
11569 	intel_frontbuffer_flip_complete(to_i915(dev),
11570 					to_intel_plane(primary)->frontbuffer_bit);
11571 	intel_fbc_post_update(crtc);
11572 	drm_framebuffer_unreference(work->old_fb);
11573 
11574 	BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11575 	atomic_dec(&crtc->unpin_work_count);
11576 
11577 	kfree(work);
11578 }
11579 
11580 /* Is 'a' after or equal to 'b'? */
g4x_flip_count_after_eq(u32 a,u32 b)11581 static bool g4x_flip_count_after_eq(u32 a, u32 b)
11582 {
11583 	return !((a - b) & 0x80000000);
11584 }
11585 
__pageflip_finished_cs(struct intel_crtc * crtc,struct intel_flip_work * work)11586 static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11587 				   struct intel_flip_work *work)
11588 {
11589 	struct drm_device *dev = crtc->base.dev;
11590 	struct drm_i915_private *dev_priv = to_i915(dev);
11591 
11592 	if (abort_flip_on_reset(crtc))
11593 		return true;
11594 
11595 	/*
11596 	 * The relevant registers doen't exist on pre-ctg.
11597 	 * As the flip done interrupt doesn't trigger for mmio
11598 	 * flips on gmch platforms, a flip count check isn't
11599 	 * really needed there. But since ctg has the registers,
11600 	 * include it in the check anyway.
11601 	 */
11602 	if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
11603 		return true;
11604 
11605 	/*
11606 	 * BDW signals flip done immediately if the plane
11607 	 * is disabled, even if the plane enable is already
11608 	 * armed to occur at the next vblank :(
11609 	 */
11610 
11611 	/*
11612 	 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11613 	 * used the same base address. In that case the mmio flip might
11614 	 * have completed, but the CS hasn't even executed the flip yet.
11615 	 *
11616 	 * A flip count check isn't enough as the CS might have updated
11617 	 * the base address just after start of vblank, but before we
11618 	 * managed to process the interrupt. This means we'd complete the
11619 	 * CS flip too soon.
11620 	 *
11621 	 * Combining both checks should get us a good enough result. It may
11622 	 * still happen that the CS flip has been executed, but has not
11623 	 * yet actually completed. But in case the base address is the same
11624 	 * anyway, we don't really care.
11625 	 */
11626 	return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11627 		crtc->flip_work->gtt_offset &&
11628 		g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11629 				    crtc->flip_work->flip_count);
11630 }
11631 
11632 static bool
__pageflip_finished_mmio(struct intel_crtc * crtc,struct intel_flip_work * work)11633 __pageflip_finished_mmio(struct intel_crtc *crtc,
11634 			       struct intel_flip_work *work)
11635 {
11636 	/*
11637 	 * MMIO work completes when vblank is different from
11638 	 * flip_queued_vblank.
11639 	 *
11640 	 * Reset counter value doesn't matter, this is handled by
11641 	 * i915_wait_request finishing early, so no need to handle
11642 	 * reset here.
11643 	 */
11644 	return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11645 }
11646 
11647 
pageflip_finished(struct intel_crtc * crtc,struct intel_flip_work * work)11648 static bool pageflip_finished(struct intel_crtc *crtc,
11649 			      struct intel_flip_work *work)
11650 {
11651 	if (!atomic_read(&work->pending))
11652 		return false;
11653 
11654 	smp_rmb();
11655 
11656 	if (is_mmio_work(work))
11657 		return __pageflip_finished_mmio(crtc, work);
11658 	else
11659 		return __pageflip_finished_cs(crtc, work);
11660 }
11661 
intel_finish_page_flip_cs(struct drm_i915_private * dev_priv,int pipe)11662 void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11663 {
11664 	struct drm_device *dev = &dev_priv->drm;
11665 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11666 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11667 	struct intel_flip_work *work;
11668 	unsigned long flags;
11669 
11670 	/* Ignore early vblank irqs */
11671 	if (!crtc)
11672 		return;
11673 
11674 	/*
11675 	 * This is called both by irq handlers and the reset code (to complete
11676 	 * lost pageflips) so needs the full irqsave spinlocks.
11677 	 */
11678 	spin_lock_irqsave(&dev->event_lock, flags);
11679 	work = intel_crtc->flip_work;
11680 
11681 	if (work != NULL &&
11682 	    !is_mmio_work(work) &&
11683 	    pageflip_finished(intel_crtc, work))
11684 		page_flip_completed(intel_crtc);
11685 
11686 	spin_unlock_irqrestore(&dev->event_lock, flags);
11687 }
11688 
intel_finish_page_flip_mmio(struct drm_i915_private * dev_priv,int pipe)11689 void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11690 {
11691 	struct drm_device *dev = &dev_priv->drm;
11692 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11693 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11694 	struct intel_flip_work *work;
11695 	unsigned long flags;
11696 
11697 	/* Ignore early vblank irqs */
11698 	if (!crtc)
11699 		return;
11700 
11701 	/*
11702 	 * This is called both by irq handlers and the reset code (to complete
11703 	 * lost pageflips) so needs the full irqsave spinlocks.
11704 	 */
11705 	spin_lock_irqsave(&dev->event_lock, flags);
11706 	work = intel_crtc->flip_work;
11707 
11708 	if (work != NULL &&
11709 	    is_mmio_work(work) &&
11710 	    pageflip_finished(intel_crtc, work))
11711 		page_flip_completed(intel_crtc);
11712 
11713 	spin_unlock_irqrestore(&dev->event_lock, flags);
11714 }
11715 
intel_mark_page_flip_active(struct intel_crtc * crtc,struct intel_flip_work * work)11716 static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11717 					       struct intel_flip_work *work)
11718 {
11719 	work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11720 
11721 	/* Ensure that the work item is consistent when activating it ... */
11722 	smp_mb__before_atomic();
11723 	atomic_set(&work->pending, 1);
11724 }
11725 
intel_gen2_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11726 static int intel_gen2_queue_flip(struct drm_device *dev,
11727 				 struct drm_crtc *crtc,
11728 				 struct drm_framebuffer *fb,
11729 				 struct drm_i915_gem_object *obj,
11730 				 struct drm_i915_gem_request *req,
11731 				 uint32_t flags)
11732 {
11733 	struct intel_ring *ring = req->ring;
11734 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11735 	u32 flip_mask;
11736 	int ret;
11737 
11738 	ret = intel_ring_begin(req, 6);
11739 	if (ret)
11740 		return ret;
11741 
11742 	/* Can't queue multiple flips, so wait for the previous
11743 	 * one to finish before executing the next.
11744 	 */
11745 	if (intel_crtc->plane)
11746 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11747 	else
11748 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11749 	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11750 	intel_ring_emit(ring, MI_NOOP);
11751 	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11752 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11753 	intel_ring_emit(ring, fb->pitches[0]);
11754 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11755 	intel_ring_emit(ring, 0); /* aux display base address, unused */
11756 
11757 	return 0;
11758 }
11759 
intel_gen3_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11760 static int intel_gen3_queue_flip(struct drm_device *dev,
11761 				 struct drm_crtc *crtc,
11762 				 struct drm_framebuffer *fb,
11763 				 struct drm_i915_gem_object *obj,
11764 				 struct drm_i915_gem_request *req,
11765 				 uint32_t flags)
11766 {
11767 	struct intel_ring *ring = req->ring;
11768 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11769 	u32 flip_mask;
11770 	int ret;
11771 
11772 	ret = intel_ring_begin(req, 6);
11773 	if (ret)
11774 		return ret;
11775 
11776 	if (intel_crtc->plane)
11777 		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11778 	else
11779 		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11780 	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11781 	intel_ring_emit(ring, MI_NOOP);
11782 	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11783 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11784 	intel_ring_emit(ring, fb->pitches[0]);
11785 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11786 	intel_ring_emit(ring, MI_NOOP);
11787 
11788 	return 0;
11789 }
11790 
intel_gen4_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11791 static int intel_gen4_queue_flip(struct drm_device *dev,
11792 				 struct drm_crtc *crtc,
11793 				 struct drm_framebuffer *fb,
11794 				 struct drm_i915_gem_object *obj,
11795 				 struct drm_i915_gem_request *req,
11796 				 uint32_t flags)
11797 {
11798 	struct intel_ring *ring = req->ring;
11799 	struct drm_i915_private *dev_priv = to_i915(dev);
11800 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11801 	uint32_t pf, pipesrc;
11802 	int ret;
11803 
11804 	ret = intel_ring_begin(req, 4);
11805 	if (ret)
11806 		return ret;
11807 
11808 	/* i965+ uses the linear or tiled offsets from the
11809 	 * Display Registers (which do not change across a page-flip)
11810 	 * so we need only reprogram the base address.
11811 	 */
11812 	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11813 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11814 	intel_ring_emit(ring, fb->pitches[0]);
11815 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11816 			intel_fb_modifier_to_tiling(fb->modifier[0]));
11817 
11818 	/* XXX Enabling the panel-fitter across page-flip is so far
11819 	 * untested on non-native modes, so ignore it for now.
11820 	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11821 	 */
11822 	pf = 0;
11823 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11824 	intel_ring_emit(ring, pf | pipesrc);
11825 
11826 	return 0;
11827 }
11828 
intel_gen6_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11829 static int intel_gen6_queue_flip(struct drm_device *dev,
11830 				 struct drm_crtc *crtc,
11831 				 struct drm_framebuffer *fb,
11832 				 struct drm_i915_gem_object *obj,
11833 				 struct drm_i915_gem_request *req,
11834 				 uint32_t flags)
11835 {
11836 	struct intel_ring *ring = req->ring;
11837 	struct drm_i915_private *dev_priv = to_i915(dev);
11838 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11839 	uint32_t pf, pipesrc;
11840 	int ret;
11841 
11842 	ret = intel_ring_begin(req, 4);
11843 	if (ret)
11844 		return ret;
11845 
11846 	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11847 			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11848 	intel_ring_emit(ring, fb->pitches[0] |
11849 			intel_fb_modifier_to_tiling(fb->modifier[0]));
11850 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11851 
11852 	/* Contrary to the suggestions in the documentation,
11853 	 * "Enable Panel Fitter" does not seem to be required when page
11854 	 * flipping with a non-native mode, and worse causes a normal
11855 	 * modeset to fail.
11856 	 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11857 	 */
11858 	pf = 0;
11859 	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11860 	intel_ring_emit(ring, pf | pipesrc);
11861 
11862 	return 0;
11863 }
11864 
intel_gen7_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)11865 static int intel_gen7_queue_flip(struct drm_device *dev,
11866 				 struct drm_crtc *crtc,
11867 				 struct drm_framebuffer *fb,
11868 				 struct drm_i915_gem_object *obj,
11869 				 struct drm_i915_gem_request *req,
11870 				 uint32_t flags)
11871 {
11872 	struct intel_ring *ring = req->ring;
11873 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11874 	uint32_t plane_bit = 0;
11875 	int len, ret;
11876 
11877 	switch (intel_crtc->plane) {
11878 	case PLANE_A:
11879 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11880 		break;
11881 	case PLANE_B:
11882 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11883 		break;
11884 	case PLANE_C:
11885 		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11886 		break;
11887 	default:
11888 		WARN_ONCE(1, "unknown plane in flip command\n");
11889 		return -ENODEV;
11890 	}
11891 
11892 	len = 4;
11893 	if (req->engine->id == RCS) {
11894 		len += 6;
11895 		/*
11896 		 * On Gen 8, SRM is now taking an extra dword to accommodate
11897 		 * 48bits addresses, and we need a NOOP for the batch size to
11898 		 * stay even.
11899 		 */
11900 		if (IS_GEN8(dev))
11901 			len += 2;
11902 	}
11903 
11904 	/*
11905 	 * BSpec MI_DISPLAY_FLIP for IVB:
11906 	 * "The full packet must be contained within the same cache line."
11907 	 *
11908 	 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11909 	 * cacheline, if we ever start emitting more commands before
11910 	 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11911 	 * then do the cacheline alignment, and finally emit the
11912 	 * MI_DISPLAY_FLIP.
11913 	 */
11914 	ret = intel_ring_cacheline_align(req);
11915 	if (ret)
11916 		return ret;
11917 
11918 	ret = intel_ring_begin(req, len);
11919 	if (ret)
11920 		return ret;
11921 
11922 	/* Unmask the flip-done completion message. Note that the bspec says that
11923 	 * we should do this for both the BCS and RCS, and that we must not unmask
11924 	 * more than one flip event at any time (or ensure that one flip message
11925 	 * can be sent by waiting for flip-done prior to queueing new flips).
11926 	 * Experimentation says that BCS works despite DERRMR masking all
11927 	 * flip-done completion events and that unmasking all planes at once
11928 	 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11929 	 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11930 	 */
11931 	if (req->engine->id == RCS) {
11932 		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11933 		intel_ring_emit_reg(ring, DERRMR);
11934 		intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11935 					  DERRMR_PIPEB_PRI_FLIP_DONE |
11936 					  DERRMR_PIPEC_PRI_FLIP_DONE));
11937 		if (IS_GEN8(dev))
11938 			intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11939 					      MI_SRM_LRM_GLOBAL_GTT);
11940 		else
11941 			intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11942 					      MI_SRM_LRM_GLOBAL_GTT);
11943 		intel_ring_emit_reg(ring, DERRMR);
11944 		intel_ring_emit(ring,
11945 				i915_ggtt_offset(req->engine->scratch) + 256);
11946 		if (IS_GEN8(dev)) {
11947 			intel_ring_emit(ring, 0);
11948 			intel_ring_emit(ring, MI_NOOP);
11949 		}
11950 	}
11951 
11952 	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11953 	intel_ring_emit(ring, fb->pitches[0] |
11954 			intel_fb_modifier_to_tiling(fb->modifier[0]));
11955 	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11956 	intel_ring_emit(ring, (MI_NOOP));
11957 
11958 	return 0;
11959 }
11960 
use_mmio_flip(struct intel_engine_cs * engine,struct drm_i915_gem_object * obj)11961 static bool use_mmio_flip(struct intel_engine_cs *engine,
11962 			  struct drm_i915_gem_object *obj)
11963 {
11964 	struct reservation_object *resv;
11965 
11966 	/*
11967 	 * This is not being used for older platforms, because
11968 	 * non-availability of flip done interrupt forces us to use
11969 	 * CS flips. Older platforms derive flip done using some clever
11970 	 * tricks involving the flip_pending status bits and vblank irqs.
11971 	 * So using MMIO flips there would disrupt this mechanism.
11972 	 */
11973 
11974 	if (engine == NULL)
11975 		return true;
11976 
11977 	if (INTEL_GEN(engine->i915) < 5)
11978 		return false;
11979 
11980 	if (i915.use_mmio_flip < 0)
11981 		return false;
11982 	else if (i915.use_mmio_flip > 0)
11983 		return true;
11984 	else if (i915.enable_execlists)
11985 		return true;
11986 
11987 	resv = i915_gem_object_get_dmabuf_resv(obj);
11988 	if (resv && !reservation_object_test_signaled_rcu(resv, false))
11989 		return true;
11990 
11991 	return engine != i915_gem_active_get_engine(&obj->last_write,
11992 						    &obj->base.dev->struct_mutex);
11993 }
11994 
skl_do_mmio_flip(struct intel_crtc * intel_crtc,unsigned int rotation,struct intel_flip_work * work)11995 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11996 			     unsigned int rotation,
11997 			     struct intel_flip_work *work)
11998 {
11999 	struct drm_device *dev = intel_crtc->base.dev;
12000 	struct drm_i915_private *dev_priv = to_i915(dev);
12001 	struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
12002 	const enum pipe pipe = intel_crtc->pipe;
12003 	u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
12004 
12005 	ctl = I915_READ(PLANE_CTL(pipe, 0));
12006 	ctl &= ~PLANE_CTL_TILED_MASK;
12007 	switch (fb->modifier[0]) {
12008 	case DRM_FORMAT_MOD_NONE:
12009 		break;
12010 	case I915_FORMAT_MOD_X_TILED:
12011 		ctl |= PLANE_CTL_TILED_X;
12012 		break;
12013 	case I915_FORMAT_MOD_Y_TILED:
12014 		ctl |= PLANE_CTL_TILED_Y;
12015 		break;
12016 	case I915_FORMAT_MOD_Yf_TILED:
12017 		ctl |= PLANE_CTL_TILED_YF;
12018 		break;
12019 	default:
12020 		MISSING_CASE(fb->modifier[0]);
12021 	}
12022 
12023 	/*
12024 	 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
12025 	 * PLANE_SURF updates, the update is then guaranteed to be atomic.
12026 	 */
12027 	I915_WRITE(PLANE_CTL(pipe, 0), ctl);
12028 	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
12029 
12030 	I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
12031 	POSTING_READ(PLANE_SURF(pipe, 0));
12032 }
12033 
ilk_do_mmio_flip(struct intel_crtc * intel_crtc,struct intel_flip_work * work)12034 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
12035 			     struct intel_flip_work *work)
12036 {
12037 	struct drm_device *dev = intel_crtc->base.dev;
12038 	struct drm_i915_private *dev_priv = to_i915(dev);
12039 	struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
12040 	i915_reg_t reg = DSPCNTR(intel_crtc->plane);
12041 	u32 dspcntr;
12042 
12043 	dspcntr = I915_READ(reg);
12044 
12045 	if (fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
12046 		dspcntr |= DISPPLANE_TILED;
12047 	else
12048 		dspcntr &= ~DISPPLANE_TILED;
12049 
12050 	I915_WRITE(reg, dspcntr);
12051 
12052 	I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
12053 	POSTING_READ(DSPSURF(intel_crtc->plane));
12054 }
12055 
intel_mmio_flip_work_func(struct work_struct * w)12056 static void intel_mmio_flip_work_func(struct work_struct *w)
12057 {
12058 	struct intel_flip_work *work =
12059 		container_of(w, struct intel_flip_work, mmio_work);
12060 	struct intel_crtc *crtc = to_intel_crtc(work->crtc);
12061 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12062 	struct intel_framebuffer *intel_fb =
12063 		to_intel_framebuffer(crtc->base.primary->fb);
12064 	struct drm_i915_gem_object *obj = intel_fb->obj;
12065 	struct reservation_object *resv;
12066 
12067 	if (work->flip_queued_req)
12068 		WARN_ON(i915_wait_request(work->flip_queued_req,
12069 					  0, NULL, NO_WAITBOOST));
12070 
12071 	/* For framebuffer backed by dmabuf, wait for fence */
12072 	resv = i915_gem_object_get_dmabuf_resv(obj);
12073 	if (resv)
12074 		WARN_ON(reservation_object_wait_timeout_rcu(resv, false, false,
12075 							    MAX_SCHEDULE_TIMEOUT) < 0);
12076 
12077 	intel_pipe_update_start(crtc);
12078 
12079 	if (INTEL_GEN(dev_priv) >= 9)
12080 		skl_do_mmio_flip(crtc, work->rotation, work);
12081 	else
12082 		/* use_mmio_flip() retricts MMIO flips to ilk+ */
12083 		ilk_do_mmio_flip(crtc, work);
12084 
12085 	intel_pipe_update_end(crtc, work);
12086 }
12087 
intel_default_queue_flip(struct drm_device * dev,struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_i915_gem_object * obj,struct drm_i915_gem_request * req,uint32_t flags)12088 static int intel_default_queue_flip(struct drm_device *dev,
12089 				    struct drm_crtc *crtc,
12090 				    struct drm_framebuffer *fb,
12091 				    struct drm_i915_gem_object *obj,
12092 				    struct drm_i915_gem_request *req,
12093 				    uint32_t flags)
12094 {
12095 	return -ENODEV;
12096 }
12097 
__pageflip_stall_check_cs(struct drm_i915_private * dev_priv,struct intel_crtc * intel_crtc,struct intel_flip_work * work)12098 static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
12099 				      struct intel_crtc *intel_crtc,
12100 				      struct intel_flip_work *work)
12101 {
12102 	u32 addr, vblank;
12103 
12104 	if (!atomic_read(&work->pending))
12105 		return false;
12106 
12107 	smp_rmb();
12108 
12109 	vblank = intel_crtc_get_vblank_counter(intel_crtc);
12110 	if (work->flip_ready_vblank == 0) {
12111 		if (work->flip_queued_req &&
12112 		    !i915_gem_request_completed(work->flip_queued_req))
12113 			return false;
12114 
12115 		work->flip_ready_vblank = vblank;
12116 	}
12117 
12118 	if (vblank - work->flip_ready_vblank < 3)
12119 		return false;
12120 
12121 	/* Potential stall - if we see that the flip has happened,
12122 	 * assume a missed interrupt. */
12123 	if (INTEL_GEN(dev_priv) >= 4)
12124 		addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
12125 	else
12126 		addr = I915_READ(DSPADDR(intel_crtc->plane));
12127 
12128 	/* There is a potential issue here with a false positive after a flip
12129 	 * to the same address. We could address this by checking for a
12130 	 * non-incrementing frame counter.
12131 	 */
12132 	return addr == work->gtt_offset;
12133 }
12134 
intel_check_page_flip(struct drm_i915_private * dev_priv,int pipe)12135 void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
12136 {
12137 	struct drm_device *dev = &dev_priv->drm;
12138 	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
12139 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12140 	struct intel_flip_work *work;
12141 
12142 	WARN_ON(!in_interrupt());
12143 
12144 	if (crtc == NULL)
12145 		return;
12146 
12147 	spin_lock(&dev->event_lock);
12148 	work = intel_crtc->flip_work;
12149 
12150 	if (work != NULL && !is_mmio_work(work) &&
12151 	    __pageflip_stall_check_cs(dev_priv, intel_crtc, work)) {
12152 		WARN_ONCE(1,
12153 			  "Kicking stuck page flip: queued at %d, now %d\n",
12154 			work->flip_queued_vblank, intel_crtc_get_vblank_counter(intel_crtc));
12155 		page_flip_completed(intel_crtc);
12156 		work = NULL;
12157 	}
12158 
12159 	if (work != NULL && !is_mmio_work(work) &&
12160 	    intel_crtc_get_vblank_counter(intel_crtc) - work->flip_queued_vblank > 1)
12161 		intel_queue_rps_boost_for_request(work->flip_queued_req);
12162 	spin_unlock(&dev->event_lock);
12163 }
12164 
intel_crtc_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t page_flip_flags)12165 static int intel_crtc_page_flip(struct drm_crtc *crtc,
12166 				struct drm_framebuffer *fb,
12167 				struct drm_pending_vblank_event *event,
12168 				uint32_t page_flip_flags)
12169 {
12170 	struct drm_device *dev = crtc->dev;
12171 	struct drm_i915_private *dev_priv = to_i915(dev);
12172 	struct drm_framebuffer *old_fb = crtc->primary->fb;
12173 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12174 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12175 	struct drm_plane *primary = crtc->primary;
12176 	enum pipe pipe = intel_crtc->pipe;
12177 	struct intel_flip_work *work;
12178 	struct intel_engine_cs *engine;
12179 	bool mmio_flip;
12180 	struct drm_i915_gem_request *request;
12181 	struct i915_vma *vma;
12182 	int ret;
12183 
12184 	/*
12185 	 * drm_mode_page_flip_ioctl() should already catch this, but double
12186 	 * check to be safe.  In the future we may enable pageflipping from
12187 	 * a disabled primary plane.
12188 	 */
12189 	if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12190 		return -EBUSY;
12191 
12192 	/* Can't change pixel format via MI display flips. */
12193 	if (fb->pixel_format != crtc->primary->fb->pixel_format)
12194 		return -EINVAL;
12195 
12196 	/*
12197 	 * TILEOFF/LINOFF registers can't be changed via MI display flips.
12198 	 * Note that pitch changes could also affect these register.
12199 	 */
12200 	if (INTEL_INFO(dev)->gen > 3 &&
12201 	    (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12202 	     fb->pitches[0] != crtc->primary->fb->pitches[0]))
12203 		return -EINVAL;
12204 
12205 	if (i915_terminally_wedged(&dev_priv->gpu_error))
12206 		goto out_hang;
12207 
12208 	work = kzalloc(sizeof(*work), GFP_KERNEL);
12209 	if (work == NULL)
12210 		return -ENOMEM;
12211 
12212 	work->event = event;
12213 	work->crtc = crtc;
12214 	work->old_fb = old_fb;
12215 	INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12216 
12217 	ret = drm_crtc_vblank_get(crtc);
12218 	if (ret)
12219 		goto free_work;
12220 
12221 	/* We borrow the event spin lock for protecting flip_work */
12222 	spin_lock_irq(&dev->event_lock);
12223 	if (intel_crtc->flip_work) {
12224 		/* Before declaring the flip queue wedged, check if
12225 		 * the hardware completed the operation behind our backs.
12226 		 */
12227 		if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12228 			DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12229 			page_flip_completed(intel_crtc);
12230 		} else {
12231 			DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12232 			spin_unlock_irq(&dev->event_lock);
12233 
12234 			drm_crtc_vblank_put(crtc);
12235 			kfree(work);
12236 			return -EBUSY;
12237 		}
12238 	}
12239 	intel_crtc->flip_work = work;
12240 	spin_unlock_irq(&dev->event_lock);
12241 
12242 	if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12243 		flush_workqueue(dev_priv->wq);
12244 
12245 	/* Reference the objects for the scheduled work. */
12246 	drm_framebuffer_reference(work->old_fb);
12247 
12248 	crtc->primary->fb = fb;
12249 	update_state_fb(crtc->primary);
12250 
12251 	work->pending_flip_obj = i915_gem_object_get(obj);
12252 
12253 	ret = i915_mutex_lock_interruptible(dev);
12254 	if (ret)
12255 		goto cleanup;
12256 
12257 	intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
12258 	if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
12259 		ret = -EIO;
12260 		goto unlock;
12261 	}
12262 
12263 	atomic_inc(&intel_crtc->unpin_work_count);
12264 
12265 	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
12266 		work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12267 
12268 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
12269 		engine = &dev_priv->engine[BCS];
12270 		if (fb->modifier[0] != old_fb->modifier[0])
12271 			/* vlv: DISPLAY_FLIP fails to change tiling */
12272 			engine = NULL;
12273 	} else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
12274 		engine = &dev_priv->engine[BCS];
12275 	} else if (INTEL_INFO(dev)->gen >= 7) {
12276 		engine = i915_gem_active_get_engine(&obj->last_write,
12277 						    &obj->base.dev->struct_mutex);
12278 		if (engine == NULL || engine->id != RCS)
12279 			engine = &dev_priv->engine[BCS];
12280 	} else {
12281 		engine = &dev_priv->engine[RCS];
12282 	}
12283 
12284 	mmio_flip = use_mmio_flip(engine, obj);
12285 
12286 	vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12287 	if (IS_ERR(vma)) {
12288 		ret = PTR_ERR(vma);
12289 		goto cleanup_pending;
12290 	}
12291 
12292 	work->gtt_offset = intel_fb_gtt_offset(fb, primary->state->rotation);
12293 	work->gtt_offset += intel_crtc->dspaddr_offset;
12294 	work->rotation = crtc->primary->state->rotation;
12295 
12296 	/*
12297 	 * There's the potential that the next frame will not be compatible with
12298 	 * FBC, so we want to call pre_update() before the actual page flip.
12299 	 * The problem is that pre_update() caches some information about the fb
12300 	 * object, so we want to do this only after the object is pinned. Let's
12301 	 * be on the safe side and do this immediately before scheduling the
12302 	 * flip.
12303 	 */
12304 	intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12305 			     to_intel_plane_state(primary->state));
12306 
12307 	if (mmio_flip) {
12308 		INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12309 
12310 		work->flip_queued_req = i915_gem_active_get(&obj->last_write,
12311 							    &obj->base.dev->struct_mutex);
12312 		schedule_work(&work->mmio_work);
12313 	} else {
12314 		request = i915_gem_request_alloc(engine, engine->last_context);
12315 		if (IS_ERR(request)) {
12316 			ret = PTR_ERR(request);
12317 			goto cleanup_unpin;
12318 		}
12319 
12320 		ret = i915_gem_request_await_object(request, obj, false);
12321 		if (ret)
12322 			goto cleanup_request;
12323 
12324 		ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12325 						   page_flip_flags);
12326 		if (ret)
12327 			goto cleanup_request;
12328 
12329 		intel_mark_page_flip_active(intel_crtc, work);
12330 
12331 		work->flip_queued_req = i915_gem_request_get(request);
12332 		i915_add_request_no_flush(request);
12333 	}
12334 
12335 	i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12336 			  to_intel_plane(primary)->frontbuffer_bit);
12337 	mutex_unlock(&dev->struct_mutex);
12338 
12339 	intel_frontbuffer_flip_prepare(to_i915(dev),
12340 				       to_intel_plane(primary)->frontbuffer_bit);
12341 
12342 	trace_i915_flip_request(intel_crtc->plane, obj);
12343 
12344 	return 0;
12345 
12346 cleanup_request:
12347 	i915_add_request_no_flush(request);
12348 cleanup_unpin:
12349 	intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
12350 cleanup_pending:
12351 	atomic_dec(&intel_crtc->unpin_work_count);
12352 unlock:
12353 	mutex_unlock(&dev->struct_mutex);
12354 cleanup:
12355 	crtc->primary->fb = old_fb;
12356 	update_state_fb(crtc->primary);
12357 
12358 	i915_gem_object_put_unlocked(obj);
12359 	drm_framebuffer_unreference(work->old_fb);
12360 
12361 	spin_lock_irq(&dev->event_lock);
12362 	intel_crtc->flip_work = NULL;
12363 	spin_unlock_irq(&dev->event_lock);
12364 
12365 	drm_crtc_vblank_put(crtc);
12366 free_work:
12367 	kfree(work);
12368 
12369 	if (ret == -EIO) {
12370 		struct drm_atomic_state *state;
12371 		struct drm_plane_state *plane_state;
12372 
12373 out_hang:
12374 		state = drm_atomic_state_alloc(dev);
12375 		if (!state)
12376 			return -ENOMEM;
12377 		state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12378 
12379 retry:
12380 		plane_state = drm_atomic_get_plane_state(state, primary);
12381 		ret = PTR_ERR_OR_ZERO(plane_state);
12382 		if (!ret) {
12383 			drm_atomic_set_fb_for_plane(plane_state, fb);
12384 
12385 			ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12386 			if (!ret)
12387 				ret = drm_atomic_commit(state);
12388 		}
12389 
12390 		if (ret == -EDEADLK) {
12391 			drm_modeset_backoff(state->acquire_ctx);
12392 			drm_atomic_state_clear(state);
12393 			goto retry;
12394 		}
12395 
12396 		if (ret)
12397 			drm_atomic_state_free(state);
12398 
12399 		if (ret == 0 && event) {
12400 			spin_lock_irq(&dev->event_lock);
12401 			drm_crtc_send_vblank_event(crtc, event);
12402 			spin_unlock_irq(&dev->event_lock);
12403 		}
12404 	}
12405 	return ret;
12406 }
12407 
12408 
12409 /**
12410  * intel_wm_need_update - Check whether watermarks need updating
12411  * @plane: drm plane
12412  * @state: new plane state
12413  *
12414  * Check current plane state versus the new one to determine whether
12415  * watermarks need to be recalculated.
12416  *
12417  * Returns true or false.
12418  */
intel_wm_need_update(struct drm_plane * plane,struct drm_plane_state * state)12419 static bool intel_wm_need_update(struct drm_plane *plane,
12420 				 struct drm_plane_state *state)
12421 {
12422 	struct intel_plane_state *new = to_intel_plane_state(state);
12423 	struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12424 
12425 	/* Update watermarks on tiling or size changes. */
12426 	if (new->base.visible != cur->base.visible)
12427 		return true;
12428 
12429 	if (!cur->base.fb || !new->base.fb)
12430 		return false;
12431 
12432 	if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
12433 	    cur->base.rotation != new->base.rotation ||
12434 	    drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12435 	    drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12436 	    drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12437 	    drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
12438 		return true;
12439 
12440 	return false;
12441 }
12442 
needs_scaling(struct intel_plane_state * state)12443 static bool needs_scaling(struct intel_plane_state *state)
12444 {
12445 	int src_w = drm_rect_width(&state->base.src) >> 16;
12446 	int src_h = drm_rect_height(&state->base.src) >> 16;
12447 	int dst_w = drm_rect_width(&state->base.dst);
12448 	int dst_h = drm_rect_height(&state->base.dst);
12449 
12450 	return (src_w != dst_w || src_h != dst_h);
12451 }
12452 
intel_plane_atomic_calc_changes(struct drm_crtc_state * crtc_state,struct drm_plane_state * plane_state)12453 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12454 				    struct drm_plane_state *plane_state)
12455 {
12456 	struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
12457 	struct drm_crtc *crtc = crtc_state->crtc;
12458 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12459 	struct drm_plane *plane = plane_state->plane;
12460 	struct drm_device *dev = crtc->dev;
12461 	struct drm_i915_private *dev_priv = to_i915(dev);
12462 	struct intel_plane_state *old_plane_state =
12463 		to_intel_plane_state(plane->state);
12464 	bool mode_changed = needs_modeset(crtc_state);
12465 	bool was_crtc_enabled = crtc->state->active;
12466 	bool is_crtc_enabled = crtc_state->active;
12467 	bool turn_off, turn_on, visible, was_visible;
12468 	struct drm_framebuffer *fb = plane_state->fb;
12469 	int ret;
12470 
12471 	if (INTEL_GEN(dev) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
12472 		ret = skl_update_scaler_plane(
12473 			to_intel_crtc_state(crtc_state),
12474 			to_intel_plane_state(plane_state));
12475 		if (ret)
12476 			return ret;
12477 	}
12478 
12479 	was_visible = old_plane_state->base.visible;
12480 	visible = to_intel_plane_state(plane_state)->base.visible;
12481 
12482 	if (!was_crtc_enabled && WARN_ON(was_visible))
12483 		was_visible = false;
12484 
12485 	/*
12486 	 * Visibility is calculated as if the crtc was on, but
12487 	 * after scaler setup everything depends on it being off
12488 	 * when the crtc isn't active.
12489 	 *
12490 	 * FIXME this is wrong for watermarks. Watermarks should also
12491 	 * be computed as if the pipe would be active. Perhaps move
12492 	 * per-plane wm computation to the .check_plane() hook, and
12493 	 * only combine the results from all planes in the current place?
12494 	 */
12495 	if (!is_crtc_enabled)
12496 		to_intel_plane_state(plane_state)->base.visible = visible = false;
12497 
12498 	if (!was_visible && !visible)
12499 		return 0;
12500 
12501 	if (fb != old_plane_state->base.fb)
12502 		pipe_config->fb_changed = true;
12503 
12504 	turn_off = was_visible && (!visible || mode_changed);
12505 	turn_on = visible && (!was_visible || mode_changed);
12506 
12507 	DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12508 			 intel_crtc->base.base.id,
12509 			 intel_crtc->base.name,
12510 			 plane->base.id, plane->name,
12511 			 fb ? fb->base.id : -1);
12512 
12513 	DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12514 			 plane->base.id, plane->name,
12515 			 was_visible, visible,
12516 			 turn_off, turn_on, mode_changed);
12517 
12518 	if (turn_on) {
12519 		pipe_config->update_wm_pre = true;
12520 
12521 		/* must disable cxsr around plane enable/disable */
12522 		if (plane->type != DRM_PLANE_TYPE_CURSOR)
12523 			pipe_config->disable_cxsr = true;
12524 	} else if (turn_off) {
12525 		pipe_config->update_wm_post = true;
12526 
12527 		/* must disable cxsr around plane enable/disable */
12528 		if (plane->type != DRM_PLANE_TYPE_CURSOR)
12529 			pipe_config->disable_cxsr = true;
12530 	} else if (intel_wm_need_update(plane, plane_state)) {
12531 		/* FIXME bollocks */
12532 		pipe_config->update_wm_pre = true;
12533 		pipe_config->update_wm_post = true;
12534 	}
12535 
12536 	/* Pre-gen9 platforms need two-step watermark updates */
12537 	if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12538 	    INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
12539 		to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12540 
12541 	if (visible || was_visible)
12542 		pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12543 
12544 	/*
12545 	 * WaCxSRDisabledForSpriteScaling:ivb
12546 	 *
12547 	 * cstate->update_wm was already set above, so this flag will
12548 	 * take effect when we commit and program watermarks.
12549 	 */
12550 	if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
12551 	    needs_scaling(to_intel_plane_state(plane_state)) &&
12552 	    !needs_scaling(old_plane_state))
12553 		pipe_config->disable_lp_wm = true;
12554 
12555 	return 0;
12556 }
12557 
encoders_cloneable(const struct intel_encoder * a,const struct intel_encoder * b)12558 static bool encoders_cloneable(const struct intel_encoder *a,
12559 			       const struct intel_encoder *b)
12560 {
12561 	/* masks could be asymmetric, so check both ways */
12562 	return a == b || (a->cloneable & (1 << b->type) &&
12563 			  b->cloneable & (1 << a->type));
12564 }
12565 
check_single_encoder_cloning(struct drm_atomic_state * state,struct intel_crtc * crtc,struct intel_encoder * encoder)12566 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12567 					 struct intel_crtc *crtc,
12568 					 struct intel_encoder *encoder)
12569 {
12570 	struct intel_encoder *source_encoder;
12571 	struct drm_connector *connector;
12572 	struct drm_connector_state *connector_state;
12573 	int i;
12574 
12575 	for_each_connector_in_state(state, connector, connector_state, i) {
12576 		if (connector_state->crtc != &crtc->base)
12577 			continue;
12578 
12579 		source_encoder =
12580 			to_intel_encoder(connector_state->best_encoder);
12581 		if (!encoders_cloneable(encoder, source_encoder))
12582 			return false;
12583 	}
12584 
12585 	return true;
12586 }
12587 
intel_crtc_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * crtc_state)12588 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12589 				   struct drm_crtc_state *crtc_state)
12590 {
12591 	struct drm_device *dev = crtc->dev;
12592 	struct drm_i915_private *dev_priv = to_i915(dev);
12593 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12594 	struct intel_crtc_state *pipe_config =
12595 		to_intel_crtc_state(crtc_state);
12596 	struct drm_atomic_state *state = crtc_state->state;
12597 	int ret;
12598 	bool mode_changed = needs_modeset(crtc_state);
12599 
12600 	if (mode_changed && !crtc_state->active)
12601 		pipe_config->update_wm_post = true;
12602 
12603 	if (mode_changed && crtc_state->enable &&
12604 	    dev_priv->display.crtc_compute_clock &&
12605 	    !WARN_ON(pipe_config->shared_dpll)) {
12606 		ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12607 							   pipe_config);
12608 		if (ret)
12609 			return ret;
12610 	}
12611 
12612 	if (crtc_state->color_mgmt_changed) {
12613 		ret = intel_color_check(crtc, crtc_state);
12614 		if (ret)
12615 			return ret;
12616 
12617 		/*
12618 		 * Changing color management on Intel hardware is
12619 		 * handled as part of planes update.
12620 		 */
12621 		crtc_state->planes_changed = true;
12622 	}
12623 
12624 	ret = 0;
12625 	if (dev_priv->display.compute_pipe_wm) {
12626 		ret = dev_priv->display.compute_pipe_wm(pipe_config);
12627 		if (ret) {
12628 			DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12629 			return ret;
12630 		}
12631 	}
12632 
12633 	if (dev_priv->display.compute_intermediate_wm &&
12634 	    !to_intel_atomic_state(state)->skip_intermediate_wm) {
12635 		if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12636 			return 0;
12637 
12638 		/*
12639 		 * Calculate 'intermediate' watermarks that satisfy both the
12640 		 * old state and the new state.  We can program these
12641 		 * immediately.
12642 		 */
12643 		ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
12644 								intel_crtc,
12645 								pipe_config);
12646 		if (ret) {
12647 			DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12648 			return ret;
12649 		}
12650 	} else if (dev_priv->display.compute_intermediate_wm) {
12651 		if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12652 			pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12653 	}
12654 
12655 	if (INTEL_INFO(dev)->gen >= 9) {
12656 		if (mode_changed)
12657 			ret = skl_update_scaler_crtc(pipe_config);
12658 
12659 		if (!ret)
12660 			ret = intel_atomic_setup_scalers(dev, intel_crtc,
12661 							 pipe_config);
12662 	}
12663 
12664 	return ret;
12665 }
12666 
12667 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12668 	.mode_set_base_atomic = intel_pipe_set_base_atomic,
12669 	.atomic_begin = intel_begin_crtc_commit,
12670 	.atomic_flush = intel_finish_crtc_commit,
12671 	.atomic_check = intel_crtc_atomic_check,
12672 };
12673 
intel_modeset_update_connector_atomic_state(struct drm_device * dev)12674 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12675 {
12676 	struct intel_connector *connector;
12677 
12678 	for_each_intel_connector(dev, connector) {
12679 		if (connector->base.state->crtc)
12680 			drm_connector_unreference(&connector->base);
12681 
12682 		if (connector->base.encoder) {
12683 			connector->base.state->best_encoder =
12684 				connector->base.encoder;
12685 			connector->base.state->crtc =
12686 				connector->base.encoder->crtc;
12687 
12688 			drm_connector_reference(&connector->base);
12689 		} else {
12690 			connector->base.state->best_encoder = NULL;
12691 			connector->base.state->crtc = NULL;
12692 		}
12693 	}
12694 }
12695 
12696 static void
connected_sink_compute_bpp(struct intel_connector * connector,struct intel_crtc_state * pipe_config)12697 connected_sink_compute_bpp(struct intel_connector *connector,
12698 			   struct intel_crtc_state *pipe_config)
12699 {
12700 	const struct drm_display_info *info = &connector->base.display_info;
12701 	int bpp = pipe_config->pipe_bpp;
12702 
12703 	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12704 		      connector->base.base.id,
12705 		      connector->base.name);
12706 
12707 	/* Don't use an invalid EDID bpc value */
12708 	if (info->bpc != 0 && info->bpc * 3 < bpp) {
12709 		DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12710 			      bpp, info->bpc * 3);
12711 		pipe_config->pipe_bpp = info->bpc * 3;
12712 	}
12713 
12714 	/* Clamp bpp to 8 on screens without EDID 1.4 */
12715 	if (info->bpc == 0 && bpp > 24) {
12716 		DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12717 			      bpp);
12718 		pipe_config->pipe_bpp = 24;
12719 	}
12720 }
12721 
12722 static int
compute_baseline_pipe_bpp(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config)12723 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12724 			  struct intel_crtc_state *pipe_config)
12725 {
12726 	struct drm_device *dev = crtc->base.dev;
12727 	struct drm_atomic_state *state;
12728 	struct drm_connector *connector;
12729 	struct drm_connector_state *connector_state;
12730 	int bpp, i;
12731 
12732 	if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
12733 		bpp = 10*3;
12734 	else if (INTEL_INFO(dev)->gen >= 5)
12735 		bpp = 12*3;
12736 	else
12737 		bpp = 8*3;
12738 
12739 
12740 	pipe_config->pipe_bpp = bpp;
12741 
12742 	state = pipe_config->base.state;
12743 
12744 	/* Clamp display bpp to EDID value */
12745 	for_each_connector_in_state(state, connector, connector_state, i) {
12746 		if (connector_state->crtc != &crtc->base)
12747 			continue;
12748 
12749 		connected_sink_compute_bpp(to_intel_connector(connector),
12750 					   pipe_config);
12751 	}
12752 
12753 	return bpp;
12754 }
12755 
intel_dump_crtc_timings(const struct drm_display_mode * mode)12756 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12757 {
12758 	DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12759 			"type: 0x%x flags: 0x%x\n",
12760 		mode->crtc_clock,
12761 		mode->crtc_hdisplay, mode->crtc_hsync_start,
12762 		mode->crtc_hsync_end, mode->crtc_htotal,
12763 		mode->crtc_vdisplay, mode->crtc_vsync_start,
12764 		mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12765 }
12766 
intel_dump_pipe_config(struct intel_crtc * crtc,struct intel_crtc_state * pipe_config,const char * context)12767 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12768 				   struct intel_crtc_state *pipe_config,
12769 				   const char *context)
12770 {
12771 	struct drm_device *dev = crtc->base.dev;
12772 	struct drm_plane *plane;
12773 	struct intel_plane *intel_plane;
12774 	struct intel_plane_state *state;
12775 	struct drm_framebuffer *fb;
12776 
12777 	DRM_DEBUG_KMS("[CRTC:%d:%s]%s config %p for pipe %c\n",
12778 		      crtc->base.base.id, crtc->base.name,
12779 		      context, pipe_config, pipe_name(crtc->pipe));
12780 
12781 	DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
12782 	DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12783 		      pipe_config->pipe_bpp, pipe_config->dither);
12784 	DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12785 		      pipe_config->has_pch_encoder,
12786 		      pipe_config->fdi_lanes,
12787 		      pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12788 		      pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12789 		      pipe_config->fdi_m_n.tu);
12790 	DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12791 		      intel_crtc_has_dp_encoder(pipe_config),
12792 		      pipe_config->lane_count,
12793 		      pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12794 		      pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12795 		      pipe_config->dp_m_n.tu);
12796 
12797 	DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12798 		      intel_crtc_has_dp_encoder(pipe_config),
12799 		      pipe_config->lane_count,
12800 		      pipe_config->dp_m2_n2.gmch_m,
12801 		      pipe_config->dp_m2_n2.gmch_n,
12802 		      pipe_config->dp_m2_n2.link_m,
12803 		      pipe_config->dp_m2_n2.link_n,
12804 		      pipe_config->dp_m2_n2.tu);
12805 
12806 	DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12807 		      pipe_config->has_audio,
12808 		      pipe_config->has_infoframe);
12809 
12810 	DRM_DEBUG_KMS("requested mode:\n");
12811 	drm_mode_debug_printmodeline(&pipe_config->base.mode);
12812 	DRM_DEBUG_KMS("adjusted mode:\n");
12813 	drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12814 	intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12815 	DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12816 	DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12817 		      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12818 	DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12819 		      crtc->num_scalers,
12820 		      pipe_config->scaler_state.scaler_users,
12821 		      pipe_config->scaler_state.scaler_id);
12822 	DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12823 		      pipe_config->gmch_pfit.control,
12824 		      pipe_config->gmch_pfit.pgm_ratios,
12825 		      pipe_config->gmch_pfit.lvds_border_bits);
12826 	DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12827 		      pipe_config->pch_pfit.pos,
12828 		      pipe_config->pch_pfit.size,
12829 		      pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12830 	DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12831 	DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12832 
12833 	if (IS_BROXTON(dev)) {
12834 		DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12835 			      "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12836 			      "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12837 			      pipe_config->dpll_hw_state.ebb0,
12838 			      pipe_config->dpll_hw_state.ebb4,
12839 			      pipe_config->dpll_hw_state.pll0,
12840 			      pipe_config->dpll_hw_state.pll1,
12841 			      pipe_config->dpll_hw_state.pll2,
12842 			      pipe_config->dpll_hw_state.pll3,
12843 			      pipe_config->dpll_hw_state.pll6,
12844 			      pipe_config->dpll_hw_state.pll8,
12845 			      pipe_config->dpll_hw_state.pll9,
12846 			      pipe_config->dpll_hw_state.pll10,
12847 			      pipe_config->dpll_hw_state.pcsdw12);
12848 	} else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12849 		DRM_DEBUG_KMS("dpll_hw_state: "
12850 			      "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12851 			      pipe_config->dpll_hw_state.ctrl1,
12852 			      pipe_config->dpll_hw_state.cfgcr1,
12853 			      pipe_config->dpll_hw_state.cfgcr2);
12854 	} else if (HAS_DDI(dev)) {
12855 		DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12856 			      pipe_config->dpll_hw_state.wrpll,
12857 			      pipe_config->dpll_hw_state.spll);
12858 	} else {
12859 		DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12860 			      "fp0: 0x%x, fp1: 0x%x\n",
12861 			      pipe_config->dpll_hw_state.dpll,
12862 			      pipe_config->dpll_hw_state.dpll_md,
12863 			      pipe_config->dpll_hw_state.fp0,
12864 			      pipe_config->dpll_hw_state.fp1);
12865 	}
12866 
12867 	DRM_DEBUG_KMS("planes on this crtc\n");
12868 	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12869 		char *format_name;
12870 		intel_plane = to_intel_plane(plane);
12871 		if (intel_plane->pipe != crtc->pipe)
12872 			continue;
12873 
12874 		state = to_intel_plane_state(plane->state);
12875 		fb = state->base.fb;
12876 		if (!fb) {
12877 			DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12878 				      plane->base.id, plane->name, state->scaler_id);
12879 			continue;
12880 		}
12881 
12882 		format_name = drm_get_format_name(fb->pixel_format);
12883 
12884 		DRM_DEBUG_KMS("[PLANE:%d:%s] enabled",
12885 			      plane->base.id, plane->name);
12886 		DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = %s",
12887 			      fb->base.id, fb->width, fb->height, format_name);
12888 		DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12889 			      state->scaler_id,
12890 			      state->base.src.x1 >> 16,
12891 			      state->base.src.y1 >> 16,
12892 			      drm_rect_width(&state->base.src) >> 16,
12893 			      drm_rect_height(&state->base.src) >> 16,
12894 			      state->base.dst.x1, state->base.dst.y1,
12895 			      drm_rect_width(&state->base.dst),
12896 			      drm_rect_height(&state->base.dst));
12897 
12898 		kfree(format_name);
12899 	}
12900 }
12901 
check_digital_port_conflicts(struct drm_atomic_state * state)12902 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12903 {
12904 	struct drm_device *dev = state->dev;
12905 	struct drm_connector *connector;
12906 	unsigned int used_ports = 0;
12907 	unsigned int used_mst_ports = 0;
12908 
12909 	/*
12910 	 * Walk the connector list instead of the encoder
12911 	 * list to detect the problem on ddi platforms
12912 	 * where there's just one encoder per digital port.
12913 	 */
12914 	drm_for_each_connector(connector, dev) {
12915 		struct drm_connector_state *connector_state;
12916 		struct intel_encoder *encoder;
12917 
12918 		connector_state = drm_atomic_get_existing_connector_state(state, connector);
12919 		if (!connector_state)
12920 			connector_state = connector->state;
12921 
12922 		if (!connector_state->best_encoder)
12923 			continue;
12924 
12925 		encoder = to_intel_encoder(connector_state->best_encoder);
12926 
12927 		WARN_ON(!connector_state->crtc);
12928 
12929 		switch (encoder->type) {
12930 			unsigned int port_mask;
12931 		case INTEL_OUTPUT_UNKNOWN:
12932 			if (WARN_ON(!HAS_DDI(dev)))
12933 				break;
12934 		case INTEL_OUTPUT_DP:
12935 		case INTEL_OUTPUT_HDMI:
12936 		case INTEL_OUTPUT_EDP:
12937 			port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12938 
12939 			/* the same port mustn't appear more than once */
12940 			if (used_ports & port_mask)
12941 				return false;
12942 
12943 			used_ports |= port_mask;
12944 			break;
12945 		case INTEL_OUTPUT_DP_MST:
12946 			used_mst_ports |=
12947 				1 << enc_to_mst(&encoder->base)->primary->port;
12948 			break;
12949 		default:
12950 			break;
12951 		}
12952 	}
12953 
12954 	/* can't mix MST and SST/HDMI on the same port */
12955 	if (used_ports & used_mst_ports)
12956 		return false;
12957 
12958 	return true;
12959 }
12960 
12961 static void
clear_intel_crtc_state(struct intel_crtc_state * crtc_state)12962 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12963 {
12964 	struct drm_crtc_state tmp_state;
12965 	struct intel_crtc_scaler_state scaler_state;
12966 	struct intel_dpll_hw_state dpll_hw_state;
12967 	struct intel_shared_dpll *shared_dpll;
12968 	bool force_thru;
12969 
12970 	/* FIXME: before the switch to atomic started, a new pipe_config was
12971 	 * kzalloc'd. Code that depends on any field being zero should be
12972 	 * fixed, so that the crtc_state can be safely duplicated. For now,
12973 	 * only fields that are know to not cause problems are preserved. */
12974 
12975 	tmp_state = crtc_state->base;
12976 	scaler_state = crtc_state->scaler_state;
12977 	shared_dpll = crtc_state->shared_dpll;
12978 	dpll_hw_state = crtc_state->dpll_hw_state;
12979 	force_thru = crtc_state->pch_pfit.force_thru;
12980 
12981 	memset(crtc_state, 0, sizeof *crtc_state);
12982 
12983 	crtc_state->base = tmp_state;
12984 	crtc_state->scaler_state = scaler_state;
12985 	crtc_state->shared_dpll = shared_dpll;
12986 	crtc_state->dpll_hw_state = dpll_hw_state;
12987 	crtc_state->pch_pfit.force_thru = force_thru;
12988 }
12989 
12990 static int
intel_modeset_pipe_config(struct drm_crtc * crtc,struct intel_crtc_state * pipe_config)12991 intel_modeset_pipe_config(struct drm_crtc *crtc,
12992 			  struct intel_crtc_state *pipe_config)
12993 {
12994 	struct drm_atomic_state *state = pipe_config->base.state;
12995 	struct intel_encoder *encoder;
12996 	struct drm_connector *connector;
12997 	struct drm_connector_state *connector_state;
12998 	int base_bpp, ret = -EINVAL;
12999 	int i;
13000 	bool retry = true;
13001 
13002 	clear_intel_crtc_state(pipe_config);
13003 
13004 	pipe_config->cpu_transcoder =
13005 		(enum transcoder) to_intel_crtc(crtc)->pipe;
13006 
13007 	/*
13008 	 * Sanitize sync polarity flags based on requested ones. If neither
13009 	 * positive or negative polarity is requested, treat this as meaning
13010 	 * negative polarity.
13011 	 */
13012 	if (!(pipe_config->base.adjusted_mode.flags &
13013 	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
13014 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
13015 
13016 	if (!(pipe_config->base.adjusted_mode.flags &
13017 	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
13018 		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
13019 
13020 	base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
13021 					     pipe_config);
13022 	if (base_bpp < 0)
13023 		goto fail;
13024 
13025 	/*
13026 	 * Determine the real pipe dimensions. Note that stereo modes can
13027 	 * increase the actual pipe size due to the frame doubling and
13028 	 * insertion of additional space for blanks between the frame. This
13029 	 * is stored in the crtc timings. We use the requested mode to do this
13030 	 * computation to clearly distinguish it from the adjusted mode, which
13031 	 * can be changed by the connectors in the below retry loop.
13032 	 */
13033 	drm_crtc_get_hv_timing(&pipe_config->base.mode,
13034 			       &pipe_config->pipe_src_w,
13035 			       &pipe_config->pipe_src_h);
13036 
13037 	for_each_connector_in_state(state, connector, connector_state, i) {
13038 		if (connector_state->crtc != crtc)
13039 			continue;
13040 
13041 		encoder = to_intel_encoder(connector_state->best_encoder);
13042 
13043 		if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
13044 			DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
13045 			goto fail;
13046 		}
13047 
13048 		/*
13049 		 * Determine output_types before calling the .compute_config()
13050 		 * hooks so that the hooks can use this information safely.
13051 		 */
13052 		pipe_config->output_types |= 1 << encoder->type;
13053 	}
13054 
13055 encoder_retry:
13056 	/* Ensure the port clock defaults are reset when retrying. */
13057 	pipe_config->port_clock = 0;
13058 	pipe_config->pixel_multiplier = 1;
13059 
13060 	/* Fill in default crtc timings, allow encoders to overwrite them. */
13061 	drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
13062 			      CRTC_STEREO_DOUBLE);
13063 
13064 	/* Pass our mode to the connectors and the CRTC to give them a chance to
13065 	 * adjust it according to limitations or connector properties, and also
13066 	 * a chance to reject the mode entirely.
13067 	 */
13068 	for_each_connector_in_state(state, connector, connector_state, i) {
13069 		if (connector_state->crtc != crtc)
13070 			continue;
13071 
13072 		encoder = to_intel_encoder(connector_state->best_encoder);
13073 
13074 		if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
13075 			DRM_DEBUG_KMS("Encoder config failure\n");
13076 			goto fail;
13077 		}
13078 	}
13079 
13080 	/* Set default port clock if not overwritten by the encoder. Needs to be
13081 	 * done afterwards in case the encoder adjusts the mode. */
13082 	if (!pipe_config->port_clock)
13083 		pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
13084 			* pipe_config->pixel_multiplier;
13085 
13086 	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13087 	if (ret < 0) {
13088 		DRM_DEBUG_KMS("CRTC fixup failed\n");
13089 		goto fail;
13090 	}
13091 
13092 	if (ret == RETRY) {
13093 		if (WARN(!retry, "loop in pipe configuration computation\n")) {
13094 			ret = -EINVAL;
13095 			goto fail;
13096 		}
13097 
13098 		DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13099 		retry = false;
13100 		goto encoder_retry;
13101 	}
13102 
13103 	/* Dithering seems to not pass-through bits correctly when it should, so
13104 	 * only enable it on 6bpc panels. */
13105 	pipe_config->dither = pipe_config->pipe_bpp == 6*3;
13106 	DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13107 		      base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13108 
13109 fail:
13110 	return ret;
13111 }
13112 
13113 static void
intel_modeset_update_crtc_state(struct drm_atomic_state * state)13114 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
13115 {
13116 	struct drm_crtc *crtc;
13117 	struct drm_crtc_state *crtc_state;
13118 	int i;
13119 
13120 	/* Double check state. */
13121 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13122 		to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
13123 
13124 		/* Update hwmode for vblank functions */
13125 		if (crtc->state->active)
13126 			crtc->hwmode = crtc->state->adjusted_mode;
13127 		else
13128 			crtc->hwmode.crtc_clock = 0;
13129 
13130 		/*
13131 		 * Update legacy state to satisfy fbc code. This can
13132 		 * be removed when fbc uses the atomic state.
13133 		 */
13134 		if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
13135 			struct drm_plane_state *plane_state = crtc->primary->state;
13136 
13137 			crtc->primary->fb = plane_state->fb;
13138 			crtc->x = plane_state->src_x >> 16;
13139 			crtc->y = plane_state->src_y >> 16;
13140 		}
13141 	}
13142 }
13143 
intel_fuzzy_clock_check(int clock1,int clock2)13144 static bool intel_fuzzy_clock_check(int clock1, int clock2)
13145 {
13146 	int diff;
13147 
13148 	if (clock1 == clock2)
13149 		return true;
13150 
13151 	if (!clock1 || !clock2)
13152 		return false;
13153 
13154 	diff = abs(clock1 - clock2);
13155 
13156 	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13157 		return true;
13158 
13159 	return false;
13160 }
13161 
13162 static bool
intel_compare_m_n(unsigned int m,unsigned int n,unsigned int m2,unsigned int n2,bool exact)13163 intel_compare_m_n(unsigned int m, unsigned int n,
13164 		  unsigned int m2, unsigned int n2,
13165 		  bool exact)
13166 {
13167 	if (m == m2 && n == n2)
13168 		return true;
13169 
13170 	if (exact || !m || !n || !m2 || !n2)
13171 		return false;
13172 
13173 	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13174 
13175 	if (n > n2) {
13176 		while (n > n2) {
13177 			m2 <<= 1;
13178 			n2 <<= 1;
13179 		}
13180 	} else if (n < n2) {
13181 		while (n < n2) {
13182 			m <<= 1;
13183 			n <<= 1;
13184 		}
13185 	}
13186 
13187 	if (n != n2)
13188 		return false;
13189 
13190 	return intel_fuzzy_clock_check(m, m2);
13191 }
13192 
13193 static bool
intel_compare_link_m_n(const struct intel_link_m_n * m_n,struct intel_link_m_n * m2_n2,bool adjust)13194 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13195 		       struct intel_link_m_n *m2_n2,
13196 		       bool adjust)
13197 {
13198 	if (m_n->tu == m2_n2->tu &&
13199 	    intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13200 			      m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13201 	    intel_compare_m_n(m_n->link_m, m_n->link_n,
13202 			      m2_n2->link_m, m2_n2->link_n, !adjust)) {
13203 		if (adjust)
13204 			*m2_n2 = *m_n;
13205 
13206 		return true;
13207 	}
13208 
13209 	return false;
13210 }
13211 
13212 static bool
intel_pipe_config_compare(struct drm_device * dev,struct intel_crtc_state * current_config,struct intel_crtc_state * pipe_config,bool adjust)13213 intel_pipe_config_compare(struct drm_device *dev,
13214 			  struct intel_crtc_state *current_config,
13215 			  struct intel_crtc_state *pipe_config,
13216 			  bool adjust)
13217 {
13218 	bool ret = true;
13219 
13220 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
13221 	do { \
13222 		if (!adjust) \
13223 			DRM_ERROR(fmt, ##__VA_ARGS__); \
13224 		else \
13225 			DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
13226 	} while (0)
13227 
13228 #define PIPE_CONF_CHECK_X(name)	\
13229 	if (current_config->name != pipe_config->name) { \
13230 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13231 			  "(expected 0x%08x, found 0x%08x)\n", \
13232 			  current_config->name, \
13233 			  pipe_config->name); \
13234 		ret = false; \
13235 	}
13236 
13237 #define PIPE_CONF_CHECK_I(name)	\
13238 	if (current_config->name != pipe_config->name) { \
13239 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13240 			  "(expected %i, found %i)\n", \
13241 			  current_config->name, \
13242 			  pipe_config->name); \
13243 		ret = false; \
13244 	}
13245 
13246 #define PIPE_CONF_CHECK_P(name)	\
13247 	if (current_config->name != pipe_config->name) { \
13248 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13249 			  "(expected %p, found %p)\n", \
13250 			  current_config->name, \
13251 			  pipe_config->name); \
13252 		ret = false; \
13253 	}
13254 
13255 #define PIPE_CONF_CHECK_M_N(name) \
13256 	if (!intel_compare_link_m_n(&current_config->name, \
13257 				    &pipe_config->name,\
13258 				    adjust)) { \
13259 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13260 			  "(expected tu %i gmch %i/%i link %i/%i, " \
13261 			  "found tu %i, gmch %i/%i link %i/%i)\n", \
13262 			  current_config->name.tu, \
13263 			  current_config->name.gmch_m, \
13264 			  current_config->name.gmch_n, \
13265 			  current_config->name.link_m, \
13266 			  current_config->name.link_n, \
13267 			  pipe_config->name.tu, \
13268 			  pipe_config->name.gmch_m, \
13269 			  pipe_config->name.gmch_n, \
13270 			  pipe_config->name.link_m, \
13271 			  pipe_config->name.link_n); \
13272 		ret = false; \
13273 	}
13274 
13275 /* This is required for BDW+ where there is only one set of registers for
13276  * switching between high and low RR.
13277  * This macro can be used whenever a comparison has to be made between one
13278  * hw state and multiple sw state variables.
13279  */
13280 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13281 	if (!intel_compare_link_m_n(&current_config->name, \
13282 				    &pipe_config->name, adjust) && \
13283 	    !intel_compare_link_m_n(&current_config->alt_name, \
13284 				    &pipe_config->name, adjust)) { \
13285 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13286 			  "(expected tu %i gmch %i/%i link %i/%i, " \
13287 			  "or tu %i gmch %i/%i link %i/%i, " \
13288 			  "found tu %i, gmch %i/%i link %i/%i)\n", \
13289 			  current_config->name.tu, \
13290 			  current_config->name.gmch_m, \
13291 			  current_config->name.gmch_n, \
13292 			  current_config->name.link_m, \
13293 			  current_config->name.link_n, \
13294 			  current_config->alt_name.tu, \
13295 			  current_config->alt_name.gmch_m, \
13296 			  current_config->alt_name.gmch_n, \
13297 			  current_config->alt_name.link_m, \
13298 			  current_config->alt_name.link_n, \
13299 			  pipe_config->name.tu, \
13300 			  pipe_config->name.gmch_m, \
13301 			  pipe_config->name.gmch_n, \
13302 			  pipe_config->name.link_m, \
13303 			  pipe_config->name.link_n); \
13304 		ret = false; \
13305 	}
13306 
13307 #define PIPE_CONF_CHECK_FLAGS(name, mask)	\
13308 	if ((current_config->name ^ pipe_config->name) & (mask)) { \
13309 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
13310 			  "(expected %i, found %i)\n", \
13311 			  current_config->name & (mask), \
13312 			  pipe_config->name & (mask)); \
13313 		ret = false; \
13314 	}
13315 
13316 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13317 	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13318 		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13319 			  "(expected %i, found %i)\n", \
13320 			  current_config->name, \
13321 			  pipe_config->name); \
13322 		ret = false; \
13323 	}
13324 
13325 #define PIPE_CONF_QUIRK(quirk)	\
13326 	((current_config->quirks | pipe_config->quirks) & (quirk))
13327 
13328 	PIPE_CONF_CHECK_I(cpu_transcoder);
13329 
13330 	PIPE_CONF_CHECK_I(has_pch_encoder);
13331 	PIPE_CONF_CHECK_I(fdi_lanes);
13332 	PIPE_CONF_CHECK_M_N(fdi_m_n);
13333 
13334 	PIPE_CONF_CHECK_I(lane_count);
13335 	PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13336 
13337 	if (INTEL_INFO(dev)->gen < 8) {
13338 		PIPE_CONF_CHECK_M_N(dp_m_n);
13339 
13340 		if (current_config->has_drrs)
13341 			PIPE_CONF_CHECK_M_N(dp_m2_n2);
13342 	} else
13343 		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13344 
13345 	PIPE_CONF_CHECK_X(output_types);
13346 
13347 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13348 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13349 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13350 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13351 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13352 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13353 
13354 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13355 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13356 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13357 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13358 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13359 	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13360 
13361 	PIPE_CONF_CHECK_I(pixel_multiplier);
13362 	PIPE_CONF_CHECK_I(has_hdmi_sink);
13363 	if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
13364 	    IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
13365 		PIPE_CONF_CHECK_I(limited_color_range);
13366 	PIPE_CONF_CHECK_I(has_infoframe);
13367 
13368 	PIPE_CONF_CHECK_I(has_audio);
13369 
13370 	PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13371 			      DRM_MODE_FLAG_INTERLACE);
13372 
13373 	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13374 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13375 				      DRM_MODE_FLAG_PHSYNC);
13376 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13377 				      DRM_MODE_FLAG_NHSYNC);
13378 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13379 				      DRM_MODE_FLAG_PVSYNC);
13380 		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13381 				      DRM_MODE_FLAG_NVSYNC);
13382 	}
13383 
13384 	PIPE_CONF_CHECK_X(gmch_pfit.control);
13385 	/* pfit ratios are autocomputed by the hw on gen4+ */
13386 	if (INTEL_INFO(dev)->gen < 4)
13387 		PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13388 	PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13389 
13390 	if (!adjust) {
13391 		PIPE_CONF_CHECK_I(pipe_src_w);
13392 		PIPE_CONF_CHECK_I(pipe_src_h);
13393 
13394 		PIPE_CONF_CHECK_I(pch_pfit.enabled);
13395 		if (current_config->pch_pfit.enabled) {
13396 			PIPE_CONF_CHECK_X(pch_pfit.pos);
13397 			PIPE_CONF_CHECK_X(pch_pfit.size);
13398 		}
13399 
13400 		PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13401 	}
13402 
13403 	/* BDW+ don't expose a synchronous way to read the state */
13404 	if (IS_HASWELL(dev))
13405 		PIPE_CONF_CHECK_I(ips_enabled);
13406 
13407 	PIPE_CONF_CHECK_I(double_wide);
13408 
13409 	PIPE_CONF_CHECK_P(shared_dpll);
13410 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13411 	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13412 	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13413 	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13414 	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13415 	PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13416 	PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13417 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13418 	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13419 
13420 	PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13421 	PIPE_CONF_CHECK_X(dsi_pll.div);
13422 
13423 	if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
13424 		PIPE_CONF_CHECK_I(pipe_bpp);
13425 
13426 	PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13427 	PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13428 
13429 #undef PIPE_CONF_CHECK_X
13430 #undef PIPE_CONF_CHECK_I
13431 #undef PIPE_CONF_CHECK_P
13432 #undef PIPE_CONF_CHECK_FLAGS
13433 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13434 #undef PIPE_CONF_QUIRK
13435 #undef INTEL_ERR_OR_DBG_KMS
13436 
13437 	return ret;
13438 }
13439 
intel_pipe_config_sanity_check(struct drm_i915_private * dev_priv,const struct intel_crtc_state * pipe_config)13440 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13441 					   const struct intel_crtc_state *pipe_config)
13442 {
13443 	if (pipe_config->has_pch_encoder) {
13444 		int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13445 							    &pipe_config->fdi_m_n);
13446 		int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13447 
13448 		/*
13449 		 * FDI already provided one idea for the dotclock.
13450 		 * Yell if the encoder disagrees.
13451 		 */
13452 		WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13453 		     "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13454 		     fdi_dotclock, dotclock);
13455 	}
13456 }
13457 
verify_wm_state(struct drm_crtc * crtc,struct drm_crtc_state * new_state)13458 static void verify_wm_state(struct drm_crtc *crtc,
13459 			    struct drm_crtc_state *new_state)
13460 {
13461 	struct drm_device *dev = crtc->dev;
13462 	struct drm_i915_private *dev_priv = to_i915(dev);
13463 	struct skl_ddb_allocation hw_ddb, *sw_ddb;
13464 	struct skl_ddb_entry *hw_entry, *sw_entry;
13465 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13466 	const enum pipe pipe = intel_crtc->pipe;
13467 	int plane;
13468 
13469 	if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
13470 		return;
13471 
13472 	skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13473 	sw_ddb = &dev_priv->wm.skl_hw.ddb;
13474 
13475 	/* planes */
13476 	for_each_plane(dev_priv, pipe, plane) {
13477 		hw_entry = &hw_ddb.plane[pipe][plane];
13478 		sw_entry = &sw_ddb->plane[pipe][plane];
13479 
13480 		if (skl_ddb_entry_equal(hw_entry, sw_entry))
13481 			continue;
13482 
13483 		DRM_ERROR("mismatch in DDB state pipe %c plane %d "
13484 			  "(expected (%u,%u), found (%u,%u))\n",
13485 			  pipe_name(pipe), plane + 1,
13486 			  sw_entry->start, sw_entry->end,
13487 			  hw_entry->start, hw_entry->end);
13488 	}
13489 
13490 	/*
13491 	 * cursor
13492 	 * If the cursor plane isn't active, we may not have updated it's ddb
13493 	 * allocation. In that case since the ddb allocation will be updated
13494 	 * once the plane becomes visible, we can skip this check
13495 	 */
13496 	if (intel_crtc->cursor_addr) {
13497 		hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13498 		sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13499 
13500 		if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
13501 			DRM_ERROR("mismatch in DDB state pipe %c cursor "
13502 				  "(expected (%u,%u), found (%u,%u))\n",
13503 				  pipe_name(pipe),
13504 				  sw_entry->start, sw_entry->end,
13505 				  hw_entry->start, hw_entry->end);
13506 		}
13507 	}
13508 }
13509 
13510 static void
verify_connector_state(struct drm_device * dev,struct drm_crtc * crtc)13511 verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
13512 {
13513 	struct drm_connector *connector;
13514 
13515 	drm_for_each_connector(connector, dev) {
13516 		struct drm_encoder *encoder = connector->encoder;
13517 		struct drm_connector_state *state = connector->state;
13518 
13519 		if (state->crtc != crtc)
13520 			continue;
13521 
13522 		intel_connector_verify_state(to_intel_connector(connector));
13523 
13524 		I915_STATE_WARN(state->best_encoder != encoder,
13525 		     "connector's atomic encoder doesn't match legacy encoder\n");
13526 	}
13527 }
13528 
13529 static void
verify_encoder_state(struct drm_device * dev)13530 verify_encoder_state(struct drm_device *dev)
13531 {
13532 	struct intel_encoder *encoder;
13533 	struct intel_connector *connector;
13534 
13535 	for_each_intel_encoder(dev, encoder) {
13536 		bool enabled = false;
13537 		enum pipe pipe;
13538 
13539 		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13540 			      encoder->base.base.id,
13541 			      encoder->base.name);
13542 
13543 		for_each_intel_connector(dev, connector) {
13544 			if (connector->base.state->best_encoder != &encoder->base)
13545 				continue;
13546 			enabled = true;
13547 
13548 			I915_STATE_WARN(connector->base.state->crtc !=
13549 					encoder->base.crtc,
13550 			     "connector's crtc doesn't match encoder crtc\n");
13551 		}
13552 
13553 		I915_STATE_WARN(!!encoder->base.crtc != enabled,
13554 		     "encoder's enabled state mismatch "
13555 		     "(expected %i, found %i)\n",
13556 		     !!encoder->base.crtc, enabled);
13557 
13558 		if (!encoder->base.crtc) {
13559 			bool active;
13560 
13561 			active = encoder->get_hw_state(encoder, &pipe);
13562 			I915_STATE_WARN(active,
13563 			     "encoder detached but still enabled on pipe %c.\n",
13564 			     pipe_name(pipe));
13565 		}
13566 	}
13567 }
13568 
13569 static void
verify_crtc_state(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state,struct drm_crtc_state * new_crtc_state)13570 verify_crtc_state(struct drm_crtc *crtc,
13571 		  struct drm_crtc_state *old_crtc_state,
13572 		  struct drm_crtc_state *new_crtc_state)
13573 {
13574 	struct drm_device *dev = crtc->dev;
13575 	struct drm_i915_private *dev_priv = to_i915(dev);
13576 	struct intel_encoder *encoder;
13577 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13578 	struct intel_crtc_state *pipe_config, *sw_config;
13579 	struct drm_atomic_state *old_state;
13580 	bool active;
13581 
13582 	old_state = old_crtc_state->state;
13583 	__drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13584 	pipe_config = to_intel_crtc_state(old_crtc_state);
13585 	memset(pipe_config, 0, sizeof(*pipe_config));
13586 	pipe_config->base.crtc = crtc;
13587 	pipe_config->base.state = old_state;
13588 
13589 	DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13590 
13591 	active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13592 
13593 	/* hw state is inconsistent with the pipe quirk */
13594 	if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13595 	    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13596 		active = new_crtc_state->active;
13597 
13598 	I915_STATE_WARN(new_crtc_state->active != active,
13599 	     "crtc active state doesn't match with hw state "
13600 	     "(expected %i, found %i)\n", new_crtc_state->active, active);
13601 
13602 	I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13603 	     "transitional active state does not match atomic hw state "
13604 	     "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13605 
13606 	for_each_encoder_on_crtc(dev, crtc, encoder) {
13607 		enum pipe pipe;
13608 
13609 		active = encoder->get_hw_state(encoder, &pipe);
13610 		I915_STATE_WARN(active != new_crtc_state->active,
13611 			"[ENCODER:%i] active %i with crtc active %i\n",
13612 			encoder->base.base.id, active, new_crtc_state->active);
13613 
13614 		I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13615 				"Encoder connected to wrong pipe %c\n",
13616 				pipe_name(pipe));
13617 
13618 		if (active) {
13619 			pipe_config->output_types |= 1 << encoder->type;
13620 			encoder->get_config(encoder, pipe_config);
13621 		}
13622 	}
13623 
13624 	if (!new_crtc_state->active)
13625 		return;
13626 
13627 	intel_pipe_config_sanity_check(dev_priv, pipe_config);
13628 
13629 	sw_config = to_intel_crtc_state(crtc->state);
13630 	if (!intel_pipe_config_compare(dev, sw_config,
13631 				       pipe_config, false)) {
13632 		I915_STATE_WARN(1, "pipe state doesn't match!\n");
13633 		intel_dump_pipe_config(intel_crtc, pipe_config,
13634 				       "[hw state]");
13635 		intel_dump_pipe_config(intel_crtc, sw_config,
13636 				       "[sw state]");
13637 	}
13638 }
13639 
13640 static void
verify_single_dpll_state(struct drm_i915_private * dev_priv,struct intel_shared_dpll * pll,struct drm_crtc * crtc,struct drm_crtc_state * new_state)13641 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13642 			 struct intel_shared_dpll *pll,
13643 			 struct drm_crtc *crtc,
13644 			 struct drm_crtc_state *new_state)
13645 {
13646 	struct intel_dpll_hw_state dpll_hw_state;
13647 	unsigned crtc_mask;
13648 	bool active;
13649 
13650 	memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13651 
13652 	DRM_DEBUG_KMS("%s\n", pll->name);
13653 
13654 	active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13655 
13656 	if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13657 		I915_STATE_WARN(!pll->on && pll->active_mask,
13658 		     "pll in active use but not on in sw tracking\n");
13659 		I915_STATE_WARN(pll->on && !pll->active_mask,
13660 		     "pll is on but not used by any active crtc\n");
13661 		I915_STATE_WARN(pll->on != active,
13662 		     "pll on state mismatch (expected %i, found %i)\n",
13663 		     pll->on, active);
13664 	}
13665 
13666 	if (!crtc) {
13667 		I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13668 				"more active pll users than references: %x vs %x\n",
13669 				pll->active_mask, pll->config.crtc_mask);
13670 
13671 		return;
13672 	}
13673 
13674 	crtc_mask = 1 << drm_crtc_index(crtc);
13675 
13676 	if (new_state->active)
13677 		I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13678 				"pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13679 				pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13680 	else
13681 		I915_STATE_WARN(pll->active_mask & crtc_mask,
13682 				"pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13683 				pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13684 
13685 	I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13686 			"pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13687 			crtc_mask, pll->config.crtc_mask);
13688 
13689 	I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13690 					  &dpll_hw_state,
13691 					  sizeof(dpll_hw_state)),
13692 			"pll hw state mismatch\n");
13693 }
13694 
13695 static void
verify_shared_dpll_state(struct drm_device * dev,struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state,struct drm_crtc_state * new_crtc_state)13696 verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13697 			 struct drm_crtc_state *old_crtc_state,
13698 			 struct drm_crtc_state *new_crtc_state)
13699 {
13700 	struct drm_i915_private *dev_priv = to_i915(dev);
13701 	struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13702 	struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13703 
13704 	if (new_state->shared_dpll)
13705 		verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13706 
13707 	if (old_state->shared_dpll &&
13708 	    old_state->shared_dpll != new_state->shared_dpll) {
13709 		unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13710 		struct intel_shared_dpll *pll = old_state->shared_dpll;
13711 
13712 		I915_STATE_WARN(pll->active_mask & crtc_mask,
13713 				"pll active mismatch (didn't expect pipe %c in active mask)\n",
13714 				pipe_name(drm_crtc_index(crtc)));
13715 		I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13716 				"pll enabled crtcs mismatch (found %x in enabled mask)\n",
13717 				pipe_name(drm_crtc_index(crtc)));
13718 	}
13719 }
13720 
13721 static void
intel_modeset_verify_crtc(struct drm_crtc * crtc,struct drm_crtc_state * old_state,struct drm_crtc_state * new_state)13722 intel_modeset_verify_crtc(struct drm_crtc *crtc,
13723 			 struct drm_crtc_state *old_state,
13724 			 struct drm_crtc_state *new_state)
13725 {
13726 	if (!needs_modeset(new_state) &&
13727 	    !to_intel_crtc_state(new_state)->update_pipe)
13728 		return;
13729 
13730 	verify_wm_state(crtc, new_state);
13731 	verify_connector_state(crtc->dev, crtc);
13732 	verify_crtc_state(crtc, old_state, new_state);
13733 	verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13734 }
13735 
13736 static void
verify_disabled_dpll_state(struct drm_device * dev)13737 verify_disabled_dpll_state(struct drm_device *dev)
13738 {
13739 	struct drm_i915_private *dev_priv = to_i915(dev);
13740 	int i;
13741 
13742 	for (i = 0; i < dev_priv->num_shared_dpll; i++)
13743 		verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13744 }
13745 
13746 static void
intel_modeset_verify_disabled(struct drm_device * dev)13747 intel_modeset_verify_disabled(struct drm_device *dev)
13748 {
13749 	verify_encoder_state(dev);
13750 	verify_connector_state(dev, NULL);
13751 	verify_disabled_dpll_state(dev);
13752 }
13753 
update_scanline_offset(struct intel_crtc * crtc)13754 static void update_scanline_offset(struct intel_crtc *crtc)
13755 {
13756 	struct drm_device *dev = crtc->base.dev;
13757 
13758 	/*
13759 	 * The scanline counter increments at the leading edge of hsync.
13760 	 *
13761 	 * On most platforms it starts counting from vtotal-1 on the
13762 	 * first active line. That means the scanline counter value is
13763 	 * always one less than what we would expect. Ie. just after
13764 	 * start of vblank, which also occurs at start of hsync (on the
13765 	 * last active line), the scanline counter will read vblank_start-1.
13766 	 *
13767 	 * On gen2 the scanline counter starts counting from 1 instead
13768 	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13769 	 * to keep the value positive), instead of adding one.
13770 	 *
13771 	 * On HSW+ the behaviour of the scanline counter depends on the output
13772 	 * type. For DP ports it behaves like most other platforms, but on HDMI
13773 	 * there's an extra 1 line difference. So we need to add two instead of
13774 	 * one to the value.
13775 	 *
13776 	 * On VLV/CHV DSI the scanline counter would appear to increment
13777 	 * approx. 1/3 of a scanline before start of vblank. Unfortunately
13778 	 * that means we can't tell whether we're in vblank or not while
13779 	 * we're on that particular line. We must still set scanline_offset
13780 	 * to 1 so that the vblank timestamps come out correct when we query
13781 	 * the scanline counter from within the vblank interrupt handler.
13782 	 * However if queried just before the start of vblank we'll get an
13783 	 * answer that's slightly in the future.
13784 	 */
13785 	if (IS_GEN2(dev)) {
13786 		const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13787 		int vtotal;
13788 
13789 		vtotal = adjusted_mode->crtc_vtotal;
13790 		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13791 			vtotal /= 2;
13792 
13793 		crtc->scanline_offset = vtotal - 1;
13794 	} else if (HAS_DDI(dev) &&
13795 		   intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13796 		crtc->scanline_offset = 2;
13797 	} else
13798 		crtc->scanline_offset = 1;
13799 }
13800 
intel_modeset_clear_plls(struct drm_atomic_state * state)13801 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13802 {
13803 	struct drm_device *dev = state->dev;
13804 	struct drm_i915_private *dev_priv = to_i915(dev);
13805 	struct intel_shared_dpll_config *shared_dpll = NULL;
13806 	struct drm_crtc *crtc;
13807 	struct drm_crtc_state *crtc_state;
13808 	int i;
13809 
13810 	if (!dev_priv->display.crtc_compute_clock)
13811 		return;
13812 
13813 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13814 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13815 		struct intel_shared_dpll *old_dpll =
13816 			to_intel_crtc_state(crtc->state)->shared_dpll;
13817 
13818 		if (!needs_modeset(crtc_state))
13819 			continue;
13820 
13821 		to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13822 
13823 		if (!old_dpll)
13824 			continue;
13825 
13826 		if (!shared_dpll)
13827 			shared_dpll = intel_atomic_get_shared_dpll_state(state);
13828 
13829 		intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13830 	}
13831 }
13832 
13833 /*
13834  * This implements the workaround described in the "notes" section of the mode
13835  * set sequence documentation. When going from no pipes or single pipe to
13836  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13837  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13838  */
haswell_mode_set_planes_workaround(struct drm_atomic_state * state)13839 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13840 {
13841 	struct drm_crtc_state *crtc_state;
13842 	struct intel_crtc *intel_crtc;
13843 	struct drm_crtc *crtc;
13844 	struct intel_crtc_state *first_crtc_state = NULL;
13845 	struct intel_crtc_state *other_crtc_state = NULL;
13846 	enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13847 	int i;
13848 
13849 	/* look at all crtc's that are going to be enabled in during modeset */
13850 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13851 		intel_crtc = to_intel_crtc(crtc);
13852 
13853 		if (!crtc_state->active || !needs_modeset(crtc_state))
13854 			continue;
13855 
13856 		if (first_crtc_state) {
13857 			other_crtc_state = to_intel_crtc_state(crtc_state);
13858 			break;
13859 		} else {
13860 			first_crtc_state = to_intel_crtc_state(crtc_state);
13861 			first_pipe = intel_crtc->pipe;
13862 		}
13863 	}
13864 
13865 	/* No workaround needed? */
13866 	if (!first_crtc_state)
13867 		return 0;
13868 
13869 	/* w/a possibly needed, check how many crtc's are already enabled. */
13870 	for_each_intel_crtc(state->dev, intel_crtc) {
13871 		struct intel_crtc_state *pipe_config;
13872 
13873 		pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13874 		if (IS_ERR(pipe_config))
13875 			return PTR_ERR(pipe_config);
13876 
13877 		pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13878 
13879 		if (!pipe_config->base.active ||
13880 		    needs_modeset(&pipe_config->base))
13881 			continue;
13882 
13883 		/* 2 or more enabled crtcs means no need for w/a */
13884 		if (enabled_pipe != INVALID_PIPE)
13885 			return 0;
13886 
13887 		enabled_pipe = intel_crtc->pipe;
13888 	}
13889 
13890 	if (enabled_pipe != INVALID_PIPE)
13891 		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13892 	else if (other_crtc_state)
13893 		other_crtc_state->hsw_workaround_pipe = first_pipe;
13894 
13895 	return 0;
13896 }
13897 
intel_modeset_all_pipes(struct drm_atomic_state * state)13898 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13899 {
13900 	struct drm_crtc *crtc;
13901 	struct drm_crtc_state *crtc_state;
13902 	int ret = 0;
13903 
13904 	/* add all active pipes to the state */
13905 	for_each_crtc(state->dev, crtc) {
13906 		crtc_state = drm_atomic_get_crtc_state(state, crtc);
13907 		if (IS_ERR(crtc_state))
13908 			return PTR_ERR(crtc_state);
13909 
13910 		if (!crtc_state->active || needs_modeset(crtc_state))
13911 			continue;
13912 
13913 		crtc_state->mode_changed = true;
13914 
13915 		ret = drm_atomic_add_affected_connectors(state, crtc);
13916 		if (ret)
13917 			break;
13918 
13919 		ret = drm_atomic_add_affected_planes(state, crtc);
13920 		if (ret)
13921 			break;
13922 	}
13923 
13924 	return ret;
13925 }
13926 
intel_modeset_checks(struct drm_atomic_state * state)13927 static int intel_modeset_checks(struct drm_atomic_state *state)
13928 {
13929 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13930 	struct drm_i915_private *dev_priv = to_i915(state->dev);
13931 	struct drm_crtc *crtc;
13932 	struct drm_crtc_state *crtc_state;
13933 	int ret = 0, i;
13934 
13935 	if (!check_digital_port_conflicts(state)) {
13936 		DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13937 		return -EINVAL;
13938 	}
13939 
13940 	intel_state->modeset = true;
13941 	intel_state->active_crtcs = dev_priv->active_crtcs;
13942 
13943 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13944 		if (crtc_state->active)
13945 			intel_state->active_crtcs |= 1 << i;
13946 		else
13947 			intel_state->active_crtcs &= ~(1 << i);
13948 
13949 		if (crtc_state->active != crtc->state->active)
13950 			intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13951 	}
13952 
13953 	/*
13954 	 * See if the config requires any additional preparation, e.g.
13955 	 * to adjust global state with pipes off.  We need to do this
13956 	 * here so we can get the modeset_pipe updated config for the new
13957 	 * mode set on this crtc.  For other crtcs we need to use the
13958 	 * adjusted_mode bits in the crtc directly.
13959 	 */
13960 	if (dev_priv->display.modeset_calc_cdclk) {
13961 		if (!intel_state->cdclk_pll_vco)
13962 			intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13963 		if (!intel_state->cdclk_pll_vco)
13964 			intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13965 
13966 		ret = dev_priv->display.modeset_calc_cdclk(state);
13967 		if (ret < 0)
13968 			return ret;
13969 
13970 		if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13971 		    intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13972 			ret = intel_modeset_all_pipes(state);
13973 
13974 		if (ret < 0)
13975 			return ret;
13976 
13977 		DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13978 			      intel_state->cdclk, intel_state->dev_cdclk);
13979 	} else {
13980 		to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13981 	}
13982 
13983 	intel_modeset_clear_plls(state);
13984 
13985 	if (IS_HASWELL(dev_priv))
13986 		return haswell_mode_set_planes_workaround(state);
13987 
13988 	return 0;
13989 }
13990 
13991 /*
13992  * Handle calculation of various watermark data at the end of the atomic check
13993  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13994  * handlers to ensure that all derived state has been updated.
13995  */
calc_watermark_data(struct drm_atomic_state * state)13996 static int calc_watermark_data(struct drm_atomic_state *state)
13997 {
13998 	struct drm_device *dev = state->dev;
13999 	struct drm_i915_private *dev_priv = to_i915(dev);
14000 
14001 	/* Is there platform-specific watermark information to calculate? */
14002 	if (dev_priv->display.compute_global_watermarks)
14003 		return dev_priv->display.compute_global_watermarks(state);
14004 
14005 	return 0;
14006 }
14007 
14008 /**
14009  * intel_atomic_check - validate state object
14010  * @dev: drm device
14011  * @state: state to validate
14012  */
intel_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)14013 static int intel_atomic_check(struct drm_device *dev,
14014 			      struct drm_atomic_state *state)
14015 {
14016 	struct drm_i915_private *dev_priv = to_i915(dev);
14017 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14018 	struct drm_crtc *crtc;
14019 	struct drm_crtc_state *crtc_state;
14020 	int ret, i;
14021 	bool any_ms = false;
14022 
14023 	ret = drm_atomic_helper_check_modeset(dev, state);
14024 	if (ret)
14025 		return ret;
14026 
14027 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
14028 		struct intel_crtc_state *pipe_config =
14029 			to_intel_crtc_state(crtc_state);
14030 
14031 		/* Catch I915_MODE_FLAG_INHERITED */
14032 		if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
14033 			crtc_state->mode_changed = true;
14034 
14035 		if (!needs_modeset(crtc_state))
14036 			continue;
14037 
14038 		if (!crtc_state->enable) {
14039 			any_ms = true;
14040 			continue;
14041 		}
14042 
14043 		/* FIXME: For only active_changed we shouldn't need to do any
14044 		 * state recomputation at all. */
14045 
14046 		ret = drm_atomic_add_affected_connectors(state, crtc);
14047 		if (ret)
14048 			return ret;
14049 
14050 		ret = intel_modeset_pipe_config(crtc, pipe_config);
14051 		if (ret) {
14052 			intel_dump_pipe_config(to_intel_crtc(crtc),
14053 					       pipe_config, "[failed]");
14054 			return ret;
14055 		}
14056 
14057 		if (i915.fastboot &&
14058 		    intel_pipe_config_compare(dev,
14059 					to_intel_crtc_state(crtc->state),
14060 					pipe_config, true)) {
14061 			crtc_state->mode_changed = false;
14062 			to_intel_crtc_state(crtc_state)->update_pipe = true;
14063 		}
14064 
14065 		if (needs_modeset(crtc_state))
14066 			any_ms = true;
14067 
14068 		ret = drm_atomic_add_affected_planes(state, crtc);
14069 		if (ret)
14070 			return ret;
14071 
14072 		intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
14073 				       needs_modeset(crtc_state) ?
14074 				       "[modeset]" : "[fastset]");
14075 	}
14076 
14077 	if (any_ms) {
14078 		ret = intel_modeset_checks(state);
14079 
14080 		if (ret)
14081 			return ret;
14082 	} else {
14083 		intel_state->cdclk = dev_priv->atomic_cdclk_freq;
14084 	}
14085 
14086 	ret = drm_atomic_helper_check_planes(dev, state);
14087 	if (ret)
14088 		return ret;
14089 
14090 	intel_fbc_choose_crtc(dev_priv, state);
14091 	return calc_watermark_data(state);
14092 }
14093 
intel_atomic_prepare_commit(struct drm_device * dev,struct drm_atomic_state * state,bool nonblock)14094 static int intel_atomic_prepare_commit(struct drm_device *dev,
14095 				       struct drm_atomic_state *state,
14096 				       bool nonblock)
14097 {
14098 	struct drm_i915_private *dev_priv = to_i915(dev);
14099 	struct drm_plane_state *plane_state;
14100 	struct drm_crtc_state *crtc_state;
14101 	struct drm_plane *plane;
14102 	struct drm_crtc *crtc;
14103 	int i, ret;
14104 
14105 	for_each_crtc_in_state(state, crtc, crtc_state, i) {
14106 		if (state->legacy_cursor_update)
14107 			continue;
14108 
14109 		ret = intel_crtc_wait_for_pending_flips(crtc);
14110 		if (ret)
14111 			return ret;
14112 
14113 		if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
14114 			flush_workqueue(dev_priv->wq);
14115 	}
14116 
14117 	ret = mutex_lock_interruptible(&dev->struct_mutex);
14118 	if (ret)
14119 		return ret;
14120 
14121 	ret = drm_atomic_helper_prepare_planes(dev, state);
14122 	mutex_unlock(&dev->struct_mutex);
14123 
14124 	if (!ret && !nonblock) {
14125 		for_each_plane_in_state(state, plane, plane_state, i) {
14126 			struct intel_plane_state *intel_plane_state =
14127 				to_intel_plane_state(plane_state);
14128 
14129 			if (!intel_plane_state->wait_req)
14130 				continue;
14131 
14132 			ret = i915_wait_request(intel_plane_state->wait_req,
14133 						I915_WAIT_INTERRUPTIBLE,
14134 						NULL, NULL);
14135 			if (ret) {
14136 				/* Any hang should be swallowed by the wait */
14137 				WARN_ON(ret == -EIO);
14138 				mutex_lock(&dev->struct_mutex);
14139 				drm_atomic_helper_cleanup_planes(dev, state);
14140 				mutex_unlock(&dev->struct_mutex);
14141 				break;
14142 			}
14143 		}
14144 	}
14145 
14146 	return ret;
14147 }
14148 
intel_crtc_get_vblank_counter(struct intel_crtc * crtc)14149 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14150 {
14151 	struct drm_device *dev = crtc->base.dev;
14152 
14153 	if (!dev->max_vblank_count)
14154 		return drm_accurate_vblank_count(&crtc->base);
14155 
14156 	return dev->driver->get_vblank_counter(dev, crtc->pipe);
14157 }
14158 
intel_atomic_wait_for_vblanks(struct drm_device * dev,struct drm_i915_private * dev_priv,unsigned crtc_mask)14159 static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
14160 					  struct drm_i915_private *dev_priv,
14161 					  unsigned crtc_mask)
14162 {
14163 	unsigned last_vblank_count[I915_MAX_PIPES];
14164 	enum pipe pipe;
14165 	int ret;
14166 
14167 	if (!crtc_mask)
14168 		return;
14169 
14170 	for_each_pipe(dev_priv, pipe) {
14171 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
14172 
14173 		if (!((1 << pipe) & crtc_mask))
14174 			continue;
14175 
14176 		ret = drm_crtc_vblank_get(crtc);
14177 		if (WARN_ON(ret != 0)) {
14178 			crtc_mask &= ~(1 << pipe);
14179 			continue;
14180 		}
14181 
14182 		last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
14183 	}
14184 
14185 	for_each_pipe(dev_priv, pipe) {
14186 		struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
14187 		long lret;
14188 
14189 		if (!((1 << pipe) & crtc_mask))
14190 			continue;
14191 
14192 		lret = wait_event_timeout(dev->vblank[pipe].queue,
14193 				last_vblank_count[pipe] !=
14194 					drm_crtc_vblank_count(crtc),
14195 				msecs_to_jiffies(50));
14196 
14197 		WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
14198 
14199 		drm_crtc_vblank_put(crtc);
14200 	}
14201 }
14202 
needs_vblank_wait(struct intel_crtc_state * crtc_state)14203 static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
14204 {
14205 	/* fb updated, need to unpin old fb */
14206 	if (crtc_state->fb_changed)
14207 		return true;
14208 
14209 	/* wm changes, need vblank before final wm's */
14210 	if (crtc_state->update_wm_post)
14211 		return true;
14212 
14213 	/*
14214 	 * cxsr is re-enabled after vblank.
14215 	 * This is already handled by crtc_state->update_wm_post,
14216 	 * but added for clarity.
14217 	 */
14218 	if (crtc_state->disable_cxsr)
14219 		return true;
14220 
14221 	return false;
14222 }
14223 
intel_update_crtc(struct drm_crtc * crtc,struct drm_atomic_state * state,struct drm_crtc_state * old_crtc_state,unsigned int * crtc_vblank_mask)14224 static void intel_update_crtc(struct drm_crtc *crtc,
14225 			      struct drm_atomic_state *state,
14226 			      struct drm_crtc_state *old_crtc_state,
14227 			      unsigned int *crtc_vblank_mask)
14228 {
14229 	struct drm_device *dev = crtc->dev;
14230 	struct drm_i915_private *dev_priv = to_i915(dev);
14231 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14232 	struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
14233 	bool modeset = needs_modeset(crtc->state);
14234 
14235 	if (modeset) {
14236 		update_scanline_offset(intel_crtc);
14237 		dev_priv->display.crtc_enable(pipe_config, state);
14238 	} else {
14239 		intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14240 	}
14241 
14242 	if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
14243 		intel_fbc_enable(
14244 		    intel_crtc, pipe_config,
14245 		    to_intel_plane_state(crtc->primary->state));
14246 	}
14247 
14248 	drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14249 
14250 	if (needs_vblank_wait(pipe_config))
14251 		*crtc_vblank_mask |= drm_crtc_mask(crtc);
14252 }
14253 
intel_update_crtcs(struct drm_atomic_state * state,unsigned int * crtc_vblank_mask)14254 static void intel_update_crtcs(struct drm_atomic_state *state,
14255 			       unsigned int *crtc_vblank_mask)
14256 {
14257 	struct drm_crtc *crtc;
14258 	struct drm_crtc_state *old_crtc_state;
14259 	int i;
14260 
14261 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14262 		if (!crtc->state->active)
14263 			continue;
14264 
14265 		intel_update_crtc(crtc, state, old_crtc_state,
14266 				  crtc_vblank_mask);
14267 	}
14268 }
14269 
skl_update_crtcs(struct drm_atomic_state * state,unsigned int * crtc_vblank_mask)14270 static void skl_update_crtcs(struct drm_atomic_state *state,
14271 			     unsigned int *crtc_vblank_mask)
14272 {
14273 	struct drm_device *dev = state->dev;
14274 	struct drm_i915_private *dev_priv = to_i915(dev);
14275 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14276 	struct drm_crtc *crtc;
14277 	struct drm_crtc_state *old_crtc_state;
14278 	struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
14279 	struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
14280 	unsigned int updated = 0;
14281 	bool progress;
14282 	enum pipe pipe;
14283 
14284 	/*
14285 	 * Whenever the number of active pipes changes, we need to make sure we
14286 	 * update the pipes in the right order so that their ddb allocations
14287 	 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14288 	 * cause pipe underruns and other bad stuff.
14289 	 */
14290 	do {
14291 		int i;
14292 		progress = false;
14293 
14294 		for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14295 			bool vbl_wait = false;
14296 			unsigned int cmask = drm_crtc_mask(crtc);
14297 			pipe = to_intel_crtc(crtc)->pipe;
14298 
14299 			if (updated & cmask || !crtc->state->active)
14300 				continue;
14301 			if (skl_ddb_allocation_overlaps(state, cur_ddb, new_ddb,
14302 							pipe))
14303 				continue;
14304 
14305 			updated |= cmask;
14306 
14307 			/*
14308 			 * If this is an already active pipe, it's DDB changed,
14309 			 * and this isn't the last pipe that needs updating
14310 			 * then we need to wait for a vblank to pass for the
14311 			 * new ddb allocation to take effect.
14312 			 */
14313 			if (!skl_ddb_allocation_equals(cur_ddb, new_ddb, pipe) &&
14314 			    !crtc->state->active_changed &&
14315 			    intel_state->wm_results.dirty_pipes != updated)
14316 				vbl_wait = true;
14317 
14318 			intel_update_crtc(crtc, state, old_crtc_state,
14319 					  crtc_vblank_mask);
14320 
14321 			if (vbl_wait)
14322 				intel_wait_for_vblank(dev, pipe);
14323 
14324 			progress = true;
14325 		}
14326 	} while (progress);
14327 }
14328 
intel_atomic_commit_tail(struct drm_atomic_state * state)14329 static void intel_atomic_commit_tail(struct drm_atomic_state *state)
14330 {
14331 	struct drm_device *dev = state->dev;
14332 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14333 	struct drm_i915_private *dev_priv = to_i915(dev);
14334 	struct drm_crtc_state *old_crtc_state;
14335 	struct drm_crtc *crtc;
14336 	struct intel_crtc_state *intel_cstate;
14337 	struct drm_plane *plane;
14338 	struct drm_plane_state *plane_state;
14339 	bool hw_check = intel_state->modeset;
14340 	unsigned long put_domains[I915_MAX_PIPES] = {};
14341 	unsigned crtc_vblank_mask = 0;
14342 	int i, ret;
14343 
14344 	for_each_plane_in_state(state, plane, plane_state, i) {
14345 		struct intel_plane_state *intel_plane_state =
14346 			to_intel_plane_state(plane->state);
14347 
14348 		if (!intel_plane_state->wait_req)
14349 			continue;
14350 
14351 		ret = i915_wait_request(intel_plane_state->wait_req,
14352 					0, NULL, NULL);
14353 		/* EIO should be eaten, and we can't get interrupted in the
14354 		 * worker, and blocking commits have waited already. */
14355 		WARN_ON(ret);
14356 	}
14357 
14358 	drm_atomic_helper_wait_for_dependencies(state);
14359 
14360 	if (intel_state->modeset) {
14361 		memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14362 		       sizeof(intel_state->min_pixclk));
14363 		dev_priv->active_crtcs = intel_state->active_crtcs;
14364 		dev_priv->atomic_cdclk_freq = intel_state->cdclk;
14365 
14366 		intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14367 	}
14368 
14369 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14370 		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14371 
14372 		if (needs_modeset(crtc->state) ||
14373 		    to_intel_crtc_state(crtc->state)->update_pipe) {
14374 			hw_check = true;
14375 
14376 			put_domains[to_intel_crtc(crtc)->pipe] =
14377 				modeset_get_crtc_power_domains(crtc,
14378 					to_intel_crtc_state(crtc->state));
14379 		}
14380 
14381 		if (!needs_modeset(crtc->state))
14382 			continue;
14383 
14384 		intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14385 
14386 		if (old_crtc_state->active) {
14387 			intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
14388 			dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
14389 			intel_crtc->active = false;
14390 			intel_fbc_disable(intel_crtc);
14391 			intel_disable_shared_dpll(intel_crtc);
14392 
14393 			/*
14394 			 * Underruns don't always raise
14395 			 * interrupts, so check manually.
14396 			 */
14397 			intel_check_cpu_fifo_underruns(dev_priv);
14398 			intel_check_pch_fifo_underruns(dev_priv);
14399 
14400 			if (!crtc->state->active)
14401 				intel_update_watermarks(crtc);
14402 		}
14403 	}
14404 
14405 	/* Only after disabling all output pipelines that will be changed can we
14406 	 * update the the output configuration. */
14407 	intel_modeset_update_crtc_state(state);
14408 
14409 	if (intel_state->modeset) {
14410 		drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
14411 
14412 		if (dev_priv->display.modeset_commit_cdclk &&
14413 		    (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14414 		     intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
14415 			dev_priv->display.modeset_commit_cdclk(state);
14416 
14417 		/*
14418 		 * SKL workaround: bspec recommends we disable the SAGV when we
14419 		 * have more then one pipe enabled
14420 		 */
14421 		if (!intel_can_enable_sagv(state))
14422 			intel_disable_sagv(dev_priv);
14423 
14424 		intel_modeset_verify_disabled(dev);
14425 	}
14426 
14427 	/* Complete the events for pipes that have now been disabled */
14428 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14429 		bool modeset = needs_modeset(crtc->state);
14430 
14431 		/* Complete events for now disable pipes here. */
14432 		if (modeset && !crtc->state->active && crtc->state->event) {
14433 			spin_lock_irq(&dev->event_lock);
14434 			drm_crtc_send_vblank_event(crtc, crtc->state->event);
14435 			spin_unlock_irq(&dev->event_lock);
14436 
14437 			crtc->state->event = NULL;
14438 		}
14439 	}
14440 
14441 	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
14442 	dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
14443 
14444 	/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14445 	 * already, but still need the state for the delayed optimization. To
14446 	 * fix this:
14447 	 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14448 	 * - schedule that vblank worker _before_ calling hw_done
14449 	 * - at the start of commit_tail, cancel it _synchrously
14450 	 * - switch over to the vblank wait helper in the core after that since
14451 	 *   we don't need out special handling any more.
14452 	 */
14453 	if (!state->legacy_cursor_update)
14454 		intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14455 
14456 	/*
14457 	 * Now that the vblank has passed, we can go ahead and program the
14458 	 * optimal watermarks on platforms that need two-step watermark
14459 	 * programming.
14460 	 *
14461 	 * TODO: Move this (and other cleanup) to an async worker eventually.
14462 	 */
14463 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14464 		intel_cstate = to_intel_crtc_state(crtc->state);
14465 
14466 		if (dev_priv->display.optimize_watermarks)
14467 			dev_priv->display.optimize_watermarks(intel_cstate);
14468 	}
14469 
14470 	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14471 		intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14472 
14473 		if (put_domains[i])
14474 			modeset_put_power_domains(dev_priv, put_domains[i]);
14475 
14476 		intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
14477 	}
14478 
14479 	if (intel_state->modeset && intel_can_enable_sagv(state))
14480 		intel_enable_sagv(dev_priv);
14481 
14482 	drm_atomic_helper_commit_hw_done(state);
14483 
14484 	if (intel_state->modeset)
14485 		intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14486 
14487 	mutex_lock(&dev->struct_mutex);
14488 	drm_atomic_helper_cleanup_planes(dev, state);
14489 	mutex_unlock(&dev->struct_mutex);
14490 
14491 	drm_atomic_helper_commit_cleanup_done(state);
14492 
14493 	drm_atomic_state_free(state);
14494 
14495 	/* As one of the primary mmio accessors, KMS has a high likelihood
14496 	 * of triggering bugs in unclaimed access. After we finish
14497 	 * modesetting, see if an error has been flagged, and if so
14498 	 * enable debugging for the next modeset - and hope we catch
14499 	 * the culprit.
14500 	 *
14501 	 * XXX note that we assume display power is on at this point.
14502 	 * This might hold true now but we need to add pm helper to check
14503 	 * unclaimed only when the hardware is on, as atomic commits
14504 	 * can happen also when the device is completely off.
14505 	 */
14506 	intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
14507 }
14508 
intel_atomic_commit_work(struct work_struct * work)14509 static void intel_atomic_commit_work(struct work_struct *work)
14510 {
14511 	struct drm_atomic_state *state = container_of(work,
14512 						      struct drm_atomic_state,
14513 						      commit_work);
14514 	intel_atomic_commit_tail(state);
14515 }
14516 
intel_atomic_track_fbs(struct drm_atomic_state * state)14517 static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14518 {
14519 	struct drm_plane_state *old_plane_state;
14520 	struct drm_plane *plane;
14521 	int i;
14522 
14523 	for_each_plane_in_state(state, plane, old_plane_state, i)
14524 		i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14525 				  intel_fb_obj(plane->state->fb),
14526 				  to_intel_plane(plane)->frontbuffer_bit);
14527 }
14528 
14529 /**
14530  * intel_atomic_commit - commit validated state object
14531  * @dev: DRM device
14532  * @state: the top-level driver state object
14533  * @nonblock: nonblocking commit
14534  *
14535  * This function commits a top-level state object that has been validated
14536  * with drm_atomic_helper_check().
14537  *
14538  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
14539  * nonblocking commits are only safe for pure plane updates. Everything else
14540  * should work though.
14541  *
14542  * RETURNS
14543  * Zero for success or -errno.
14544  */
intel_atomic_commit(struct drm_device * dev,struct drm_atomic_state * state,bool nonblock)14545 static int intel_atomic_commit(struct drm_device *dev,
14546 			       struct drm_atomic_state *state,
14547 			       bool nonblock)
14548 {
14549 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14550 	struct drm_i915_private *dev_priv = to_i915(dev);
14551 	int ret = 0;
14552 
14553 	if (intel_state->modeset && nonblock) {
14554 		DRM_DEBUG_KMS("nonblocking commit for modeset not yet implemented.\n");
14555 		return -EINVAL;
14556 	}
14557 
14558 	ret = drm_atomic_helper_setup_commit(state, nonblock);
14559 	if (ret)
14560 		return ret;
14561 
14562 	INIT_WORK(&state->commit_work, intel_atomic_commit_work);
14563 
14564 	ret = intel_atomic_prepare_commit(dev, state, nonblock);
14565 	if (ret) {
14566 		DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14567 		return ret;
14568 	}
14569 
14570 	drm_atomic_helper_swap_state(state, true);
14571 	dev_priv->wm.distrust_bios_wm = false;
14572 	dev_priv->wm.skl_results = intel_state->wm_results;
14573 	intel_shared_dpll_commit(state);
14574 	intel_atomic_track_fbs(state);
14575 
14576 	if (nonblock)
14577 		queue_work(system_unbound_wq, &state->commit_work);
14578 	else
14579 		intel_atomic_commit_tail(state);
14580 
14581 	return 0;
14582 }
14583 
intel_crtc_restore_mode(struct drm_crtc * crtc)14584 void intel_crtc_restore_mode(struct drm_crtc *crtc)
14585 {
14586 	struct drm_device *dev = crtc->dev;
14587 	struct drm_atomic_state *state;
14588 	struct drm_crtc_state *crtc_state;
14589 	int ret;
14590 
14591 	state = drm_atomic_state_alloc(dev);
14592 	if (!state) {
14593 		DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14594 			      crtc->base.id, crtc->name);
14595 		return;
14596 	}
14597 
14598 	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
14599 
14600 retry:
14601 	crtc_state = drm_atomic_get_crtc_state(state, crtc);
14602 	ret = PTR_ERR_OR_ZERO(crtc_state);
14603 	if (!ret) {
14604 		if (!crtc_state->active)
14605 			goto out;
14606 
14607 		crtc_state->mode_changed = true;
14608 		ret = drm_atomic_commit(state);
14609 	}
14610 
14611 	if (ret == -EDEADLK) {
14612 		drm_atomic_state_clear(state);
14613 		drm_modeset_backoff(state->acquire_ctx);
14614 		goto retry;
14615 	}
14616 
14617 	if (ret)
14618 out:
14619 		drm_atomic_state_free(state);
14620 }
14621 
14622 /*
14623  * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14624  *        drm_atomic_helper_legacy_gamma_set() directly.
14625  */
intel_atomic_legacy_gamma_set(struct drm_crtc * crtc,u16 * red,u16 * green,u16 * blue,uint32_t size)14626 static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14627 					 u16 *red, u16 *green, u16 *blue,
14628 					 uint32_t size)
14629 {
14630 	struct drm_device *dev = crtc->dev;
14631 	struct drm_mode_config *config = &dev->mode_config;
14632 	struct drm_crtc_state *state;
14633 	int ret;
14634 
14635 	ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14636 	if (ret)
14637 		return ret;
14638 
14639 	/*
14640 	 * Make sure we update the legacy properties so this works when
14641 	 * atomic is not enabled.
14642 	 */
14643 
14644 	state = crtc->state;
14645 
14646 	drm_object_property_set_value(&crtc->base,
14647 				      config->degamma_lut_property,
14648 				      (state->degamma_lut) ?
14649 				      state->degamma_lut->base.id : 0);
14650 
14651 	drm_object_property_set_value(&crtc->base,
14652 				      config->ctm_property,
14653 				      (state->ctm) ?
14654 				      state->ctm->base.id : 0);
14655 
14656 	drm_object_property_set_value(&crtc->base,
14657 				      config->gamma_lut_property,
14658 				      (state->gamma_lut) ?
14659 				      state->gamma_lut->base.id : 0);
14660 
14661 	return 0;
14662 }
14663 
14664 static const struct drm_crtc_funcs intel_crtc_funcs = {
14665 	.gamma_set = intel_atomic_legacy_gamma_set,
14666 	.set_config = drm_atomic_helper_set_config,
14667 	.set_property = drm_atomic_helper_crtc_set_property,
14668 	.destroy = intel_crtc_destroy,
14669 	.page_flip = intel_crtc_page_flip,
14670 	.atomic_duplicate_state = intel_crtc_duplicate_state,
14671 	.atomic_destroy_state = intel_crtc_destroy_state,
14672 };
14673 
14674 /**
14675  * intel_prepare_plane_fb - Prepare fb for usage on plane
14676  * @plane: drm plane to prepare for
14677  * @fb: framebuffer to prepare for presentation
14678  *
14679  * Prepares a framebuffer for usage on a display plane.  Generally this
14680  * involves pinning the underlying object and updating the frontbuffer tracking
14681  * bits.  Some older platforms need special physical address handling for
14682  * cursor planes.
14683  *
14684  * Must be called with struct_mutex held.
14685  *
14686  * Returns 0 on success, negative error code on failure.
14687  */
14688 int
intel_prepare_plane_fb(struct drm_plane * plane,struct drm_plane_state * new_state)14689 intel_prepare_plane_fb(struct drm_plane *plane,
14690 		       struct drm_plane_state *new_state)
14691 {
14692 	struct drm_device *dev = plane->dev;
14693 	struct drm_framebuffer *fb = new_state->fb;
14694 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14695 	struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14696 	struct reservation_object *resv;
14697 	int ret = 0;
14698 
14699 	if (!obj && !old_obj)
14700 		return 0;
14701 
14702 	if (old_obj) {
14703 		struct drm_crtc_state *crtc_state =
14704 			drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
14705 
14706 		/* Big Hammer, we also need to ensure that any pending
14707 		 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14708 		 * current scanout is retired before unpinning the old
14709 		 * framebuffer. Note that we rely on userspace rendering
14710 		 * into the buffer attached to the pipe they are waiting
14711 		 * on. If not, userspace generates a GPU hang with IPEHR
14712 		 * point to the MI_WAIT_FOR_EVENT.
14713 		 *
14714 		 * This should only fail upon a hung GPU, in which case we
14715 		 * can safely continue.
14716 		 */
14717 		if (needs_modeset(crtc_state))
14718 			ret = i915_gem_object_wait_rendering(old_obj, true);
14719 		if (ret) {
14720 			/* GPU hangs should have been swallowed by the wait */
14721 			WARN_ON(ret == -EIO);
14722 			return ret;
14723 		}
14724 	}
14725 
14726 	if (!obj)
14727 		return 0;
14728 
14729 	/* For framebuffer backed by dmabuf, wait for fence */
14730 	resv = i915_gem_object_get_dmabuf_resv(obj);
14731 	if (resv) {
14732 		long lret;
14733 
14734 		lret = reservation_object_wait_timeout_rcu(resv, false, true,
14735 							   MAX_SCHEDULE_TIMEOUT);
14736 		if (lret == -ERESTARTSYS)
14737 			return lret;
14738 
14739 		WARN(lret < 0, "waiting returns %li\n", lret);
14740 	}
14741 
14742 	if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14743 	    INTEL_INFO(dev)->cursor_needs_physical) {
14744 		int align = IS_I830(dev) ? 16 * 1024 : 256;
14745 		ret = i915_gem_object_attach_phys(obj, align);
14746 		if (ret)
14747 			DRM_DEBUG_KMS("failed to attach phys object\n");
14748 	} else {
14749 		struct i915_vma *vma;
14750 
14751 		vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14752 		if (IS_ERR(vma))
14753 			ret = PTR_ERR(vma);
14754 	}
14755 
14756 	if (ret == 0) {
14757 		to_intel_plane_state(new_state)->wait_req =
14758 			i915_gem_active_get(&obj->last_write,
14759 					    &obj->base.dev->struct_mutex);
14760 	}
14761 
14762 	return ret;
14763 }
14764 
14765 /**
14766  * intel_cleanup_plane_fb - Cleans up an fb after plane use
14767  * @plane: drm plane to clean up for
14768  * @fb: old framebuffer that was on plane
14769  *
14770  * Cleans up a framebuffer that has just been removed from a plane.
14771  *
14772  * Must be called with struct_mutex held.
14773  */
14774 void
intel_cleanup_plane_fb(struct drm_plane * plane,struct drm_plane_state * old_state)14775 intel_cleanup_plane_fb(struct drm_plane *plane,
14776 		       struct drm_plane_state *old_state)
14777 {
14778 	struct drm_device *dev = plane->dev;
14779 	struct intel_plane_state *old_intel_state;
14780 	struct intel_plane_state *intel_state = to_intel_plane_state(plane->state);
14781 	struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
14782 	struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
14783 
14784 	old_intel_state = to_intel_plane_state(old_state);
14785 
14786 	if (!obj && !old_obj)
14787 		return;
14788 
14789 	if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
14790 	    !INTEL_INFO(dev)->cursor_needs_physical))
14791 		intel_unpin_fb_obj(old_state->fb, old_state->rotation);
14792 
14793 	i915_gem_request_assign(&intel_state->wait_req, NULL);
14794 	i915_gem_request_assign(&old_intel_state->wait_req, NULL);
14795 }
14796 
14797 int
skl_max_scale(struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state)14798 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14799 {
14800 	int max_scale;
14801 	int crtc_clock, cdclk;
14802 
14803 	if (!intel_crtc || !crtc_state->base.enable)
14804 		return DRM_PLANE_HELPER_NO_SCALING;
14805 
14806 	crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14807 	cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14808 
14809 	if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14810 		return DRM_PLANE_HELPER_NO_SCALING;
14811 
14812 	/*
14813 	 * skl max scale is lower of:
14814 	 *    close to 3 but not 3, -1 is for that purpose
14815 	 *            or
14816 	 *    cdclk/crtc_clock
14817 	 */
14818 	max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14819 
14820 	return max_scale;
14821 }
14822 
14823 static int
intel_check_primary_plane(struct drm_plane * plane,struct intel_crtc_state * crtc_state,struct intel_plane_state * state)14824 intel_check_primary_plane(struct drm_plane *plane,
14825 			  struct intel_crtc_state *crtc_state,
14826 			  struct intel_plane_state *state)
14827 {
14828 	struct drm_i915_private *dev_priv = to_i915(plane->dev);
14829 	struct drm_crtc *crtc = state->base.crtc;
14830 	int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14831 	int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14832 	bool can_position = false;
14833 	int ret;
14834 
14835 	if (INTEL_GEN(dev_priv) >= 9) {
14836 		/* use scaler when colorkey is not required */
14837 		if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14838 			min_scale = 1;
14839 			max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14840 		}
14841 		can_position = true;
14842 	}
14843 
14844 	ret = drm_plane_helper_check_state(&state->base,
14845 					   &state->clip,
14846 					   min_scale, max_scale,
14847 					   can_position, true);
14848 	if (ret)
14849 		return ret;
14850 
14851 	if (!state->base.fb)
14852 		return 0;
14853 
14854 	if (INTEL_GEN(dev_priv) >= 9) {
14855 		ret = skl_check_plane_surface(state);
14856 		if (ret)
14857 			return ret;
14858 	}
14859 
14860 	return 0;
14861 }
14862 
intel_begin_crtc_commit(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)14863 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14864 				    struct drm_crtc_state *old_crtc_state)
14865 {
14866 	struct drm_device *dev = crtc->dev;
14867 	struct drm_i915_private *dev_priv = to_i915(dev);
14868 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14869 	struct intel_crtc_state *old_intel_state =
14870 		to_intel_crtc_state(old_crtc_state);
14871 	bool modeset = needs_modeset(crtc->state);
14872 	enum pipe pipe = intel_crtc->pipe;
14873 
14874 	/* Perform vblank evasion around commit operation */
14875 	intel_pipe_update_start(intel_crtc);
14876 
14877 	if (modeset)
14878 		return;
14879 
14880 	if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
14881 		intel_color_set_csc(crtc->state);
14882 		intel_color_load_luts(crtc->state);
14883 	}
14884 
14885 	if (to_intel_crtc_state(crtc->state)->update_pipe)
14886 		intel_update_pipe_config(intel_crtc, old_intel_state);
14887 	else if (INTEL_GEN(dev_priv) >= 9) {
14888 		skl_detach_scalers(intel_crtc);
14889 
14890 		I915_WRITE(PIPE_WM_LINETIME(pipe),
14891 			   dev_priv->wm.skl_hw.wm_linetime[pipe]);
14892 	}
14893 }
14894 
intel_finish_crtc_commit(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)14895 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14896 				     struct drm_crtc_state *old_crtc_state)
14897 {
14898 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14899 
14900 	intel_pipe_update_end(intel_crtc, NULL);
14901 }
14902 
14903 /**
14904  * intel_plane_destroy - destroy a plane
14905  * @plane: plane to destroy
14906  *
14907  * Common destruction function for all types of planes (primary, cursor,
14908  * sprite).
14909  */
intel_plane_destroy(struct drm_plane * plane)14910 void intel_plane_destroy(struct drm_plane *plane)
14911 {
14912 	if (!plane)
14913 		return;
14914 
14915 	drm_plane_cleanup(plane);
14916 	kfree(to_intel_plane(plane));
14917 }
14918 
14919 const struct drm_plane_funcs intel_plane_funcs = {
14920 	.update_plane = drm_atomic_helper_update_plane,
14921 	.disable_plane = drm_atomic_helper_disable_plane,
14922 	.destroy = intel_plane_destroy,
14923 	.set_property = drm_atomic_helper_plane_set_property,
14924 	.atomic_get_property = intel_plane_atomic_get_property,
14925 	.atomic_set_property = intel_plane_atomic_set_property,
14926 	.atomic_duplicate_state = intel_plane_duplicate_state,
14927 	.atomic_destroy_state = intel_plane_destroy_state,
14928 
14929 };
14930 
intel_primary_plane_create(struct drm_device * dev,int pipe)14931 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14932 						    int pipe)
14933 {
14934 	struct intel_plane *primary = NULL;
14935 	struct intel_plane_state *state = NULL;
14936 	const uint32_t *intel_primary_formats;
14937 	unsigned int num_formats;
14938 	int ret;
14939 
14940 	primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14941 	if (!primary)
14942 		goto fail;
14943 
14944 	state = intel_create_plane_state(&primary->base);
14945 	if (!state)
14946 		goto fail;
14947 	primary->base.state = &state->base;
14948 
14949 	primary->can_scale = false;
14950 	primary->max_downscale = 1;
14951 	if (INTEL_INFO(dev)->gen >= 9) {
14952 		primary->can_scale = true;
14953 		state->scaler_id = -1;
14954 	}
14955 	primary->pipe = pipe;
14956 	primary->plane = pipe;
14957 	primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14958 	primary->check_plane = intel_check_primary_plane;
14959 	if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14960 		primary->plane = !pipe;
14961 
14962 	if (INTEL_INFO(dev)->gen >= 9) {
14963 		intel_primary_formats = skl_primary_formats;
14964 		num_formats = ARRAY_SIZE(skl_primary_formats);
14965 
14966 		primary->update_plane = skylake_update_primary_plane;
14967 		primary->disable_plane = skylake_disable_primary_plane;
14968 	} else if (HAS_PCH_SPLIT(dev)) {
14969 		intel_primary_formats = i965_primary_formats;
14970 		num_formats = ARRAY_SIZE(i965_primary_formats);
14971 
14972 		primary->update_plane = ironlake_update_primary_plane;
14973 		primary->disable_plane = i9xx_disable_primary_plane;
14974 	} else if (INTEL_INFO(dev)->gen >= 4) {
14975 		intel_primary_formats = i965_primary_formats;
14976 		num_formats = ARRAY_SIZE(i965_primary_formats);
14977 
14978 		primary->update_plane = i9xx_update_primary_plane;
14979 		primary->disable_plane = i9xx_disable_primary_plane;
14980 	} else {
14981 		intel_primary_formats = i8xx_primary_formats;
14982 		num_formats = ARRAY_SIZE(i8xx_primary_formats);
14983 
14984 		primary->update_plane = i9xx_update_primary_plane;
14985 		primary->disable_plane = i9xx_disable_primary_plane;
14986 	}
14987 
14988 	if (INTEL_INFO(dev)->gen >= 9)
14989 		ret = drm_universal_plane_init(dev, &primary->base, 0,
14990 					       &intel_plane_funcs,
14991 					       intel_primary_formats, num_formats,
14992 					       DRM_PLANE_TYPE_PRIMARY,
14993 					       "plane 1%c", pipe_name(pipe));
14994 	else if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
14995 		ret = drm_universal_plane_init(dev, &primary->base, 0,
14996 					       &intel_plane_funcs,
14997 					       intel_primary_formats, num_formats,
14998 					       DRM_PLANE_TYPE_PRIMARY,
14999 					       "primary %c", pipe_name(pipe));
15000 	else
15001 		ret = drm_universal_plane_init(dev, &primary->base, 0,
15002 					       &intel_plane_funcs,
15003 					       intel_primary_formats, num_formats,
15004 					       DRM_PLANE_TYPE_PRIMARY,
15005 					       "plane %c", plane_name(primary->plane));
15006 	if (ret)
15007 		goto fail;
15008 
15009 	if (INTEL_INFO(dev)->gen >= 4)
15010 		intel_create_rotation_property(dev, primary);
15011 
15012 	drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
15013 
15014 	return &primary->base;
15015 
15016 fail:
15017 	kfree(state);
15018 	kfree(primary);
15019 
15020 	return NULL;
15021 }
15022 
intel_create_rotation_property(struct drm_device * dev,struct intel_plane * plane)15023 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
15024 {
15025 	if (!dev->mode_config.rotation_property) {
15026 		unsigned long flags = DRM_ROTATE_0 |
15027 			DRM_ROTATE_180;
15028 
15029 		if (INTEL_INFO(dev)->gen >= 9)
15030 			flags |= DRM_ROTATE_90 | DRM_ROTATE_270;
15031 
15032 		dev->mode_config.rotation_property =
15033 			drm_mode_create_rotation_property(dev, flags);
15034 	}
15035 	if (dev->mode_config.rotation_property)
15036 		drm_object_attach_property(&plane->base.base,
15037 				dev->mode_config.rotation_property,
15038 				plane->base.state->rotation);
15039 }
15040 
15041 static int
intel_check_cursor_plane(struct drm_plane * plane,struct intel_crtc_state * crtc_state,struct intel_plane_state * state)15042 intel_check_cursor_plane(struct drm_plane *plane,
15043 			 struct intel_crtc_state *crtc_state,
15044 			 struct intel_plane_state *state)
15045 {
15046 	struct drm_framebuffer *fb = state->base.fb;
15047 	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15048 	enum pipe pipe = to_intel_plane(plane)->pipe;
15049 	unsigned stride;
15050 	int ret;
15051 
15052 	ret = drm_plane_helper_check_state(&state->base,
15053 					   &state->clip,
15054 					   DRM_PLANE_HELPER_NO_SCALING,
15055 					   DRM_PLANE_HELPER_NO_SCALING,
15056 					   true, true);
15057 	if (ret)
15058 		return ret;
15059 
15060 	/* if we want to turn off the cursor ignore width and height */
15061 	if (!obj)
15062 		return 0;
15063 
15064 	/* Check for which cursor types we support */
15065 	if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
15066 		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15067 			  state->base.crtc_w, state->base.crtc_h);
15068 		return -EINVAL;
15069 	}
15070 
15071 	stride = roundup_pow_of_two(state->base.crtc_w) * 4;
15072 	if (obj->base.size < stride * state->base.crtc_h) {
15073 		DRM_DEBUG_KMS("buffer is too small\n");
15074 		return -ENOMEM;
15075 	}
15076 
15077 	if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
15078 		DRM_DEBUG_KMS("cursor cannot be tiled\n");
15079 		return -EINVAL;
15080 	}
15081 
15082 	/*
15083 	 * There's something wrong with the cursor on CHV pipe C.
15084 	 * If it straddles the left edge of the screen then
15085 	 * moving it away from the edge or disabling it often
15086 	 * results in a pipe underrun, and often that can lead to
15087 	 * dead pipe (constant underrun reported, and it scans
15088 	 * out just a solid color). To recover from that, the
15089 	 * display power well must be turned off and on again.
15090 	 * Refuse the put the cursor into that compromised position.
15091 	 */
15092 	if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
15093 	    state->base.visible && state->base.crtc_x < 0) {
15094 		DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15095 		return -EINVAL;
15096 	}
15097 
15098 	return 0;
15099 }
15100 
15101 static void
intel_disable_cursor_plane(struct drm_plane * plane,struct drm_crtc * crtc)15102 intel_disable_cursor_plane(struct drm_plane *plane,
15103 			   struct drm_crtc *crtc)
15104 {
15105 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15106 
15107 	intel_crtc->cursor_addr = 0;
15108 	intel_crtc_update_cursor(crtc, NULL);
15109 }
15110 
15111 static void
intel_update_cursor_plane(struct drm_plane * plane,const struct intel_crtc_state * crtc_state,const struct intel_plane_state * state)15112 intel_update_cursor_plane(struct drm_plane *plane,
15113 			  const struct intel_crtc_state *crtc_state,
15114 			  const struct intel_plane_state *state)
15115 {
15116 	struct drm_crtc *crtc = crtc_state->base.crtc;
15117 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15118 	struct drm_device *dev = plane->dev;
15119 	struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
15120 	uint32_t addr;
15121 
15122 	if (!obj)
15123 		addr = 0;
15124 	else if (!INTEL_INFO(dev)->cursor_needs_physical)
15125 		addr = i915_gem_object_ggtt_offset(obj, NULL);
15126 	else
15127 		addr = obj->phys_handle->busaddr;
15128 
15129 	intel_crtc->cursor_addr = addr;
15130 	intel_crtc_update_cursor(crtc, state);
15131 }
15132 
intel_cursor_plane_create(struct drm_device * dev,int pipe)15133 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
15134 						   int pipe)
15135 {
15136 	struct intel_plane *cursor = NULL;
15137 	struct intel_plane_state *state = NULL;
15138 	int ret;
15139 
15140 	cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
15141 	if (!cursor)
15142 		goto fail;
15143 
15144 	state = intel_create_plane_state(&cursor->base);
15145 	if (!state)
15146 		goto fail;
15147 	cursor->base.state = &state->base;
15148 
15149 	cursor->can_scale = false;
15150 	cursor->max_downscale = 1;
15151 	cursor->pipe = pipe;
15152 	cursor->plane = pipe;
15153 	cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
15154 	cursor->check_plane = intel_check_cursor_plane;
15155 	cursor->update_plane = intel_update_cursor_plane;
15156 	cursor->disable_plane = intel_disable_cursor_plane;
15157 
15158 	ret = drm_universal_plane_init(dev, &cursor->base, 0,
15159 				       &intel_plane_funcs,
15160 				       intel_cursor_formats,
15161 				       ARRAY_SIZE(intel_cursor_formats),
15162 				       DRM_PLANE_TYPE_CURSOR,
15163 				       "cursor %c", pipe_name(pipe));
15164 	if (ret)
15165 		goto fail;
15166 
15167 	if (INTEL_INFO(dev)->gen >= 4) {
15168 		if (!dev->mode_config.rotation_property)
15169 			dev->mode_config.rotation_property =
15170 				drm_mode_create_rotation_property(dev,
15171 							DRM_ROTATE_0 |
15172 							DRM_ROTATE_180);
15173 		if (dev->mode_config.rotation_property)
15174 			drm_object_attach_property(&cursor->base.base,
15175 				dev->mode_config.rotation_property,
15176 				state->base.rotation);
15177 	}
15178 
15179 	if (INTEL_INFO(dev)->gen >=9)
15180 		state->scaler_id = -1;
15181 
15182 	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15183 
15184 	return &cursor->base;
15185 
15186 fail:
15187 	kfree(state);
15188 	kfree(cursor);
15189 
15190 	return NULL;
15191 }
15192 
skl_init_scalers(struct drm_device * dev,struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state)15193 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
15194 	struct intel_crtc_state *crtc_state)
15195 {
15196 	int i;
15197 	struct intel_scaler *intel_scaler;
15198 	struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
15199 
15200 	for (i = 0; i < intel_crtc->num_scalers; i++) {
15201 		intel_scaler = &scaler_state->scalers[i];
15202 		intel_scaler->in_use = 0;
15203 		intel_scaler->mode = PS_SCALER_MODE_DYN;
15204 	}
15205 
15206 	scaler_state->scaler_id = -1;
15207 }
15208 
intel_crtc_init(struct drm_device * dev,int pipe)15209 static void intel_crtc_init(struct drm_device *dev, int pipe)
15210 {
15211 	struct drm_i915_private *dev_priv = to_i915(dev);
15212 	struct intel_crtc *intel_crtc;
15213 	struct intel_crtc_state *crtc_state = NULL;
15214 	struct drm_plane *primary = NULL;
15215 	struct drm_plane *cursor = NULL;
15216 	int ret;
15217 
15218 	intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15219 	if (intel_crtc == NULL)
15220 		return;
15221 
15222 	crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15223 	if (!crtc_state)
15224 		goto fail;
15225 	intel_crtc->config = crtc_state;
15226 	intel_crtc->base.state = &crtc_state->base;
15227 	crtc_state->base.crtc = &intel_crtc->base;
15228 
15229 	/* initialize shared scalers */
15230 	if (INTEL_INFO(dev)->gen >= 9) {
15231 		if (pipe == PIPE_C)
15232 			intel_crtc->num_scalers = 1;
15233 		else
15234 			intel_crtc->num_scalers = SKL_NUM_SCALERS;
15235 
15236 		skl_init_scalers(dev, intel_crtc, crtc_state);
15237 	}
15238 
15239 	primary = intel_primary_plane_create(dev, pipe);
15240 	if (!primary)
15241 		goto fail;
15242 
15243 	cursor = intel_cursor_plane_create(dev, pipe);
15244 	if (!cursor)
15245 		goto fail;
15246 
15247 	ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
15248 					cursor, &intel_crtc_funcs,
15249 					"pipe %c", pipe_name(pipe));
15250 	if (ret)
15251 		goto fail;
15252 
15253 	/*
15254 	 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
15255 	 * is hooked to pipe B. Hence we want plane A feeding pipe B.
15256 	 */
15257 	intel_crtc->pipe = pipe;
15258 	intel_crtc->plane = pipe;
15259 	if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
15260 		DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
15261 		intel_crtc->plane = !pipe;
15262 	}
15263 
15264 	intel_crtc->cursor_base = ~0;
15265 	intel_crtc->cursor_cntl = ~0;
15266 	intel_crtc->cursor_size = ~0;
15267 
15268 	intel_crtc->wm.cxsr_allowed = true;
15269 
15270 	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15271 	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
15272 	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
15273 	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
15274 
15275 	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
15276 
15277 	intel_color_init(&intel_crtc->base);
15278 
15279 	WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15280 	return;
15281 
15282 fail:
15283 	intel_plane_destroy(primary);
15284 	intel_plane_destroy(cursor);
15285 	kfree(crtc_state);
15286 	kfree(intel_crtc);
15287 }
15288 
intel_get_pipe_from_connector(struct intel_connector * connector)15289 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15290 {
15291 	struct drm_encoder *encoder = connector->base.encoder;
15292 	struct drm_device *dev = connector->base.dev;
15293 
15294 	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
15295 
15296 	if (!encoder || WARN_ON(!encoder->crtc))
15297 		return INVALID_PIPE;
15298 
15299 	return to_intel_crtc(encoder->crtc)->pipe;
15300 }
15301 
intel_get_pipe_from_crtc_id(struct drm_device * dev,void * data,struct drm_file * file)15302 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
15303 				struct drm_file *file)
15304 {
15305 	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15306 	struct drm_crtc *drmmode_crtc;
15307 	struct intel_crtc *crtc;
15308 
15309 	drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
15310 	if (!drmmode_crtc)
15311 		return -ENOENT;
15312 
15313 	crtc = to_intel_crtc(drmmode_crtc);
15314 	pipe_from_crtc_id->pipe = crtc->pipe;
15315 
15316 	return 0;
15317 }
15318 
intel_encoder_clones(struct intel_encoder * encoder)15319 static int intel_encoder_clones(struct intel_encoder *encoder)
15320 {
15321 	struct drm_device *dev = encoder->base.dev;
15322 	struct intel_encoder *source_encoder;
15323 	int index_mask = 0;
15324 	int entry = 0;
15325 
15326 	for_each_intel_encoder(dev, source_encoder) {
15327 		if (encoders_cloneable(encoder, source_encoder))
15328 			index_mask |= (1 << entry);
15329 
15330 		entry++;
15331 	}
15332 
15333 	return index_mask;
15334 }
15335 
has_edp_a(struct drm_device * dev)15336 static bool has_edp_a(struct drm_device *dev)
15337 {
15338 	struct drm_i915_private *dev_priv = to_i915(dev);
15339 
15340 	if (!IS_MOBILE(dev))
15341 		return false;
15342 
15343 	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15344 		return false;
15345 
15346 	if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15347 		return false;
15348 
15349 	return true;
15350 }
15351 
intel_crt_present(struct drm_device * dev)15352 static bool intel_crt_present(struct drm_device *dev)
15353 {
15354 	struct drm_i915_private *dev_priv = to_i915(dev);
15355 
15356 	if (INTEL_INFO(dev)->gen >= 9)
15357 		return false;
15358 
15359 	if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
15360 		return false;
15361 
15362 	if (IS_CHERRYVIEW(dev))
15363 		return false;
15364 
15365 	if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15366 		return false;
15367 
15368 	/* DDI E can't be used if DDI A requires 4 lanes */
15369 	if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15370 		return false;
15371 
15372 	if (!dev_priv->vbt.int_crt_support)
15373 		return false;
15374 
15375 	return true;
15376 }
15377 
intel_pps_unlock_regs_wa(struct drm_i915_private * dev_priv)15378 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15379 {
15380 	int pps_num;
15381 	int pps_idx;
15382 
15383 	if (HAS_DDI(dev_priv))
15384 		return;
15385 	/*
15386 	 * This w/a is needed at least on CPT/PPT, but to be sure apply it
15387 	 * everywhere where registers can be write protected.
15388 	 */
15389 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15390 		pps_num = 2;
15391 	else
15392 		pps_num = 1;
15393 
15394 	for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15395 		u32 val = I915_READ(PP_CONTROL(pps_idx));
15396 
15397 		val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15398 		I915_WRITE(PP_CONTROL(pps_idx), val);
15399 	}
15400 }
15401 
intel_pps_init(struct drm_i915_private * dev_priv)15402 static void intel_pps_init(struct drm_i915_private *dev_priv)
15403 {
15404 	if (HAS_PCH_SPLIT(dev_priv) || IS_BROXTON(dev_priv))
15405 		dev_priv->pps_mmio_base = PCH_PPS_BASE;
15406 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15407 		dev_priv->pps_mmio_base = VLV_PPS_BASE;
15408 	else
15409 		dev_priv->pps_mmio_base = PPS_BASE;
15410 
15411 	intel_pps_unlock_regs_wa(dev_priv);
15412 }
15413 
intel_setup_outputs(struct drm_device * dev)15414 static void intel_setup_outputs(struct drm_device *dev)
15415 {
15416 	struct drm_i915_private *dev_priv = to_i915(dev);
15417 	struct intel_encoder *encoder;
15418 	bool dpd_is_edp = false;
15419 
15420 	intel_pps_init(dev_priv);
15421 
15422 	/*
15423 	 * intel_edp_init_connector() depends on this completing first, to
15424 	 * prevent the registeration of both eDP and LVDS and the incorrect
15425 	 * sharing of the PPS.
15426 	 */
15427 	intel_lvds_init(dev);
15428 
15429 	if (intel_crt_present(dev))
15430 		intel_crt_init(dev);
15431 
15432 	if (IS_BROXTON(dev)) {
15433 		/*
15434 		 * FIXME: Broxton doesn't support port detection via the
15435 		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15436 		 * detect the ports.
15437 		 */
15438 		intel_ddi_init(dev, PORT_A);
15439 		intel_ddi_init(dev, PORT_B);
15440 		intel_ddi_init(dev, PORT_C);
15441 
15442 		intel_dsi_init(dev);
15443 	} else if (HAS_DDI(dev)) {
15444 		int found;
15445 
15446 		/*
15447 		 * Haswell uses DDI functions to detect digital outputs.
15448 		 * On SKL pre-D0 the strap isn't connected, so we assume
15449 		 * it's there.
15450 		 */
15451 		found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15452 		/* WaIgnoreDDIAStrap: skl */
15453 		if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
15454 			intel_ddi_init(dev, PORT_A);
15455 
15456 		/* DDI B, C and D detection is indicated by the SFUSE_STRAP
15457 		 * register */
15458 		found = I915_READ(SFUSE_STRAP);
15459 
15460 		if (found & SFUSE_STRAP_DDIB_DETECTED)
15461 			intel_ddi_init(dev, PORT_B);
15462 		if (found & SFUSE_STRAP_DDIC_DETECTED)
15463 			intel_ddi_init(dev, PORT_C);
15464 		if (found & SFUSE_STRAP_DDID_DETECTED)
15465 			intel_ddi_init(dev, PORT_D);
15466 		/*
15467 		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15468 		 */
15469 		if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
15470 		    (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15471 		     dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15472 		     dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15473 			intel_ddi_init(dev, PORT_E);
15474 
15475 	} else if (HAS_PCH_SPLIT(dev)) {
15476 		int found;
15477 		dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
15478 
15479 		if (has_edp_a(dev))
15480 			intel_dp_init(dev, DP_A, PORT_A);
15481 
15482 		if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15483 			/* PCH SDVOB multiplex with HDMIB */
15484 			found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
15485 			if (!found)
15486 				intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
15487 			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15488 				intel_dp_init(dev, PCH_DP_B, PORT_B);
15489 		}
15490 
15491 		if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15492 			intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
15493 
15494 		if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15495 			intel_hdmi_init(dev, PCH_HDMID, PORT_D);
15496 
15497 		if (I915_READ(PCH_DP_C) & DP_DETECTED)
15498 			intel_dp_init(dev, PCH_DP_C, PORT_C);
15499 
15500 		if (I915_READ(PCH_DP_D) & DP_DETECTED)
15501 			intel_dp_init(dev, PCH_DP_D, PORT_D);
15502 	} else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
15503 		bool has_edp, has_port;
15504 
15505 		/*
15506 		 * The DP_DETECTED bit is the latched state of the DDC
15507 		 * SDA pin at boot. However since eDP doesn't require DDC
15508 		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15509 		 * eDP ports may have been muxed to an alternate function.
15510 		 * Thus we can't rely on the DP_DETECTED bit alone to detect
15511 		 * eDP ports. Consult the VBT as well as DP_DETECTED to
15512 		 * detect eDP ports.
15513 		 *
15514 		 * Sadly the straps seem to be missing sometimes even for HDMI
15515 		 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15516 		 * and VBT for the presence of the port. Additionally we can't
15517 		 * trust the port type the VBT declares as we've seen at least
15518 		 * HDMI ports that the VBT claim are DP or eDP.
15519 		 */
15520 		has_edp = intel_dp_is_edp(dev, PORT_B);
15521 		has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15522 		if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15523 			has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
15524 		if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15525 			intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
15526 
15527 		has_edp = intel_dp_is_edp(dev, PORT_C);
15528 		has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15529 		if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15530 			has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
15531 		if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15532 			intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
15533 
15534 		if (IS_CHERRYVIEW(dev)) {
15535 			/*
15536 			 * eDP not supported on port D,
15537 			 * so no need to worry about it
15538 			 */
15539 			has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15540 			if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15541 				intel_dp_init(dev, CHV_DP_D, PORT_D);
15542 			if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15543 				intel_hdmi_init(dev, CHV_HDMID, PORT_D);
15544 		}
15545 
15546 		intel_dsi_init(dev);
15547 	} else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
15548 		bool found = false;
15549 
15550 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15551 			DRM_DEBUG_KMS("probing SDVOB\n");
15552 			found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
15553 			if (!found && IS_G4X(dev)) {
15554 				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15555 				intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
15556 			}
15557 
15558 			if (!found && IS_G4X(dev))
15559 				intel_dp_init(dev, DP_B, PORT_B);
15560 		}
15561 
15562 		/* Before G4X SDVOC doesn't have its own detect register */
15563 
15564 		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15565 			DRM_DEBUG_KMS("probing SDVOC\n");
15566 			found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
15567 		}
15568 
15569 		if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15570 
15571 			if (IS_G4X(dev)) {
15572 				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15573 				intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
15574 			}
15575 			if (IS_G4X(dev))
15576 				intel_dp_init(dev, DP_C, PORT_C);
15577 		}
15578 
15579 		if (IS_G4X(dev) &&
15580 		    (I915_READ(DP_D) & DP_DETECTED))
15581 			intel_dp_init(dev, DP_D, PORT_D);
15582 	} else if (IS_GEN2(dev))
15583 		intel_dvo_init(dev);
15584 
15585 	if (SUPPORTS_TV(dev))
15586 		intel_tv_init(dev);
15587 
15588 	intel_psr_init(dev);
15589 
15590 	for_each_intel_encoder(dev, encoder) {
15591 		encoder->base.possible_crtcs = encoder->crtc_mask;
15592 		encoder->base.possible_clones =
15593 			intel_encoder_clones(encoder);
15594 	}
15595 
15596 	intel_init_pch_refclk(dev);
15597 
15598 	drm_helper_move_panel_connectors_to_head(dev);
15599 }
15600 
intel_user_framebuffer_destroy(struct drm_framebuffer * fb)15601 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15602 {
15603 	struct drm_device *dev = fb->dev;
15604 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15605 
15606 	drm_framebuffer_cleanup(fb);
15607 	mutex_lock(&dev->struct_mutex);
15608 	WARN_ON(!intel_fb->obj->framebuffer_references--);
15609 	i915_gem_object_put(intel_fb->obj);
15610 	mutex_unlock(&dev->struct_mutex);
15611 	kfree(intel_fb);
15612 }
15613 
intel_user_framebuffer_create_handle(struct drm_framebuffer * fb,struct drm_file * file,unsigned int * handle)15614 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15615 						struct drm_file *file,
15616 						unsigned int *handle)
15617 {
15618 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15619 	struct drm_i915_gem_object *obj = intel_fb->obj;
15620 
15621 	if (obj->userptr.mm) {
15622 		DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15623 		return -EINVAL;
15624 	}
15625 
15626 	return drm_gem_handle_create(file, &obj->base, handle);
15627 }
15628 
intel_user_framebuffer_dirty(struct drm_framebuffer * fb,struct drm_file * file,unsigned flags,unsigned color,struct drm_clip_rect * clips,unsigned num_clips)15629 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15630 					struct drm_file *file,
15631 					unsigned flags, unsigned color,
15632 					struct drm_clip_rect *clips,
15633 					unsigned num_clips)
15634 {
15635 	struct drm_device *dev = fb->dev;
15636 	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15637 	struct drm_i915_gem_object *obj = intel_fb->obj;
15638 
15639 	mutex_lock(&dev->struct_mutex);
15640 	intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
15641 	mutex_unlock(&dev->struct_mutex);
15642 
15643 	return 0;
15644 }
15645 
15646 static const struct drm_framebuffer_funcs intel_fb_funcs = {
15647 	.destroy = intel_user_framebuffer_destroy,
15648 	.create_handle = intel_user_framebuffer_create_handle,
15649 	.dirty = intel_user_framebuffer_dirty,
15650 };
15651 
15652 static
intel_fb_pitch_limit(struct drm_device * dev,uint64_t fb_modifier,uint32_t pixel_format)15653 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
15654 			 uint32_t pixel_format)
15655 {
15656 	u32 gen = INTEL_INFO(dev)->gen;
15657 
15658 	if (gen >= 9) {
15659 		int cpp = drm_format_plane_cpp(pixel_format, 0);
15660 
15661 		/* "The stride in bytes must not exceed the of the size of 8K
15662 		 *  pixels and 32K bytes."
15663 		 */
15664 		return min(8192 * cpp, 32768);
15665 	} else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
15666 		return 32*1024;
15667 	} else if (gen >= 4) {
15668 		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15669 			return 16*1024;
15670 		else
15671 			return 32*1024;
15672 	} else if (gen >= 3) {
15673 		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15674 			return 8*1024;
15675 		else
15676 			return 16*1024;
15677 	} else {
15678 		/* XXX DSPC is limited to 4k tiled */
15679 		return 8*1024;
15680 	}
15681 }
15682 
intel_framebuffer_init(struct drm_device * dev,struct intel_framebuffer * intel_fb,struct drm_mode_fb_cmd2 * mode_cmd,struct drm_i915_gem_object * obj)15683 static int intel_framebuffer_init(struct drm_device *dev,
15684 				  struct intel_framebuffer *intel_fb,
15685 				  struct drm_mode_fb_cmd2 *mode_cmd,
15686 				  struct drm_i915_gem_object *obj)
15687 {
15688 	struct drm_i915_private *dev_priv = to_i915(dev);
15689 	unsigned int tiling = i915_gem_object_get_tiling(obj);
15690 	int ret;
15691 	u32 pitch_limit, stride_alignment;
15692 	char *format_name;
15693 
15694 	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15695 
15696 	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15697 		/*
15698 		 * If there's a fence, enforce that
15699 		 * the fb modifier and tiling mode match.
15700 		 */
15701 		if (tiling != I915_TILING_NONE &&
15702 		    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15703 			DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15704 			return -EINVAL;
15705 		}
15706 	} else {
15707 		if (tiling == I915_TILING_X) {
15708 			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15709 		} else if (tiling == I915_TILING_Y) {
15710 			DRM_DEBUG("No Y tiling for legacy addfb\n");
15711 			return -EINVAL;
15712 		}
15713 	}
15714 
15715 	/* Passed in modifier sanity checking. */
15716 	switch (mode_cmd->modifier[0]) {
15717 	case I915_FORMAT_MOD_Y_TILED:
15718 	case I915_FORMAT_MOD_Yf_TILED:
15719 		if (INTEL_INFO(dev)->gen < 9) {
15720 			DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15721 				  mode_cmd->modifier[0]);
15722 			return -EINVAL;
15723 		}
15724 	case DRM_FORMAT_MOD_NONE:
15725 	case I915_FORMAT_MOD_X_TILED:
15726 		break;
15727 	default:
15728 		DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15729 			  mode_cmd->modifier[0]);
15730 		return -EINVAL;
15731 	}
15732 
15733 	/*
15734 	 * gen2/3 display engine uses the fence if present,
15735 	 * so the tiling mode must match the fb modifier exactly.
15736 	 */
15737 	if (INTEL_INFO(dev_priv)->gen < 4 &&
15738 	    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15739 		DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15740 		return -EINVAL;
15741 	}
15742 
15743 	stride_alignment = intel_fb_stride_alignment(dev_priv,
15744 						     mode_cmd->modifier[0],
15745 						     mode_cmd->pixel_format);
15746 	if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15747 		DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15748 			  mode_cmd->pitches[0], stride_alignment);
15749 		return -EINVAL;
15750 	}
15751 
15752 	pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
15753 					   mode_cmd->pixel_format);
15754 	if (mode_cmd->pitches[0] > pitch_limit) {
15755 		DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15756 			  mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15757 			  "tiled" : "linear",
15758 			  mode_cmd->pitches[0], pitch_limit);
15759 		return -EINVAL;
15760 	}
15761 
15762 	/*
15763 	 * If there's a fence, enforce that
15764 	 * the fb pitch and fence stride match.
15765 	 */
15766 	if (tiling != I915_TILING_NONE &&
15767 	    mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
15768 		DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15769 			  mode_cmd->pitches[0],
15770 			  i915_gem_object_get_stride(obj));
15771 		return -EINVAL;
15772 	}
15773 
15774 	/* Reject formats not supported by any plane early. */
15775 	switch (mode_cmd->pixel_format) {
15776 	case DRM_FORMAT_C8:
15777 	case DRM_FORMAT_RGB565:
15778 	case DRM_FORMAT_XRGB8888:
15779 	case DRM_FORMAT_ARGB8888:
15780 		break;
15781 	case DRM_FORMAT_XRGB1555:
15782 		if (INTEL_INFO(dev)->gen > 3) {
15783 			format_name = drm_get_format_name(mode_cmd->pixel_format);
15784 			DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15785 			kfree(format_name);
15786 			return -EINVAL;
15787 		}
15788 		break;
15789 	case DRM_FORMAT_ABGR8888:
15790 		if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
15791 		    INTEL_INFO(dev)->gen < 9) {
15792 			format_name = drm_get_format_name(mode_cmd->pixel_format);
15793 			DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15794 			kfree(format_name);
15795 			return -EINVAL;
15796 		}
15797 		break;
15798 	case DRM_FORMAT_XBGR8888:
15799 	case DRM_FORMAT_XRGB2101010:
15800 	case DRM_FORMAT_XBGR2101010:
15801 		if (INTEL_INFO(dev)->gen < 4) {
15802 			format_name = drm_get_format_name(mode_cmd->pixel_format);
15803 			DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15804 			kfree(format_name);
15805 			return -EINVAL;
15806 		}
15807 		break;
15808 	case DRM_FORMAT_ABGR2101010:
15809 		if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
15810 			format_name = drm_get_format_name(mode_cmd->pixel_format);
15811 			DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15812 			kfree(format_name);
15813 			return -EINVAL;
15814 		}
15815 		break;
15816 	case DRM_FORMAT_YUYV:
15817 	case DRM_FORMAT_UYVY:
15818 	case DRM_FORMAT_YVYU:
15819 	case DRM_FORMAT_VYUY:
15820 		if (INTEL_INFO(dev)->gen < 5) {
15821 			format_name = drm_get_format_name(mode_cmd->pixel_format);
15822 			DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15823 			kfree(format_name);
15824 			return -EINVAL;
15825 		}
15826 		break;
15827 	default:
15828 		format_name = drm_get_format_name(mode_cmd->pixel_format);
15829 		DRM_DEBUG("unsupported pixel format: %s\n", format_name);
15830 		kfree(format_name);
15831 		return -EINVAL;
15832 	}
15833 
15834 	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15835 	if (mode_cmd->offsets[0] != 0)
15836 		return -EINVAL;
15837 
15838 	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15839 	intel_fb->obj = obj;
15840 
15841 	ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
15842 	if (ret)
15843 		return ret;
15844 
15845 	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15846 	if (ret) {
15847 		DRM_ERROR("framebuffer init failed %d\n", ret);
15848 		return ret;
15849 	}
15850 
15851 	intel_fb->obj->framebuffer_references++;
15852 
15853 	return 0;
15854 }
15855 
15856 static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device * dev,struct drm_file * filp,const struct drm_mode_fb_cmd2 * user_mode_cmd)15857 intel_user_framebuffer_create(struct drm_device *dev,
15858 			      struct drm_file *filp,
15859 			      const struct drm_mode_fb_cmd2 *user_mode_cmd)
15860 {
15861 	struct drm_framebuffer *fb;
15862 	struct drm_i915_gem_object *obj;
15863 	struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15864 
15865 	obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15866 	if (!obj)
15867 		return ERR_PTR(-ENOENT);
15868 
15869 	fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15870 	if (IS_ERR(fb))
15871 		i915_gem_object_put_unlocked(obj);
15872 
15873 	return fb;
15874 }
15875 
15876 #ifndef CONFIG_DRM_FBDEV_EMULATION
intel_fbdev_output_poll_changed(struct drm_device * dev)15877 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
15878 {
15879 }
15880 #endif
15881 
15882 static const struct drm_mode_config_funcs intel_mode_funcs = {
15883 	.fb_create = intel_user_framebuffer_create,
15884 	.output_poll_changed = intel_fbdev_output_poll_changed,
15885 	.atomic_check = intel_atomic_check,
15886 	.atomic_commit = intel_atomic_commit,
15887 	.atomic_state_alloc = intel_atomic_state_alloc,
15888 	.atomic_state_clear = intel_atomic_state_clear,
15889 };
15890 
15891 /**
15892  * intel_init_display_hooks - initialize the display modesetting hooks
15893  * @dev_priv: device private
15894  */
intel_init_display_hooks(struct drm_i915_private * dev_priv)15895 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15896 {
15897 	if (INTEL_INFO(dev_priv)->gen >= 9) {
15898 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15899 		dev_priv->display.get_initial_plane_config =
15900 			skylake_get_initial_plane_config;
15901 		dev_priv->display.crtc_compute_clock =
15902 			haswell_crtc_compute_clock;
15903 		dev_priv->display.crtc_enable = haswell_crtc_enable;
15904 		dev_priv->display.crtc_disable = haswell_crtc_disable;
15905 	} else if (HAS_DDI(dev_priv)) {
15906 		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15907 		dev_priv->display.get_initial_plane_config =
15908 			ironlake_get_initial_plane_config;
15909 		dev_priv->display.crtc_compute_clock =
15910 			haswell_crtc_compute_clock;
15911 		dev_priv->display.crtc_enable = haswell_crtc_enable;
15912 		dev_priv->display.crtc_disable = haswell_crtc_disable;
15913 	} else if (HAS_PCH_SPLIT(dev_priv)) {
15914 		dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15915 		dev_priv->display.get_initial_plane_config =
15916 			ironlake_get_initial_plane_config;
15917 		dev_priv->display.crtc_compute_clock =
15918 			ironlake_crtc_compute_clock;
15919 		dev_priv->display.crtc_enable = ironlake_crtc_enable;
15920 		dev_priv->display.crtc_disable = ironlake_crtc_disable;
15921 	} else if (IS_CHERRYVIEW(dev_priv)) {
15922 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15923 		dev_priv->display.get_initial_plane_config =
15924 			i9xx_get_initial_plane_config;
15925 		dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15926 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
15927 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15928 	} else if (IS_VALLEYVIEW(dev_priv)) {
15929 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15930 		dev_priv->display.get_initial_plane_config =
15931 			i9xx_get_initial_plane_config;
15932 		dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15933 		dev_priv->display.crtc_enable = valleyview_crtc_enable;
15934 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15935 	} else if (IS_G4X(dev_priv)) {
15936 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15937 		dev_priv->display.get_initial_plane_config =
15938 			i9xx_get_initial_plane_config;
15939 		dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15940 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15941 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15942 	} else if (IS_PINEVIEW(dev_priv)) {
15943 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15944 		dev_priv->display.get_initial_plane_config =
15945 			i9xx_get_initial_plane_config;
15946 		dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15947 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15948 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15949 	} else if (!IS_GEN2(dev_priv)) {
15950 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15951 		dev_priv->display.get_initial_plane_config =
15952 			i9xx_get_initial_plane_config;
15953 		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15954 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15955 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15956 	} else {
15957 		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15958 		dev_priv->display.get_initial_plane_config =
15959 			i9xx_get_initial_plane_config;
15960 		dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15961 		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15962 		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15963 	}
15964 
15965 	/* Returns the core display clock speed */
15966 	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15967 		dev_priv->display.get_display_clock_speed =
15968 			skylake_get_display_clock_speed;
15969 	else if (IS_BROXTON(dev_priv))
15970 		dev_priv->display.get_display_clock_speed =
15971 			broxton_get_display_clock_speed;
15972 	else if (IS_BROADWELL(dev_priv))
15973 		dev_priv->display.get_display_clock_speed =
15974 			broadwell_get_display_clock_speed;
15975 	else if (IS_HASWELL(dev_priv))
15976 		dev_priv->display.get_display_clock_speed =
15977 			haswell_get_display_clock_speed;
15978 	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15979 		dev_priv->display.get_display_clock_speed =
15980 			valleyview_get_display_clock_speed;
15981 	else if (IS_GEN5(dev_priv))
15982 		dev_priv->display.get_display_clock_speed =
15983 			ilk_get_display_clock_speed;
15984 	else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
15985 		 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
15986 		dev_priv->display.get_display_clock_speed =
15987 			i945_get_display_clock_speed;
15988 	else if (IS_GM45(dev_priv))
15989 		dev_priv->display.get_display_clock_speed =
15990 			gm45_get_display_clock_speed;
15991 	else if (IS_CRESTLINE(dev_priv))
15992 		dev_priv->display.get_display_clock_speed =
15993 			i965gm_get_display_clock_speed;
15994 	else if (IS_PINEVIEW(dev_priv))
15995 		dev_priv->display.get_display_clock_speed =
15996 			pnv_get_display_clock_speed;
15997 	else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
15998 		dev_priv->display.get_display_clock_speed =
15999 			g33_get_display_clock_speed;
16000 	else if (IS_I915G(dev_priv))
16001 		dev_priv->display.get_display_clock_speed =
16002 			i915_get_display_clock_speed;
16003 	else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
16004 		dev_priv->display.get_display_clock_speed =
16005 			i9xx_misc_get_display_clock_speed;
16006 	else if (IS_I915GM(dev_priv))
16007 		dev_priv->display.get_display_clock_speed =
16008 			i915gm_get_display_clock_speed;
16009 	else if (IS_I865G(dev_priv))
16010 		dev_priv->display.get_display_clock_speed =
16011 			i865_get_display_clock_speed;
16012 	else if (IS_I85X(dev_priv))
16013 		dev_priv->display.get_display_clock_speed =
16014 			i85x_get_display_clock_speed;
16015 	else { /* 830 */
16016 		WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
16017 		dev_priv->display.get_display_clock_speed =
16018 			i830_get_display_clock_speed;
16019 	}
16020 
16021 	if (IS_GEN5(dev_priv)) {
16022 		dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
16023 	} else if (IS_GEN6(dev_priv)) {
16024 		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
16025 	} else if (IS_IVYBRIDGE(dev_priv)) {
16026 		/* FIXME: detect B0+ stepping and use auto training */
16027 		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
16028 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
16029 		dev_priv->display.fdi_link_train = hsw_fdi_link_train;
16030 	}
16031 
16032 	if (IS_BROADWELL(dev_priv)) {
16033 		dev_priv->display.modeset_commit_cdclk =
16034 			broadwell_modeset_commit_cdclk;
16035 		dev_priv->display.modeset_calc_cdclk =
16036 			broadwell_modeset_calc_cdclk;
16037 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16038 		dev_priv->display.modeset_commit_cdclk =
16039 			valleyview_modeset_commit_cdclk;
16040 		dev_priv->display.modeset_calc_cdclk =
16041 			valleyview_modeset_calc_cdclk;
16042 	} else if (IS_BROXTON(dev_priv)) {
16043 		dev_priv->display.modeset_commit_cdclk =
16044 			bxt_modeset_commit_cdclk;
16045 		dev_priv->display.modeset_calc_cdclk =
16046 			bxt_modeset_calc_cdclk;
16047 	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
16048 		dev_priv->display.modeset_commit_cdclk =
16049 			skl_modeset_commit_cdclk;
16050 		dev_priv->display.modeset_calc_cdclk =
16051 			skl_modeset_calc_cdclk;
16052 	}
16053 
16054 	if (dev_priv->info.gen >= 9)
16055 		dev_priv->display.update_crtcs = skl_update_crtcs;
16056 	else
16057 		dev_priv->display.update_crtcs = intel_update_crtcs;
16058 
16059 	switch (INTEL_INFO(dev_priv)->gen) {
16060 	case 2:
16061 		dev_priv->display.queue_flip = intel_gen2_queue_flip;
16062 		break;
16063 
16064 	case 3:
16065 		dev_priv->display.queue_flip = intel_gen3_queue_flip;
16066 		break;
16067 
16068 	case 4:
16069 	case 5:
16070 		dev_priv->display.queue_flip = intel_gen4_queue_flip;
16071 		break;
16072 
16073 	case 6:
16074 		dev_priv->display.queue_flip = intel_gen6_queue_flip;
16075 		break;
16076 	case 7:
16077 	case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16078 		dev_priv->display.queue_flip = intel_gen7_queue_flip;
16079 		break;
16080 	case 9:
16081 		/* Drop through - unsupported since execlist only. */
16082 	default:
16083 		/* Default just returns -ENODEV to indicate unsupported */
16084 		dev_priv->display.queue_flip = intel_default_queue_flip;
16085 	}
16086 }
16087 
16088 /*
16089  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16090  * resume, or other times.  This quirk makes sure that's the case for
16091  * affected systems.
16092  */
quirk_pipea_force(struct drm_device * dev)16093 static void quirk_pipea_force(struct drm_device *dev)
16094 {
16095 	struct drm_i915_private *dev_priv = to_i915(dev);
16096 
16097 	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
16098 	DRM_INFO("applying pipe a force quirk\n");
16099 }
16100 
quirk_pipeb_force(struct drm_device * dev)16101 static void quirk_pipeb_force(struct drm_device *dev)
16102 {
16103 	struct drm_i915_private *dev_priv = to_i915(dev);
16104 
16105 	dev_priv->quirks |= QUIRK_PIPEB_FORCE;
16106 	DRM_INFO("applying pipe b force quirk\n");
16107 }
16108 
16109 /*
16110  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16111  */
quirk_ssc_force_disable(struct drm_device * dev)16112 static void quirk_ssc_force_disable(struct drm_device *dev)
16113 {
16114 	struct drm_i915_private *dev_priv = to_i915(dev);
16115 	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
16116 	DRM_INFO("applying lvds SSC disable quirk\n");
16117 }
16118 
16119 /*
16120  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16121  * brightness value
16122  */
quirk_invert_brightness(struct drm_device * dev)16123 static void quirk_invert_brightness(struct drm_device *dev)
16124 {
16125 	struct drm_i915_private *dev_priv = to_i915(dev);
16126 	dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
16127 	DRM_INFO("applying inverted panel brightness quirk\n");
16128 }
16129 
16130 /* Some VBT's incorrectly indicate no backlight is present */
quirk_backlight_present(struct drm_device * dev)16131 static void quirk_backlight_present(struct drm_device *dev)
16132 {
16133 	struct drm_i915_private *dev_priv = to_i915(dev);
16134 	dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
16135 	DRM_INFO("applying backlight present quirk\n");
16136 }
16137 
16138 struct intel_quirk {
16139 	int device;
16140 	int subsystem_vendor;
16141 	int subsystem_device;
16142 	void (*hook)(struct drm_device *dev);
16143 };
16144 
16145 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16146 struct intel_dmi_quirk {
16147 	void (*hook)(struct drm_device *dev);
16148 	const struct dmi_system_id (*dmi_id_list)[];
16149 };
16150 
intel_dmi_reverse_brightness(const struct dmi_system_id * id)16151 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
16152 {
16153 	DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
16154 	return 1;
16155 }
16156 
16157 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
16158 	{
16159 		.dmi_id_list = &(const struct dmi_system_id[]) {
16160 			{
16161 				.callback = intel_dmi_reverse_brightness,
16162 				.ident = "NCR Corporation",
16163 				.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
16164 					    DMI_MATCH(DMI_PRODUCT_NAME, ""),
16165 				},
16166 			},
16167 			{ }  /* terminating entry */
16168 		},
16169 		.hook = quirk_invert_brightness,
16170 	},
16171 };
16172 
16173 static struct intel_quirk intel_quirks[] = {
16174 	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16175 	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
16176 
16177 	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16178 	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
16179 
16180 	/* 830 needs to leave pipe A & dpll A up */
16181 	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
16182 
16183 	/* 830 needs to leave pipe B & dpll B up */
16184 	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
16185 
16186 	/* Lenovo U160 cannot use SSC on LVDS */
16187 	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
16188 
16189 	/* Sony Vaio Y cannot use SSC on LVDS */
16190 	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
16191 
16192 	/* Acer Aspire 5734Z must invert backlight brightness */
16193 	{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
16194 
16195 	/* Acer/eMachines G725 */
16196 	{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
16197 
16198 	/* Acer/eMachines e725 */
16199 	{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
16200 
16201 	/* Acer/Packard Bell NCL20 */
16202 	{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
16203 
16204 	/* Acer Aspire 4736Z */
16205 	{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
16206 
16207 	/* Acer Aspire 5336 */
16208 	{ 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
16209 
16210 	/* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16211 	{ 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
16212 
16213 	/* Acer C720 Chromebook (Core i3 4005U) */
16214 	{ 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
16215 
16216 	/* Apple Macbook 2,1 (Core 2 T7400) */
16217 	{ 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
16218 
16219 	/* Apple Macbook 4,1 */
16220 	{ 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
16221 
16222 	/* Toshiba CB35 Chromebook (Celeron 2955U) */
16223 	{ 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
16224 
16225 	/* HP Chromebook 14 (Celeron 2955U) */
16226 	{ 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
16227 
16228 	/* Dell Chromebook 11 */
16229 	{ 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
16230 
16231 	/* Dell Chromebook 11 (2015 version) */
16232 	{ 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
16233 };
16234 
intel_init_quirks(struct drm_device * dev)16235 static void intel_init_quirks(struct drm_device *dev)
16236 {
16237 	struct pci_dev *d = dev->pdev;
16238 	int i;
16239 
16240 	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
16241 		struct intel_quirk *q = &intel_quirks[i];
16242 
16243 		if (d->device == q->device &&
16244 		    (d->subsystem_vendor == q->subsystem_vendor ||
16245 		     q->subsystem_vendor == PCI_ANY_ID) &&
16246 		    (d->subsystem_device == q->subsystem_device ||
16247 		     q->subsystem_device == PCI_ANY_ID))
16248 			q->hook(dev);
16249 	}
16250 	for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
16251 		if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
16252 			intel_dmi_quirks[i].hook(dev);
16253 	}
16254 }
16255 
16256 /* Disable the VGA plane that we never use */
i915_disable_vga(struct drm_device * dev)16257 static void i915_disable_vga(struct drm_device *dev)
16258 {
16259 	struct drm_i915_private *dev_priv = to_i915(dev);
16260 	struct pci_dev *pdev = dev_priv->drm.pdev;
16261 	u8 sr1;
16262 	i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
16263 
16264 	/* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
16265 	vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
16266 	outb(SR01, VGA_SR_INDEX);
16267 	sr1 = inb(VGA_SR_DATA);
16268 	outb(sr1 | 1<<5, VGA_SR_DATA);
16269 	vga_put(pdev, VGA_RSRC_LEGACY_IO);
16270 	udelay(300);
16271 
16272 	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
16273 	POSTING_READ(vga_reg);
16274 }
16275 
intel_modeset_init_hw(struct drm_device * dev)16276 void intel_modeset_init_hw(struct drm_device *dev)
16277 {
16278 	struct drm_i915_private *dev_priv = to_i915(dev);
16279 
16280 	intel_update_cdclk(dev);
16281 
16282 	dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16283 
16284 	intel_init_clock_gating(dev);
16285 }
16286 
16287 /*
16288  * Calculate what we think the watermarks should be for the state we've read
16289  * out of the hardware and then immediately program those watermarks so that
16290  * we ensure the hardware settings match our internal state.
16291  *
16292  * We can calculate what we think WM's should be by creating a duplicate of the
16293  * current state (which was constructed during hardware readout) and running it
16294  * through the atomic check code to calculate new watermark values in the
16295  * state object.
16296  */
sanitize_watermarks(struct drm_device * dev)16297 static void sanitize_watermarks(struct drm_device *dev)
16298 {
16299 	struct drm_i915_private *dev_priv = to_i915(dev);
16300 	struct drm_atomic_state *state;
16301 	struct drm_crtc *crtc;
16302 	struct drm_crtc_state *cstate;
16303 	struct drm_modeset_acquire_ctx ctx;
16304 	int ret;
16305 	int i;
16306 
16307 	/* Only supported on platforms that use atomic watermark design */
16308 	if (!dev_priv->display.optimize_watermarks)
16309 		return;
16310 
16311 	/*
16312 	 * We need to hold connection_mutex before calling duplicate_state so
16313 	 * that the connector loop is protected.
16314 	 */
16315 	drm_modeset_acquire_init(&ctx, 0);
16316 retry:
16317 	ret = drm_modeset_lock_all_ctx(dev, &ctx);
16318 	if (ret == -EDEADLK) {
16319 		drm_modeset_backoff(&ctx);
16320 		goto retry;
16321 	} else if (WARN_ON(ret)) {
16322 		goto fail;
16323 	}
16324 
16325 	state = drm_atomic_helper_duplicate_state(dev, &ctx);
16326 	if (WARN_ON(IS_ERR(state)))
16327 		goto fail;
16328 
16329 	/*
16330 	 * Hardware readout is the only time we don't want to calculate
16331 	 * intermediate watermarks (since we don't trust the current
16332 	 * watermarks).
16333 	 */
16334 	to_intel_atomic_state(state)->skip_intermediate_wm = true;
16335 
16336 	ret = intel_atomic_check(dev, state);
16337 	if (ret) {
16338 		/*
16339 		 * If we fail here, it means that the hardware appears to be
16340 		 * programmed in a way that shouldn't be possible, given our
16341 		 * understanding of watermark requirements.  This might mean a
16342 		 * mistake in the hardware readout code or a mistake in the
16343 		 * watermark calculations for a given platform.  Raise a WARN
16344 		 * so that this is noticeable.
16345 		 *
16346 		 * If this actually happens, we'll have to just leave the
16347 		 * BIOS-programmed watermarks untouched and hope for the best.
16348 		 */
16349 		WARN(true, "Could not determine valid watermarks for inherited state\n");
16350 		goto fail;
16351 	}
16352 
16353 	/* Write calculated watermark values back */
16354 	for_each_crtc_in_state(state, crtc, cstate, i) {
16355 		struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16356 
16357 		cs->wm.need_postvbl_update = true;
16358 		dev_priv->display.optimize_watermarks(cs);
16359 	}
16360 
16361 	drm_atomic_state_free(state);
16362 fail:
16363 	drm_modeset_drop_locks(&ctx);
16364 	drm_modeset_acquire_fini(&ctx);
16365 }
16366 
intel_modeset_init(struct drm_device * dev)16367 void intel_modeset_init(struct drm_device *dev)
16368 {
16369 	struct drm_i915_private *dev_priv = to_i915(dev);
16370 	struct i915_ggtt *ggtt = &dev_priv->ggtt;
16371 	int sprite, ret;
16372 	enum pipe pipe;
16373 	struct intel_crtc *crtc;
16374 
16375 	drm_mode_config_init(dev);
16376 
16377 	dev->mode_config.min_width = 0;
16378 	dev->mode_config.min_height = 0;
16379 
16380 	dev->mode_config.preferred_depth = 24;
16381 	dev->mode_config.prefer_shadow = 1;
16382 
16383 	dev->mode_config.allow_fb_modifiers = true;
16384 
16385 	dev->mode_config.funcs = &intel_mode_funcs;
16386 
16387 	intel_init_quirks(dev);
16388 
16389 	intel_init_pm(dev);
16390 
16391 	if (INTEL_INFO(dev)->num_pipes == 0)
16392 		return;
16393 
16394 	/*
16395 	 * There may be no VBT; and if the BIOS enabled SSC we can
16396 	 * just keep using it to avoid unnecessary flicker.  Whereas if the
16397 	 * BIOS isn't using it, don't assume it will work even if the VBT
16398 	 * indicates as much.
16399 	 */
16400 	if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
16401 		bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16402 					    DREF_SSC1_ENABLE);
16403 
16404 		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16405 			DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16406 				     bios_lvds_use_ssc ? "en" : "dis",
16407 				     dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16408 			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16409 		}
16410 	}
16411 
16412 	if (IS_GEN2(dev)) {
16413 		dev->mode_config.max_width = 2048;
16414 		dev->mode_config.max_height = 2048;
16415 	} else if (IS_GEN3(dev)) {
16416 		dev->mode_config.max_width = 4096;
16417 		dev->mode_config.max_height = 4096;
16418 	} else {
16419 		dev->mode_config.max_width = 8192;
16420 		dev->mode_config.max_height = 8192;
16421 	}
16422 
16423 	if (IS_845G(dev) || IS_I865G(dev)) {
16424 		dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
16425 		dev->mode_config.cursor_height = 1023;
16426 	} else if (IS_GEN2(dev)) {
16427 		dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16428 		dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16429 	} else {
16430 		dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16431 		dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16432 	}
16433 
16434 	dev->mode_config.fb_base = ggtt->mappable_base;
16435 
16436 	DRM_DEBUG_KMS("%d display pipe%s available.\n",
16437 		      INTEL_INFO(dev)->num_pipes,
16438 		      INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
16439 
16440 	for_each_pipe(dev_priv, pipe) {
16441 		intel_crtc_init(dev, pipe);
16442 		for_each_sprite(dev_priv, pipe, sprite) {
16443 			ret = intel_plane_init(dev, pipe, sprite);
16444 			if (ret)
16445 				DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
16446 					      pipe_name(pipe), sprite_name(pipe, sprite), ret);
16447 		}
16448 	}
16449 
16450 	intel_update_czclk(dev_priv);
16451 	intel_update_cdclk(dev);
16452 	dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16453 
16454 	intel_shared_dpll_init(dev);
16455 
16456 	if (dev_priv->max_cdclk_freq == 0)
16457 		intel_update_max_cdclk(dev);
16458 
16459 	/* Just disable it once at startup */
16460 	i915_disable_vga(dev);
16461 	intel_setup_outputs(dev);
16462 
16463 	drm_modeset_lock_all(dev);
16464 	intel_modeset_setup_hw_state(dev);
16465 	drm_modeset_unlock_all(dev);
16466 
16467 	for_each_intel_crtc(dev, crtc) {
16468 		struct intel_initial_plane_config plane_config = {};
16469 
16470 		if (!crtc->active)
16471 			continue;
16472 
16473 		/*
16474 		 * Note that reserving the BIOS fb up front prevents us
16475 		 * from stuffing other stolen allocations like the ring
16476 		 * on top.  This prevents some ugliness at boot time, and
16477 		 * can even allow for smooth boot transitions if the BIOS
16478 		 * fb is large enough for the active pipe configuration.
16479 		 */
16480 		dev_priv->display.get_initial_plane_config(crtc,
16481 							   &plane_config);
16482 
16483 		/*
16484 		 * If the fb is shared between multiple heads, we'll
16485 		 * just get the first one.
16486 		 */
16487 		intel_find_initial_plane_obj(crtc, &plane_config);
16488 	}
16489 
16490 	/*
16491 	 * Make sure hardware watermarks really match the state we read out.
16492 	 * Note that we need to do this after reconstructing the BIOS fb's
16493 	 * since the watermark calculation done here will use pstate->fb.
16494 	 */
16495 	sanitize_watermarks(dev);
16496 }
16497 
intel_enable_pipe_a(struct drm_device * dev)16498 static void intel_enable_pipe_a(struct drm_device *dev)
16499 {
16500 	struct intel_connector *connector;
16501 	struct drm_connector *crt = NULL;
16502 	struct intel_load_detect_pipe load_detect_temp;
16503 	struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
16504 
16505 	/* We can't just switch on the pipe A, we need to set things up with a
16506 	 * proper mode and output configuration. As a gross hack, enable pipe A
16507 	 * by enabling the load detect pipe once. */
16508 	for_each_intel_connector(dev, connector) {
16509 		if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16510 			crt = &connector->base;
16511 			break;
16512 		}
16513 	}
16514 
16515 	if (!crt)
16516 		return;
16517 
16518 	if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
16519 		intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
16520 }
16521 
16522 static bool
intel_check_plane_mapping(struct intel_crtc * crtc)16523 intel_check_plane_mapping(struct intel_crtc *crtc)
16524 {
16525 	struct drm_device *dev = crtc->base.dev;
16526 	struct drm_i915_private *dev_priv = to_i915(dev);
16527 	u32 val;
16528 
16529 	if (INTEL_INFO(dev)->num_pipes == 1)
16530 		return true;
16531 
16532 	val = I915_READ(DSPCNTR(!crtc->plane));
16533 
16534 	if ((val & DISPLAY_PLANE_ENABLE) &&
16535 	    (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16536 		return false;
16537 
16538 	return true;
16539 }
16540 
intel_crtc_has_encoders(struct intel_crtc * crtc)16541 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16542 {
16543 	struct drm_device *dev = crtc->base.dev;
16544 	struct intel_encoder *encoder;
16545 
16546 	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16547 		return true;
16548 
16549 	return false;
16550 }
16551 
intel_encoder_find_connector(struct intel_encoder * encoder)16552 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16553 {
16554 	struct drm_device *dev = encoder->base.dev;
16555 	struct intel_connector *connector;
16556 
16557 	for_each_connector_on_encoder(dev, &encoder->base, connector)
16558 		return connector;
16559 
16560 	return NULL;
16561 }
16562 
has_pch_trancoder(struct drm_i915_private * dev_priv,enum transcoder pch_transcoder)16563 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16564 			      enum transcoder pch_transcoder)
16565 {
16566 	return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16567 		(HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16568 }
16569 
intel_sanitize_crtc(struct intel_crtc * crtc)16570 static void intel_sanitize_crtc(struct intel_crtc *crtc)
16571 {
16572 	struct drm_device *dev = crtc->base.dev;
16573 	struct drm_i915_private *dev_priv = to_i915(dev);
16574 	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
16575 
16576 	/* Clear any frame start delays used for debugging left by the BIOS */
16577 	if (!transcoder_is_dsi(cpu_transcoder)) {
16578 		i915_reg_t reg = PIPECONF(cpu_transcoder);
16579 
16580 		I915_WRITE(reg,
16581 			   I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16582 	}
16583 
16584 	/* restore vblank interrupts to correct state */
16585 	drm_crtc_vblank_reset(&crtc->base);
16586 	if (crtc->active) {
16587 		struct intel_plane *plane;
16588 
16589 		drm_crtc_vblank_on(&crtc->base);
16590 
16591 		/* Disable everything but the primary plane */
16592 		for_each_intel_plane_on_crtc(dev, crtc, plane) {
16593 			if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16594 				continue;
16595 
16596 			plane->disable_plane(&plane->base, &crtc->base);
16597 		}
16598 	}
16599 
16600 	/* We need to sanitize the plane -> pipe mapping first because this will
16601 	 * disable the crtc (and hence change the state) if it is wrong. Note
16602 	 * that gen4+ has a fixed plane -> pipe mapping.  */
16603 	if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
16604 		bool plane;
16605 
16606 		DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16607 			      crtc->base.base.id, crtc->base.name);
16608 
16609 		/* Pipe has the wrong plane attached and the plane is active.
16610 		 * Temporarily change the plane mapping and disable everything
16611 		 * ...  */
16612 		plane = crtc->plane;
16613 		to_intel_plane_state(crtc->base.primary->state)->base.visible = true;
16614 		crtc->plane = !plane;
16615 		intel_crtc_disable_noatomic(&crtc->base);
16616 		crtc->plane = plane;
16617 	}
16618 
16619 	if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16620 	    crtc->pipe == PIPE_A && !crtc->active) {
16621 		/* BIOS forgot to enable pipe A, this mostly happens after
16622 		 * resume. Force-enable the pipe to fix this, the update_dpms
16623 		 * call below we restore the pipe to the right state, but leave
16624 		 * the required bits on. */
16625 		intel_enable_pipe_a(dev);
16626 	}
16627 
16628 	/* Adjust the state of the output pipe according to whether we
16629 	 * have active connectors/encoders. */
16630 	if (crtc->active && !intel_crtc_has_encoders(crtc))
16631 		intel_crtc_disable_noatomic(&crtc->base);
16632 
16633 	if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
16634 		/*
16635 		 * We start out with underrun reporting disabled to avoid races.
16636 		 * For correct bookkeeping mark this on active crtcs.
16637 		 *
16638 		 * Also on gmch platforms we dont have any hardware bits to
16639 		 * disable the underrun reporting. Which means we need to start
16640 		 * out with underrun reporting disabled also on inactive pipes,
16641 		 * since otherwise we'll complain about the garbage we read when
16642 		 * e.g. coming up after runtime pm.
16643 		 *
16644 		 * No protection against concurrent access is required - at
16645 		 * worst a fifo underrun happens which also sets this to false.
16646 		 */
16647 		crtc->cpu_fifo_underrun_disabled = true;
16648 		/*
16649 		 * We track the PCH trancoder underrun reporting state
16650 		 * within the crtc. With crtc for pipe A housing the underrun
16651 		 * reporting state for PCH transcoder A, crtc for pipe B housing
16652 		 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16653 		 * and marking underrun reporting as disabled for the non-existing
16654 		 * PCH transcoders B and C would prevent enabling the south
16655 		 * error interrupt (see cpt_can_enable_serr_int()).
16656 		 */
16657 		if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16658 			crtc->pch_fifo_underrun_disabled = true;
16659 	}
16660 }
16661 
intel_sanitize_encoder(struct intel_encoder * encoder)16662 static void intel_sanitize_encoder(struct intel_encoder *encoder)
16663 {
16664 	struct intel_connector *connector;
16665 
16666 	/* We need to check both for a crtc link (meaning that the
16667 	 * encoder is active and trying to read from a pipe) and the
16668 	 * pipe itself being active. */
16669 	bool has_active_crtc = encoder->base.crtc &&
16670 		to_intel_crtc(encoder->base.crtc)->active;
16671 
16672 	connector = intel_encoder_find_connector(encoder);
16673 	if (connector && !has_active_crtc) {
16674 		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16675 			      encoder->base.base.id,
16676 			      encoder->base.name);
16677 
16678 		/* Connector is active, but has no active pipe. This is
16679 		 * fallout from our resume register restoring. Disable
16680 		 * the encoder manually again. */
16681 		if (encoder->base.crtc) {
16682 			struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
16683 
16684 			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16685 				      encoder->base.base.id,
16686 				      encoder->base.name);
16687 			encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16688 			if (encoder->post_disable)
16689 				encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16690 		}
16691 		encoder->base.crtc = NULL;
16692 
16693 		/* Inconsistent output/port/pipe state happens presumably due to
16694 		 * a bug in one of the get_hw_state functions. Or someplace else
16695 		 * in our code, like the register restore mess on resume. Clamp
16696 		 * things to off as a safer default. */
16697 
16698 		connector->base.dpms = DRM_MODE_DPMS_OFF;
16699 		connector->base.encoder = NULL;
16700 	}
16701 	/* Enabled encoders without active connectors will be fixed in
16702 	 * the crtc fixup. */
16703 }
16704 
i915_redisable_vga_power_on(struct drm_device * dev)16705 void i915_redisable_vga_power_on(struct drm_device *dev)
16706 {
16707 	struct drm_i915_private *dev_priv = to_i915(dev);
16708 	i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
16709 
16710 	if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16711 		DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16712 		i915_disable_vga(dev);
16713 	}
16714 }
16715 
i915_redisable_vga(struct drm_device * dev)16716 void i915_redisable_vga(struct drm_device *dev)
16717 {
16718 	struct drm_i915_private *dev_priv = to_i915(dev);
16719 
16720 	/* This function can be called both from intel_modeset_setup_hw_state or
16721 	 * at a very early point in our resume sequence, where the power well
16722 	 * structures are not yet restored. Since this function is at a very
16723 	 * paranoid "someone might have enabled VGA while we were not looking"
16724 	 * level, just check if the power well is enabled instead of trying to
16725 	 * follow the "don't touch the power well if we don't need it" policy
16726 	 * the rest of the driver uses. */
16727 	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16728 		return;
16729 
16730 	i915_redisable_vga_power_on(dev);
16731 
16732 	intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16733 }
16734 
primary_get_hw_state(struct intel_plane * plane)16735 static bool primary_get_hw_state(struct intel_plane *plane)
16736 {
16737 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16738 
16739 	return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16740 }
16741 
16742 /* FIXME read out full plane state for all planes */
readout_plane_state(struct intel_crtc * crtc)16743 static void readout_plane_state(struct intel_crtc *crtc)
16744 {
16745 	struct drm_plane *primary = crtc->base.primary;
16746 	struct intel_plane_state *plane_state =
16747 		to_intel_plane_state(primary->state);
16748 
16749 	plane_state->base.visible = crtc->active &&
16750 		primary_get_hw_state(to_intel_plane(primary));
16751 
16752 	if (plane_state->base.visible)
16753 		crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16754 }
16755 
intel_modeset_readout_hw_state(struct drm_device * dev)16756 static void intel_modeset_readout_hw_state(struct drm_device *dev)
16757 {
16758 	struct drm_i915_private *dev_priv = to_i915(dev);
16759 	enum pipe pipe;
16760 	struct intel_crtc *crtc;
16761 	struct intel_encoder *encoder;
16762 	struct intel_connector *connector;
16763 	int i;
16764 
16765 	dev_priv->active_crtcs = 0;
16766 
16767 	for_each_intel_crtc(dev, crtc) {
16768 		struct intel_crtc_state *crtc_state = crtc->config;
16769 
16770 		__drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16771 		memset(crtc_state, 0, sizeof(*crtc_state));
16772 		crtc_state->base.crtc = &crtc->base;
16773 
16774 		crtc_state->base.active = crtc_state->base.enable =
16775 			dev_priv->display.get_pipe_config(crtc, crtc_state);
16776 
16777 		crtc->base.enabled = crtc_state->base.enable;
16778 		crtc->active = crtc_state->base.active;
16779 
16780 		if (crtc_state->base.active)
16781 			dev_priv->active_crtcs |= 1 << crtc->pipe;
16782 
16783 		readout_plane_state(crtc);
16784 
16785 		DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16786 			      crtc->base.base.id, crtc->base.name,
16787 			      crtc->active ? "enabled" : "disabled");
16788 	}
16789 
16790 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16791 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16792 
16793 		pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16794 						  &pll->config.hw_state);
16795 		pll->config.crtc_mask = 0;
16796 		for_each_intel_crtc(dev, crtc) {
16797 			if (crtc->active && crtc->config->shared_dpll == pll)
16798 				pll->config.crtc_mask |= 1 << crtc->pipe;
16799 		}
16800 		pll->active_mask = pll->config.crtc_mask;
16801 
16802 		DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16803 			      pll->name, pll->config.crtc_mask, pll->on);
16804 	}
16805 
16806 	for_each_intel_encoder(dev, encoder) {
16807 		pipe = 0;
16808 
16809 		if (encoder->get_hw_state(encoder, &pipe)) {
16810 			crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16811 			encoder->base.crtc = &crtc->base;
16812 			crtc->config->output_types |= 1 << encoder->type;
16813 			encoder->get_config(encoder, crtc->config);
16814 		} else {
16815 			encoder->base.crtc = NULL;
16816 		}
16817 
16818 		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16819 			      encoder->base.base.id,
16820 			      encoder->base.name,
16821 			      encoder->base.crtc ? "enabled" : "disabled",
16822 			      pipe_name(pipe));
16823 	}
16824 
16825 	for_each_intel_connector(dev, connector) {
16826 		if (connector->get_hw_state(connector)) {
16827 			connector->base.dpms = DRM_MODE_DPMS_ON;
16828 
16829 			encoder = connector->encoder;
16830 			connector->base.encoder = &encoder->base;
16831 
16832 			if (encoder->base.crtc &&
16833 			    encoder->base.crtc->state->active) {
16834 				/*
16835 				 * This has to be done during hardware readout
16836 				 * because anything calling .crtc_disable may
16837 				 * rely on the connector_mask being accurate.
16838 				 */
16839 				encoder->base.crtc->state->connector_mask |=
16840 					1 << drm_connector_index(&connector->base);
16841 				encoder->base.crtc->state->encoder_mask |=
16842 					1 << drm_encoder_index(&encoder->base);
16843 			}
16844 
16845 		} else {
16846 			connector->base.dpms = DRM_MODE_DPMS_OFF;
16847 			connector->base.encoder = NULL;
16848 		}
16849 		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16850 			      connector->base.base.id,
16851 			      connector->base.name,
16852 			      connector->base.encoder ? "enabled" : "disabled");
16853 	}
16854 
16855 	for_each_intel_crtc(dev, crtc) {
16856 		int pixclk = 0;
16857 
16858 		crtc->base.hwmode = crtc->config->base.adjusted_mode;
16859 
16860 		memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16861 		if (crtc->base.state->active) {
16862 			intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16863 			intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16864 			WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16865 
16866 			/*
16867 			 * The initial mode needs to be set in order to keep
16868 			 * the atomic core happy. It wants a valid mode if the
16869 			 * crtc's enabled, so we do the above call.
16870 			 *
16871 			 * At this point some state updated by the connectors
16872 			 * in their ->detect() callback has not run yet, so
16873 			 * no recalculation can be done yet.
16874 			 *
16875 			 * Even if we could do a recalculation and modeset
16876 			 * right now it would cause a double modeset if
16877 			 * fbdev or userspace chooses a different initial mode.
16878 			 *
16879 			 * If that happens, someone indicated they wanted a
16880 			 * mode change, which means it's safe to do a full
16881 			 * recalculation.
16882 			 */
16883 			crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16884 
16885 			if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
16886 				pixclk = ilk_pipe_pixel_rate(crtc->config);
16887 			else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16888 				pixclk = crtc->config->base.adjusted_mode.crtc_clock;
16889 			else
16890 				WARN_ON(dev_priv->display.modeset_calc_cdclk);
16891 
16892 			/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16893 			if (IS_BROADWELL(dev_priv) && crtc->config->ips_enabled)
16894 				pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16895 
16896 			drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16897 			update_scanline_offset(crtc);
16898 		}
16899 
16900 		dev_priv->min_pixclk[crtc->pipe] = pixclk;
16901 
16902 		intel_pipe_config_sanity_check(dev_priv, crtc->config);
16903 	}
16904 }
16905 
16906 /* Scan out the current hw modeset state,
16907  * and sanitizes it to the current state
16908  */
16909 static void
intel_modeset_setup_hw_state(struct drm_device * dev)16910 intel_modeset_setup_hw_state(struct drm_device *dev)
16911 {
16912 	struct drm_i915_private *dev_priv = to_i915(dev);
16913 	enum pipe pipe;
16914 	struct intel_crtc *crtc;
16915 	struct intel_encoder *encoder;
16916 	int i;
16917 
16918 	intel_modeset_readout_hw_state(dev);
16919 
16920 	/* HW state is read out, now we need to sanitize this mess. */
16921 	for_each_intel_encoder(dev, encoder) {
16922 		intel_sanitize_encoder(encoder);
16923 	}
16924 
16925 	for_each_pipe(dev_priv, pipe) {
16926 		crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
16927 		intel_sanitize_crtc(crtc);
16928 		intel_dump_pipe_config(crtc, crtc->config,
16929 				       "[setup_hw_state]");
16930 	}
16931 
16932 	intel_modeset_update_connector_atomic_state(dev);
16933 
16934 	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16935 		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16936 
16937 		if (!pll->on || pll->active_mask)
16938 			continue;
16939 
16940 		DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16941 
16942 		pll->funcs.disable(dev_priv, pll);
16943 		pll->on = false;
16944 	}
16945 
16946 	if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
16947 		vlv_wm_get_hw_state(dev);
16948 	else if (IS_GEN9(dev))
16949 		skl_wm_get_hw_state(dev);
16950 	else if (HAS_PCH_SPLIT(dev))
16951 		ilk_wm_get_hw_state(dev);
16952 
16953 	for_each_intel_crtc(dev, crtc) {
16954 		unsigned long put_domains;
16955 
16956 		put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
16957 		if (WARN_ON(put_domains))
16958 			modeset_put_power_domains(dev_priv, put_domains);
16959 	}
16960 	intel_display_set_init_power(dev_priv, false);
16961 
16962 	intel_fbc_init_pipe_state(dev_priv);
16963 }
16964 
intel_display_resume(struct drm_device * dev)16965 void intel_display_resume(struct drm_device *dev)
16966 {
16967 	struct drm_i915_private *dev_priv = to_i915(dev);
16968 	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
16969 	struct drm_modeset_acquire_ctx ctx;
16970 	int ret;
16971 
16972 	dev_priv->modeset_restore_state = NULL;
16973 	if (state)
16974 		state->acquire_ctx = &ctx;
16975 
16976 	/*
16977 	 * This is a cludge because with real atomic modeset mode_config.mutex
16978 	 * won't be taken. Unfortunately some probed state like
16979 	 * audio_codec_enable is still protected by mode_config.mutex, so lock
16980 	 * it here for now.
16981 	 */
16982 	mutex_lock(&dev->mode_config.mutex);
16983 	drm_modeset_acquire_init(&ctx, 0);
16984 
16985 	while (1) {
16986 		ret = drm_modeset_lock_all_ctx(dev, &ctx);
16987 		if (ret != -EDEADLK)
16988 			break;
16989 
16990 		drm_modeset_backoff(&ctx);
16991 	}
16992 
16993 	if (!ret)
16994 		ret = __intel_display_resume(dev, state);
16995 
16996 	drm_modeset_drop_locks(&ctx);
16997 	drm_modeset_acquire_fini(&ctx);
16998 	mutex_unlock(&dev->mode_config.mutex);
16999 
17000 	if (ret) {
17001 		DRM_ERROR("Restoring old state failed with %i\n", ret);
17002 		drm_atomic_state_free(state);
17003 	}
17004 }
17005 
intel_modeset_gem_init(struct drm_device * dev)17006 void intel_modeset_gem_init(struct drm_device *dev)
17007 {
17008 	struct drm_i915_private *dev_priv = to_i915(dev);
17009 	struct drm_crtc *c;
17010 	struct drm_i915_gem_object *obj;
17011 
17012 	intel_init_gt_powersave(dev_priv);
17013 
17014 	intel_modeset_init_hw(dev);
17015 
17016 	intel_setup_overlay(dev_priv);
17017 
17018 	/*
17019 	 * Make sure any fbs we allocated at startup are properly
17020 	 * pinned & fenced.  When we do the allocation it's too early
17021 	 * for this.
17022 	 */
17023 	for_each_crtc(dev, c) {
17024 		struct i915_vma *vma;
17025 
17026 		obj = intel_fb_obj(c->primary->fb);
17027 		if (obj == NULL)
17028 			continue;
17029 
17030 		mutex_lock(&dev->struct_mutex);
17031 		vma = intel_pin_and_fence_fb_obj(c->primary->fb,
17032 						 c->primary->state->rotation);
17033 		mutex_unlock(&dev->struct_mutex);
17034 		if (IS_ERR(vma)) {
17035 			DRM_ERROR("failed to pin boot fb on pipe %d\n",
17036 				  to_intel_crtc(c)->pipe);
17037 			drm_framebuffer_unreference(c->primary->fb);
17038 			c->primary->fb = NULL;
17039 			c->primary->crtc = c->primary->state->crtc = NULL;
17040 			update_state_fb(c->primary);
17041 			c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
17042 		}
17043 	}
17044 }
17045 
intel_connector_register(struct drm_connector * connector)17046 int intel_connector_register(struct drm_connector *connector)
17047 {
17048 	struct intel_connector *intel_connector = to_intel_connector(connector);
17049 	int ret;
17050 
17051 	ret = intel_backlight_device_register(intel_connector);
17052 	if (ret)
17053 		goto err;
17054 
17055 	return 0;
17056 
17057 err:
17058 	return ret;
17059 }
17060 
intel_connector_unregister(struct drm_connector * connector)17061 void intel_connector_unregister(struct drm_connector *connector)
17062 {
17063 	struct intel_connector *intel_connector = to_intel_connector(connector);
17064 
17065 	intel_backlight_device_unregister(intel_connector);
17066 	intel_panel_destroy_backlight(connector);
17067 }
17068 
intel_modeset_cleanup(struct drm_device * dev)17069 void intel_modeset_cleanup(struct drm_device *dev)
17070 {
17071 	struct drm_i915_private *dev_priv = to_i915(dev);
17072 
17073 	intel_disable_gt_powersave(dev_priv);
17074 
17075 	/*
17076 	 * Interrupts and polling as the first thing to avoid creating havoc.
17077 	 * Too much stuff here (turning of connectors, ...) would
17078 	 * experience fancy races otherwise.
17079 	 */
17080 	intel_irq_uninstall(dev_priv);
17081 
17082 	/*
17083 	 * Due to the hpd irq storm handling the hotplug work can re-arm the
17084 	 * poll handlers. Hence disable polling after hpd handling is shut down.
17085 	 */
17086 	drm_kms_helper_poll_fini(dev);
17087 
17088 	intel_unregister_dsm_handler();
17089 
17090 	intel_fbc_global_disable(dev_priv);
17091 
17092 	/* flush any delayed tasks or pending work */
17093 	flush_scheduled_work();
17094 
17095 	drm_mode_config_cleanup(dev);
17096 
17097 	intel_cleanup_overlay(dev_priv);
17098 
17099 	intel_cleanup_gt_powersave(dev_priv);
17100 
17101 	intel_teardown_gmbus(dev);
17102 }
17103 
intel_connector_attach_encoder(struct intel_connector * connector,struct intel_encoder * encoder)17104 void intel_connector_attach_encoder(struct intel_connector *connector,
17105 				    struct intel_encoder *encoder)
17106 {
17107 	connector->encoder = encoder;
17108 	drm_mode_connector_attach_encoder(&connector->base,
17109 					  &encoder->base);
17110 }
17111 
17112 /*
17113  * set vga decode state - true == enable VGA decode
17114  */
intel_modeset_vga_set_state(struct drm_device * dev,bool state)17115 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
17116 {
17117 	struct drm_i915_private *dev_priv = to_i915(dev);
17118 	unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
17119 	u16 gmch_ctrl;
17120 
17121 	if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17122 		DRM_ERROR("failed to read control word\n");
17123 		return -EIO;
17124 	}
17125 
17126 	if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17127 		return 0;
17128 
17129 	if (state)
17130 		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17131 	else
17132 		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
17133 
17134 	if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17135 		DRM_ERROR("failed to write control word\n");
17136 		return -EIO;
17137 	}
17138 
17139 	return 0;
17140 }
17141 
17142 struct intel_display_error_state {
17143 
17144 	u32 power_well_driver;
17145 
17146 	int num_transcoders;
17147 
17148 	struct intel_cursor_error_state {
17149 		u32 control;
17150 		u32 position;
17151 		u32 base;
17152 		u32 size;
17153 	} cursor[I915_MAX_PIPES];
17154 
17155 	struct intel_pipe_error_state {
17156 		bool power_domain_on;
17157 		u32 source;
17158 		u32 stat;
17159 	} pipe[I915_MAX_PIPES];
17160 
17161 	struct intel_plane_error_state {
17162 		u32 control;
17163 		u32 stride;
17164 		u32 size;
17165 		u32 pos;
17166 		u32 addr;
17167 		u32 surface;
17168 		u32 tile_offset;
17169 	} plane[I915_MAX_PIPES];
17170 
17171 	struct intel_transcoder_error_state {
17172 		bool power_domain_on;
17173 		enum transcoder cpu_transcoder;
17174 
17175 		u32 conf;
17176 
17177 		u32 htotal;
17178 		u32 hblank;
17179 		u32 hsync;
17180 		u32 vtotal;
17181 		u32 vblank;
17182 		u32 vsync;
17183 	} transcoder[4];
17184 };
17185 
17186 struct intel_display_error_state *
intel_display_capture_error_state(struct drm_i915_private * dev_priv)17187 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17188 {
17189 	struct intel_display_error_state *error;
17190 	int transcoders[] = {
17191 		TRANSCODER_A,
17192 		TRANSCODER_B,
17193 		TRANSCODER_C,
17194 		TRANSCODER_EDP,
17195 	};
17196 	int i;
17197 
17198 	if (INTEL_INFO(dev_priv)->num_pipes == 0)
17199 		return NULL;
17200 
17201 	error = kzalloc(sizeof(*error), GFP_ATOMIC);
17202 	if (error == NULL)
17203 		return NULL;
17204 
17205 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17206 		error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
17207 
17208 	for_each_pipe(dev_priv, i) {
17209 		error->pipe[i].power_domain_on =
17210 			__intel_display_power_is_enabled(dev_priv,
17211 							 POWER_DOMAIN_PIPE(i));
17212 		if (!error->pipe[i].power_domain_on)
17213 			continue;
17214 
17215 		error->cursor[i].control = I915_READ(CURCNTR(i));
17216 		error->cursor[i].position = I915_READ(CURPOS(i));
17217 		error->cursor[i].base = I915_READ(CURBASE(i));
17218 
17219 		error->plane[i].control = I915_READ(DSPCNTR(i));
17220 		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17221 		if (INTEL_GEN(dev_priv) <= 3) {
17222 			error->plane[i].size = I915_READ(DSPSIZE(i));
17223 			error->plane[i].pos = I915_READ(DSPPOS(i));
17224 		}
17225 		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17226 			error->plane[i].addr = I915_READ(DSPADDR(i));
17227 		if (INTEL_GEN(dev_priv) >= 4) {
17228 			error->plane[i].surface = I915_READ(DSPSURF(i));
17229 			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17230 		}
17231 
17232 		error->pipe[i].source = I915_READ(PIPESRC(i));
17233 
17234 		if (HAS_GMCH_DISPLAY(dev_priv))
17235 			error->pipe[i].stat = I915_READ(PIPESTAT(i));
17236 	}
17237 
17238 	/* Note: this does not include DSI transcoders. */
17239 	error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
17240 	if (HAS_DDI(dev_priv))
17241 		error->num_transcoders++; /* Account for eDP. */
17242 
17243 	for (i = 0; i < error->num_transcoders; i++) {
17244 		enum transcoder cpu_transcoder = transcoders[i];
17245 
17246 		error->transcoder[i].power_domain_on =
17247 			__intel_display_power_is_enabled(dev_priv,
17248 				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17249 		if (!error->transcoder[i].power_domain_on)
17250 			continue;
17251 
17252 		error->transcoder[i].cpu_transcoder = cpu_transcoder;
17253 
17254 		error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17255 		error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17256 		error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17257 		error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17258 		error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17259 		error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17260 		error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17261 	}
17262 
17263 	return error;
17264 }
17265 
17266 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17267 
17268 void
intel_display_print_error_state(struct drm_i915_error_state_buf * m,struct drm_device * dev,struct intel_display_error_state * error)17269 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17270 				struct drm_device *dev,
17271 				struct intel_display_error_state *error)
17272 {
17273 	struct drm_i915_private *dev_priv = to_i915(dev);
17274 	int i;
17275 
17276 	if (!error)
17277 		return;
17278 
17279 	err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
17280 	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
17281 		err_printf(m, "PWR_WELL_CTL2: %08x\n",
17282 			   error->power_well_driver);
17283 	for_each_pipe(dev_priv, i) {
17284 		err_printf(m, "Pipe [%d]:\n", i);
17285 		err_printf(m, "  Power: %s\n",
17286 			   onoff(error->pipe[i].power_domain_on));
17287 		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
17288 		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
17289 
17290 		err_printf(m, "Plane [%d]:\n", i);
17291 		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
17292 		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
17293 		if (INTEL_INFO(dev)->gen <= 3) {
17294 			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
17295 			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
17296 		}
17297 		if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
17298 			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
17299 		if (INTEL_INFO(dev)->gen >= 4) {
17300 			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
17301 			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
17302 		}
17303 
17304 		err_printf(m, "Cursor [%d]:\n", i);
17305 		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
17306 		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
17307 		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
17308 	}
17309 
17310 	for (i = 0; i < error->num_transcoders; i++) {
17311 		err_printf(m, "CPU transcoder: %s\n",
17312 			   transcoder_name(error->transcoder[i].cpu_transcoder));
17313 		err_printf(m, "  Power: %s\n",
17314 			   onoff(error->transcoder[i].power_domain_on));
17315 		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
17316 		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
17317 		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
17318 		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
17319 		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
17320 		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
17321 		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
17322 	}
17323 }
17324