• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>		/* init_rootfs */
20 #include <linux/fs_struct.h>	/* get_fs_root et.al. */
21 #include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29 
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
32 
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
37 
38 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)39 static int __init set_mhash_entries(char *str)
40 {
41 	if (!str)
42 		return 0;
43 	mhash_entries = simple_strtoul(str, &str, 0);
44 	return 1;
45 }
46 __setup("mhash_entries=", set_mhash_entries);
47 
48 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)49 static int __init set_mphash_entries(char *str)
50 {
51 	if (!str)
52 		return 0;
53 	mphash_entries = simple_strtoul(str, &str, 0);
54 	return 1;
55 }
56 __setup("mphash_entries=", set_mphash_entries);
57 
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
64 
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
69 
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
73 
74 /*
75  * vfsmount lock may be taken for read to prevent changes to the
76  * vfsmount hash, ie. during mountpoint lookups or walking back
77  * up the tree.
78  *
79  * It should be taken for write in all cases where the vfsmount
80  * tree or hash is modified or when a vfsmount structure is modified.
81  */
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83 
m_hash(struct vfsmount * mnt,struct dentry * dentry)84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85 {
86 	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 	tmp = tmp + (tmp >> m_hash_shift);
89 	return &mount_hashtable[tmp & m_hash_mask];
90 }
91 
mp_hash(struct dentry * dentry)92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
93 {
94 	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 	tmp = tmp + (tmp >> mp_hash_shift);
96 	return &mountpoint_hashtable[tmp & mp_hash_mask];
97 }
98 
99 /*
100  * allocation is serialized by namespace_sem, but we need the spinlock to
101  * serialize with freeing.
102  */
mnt_alloc_id(struct mount * mnt)103 static int mnt_alloc_id(struct mount *mnt)
104 {
105 	int res;
106 
107 retry:
108 	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
109 	spin_lock(&mnt_id_lock);
110 	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
111 	if (!res)
112 		mnt_id_start = mnt->mnt_id + 1;
113 	spin_unlock(&mnt_id_lock);
114 	if (res == -EAGAIN)
115 		goto retry;
116 
117 	return res;
118 }
119 
mnt_free_id(struct mount * mnt)120 static void mnt_free_id(struct mount *mnt)
121 {
122 	int id = mnt->mnt_id;
123 	spin_lock(&mnt_id_lock);
124 	ida_remove(&mnt_id_ida, id);
125 	if (mnt_id_start > id)
126 		mnt_id_start = id;
127 	spin_unlock(&mnt_id_lock);
128 }
129 
130 /*
131  * Allocate a new peer group ID
132  *
133  * mnt_group_ida is protected by namespace_sem
134  */
mnt_alloc_group_id(struct mount * mnt)135 static int mnt_alloc_group_id(struct mount *mnt)
136 {
137 	int res;
138 
139 	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
140 		return -ENOMEM;
141 
142 	res = ida_get_new_above(&mnt_group_ida,
143 				mnt_group_start,
144 				&mnt->mnt_group_id);
145 	if (!res)
146 		mnt_group_start = mnt->mnt_group_id + 1;
147 
148 	return res;
149 }
150 
151 /*
152  * Release a peer group ID
153  */
mnt_release_group_id(struct mount * mnt)154 void mnt_release_group_id(struct mount *mnt)
155 {
156 	int id = mnt->mnt_group_id;
157 	ida_remove(&mnt_group_ida, id);
158 	if (mnt_group_start > id)
159 		mnt_group_start = id;
160 	mnt->mnt_group_id = 0;
161 }
162 
163 /*
164  * vfsmount lock must be held for read
165  */
mnt_add_count(struct mount * mnt,int n)166 static inline void mnt_add_count(struct mount *mnt, int n)
167 {
168 #ifdef CONFIG_SMP
169 	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 	preempt_disable();
172 	mnt->mnt_count += n;
173 	preempt_enable();
174 #endif
175 }
176 
177 /*
178  * vfsmount lock must be held for write
179  */
mnt_get_count(struct mount * mnt)180 unsigned int mnt_get_count(struct mount *mnt)
181 {
182 #ifdef CONFIG_SMP
183 	unsigned int count = 0;
184 	int cpu;
185 
186 	for_each_possible_cpu(cpu) {
187 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
188 	}
189 
190 	return count;
191 #else
192 	return mnt->mnt_count;
193 #endif
194 }
195 
drop_mountpoint(struct fs_pin * p)196 static void drop_mountpoint(struct fs_pin *p)
197 {
198 	struct mount *m = container_of(p, struct mount, mnt_umount);
199 	dput(m->mnt_ex_mountpoint);
200 	pin_remove(p);
201 	mntput(&m->mnt);
202 }
203 
alloc_vfsmnt(const char * name)204 static struct mount *alloc_vfsmnt(const char *name)
205 {
206 	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 	if (mnt) {
208 		int err;
209 
210 		err = mnt_alloc_id(mnt);
211 		if (err)
212 			goto out_free_cache;
213 
214 		if (name) {
215 			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
216 			if (!mnt->mnt_devname)
217 				goto out_free_id;
218 		}
219 
220 #ifdef CONFIG_SMP
221 		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 		if (!mnt->mnt_pcp)
223 			goto out_free_devname;
224 
225 		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
226 #else
227 		mnt->mnt_count = 1;
228 		mnt->mnt_writers = 0;
229 #endif
230 		mnt->mnt.data = NULL;
231 
232 		INIT_HLIST_NODE(&mnt->mnt_hash);
233 		INIT_LIST_HEAD(&mnt->mnt_child);
234 		INIT_LIST_HEAD(&mnt->mnt_mounts);
235 		INIT_LIST_HEAD(&mnt->mnt_list);
236 		INIT_LIST_HEAD(&mnt->mnt_expire);
237 		INIT_LIST_HEAD(&mnt->mnt_share);
238 		INIT_LIST_HEAD(&mnt->mnt_slave_list);
239 		INIT_LIST_HEAD(&mnt->mnt_slave);
240 		INIT_HLIST_NODE(&mnt->mnt_mp_list);
241 		INIT_LIST_HEAD(&mnt->mnt_umounting);
242 #ifdef CONFIG_FSNOTIFY
243 		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
244 #endif
245 		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
246 	}
247 	return mnt;
248 
249 #ifdef CONFIG_SMP
250 out_free_devname:
251 	kfree_const(mnt->mnt_devname);
252 #endif
253 out_free_id:
254 	mnt_free_id(mnt);
255 out_free_cache:
256 	kmem_cache_free(mnt_cache, mnt);
257 	return NULL;
258 }
259 
260 /*
261  * Most r/o checks on a fs are for operations that take
262  * discrete amounts of time, like a write() or unlink().
263  * We must keep track of when those operations start
264  * (for permission checks) and when they end, so that
265  * we can determine when writes are able to occur to
266  * a filesystem.
267  */
268 /*
269  * __mnt_is_readonly: check whether a mount is read-only
270  * @mnt: the mount to check for its write status
271  *
272  * This shouldn't be used directly ouside of the VFS.
273  * It does not guarantee that the filesystem will stay
274  * r/w, just that it is right *now*.  This can not and
275  * should not be used in place of IS_RDONLY(inode).
276  * mnt_want/drop_write() will _keep_ the filesystem
277  * r/w.
278  */
__mnt_is_readonly(struct vfsmount * mnt)279 int __mnt_is_readonly(struct vfsmount *mnt)
280 {
281 	if (mnt->mnt_flags & MNT_READONLY)
282 		return 1;
283 	if (mnt->mnt_sb->s_flags & MS_RDONLY)
284 		return 1;
285 	return 0;
286 }
287 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
288 
mnt_inc_writers(struct mount * mnt)289 static inline void mnt_inc_writers(struct mount *mnt)
290 {
291 #ifdef CONFIG_SMP
292 	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
293 #else
294 	mnt->mnt_writers++;
295 #endif
296 }
297 
mnt_dec_writers(struct mount * mnt)298 static inline void mnt_dec_writers(struct mount *mnt)
299 {
300 #ifdef CONFIG_SMP
301 	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
302 #else
303 	mnt->mnt_writers--;
304 #endif
305 }
306 
mnt_get_writers(struct mount * mnt)307 static unsigned int mnt_get_writers(struct mount *mnt)
308 {
309 #ifdef CONFIG_SMP
310 	unsigned int count = 0;
311 	int cpu;
312 
313 	for_each_possible_cpu(cpu) {
314 		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
315 	}
316 
317 	return count;
318 #else
319 	return mnt->mnt_writers;
320 #endif
321 }
322 
mnt_is_readonly(struct vfsmount * mnt)323 static int mnt_is_readonly(struct vfsmount *mnt)
324 {
325 	if (mnt->mnt_sb->s_readonly_remount)
326 		return 1;
327 	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
328 	smp_rmb();
329 	return __mnt_is_readonly(mnt);
330 }
331 
332 /*
333  * Most r/o & frozen checks on a fs are for operations that take discrete
334  * amounts of time, like a write() or unlink().  We must keep track of when
335  * those operations start (for permission checks) and when they end, so that we
336  * can determine when writes are able to occur to a filesystem.
337  */
338 /**
339  * __mnt_want_write - get write access to a mount without freeze protection
340  * @m: the mount on which to take a write
341  *
342  * This tells the low-level filesystem that a write is about to be performed to
343  * it, and makes sure that writes are allowed (mnt it read-write) before
344  * returning success. This operation does not protect against filesystem being
345  * frozen. When the write operation is finished, __mnt_drop_write() must be
346  * called. This is effectively a refcount.
347  */
__mnt_want_write(struct vfsmount * m)348 int __mnt_want_write(struct vfsmount *m)
349 {
350 	struct mount *mnt = real_mount(m);
351 	int ret = 0;
352 
353 	preempt_disable();
354 	mnt_inc_writers(mnt);
355 	/*
356 	 * The store to mnt_inc_writers must be visible before we pass
357 	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
358 	 * incremented count after it has set MNT_WRITE_HOLD.
359 	 */
360 	smp_mb();
361 	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
362 		cpu_relax();
363 	/*
364 	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
365 	 * be set to match its requirements. So we must not load that until
366 	 * MNT_WRITE_HOLD is cleared.
367 	 */
368 	smp_rmb();
369 	if (mnt_is_readonly(m)) {
370 		mnt_dec_writers(mnt);
371 		ret = -EROFS;
372 	}
373 	preempt_enable();
374 
375 	return ret;
376 }
377 
378 /**
379  * mnt_want_write - get write access to a mount
380  * @m: the mount on which to take a write
381  *
382  * This tells the low-level filesystem that a write is about to be performed to
383  * it, and makes sure that writes are allowed (mount is read-write, filesystem
384  * is not frozen) before returning success.  When the write operation is
385  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
386  */
mnt_want_write(struct vfsmount * m)387 int mnt_want_write(struct vfsmount *m)
388 {
389 	int ret;
390 
391 	sb_start_write(m->mnt_sb);
392 	ret = __mnt_want_write(m);
393 	if (ret)
394 		sb_end_write(m->mnt_sb);
395 	return ret;
396 }
397 EXPORT_SYMBOL_GPL(mnt_want_write);
398 
399 /**
400  * mnt_clone_write - get write access to a mount
401  * @mnt: the mount on which to take a write
402  *
403  * This is effectively like mnt_want_write, except
404  * it must only be used to take an extra write reference
405  * on a mountpoint that we already know has a write reference
406  * on it. This allows some optimisation.
407  *
408  * After finished, mnt_drop_write must be called as usual to
409  * drop the reference.
410  */
mnt_clone_write(struct vfsmount * mnt)411 int mnt_clone_write(struct vfsmount *mnt)
412 {
413 	/* superblock may be r/o */
414 	if (__mnt_is_readonly(mnt))
415 		return -EROFS;
416 	preempt_disable();
417 	mnt_inc_writers(real_mount(mnt));
418 	preempt_enable();
419 	return 0;
420 }
421 EXPORT_SYMBOL_GPL(mnt_clone_write);
422 
423 /**
424  * __mnt_want_write_file - get write access to a file's mount
425  * @file: the file who's mount on which to take a write
426  *
427  * This is like __mnt_want_write, but it takes a file and can
428  * do some optimisations if the file is open for write already
429  */
__mnt_want_write_file(struct file * file)430 int __mnt_want_write_file(struct file *file)
431 {
432 	if (!(file->f_mode & FMODE_WRITER))
433 		return __mnt_want_write(file->f_path.mnt);
434 	else
435 		return mnt_clone_write(file->f_path.mnt);
436 }
437 
438 /**
439  * mnt_want_write_file - get write access to a file's mount
440  * @file: the file who's mount on which to take a write
441  *
442  * This is like mnt_want_write, but it takes a file and can
443  * do some optimisations if the file is open for write already
444  */
mnt_want_write_file(struct file * file)445 int mnt_want_write_file(struct file *file)
446 {
447 	int ret;
448 
449 	sb_start_write(file->f_path.mnt->mnt_sb);
450 	ret = __mnt_want_write_file(file);
451 	if (ret)
452 		sb_end_write(file->f_path.mnt->mnt_sb);
453 	return ret;
454 }
455 EXPORT_SYMBOL_GPL(mnt_want_write_file);
456 
457 /**
458  * __mnt_drop_write - give up write access to a mount
459  * @mnt: the mount on which to give up write access
460  *
461  * Tells the low-level filesystem that we are done
462  * performing writes to it.  Must be matched with
463  * __mnt_want_write() call above.
464  */
__mnt_drop_write(struct vfsmount * mnt)465 void __mnt_drop_write(struct vfsmount *mnt)
466 {
467 	preempt_disable();
468 	mnt_dec_writers(real_mount(mnt));
469 	preempt_enable();
470 }
471 
472 /**
473  * mnt_drop_write - give up write access to a mount
474  * @mnt: the mount on which to give up write access
475  *
476  * Tells the low-level filesystem that we are done performing writes to it and
477  * also allows filesystem to be frozen again.  Must be matched with
478  * mnt_want_write() call above.
479  */
mnt_drop_write(struct vfsmount * mnt)480 void mnt_drop_write(struct vfsmount *mnt)
481 {
482 	__mnt_drop_write(mnt);
483 	sb_end_write(mnt->mnt_sb);
484 }
485 EXPORT_SYMBOL_GPL(mnt_drop_write);
486 
__mnt_drop_write_file(struct file * file)487 void __mnt_drop_write_file(struct file *file)
488 {
489 	__mnt_drop_write(file->f_path.mnt);
490 }
491 
mnt_drop_write_file(struct file * file)492 void mnt_drop_write_file(struct file *file)
493 {
494 	mnt_drop_write(file->f_path.mnt);
495 }
496 EXPORT_SYMBOL(mnt_drop_write_file);
497 
mnt_make_readonly(struct mount * mnt)498 static int mnt_make_readonly(struct mount *mnt)
499 {
500 	int ret = 0;
501 
502 	lock_mount_hash();
503 	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
504 	/*
505 	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
506 	 * should be visible before we do.
507 	 */
508 	smp_mb();
509 
510 	/*
511 	 * With writers on hold, if this value is zero, then there are
512 	 * definitely no active writers (although held writers may subsequently
513 	 * increment the count, they'll have to wait, and decrement it after
514 	 * seeing MNT_READONLY).
515 	 *
516 	 * It is OK to have counter incremented on one CPU and decremented on
517 	 * another: the sum will add up correctly. The danger would be when we
518 	 * sum up each counter, if we read a counter before it is incremented,
519 	 * but then read another CPU's count which it has been subsequently
520 	 * decremented from -- we would see more decrements than we should.
521 	 * MNT_WRITE_HOLD protects against this scenario, because
522 	 * mnt_want_write first increments count, then smp_mb, then spins on
523 	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
524 	 * we're counting up here.
525 	 */
526 	if (mnt_get_writers(mnt) > 0)
527 		ret = -EBUSY;
528 	else
529 		mnt->mnt.mnt_flags |= MNT_READONLY;
530 	/*
531 	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
532 	 * that become unheld will see MNT_READONLY.
533 	 */
534 	smp_wmb();
535 	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
536 	unlock_mount_hash();
537 	return ret;
538 }
539 
__mnt_unmake_readonly(struct mount * mnt)540 static void __mnt_unmake_readonly(struct mount *mnt)
541 {
542 	lock_mount_hash();
543 	mnt->mnt.mnt_flags &= ~MNT_READONLY;
544 	unlock_mount_hash();
545 }
546 
sb_prepare_remount_readonly(struct super_block * sb)547 int sb_prepare_remount_readonly(struct super_block *sb)
548 {
549 	struct mount *mnt;
550 	int err = 0;
551 
552 	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
553 	if (atomic_long_read(&sb->s_remove_count))
554 		return -EBUSY;
555 
556 	lock_mount_hash();
557 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
558 		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
559 			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
560 			smp_mb();
561 			if (mnt_get_writers(mnt) > 0) {
562 				err = -EBUSY;
563 				break;
564 			}
565 		}
566 	}
567 	if (!err && atomic_long_read(&sb->s_remove_count))
568 		err = -EBUSY;
569 
570 	if (!err) {
571 		sb->s_readonly_remount = 1;
572 		smp_wmb();
573 	}
574 	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
575 		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
576 			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
577 	}
578 	unlock_mount_hash();
579 
580 	return err;
581 }
582 
free_vfsmnt(struct mount * mnt)583 static void free_vfsmnt(struct mount *mnt)
584 {
585 	kfree(mnt->mnt.data);
586 	kfree_const(mnt->mnt_devname);
587 #ifdef CONFIG_SMP
588 	free_percpu(mnt->mnt_pcp);
589 #endif
590 	kmem_cache_free(mnt_cache, mnt);
591 }
592 
delayed_free_vfsmnt(struct rcu_head * head)593 static void delayed_free_vfsmnt(struct rcu_head *head)
594 {
595 	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
596 }
597 
598 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)599 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
600 {
601 	struct mount *mnt;
602 	if (read_seqretry(&mount_lock, seq))
603 		return 1;
604 	if (bastard == NULL)
605 		return 0;
606 	mnt = real_mount(bastard);
607 	mnt_add_count(mnt, 1);
608 	if (likely(!read_seqretry(&mount_lock, seq)))
609 		return 0;
610 	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
611 		mnt_add_count(mnt, -1);
612 		return 1;
613 	}
614 	return -1;
615 }
616 
617 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)618 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
619 {
620 	int res = __legitimize_mnt(bastard, seq);
621 	if (likely(!res))
622 		return true;
623 	if (unlikely(res < 0)) {
624 		rcu_read_unlock();
625 		mntput(bastard);
626 		rcu_read_lock();
627 	}
628 	return false;
629 }
630 
631 /*
632  * find the first mount at @dentry on vfsmount @mnt.
633  * call under rcu_read_lock()
634  */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)635 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
636 {
637 	struct hlist_head *head = m_hash(mnt, dentry);
638 	struct mount *p;
639 
640 	hlist_for_each_entry_rcu(p, head, mnt_hash)
641 		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
642 			return p;
643 	return NULL;
644 }
645 
646 /*
647  * lookup_mnt - Return the first child mount mounted at path
648  *
649  * "First" means first mounted chronologically.  If you create the
650  * following mounts:
651  *
652  * mount /dev/sda1 /mnt
653  * mount /dev/sda2 /mnt
654  * mount /dev/sda3 /mnt
655  *
656  * Then lookup_mnt() on the base /mnt dentry in the root mount will
657  * return successively the root dentry and vfsmount of /dev/sda1, then
658  * /dev/sda2, then /dev/sda3, then NULL.
659  *
660  * lookup_mnt takes a reference to the found vfsmount.
661  */
lookup_mnt(struct path * path)662 struct vfsmount *lookup_mnt(struct path *path)
663 {
664 	struct mount *child_mnt;
665 	struct vfsmount *m;
666 	unsigned seq;
667 
668 	rcu_read_lock();
669 	do {
670 		seq = read_seqbegin(&mount_lock);
671 		child_mnt = __lookup_mnt(path->mnt, path->dentry);
672 		m = child_mnt ? &child_mnt->mnt : NULL;
673 	} while (!legitimize_mnt(m, seq));
674 	rcu_read_unlock();
675 	return m;
676 }
677 
678 /*
679  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
680  *                         current mount namespace.
681  *
682  * The common case is dentries are not mountpoints at all and that
683  * test is handled inline.  For the slow case when we are actually
684  * dealing with a mountpoint of some kind, walk through all of the
685  * mounts in the current mount namespace and test to see if the dentry
686  * is a mountpoint.
687  *
688  * The mount_hashtable is not usable in the context because we
689  * need to identify all mounts that may be in the current mount
690  * namespace not just a mount that happens to have some specified
691  * parent mount.
692  */
__is_local_mountpoint(struct dentry * dentry)693 bool __is_local_mountpoint(struct dentry *dentry)
694 {
695 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
696 	struct mount *mnt;
697 	bool is_covered = false;
698 
699 	if (!d_mountpoint(dentry))
700 		goto out;
701 
702 	down_read(&namespace_sem);
703 	list_for_each_entry(mnt, &ns->list, mnt_list) {
704 		is_covered = (mnt->mnt_mountpoint == dentry);
705 		if (is_covered)
706 			break;
707 	}
708 	up_read(&namespace_sem);
709 out:
710 	return is_covered;
711 }
712 
lookup_mountpoint(struct dentry * dentry)713 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
714 {
715 	struct hlist_head *chain = mp_hash(dentry);
716 	struct mountpoint *mp;
717 
718 	hlist_for_each_entry(mp, chain, m_hash) {
719 		if (mp->m_dentry == dentry) {
720 			/* might be worth a WARN_ON() */
721 			if (d_unlinked(dentry))
722 				return ERR_PTR(-ENOENT);
723 			mp->m_count++;
724 			return mp;
725 		}
726 	}
727 	return NULL;
728 }
729 
get_mountpoint(struct dentry * dentry)730 static struct mountpoint *get_mountpoint(struct dentry *dentry)
731 {
732 	struct mountpoint *mp, *new = NULL;
733 	int ret;
734 
735 	if (d_mountpoint(dentry)) {
736 mountpoint:
737 		read_seqlock_excl(&mount_lock);
738 		mp = lookup_mountpoint(dentry);
739 		read_sequnlock_excl(&mount_lock);
740 		if (mp)
741 			goto done;
742 	}
743 
744 	if (!new)
745 		new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
746 	if (!new)
747 		return ERR_PTR(-ENOMEM);
748 
749 
750 	/* Exactly one processes may set d_mounted */
751 	ret = d_set_mounted(dentry);
752 
753 	/* Someone else set d_mounted? */
754 	if (ret == -EBUSY)
755 		goto mountpoint;
756 
757 	/* The dentry is not available as a mountpoint? */
758 	mp = ERR_PTR(ret);
759 	if (ret)
760 		goto done;
761 
762 	/* Add the new mountpoint to the hash table */
763 	read_seqlock_excl(&mount_lock);
764 	new->m_dentry = dentry;
765 	new->m_count = 1;
766 	hlist_add_head(&new->m_hash, mp_hash(dentry));
767 	INIT_HLIST_HEAD(&new->m_list);
768 	read_sequnlock_excl(&mount_lock);
769 
770 	mp = new;
771 	new = NULL;
772 done:
773 	kfree(new);
774 	return mp;
775 }
776 
put_mountpoint(struct mountpoint * mp)777 static void put_mountpoint(struct mountpoint *mp)
778 {
779 	if (!--mp->m_count) {
780 		struct dentry *dentry = mp->m_dentry;
781 		BUG_ON(!hlist_empty(&mp->m_list));
782 		spin_lock(&dentry->d_lock);
783 		dentry->d_flags &= ~DCACHE_MOUNTED;
784 		spin_unlock(&dentry->d_lock);
785 		hlist_del(&mp->m_hash);
786 		kfree(mp);
787 	}
788 }
789 
check_mnt(struct mount * mnt)790 static inline int check_mnt(struct mount *mnt)
791 {
792 	return mnt->mnt_ns == current->nsproxy->mnt_ns;
793 }
794 
795 /*
796  * vfsmount lock must be held for write
797  */
touch_mnt_namespace(struct mnt_namespace * ns)798 static void touch_mnt_namespace(struct mnt_namespace *ns)
799 {
800 	if (ns) {
801 		ns->event = ++event;
802 		wake_up_interruptible(&ns->poll);
803 	}
804 }
805 
806 /*
807  * vfsmount lock must be held for write
808  */
__touch_mnt_namespace(struct mnt_namespace * ns)809 static void __touch_mnt_namespace(struct mnt_namespace *ns)
810 {
811 	if (ns && ns->event != event) {
812 		ns->event = event;
813 		wake_up_interruptible(&ns->poll);
814 	}
815 }
816 
817 /*
818  * vfsmount lock must be held for write
819  */
unhash_mnt(struct mount * mnt)820 static void unhash_mnt(struct mount *mnt)
821 {
822 	mnt->mnt_parent = mnt;
823 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
824 	list_del_init(&mnt->mnt_child);
825 	hlist_del_init_rcu(&mnt->mnt_hash);
826 	hlist_del_init(&mnt->mnt_mp_list);
827 	put_mountpoint(mnt->mnt_mp);
828 	mnt->mnt_mp = NULL;
829 }
830 
831 /*
832  * vfsmount lock must be held for write
833  */
detach_mnt(struct mount * mnt,struct path * old_path)834 static void detach_mnt(struct mount *mnt, struct path *old_path)
835 {
836 	old_path->dentry = mnt->mnt_mountpoint;
837 	old_path->mnt = &mnt->mnt_parent->mnt;
838 	unhash_mnt(mnt);
839 }
840 
841 /*
842  * vfsmount lock must be held for write
843  */
umount_mnt(struct mount * mnt)844 static void umount_mnt(struct mount *mnt)
845 {
846 	/* old mountpoint will be dropped when we can do that */
847 	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
848 	unhash_mnt(mnt);
849 }
850 
851 /*
852  * vfsmount lock must be held for write
853  */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)854 void mnt_set_mountpoint(struct mount *mnt,
855 			struct mountpoint *mp,
856 			struct mount *child_mnt)
857 {
858 	mp->m_count++;
859 	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
860 	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
861 	child_mnt->mnt_parent = mnt;
862 	child_mnt->mnt_mp = mp;
863 	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
864 }
865 
__attach_mnt(struct mount * mnt,struct mount * parent)866 static void __attach_mnt(struct mount *mnt, struct mount *parent)
867 {
868 	hlist_add_head_rcu(&mnt->mnt_hash,
869 			   m_hash(&parent->mnt, mnt->mnt_mountpoint));
870 	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
871 }
872 
873 /*
874  * vfsmount lock must be held for write
875  */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)876 static void attach_mnt(struct mount *mnt,
877 			struct mount *parent,
878 			struct mountpoint *mp)
879 {
880 	mnt_set_mountpoint(parent, mp, mnt);
881 	__attach_mnt(mnt, parent);
882 }
883 
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)884 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
885 {
886 	struct mountpoint *old_mp = mnt->mnt_mp;
887 	struct dentry *old_mountpoint = mnt->mnt_mountpoint;
888 	struct mount *old_parent = mnt->mnt_parent;
889 
890 	list_del_init(&mnt->mnt_child);
891 	hlist_del_init(&mnt->mnt_mp_list);
892 	hlist_del_init_rcu(&mnt->mnt_hash);
893 
894 	attach_mnt(mnt, parent, mp);
895 
896 	put_mountpoint(old_mp);
897 
898 	/*
899 	 * Safely avoid even the suggestion this code might sleep or
900 	 * lock the mount hash by taking advantage of the knowledge that
901 	 * mnt_change_mountpoint will not release the final reference
902 	 * to a mountpoint.
903 	 *
904 	 * During mounting, the mount passed in as the parent mount will
905 	 * continue to use the old mountpoint and during unmounting, the
906 	 * old mountpoint will continue to exist until namespace_unlock,
907 	 * which happens well after mnt_change_mountpoint.
908 	 */
909 	spin_lock(&old_mountpoint->d_lock);
910 	old_mountpoint->d_lockref.count--;
911 	spin_unlock(&old_mountpoint->d_lock);
912 
913 	mnt_add_count(old_parent, -1);
914 }
915 
916 /*
917  * vfsmount lock must be held for write
918  */
commit_tree(struct mount * mnt)919 static void commit_tree(struct mount *mnt)
920 {
921 	struct mount *parent = mnt->mnt_parent;
922 	struct mount *m;
923 	LIST_HEAD(head);
924 	struct mnt_namespace *n = parent->mnt_ns;
925 
926 	BUG_ON(parent == mnt);
927 
928 	list_add_tail(&head, &mnt->mnt_list);
929 	list_for_each_entry(m, &head, mnt_list)
930 		m->mnt_ns = n;
931 
932 	list_splice(&head, n->list.prev);
933 
934 	n->mounts += n->pending_mounts;
935 	n->pending_mounts = 0;
936 
937 	__attach_mnt(mnt, parent);
938 	touch_mnt_namespace(n);
939 }
940 
next_mnt(struct mount * p,struct mount * root)941 static struct mount *next_mnt(struct mount *p, struct mount *root)
942 {
943 	struct list_head *next = p->mnt_mounts.next;
944 	if (next == &p->mnt_mounts) {
945 		while (1) {
946 			if (p == root)
947 				return NULL;
948 			next = p->mnt_child.next;
949 			if (next != &p->mnt_parent->mnt_mounts)
950 				break;
951 			p = p->mnt_parent;
952 		}
953 	}
954 	return list_entry(next, struct mount, mnt_child);
955 }
956 
skip_mnt_tree(struct mount * p)957 static struct mount *skip_mnt_tree(struct mount *p)
958 {
959 	struct list_head *prev = p->mnt_mounts.prev;
960 	while (prev != &p->mnt_mounts) {
961 		p = list_entry(prev, struct mount, mnt_child);
962 		prev = p->mnt_mounts.prev;
963 	}
964 	return p;
965 }
966 
967 struct vfsmount *
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)968 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
969 {
970 	struct mount *mnt;
971 	struct dentry *root;
972 
973 	if (!type)
974 		return ERR_PTR(-ENODEV);
975 
976 	mnt = alloc_vfsmnt(name);
977 	if (!mnt)
978 		return ERR_PTR(-ENOMEM);
979 
980 	if (type->alloc_mnt_data) {
981 		mnt->mnt.data = type->alloc_mnt_data();
982 		if (!mnt->mnt.data) {
983 			mnt_free_id(mnt);
984 			free_vfsmnt(mnt);
985 			return ERR_PTR(-ENOMEM);
986 		}
987 	}
988 	if (flags & MS_KERNMOUNT)
989 		mnt->mnt.mnt_flags = MNT_INTERNAL;
990 
991 	root = mount_fs(type, flags, name, &mnt->mnt, data);
992 	if (IS_ERR(root)) {
993 		mnt_free_id(mnt);
994 		free_vfsmnt(mnt);
995 		return ERR_CAST(root);
996 	}
997 
998 	mnt->mnt.mnt_root = root;
999 	mnt->mnt.mnt_sb = root->d_sb;
1000 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1001 	mnt->mnt_parent = mnt;
1002 	lock_mount_hash();
1003 	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1004 	unlock_mount_hash();
1005 	return &mnt->mnt;
1006 }
1007 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1008 
1009 struct vfsmount *
vfs_submount(const struct dentry * mountpoint,struct file_system_type * type,const char * name,void * data)1010 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1011 	     const char *name, void *data)
1012 {
1013 	/* Until it is worked out how to pass the user namespace
1014 	 * through from the parent mount to the submount don't support
1015 	 * unprivileged mounts with submounts.
1016 	 */
1017 	if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1018 		return ERR_PTR(-EPERM);
1019 
1020 	return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
1021 }
1022 EXPORT_SYMBOL_GPL(vfs_submount);
1023 
clone_mnt(struct mount * old,struct dentry * root,int flag)1024 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1025 					int flag)
1026 {
1027 	struct super_block *sb = old->mnt.mnt_sb;
1028 	struct mount *mnt;
1029 	int err;
1030 
1031 	mnt = alloc_vfsmnt(old->mnt_devname);
1032 	if (!mnt)
1033 		return ERR_PTR(-ENOMEM);
1034 
1035 	if (sb->s_op->clone_mnt_data) {
1036 		mnt->mnt.data = sb->s_op->clone_mnt_data(old->mnt.data);
1037 		if (!mnt->mnt.data) {
1038 			err = -ENOMEM;
1039 			goto out_free;
1040 		}
1041 	}
1042 
1043 	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1044 		mnt->mnt_group_id = 0; /* not a peer of original */
1045 	else
1046 		mnt->mnt_group_id = old->mnt_group_id;
1047 
1048 	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1049 		err = mnt_alloc_group_id(mnt);
1050 		if (err)
1051 			goto out_free;
1052 	}
1053 
1054 	mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1055 	mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1056 	/* Don't allow unprivileged users to change mount flags */
1057 	if (flag & CL_UNPRIVILEGED) {
1058 		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1059 
1060 		if (mnt->mnt.mnt_flags & MNT_READONLY)
1061 			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1062 
1063 		if (mnt->mnt.mnt_flags & MNT_NODEV)
1064 			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1065 
1066 		if (mnt->mnt.mnt_flags & MNT_NOSUID)
1067 			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1068 
1069 		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1070 			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1071 	}
1072 
1073 	/* Don't allow unprivileged users to reveal what is under a mount */
1074 	if ((flag & CL_UNPRIVILEGED) &&
1075 	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1076 		mnt->mnt.mnt_flags |= MNT_LOCKED;
1077 
1078 	atomic_inc(&sb->s_active);
1079 	mnt->mnt.mnt_sb = sb;
1080 	mnt->mnt.mnt_root = dget(root);
1081 	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1082 	mnt->mnt_parent = mnt;
1083 	lock_mount_hash();
1084 	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1085 	unlock_mount_hash();
1086 
1087 	if ((flag & CL_SLAVE) ||
1088 	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1089 		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1090 		mnt->mnt_master = old;
1091 		CLEAR_MNT_SHARED(mnt);
1092 	} else if (!(flag & CL_PRIVATE)) {
1093 		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1094 			list_add(&mnt->mnt_share, &old->mnt_share);
1095 		if (IS_MNT_SLAVE(old))
1096 			list_add(&mnt->mnt_slave, &old->mnt_slave);
1097 		mnt->mnt_master = old->mnt_master;
1098 	}
1099 	if (flag & CL_MAKE_SHARED)
1100 		set_mnt_shared(mnt);
1101 
1102 	/* stick the duplicate mount on the same expiry list
1103 	 * as the original if that was on one */
1104 	if (flag & CL_EXPIRE) {
1105 		if (!list_empty(&old->mnt_expire))
1106 			list_add(&mnt->mnt_expire, &old->mnt_expire);
1107 	}
1108 
1109 	return mnt;
1110 
1111  out_free:
1112 	mnt_free_id(mnt);
1113 	free_vfsmnt(mnt);
1114 	return ERR_PTR(err);
1115 }
1116 
cleanup_mnt(struct mount * mnt)1117 static void cleanup_mnt(struct mount *mnt)
1118 {
1119 	/*
1120 	 * This probably indicates that somebody messed
1121 	 * up a mnt_want/drop_write() pair.  If this
1122 	 * happens, the filesystem was probably unable
1123 	 * to make r/w->r/o transitions.
1124 	 */
1125 	/*
1126 	 * The locking used to deal with mnt_count decrement provides barriers,
1127 	 * so mnt_get_writers() below is safe.
1128 	 */
1129 	WARN_ON(mnt_get_writers(mnt));
1130 	if (unlikely(mnt->mnt_pins.first))
1131 		mnt_pin_kill(mnt);
1132 	fsnotify_vfsmount_delete(&mnt->mnt);
1133 	dput(mnt->mnt.mnt_root);
1134 	deactivate_super(mnt->mnt.mnt_sb);
1135 	mnt_free_id(mnt);
1136 	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1137 }
1138 
__cleanup_mnt(struct rcu_head * head)1139 static void __cleanup_mnt(struct rcu_head *head)
1140 {
1141 	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1142 }
1143 
1144 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1145 static void delayed_mntput(struct work_struct *unused)
1146 {
1147 	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1148 	struct llist_node *next;
1149 
1150 	for (; node; node = next) {
1151 		next = llist_next(node);
1152 		cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1153 	}
1154 }
1155 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1156 
mntput_no_expire(struct mount * mnt)1157 static void mntput_no_expire(struct mount *mnt)
1158 {
1159 	rcu_read_lock();
1160 	mnt_add_count(mnt, -1);
1161 	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1162 		rcu_read_unlock();
1163 		return;
1164 	}
1165 	lock_mount_hash();
1166 	if (mnt_get_count(mnt)) {
1167 		rcu_read_unlock();
1168 		unlock_mount_hash();
1169 		return;
1170 	}
1171 	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1172 		rcu_read_unlock();
1173 		unlock_mount_hash();
1174 		return;
1175 	}
1176 	mnt->mnt.mnt_flags |= MNT_DOOMED;
1177 	rcu_read_unlock();
1178 
1179 	list_del(&mnt->mnt_instance);
1180 
1181 	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1182 		struct mount *p, *tmp;
1183 		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1184 			umount_mnt(p);
1185 		}
1186 	}
1187 	unlock_mount_hash();
1188 
1189 	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1190 		struct task_struct *task = current;
1191 		if (likely(!(task->flags & PF_KTHREAD))) {
1192 			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1193 			if (!task_work_add(task, &mnt->mnt_rcu, true))
1194 				return;
1195 		}
1196 		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1197 			schedule_delayed_work(&delayed_mntput_work, 1);
1198 		return;
1199 	}
1200 	cleanup_mnt(mnt);
1201 }
1202 
mntput(struct vfsmount * mnt)1203 void mntput(struct vfsmount *mnt)
1204 {
1205 	if (mnt) {
1206 		struct mount *m = real_mount(mnt);
1207 		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1208 		if (unlikely(m->mnt_expiry_mark))
1209 			m->mnt_expiry_mark = 0;
1210 		mntput_no_expire(m);
1211 	}
1212 }
1213 EXPORT_SYMBOL(mntput);
1214 
mntget(struct vfsmount * mnt)1215 struct vfsmount *mntget(struct vfsmount *mnt)
1216 {
1217 	if (mnt)
1218 		mnt_add_count(real_mount(mnt), 1);
1219 	return mnt;
1220 }
1221 EXPORT_SYMBOL(mntget);
1222 
mnt_clone_internal(struct path * path)1223 struct vfsmount *mnt_clone_internal(struct path *path)
1224 {
1225 	struct mount *p;
1226 	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1227 	if (IS_ERR(p))
1228 		return ERR_CAST(p);
1229 	p->mnt.mnt_flags |= MNT_INTERNAL;
1230 	return &p->mnt;
1231 }
1232 
mangle(struct seq_file * m,const char * s)1233 static inline void mangle(struct seq_file *m, const char *s)
1234 {
1235 	seq_escape(m, s, " \t\n\\");
1236 }
1237 
1238 /*
1239  * Simple .show_options callback for filesystems which don't want to
1240  * implement more complex mount option showing.
1241  *
1242  * See also save_mount_options().
1243  */
generic_show_options(struct seq_file * m,struct dentry * root)1244 int generic_show_options(struct seq_file *m, struct dentry *root)
1245 {
1246 	const char *options;
1247 
1248 	rcu_read_lock();
1249 	options = rcu_dereference(root->d_sb->s_options);
1250 
1251 	if (options != NULL && options[0]) {
1252 		seq_putc(m, ',');
1253 		mangle(m, options);
1254 	}
1255 	rcu_read_unlock();
1256 
1257 	return 0;
1258 }
1259 EXPORT_SYMBOL(generic_show_options);
1260 
1261 /*
1262  * If filesystem uses generic_show_options(), this function should be
1263  * called from the fill_super() callback.
1264  *
1265  * The .remount_fs callback usually needs to be handled in a special
1266  * way, to make sure, that previous options are not overwritten if the
1267  * remount fails.
1268  *
1269  * Also note, that if the filesystem's .remount_fs function doesn't
1270  * reset all options to their default value, but changes only newly
1271  * given options, then the displayed options will not reflect reality
1272  * any more.
1273  */
save_mount_options(struct super_block * sb,char * options)1274 void save_mount_options(struct super_block *sb, char *options)
1275 {
1276 	BUG_ON(sb->s_options);
1277 	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1278 }
1279 EXPORT_SYMBOL(save_mount_options);
1280 
replace_mount_options(struct super_block * sb,char * options)1281 void replace_mount_options(struct super_block *sb, char *options)
1282 {
1283 	char *old = sb->s_options;
1284 	rcu_assign_pointer(sb->s_options, options);
1285 	if (old) {
1286 		synchronize_rcu();
1287 		kfree(old);
1288 	}
1289 }
1290 EXPORT_SYMBOL(replace_mount_options);
1291 
1292 #ifdef CONFIG_PROC_FS
1293 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1294 static void *m_start(struct seq_file *m, loff_t *pos)
1295 {
1296 	struct proc_mounts *p = m->private;
1297 
1298 	down_read(&namespace_sem);
1299 	if (p->cached_event == p->ns->event) {
1300 		void *v = p->cached_mount;
1301 		if (*pos == p->cached_index)
1302 			return v;
1303 		if (*pos == p->cached_index + 1) {
1304 			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1305 			return p->cached_mount = v;
1306 		}
1307 	}
1308 
1309 	p->cached_event = p->ns->event;
1310 	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1311 	p->cached_index = *pos;
1312 	return p->cached_mount;
1313 }
1314 
m_next(struct seq_file * m,void * v,loff_t * pos)1315 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1316 {
1317 	struct proc_mounts *p = m->private;
1318 
1319 	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1320 	p->cached_index = *pos;
1321 	return p->cached_mount;
1322 }
1323 
m_stop(struct seq_file * m,void * v)1324 static void m_stop(struct seq_file *m, void *v)
1325 {
1326 	up_read(&namespace_sem);
1327 }
1328 
m_show(struct seq_file * m,void * v)1329 static int m_show(struct seq_file *m, void *v)
1330 {
1331 	struct proc_mounts *p = m->private;
1332 	struct mount *r = list_entry(v, struct mount, mnt_list);
1333 	return p->show(m, &r->mnt);
1334 }
1335 
1336 const struct seq_operations mounts_op = {
1337 	.start	= m_start,
1338 	.next	= m_next,
1339 	.stop	= m_stop,
1340 	.show	= m_show,
1341 };
1342 #endif  /* CONFIG_PROC_FS */
1343 
1344 /**
1345  * may_umount_tree - check if a mount tree is busy
1346  * @mnt: root of mount tree
1347  *
1348  * This is called to check if a tree of mounts has any
1349  * open files, pwds, chroots or sub mounts that are
1350  * busy.
1351  */
may_umount_tree(struct vfsmount * m)1352 int may_umount_tree(struct vfsmount *m)
1353 {
1354 	struct mount *mnt = real_mount(m);
1355 	int actual_refs = 0;
1356 	int minimum_refs = 0;
1357 	struct mount *p;
1358 	BUG_ON(!m);
1359 
1360 	/* write lock needed for mnt_get_count */
1361 	lock_mount_hash();
1362 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1363 		actual_refs += mnt_get_count(p);
1364 		minimum_refs += 2;
1365 	}
1366 	unlock_mount_hash();
1367 
1368 	if (actual_refs > minimum_refs)
1369 		return 0;
1370 
1371 	return 1;
1372 }
1373 
1374 EXPORT_SYMBOL(may_umount_tree);
1375 
1376 /**
1377  * may_umount - check if a mount point is busy
1378  * @mnt: root of mount
1379  *
1380  * This is called to check if a mount point has any
1381  * open files, pwds, chroots or sub mounts. If the
1382  * mount has sub mounts this will return busy
1383  * regardless of whether the sub mounts are busy.
1384  *
1385  * Doesn't take quota and stuff into account. IOW, in some cases it will
1386  * give false negatives. The main reason why it's here is that we need
1387  * a non-destructive way to look for easily umountable filesystems.
1388  */
may_umount(struct vfsmount * mnt)1389 int may_umount(struct vfsmount *mnt)
1390 {
1391 	int ret = 1;
1392 	down_read(&namespace_sem);
1393 	lock_mount_hash();
1394 	if (propagate_mount_busy(real_mount(mnt), 2))
1395 		ret = 0;
1396 	unlock_mount_hash();
1397 	up_read(&namespace_sem);
1398 	return ret;
1399 }
1400 
1401 EXPORT_SYMBOL(may_umount);
1402 
1403 static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1404 
namespace_unlock(void)1405 static void namespace_unlock(void)
1406 {
1407 	struct hlist_head head;
1408 
1409 	hlist_move_list(&unmounted, &head);
1410 
1411 	up_write(&namespace_sem);
1412 
1413 	if (likely(hlist_empty(&head)))
1414 		return;
1415 
1416 	synchronize_rcu();
1417 
1418 	group_pin_kill(&head);
1419 }
1420 
namespace_lock(void)1421 static inline void namespace_lock(void)
1422 {
1423 	down_write(&namespace_sem);
1424 }
1425 
1426 enum umount_tree_flags {
1427 	UMOUNT_SYNC = 1,
1428 	UMOUNT_PROPAGATE = 2,
1429 	UMOUNT_CONNECTED = 4,
1430 };
1431 
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1432 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1433 {
1434 	/* Leaving mounts connected is only valid for lazy umounts */
1435 	if (how & UMOUNT_SYNC)
1436 		return true;
1437 
1438 	/* A mount without a parent has nothing to be connected to */
1439 	if (!mnt_has_parent(mnt))
1440 		return true;
1441 
1442 	/* Because the reference counting rules change when mounts are
1443 	 * unmounted and connected, umounted mounts may not be
1444 	 * connected to mounted mounts.
1445 	 */
1446 	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1447 		return true;
1448 
1449 	/* Has it been requested that the mount remain connected? */
1450 	if (how & UMOUNT_CONNECTED)
1451 		return false;
1452 
1453 	/* Is the mount locked such that it needs to remain connected? */
1454 	if (IS_MNT_LOCKED(mnt))
1455 		return false;
1456 
1457 	/* By default disconnect the mount */
1458 	return true;
1459 }
1460 
1461 /*
1462  * mount_lock must be held
1463  * namespace_sem must be held for write
1464  */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1465 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1466 {
1467 	LIST_HEAD(tmp_list);
1468 	struct mount *p;
1469 
1470 	if (how & UMOUNT_PROPAGATE)
1471 		propagate_mount_unlock(mnt);
1472 
1473 	/* Gather the mounts to umount */
1474 	for (p = mnt; p; p = next_mnt(p, mnt)) {
1475 		p->mnt.mnt_flags |= MNT_UMOUNT;
1476 		list_move(&p->mnt_list, &tmp_list);
1477 	}
1478 
1479 	/* Hide the mounts from mnt_mounts */
1480 	list_for_each_entry(p, &tmp_list, mnt_list) {
1481 		list_del_init(&p->mnt_child);
1482 	}
1483 
1484 	/* Add propogated mounts to the tmp_list */
1485 	if (how & UMOUNT_PROPAGATE)
1486 		propagate_umount(&tmp_list);
1487 
1488 	while (!list_empty(&tmp_list)) {
1489 		struct mnt_namespace *ns;
1490 		bool disconnect;
1491 		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1492 		list_del_init(&p->mnt_expire);
1493 		list_del_init(&p->mnt_list);
1494 		ns = p->mnt_ns;
1495 		if (ns) {
1496 			ns->mounts--;
1497 			__touch_mnt_namespace(ns);
1498 		}
1499 		p->mnt_ns = NULL;
1500 		if (how & UMOUNT_SYNC)
1501 			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1502 
1503 		disconnect = disconnect_mount(p, how);
1504 
1505 		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1506 				 disconnect ? &unmounted : NULL);
1507 		if (mnt_has_parent(p)) {
1508 			mnt_add_count(p->mnt_parent, -1);
1509 			if (!disconnect) {
1510 				/* Don't forget about p */
1511 				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1512 			} else {
1513 				umount_mnt(p);
1514 			}
1515 		}
1516 		change_mnt_propagation(p, MS_PRIVATE);
1517 	}
1518 }
1519 
1520 static void shrink_submounts(struct mount *mnt);
1521 
do_umount(struct mount * mnt,int flags)1522 static int do_umount(struct mount *mnt, int flags)
1523 {
1524 	struct super_block *sb = mnt->mnt.mnt_sb;
1525 	int retval;
1526 
1527 	retval = security_sb_umount(&mnt->mnt, flags);
1528 	if (retval)
1529 		return retval;
1530 
1531 	/*
1532 	 * Allow userspace to request a mountpoint be expired rather than
1533 	 * unmounting unconditionally. Unmount only happens if:
1534 	 *  (1) the mark is already set (the mark is cleared by mntput())
1535 	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1536 	 */
1537 	if (flags & MNT_EXPIRE) {
1538 		if (&mnt->mnt == current->fs->root.mnt ||
1539 		    flags & (MNT_FORCE | MNT_DETACH))
1540 			return -EINVAL;
1541 
1542 		/*
1543 		 * probably don't strictly need the lock here if we examined
1544 		 * all race cases, but it's a slowpath.
1545 		 */
1546 		lock_mount_hash();
1547 		if (mnt_get_count(mnt) != 2) {
1548 			unlock_mount_hash();
1549 			return -EBUSY;
1550 		}
1551 		unlock_mount_hash();
1552 
1553 		if (!xchg(&mnt->mnt_expiry_mark, 1))
1554 			return -EAGAIN;
1555 	}
1556 
1557 	/*
1558 	 * If we may have to abort operations to get out of this
1559 	 * mount, and they will themselves hold resources we must
1560 	 * allow the fs to do things. In the Unix tradition of
1561 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1562 	 * might fail to complete on the first run through as other tasks
1563 	 * must return, and the like. Thats for the mount program to worry
1564 	 * about for the moment.
1565 	 */
1566 
1567 	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1568 		sb->s_op->umount_begin(sb);
1569 	}
1570 
1571 	/*
1572 	 * No sense to grab the lock for this test, but test itself looks
1573 	 * somewhat bogus. Suggestions for better replacement?
1574 	 * Ho-hum... In principle, we might treat that as umount + switch
1575 	 * to rootfs. GC would eventually take care of the old vfsmount.
1576 	 * Actually it makes sense, especially if rootfs would contain a
1577 	 * /reboot - static binary that would close all descriptors and
1578 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1579 	 */
1580 	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1581 		/*
1582 		 * Special case for "unmounting" root ...
1583 		 * we just try to remount it readonly.
1584 		 */
1585 		if (!capable(CAP_SYS_ADMIN))
1586 			return -EPERM;
1587 		down_write(&sb->s_umount);
1588 		if (!(sb->s_flags & MS_RDONLY))
1589 			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1590 		up_write(&sb->s_umount);
1591 		return retval;
1592 	}
1593 
1594 	namespace_lock();
1595 	lock_mount_hash();
1596 	event++;
1597 
1598 	if (flags & MNT_DETACH) {
1599 		if (!list_empty(&mnt->mnt_list))
1600 			umount_tree(mnt, UMOUNT_PROPAGATE);
1601 		retval = 0;
1602 	} else {
1603 		shrink_submounts(mnt);
1604 		retval = -EBUSY;
1605 		if (!propagate_mount_busy(mnt, 2)) {
1606 			if (!list_empty(&mnt->mnt_list))
1607 				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1608 			retval = 0;
1609 		}
1610 	}
1611 	unlock_mount_hash();
1612 	namespace_unlock();
1613 	return retval;
1614 }
1615 
1616 /*
1617  * __detach_mounts - lazily unmount all mounts on the specified dentry
1618  *
1619  * During unlink, rmdir, and d_drop it is possible to loose the path
1620  * to an existing mountpoint, and wind up leaking the mount.
1621  * detach_mounts allows lazily unmounting those mounts instead of
1622  * leaking them.
1623  *
1624  * The caller may hold dentry->d_inode->i_mutex.
1625  */
__detach_mounts(struct dentry * dentry)1626 void __detach_mounts(struct dentry *dentry)
1627 {
1628 	struct mountpoint *mp;
1629 	struct mount *mnt;
1630 
1631 	namespace_lock();
1632 	lock_mount_hash();
1633 	mp = lookup_mountpoint(dentry);
1634 	if (IS_ERR_OR_NULL(mp))
1635 		goto out_unlock;
1636 
1637 	event++;
1638 	while (!hlist_empty(&mp->m_list)) {
1639 		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1640 		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1641 			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1642 			umount_mnt(mnt);
1643 		}
1644 		else umount_tree(mnt, UMOUNT_CONNECTED);
1645 	}
1646 	put_mountpoint(mp);
1647 out_unlock:
1648 	unlock_mount_hash();
1649 	namespace_unlock();
1650 }
1651 
1652 /*
1653  * Is the caller allowed to modify his namespace?
1654  */
may_mount(void)1655 static inline bool may_mount(void)
1656 {
1657 	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1658 }
1659 
may_mandlock(void)1660 static inline bool may_mandlock(void)
1661 {
1662 #ifndef	CONFIG_MANDATORY_FILE_LOCKING
1663 	return false;
1664 #endif
1665 	return capable(CAP_SYS_ADMIN);
1666 }
1667 
1668 /*
1669  * Now umount can handle mount points as well as block devices.
1670  * This is important for filesystems which use unnamed block devices.
1671  *
1672  * We now support a flag for forced unmount like the other 'big iron'
1673  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1674  */
1675 
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1676 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1677 {
1678 	struct path path;
1679 	struct mount *mnt;
1680 	int retval;
1681 	int lookup_flags = 0;
1682 
1683 	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1684 		return -EINVAL;
1685 
1686 	if (!may_mount())
1687 		return -EPERM;
1688 
1689 	if (!(flags & UMOUNT_NOFOLLOW))
1690 		lookup_flags |= LOOKUP_FOLLOW;
1691 
1692 	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1693 	if (retval)
1694 		goto out;
1695 	mnt = real_mount(path.mnt);
1696 	retval = -EINVAL;
1697 	if (path.dentry != path.mnt->mnt_root)
1698 		goto dput_and_out;
1699 	if (!check_mnt(mnt))
1700 		goto dput_and_out;
1701 	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1702 		goto dput_and_out;
1703 	retval = -EPERM;
1704 	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1705 		goto dput_and_out;
1706 
1707 	retval = do_umount(mnt, flags);
1708 dput_and_out:
1709 	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1710 	dput(path.dentry);
1711 	mntput_no_expire(mnt);
1712 out:
1713 	return retval;
1714 }
1715 
1716 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1717 
1718 /*
1719  *	The 2.0 compatible umount. No flags.
1720  */
SYSCALL_DEFINE1(oldumount,char __user *,name)1721 SYSCALL_DEFINE1(oldumount, char __user *, name)
1722 {
1723 	return sys_umount(name, 0);
1724 }
1725 
1726 #endif
1727 
is_mnt_ns_file(struct dentry * dentry)1728 static bool is_mnt_ns_file(struct dentry *dentry)
1729 {
1730 	/* Is this a proxy for a mount namespace? */
1731 	return dentry->d_op == &ns_dentry_operations &&
1732 	       dentry->d_fsdata == &mntns_operations;
1733 }
1734 
to_mnt_ns(struct ns_common * ns)1735 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1736 {
1737 	return container_of(ns, struct mnt_namespace, ns);
1738 }
1739 
mnt_ns_loop(struct dentry * dentry)1740 static bool mnt_ns_loop(struct dentry *dentry)
1741 {
1742 	/* Could bind mounting the mount namespace inode cause a
1743 	 * mount namespace loop?
1744 	 */
1745 	struct mnt_namespace *mnt_ns;
1746 	if (!is_mnt_ns_file(dentry))
1747 		return false;
1748 
1749 	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1750 	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1751 }
1752 
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1753 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1754 					int flag)
1755 {
1756 	struct mount *res, *p, *q, *r, *parent;
1757 
1758 	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1759 		return ERR_PTR(-EINVAL);
1760 
1761 	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1762 		return ERR_PTR(-EINVAL);
1763 
1764 	res = q = clone_mnt(mnt, dentry, flag);
1765 	if (IS_ERR(q))
1766 		return q;
1767 
1768 	q->mnt_mountpoint = mnt->mnt_mountpoint;
1769 
1770 	p = mnt;
1771 	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1772 		struct mount *s;
1773 		if (!is_subdir(r->mnt_mountpoint, dentry))
1774 			continue;
1775 
1776 		for (s = r; s; s = next_mnt(s, r)) {
1777 			if (!(flag & CL_COPY_UNBINDABLE) &&
1778 			    IS_MNT_UNBINDABLE(s)) {
1779 				s = skip_mnt_tree(s);
1780 				continue;
1781 			}
1782 			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1783 			    is_mnt_ns_file(s->mnt.mnt_root)) {
1784 				s = skip_mnt_tree(s);
1785 				continue;
1786 			}
1787 			while (p != s->mnt_parent) {
1788 				p = p->mnt_parent;
1789 				q = q->mnt_parent;
1790 			}
1791 			p = s;
1792 			parent = q;
1793 			q = clone_mnt(p, p->mnt.mnt_root, flag);
1794 			if (IS_ERR(q))
1795 				goto out;
1796 			lock_mount_hash();
1797 			list_add_tail(&q->mnt_list, &res->mnt_list);
1798 			attach_mnt(q, parent, p->mnt_mp);
1799 			unlock_mount_hash();
1800 		}
1801 	}
1802 	return res;
1803 out:
1804 	if (res) {
1805 		lock_mount_hash();
1806 		umount_tree(res, UMOUNT_SYNC);
1807 		unlock_mount_hash();
1808 	}
1809 	return q;
1810 }
1811 
1812 /* Caller should check returned pointer for errors */
1813 
collect_mounts(struct path * path)1814 struct vfsmount *collect_mounts(struct path *path)
1815 {
1816 	struct mount *tree;
1817 	namespace_lock();
1818 	if (!check_mnt(real_mount(path->mnt)))
1819 		tree = ERR_PTR(-EINVAL);
1820 	else
1821 		tree = copy_tree(real_mount(path->mnt), path->dentry,
1822 				 CL_COPY_ALL | CL_PRIVATE);
1823 	namespace_unlock();
1824 	if (IS_ERR(tree))
1825 		return ERR_CAST(tree);
1826 	return &tree->mnt;
1827 }
1828 
drop_collected_mounts(struct vfsmount * mnt)1829 void drop_collected_mounts(struct vfsmount *mnt)
1830 {
1831 	namespace_lock();
1832 	lock_mount_hash();
1833 	umount_tree(real_mount(mnt), UMOUNT_SYNC);
1834 	unlock_mount_hash();
1835 	namespace_unlock();
1836 }
1837 
1838 /**
1839  * clone_private_mount - create a private clone of a path
1840  *
1841  * This creates a new vfsmount, which will be the clone of @path.  The new will
1842  * not be attached anywhere in the namespace and will be private (i.e. changes
1843  * to the originating mount won't be propagated into this).
1844  *
1845  * Release with mntput().
1846  */
clone_private_mount(struct path * path)1847 struct vfsmount *clone_private_mount(struct path *path)
1848 {
1849 	struct mount *old_mnt = real_mount(path->mnt);
1850 	struct mount *new_mnt;
1851 
1852 	if (IS_MNT_UNBINDABLE(old_mnt))
1853 		return ERR_PTR(-EINVAL);
1854 
1855 	down_read(&namespace_sem);
1856 	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1857 	up_read(&namespace_sem);
1858 	if (IS_ERR(new_mnt))
1859 		return ERR_CAST(new_mnt);
1860 
1861 	return &new_mnt->mnt;
1862 }
1863 EXPORT_SYMBOL_GPL(clone_private_mount);
1864 
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)1865 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1866 		   struct vfsmount *root)
1867 {
1868 	struct mount *mnt;
1869 	int res = f(root, arg);
1870 	if (res)
1871 		return res;
1872 	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1873 		res = f(&mnt->mnt, arg);
1874 		if (res)
1875 			return res;
1876 	}
1877 	return 0;
1878 }
1879 
cleanup_group_ids(struct mount * mnt,struct mount * end)1880 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1881 {
1882 	struct mount *p;
1883 
1884 	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1885 		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1886 			mnt_release_group_id(p);
1887 	}
1888 }
1889 
invent_group_ids(struct mount * mnt,bool recurse)1890 static int invent_group_ids(struct mount *mnt, bool recurse)
1891 {
1892 	struct mount *p;
1893 
1894 	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1895 		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1896 			int err = mnt_alloc_group_id(p);
1897 			if (err) {
1898 				cleanup_group_ids(mnt, p);
1899 				return err;
1900 			}
1901 		}
1902 	}
1903 
1904 	return 0;
1905 }
1906 
count_mounts(struct mnt_namespace * ns,struct mount * mnt)1907 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1908 {
1909 	unsigned int max = READ_ONCE(sysctl_mount_max);
1910 	unsigned int mounts = 0, old, pending, sum;
1911 	struct mount *p;
1912 
1913 	for (p = mnt; p; p = next_mnt(p, mnt))
1914 		mounts++;
1915 
1916 	old = ns->mounts;
1917 	pending = ns->pending_mounts;
1918 	sum = old + pending;
1919 	if ((old > sum) ||
1920 	    (pending > sum) ||
1921 	    (max < sum) ||
1922 	    (mounts > (max - sum)))
1923 		return -ENOSPC;
1924 
1925 	ns->pending_mounts = pending + mounts;
1926 	return 0;
1927 }
1928 
1929 /*
1930  *  @source_mnt : mount tree to be attached
1931  *  @nd         : place the mount tree @source_mnt is attached
1932  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1933  *  		   store the parent mount and mountpoint dentry.
1934  *  		   (done when source_mnt is moved)
1935  *
1936  *  NOTE: in the table below explains the semantics when a source mount
1937  *  of a given type is attached to a destination mount of a given type.
1938  * ---------------------------------------------------------------------------
1939  * |         BIND MOUNT OPERATION                                            |
1940  * |**************************************************************************
1941  * | source-->| shared        |       private  |       slave    | unbindable |
1942  * | dest     |               |                |                |            |
1943  * |   |      |               |                |                |            |
1944  * |   v      |               |                |                |            |
1945  * |**************************************************************************
1946  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1947  * |          |               |                |                |            |
1948  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1949  * ***************************************************************************
1950  * A bind operation clones the source mount and mounts the clone on the
1951  * destination mount.
1952  *
1953  * (++)  the cloned mount is propagated to all the mounts in the propagation
1954  * 	 tree of the destination mount and the cloned mount is added to
1955  * 	 the peer group of the source mount.
1956  * (+)   the cloned mount is created under the destination mount and is marked
1957  *       as shared. The cloned mount is added to the peer group of the source
1958  *       mount.
1959  * (+++) the mount is propagated to all the mounts in the propagation tree
1960  *       of the destination mount and the cloned mount is made slave
1961  *       of the same master as that of the source mount. The cloned mount
1962  *       is marked as 'shared and slave'.
1963  * (*)   the cloned mount is made a slave of the same master as that of the
1964  * 	 source mount.
1965  *
1966  * ---------------------------------------------------------------------------
1967  * |         		MOVE MOUNT OPERATION                                 |
1968  * |**************************************************************************
1969  * | source-->| shared        |       private  |       slave    | unbindable |
1970  * | dest     |               |                |                |            |
1971  * |   |      |               |                |                |            |
1972  * |   v      |               |                |                |            |
1973  * |**************************************************************************
1974  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1975  * |          |               |                |                |            |
1976  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1977  * ***************************************************************************
1978  *
1979  * (+)  the mount is moved to the destination. And is then propagated to
1980  * 	all the mounts in the propagation tree of the destination mount.
1981  * (+*)  the mount is moved to the destination.
1982  * (+++)  the mount is moved to the destination and is then propagated to
1983  * 	all the mounts belonging to the destination mount's propagation tree.
1984  * 	the mount is marked as 'shared and slave'.
1985  * (*)	the mount continues to be a slave at the new location.
1986  *
1987  * if the source mount is a tree, the operations explained above is
1988  * applied to each mount in the tree.
1989  * Must be called without spinlocks held, since this function can sleep
1990  * in allocations.
1991  */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp,struct path * parent_path)1992 static int attach_recursive_mnt(struct mount *source_mnt,
1993 			struct mount *dest_mnt,
1994 			struct mountpoint *dest_mp,
1995 			struct path *parent_path)
1996 {
1997 	HLIST_HEAD(tree_list);
1998 	struct mnt_namespace *ns = dest_mnt->mnt_ns;
1999 	struct mountpoint *smp;
2000 	struct mount *child, *p;
2001 	struct hlist_node *n;
2002 	int err;
2003 
2004 	/* Preallocate a mountpoint in case the new mounts need
2005 	 * to be tucked under other mounts.
2006 	 */
2007 	smp = get_mountpoint(source_mnt->mnt.mnt_root);
2008 	if (IS_ERR(smp))
2009 		return PTR_ERR(smp);
2010 
2011 	/* Is there space to add these mounts to the mount namespace? */
2012 	if (!parent_path) {
2013 		err = count_mounts(ns, source_mnt);
2014 		if (err)
2015 			goto out;
2016 	}
2017 
2018 	if (IS_MNT_SHARED(dest_mnt)) {
2019 		err = invent_group_ids(source_mnt, true);
2020 		if (err)
2021 			goto out;
2022 		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2023 		lock_mount_hash();
2024 		if (err)
2025 			goto out_cleanup_ids;
2026 		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2027 			set_mnt_shared(p);
2028 	} else {
2029 		lock_mount_hash();
2030 	}
2031 	if (parent_path) {
2032 		detach_mnt(source_mnt, parent_path);
2033 		attach_mnt(source_mnt, dest_mnt, dest_mp);
2034 		touch_mnt_namespace(source_mnt->mnt_ns);
2035 	} else {
2036 		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2037 		commit_tree(source_mnt);
2038 	}
2039 
2040 	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2041 		struct mount *q;
2042 		hlist_del_init(&child->mnt_hash);
2043 		q = __lookup_mnt(&child->mnt_parent->mnt,
2044 				 child->mnt_mountpoint);
2045 		if (q)
2046 			mnt_change_mountpoint(child, smp, q);
2047 		commit_tree(child);
2048 	}
2049 	put_mountpoint(smp);
2050 	unlock_mount_hash();
2051 
2052 	return 0;
2053 
2054  out_cleanup_ids:
2055 	while (!hlist_empty(&tree_list)) {
2056 		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2057 		child->mnt_parent->mnt_ns->pending_mounts = 0;
2058 		umount_tree(child, UMOUNT_SYNC);
2059 	}
2060 	unlock_mount_hash();
2061 	cleanup_group_ids(source_mnt, NULL);
2062  out:
2063 	ns->pending_mounts = 0;
2064 
2065 	read_seqlock_excl(&mount_lock);
2066 	put_mountpoint(smp);
2067 	read_sequnlock_excl(&mount_lock);
2068 
2069 	return err;
2070 }
2071 
lock_mount(struct path * path)2072 static struct mountpoint *lock_mount(struct path *path)
2073 {
2074 	struct vfsmount *mnt;
2075 	struct dentry *dentry = path->dentry;
2076 retry:
2077 	inode_lock(dentry->d_inode);
2078 	if (unlikely(cant_mount(dentry))) {
2079 		inode_unlock(dentry->d_inode);
2080 		return ERR_PTR(-ENOENT);
2081 	}
2082 	namespace_lock();
2083 	mnt = lookup_mnt(path);
2084 	if (likely(!mnt)) {
2085 		struct mountpoint *mp = get_mountpoint(dentry);
2086 		if (IS_ERR(mp)) {
2087 			namespace_unlock();
2088 			inode_unlock(dentry->d_inode);
2089 			return mp;
2090 		}
2091 		return mp;
2092 	}
2093 	namespace_unlock();
2094 	inode_unlock(path->dentry->d_inode);
2095 	path_put(path);
2096 	path->mnt = mnt;
2097 	dentry = path->dentry = dget(mnt->mnt_root);
2098 	goto retry;
2099 }
2100 
unlock_mount(struct mountpoint * where)2101 static void unlock_mount(struct mountpoint *where)
2102 {
2103 	struct dentry *dentry = where->m_dentry;
2104 
2105 	read_seqlock_excl(&mount_lock);
2106 	put_mountpoint(where);
2107 	read_sequnlock_excl(&mount_lock);
2108 
2109 	namespace_unlock();
2110 	inode_unlock(dentry->d_inode);
2111 }
2112 
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2113 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2114 {
2115 	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2116 		return -EINVAL;
2117 
2118 	if (d_is_dir(mp->m_dentry) !=
2119 	      d_is_dir(mnt->mnt.mnt_root))
2120 		return -ENOTDIR;
2121 
2122 	return attach_recursive_mnt(mnt, p, mp, NULL);
2123 }
2124 
2125 /*
2126  * Sanity check the flags to change_mnt_propagation.
2127  */
2128 
flags_to_propagation_type(int flags)2129 static int flags_to_propagation_type(int flags)
2130 {
2131 	int type = flags & ~(MS_REC | MS_SILENT);
2132 
2133 	/* Fail if any non-propagation flags are set */
2134 	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2135 		return 0;
2136 	/* Only one propagation flag should be set */
2137 	if (!is_power_of_2(type))
2138 		return 0;
2139 	return type;
2140 }
2141 
2142 /*
2143  * recursively change the type of the mountpoint.
2144  */
do_change_type(struct path * path,int flag)2145 static int do_change_type(struct path *path, int flag)
2146 {
2147 	struct mount *m;
2148 	struct mount *mnt = real_mount(path->mnt);
2149 	int recurse = flag & MS_REC;
2150 	int type;
2151 	int err = 0;
2152 
2153 	if (path->dentry != path->mnt->mnt_root)
2154 		return -EINVAL;
2155 
2156 	type = flags_to_propagation_type(flag);
2157 	if (!type)
2158 		return -EINVAL;
2159 
2160 	namespace_lock();
2161 	if (type == MS_SHARED) {
2162 		err = invent_group_ids(mnt, recurse);
2163 		if (err)
2164 			goto out_unlock;
2165 	}
2166 
2167 	lock_mount_hash();
2168 	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2169 		change_mnt_propagation(m, type);
2170 	unlock_mount_hash();
2171 
2172  out_unlock:
2173 	namespace_unlock();
2174 	return err;
2175 }
2176 
has_locked_children(struct mount * mnt,struct dentry * dentry)2177 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2178 {
2179 	struct mount *child;
2180 	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2181 		if (!is_subdir(child->mnt_mountpoint, dentry))
2182 			continue;
2183 
2184 		if (child->mnt.mnt_flags & MNT_LOCKED)
2185 			return true;
2186 	}
2187 	return false;
2188 }
2189 
2190 /*
2191  * do loopback mount.
2192  */
do_loopback(struct path * path,const char * old_name,int recurse)2193 static int do_loopback(struct path *path, const char *old_name,
2194 				int recurse)
2195 {
2196 	struct path old_path;
2197 	struct mount *mnt = NULL, *old, *parent;
2198 	struct mountpoint *mp;
2199 	int err;
2200 	if (!old_name || !*old_name)
2201 		return -EINVAL;
2202 	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2203 	if (err)
2204 		return err;
2205 
2206 	err = -EINVAL;
2207 	if (mnt_ns_loop(old_path.dentry))
2208 		goto out;
2209 
2210 	mp = lock_mount(path);
2211 	err = PTR_ERR(mp);
2212 	if (IS_ERR(mp))
2213 		goto out;
2214 
2215 	old = real_mount(old_path.mnt);
2216 	parent = real_mount(path->mnt);
2217 
2218 	err = -EINVAL;
2219 	if (IS_MNT_UNBINDABLE(old))
2220 		goto out2;
2221 
2222 	if (!check_mnt(parent))
2223 		goto out2;
2224 
2225 	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2226 		goto out2;
2227 
2228 	if (!recurse && has_locked_children(old, old_path.dentry))
2229 		goto out2;
2230 
2231 	if (recurse)
2232 		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2233 	else
2234 		mnt = clone_mnt(old, old_path.dentry, 0);
2235 
2236 	if (IS_ERR(mnt)) {
2237 		err = PTR_ERR(mnt);
2238 		goto out2;
2239 	}
2240 
2241 	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2242 
2243 	err = graft_tree(mnt, parent, mp);
2244 	if (err) {
2245 		lock_mount_hash();
2246 		umount_tree(mnt, UMOUNT_SYNC);
2247 		unlock_mount_hash();
2248 	}
2249 out2:
2250 	unlock_mount(mp);
2251 out:
2252 	path_put(&old_path);
2253 	return err;
2254 }
2255 
change_mount_flags(struct vfsmount * mnt,int ms_flags)2256 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2257 {
2258 	int error = 0;
2259 	int readonly_request = 0;
2260 
2261 	if (ms_flags & MS_RDONLY)
2262 		readonly_request = 1;
2263 	if (readonly_request == __mnt_is_readonly(mnt))
2264 		return 0;
2265 
2266 	if (readonly_request)
2267 		error = mnt_make_readonly(real_mount(mnt));
2268 	else
2269 		__mnt_unmake_readonly(real_mount(mnt));
2270 	return error;
2271 }
2272 
2273 /*
2274  * change filesystem flags. dir should be a physical root of filesystem.
2275  * If you've mounted a non-root directory somewhere and want to do remount
2276  * on it - tough luck.
2277  */
do_remount(struct path * path,int flags,int mnt_flags,void * data)2278 static int do_remount(struct path *path, int flags, int mnt_flags,
2279 		      void *data)
2280 {
2281 	int err;
2282 	struct super_block *sb = path->mnt->mnt_sb;
2283 	struct mount *mnt = real_mount(path->mnt);
2284 
2285 	if (!check_mnt(mnt))
2286 		return -EINVAL;
2287 
2288 	if (path->dentry != path->mnt->mnt_root)
2289 		return -EINVAL;
2290 
2291 	/* Don't allow changing of locked mnt flags.
2292 	 *
2293 	 * No locks need to be held here while testing the various
2294 	 * MNT_LOCK flags because those flags can never be cleared
2295 	 * once they are set.
2296 	 */
2297 	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2298 	    !(mnt_flags & MNT_READONLY)) {
2299 		return -EPERM;
2300 	}
2301 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2302 	    !(mnt_flags & MNT_NODEV)) {
2303 		return -EPERM;
2304 	}
2305 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2306 	    !(mnt_flags & MNT_NOSUID)) {
2307 		return -EPERM;
2308 	}
2309 	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2310 	    !(mnt_flags & MNT_NOEXEC)) {
2311 		return -EPERM;
2312 	}
2313 	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2314 	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2315 		return -EPERM;
2316 	}
2317 
2318 	err = security_sb_remount(sb, data);
2319 	if (err)
2320 		return err;
2321 
2322 	down_write(&sb->s_umount);
2323 	if (flags & MS_BIND)
2324 		err = change_mount_flags(path->mnt, flags);
2325 	else if (!capable(CAP_SYS_ADMIN))
2326 		err = -EPERM;
2327 	else {
2328 		err = do_remount_sb2(path->mnt, sb, flags, data, 0);
2329 		namespace_lock();
2330 		lock_mount_hash();
2331 		propagate_remount(mnt);
2332 		unlock_mount_hash();
2333 		namespace_unlock();
2334 	}
2335 	if (!err) {
2336 		lock_mount_hash();
2337 		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2338 		mnt->mnt.mnt_flags = mnt_flags;
2339 		touch_mnt_namespace(mnt->mnt_ns);
2340 		unlock_mount_hash();
2341 	}
2342 	up_write(&sb->s_umount);
2343 	return err;
2344 }
2345 
tree_contains_unbindable(struct mount * mnt)2346 static inline int tree_contains_unbindable(struct mount *mnt)
2347 {
2348 	struct mount *p;
2349 	for (p = mnt; p; p = next_mnt(p, mnt)) {
2350 		if (IS_MNT_UNBINDABLE(p))
2351 			return 1;
2352 	}
2353 	return 0;
2354 }
2355 
do_move_mount(struct path * path,const char * old_name)2356 static int do_move_mount(struct path *path, const char *old_name)
2357 {
2358 	struct path old_path, parent_path;
2359 	struct mount *p;
2360 	struct mount *old;
2361 	struct mountpoint *mp;
2362 	int err;
2363 	if (!old_name || !*old_name)
2364 		return -EINVAL;
2365 	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2366 	if (err)
2367 		return err;
2368 
2369 	mp = lock_mount(path);
2370 	err = PTR_ERR(mp);
2371 	if (IS_ERR(mp))
2372 		goto out;
2373 
2374 	old = real_mount(old_path.mnt);
2375 	p = real_mount(path->mnt);
2376 
2377 	err = -EINVAL;
2378 	if (!check_mnt(p) || !check_mnt(old))
2379 		goto out1;
2380 
2381 	if (old->mnt.mnt_flags & MNT_LOCKED)
2382 		goto out1;
2383 
2384 	err = -EINVAL;
2385 	if (old_path.dentry != old_path.mnt->mnt_root)
2386 		goto out1;
2387 
2388 	if (!mnt_has_parent(old))
2389 		goto out1;
2390 
2391 	if (d_is_dir(path->dentry) !=
2392 	      d_is_dir(old_path.dentry))
2393 		goto out1;
2394 	/*
2395 	 * Don't move a mount residing in a shared parent.
2396 	 */
2397 	if (IS_MNT_SHARED(old->mnt_parent))
2398 		goto out1;
2399 	/*
2400 	 * Don't move a mount tree containing unbindable mounts to a destination
2401 	 * mount which is shared.
2402 	 */
2403 	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2404 		goto out1;
2405 	err = -ELOOP;
2406 	for (; mnt_has_parent(p); p = p->mnt_parent)
2407 		if (p == old)
2408 			goto out1;
2409 
2410 	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2411 	if (err)
2412 		goto out1;
2413 
2414 	/* if the mount is moved, it should no longer be expire
2415 	 * automatically */
2416 	list_del_init(&old->mnt_expire);
2417 out1:
2418 	unlock_mount(mp);
2419 out:
2420 	if (!err)
2421 		path_put(&parent_path);
2422 	path_put(&old_path);
2423 	return err;
2424 }
2425 
fs_set_subtype(struct vfsmount * mnt,const char * fstype)2426 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2427 {
2428 	int err;
2429 	const char *subtype = strchr(fstype, '.');
2430 	if (subtype) {
2431 		subtype++;
2432 		err = -EINVAL;
2433 		if (!subtype[0])
2434 			goto err;
2435 	} else
2436 		subtype = "";
2437 
2438 	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2439 	err = -ENOMEM;
2440 	if (!mnt->mnt_sb->s_subtype)
2441 		goto err;
2442 	return mnt;
2443 
2444  err:
2445 	mntput(mnt);
2446 	return ERR_PTR(err);
2447 }
2448 
2449 /*
2450  * add a mount into a namespace's mount tree
2451  */
do_add_mount(struct mount * newmnt,struct path * path,int mnt_flags)2452 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2453 {
2454 	struct mountpoint *mp;
2455 	struct mount *parent;
2456 	int err;
2457 
2458 	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2459 
2460 	mp = lock_mount(path);
2461 	if (IS_ERR(mp))
2462 		return PTR_ERR(mp);
2463 
2464 	parent = real_mount(path->mnt);
2465 	err = -EINVAL;
2466 	if (unlikely(!check_mnt(parent))) {
2467 		/* that's acceptable only for automounts done in private ns */
2468 		if (!(mnt_flags & MNT_SHRINKABLE))
2469 			goto unlock;
2470 		/* ... and for those we'd better have mountpoint still alive */
2471 		if (!parent->mnt_ns)
2472 			goto unlock;
2473 	}
2474 
2475 	/* Refuse the same filesystem on the same mount point */
2476 	err = -EBUSY;
2477 	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2478 	    path->mnt->mnt_root == path->dentry)
2479 		goto unlock;
2480 
2481 	err = -EINVAL;
2482 	if (d_is_symlink(newmnt->mnt.mnt_root))
2483 		goto unlock;
2484 
2485 	newmnt->mnt.mnt_flags = mnt_flags;
2486 	err = graft_tree(newmnt, parent, mp);
2487 
2488 unlock:
2489 	unlock_mount(mp);
2490 	return err;
2491 }
2492 
2493 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2494 
2495 /*
2496  * create a new mount for userspace and request it to be added into the
2497  * namespace's tree
2498  */
do_new_mount(struct path * path,const char * fstype,int flags,int mnt_flags,const char * name,void * data)2499 static int do_new_mount(struct path *path, const char *fstype, int flags,
2500 			int mnt_flags, const char *name, void *data)
2501 {
2502 	struct file_system_type *type;
2503 	struct vfsmount *mnt;
2504 	int err;
2505 
2506 	if (!fstype)
2507 		return -EINVAL;
2508 
2509 	type = get_fs_type(fstype);
2510 	if (!type)
2511 		return -ENODEV;
2512 
2513 	mnt = vfs_kern_mount(type, flags, name, data);
2514 	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2515 	    !mnt->mnt_sb->s_subtype)
2516 		mnt = fs_set_subtype(mnt, fstype);
2517 
2518 	put_filesystem(type);
2519 	if (IS_ERR(mnt))
2520 		return PTR_ERR(mnt);
2521 
2522 	if (mount_too_revealing(mnt, &mnt_flags)) {
2523 		mntput(mnt);
2524 		return -EPERM;
2525 	}
2526 
2527 	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2528 	if (err)
2529 		mntput(mnt);
2530 	return err;
2531 }
2532 
finish_automount(struct vfsmount * m,struct path * path)2533 int finish_automount(struct vfsmount *m, struct path *path)
2534 {
2535 	struct mount *mnt = real_mount(m);
2536 	int err;
2537 	/* The new mount record should have at least 2 refs to prevent it being
2538 	 * expired before we get a chance to add it
2539 	 */
2540 	BUG_ON(mnt_get_count(mnt) < 2);
2541 
2542 	if (m->mnt_sb == path->mnt->mnt_sb &&
2543 	    m->mnt_root == path->dentry) {
2544 		err = -ELOOP;
2545 		goto fail;
2546 	}
2547 
2548 	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2549 	if (!err)
2550 		return 0;
2551 fail:
2552 	/* remove m from any expiration list it may be on */
2553 	if (!list_empty(&mnt->mnt_expire)) {
2554 		namespace_lock();
2555 		list_del_init(&mnt->mnt_expire);
2556 		namespace_unlock();
2557 	}
2558 	mntput(m);
2559 	mntput(m);
2560 	return err;
2561 }
2562 
2563 /**
2564  * mnt_set_expiry - Put a mount on an expiration list
2565  * @mnt: The mount to list.
2566  * @expiry_list: The list to add the mount to.
2567  */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)2568 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2569 {
2570 	namespace_lock();
2571 
2572 	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2573 
2574 	namespace_unlock();
2575 }
2576 EXPORT_SYMBOL(mnt_set_expiry);
2577 
2578 /*
2579  * process a list of expirable mountpoints with the intent of discarding any
2580  * mountpoints that aren't in use and haven't been touched since last we came
2581  * here
2582  */
mark_mounts_for_expiry(struct list_head * mounts)2583 void mark_mounts_for_expiry(struct list_head *mounts)
2584 {
2585 	struct mount *mnt, *next;
2586 	LIST_HEAD(graveyard);
2587 
2588 	if (list_empty(mounts))
2589 		return;
2590 
2591 	namespace_lock();
2592 	lock_mount_hash();
2593 
2594 	/* extract from the expiration list every vfsmount that matches the
2595 	 * following criteria:
2596 	 * - only referenced by its parent vfsmount
2597 	 * - still marked for expiry (marked on the last call here; marks are
2598 	 *   cleared by mntput())
2599 	 */
2600 	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2601 		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2602 			propagate_mount_busy(mnt, 1))
2603 			continue;
2604 		list_move(&mnt->mnt_expire, &graveyard);
2605 	}
2606 	while (!list_empty(&graveyard)) {
2607 		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2608 		touch_mnt_namespace(mnt->mnt_ns);
2609 		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2610 	}
2611 	unlock_mount_hash();
2612 	namespace_unlock();
2613 }
2614 
2615 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2616 
2617 /*
2618  * Ripoff of 'select_parent()'
2619  *
2620  * search the list of submounts for a given mountpoint, and move any
2621  * shrinkable submounts to the 'graveyard' list.
2622  */
select_submounts(struct mount * parent,struct list_head * graveyard)2623 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2624 {
2625 	struct mount *this_parent = parent;
2626 	struct list_head *next;
2627 	int found = 0;
2628 
2629 repeat:
2630 	next = this_parent->mnt_mounts.next;
2631 resume:
2632 	while (next != &this_parent->mnt_mounts) {
2633 		struct list_head *tmp = next;
2634 		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2635 
2636 		next = tmp->next;
2637 		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2638 			continue;
2639 		/*
2640 		 * Descend a level if the d_mounts list is non-empty.
2641 		 */
2642 		if (!list_empty(&mnt->mnt_mounts)) {
2643 			this_parent = mnt;
2644 			goto repeat;
2645 		}
2646 
2647 		if (!propagate_mount_busy(mnt, 1)) {
2648 			list_move_tail(&mnt->mnt_expire, graveyard);
2649 			found++;
2650 		}
2651 	}
2652 	/*
2653 	 * All done at this level ... ascend and resume the search
2654 	 */
2655 	if (this_parent != parent) {
2656 		next = this_parent->mnt_child.next;
2657 		this_parent = this_parent->mnt_parent;
2658 		goto resume;
2659 	}
2660 	return found;
2661 }
2662 
2663 /*
2664  * process a list of expirable mountpoints with the intent of discarding any
2665  * submounts of a specific parent mountpoint
2666  *
2667  * mount_lock must be held for write
2668  */
shrink_submounts(struct mount * mnt)2669 static void shrink_submounts(struct mount *mnt)
2670 {
2671 	LIST_HEAD(graveyard);
2672 	struct mount *m;
2673 
2674 	/* extract submounts of 'mountpoint' from the expiration list */
2675 	while (select_submounts(mnt, &graveyard)) {
2676 		while (!list_empty(&graveyard)) {
2677 			m = list_first_entry(&graveyard, struct mount,
2678 						mnt_expire);
2679 			touch_mnt_namespace(m->mnt_ns);
2680 			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2681 		}
2682 	}
2683 }
2684 
2685 /*
2686  * Some copy_from_user() implementations do not return the exact number of
2687  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2688  * Note that this function differs from copy_from_user() in that it will oops
2689  * on bad values of `to', rather than returning a short copy.
2690  */
exact_copy_from_user(void * to,const void __user * from,unsigned long n)2691 static long exact_copy_from_user(void *to, const void __user * from,
2692 				 unsigned long n)
2693 {
2694 	char *t = to;
2695 	const char __user *f = from;
2696 	char c;
2697 
2698 	if (!access_ok(VERIFY_READ, from, n))
2699 		return n;
2700 
2701 	while (n) {
2702 		if (__get_user(c, f)) {
2703 			memset(t, 0, n);
2704 			break;
2705 		}
2706 		*t++ = c;
2707 		f++;
2708 		n--;
2709 	}
2710 	return n;
2711 }
2712 
copy_mount_options(const void __user * data)2713 void *copy_mount_options(const void __user * data)
2714 {
2715 	int i;
2716 	unsigned long size;
2717 	char *copy;
2718 
2719 	if (!data)
2720 		return NULL;
2721 
2722 	copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2723 	if (!copy)
2724 		return ERR_PTR(-ENOMEM);
2725 
2726 	/* We only care that *some* data at the address the user
2727 	 * gave us is valid.  Just in case, we'll zero
2728 	 * the remainder of the page.
2729 	 */
2730 	/* copy_from_user cannot cross TASK_SIZE ! */
2731 	size = TASK_SIZE - (unsigned long)data;
2732 	if (size > PAGE_SIZE)
2733 		size = PAGE_SIZE;
2734 
2735 	i = size - exact_copy_from_user(copy, data, size);
2736 	if (!i) {
2737 		kfree(copy);
2738 		return ERR_PTR(-EFAULT);
2739 	}
2740 	if (i != PAGE_SIZE)
2741 		memset(copy + i, 0, PAGE_SIZE - i);
2742 	return copy;
2743 }
2744 
copy_mount_string(const void __user * data)2745 char *copy_mount_string(const void __user *data)
2746 {
2747 	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2748 }
2749 
2750 /*
2751  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2752  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2753  *
2754  * data is a (void *) that can point to any structure up to
2755  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2756  * information (or be NULL).
2757  *
2758  * Pre-0.97 versions of mount() didn't have a flags word.
2759  * When the flags word was introduced its top half was required
2760  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2761  * Therefore, if this magic number is present, it carries no information
2762  * and must be discarded.
2763  */
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)2764 long do_mount(const char *dev_name, const char __user *dir_name,
2765 		const char *type_page, unsigned long flags, void *data_page)
2766 {
2767 	struct path path;
2768 	int retval = 0;
2769 	int mnt_flags = 0;
2770 
2771 	/* Discard magic */
2772 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2773 		flags &= ~MS_MGC_MSK;
2774 
2775 	/* Basic sanity checks */
2776 	if (data_page)
2777 		((char *)data_page)[PAGE_SIZE - 1] = 0;
2778 
2779 	/* ... and get the mountpoint */
2780 	retval = user_path(dir_name, &path);
2781 	if (retval)
2782 		return retval;
2783 
2784 	retval = security_sb_mount(dev_name, &path,
2785 				   type_page, flags, data_page);
2786 	if (!retval && !may_mount())
2787 		retval = -EPERM;
2788 	if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2789 		retval = -EPERM;
2790 	if (retval)
2791 		goto dput_out;
2792 
2793 	/* Default to relatime unless overriden */
2794 	if (!(flags & MS_NOATIME))
2795 		mnt_flags |= MNT_RELATIME;
2796 
2797 	/* Separate the per-mountpoint flags */
2798 	if (flags & MS_NOSUID)
2799 		mnt_flags |= MNT_NOSUID;
2800 	if (flags & MS_NODEV)
2801 		mnt_flags |= MNT_NODEV;
2802 	if (flags & MS_NOEXEC)
2803 		mnt_flags |= MNT_NOEXEC;
2804 	if (flags & MS_NOATIME)
2805 		mnt_flags |= MNT_NOATIME;
2806 	if (flags & MS_NODIRATIME)
2807 		mnt_flags |= MNT_NODIRATIME;
2808 	if (flags & MS_STRICTATIME)
2809 		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2810 	if (flags & MS_RDONLY)
2811 		mnt_flags |= MNT_READONLY;
2812 
2813 	/* The default atime for remount is preservation */
2814 	if ((flags & MS_REMOUNT) &&
2815 	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2816 		       MS_STRICTATIME)) == 0)) {
2817 		mnt_flags &= ~MNT_ATIME_MASK;
2818 		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2819 	}
2820 
2821 	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2822 		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2823 		   MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
2824 
2825 	if (flags & MS_REMOUNT)
2826 		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2827 				    data_page);
2828 	else if (flags & MS_BIND)
2829 		retval = do_loopback(&path, dev_name, flags & MS_REC);
2830 	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2831 		retval = do_change_type(&path, flags);
2832 	else if (flags & MS_MOVE)
2833 		retval = do_move_mount(&path, dev_name);
2834 	else
2835 		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2836 				      dev_name, data_page);
2837 dput_out:
2838 	path_put(&path);
2839 	return retval;
2840 }
2841 
inc_mnt_namespaces(struct user_namespace * ns)2842 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2843 {
2844 	return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2845 }
2846 
dec_mnt_namespaces(struct ucounts * ucounts)2847 static void dec_mnt_namespaces(struct ucounts *ucounts)
2848 {
2849 	dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2850 }
2851 
free_mnt_ns(struct mnt_namespace * ns)2852 static void free_mnt_ns(struct mnt_namespace *ns)
2853 {
2854 	ns_free_inum(&ns->ns);
2855 	dec_mnt_namespaces(ns->ucounts);
2856 	put_user_ns(ns->user_ns);
2857 	kfree(ns);
2858 }
2859 
2860 /*
2861  * Assign a sequence number so we can detect when we attempt to bind
2862  * mount a reference to an older mount namespace into the current
2863  * mount namespace, preventing reference counting loops.  A 64bit
2864  * number incrementing at 10Ghz will take 12,427 years to wrap which
2865  * is effectively never, so we can ignore the possibility.
2866  */
2867 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2868 
alloc_mnt_ns(struct user_namespace * user_ns)2869 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2870 {
2871 	struct mnt_namespace *new_ns;
2872 	struct ucounts *ucounts;
2873 	int ret;
2874 
2875 	ucounts = inc_mnt_namespaces(user_ns);
2876 	if (!ucounts)
2877 		return ERR_PTR(-ENOSPC);
2878 
2879 	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2880 	if (!new_ns) {
2881 		dec_mnt_namespaces(ucounts);
2882 		return ERR_PTR(-ENOMEM);
2883 	}
2884 	ret = ns_alloc_inum(&new_ns->ns);
2885 	if (ret) {
2886 		kfree(new_ns);
2887 		dec_mnt_namespaces(ucounts);
2888 		return ERR_PTR(ret);
2889 	}
2890 	new_ns->ns.ops = &mntns_operations;
2891 	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2892 	atomic_set(&new_ns->count, 1);
2893 	new_ns->root = NULL;
2894 	INIT_LIST_HEAD(&new_ns->list);
2895 	init_waitqueue_head(&new_ns->poll);
2896 	new_ns->event = 0;
2897 	new_ns->user_ns = get_user_ns(user_ns);
2898 	new_ns->ucounts = ucounts;
2899 	new_ns->mounts = 0;
2900 	new_ns->pending_mounts = 0;
2901 	return new_ns;
2902 }
2903 
2904 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)2905 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2906 		struct user_namespace *user_ns, struct fs_struct *new_fs)
2907 {
2908 	struct mnt_namespace *new_ns;
2909 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2910 	struct mount *p, *q;
2911 	struct mount *old;
2912 	struct mount *new;
2913 	int copy_flags;
2914 
2915 	BUG_ON(!ns);
2916 
2917 	if (likely(!(flags & CLONE_NEWNS))) {
2918 		get_mnt_ns(ns);
2919 		return ns;
2920 	}
2921 
2922 	old = ns->root;
2923 
2924 	new_ns = alloc_mnt_ns(user_ns);
2925 	if (IS_ERR(new_ns))
2926 		return new_ns;
2927 
2928 	namespace_lock();
2929 	/* First pass: copy the tree topology */
2930 	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2931 	if (user_ns != ns->user_ns)
2932 		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2933 	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2934 	if (IS_ERR(new)) {
2935 		namespace_unlock();
2936 		free_mnt_ns(new_ns);
2937 		return ERR_CAST(new);
2938 	}
2939 	new_ns->root = new;
2940 	list_add_tail(&new_ns->list, &new->mnt_list);
2941 
2942 	/*
2943 	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2944 	 * as belonging to new namespace.  We have already acquired a private
2945 	 * fs_struct, so tsk->fs->lock is not needed.
2946 	 */
2947 	p = old;
2948 	q = new;
2949 	while (p) {
2950 		q->mnt_ns = new_ns;
2951 		new_ns->mounts++;
2952 		if (new_fs) {
2953 			if (&p->mnt == new_fs->root.mnt) {
2954 				new_fs->root.mnt = mntget(&q->mnt);
2955 				rootmnt = &p->mnt;
2956 			}
2957 			if (&p->mnt == new_fs->pwd.mnt) {
2958 				new_fs->pwd.mnt = mntget(&q->mnt);
2959 				pwdmnt = &p->mnt;
2960 			}
2961 		}
2962 		p = next_mnt(p, old);
2963 		q = next_mnt(q, new);
2964 		if (!q)
2965 			break;
2966 		while (p->mnt.mnt_root != q->mnt.mnt_root)
2967 			p = next_mnt(p, old);
2968 	}
2969 	namespace_unlock();
2970 
2971 	if (rootmnt)
2972 		mntput(rootmnt);
2973 	if (pwdmnt)
2974 		mntput(pwdmnt);
2975 
2976 	return new_ns;
2977 }
2978 
2979 /**
2980  * create_mnt_ns - creates a private namespace and adds a root filesystem
2981  * @mnt: pointer to the new root filesystem mountpoint
2982  */
create_mnt_ns(struct vfsmount * m)2983 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2984 {
2985 	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2986 	if (!IS_ERR(new_ns)) {
2987 		struct mount *mnt = real_mount(m);
2988 		mnt->mnt_ns = new_ns;
2989 		new_ns->root = mnt;
2990 		new_ns->mounts++;
2991 		list_add(&mnt->mnt_list, &new_ns->list);
2992 	} else {
2993 		mntput(m);
2994 	}
2995 	return new_ns;
2996 }
2997 
mount_subtree(struct vfsmount * mnt,const char * name)2998 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2999 {
3000 	struct mnt_namespace *ns;
3001 	struct super_block *s;
3002 	struct path path;
3003 	int err;
3004 
3005 	ns = create_mnt_ns(mnt);
3006 	if (IS_ERR(ns))
3007 		return ERR_CAST(ns);
3008 
3009 	err = vfs_path_lookup(mnt->mnt_root, mnt,
3010 			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3011 
3012 	put_mnt_ns(ns);
3013 
3014 	if (err)
3015 		return ERR_PTR(err);
3016 
3017 	/* trade a vfsmount reference for active sb one */
3018 	s = path.mnt->mnt_sb;
3019 	atomic_inc(&s->s_active);
3020 	mntput(path.mnt);
3021 	/* lock the sucker */
3022 	down_write(&s->s_umount);
3023 	/* ... and return the root of (sub)tree on it */
3024 	return path.dentry;
3025 }
3026 EXPORT_SYMBOL(mount_subtree);
3027 
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)3028 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3029 		char __user *, type, unsigned long, flags, void __user *, data)
3030 {
3031 	int ret;
3032 	char *kernel_type;
3033 	char *kernel_dev;
3034 	void *options;
3035 
3036 	kernel_type = copy_mount_string(type);
3037 	ret = PTR_ERR(kernel_type);
3038 	if (IS_ERR(kernel_type))
3039 		goto out_type;
3040 
3041 	kernel_dev = copy_mount_string(dev_name);
3042 	ret = PTR_ERR(kernel_dev);
3043 	if (IS_ERR(kernel_dev))
3044 		goto out_dev;
3045 
3046 	options = copy_mount_options(data);
3047 	ret = PTR_ERR(options);
3048 	if (IS_ERR(options))
3049 		goto out_data;
3050 
3051 	ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3052 
3053 	kfree(options);
3054 out_data:
3055 	kfree(kernel_dev);
3056 out_dev:
3057 	kfree(kernel_type);
3058 out_type:
3059 	return ret;
3060 }
3061 
3062 /*
3063  * Return true if path is reachable from root
3064  *
3065  * namespace_sem or mount_lock is held
3066  */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)3067 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3068 			 const struct path *root)
3069 {
3070 	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3071 		dentry = mnt->mnt_mountpoint;
3072 		mnt = mnt->mnt_parent;
3073 	}
3074 	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3075 }
3076 
path_is_under(struct path * path1,struct path * path2)3077 bool path_is_under(struct path *path1, struct path *path2)
3078 {
3079 	bool res;
3080 	read_seqlock_excl(&mount_lock);
3081 	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3082 	read_sequnlock_excl(&mount_lock);
3083 	return res;
3084 }
3085 EXPORT_SYMBOL(path_is_under);
3086 
3087 /*
3088  * pivot_root Semantics:
3089  * Moves the root file system of the current process to the directory put_old,
3090  * makes new_root as the new root file system of the current process, and sets
3091  * root/cwd of all processes which had them on the current root to new_root.
3092  *
3093  * Restrictions:
3094  * The new_root and put_old must be directories, and  must not be on the
3095  * same file  system as the current process root. The put_old  must  be
3096  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3097  * pointed to by put_old must yield the same directory as new_root. No other
3098  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3099  *
3100  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3101  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3102  * in this situation.
3103  *
3104  * Notes:
3105  *  - we don't move root/cwd if they are not at the root (reason: if something
3106  *    cared enough to change them, it's probably wrong to force them elsewhere)
3107  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3108  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3109  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3110  *    first.
3111  */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)3112 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3113 		const char __user *, put_old)
3114 {
3115 	struct path new, old, parent_path, root_parent, root;
3116 	struct mount *new_mnt, *root_mnt, *old_mnt;
3117 	struct mountpoint *old_mp, *root_mp;
3118 	int error;
3119 
3120 	if (!may_mount())
3121 		return -EPERM;
3122 
3123 	error = user_path_dir(new_root, &new);
3124 	if (error)
3125 		goto out0;
3126 
3127 	error = user_path_dir(put_old, &old);
3128 	if (error)
3129 		goto out1;
3130 
3131 	error = security_sb_pivotroot(&old, &new);
3132 	if (error)
3133 		goto out2;
3134 
3135 	get_fs_root(current->fs, &root);
3136 	old_mp = lock_mount(&old);
3137 	error = PTR_ERR(old_mp);
3138 	if (IS_ERR(old_mp))
3139 		goto out3;
3140 
3141 	error = -EINVAL;
3142 	new_mnt = real_mount(new.mnt);
3143 	root_mnt = real_mount(root.mnt);
3144 	old_mnt = real_mount(old.mnt);
3145 	if (IS_MNT_SHARED(old_mnt) ||
3146 		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3147 		IS_MNT_SHARED(root_mnt->mnt_parent))
3148 		goto out4;
3149 	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3150 		goto out4;
3151 	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3152 		goto out4;
3153 	error = -ENOENT;
3154 	if (d_unlinked(new.dentry))
3155 		goto out4;
3156 	error = -EBUSY;
3157 	if (new_mnt == root_mnt || old_mnt == root_mnt)
3158 		goto out4; /* loop, on the same file system  */
3159 	error = -EINVAL;
3160 	if (root.mnt->mnt_root != root.dentry)
3161 		goto out4; /* not a mountpoint */
3162 	if (!mnt_has_parent(root_mnt))
3163 		goto out4; /* not attached */
3164 	root_mp = root_mnt->mnt_mp;
3165 	if (new.mnt->mnt_root != new.dentry)
3166 		goto out4; /* not a mountpoint */
3167 	if (!mnt_has_parent(new_mnt))
3168 		goto out4; /* not attached */
3169 	/* make sure we can reach put_old from new_root */
3170 	if (!is_path_reachable(old_mnt, old.dentry, &new))
3171 		goto out4;
3172 	/* make certain new is below the root */
3173 	if (!is_path_reachable(new_mnt, new.dentry, &root))
3174 		goto out4;
3175 	root_mp->m_count++; /* pin it so it won't go away */
3176 	lock_mount_hash();
3177 	detach_mnt(new_mnt, &parent_path);
3178 	detach_mnt(root_mnt, &root_parent);
3179 	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3180 		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3181 		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3182 	}
3183 	/* mount old root on put_old */
3184 	attach_mnt(root_mnt, old_mnt, old_mp);
3185 	/* mount new_root on / */
3186 	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3187 	touch_mnt_namespace(current->nsproxy->mnt_ns);
3188 	/* A moved mount should not expire automatically */
3189 	list_del_init(&new_mnt->mnt_expire);
3190 	put_mountpoint(root_mp);
3191 	unlock_mount_hash();
3192 	chroot_fs_refs(&root, &new);
3193 	error = 0;
3194 out4:
3195 	unlock_mount(old_mp);
3196 	if (!error) {
3197 		path_put(&root_parent);
3198 		path_put(&parent_path);
3199 	}
3200 out3:
3201 	path_put(&root);
3202 out2:
3203 	path_put(&old);
3204 out1:
3205 	path_put(&new);
3206 out0:
3207 	return error;
3208 }
3209 
init_mount_tree(void)3210 static void __init init_mount_tree(void)
3211 {
3212 	struct vfsmount *mnt;
3213 	struct mnt_namespace *ns;
3214 	struct path root;
3215 	struct file_system_type *type;
3216 
3217 	type = get_fs_type("rootfs");
3218 	if (!type)
3219 		panic("Can't find rootfs type");
3220 	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3221 	put_filesystem(type);
3222 	if (IS_ERR(mnt))
3223 		panic("Can't create rootfs");
3224 
3225 	ns = create_mnt_ns(mnt);
3226 	if (IS_ERR(ns))
3227 		panic("Can't allocate initial namespace");
3228 
3229 	init_task.nsproxy->mnt_ns = ns;
3230 	get_mnt_ns(ns);
3231 
3232 	root.mnt = mnt;
3233 	root.dentry = mnt->mnt_root;
3234 	mnt->mnt_flags |= MNT_LOCKED;
3235 
3236 	set_fs_pwd(current->fs, &root);
3237 	set_fs_root(current->fs, &root);
3238 }
3239 
mnt_init(void)3240 void __init mnt_init(void)
3241 {
3242 	unsigned u;
3243 	int err;
3244 
3245 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3246 			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3247 
3248 	mount_hashtable = alloc_large_system_hash("Mount-cache",
3249 				sizeof(struct hlist_head),
3250 				mhash_entries, 19,
3251 				0,
3252 				&m_hash_shift, &m_hash_mask, 0, 0);
3253 	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3254 				sizeof(struct hlist_head),
3255 				mphash_entries, 19,
3256 				0,
3257 				&mp_hash_shift, &mp_hash_mask, 0, 0);
3258 
3259 	if (!mount_hashtable || !mountpoint_hashtable)
3260 		panic("Failed to allocate mount hash table\n");
3261 
3262 	for (u = 0; u <= m_hash_mask; u++)
3263 		INIT_HLIST_HEAD(&mount_hashtable[u]);
3264 	for (u = 0; u <= mp_hash_mask; u++)
3265 		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3266 
3267 	kernfs_init();
3268 
3269 	err = sysfs_init();
3270 	if (err)
3271 		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3272 			__func__, err);
3273 	fs_kobj = kobject_create_and_add("fs", NULL);
3274 	if (!fs_kobj)
3275 		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3276 	init_rootfs();
3277 	init_mount_tree();
3278 }
3279 
put_mnt_ns(struct mnt_namespace * ns)3280 void put_mnt_ns(struct mnt_namespace *ns)
3281 {
3282 	if (!atomic_dec_and_test(&ns->count))
3283 		return;
3284 	drop_collected_mounts(&ns->root->mnt);
3285 	free_mnt_ns(ns);
3286 }
3287 
kern_mount_data(struct file_system_type * type,void * data)3288 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3289 {
3290 	struct vfsmount *mnt;
3291 	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3292 	if (!IS_ERR(mnt)) {
3293 		/*
3294 		 * it is a longterm mount, don't release mnt until
3295 		 * we unmount before file sys is unregistered
3296 		*/
3297 		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3298 	}
3299 	return mnt;
3300 }
3301 EXPORT_SYMBOL_GPL(kern_mount_data);
3302 
kern_unmount(struct vfsmount * mnt)3303 void kern_unmount(struct vfsmount *mnt)
3304 {
3305 	/* release long term mount so mount point can be released */
3306 	if (!IS_ERR_OR_NULL(mnt)) {
3307 		real_mount(mnt)->mnt_ns = NULL;
3308 		synchronize_rcu();	/* yecchhh... */
3309 		mntput(mnt);
3310 	}
3311 }
3312 EXPORT_SYMBOL(kern_unmount);
3313 
our_mnt(struct vfsmount * mnt)3314 bool our_mnt(struct vfsmount *mnt)
3315 {
3316 	return check_mnt(real_mount(mnt));
3317 }
3318 
current_chrooted(void)3319 bool current_chrooted(void)
3320 {
3321 	/* Does the current process have a non-standard root */
3322 	struct path ns_root;
3323 	struct path fs_root;
3324 	bool chrooted;
3325 
3326 	/* Find the namespace root */
3327 	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3328 	ns_root.dentry = ns_root.mnt->mnt_root;
3329 	path_get(&ns_root);
3330 	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3331 		;
3332 
3333 	get_fs_root(current->fs, &fs_root);
3334 
3335 	chrooted = !path_equal(&fs_root, &ns_root);
3336 
3337 	path_put(&fs_root);
3338 	path_put(&ns_root);
3339 
3340 	return chrooted;
3341 }
3342 
mnt_already_visible(struct mnt_namespace * ns,struct vfsmount * new,int * new_mnt_flags)3343 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3344 				int *new_mnt_flags)
3345 {
3346 	int new_flags = *new_mnt_flags;
3347 	struct mount *mnt;
3348 	bool visible = false;
3349 
3350 	down_read(&namespace_sem);
3351 	list_for_each_entry(mnt, &ns->list, mnt_list) {
3352 		struct mount *child;
3353 		int mnt_flags;
3354 
3355 		if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3356 			continue;
3357 
3358 		/* This mount is not fully visible if it's root directory
3359 		 * is not the root directory of the filesystem.
3360 		 */
3361 		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3362 			continue;
3363 
3364 		/* A local view of the mount flags */
3365 		mnt_flags = mnt->mnt.mnt_flags;
3366 
3367 		/* Don't miss readonly hidden in the superblock flags */
3368 		if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3369 			mnt_flags |= MNT_LOCK_READONLY;
3370 
3371 		/* Verify the mount flags are equal to or more permissive
3372 		 * than the proposed new mount.
3373 		 */
3374 		if ((mnt_flags & MNT_LOCK_READONLY) &&
3375 		    !(new_flags & MNT_READONLY))
3376 			continue;
3377 		if ((mnt_flags & MNT_LOCK_ATIME) &&
3378 		    ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3379 			continue;
3380 
3381 		/* This mount is not fully visible if there are any
3382 		 * locked child mounts that cover anything except for
3383 		 * empty directories.
3384 		 */
3385 		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3386 			struct inode *inode = child->mnt_mountpoint->d_inode;
3387 			/* Only worry about locked mounts */
3388 			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3389 				continue;
3390 			/* Is the directory permanetly empty? */
3391 			if (!is_empty_dir_inode(inode))
3392 				goto next;
3393 		}
3394 		/* Preserve the locked attributes */
3395 		*new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3396 					       MNT_LOCK_ATIME);
3397 		visible = true;
3398 		goto found;
3399 	next:	;
3400 	}
3401 found:
3402 	up_read(&namespace_sem);
3403 	return visible;
3404 }
3405 
mount_too_revealing(struct vfsmount * mnt,int * new_mnt_flags)3406 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3407 {
3408 	const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3409 	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3410 	unsigned long s_iflags;
3411 
3412 	if (ns->user_ns == &init_user_ns)
3413 		return false;
3414 
3415 	/* Can this filesystem be too revealing? */
3416 	s_iflags = mnt->mnt_sb->s_iflags;
3417 	if (!(s_iflags & SB_I_USERNS_VISIBLE))
3418 		return false;
3419 
3420 	if ((s_iflags & required_iflags) != required_iflags) {
3421 		WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3422 			  required_iflags);
3423 		return true;
3424 	}
3425 
3426 	return !mnt_already_visible(ns, mnt, new_mnt_flags);
3427 }
3428 
mnt_may_suid(struct vfsmount * mnt)3429 bool mnt_may_suid(struct vfsmount *mnt)
3430 {
3431 	/*
3432 	 * Foreign mounts (accessed via fchdir or through /proc
3433 	 * symlinks) are always treated as if they are nosuid.  This
3434 	 * prevents namespaces from trusting potentially unsafe
3435 	 * suid/sgid bits, file caps, or security labels that originate
3436 	 * in other namespaces.
3437 	 */
3438 	return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3439 	       current_in_userns(mnt->mnt_sb->s_user_ns);
3440 }
3441 
mntns_get(struct task_struct * task)3442 static struct ns_common *mntns_get(struct task_struct *task)
3443 {
3444 	struct ns_common *ns = NULL;
3445 	struct nsproxy *nsproxy;
3446 
3447 	task_lock(task);
3448 	nsproxy = task->nsproxy;
3449 	if (nsproxy) {
3450 		ns = &nsproxy->mnt_ns->ns;
3451 		get_mnt_ns(to_mnt_ns(ns));
3452 	}
3453 	task_unlock(task);
3454 
3455 	return ns;
3456 }
3457 
mntns_put(struct ns_common * ns)3458 static void mntns_put(struct ns_common *ns)
3459 {
3460 	put_mnt_ns(to_mnt_ns(ns));
3461 }
3462 
mntns_install(struct nsproxy * nsproxy,struct ns_common * ns)3463 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3464 {
3465 	struct fs_struct *fs = current->fs;
3466 	struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3467 	struct path root;
3468 
3469 	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3470 	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3471 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3472 		return -EPERM;
3473 
3474 	if (fs->users != 1)
3475 		return -EINVAL;
3476 
3477 	get_mnt_ns(mnt_ns);
3478 	put_mnt_ns(nsproxy->mnt_ns);
3479 	nsproxy->mnt_ns = mnt_ns;
3480 
3481 	/* Find the root */
3482 	root.mnt    = &mnt_ns->root->mnt;
3483 	root.dentry = mnt_ns->root->mnt.mnt_root;
3484 	path_get(&root);
3485 	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3486 		;
3487 
3488 	/* Update the pwd and root */
3489 	set_fs_pwd(fs, &root);
3490 	set_fs_root(fs, &root);
3491 
3492 	path_put(&root);
3493 	return 0;
3494 }
3495 
mntns_owner(struct ns_common * ns)3496 static struct user_namespace *mntns_owner(struct ns_common *ns)
3497 {
3498 	return to_mnt_ns(ns)->user_ns;
3499 }
3500 
3501 const struct proc_ns_operations mntns_operations = {
3502 	.name		= "mnt",
3503 	.type		= CLONE_NEWNS,
3504 	.get		= mntns_get,
3505 	.put		= mntns_put,
3506 	.install	= mntns_install,
3507 	.owner		= mntns_owner,
3508 };
3509