1 /*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
29
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
32
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
37
38 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)39 static int __init set_mhash_entries(char *str)
40 {
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
45 }
46 __setup("mhash_entries=", set_mhash_entries);
47
48 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)49 static int __init set_mphash_entries(char *str)
50 {
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55 }
56 __setup("mphash_entries=", set_mphash_entries);
57
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
64
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
69
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
73
74 /*
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
78 *
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
81 */
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
83
m_hash(struct vfsmount * mnt,struct dentry * dentry)84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
85 {
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
90 }
91
mp_hash(struct dentry * dentry)92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
93 {
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
97 }
98
99 /*
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
102 */
mnt_alloc_id(struct mount * mnt)103 static int mnt_alloc_id(struct mount *mnt)
104 {
105 int res;
106
107 retry:
108 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
109 spin_lock(&mnt_id_lock);
110 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
111 if (!res)
112 mnt_id_start = mnt->mnt_id + 1;
113 spin_unlock(&mnt_id_lock);
114 if (res == -EAGAIN)
115 goto retry;
116
117 return res;
118 }
119
mnt_free_id(struct mount * mnt)120 static void mnt_free_id(struct mount *mnt)
121 {
122 int id = mnt->mnt_id;
123 spin_lock(&mnt_id_lock);
124 ida_remove(&mnt_id_ida, id);
125 if (mnt_id_start > id)
126 mnt_id_start = id;
127 spin_unlock(&mnt_id_lock);
128 }
129
130 /*
131 * Allocate a new peer group ID
132 *
133 * mnt_group_ida is protected by namespace_sem
134 */
mnt_alloc_group_id(struct mount * mnt)135 static int mnt_alloc_group_id(struct mount *mnt)
136 {
137 int res;
138
139 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
140 return -ENOMEM;
141
142 res = ida_get_new_above(&mnt_group_ida,
143 mnt_group_start,
144 &mnt->mnt_group_id);
145 if (!res)
146 mnt_group_start = mnt->mnt_group_id + 1;
147
148 return res;
149 }
150
151 /*
152 * Release a peer group ID
153 */
mnt_release_group_id(struct mount * mnt)154 void mnt_release_group_id(struct mount *mnt)
155 {
156 int id = mnt->mnt_group_id;
157 ida_remove(&mnt_group_ida, id);
158 if (mnt_group_start > id)
159 mnt_group_start = id;
160 mnt->mnt_group_id = 0;
161 }
162
163 /*
164 * vfsmount lock must be held for read
165 */
mnt_add_count(struct mount * mnt,int n)166 static inline void mnt_add_count(struct mount *mnt, int n)
167 {
168 #ifdef CONFIG_SMP
169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 preempt_disable();
172 mnt->mnt_count += n;
173 preempt_enable();
174 #endif
175 }
176
177 /*
178 * vfsmount lock must be held for write
179 */
mnt_get_count(struct mount * mnt)180 unsigned int mnt_get_count(struct mount *mnt)
181 {
182 #ifdef CONFIG_SMP
183 unsigned int count = 0;
184 int cpu;
185
186 for_each_possible_cpu(cpu) {
187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
188 }
189
190 return count;
191 #else
192 return mnt->mnt_count;
193 #endif
194 }
195
drop_mountpoint(struct fs_pin * p)196 static void drop_mountpoint(struct fs_pin *p)
197 {
198 struct mount *m = container_of(p, struct mount, mnt_umount);
199 dput(m->mnt_ex_mountpoint);
200 pin_remove(p);
201 mntput(&m->mnt);
202 }
203
alloc_vfsmnt(const char * name)204 static struct mount *alloc_vfsmnt(const char *name)
205 {
206 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 if (mnt) {
208 int err;
209
210 err = mnt_alloc_id(mnt);
211 if (err)
212 goto out_free_cache;
213
214 if (name) {
215 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
216 if (!mnt->mnt_devname)
217 goto out_free_id;
218 }
219
220 #ifdef CONFIG_SMP
221 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 if (!mnt->mnt_pcp)
223 goto out_free_devname;
224
225 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
226 #else
227 mnt->mnt_count = 1;
228 mnt->mnt_writers = 0;
229 #endif
230 mnt->mnt.data = NULL;
231
232 INIT_HLIST_NODE(&mnt->mnt_hash);
233 INIT_LIST_HEAD(&mnt->mnt_child);
234 INIT_LIST_HEAD(&mnt->mnt_mounts);
235 INIT_LIST_HEAD(&mnt->mnt_list);
236 INIT_LIST_HEAD(&mnt->mnt_expire);
237 INIT_LIST_HEAD(&mnt->mnt_share);
238 INIT_LIST_HEAD(&mnt->mnt_slave_list);
239 INIT_LIST_HEAD(&mnt->mnt_slave);
240 INIT_HLIST_NODE(&mnt->mnt_mp_list);
241 INIT_LIST_HEAD(&mnt->mnt_umounting);
242 #ifdef CONFIG_FSNOTIFY
243 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
244 #endif
245 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
246 }
247 return mnt;
248
249 #ifdef CONFIG_SMP
250 out_free_devname:
251 kfree_const(mnt->mnt_devname);
252 #endif
253 out_free_id:
254 mnt_free_id(mnt);
255 out_free_cache:
256 kmem_cache_free(mnt_cache, mnt);
257 return NULL;
258 }
259
260 /*
261 * Most r/o checks on a fs are for operations that take
262 * discrete amounts of time, like a write() or unlink().
263 * We must keep track of when those operations start
264 * (for permission checks) and when they end, so that
265 * we can determine when writes are able to occur to
266 * a filesystem.
267 */
268 /*
269 * __mnt_is_readonly: check whether a mount is read-only
270 * @mnt: the mount to check for its write status
271 *
272 * This shouldn't be used directly ouside of the VFS.
273 * It does not guarantee that the filesystem will stay
274 * r/w, just that it is right *now*. This can not and
275 * should not be used in place of IS_RDONLY(inode).
276 * mnt_want/drop_write() will _keep_ the filesystem
277 * r/w.
278 */
__mnt_is_readonly(struct vfsmount * mnt)279 int __mnt_is_readonly(struct vfsmount *mnt)
280 {
281 if (mnt->mnt_flags & MNT_READONLY)
282 return 1;
283 if (mnt->mnt_sb->s_flags & MS_RDONLY)
284 return 1;
285 return 0;
286 }
287 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
288
mnt_inc_writers(struct mount * mnt)289 static inline void mnt_inc_writers(struct mount *mnt)
290 {
291 #ifdef CONFIG_SMP
292 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
293 #else
294 mnt->mnt_writers++;
295 #endif
296 }
297
mnt_dec_writers(struct mount * mnt)298 static inline void mnt_dec_writers(struct mount *mnt)
299 {
300 #ifdef CONFIG_SMP
301 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
302 #else
303 mnt->mnt_writers--;
304 #endif
305 }
306
mnt_get_writers(struct mount * mnt)307 static unsigned int mnt_get_writers(struct mount *mnt)
308 {
309 #ifdef CONFIG_SMP
310 unsigned int count = 0;
311 int cpu;
312
313 for_each_possible_cpu(cpu) {
314 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
315 }
316
317 return count;
318 #else
319 return mnt->mnt_writers;
320 #endif
321 }
322
mnt_is_readonly(struct vfsmount * mnt)323 static int mnt_is_readonly(struct vfsmount *mnt)
324 {
325 if (mnt->mnt_sb->s_readonly_remount)
326 return 1;
327 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
328 smp_rmb();
329 return __mnt_is_readonly(mnt);
330 }
331
332 /*
333 * Most r/o & frozen checks on a fs are for operations that take discrete
334 * amounts of time, like a write() or unlink(). We must keep track of when
335 * those operations start (for permission checks) and when they end, so that we
336 * can determine when writes are able to occur to a filesystem.
337 */
338 /**
339 * __mnt_want_write - get write access to a mount without freeze protection
340 * @m: the mount on which to take a write
341 *
342 * This tells the low-level filesystem that a write is about to be performed to
343 * it, and makes sure that writes are allowed (mnt it read-write) before
344 * returning success. This operation does not protect against filesystem being
345 * frozen. When the write operation is finished, __mnt_drop_write() must be
346 * called. This is effectively a refcount.
347 */
__mnt_want_write(struct vfsmount * m)348 int __mnt_want_write(struct vfsmount *m)
349 {
350 struct mount *mnt = real_mount(m);
351 int ret = 0;
352
353 preempt_disable();
354 mnt_inc_writers(mnt);
355 /*
356 * The store to mnt_inc_writers must be visible before we pass
357 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
358 * incremented count after it has set MNT_WRITE_HOLD.
359 */
360 smp_mb();
361 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
362 cpu_relax();
363 /*
364 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
365 * be set to match its requirements. So we must not load that until
366 * MNT_WRITE_HOLD is cleared.
367 */
368 smp_rmb();
369 if (mnt_is_readonly(m)) {
370 mnt_dec_writers(mnt);
371 ret = -EROFS;
372 }
373 preempt_enable();
374
375 return ret;
376 }
377
378 /**
379 * mnt_want_write - get write access to a mount
380 * @m: the mount on which to take a write
381 *
382 * This tells the low-level filesystem that a write is about to be performed to
383 * it, and makes sure that writes are allowed (mount is read-write, filesystem
384 * is not frozen) before returning success. When the write operation is
385 * finished, mnt_drop_write() must be called. This is effectively a refcount.
386 */
mnt_want_write(struct vfsmount * m)387 int mnt_want_write(struct vfsmount *m)
388 {
389 int ret;
390
391 sb_start_write(m->mnt_sb);
392 ret = __mnt_want_write(m);
393 if (ret)
394 sb_end_write(m->mnt_sb);
395 return ret;
396 }
397 EXPORT_SYMBOL_GPL(mnt_want_write);
398
399 /**
400 * mnt_clone_write - get write access to a mount
401 * @mnt: the mount on which to take a write
402 *
403 * This is effectively like mnt_want_write, except
404 * it must only be used to take an extra write reference
405 * on a mountpoint that we already know has a write reference
406 * on it. This allows some optimisation.
407 *
408 * After finished, mnt_drop_write must be called as usual to
409 * drop the reference.
410 */
mnt_clone_write(struct vfsmount * mnt)411 int mnt_clone_write(struct vfsmount *mnt)
412 {
413 /* superblock may be r/o */
414 if (__mnt_is_readonly(mnt))
415 return -EROFS;
416 preempt_disable();
417 mnt_inc_writers(real_mount(mnt));
418 preempt_enable();
419 return 0;
420 }
421 EXPORT_SYMBOL_GPL(mnt_clone_write);
422
423 /**
424 * __mnt_want_write_file - get write access to a file's mount
425 * @file: the file who's mount on which to take a write
426 *
427 * This is like __mnt_want_write, but it takes a file and can
428 * do some optimisations if the file is open for write already
429 */
__mnt_want_write_file(struct file * file)430 int __mnt_want_write_file(struct file *file)
431 {
432 if (!(file->f_mode & FMODE_WRITER))
433 return __mnt_want_write(file->f_path.mnt);
434 else
435 return mnt_clone_write(file->f_path.mnt);
436 }
437
438 /**
439 * mnt_want_write_file - get write access to a file's mount
440 * @file: the file who's mount on which to take a write
441 *
442 * This is like mnt_want_write, but it takes a file and can
443 * do some optimisations if the file is open for write already
444 */
mnt_want_write_file(struct file * file)445 int mnt_want_write_file(struct file *file)
446 {
447 int ret;
448
449 sb_start_write(file->f_path.mnt->mnt_sb);
450 ret = __mnt_want_write_file(file);
451 if (ret)
452 sb_end_write(file->f_path.mnt->mnt_sb);
453 return ret;
454 }
455 EXPORT_SYMBOL_GPL(mnt_want_write_file);
456
457 /**
458 * __mnt_drop_write - give up write access to a mount
459 * @mnt: the mount on which to give up write access
460 *
461 * Tells the low-level filesystem that we are done
462 * performing writes to it. Must be matched with
463 * __mnt_want_write() call above.
464 */
__mnt_drop_write(struct vfsmount * mnt)465 void __mnt_drop_write(struct vfsmount *mnt)
466 {
467 preempt_disable();
468 mnt_dec_writers(real_mount(mnt));
469 preempt_enable();
470 }
471
472 /**
473 * mnt_drop_write - give up write access to a mount
474 * @mnt: the mount on which to give up write access
475 *
476 * Tells the low-level filesystem that we are done performing writes to it and
477 * also allows filesystem to be frozen again. Must be matched with
478 * mnt_want_write() call above.
479 */
mnt_drop_write(struct vfsmount * mnt)480 void mnt_drop_write(struct vfsmount *mnt)
481 {
482 __mnt_drop_write(mnt);
483 sb_end_write(mnt->mnt_sb);
484 }
485 EXPORT_SYMBOL_GPL(mnt_drop_write);
486
__mnt_drop_write_file(struct file * file)487 void __mnt_drop_write_file(struct file *file)
488 {
489 __mnt_drop_write(file->f_path.mnt);
490 }
491
mnt_drop_write_file(struct file * file)492 void mnt_drop_write_file(struct file *file)
493 {
494 mnt_drop_write(file->f_path.mnt);
495 }
496 EXPORT_SYMBOL(mnt_drop_write_file);
497
mnt_make_readonly(struct mount * mnt)498 static int mnt_make_readonly(struct mount *mnt)
499 {
500 int ret = 0;
501
502 lock_mount_hash();
503 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
504 /*
505 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
506 * should be visible before we do.
507 */
508 smp_mb();
509
510 /*
511 * With writers on hold, if this value is zero, then there are
512 * definitely no active writers (although held writers may subsequently
513 * increment the count, they'll have to wait, and decrement it after
514 * seeing MNT_READONLY).
515 *
516 * It is OK to have counter incremented on one CPU and decremented on
517 * another: the sum will add up correctly. The danger would be when we
518 * sum up each counter, if we read a counter before it is incremented,
519 * but then read another CPU's count which it has been subsequently
520 * decremented from -- we would see more decrements than we should.
521 * MNT_WRITE_HOLD protects against this scenario, because
522 * mnt_want_write first increments count, then smp_mb, then spins on
523 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
524 * we're counting up here.
525 */
526 if (mnt_get_writers(mnt) > 0)
527 ret = -EBUSY;
528 else
529 mnt->mnt.mnt_flags |= MNT_READONLY;
530 /*
531 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
532 * that become unheld will see MNT_READONLY.
533 */
534 smp_wmb();
535 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
536 unlock_mount_hash();
537 return ret;
538 }
539
__mnt_unmake_readonly(struct mount * mnt)540 static void __mnt_unmake_readonly(struct mount *mnt)
541 {
542 lock_mount_hash();
543 mnt->mnt.mnt_flags &= ~MNT_READONLY;
544 unlock_mount_hash();
545 }
546
sb_prepare_remount_readonly(struct super_block * sb)547 int sb_prepare_remount_readonly(struct super_block *sb)
548 {
549 struct mount *mnt;
550 int err = 0;
551
552 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
553 if (atomic_long_read(&sb->s_remove_count))
554 return -EBUSY;
555
556 lock_mount_hash();
557 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
558 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
559 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
560 smp_mb();
561 if (mnt_get_writers(mnt) > 0) {
562 err = -EBUSY;
563 break;
564 }
565 }
566 }
567 if (!err && atomic_long_read(&sb->s_remove_count))
568 err = -EBUSY;
569
570 if (!err) {
571 sb->s_readonly_remount = 1;
572 smp_wmb();
573 }
574 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
575 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
576 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
577 }
578 unlock_mount_hash();
579
580 return err;
581 }
582
free_vfsmnt(struct mount * mnt)583 static void free_vfsmnt(struct mount *mnt)
584 {
585 kfree(mnt->mnt.data);
586 kfree_const(mnt->mnt_devname);
587 #ifdef CONFIG_SMP
588 free_percpu(mnt->mnt_pcp);
589 #endif
590 kmem_cache_free(mnt_cache, mnt);
591 }
592
delayed_free_vfsmnt(struct rcu_head * head)593 static void delayed_free_vfsmnt(struct rcu_head *head)
594 {
595 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
596 }
597
598 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)599 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
600 {
601 struct mount *mnt;
602 if (read_seqretry(&mount_lock, seq))
603 return 1;
604 if (bastard == NULL)
605 return 0;
606 mnt = real_mount(bastard);
607 mnt_add_count(mnt, 1);
608 if (likely(!read_seqretry(&mount_lock, seq)))
609 return 0;
610 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
611 mnt_add_count(mnt, -1);
612 return 1;
613 }
614 return -1;
615 }
616
617 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)618 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
619 {
620 int res = __legitimize_mnt(bastard, seq);
621 if (likely(!res))
622 return true;
623 if (unlikely(res < 0)) {
624 rcu_read_unlock();
625 mntput(bastard);
626 rcu_read_lock();
627 }
628 return false;
629 }
630
631 /*
632 * find the first mount at @dentry on vfsmount @mnt.
633 * call under rcu_read_lock()
634 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)635 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
636 {
637 struct hlist_head *head = m_hash(mnt, dentry);
638 struct mount *p;
639
640 hlist_for_each_entry_rcu(p, head, mnt_hash)
641 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
642 return p;
643 return NULL;
644 }
645
646 /*
647 * lookup_mnt - Return the first child mount mounted at path
648 *
649 * "First" means first mounted chronologically. If you create the
650 * following mounts:
651 *
652 * mount /dev/sda1 /mnt
653 * mount /dev/sda2 /mnt
654 * mount /dev/sda3 /mnt
655 *
656 * Then lookup_mnt() on the base /mnt dentry in the root mount will
657 * return successively the root dentry and vfsmount of /dev/sda1, then
658 * /dev/sda2, then /dev/sda3, then NULL.
659 *
660 * lookup_mnt takes a reference to the found vfsmount.
661 */
lookup_mnt(struct path * path)662 struct vfsmount *lookup_mnt(struct path *path)
663 {
664 struct mount *child_mnt;
665 struct vfsmount *m;
666 unsigned seq;
667
668 rcu_read_lock();
669 do {
670 seq = read_seqbegin(&mount_lock);
671 child_mnt = __lookup_mnt(path->mnt, path->dentry);
672 m = child_mnt ? &child_mnt->mnt : NULL;
673 } while (!legitimize_mnt(m, seq));
674 rcu_read_unlock();
675 return m;
676 }
677
678 /*
679 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
680 * current mount namespace.
681 *
682 * The common case is dentries are not mountpoints at all and that
683 * test is handled inline. For the slow case when we are actually
684 * dealing with a mountpoint of some kind, walk through all of the
685 * mounts in the current mount namespace and test to see if the dentry
686 * is a mountpoint.
687 *
688 * The mount_hashtable is not usable in the context because we
689 * need to identify all mounts that may be in the current mount
690 * namespace not just a mount that happens to have some specified
691 * parent mount.
692 */
__is_local_mountpoint(struct dentry * dentry)693 bool __is_local_mountpoint(struct dentry *dentry)
694 {
695 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
696 struct mount *mnt;
697 bool is_covered = false;
698
699 if (!d_mountpoint(dentry))
700 goto out;
701
702 down_read(&namespace_sem);
703 list_for_each_entry(mnt, &ns->list, mnt_list) {
704 is_covered = (mnt->mnt_mountpoint == dentry);
705 if (is_covered)
706 break;
707 }
708 up_read(&namespace_sem);
709 out:
710 return is_covered;
711 }
712
lookup_mountpoint(struct dentry * dentry)713 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
714 {
715 struct hlist_head *chain = mp_hash(dentry);
716 struct mountpoint *mp;
717
718 hlist_for_each_entry(mp, chain, m_hash) {
719 if (mp->m_dentry == dentry) {
720 /* might be worth a WARN_ON() */
721 if (d_unlinked(dentry))
722 return ERR_PTR(-ENOENT);
723 mp->m_count++;
724 return mp;
725 }
726 }
727 return NULL;
728 }
729
get_mountpoint(struct dentry * dentry)730 static struct mountpoint *get_mountpoint(struct dentry *dentry)
731 {
732 struct mountpoint *mp, *new = NULL;
733 int ret;
734
735 if (d_mountpoint(dentry)) {
736 mountpoint:
737 read_seqlock_excl(&mount_lock);
738 mp = lookup_mountpoint(dentry);
739 read_sequnlock_excl(&mount_lock);
740 if (mp)
741 goto done;
742 }
743
744 if (!new)
745 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
746 if (!new)
747 return ERR_PTR(-ENOMEM);
748
749
750 /* Exactly one processes may set d_mounted */
751 ret = d_set_mounted(dentry);
752
753 /* Someone else set d_mounted? */
754 if (ret == -EBUSY)
755 goto mountpoint;
756
757 /* The dentry is not available as a mountpoint? */
758 mp = ERR_PTR(ret);
759 if (ret)
760 goto done;
761
762 /* Add the new mountpoint to the hash table */
763 read_seqlock_excl(&mount_lock);
764 new->m_dentry = dentry;
765 new->m_count = 1;
766 hlist_add_head(&new->m_hash, mp_hash(dentry));
767 INIT_HLIST_HEAD(&new->m_list);
768 read_sequnlock_excl(&mount_lock);
769
770 mp = new;
771 new = NULL;
772 done:
773 kfree(new);
774 return mp;
775 }
776
put_mountpoint(struct mountpoint * mp)777 static void put_mountpoint(struct mountpoint *mp)
778 {
779 if (!--mp->m_count) {
780 struct dentry *dentry = mp->m_dentry;
781 BUG_ON(!hlist_empty(&mp->m_list));
782 spin_lock(&dentry->d_lock);
783 dentry->d_flags &= ~DCACHE_MOUNTED;
784 spin_unlock(&dentry->d_lock);
785 hlist_del(&mp->m_hash);
786 kfree(mp);
787 }
788 }
789
check_mnt(struct mount * mnt)790 static inline int check_mnt(struct mount *mnt)
791 {
792 return mnt->mnt_ns == current->nsproxy->mnt_ns;
793 }
794
795 /*
796 * vfsmount lock must be held for write
797 */
touch_mnt_namespace(struct mnt_namespace * ns)798 static void touch_mnt_namespace(struct mnt_namespace *ns)
799 {
800 if (ns) {
801 ns->event = ++event;
802 wake_up_interruptible(&ns->poll);
803 }
804 }
805
806 /*
807 * vfsmount lock must be held for write
808 */
__touch_mnt_namespace(struct mnt_namespace * ns)809 static void __touch_mnt_namespace(struct mnt_namespace *ns)
810 {
811 if (ns && ns->event != event) {
812 ns->event = event;
813 wake_up_interruptible(&ns->poll);
814 }
815 }
816
817 /*
818 * vfsmount lock must be held for write
819 */
unhash_mnt(struct mount * mnt)820 static void unhash_mnt(struct mount *mnt)
821 {
822 mnt->mnt_parent = mnt;
823 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
824 list_del_init(&mnt->mnt_child);
825 hlist_del_init_rcu(&mnt->mnt_hash);
826 hlist_del_init(&mnt->mnt_mp_list);
827 put_mountpoint(mnt->mnt_mp);
828 mnt->mnt_mp = NULL;
829 }
830
831 /*
832 * vfsmount lock must be held for write
833 */
detach_mnt(struct mount * mnt,struct path * old_path)834 static void detach_mnt(struct mount *mnt, struct path *old_path)
835 {
836 old_path->dentry = mnt->mnt_mountpoint;
837 old_path->mnt = &mnt->mnt_parent->mnt;
838 unhash_mnt(mnt);
839 }
840
841 /*
842 * vfsmount lock must be held for write
843 */
umount_mnt(struct mount * mnt)844 static void umount_mnt(struct mount *mnt)
845 {
846 /* old mountpoint will be dropped when we can do that */
847 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
848 unhash_mnt(mnt);
849 }
850
851 /*
852 * vfsmount lock must be held for write
853 */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)854 void mnt_set_mountpoint(struct mount *mnt,
855 struct mountpoint *mp,
856 struct mount *child_mnt)
857 {
858 mp->m_count++;
859 mnt_add_count(mnt, 1); /* essentially, that's mntget */
860 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
861 child_mnt->mnt_parent = mnt;
862 child_mnt->mnt_mp = mp;
863 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
864 }
865
__attach_mnt(struct mount * mnt,struct mount * parent)866 static void __attach_mnt(struct mount *mnt, struct mount *parent)
867 {
868 hlist_add_head_rcu(&mnt->mnt_hash,
869 m_hash(&parent->mnt, mnt->mnt_mountpoint));
870 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
871 }
872
873 /*
874 * vfsmount lock must be held for write
875 */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp)876 static void attach_mnt(struct mount *mnt,
877 struct mount *parent,
878 struct mountpoint *mp)
879 {
880 mnt_set_mountpoint(parent, mp, mnt);
881 __attach_mnt(mnt, parent);
882 }
883
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)884 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
885 {
886 struct mountpoint *old_mp = mnt->mnt_mp;
887 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
888 struct mount *old_parent = mnt->mnt_parent;
889
890 list_del_init(&mnt->mnt_child);
891 hlist_del_init(&mnt->mnt_mp_list);
892 hlist_del_init_rcu(&mnt->mnt_hash);
893
894 attach_mnt(mnt, parent, mp);
895
896 put_mountpoint(old_mp);
897
898 /*
899 * Safely avoid even the suggestion this code might sleep or
900 * lock the mount hash by taking advantage of the knowledge that
901 * mnt_change_mountpoint will not release the final reference
902 * to a mountpoint.
903 *
904 * During mounting, the mount passed in as the parent mount will
905 * continue to use the old mountpoint and during unmounting, the
906 * old mountpoint will continue to exist until namespace_unlock,
907 * which happens well after mnt_change_mountpoint.
908 */
909 spin_lock(&old_mountpoint->d_lock);
910 old_mountpoint->d_lockref.count--;
911 spin_unlock(&old_mountpoint->d_lock);
912
913 mnt_add_count(old_parent, -1);
914 }
915
916 /*
917 * vfsmount lock must be held for write
918 */
commit_tree(struct mount * mnt)919 static void commit_tree(struct mount *mnt)
920 {
921 struct mount *parent = mnt->mnt_parent;
922 struct mount *m;
923 LIST_HEAD(head);
924 struct mnt_namespace *n = parent->mnt_ns;
925
926 BUG_ON(parent == mnt);
927
928 list_add_tail(&head, &mnt->mnt_list);
929 list_for_each_entry(m, &head, mnt_list)
930 m->mnt_ns = n;
931
932 list_splice(&head, n->list.prev);
933
934 n->mounts += n->pending_mounts;
935 n->pending_mounts = 0;
936
937 __attach_mnt(mnt, parent);
938 touch_mnt_namespace(n);
939 }
940
next_mnt(struct mount * p,struct mount * root)941 static struct mount *next_mnt(struct mount *p, struct mount *root)
942 {
943 struct list_head *next = p->mnt_mounts.next;
944 if (next == &p->mnt_mounts) {
945 while (1) {
946 if (p == root)
947 return NULL;
948 next = p->mnt_child.next;
949 if (next != &p->mnt_parent->mnt_mounts)
950 break;
951 p = p->mnt_parent;
952 }
953 }
954 return list_entry(next, struct mount, mnt_child);
955 }
956
skip_mnt_tree(struct mount * p)957 static struct mount *skip_mnt_tree(struct mount *p)
958 {
959 struct list_head *prev = p->mnt_mounts.prev;
960 while (prev != &p->mnt_mounts) {
961 p = list_entry(prev, struct mount, mnt_child);
962 prev = p->mnt_mounts.prev;
963 }
964 return p;
965 }
966
967 struct vfsmount *
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)968 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
969 {
970 struct mount *mnt;
971 struct dentry *root;
972
973 if (!type)
974 return ERR_PTR(-ENODEV);
975
976 mnt = alloc_vfsmnt(name);
977 if (!mnt)
978 return ERR_PTR(-ENOMEM);
979
980 if (type->alloc_mnt_data) {
981 mnt->mnt.data = type->alloc_mnt_data();
982 if (!mnt->mnt.data) {
983 mnt_free_id(mnt);
984 free_vfsmnt(mnt);
985 return ERR_PTR(-ENOMEM);
986 }
987 }
988 if (flags & MS_KERNMOUNT)
989 mnt->mnt.mnt_flags = MNT_INTERNAL;
990
991 root = mount_fs(type, flags, name, &mnt->mnt, data);
992 if (IS_ERR(root)) {
993 mnt_free_id(mnt);
994 free_vfsmnt(mnt);
995 return ERR_CAST(root);
996 }
997
998 mnt->mnt.mnt_root = root;
999 mnt->mnt.mnt_sb = root->d_sb;
1000 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1001 mnt->mnt_parent = mnt;
1002 lock_mount_hash();
1003 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1004 unlock_mount_hash();
1005 return &mnt->mnt;
1006 }
1007 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1008
1009 struct vfsmount *
vfs_submount(const struct dentry * mountpoint,struct file_system_type * type,const char * name,void * data)1010 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1011 const char *name, void *data)
1012 {
1013 /* Until it is worked out how to pass the user namespace
1014 * through from the parent mount to the submount don't support
1015 * unprivileged mounts with submounts.
1016 */
1017 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1018 return ERR_PTR(-EPERM);
1019
1020 return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
1021 }
1022 EXPORT_SYMBOL_GPL(vfs_submount);
1023
clone_mnt(struct mount * old,struct dentry * root,int flag)1024 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1025 int flag)
1026 {
1027 struct super_block *sb = old->mnt.mnt_sb;
1028 struct mount *mnt;
1029 int err;
1030
1031 mnt = alloc_vfsmnt(old->mnt_devname);
1032 if (!mnt)
1033 return ERR_PTR(-ENOMEM);
1034
1035 if (sb->s_op->clone_mnt_data) {
1036 mnt->mnt.data = sb->s_op->clone_mnt_data(old->mnt.data);
1037 if (!mnt->mnt.data) {
1038 err = -ENOMEM;
1039 goto out_free;
1040 }
1041 }
1042
1043 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1044 mnt->mnt_group_id = 0; /* not a peer of original */
1045 else
1046 mnt->mnt_group_id = old->mnt_group_id;
1047
1048 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1049 err = mnt_alloc_group_id(mnt);
1050 if (err)
1051 goto out_free;
1052 }
1053
1054 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1055 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1056 /* Don't allow unprivileged users to change mount flags */
1057 if (flag & CL_UNPRIVILEGED) {
1058 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1059
1060 if (mnt->mnt.mnt_flags & MNT_READONLY)
1061 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1062
1063 if (mnt->mnt.mnt_flags & MNT_NODEV)
1064 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1065
1066 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1067 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1068
1069 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1070 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1071 }
1072
1073 /* Don't allow unprivileged users to reveal what is under a mount */
1074 if ((flag & CL_UNPRIVILEGED) &&
1075 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1076 mnt->mnt.mnt_flags |= MNT_LOCKED;
1077
1078 atomic_inc(&sb->s_active);
1079 mnt->mnt.mnt_sb = sb;
1080 mnt->mnt.mnt_root = dget(root);
1081 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1082 mnt->mnt_parent = mnt;
1083 lock_mount_hash();
1084 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1085 unlock_mount_hash();
1086
1087 if ((flag & CL_SLAVE) ||
1088 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1089 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1090 mnt->mnt_master = old;
1091 CLEAR_MNT_SHARED(mnt);
1092 } else if (!(flag & CL_PRIVATE)) {
1093 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1094 list_add(&mnt->mnt_share, &old->mnt_share);
1095 if (IS_MNT_SLAVE(old))
1096 list_add(&mnt->mnt_slave, &old->mnt_slave);
1097 mnt->mnt_master = old->mnt_master;
1098 }
1099 if (flag & CL_MAKE_SHARED)
1100 set_mnt_shared(mnt);
1101
1102 /* stick the duplicate mount on the same expiry list
1103 * as the original if that was on one */
1104 if (flag & CL_EXPIRE) {
1105 if (!list_empty(&old->mnt_expire))
1106 list_add(&mnt->mnt_expire, &old->mnt_expire);
1107 }
1108
1109 return mnt;
1110
1111 out_free:
1112 mnt_free_id(mnt);
1113 free_vfsmnt(mnt);
1114 return ERR_PTR(err);
1115 }
1116
cleanup_mnt(struct mount * mnt)1117 static void cleanup_mnt(struct mount *mnt)
1118 {
1119 /*
1120 * This probably indicates that somebody messed
1121 * up a mnt_want/drop_write() pair. If this
1122 * happens, the filesystem was probably unable
1123 * to make r/w->r/o transitions.
1124 */
1125 /*
1126 * The locking used to deal with mnt_count decrement provides barriers,
1127 * so mnt_get_writers() below is safe.
1128 */
1129 WARN_ON(mnt_get_writers(mnt));
1130 if (unlikely(mnt->mnt_pins.first))
1131 mnt_pin_kill(mnt);
1132 fsnotify_vfsmount_delete(&mnt->mnt);
1133 dput(mnt->mnt.mnt_root);
1134 deactivate_super(mnt->mnt.mnt_sb);
1135 mnt_free_id(mnt);
1136 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1137 }
1138
__cleanup_mnt(struct rcu_head * head)1139 static void __cleanup_mnt(struct rcu_head *head)
1140 {
1141 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1142 }
1143
1144 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1145 static void delayed_mntput(struct work_struct *unused)
1146 {
1147 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1148 struct llist_node *next;
1149
1150 for (; node; node = next) {
1151 next = llist_next(node);
1152 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1153 }
1154 }
1155 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1156
mntput_no_expire(struct mount * mnt)1157 static void mntput_no_expire(struct mount *mnt)
1158 {
1159 rcu_read_lock();
1160 mnt_add_count(mnt, -1);
1161 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1162 rcu_read_unlock();
1163 return;
1164 }
1165 lock_mount_hash();
1166 if (mnt_get_count(mnt)) {
1167 rcu_read_unlock();
1168 unlock_mount_hash();
1169 return;
1170 }
1171 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1172 rcu_read_unlock();
1173 unlock_mount_hash();
1174 return;
1175 }
1176 mnt->mnt.mnt_flags |= MNT_DOOMED;
1177 rcu_read_unlock();
1178
1179 list_del(&mnt->mnt_instance);
1180
1181 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1182 struct mount *p, *tmp;
1183 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1184 umount_mnt(p);
1185 }
1186 }
1187 unlock_mount_hash();
1188
1189 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1190 struct task_struct *task = current;
1191 if (likely(!(task->flags & PF_KTHREAD))) {
1192 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1193 if (!task_work_add(task, &mnt->mnt_rcu, true))
1194 return;
1195 }
1196 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1197 schedule_delayed_work(&delayed_mntput_work, 1);
1198 return;
1199 }
1200 cleanup_mnt(mnt);
1201 }
1202
mntput(struct vfsmount * mnt)1203 void mntput(struct vfsmount *mnt)
1204 {
1205 if (mnt) {
1206 struct mount *m = real_mount(mnt);
1207 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1208 if (unlikely(m->mnt_expiry_mark))
1209 m->mnt_expiry_mark = 0;
1210 mntput_no_expire(m);
1211 }
1212 }
1213 EXPORT_SYMBOL(mntput);
1214
mntget(struct vfsmount * mnt)1215 struct vfsmount *mntget(struct vfsmount *mnt)
1216 {
1217 if (mnt)
1218 mnt_add_count(real_mount(mnt), 1);
1219 return mnt;
1220 }
1221 EXPORT_SYMBOL(mntget);
1222
mnt_clone_internal(struct path * path)1223 struct vfsmount *mnt_clone_internal(struct path *path)
1224 {
1225 struct mount *p;
1226 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1227 if (IS_ERR(p))
1228 return ERR_CAST(p);
1229 p->mnt.mnt_flags |= MNT_INTERNAL;
1230 return &p->mnt;
1231 }
1232
mangle(struct seq_file * m,const char * s)1233 static inline void mangle(struct seq_file *m, const char *s)
1234 {
1235 seq_escape(m, s, " \t\n\\");
1236 }
1237
1238 /*
1239 * Simple .show_options callback for filesystems which don't want to
1240 * implement more complex mount option showing.
1241 *
1242 * See also save_mount_options().
1243 */
generic_show_options(struct seq_file * m,struct dentry * root)1244 int generic_show_options(struct seq_file *m, struct dentry *root)
1245 {
1246 const char *options;
1247
1248 rcu_read_lock();
1249 options = rcu_dereference(root->d_sb->s_options);
1250
1251 if (options != NULL && options[0]) {
1252 seq_putc(m, ',');
1253 mangle(m, options);
1254 }
1255 rcu_read_unlock();
1256
1257 return 0;
1258 }
1259 EXPORT_SYMBOL(generic_show_options);
1260
1261 /*
1262 * If filesystem uses generic_show_options(), this function should be
1263 * called from the fill_super() callback.
1264 *
1265 * The .remount_fs callback usually needs to be handled in a special
1266 * way, to make sure, that previous options are not overwritten if the
1267 * remount fails.
1268 *
1269 * Also note, that if the filesystem's .remount_fs function doesn't
1270 * reset all options to their default value, but changes only newly
1271 * given options, then the displayed options will not reflect reality
1272 * any more.
1273 */
save_mount_options(struct super_block * sb,char * options)1274 void save_mount_options(struct super_block *sb, char *options)
1275 {
1276 BUG_ON(sb->s_options);
1277 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1278 }
1279 EXPORT_SYMBOL(save_mount_options);
1280
replace_mount_options(struct super_block * sb,char * options)1281 void replace_mount_options(struct super_block *sb, char *options)
1282 {
1283 char *old = sb->s_options;
1284 rcu_assign_pointer(sb->s_options, options);
1285 if (old) {
1286 synchronize_rcu();
1287 kfree(old);
1288 }
1289 }
1290 EXPORT_SYMBOL(replace_mount_options);
1291
1292 #ifdef CONFIG_PROC_FS
1293 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1294 static void *m_start(struct seq_file *m, loff_t *pos)
1295 {
1296 struct proc_mounts *p = m->private;
1297
1298 down_read(&namespace_sem);
1299 if (p->cached_event == p->ns->event) {
1300 void *v = p->cached_mount;
1301 if (*pos == p->cached_index)
1302 return v;
1303 if (*pos == p->cached_index + 1) {
1304 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1305 return p->cached_mount = v;
1306 }
1307 }
1308
1309 p->cached_event = p->ns->event;
1310 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1311 p->cached_index = *pos;
1312 return p->cached_mount;
1313 }
1314
m_next(struct seq_file * m,void * v,loff_t * pos)1315 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1316 {
1317 struct proc_mounts *p = m->private;
1318
1319 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1320 p->cached_index = *pos;
1321 return p->cached_mount;
1322 }
1323
m_stop(struct seq_file * m,void * v)1324 static void m_stop(struct seq_file *m, void *v)
1325 {
1326 up_read(&namespace_sem);
1327 }
1328
m_show(struct seq_file * m,void * v)1329 static int m_show(struct seq_file *m, void *v)
1330 {
1331 struct proc_mounts *p = m->private;
1332 struct mount *r = list_entry(v, struct mount, mnt_list);
1333 return p->show(m, &r->mnt);
1334 }
1335
1336 const struct seq_operations mounts_op = {
1337 .start = m_start,
1338 .next = m_next,
1339 .stop = m_stop,
1340 .show = m_show,
1341 };
1342 #endif /* CONFIG_PROC_FS */
1343
1344 /**
1345 * may_umount_tree - check if a mount tree is busy
1346 * @mnt: root of mount tree
1347 *
1348 * This is called to check if a tree of mounts has any
1349 * open files, pwds, chroots or sub mounts that are
1350 * busy.
1351 */
may_umount_tree(struct vfsmount * m)1352 int may_umount_tree(struct vfsmount *m)
1353 {
1354 struct mount *mnt = real_mount(m);
1355 int actual_refs = 0;
1356 int minimum_refs = 0;
1357 struct mount *p;
1358 BUG_ON(!m);
1359
1360 /* write lock needed for mnt_get_count */
1361 lock_mount_hash();
1362 for (p = mnt; p; p = next_mnt(p, mnt)) {
1363 actual_refs += mnt_get_count(p);
1364 minimum_refs += 2;
1365 }
1366 unlock_mount_hash();
1367
1368 if (actual_refs > minimum_refs)
1369 return 0;
1370
1371 return 1;
1372 }
1373
1374 EXPORT_SYMBOL(may_umount_tree);
1375
1376 /**
1377 * may_umount - check if a mount point is busy
1378 * @mnt: root of mount
1379 *
1380 * This is called to check if a mount point has any
1381 * open files, pwds, chroots or sub mounts. If the
1382 * mount has sub mounts this will return busy
1383 * regardless of whether the sub mounts are busy.
1384 *
1385 * Doesn't take quota and stuff into account. IOW, in some cases it will
1386 * give false negatives. The main reason why it's here is that we need
1387 * a non-destructive way to look for easily umountable filesystems.
1388 */
may_umount(struct vfsmount * mnt)1389 int may_umount(struct vfsmount *mnt)
1390 {
1391 int ret = 1;
1392 down_read(&namespace_sem);
1393 lock_mount_hash();
1394 if (propagate_mount_busy(real_mount(mnt), 2))
1395 ret = 0;
1396 unlock_mount_hash();
1397 up_read(&namespace_sem);
1398 return ret;
1399 }
1400
1401 EXPORT_SYMBOL(may_umount);
1402
1403 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1404
namespace_unlock(void)1405 static void namespace_unlock(void)
1406 {
1407 struct hlist_head head;
1408
1409 hlist_move_list(&unmounted, &head);
1410
1411 up_write(&namespace_sem);
1412
1413 if (likely(hlist_empty(&head)))
1414 return;
1415
1416 synchronize_rcu();
1417
1418 group_pin_kill(&head);
1419 }
1420
namespace_lock(void)1421 static inline void namespace_lock(void)
1422 {
1423 down_write(&namespace_sem);
1424 }
1425
1426 enum umount_tree_flags {
1427 UMOUNT_SYNC = 1,
1428 UMOUNT_PROPAGATE = 2,
1429 UMOUNT_CONNECTED = 4,
1430 };
1431
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1432 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1433 {
1434 /* Leaving mounts connected is only valid for lazy umounts */
1435 if (how & UMOUNT_SYNC)
1436 return true;
1437
1438 /* A mount without a parent has nothing to be connected to */
1439 if (!mnt_has_parent(mnt))
1440 return true;
1441
1442 /* Because the reference counting rules change when mounts are
1443 * unmounted and connected, umounted mounts may not be
1444 * connected to mounted mounts.
1445 */
1446 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1447 return true;
1448
1449 /* Has it been requested that the mount remain connected? */
1450 if (how & UMOUNT_CONNECTED)
1451 return false;
1452
1453 /* Is the mount locked such that it needs to remain connected? */
1454 if (IS_MNT_LOCKED(mnt))
1455 return false;
1456
1457 /* By default disconnect the mount */
1458 return true;
1459 }
1460
1461 /*
1462 * mount_lock must be held
1463 * namespace_sem must be held for write
1464 */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1465 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1466 {
1467 LIST_HEAD(tmp_list);
1468 struct mount *p;
1469
1470 if (how & UMOUNT_PROPAGATE)
1471 propagate_mount_unlock(mnt);
1472
1473 /* Gather the mounts to umount */
1474 for (p = mnt; p; p = next_mnt(p, mnt)) {
1475 p->mnt.mnt_flags |= MNT_UMOUNT;
1476 list_move(&p->mnt_list, &tmp_list);
1477 }
1478
1479 /* Hide the mounts from mnt_mounts */
1480 list_for_each_entry(p, &tmp_list, mnt_list) {
1481 list_del_init(&p->mnt_child);
1482 }
1483
1484 /* Add propogated mounts to the tmp_list */
1485 if (how & UMOUNT_PROPAGATE)
1486 propagate_umount(&tmp_list);
1487
1488 while (!list_empty(&tmp_list)) {
1489 struct mnt_namespace *ns;
1490 bool disconnect;
1491 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1492 list_del_init(&p->mnt_expire);
1493 list_del_init(&p->mnt_list);
1494 ns = p->mnt_ns;
1495 if (ns) {
1496 ns->mounts--;
1497 __touch_mnt_namespace(ns);
1498 }
1499 p->mnt_ns = NULL;
1500 if (how & UMOUNT_SYNC)
1501 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1502
1503 disconnect = disconnect_mount(p, how);
1504
1505 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1506 disconnect ? &unmounted : NULL);
1507 if (mnt_has_parent(p)) {
1508 mnt_add_count(p->mnt_parent, -1);
1509 if (!disconnect) {
1510 /* Don't forget about p */
1511 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1512 } else {
1513 umount_mnt(p);
1514 }
1515 }
1516 change_mnt_propagation(p, MS_PRIVATE);
1517 }
1518 }
1519
1520 static void shrink_submounts(struct mount *mnt);
1521
do_umount(struct mount * mnt,int flags)1522 static int do_umount(struct mount *mnt, int flags)
1523 {
1524 struct super_block *sb = mnt->mnt.mnt_sb;
1525 int retval;
1526
1527 retval = security_sb_umount(&mnt->mnt, flags);
1528 if (retval)
1529 return retval;
1530
1531 /*
1532 * Allow userspace to request a mountpoint be expired rather than
1533 * unmounting unconditionally. Unmount only happens if:
1534 * (1) the mark is already set (the mark is cleared by mntput())
1535 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1536 */
1537 if (flags & MNT_EXPIRE) {
1538 if (&mnt->mnt == current->fs->root.mnt ||
1539 flags & (MNT_FORCE | MNT_DETACH))
1540 return -EINVAL;
1541
1542 /*
1543 * probably don't strictly need the lock here if we examined
1544 * all race cases, but it's a slowpath.
1545 */
1546 lock_mount_hash();
1547 if (mnt_get_count(mnt) != 2) {
1548 unlock_mount_hash();
1549 return -EBUSY;
1550 }
1551 unlock_mount_hash();
1552
1553 if (!xchg(&mnt->mnt_expiry_mark, 1))
1554 return -EAGAIN;
1555 }
1556
1557 /*
1558 * If we may have to abort operations to get out of this
1559 * mount, and they will themselves hold resources we must
1560 * allow the fs to do things. In the Unix tradition of
1561 * 'Gee thats tricky lets do it in userspace' the umount_begin
1562 * might fail to complete on the first run through as other tasks
1563 * must return, and the like. Thats for the mount program to worry
1564 * about for the moment.
1565 */
1566
1567 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1568 sb->s_op->umount_begin(sb);
1569 }
1570
1571 /*
1572 * No sense to grab the lock for this test, but test itself looks
1573 * somewhat bogus. Suggestions for better replacement?
1574 * Ho-hum... In principle, we might treat that as umount + switch
1575 * to rootfs. GC would eventually take care of the old vfsmount.
1576 * Actually it makes sense, especially if rootfs would contain a
1577 * /reboot - static binary that would close all descriptors and
1578 * call reboot(9). Then init(8) could umount root and exec /reboot.
1579 */
1580 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1581 /*
1582 * Special case for "unmounting" root ...
1583 * we just try to remount it readonly.
1584 */
1585 if (!capable(CAP_SYS_ADMIN))
1586 return -EPERM;
1587 down_write(&sb->s_umount);
1588 if (!(sb->s_flags & MS_RDONLY))
1589 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1590 up_write(&sb->s_umount);
1591 return retval;
1592 }
1593
1594 namespace_lock();
1595 lock_mount_hash();
1596 event++;
1597
1598 if (flags & MNT_DETACH) {
1599 if (!list_empty(&mnt->mnt_list))
1600 umount_tree(mnt, UMOUNT_PROPAGATE);
1601 retval = 0;
1602 } else {
1603 shrink_submounts(mnt);
1604 retval = -EBUSY;
1605 if (!propagate_mount_busy(mnt, 2)) {
1606 if (!list_empty(&mnt->mnt_list))
1607 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1608 retval = 0;
1609 }
1610 }
1611 unlock_mount_hash();
1612 namespace_unlock();
1613 return retval;
1614 }
1615
1616 /*
1617 * __detach_mounts - lazily unmount all mounts on the specified dentry
1618 *
1619 * During unlink, rmdir, and d_drop it is possible to loose the path
1620 * to an existing mountpoint, and wind up leaking the mount.
1621 * detach_mounts allows lazily unmounting those mounts instead of
1622 * leaking them.
1623 *
1624 * The caller may hold dentry->d_inode->i_mutex.
1625 */
__detach_mounts(struct dentry * dentry)1626 void __detach_mounts(struct dentry *dentry)
1627 {
1628 struct mountpoint *mp;
1629 struct mount *mnt;
1630
1631 namespace_lock();
1632 lock_mount_hash();
1633 mp = lookup_mountpoint(dentry);
1634 if (IS_ERR_OR_NULL(mp))
1635 goto out_unlock;
1636
1637 event++;
1638 while (!hlist_empty(&mp->m_list)) {
1639 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1640 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1641 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1642 umount_mnt(mnt);
1643 }
1644 else umount_tree(mnt, UMOUNT_CONNECTED);
1645 }
1646 put_mountpoint(mp);
1647 out_unlock:
1648 unlock_mount_hash();
1649 namespace_unlock();
1650 }
1651
1652 /*
1653 * Is the caller allowed to modify his namespace?
1654 */
may_mount(void)1655 static inline bool may_mount(void)
1656 {
1657 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1658 }
1659
may_mandlock(void)1660 static inline bool may_mandlock(void)
1661 {
1662 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1663 return false;
1664 #endif
1665 return capable(CAP_SYS_ADMIN);
1666 }
1667
1668 /*
1669 * Now umount can handle mount points as well as block devices.
1670 * This is important for filesystems which use unnamed block devices.
1671 *
1672 * We now support a flag for forced unmount like the other 'big iron'
1673 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1674 */
1675
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)1676 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1677 {
1678 struct path path;
1679 struct mount *mnt;
1680 int retval;
1681 int lookup_flags = 0;
1682
1683 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1684 return -EINVAL;
1685
1686 if (!may_mount())
1687 return -EPERM;
1688
1689 if (!(flags & UMOUNT_NOFOLLOW))
1690 lookup_flags |= LOOKUP_FOLLOW;
1691
1692 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1693 if (retval)
1694 goto out;
1695 mnt = real_mount(path.mnt);
1696 retval = -EINVAL;
1697 if (path.dentry != path.mnt->mnt_root)
1698 goto dput_and_out;
1699 if (!check_mnt(mnt))
1700 goto dput_and_out;
1701 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1702 goto dput_and_out;
1703 retval = -EPERM;
1704 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1705 goto dput_and_out;
1706
1707 retval = do_umount(mnt, flags);
1708 dput_and_out:
1709 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1710 dput(path.dentry);
1711 mntput_no_expire(mnt);
1712 out:
1713 return retval;
1714 }
1715
1716 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1717
1718 /*
1719 * The 2.0 compatible umount. No flags.
1720 */
SYSCALL_DEFINE1(oldumount,char __user *,name)1721 SYSCALL_DEFINE1(oldumount, char __user *, name)
1722 {
1723 return sys_umount(name, 0);
1724 }
1725
1726 #endif
1727
is_mnt_ns_file(struct dentry * dentry)1728 static bool is_mnt_ns_file(struct dentry *dentry)
1729 {
1730 /* Is this a proxy for a mount namespace? */
1731 return dentry->d_op == &ns_dentry_operations &&
1732 dentry->d_fsdata == &mntns_operations;
1733 }
1734
to_mnt_ns(struct ns_common * ns)1735 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1736 {
1737 return container_of(ns, struct mnt_namespace, ns);
1738 }
1739
mnt_ns_loop(struct dentry * dentry)1740 static bool mnt_ns_loop(struct dentry *dentry)
1741 {
1742 /* Could bind mounting the mount namespace inode cause a
1743 * mount namespace loop?
1744 */
1745 struct mnt_namespace *mnt_ns;
1746 if (!is_mnt_ns_file(dentry))
1747 return false;
1748
1749 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1750 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1751 }
1752
copy_tree(struct mount * mnt,struct dentry * dentry,int flag)1753 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1754 int flag)
1755 {
1756 struct mount *res, *p, *q, *r, *parent;
1757
1758 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1759 return ERR_PTR(-EINVAL);
1760
1761 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1762 return ERR_PTR(-EINVAL);
1763
1764 res = q = clone_mnt(mnt, dentry, flag);
1765 if (IS_ERR(q))
1766 return q;
1767
1768 q->mnt_mountpoint = mnt->mnt_mountpoint;
1769
1770 p = mnt;
1771 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1772 struct mount *s;
1773 if (!is_subdir(r->mnt_mountpoint, dentry))
1774 continue;
1775
1776 for (s = r; s; s = next_mnt(s, r)) {
1777 if (!(flag & CL_COPY_UNBINDABLE) &&
1778 IS_MNT_UNBINDABLE(s)) {
1779 s = skip_mnt_tree(s);
1780 continue;
1781 }
1782 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1783 is_mnt_ns_file(s->mnt.mnt_root)) {
1784 s = skip_mnt_tree(s);
1785 continue;
1786 }
1787 while (p != s->mnt_parent) {
1788 p = p->mnt_parent;
1789 q = q->mnt_parent;
1790 }
1791 p = s;
1792 parent = q;
1793 q = clone_mnt(p, p->mnt.mnt_root, flag);
1794 if (IS_ERR(q))
1795 goto out;
1796 lock_mount_hash();
1797 list_add_tail(&q->mnt_list, &res->mnt_list);
1798 attach_mnt(q, parent, p->mnt_mp);
1799 unlock_mount_hash();
1800 }
1801 }
1802 return res;
1803 out:
1804 if (res) {
1805 lock_mount_hash();
1806 umount_tree(res, UMOUNT_SYNC);
1807 unlock_mount_hash();
1808 }
1809 return q;
1810 }
1811
1812 /* Caller should check returned pointer for errors */
1813
collect_mounts(struct path * path)1814 struct vfsmount *collect_mounts(struct path *path)
1815 {
1816 struct mount *tree;
1817 namespace_lock();
1818 if (!check_mnt(real_mount(path->mnt)))
1819 tree = ERR_PTR(-EINVAL);
1820 else
1821 tree = copy_tree(real_mount(path->mnt), path->dentry,
1822 CL_COPY_ALL | CL_PRIVATE);
1823 namespace_unlock();
1824 if (IS_ERR(tree))
1825 return ERR_CAST(tree);
1826 return &tree->mnt;
1827 }
1828
drop_collected_mounts(struct vfsmount * mnt)1829 void drop_collected_mounts(struct vfsmount *mnt)
1830 {
1831 namespace_lock();
1832 lock_mount_hash();
1833 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1834 unlock_mount_hash();
1835 namespace_unlock();
1836 }
1837
1838 /**
1839 * clone_private_mount - create a private clone of a path
1840 *
1841 * This creates a new vfsmount, which will be the clone of @path. The new will
1842 * not be attached anywhere in the namespace and will be private (i.e. changes
1843 * to the originating mount won't be propagated into this).
1844 *
1845 * Release with mntput().
1846 */
clone_private_mount(struct path * path)1847 struct vfsmount *clone_private_mount(struct path *path)
1848 {
1849 struct mount *old_mnt = real_mount(path->mnt);
1850 struct mount *new_mnt;
1851
1852 if (IS_MNT_UNBINDABLE(old_mnt))
1853 return ERR_PTR(-EINVAL);
1854
1855 down_read(&namespace_sem);
1856 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1857 up_read(&namespace_sem);
1858 if (IS_ERR(new_mnt))
1859 return ERR_CAST(new_mnt);
1860
1861 return &new_mnt->mnt;
1862 }
1863 EXPORT_SYMBOL_GPL(clone_private_mount);
1864
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)1865 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1866 struct vfsmount *root)
1867 {
1868 struct mount *mnt;
1869 int res = f(root, arg);
1870 if (res)
1871 return res;
1872 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1873 res = f(&mnt->mnt, arg);
1874 if (res)
1875 return res;
1876 }
1877 return 0;
1878 }
1879
cleanup_group_ids(struct mount * mnt,struct mount * end)1880 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1881 {
1882 struct mount *p;
1883
1884 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1885 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1886 mnt_release_group_id(p);
1887 }
1888 }
1889
invent_group_ids(struct mount * mnt,bool recurse)1890 static int invent_group_ids(struct mount *mnt, bool recurse)
1891 {
1892 struct mount *p;
1893
1894 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1895 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1896 int err = mnt_alloc_group_id(p);
1897 if (err) {
1898 cleanup_group_ids(mnt, p);
1899 return err;
1900 }
1901 }
1902 }
1903
1904 return 0;
1905 }
1906
count_mounts(struct mnt_namespace * ns,struct mount * mnt)1907 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1908 {
1909 unsigned int max = READ_ONCE(sysctl_mount_max);
1910 unsigned int mounts = 0, old, pending, sum;
1911 struct mount *p;
1912
1913 for (p = mnt; p; p = next_mnt(p, mnt))
1914 mounts++;
1915
1916 old = ns->mounts;
1917 pending = ns->pending_mounts;
1918 sum = old + pending;
1919 if ((old > sum) ||
1920 (pending > sum) ||
1921 (max < sum) ||
1922 (mounts > (max - sum)))
1923 return -ENOSPC;
1924
1925 ns->pending_mounts = pending + mounts;
1926 return 0;
1927 }
1928
1929 /*
1930 * @source_mnt : mount tree to be attached
1931 * @nd : place the mount tree @source_mnt is attached
1932 * @parent_nd : if non-null, detach the source_mnt from its parent and
1933 * store the parent mount and mountpoint dentry.
1934 * (done when source_mnt is moved)
1935 *
1936 * NOTE: in the table below explains the semantics when a source mount
1937 * of a given type is attached to a destination mount of a given type.
1938 * ---------------------------------------------------------------------------
1939 * | BIND MOUNT OPERATION |
1940 * |**************************************************************************
1941 * | source-->| shared | private | slave | unbindable |
1942 * | dest | | | | |
1943 * | | | | | | |
1944 * | v | | | | |
1945 * |**************************************************************************
1946 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1947 * | | | | | |
1948 * |non-shared| shared (+) | private | slave (*) | invalid |
1949 * ***************************************************************************
1950 * A bind operation clones the source mount and mounts the clone on the
1951 * destination mount.
1952 *
1953 * (++) the cloned mount is propagated to all the mounts in the propagation
1954 * tree of the destination mount and the cloned mount is added to
1955 * the peer group of the source mount.
1956 * (+) the cloned mount is created under the destination mount and is marked
1957 * as shared. The cloned mount is added to the peer group of the source
1958 * mount.
1959 * (+++) the mount is propagated to all the mounts in the propagation tree
1960 * of the destination mount and the cloned mount is made slave
1961 * of the same master as that of the source mount. The cloned mount
1962 * is marked as 'shared and slave'.
1963 * (*) the cloned mount is made a slave of the same master as that of the
1964 * source mount.
1965 *
1966 * ---------------------------------------------------------------------------
1967 * | MOVE MOUNT OPERATION |
1968 * |**************************************************************************
1969 * | source-->| shared | private | slave | unbindable |
1970 * | dest | | | | |
1971 * | | | | | | |
1972 * | v | | | | |
1973 * |**************************************************************************
1974 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1975 * | | | | | |
1976 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1977 * ***************************************************************************
1978 *
1979 * (+) the mount is moved to the destination. And is then propagated to
1980 * all the mounts in the propagation tree of the destination mount.
1981 * (+*) the mount is moved to the destination.
1982 * (+++) the mount is moved to the destination and is then propagated to
1983 * all the mounts belonging to the destination mount's propagation tree.
1984 * the mount is marked as 'shared and slave'.
1985 * (*) the mount continues to be a slave at the new location.
1986 *
1987 * if the source mount is a tree, the operations explained above is
1988 * applied to each mount in the tree.
1989 * Must be called without spinlocks held, since this function can sleep
1990 * in allocations.
1991 */
attach_recursive_mnt(struct mount * source_mnt,struct mount * dest_mnt,struct mountpoint * dest_mp,struct path * parent_path)1992 static int attach_recursive_mnt(struct mount *source_mnt,
1993 struct mount *dest_mnt,
1994 struct mountpoint *dest_mp,
1995 struct path *parent_path)
1996 {
1997 HLIST_HEAD(tree_list);
1998 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1999 struct mountpoint *smp;
2000 struct mount *child, *p;
2001 struct hlist_node *n;
2002 int err;
2003
2004 /* Preallocate a mountpoint in case the new mounts need
2005 * to be tucked under other mounts.
2006 */
2007 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2008 if (IS_ERR(smp))
2009 return PTR_ERR(smp);
2010
2011 /* Is there space to add these mounts to the mount namespace? */
2012 if (!parent_path) {
2013 err = count_mounts(ns, source_mnt);
2014 if (err)
2015 goto out;
2016 }
2017
2018 if (IS_MNT_SHARED(dest_mnt)) {
2019 err = invent_group_ids(source_mnt, true);
2020 if (err)
2021 goto out;
2022 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2023 lock_mount_hash();
2024 if (err)
2025 goto out_cleanup_ids;
2026 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2027 set_mnt_shared(p);
2028 } else {
2029 lock_mount_hash();
2030 }
2031 if (parent_path) {
2032 detach_mnt(source_mnt, parent_path);
2033 attach_mnt(source_mnt, dest_mnt, dest_mp);
2034 touch_mnt_namespace(source_mnt->mnt_ns);
2035 } else {
2036 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2037 commit_tree(source_mnt);
2038 }
2039
2040 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2041 struct mount *q;
2042 hlist_del_init(&child->mnt_hash);
2043 q = __lookup_mnt(&child->mnt_parent->mnt,
2044 child->mnt_mountpoint);
2045 if (q)
2046 mnt_change_mountpoint(child, smp, q);
2047 commit_tree(child);
2048 }
2049 put_mountpoint(smp);
2050 unlock_mount_hash();
2051
2052 return 0;
2053
2054 out_cleanup_ids:
2055 while (!hlist_empty(&tree_list)) {
2056 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2057 child->mnt_parent->mnt_ns->pending_mounts = 0;
2058 umount_tree(child, UMOUNT_SYNC);
2059 }
2060 unlock_mount_hash();
2061 cleanup_group_ids(source_mnt, NULL);
2062 out:
2063 ns->pending_mounts = 0;
2064
2065 read_seqlock_excl(&mount_lock);
2066 put_mountpoint(smp);
2067 read_sequnlock_excl(&mount_lock);
2068
2069 return err;
2070 }
2071
lock_mount(struct path * path)2072 static struct mountpoint *lock_mount(struct path *path)
2073 {
2074 struct vfsmount *mnt;
2075 struct dentry *dentry = path->dentry;
2076 retry:
2077 inode_lock(dentry->d_inode);
2078 if (unlikely(cant_mount(dentry))) {
2079 inode_unlock(dentry->d_inode);
2080 return ERR_PTR(-ENOENT);
2081 }
2082 namespace_lock();
2083 mnt = lookup_mnt(path);
2084 if (likely(!mnt)) {
2085 struct mountpoint *mp = get_mountpoint(dentry);
2086 if (IS_ERR(mp)) {
2087 namespace_unlock();
2088 inode_unlock(dentry->d_inode);
2089 return mp;
2090 }
2091 return mp;
2092 }
2093 namespace_unlock();
2094 inode_unlock(path->dentry->d_inode);
2095 path_put(path);
2096 path->mnt = mnt;
2097 dentry = path->dentry = dget(mnt->mnt_root);
2098 goto retry;
2099 }
2100
unlock_mount(struct mountpoint * where)2101 static void unlock_mount(struct mountpoint *where)
2102 {
2103 struct dentry *dentry = where->m_dentry;
2104
2105 read_seqlock_excl(&mount_lock);
2106 put_mountpoint(where);
2107 read_sequnlock_excl(&mount_lock);
2108
2109 namespace_unlock();
2110 inode_unlock(dentry->d_inode);
2111 }
2112
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2113 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2114 {
2115 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2116 return -EINVAL;
2117
2118 if (d_is_dir(mp->m_dentry) !=
2119 d_is_dir(mnt->mnt.mnt_root))
2120 return -ENOTDIR;
2121
2122 return attach_recursive_mnt(mnt, p, mp, NULL);
2123 }
2124
2125 /*
2126 * Sanity check the flags to change_mnt_propagation.
2127 */
2128
flags_to_propagation_type(int flags)2129 static int flags_to_propagation_type(int flags)
2130 {
2131 int type = flags & ~(MS_REC | MS_SILENT);
2132
2133 /* Fail if any non-propagation flags are set */
2134 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2135 return 0;
2136 /* Only one propagation flag should be set */
2137 if (!is_power_of_2(type))
2138 return 0;
2139 return type;
2140 }
2141
2142 /*
2143 * recursively change the type of the mountpoint.
2144 */
do_change_type(struct path * path,int flag)2145 static int do_change_type(struct path *path, int flag)
2146 {
2147 struct mount *m;
2148 struct mount *mnt = real_mount(path->mnt);
2149 int recurse = flag & MS_REC;
2150 int type;
2151 int err = 0;
2152
2153 if (path->dentry != path->mnt->mnt_root)
2154 return -EINVAL;
2155
2156 type = flags_to_propagation_type(flag);
2157 if (!type)
2158 return -EINVAL;
2159
2160 namespace_lock();
2161 if (type == MS_SHARED) {
2162 err = invent_group_ids(mnt, recurse);
2163 if (err)
2164 goto out_unlock;
2165 }
2166
2167 lock_mount_hash();
2168 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2169 change_mnt_propagation(m, type);
2170 unlock_mount_hash();
2171
2172 out_unlock:
2173 namespace_unlock();
2174 return err;
2175 }
2176
has_locked_children(struct mount * mnt,struct dentry * dentry)2177 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2178 {
2179 struct mount *child;
2180 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2181 if (!is_subdir(child->mnt_mountpoint, dentry))
2182 continue;
2183
2184 if (child->mnt.mnt_flags & MNT_LOCKED)
2185 return true;
2186 }
2187 return false;
2188 }
2189
2190 /*
2191 * do loopback mount.
2192 */
do_loopback(struct path * path,const char * old_name,int recurse)2193 static int do_loopback(struct path *path, const char *old_name,
2194 int recurse)
2195 {
2196 struct path old_path;
2197 struct mount *mnt = NULL, *old, *parent;
2198 struct mountpoint *mp;
2199 int err;
2200 if (!old_name || !*old_name)
2201 return -EINVAL;
2202 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2203 if (err)
2204 return err;
2205
2206 err = -EINVAL;
2207 if (mnt_ns_loop(old_path.dentry))
2208 goto out;
2209
2210 mp = lock_mount(path);
2211 err = PTR_ERR(mp);
2212 if (IS_ERR(mp))
2213 goto out;
2214
2215 old = real_mount(old_path.mnt);
2216 parent = real_mount(path->mnt);
2217
2218 err = -EINVAL;
2219 if (IS_MNT_UNBINDABLE(old))
2220 goto out2;
2221
2222 if (!check_mnt(parent))
2223 goto out2;
2224
2225 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2226 goto out2;
2227
2228 if (!recurse && has_locked_children(old, old_path.dentry))
2229 goto out2;
2230
2231 if (recurse)
2232 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2233 else
2234 mnt = clone_mnt(old, old_path.dentry, 0);
2235
2236 if (IS_ERR(mnt)) {
2237 err = PTR_ERR(mnt);
2238 goto out2;
2239 }
2240
2241 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2242
2243 err = graft_tree(mnt, parent, mp);
2244 if (err) {
2245 lock_mount_hash();
2246 umount_tree(mnt, UMOUNT_SYNC);
2247 unlock_mount_hash();
2248 }
2249 out2:
2250 unlock_mount(mp);
2251 out:
2252 path_put(&old_path);
2253 return err;
2254 }
2255
change_mount_flags(struct vfsmount * mnt,int ms_flags)2256 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2257 {
2258 int error = 0;
2259 int readonly_request = 0;
2260
2261 if (ms_flags & MS_RDONLY)
2262 readonly_request = 1;
2263 if (readonly_request == __mnt_is_readonly(mnt))
2264 return 0;
2265
2266 if (readonly_request)
2267 error = mnt_make_readonly(real_mount(mnt));
2268 else
2269 __mnt_unmake_readonly(real_mount(mnt));
2270 return error;
2271 }
2272
2273 /*
2274 * change filesystem flags. dir should be a physical root of filesystem.
2275 * If you've mounted a non-root directory somewhere and want to do remount
2276 * on it - tough luck.
2277 */
do_remount(struct path * path,int flags,int mnt_flags,void * data)2278 static int do_remount(struct path *path, int flags, int mnt_flags,
2279 void *data)
2280 {
2281 int err;
2282 struct super_block *sb = path->mnt->mnt_sb;
2283 struct mount *mnt = real_mount(path->mnt);
2284
2285 if (!check_mnt(mnt))
2286 return -EINVAL;
2287
2288 if (path->dentry != path->mnt->mnt_root)
2289 return -EINVAL;
2290
2291 /* Don't allow changing of locked mnt flags.
2292 *
2293 * No locks need to be held here while testing the various
2294 * MNT_LOCK flags because those flags can never be cleared
2295 * once they are set.
2296 */
2297 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2298 !(mnt_flags & MNT_READONLY)) {
2299 return -EPERM;
2300 }
2301 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2302 !(mnt_flags & MNT_NODEV)) {
2303 return -EPERM;
2304 }
2305 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2306 !(mnt_flags & MNT_NOSUID)) {
2307 return -EPERM;
2308 }
2309 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2310 !(mnt_flags & MNT_NOEXEC)) {
2311 return -EPERM;
2312 }
2313 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2314 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2315 return -EPERM;
2316 }
2317
2318 err = security_sb_remount(sb, data);
2319 if (err)
2320 return err;
2321
2322 down_write(&sb->s_umount);
2323 if (flags & MS_BIND)
2324 err = change_mount_flags(path->mnt, flags);
2325 else if (!capable(CAP_SYS_ADMIN))
2326 err = -EPERM;
2327 else {
2328 err = do_remount_sb2(path->mnt, sb, flags, data, 0);
2329 namespace_lock();
2330 lock_mount_hash();
2331 propagate_remount(mnt);
2332 unlock_mount_hash();
2333 namespace_unlock();
2334 }
2335 if (!err) {
2336 lock_mount_hash();
2337 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2338 mnt->mnt.mnt_flags = mnt_flags;
2339 touch_mnt_namespace(mnt->mnt_ns);
2340 unlock_mount_hash();
2341 }
2342 up_write(&sb->s_umount);
2343 return err;
2344 }
2345
tree_contains_unbindable(struct mount * mnt)2346 static inline int tree_contains_unbindable(struct mount *mnt)
2347 {
2348 struct mount *p;
2349 for (p = mnt; p; p = next_mnt(p, mnt)) {
2350 if (IS_MNT_UNBINDABLE(p))
2351 return 1;
2352 }
2353 return 0;
2354 }
2355
do_move_mount(struct path * path,const char * old_name)2356 static int do_move_mount(struct path *path, const char *old_name)
2357 {
2358 struct path old_path, parent_path;
2359 struct mount *p;
2360 struct mount *old;
2361 struct mountpoint *mp;
2362 int err;
2363 if (!old_name || !*old_name)
2364 return -EINVAL;
2365 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2366 if (err)
2367 return err;
2368
2369 mp = lock_mount(path);
2370 err = PTR_ERR(mp);
2371 if (IS_ERR(mp))
2372 goto out;
2373
2374 old = real_mount(old_path.mnt);
2375 p = real_mount(path->mnt);
2376
2377 err = -EINVAL;
2378 if (!check_mnt(p) || !check_mnt(old))
2379 goto out1;
2380
2381 if (old->mnt.mnt_flags & MNT_LOCKED)
2382 goto out1;
2383
2384 err = -EINVAL;
2385 if (old_path.dentry != old_path.mnt->mnt_root)
2386 goto out1;
2387
2388 if (!mnt_has_parent(old))
2389 goto out1;
2390
2391 if (d_is_dir(path->dentry) !=
2392 d_is_dir(old_path.dentry))
2393 goto out1;
2394 /*
2395 * Don't move a mount residing in a shared parent.
2396 */
2397 if (IS_MNT_SHARED(old->mnt_parent))
2398 goto out1;
2399 /*
2400 * Don't move a mount tree containing unbindable mounts to a destination
2401 * mount which is shared.
2402 */
2403 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2404 goto out1;
2405 err = -ELOOP;
2406 for (; mnt_has_parent(p); p = p->mnt_parent)
2407 if (p == old)
2408 goto out1;
2409
2410 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2411 if (err)
2412 goto out1;
2413
2414 /* if the mount is moved, it should no longer be expire
2415 * automatically */
2416 list_del_init(&old->mnt_expire);
2417 out1:
2418 unlock_mount(mp);
2419 out:
2420 if (!err)
2421 path_put(&parent_path);
2422 path_put(&old_path);
2423 return err;
2424 }
2425
fs_set_subtype(struct vfsmount * mnt,const char * fstype)2426 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2427 {
2428 int err;
2429 const char *subtype = strchr(fstype, '.');
2430 if (subtype) {
2431 subtype++;
2432 err = -EINVAL;
2433 if (!subtype[0])
2434 goto err;
2435 } else
2436 subtype = "";
2437
2438 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2439 err = -ENOMEM;
2440 if (!mnt->mnt_sb->s_subtype)
2441 goto err;
2442 return mnt;
2443
2444 err:
2445 mntput(mnt);
2446 return ERR_PTR(err);
2447 }
2448
2449 /*
2450 * add a mount into a namespace's mount tree
2451 */
do_add_mount(struct mount * newmnt,struct path * path,int mnt_flags)2452 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2453 {
2454 struct mountpoint *mp;
2455 struct mount *parent;
2456 int err;
2457
2458 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2459
2460 mp = lock_mount(path);
2461 if (IS_ERR(mp))
2462 return PTR_ERR(mp);
2463
2464 parent = real_mount(path->mnt);
2465 err = -EINVAL;
2466 if (unlikely(!check_mnt(parent))) {
2467 /* that's acceptable only for automounts done in private ns */
2468 if (!(mnt_flags & MNT_SHRINKABLE))
2469 goto unlock;
2470 /* ... and for those we'd better have mountpoint still alive */
2471 if (!parent->mnt_ns)
2472 goto unlock;
2473 }
2474
2475 /* Refuse the same filesystem on the same mount point */
2476 err = -EBUSY;
2477 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2478 path->mnt->mnt_root == path->dentry)
2479 goto unlock;
2480
2481 err = -EINVAL;
2482 if (d_is_symlink(newmnt->mnt.mnt_root))
2483 goto unlock;
2484
2485 newmnt->mnt.mnt_flags = mnt_flags;
2486 err = graft_tree(newmnt, parent, mp);
2487
2488 unlock:
2489 unlock_mount(mp);
2490 return err;
2491 }
2492
2493 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2494
2495 /*
2496 * create a new mount for userspace and request it to be added into the
2497 * namespace's tree
2498 */
do_new_mount(struct path * path,const char * fstype,int flags,int mnt_flags,const char * name,void * data)2499 static int do_new_mount(struct path *path, const char *fstype, int flags,
2500 int mnt_flags, const char *name, void *data)
2501 {
2502 struct file_system_type *type;
2503 struct vfsmount *mnt;
2504 int err;
2505
2506 if (!fstype)
2507 return -EINVAL;
2508
2509 type = get_fs_type(fstype);
2510 if (!type)
2511 return -ENODEV;
2512
2513 mnt = vfs_kern_mount(type, flags, name, data);
2514 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2515 !mnt->mnt_sb->s_subtype)
2516 mnt = fs_set_subtype(mnt, fstype);
2517
2518 put_filesystem(type);
2519 if (IS_ERR(mnt))
2520 return PTR_ERR(mnt);
2521
2522 if (mount_too_revealing(mnt, &mnt_flags)) {
2523 mntput(mnt);
2524 return -EPERM;
2525 }
2526
2527 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2528 if (err)
2529 mntput(mnt);
2530 return err;
2531 }
2532
finish_automount(struct vfsmount * m,struct path * path)2533 int finish_automount(struct vfsmount *m, struct path *path)
2534 {
2535 struct mount *mnt = real_mount(m);
2536 int err;
2537 /* The new mount record should have at least 2 refs to prevent it being
2538 * expired before we get a chance to add it
2539 */
2540 BUG_ON(mnt_get_count(mnt) < 2);
2541
2542 if (m->mnt_sb == path->mnt->mnt_sb &&
2543 m->mnt_root == path->dentry) {
2544 err = -ELOOP;
2545 goto fail;
2546 }
2547
2548 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2549 if (!err)
2550 return 0;
2551 fail:
2552 /* remove m from any expiration list it may be on */
2553 if (!list_empty(&mnt->mnt_expire)) {
2554 namespace_lock();
2555 list_del_init(&mnt->mnt_expire);
2556 namespace_unlock();
2557 }
2558 mntput(m);
2559 mntput(m);
2560 return err;
2561 }
2562
2563 /**
2564 * mnt_set_expiry - Put a mount on an expiration list
2565 * @mnt: The mount to list.
2566 * @expiry_list: The list to add the mount to.
2567 */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)2568 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2569 {
2570 namespace_lock();
2571
2572 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2573
2574 namespace_unlock();
2575 }
2576 EXPORT_SYMBOL(mnt_set_expiry);
2577
2578 /*
2579 * process a list of expirable mountpoints with the intent of discarding any
2580 * mountpoints that aren't in use and haven't been touched since last we came
2581 * here
2582 */
mark_mounts_for_expiry(struct list_head * mounts)2583 void mark_mounts_for_expiry(struct list_head *mounts)
2584 {
2585 struct mount *mnt, *next;
2586 LIST_HEAD(graveyard);
2587
2588 if (list_empty(mounts))
2589 return;
2590
2591 namespace_lock();
2592 lock_mount_hash();
2593
2594 /* extract from the expiration list every vfsmount that matches the
2595 * following criteria:
2596 * - only referenced by its parent vfsmount
2597 * - still marked for expiry (marked on the last call here; marks are
2598 * cleared by mntput())
2599 */
2600 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2601 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2602 propagate_mount_busy(mnt, 1))
2603 continue;
2604 list_move(&mnt->mnt_expire, &graveyard);
2605 }
2606 while (!list_empty(&graveyard)) {
2607 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2608 touch_mnt_namespace(mnt->mnt_ns);
2609 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2610 }
2611 unlock_mount_hash();
2612 namespace_unlock();
2613 }
2614
2615 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2616
2617 /*
2618 * Ripoff of 'select_parent()'
2619 *
2620 * search the list of submounts for a given mountpoint, and move any
2621 * shrinkable submounts to the 'graveyard' list.
2622 */
select_submounts(struct mount * parent,struct list_head * graveyard)2623 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2624 {
2625 struct mount *this_parent = parent;
2626 struct list_head *next;
2627 int found = 0;
2628
2629 repeat:
2630 next = this_parent->mnt_mounts.next;
2631 resume:
2632 while (next != &this_parent->mnt_mounts) {
2633 struct list_head *tmp = next;
2634 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2635
2636 next = tmp->next;
2637 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2638 continue;
2639 /*
2640 * Descend a level if the d_mounts list is non-empty.
2641 */
2642 if (!list_empty(&mnt->mnt_mounts)) {
2643 this_parent = mnt;
2644 goto repeat;
2645 }
2646
2647 if (!propagate_mount_busy(mnt, 1)) {
2648 list_move_tail(&mnt->mnt_expire, graveyard);
2649 found++;
2650 }
2651 }
2652 /*
2653 * All done at this level ... ascend and resume the search
2654 */
2655 if (this_parent != parent) {
2656 next = this_parent->mnt_child.next;
2657 this_parent = this_parent->mnt_parent;
2658 goto resume;
2659 }
2660 return found;
2661 }
2662
2663 /*
2664 * process a list of expirable mountpoints with the intent of discarding any
2665 * submounts of a specific parent mountpoint
2666 *
2667 * mount_lock must be held for write
2668 */
shrink_submounts(struct mount * mnt)2669 static void shrink_submounts(struct mount *mnt)
2670 {
2671 LIST_HEAD(graveyard);
2672 struct mount *m;
2673
2674 /* extract submounts of 'mountpoint' from the expiration list */
2675 while (select_submounts(mnt, &graveyard)) {
2676 while (!list_empty(&graveyard)) {
2677 m = list_first_entry(&graveyard, struct mount,
2678 mnt_expire);
2679 touch_mnt_namespace(m->mnt_ns);
2680 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2681 }
2682 }
2683 }
2684
2685 /*
2686 * Some copy_from_user() implementations do not return the exact number of
2687 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2688 * Note that this function differs from copy_from_user() in that it will oops
2689 * on bad values of `to', rather than returning a short copy.
2690 */
exact_copy_from_user(void * to,const void __user * from,unsigned long n)2691 static long exact_copy_from_user(void *to, const void __user * from,
2692 unsigned long n)
2693 {
2694 char *t = to;
2695 const char __user *f = from;
2696 char c;
2697
2698 if (!access_ok(VERIFY_READ, from, n))
2699 return n;
2700
2701 while (n) {
2702 if (__get_user(c, f)) {
2703 memset(t, 0, n);
2704 break;
2705 }
2706 *t++ = c;
2707 f++;
2708 n--;
2709 }
2710 return n;
2711 }
2712
copy_mount_options(const void __user * data)2713 void *copy_mount_options(const void __user * data)
2714 {
2715 int i;
2716 unsigned long size;
2717 char *copy;
2718
2719 if (!data)
2720 return NULL;
2721
2722 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2723 if (!copy)
2724 return ERR_PTR(-ENOMEM);
2725
2726 /* We only care that *some* data at the address the user
2727 * gave us is valid. Just in case, we'll zero
2728 * the remainder of the page.
2729 */
2730 /* copy_from_user cannot cross TASK_SIZE ! */
2731 size = TASK_SIZE - (unsigned long)data;
2732 if (size > PAGE_SIZE)
2733 size = PAGE_SIZE;
2734
2735 i = size - exact_copy_from_user(copy, data, size);
2736 if (!i) {
2737 kfree(copy);
2738 return ERR_PTR(-EFAULT);
2739 }
2740 if (i != PAGE_SIZE)
2741 memset(copy + i, 0, PAGE_SIZE - i);
2742 return copy;
2743 }
2744
copy_mount_string(const void __user * data)2745 char *copy_mount_string(const void __user *data)
2746 {
2747 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2748 }
2749
2750 /*
2751 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2752 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2753 *
2754 * data is a (void *) that can point to any structure up to
2755 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2756 * information (or be NULL).
2757 *
2758 * Pre-0.97 versions of mount() didn't have a flags word.
2759 * When the flags word was introduced its top half was required
2760 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2761 * Therefore, if this magic number is present, it carries no information
2762 * and must be discarded.
2763 */
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)2764 long do_mount(const char *dev_name, const char __user *dir_name,
2765 const char *type_page, unsigned long flags, void *data_page)
2766 {
2767 struct path path;
2768 int retval = 0;
2769 int mnt_flags = 0;
2770
2771 /* Discard magic */
2772 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2773 flags &= ~MS_MGC_MSK;
2774
2775 /* Basic sanity checks */
2776 if (data_page)
2777 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2778
2779 /* ... and get the mountpoint */
2780 retval = user_path(dir_name, &path);
2781 if (retval)
2782 return retval;
2783
2784 retval = security_sb_mount(dev_name, &path,
2785 type_page, flags, data_page);
2786 if (!retval && !may_mount())
2787 retval = -EPERM;
2788 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2789 retval = -EPERM;
2790 if (retval)
2791 goto dput_out;
2792
2793 /* Default to relatime unless overriden */
2794 if (!(flags & MS_NOATIME))
2795 mnt_flags |= MNT_RELATIME;
2796
2797 /* Separate the per-mountpoint flags */
2798 if (flags & MS_NOSUID)
2799 mnt_flags |= MNT_NOSUID;
2800 if (flags & MS_NODEV)
2801 mnt_flags |= MNT_NODEV;
2802 if (flags & MS_NOEXEC)
2803 mnt_flags |= MNT_NOEXEC;
2804 if (flags & MS_NOATIME)
2805 mnt_flags |= MNT_NOATIME;
2806 if (flags & MS_NODIRATIME)
2807 mnt_flags |= MNT_NODIRATIME;
2808 if (flags & MS_STRICTATIME)
2809 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2810 if (flags & MS_RDONLY)
2811 mnt_flags |= MNT_READONLY;
2812
2813 /* The default atime for remount is preservation */
2814 if ((flags & MS_REMOUNT) &&
2815 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2816 MS_STRICTATIME)) == 0)) {
2817 mnt_flags &= ~MNT_ATIME_MASK;
2818 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2819 }
2820
2821 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2822 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2823 MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
2824
2825 if (flags & MS_REMOUNT)
2826 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2827 data_page);
2828 else if (flags & MS_BIND)
2829 retval = do_loopback(&path, dev_name, flags & MS_REC);
2830 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2831 retval = do_change_type(&path, flags);
2832 else if (flags & MS_MOVE)
2833 retval = do_move_mount(&path, dev_name);
2834 else
2835 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2836 dev_name, data_page);
2837 dput_out:
2838 path_put(&path);
2839 return retval;
2840 }
2841
inc_mnt_namespaces(struct user_namespace * ns)2842 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2843 {
2844 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2845 }
2846
dec_mnt_namespaces(struct ucounts * ucounts)2847 static void dec_mnt_namespaces(struct ucounts *ucounts)
2848 {
2849 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2850 }
2851
free_mnt_ns(struct mnt_namespace * ns)2852 static void free_mnt_ns(struct mnt_namespace *ns)
2853 {
2854 ns_free_inum(&ns->ns);
2855 dec_mnt_namespaces(ns->ucounts);
2856 put_user_ns(ns->user_ns);
2857 kfree(ns);
2858 }
2859
2860 /*
2861 * Assign a sequence number so we can detect when we attempt to bind
2862 * mount a reference to an older mount namespace into the current
2863 * mount namespace, preventing reference counting loops. A 64bit
2864 * number incrementing at 10Ghz will take 12,427 years to wrap which
2865 * is effectively never, so we can ignore the possibility.
2866 */
2867 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2868
alloc_mnt_ns(struct user_namespace * user_ns)2869 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2870 {
2871 struct mnt_namespace *new_ns;
2872 struct ucounts *ucounts;
2873 int ret;
2874
2875 ucounts = inc_mnt_namespaces(user_ns);
2876 if (!ucounts)
2877 return ERR_PTR(-ENOSPC);
2878
2879 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2880 if (!new_ns) {
2881 dec_mnt_namespaces(ucounts);
2882 return ERR_PTR(-ENOMEM);
2883 }
2884 ret = ns_alloc_inum(&new_ns->ns);
2885 if (ret) {
2886 kfree(new_ns);
2887 dec_mnt_namespaces(ucounts);
2888 return ERR_PTR(ret);
2889 }
2890 new_ns->ns.ops = &mntns_operations;
2891 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2892 atomic_set(&new_ns->count, 1);
2893 new_ns->root = NULL;
2894 INIT_LIST_HEAD(&new_ns->list);
2895 init_waitqueue_head(&new_ns->poll);
2896 new_ns->event = 0;
2897 new_ns->user_ns = get_user_ns(user_ns);
2898 new_ns->ucounts = ucounts;
2899 new_ns->mounts = 0;
2900 new_ns->pending_mounts = 0;
2901 return new_ns;
2902 }
2903
2904 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)2905 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2906 struct user_namespace *user_ns, struct fs_struct *new_fs)
2907 {
2908 struct mnt_namespace *new_ns;
2909 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2910 struct mount *p, *q;
2911 struct mount *old;
2912 struct mount *new;
2913 int copy_flags;
2914
2915 BUG_ON(!ns);
2916
2917 if (likely(!(flags & CLONE_NEWNS))) {
2918 get_mnt_ns(ns);
2919 return ns;
2920 }
2921
2922 old = ns->root;
2923
2924 new_ns = alloc_mnt_ns(user_ns);
2925 if (IS_ERR(new_ns))
2926 return new_ns;
2927
2928 namespace_lock();
2929 /* First pass: copy the tree topology */
2930 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2931 if (user_ns != ns->user_ns)
2932 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2933 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2934 if (IS_ERR(new)) {
2935 namespace_unlock();
2936 free_mnt_ns(new_ns);
2937 return ERR_CAST(new);
2938 }
2939 new_ns->root = new;
2940 list_add_tail(&new_ns->list, &new->mnt_list);
2941
2942 /*
2943 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2944 * as belonging to new namespace. We have already acquired a private
2945 * fs_struct, so tsk->fs->lock is not needed.
2946 */
2947 p = old;
2948 q = new;
2949 while (p) {
2950 q->mnt_ns = new_ns;
2951 new_ns->mounts++;
2952 if (new_fs) {
2953 if (&p->mnt == new_fs->root.mnt) {
2954 new_fs->root.mnt = mntget(&q->mnt);
2955 rootmnt = &p->mnt;
2956 }
2957 if (&p->mnt == new_fs->pwd.mnt) {
2958 new_fs->pwd.mnt = mntget(&q->mnt);
2959 pwdmnt = &p->mnt;
2960 }
2961 }
2962 p = next_mnt(p, old);
2963 q = next_mnt(q, new);
2964 if (!q)
2965 break;
2966 while (p->mnt.mnt_root != q->mnt.mnt_root)
2967 p = next_mnt(p, old);
2968 }
2969 namespace_unlock();
2970
2971 if (rootmnt)
2972 mntput(rootmnt);
2973 if (pwdmnt)
2974 mntput(pwdmnt);
2975
2976 return new_ns;
2977 }
2978
2979 /**
2980 * create_mnt_ns - creates a private namespace and adds a root filesystem
2981 * @mnt: pointer to the new root filesystem mountpoint
2982 */
create_mnt_ns(struct vfsmount * m)2983 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2984 {
2985 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2986 if (!IS_ERR(new_ns)) {
2987 struct mount *mnt = real_mount(m);
2988 mnt->mnt_ns = new_ns;
2989 new_ns->root = mnt;
2990 new_ns->mounts++;
2991 list_add(&mnt->mnt_list, &new_ns->list);
2992 } else {
2993 mntput(m);
2994 }
2995 return new_ns;
2996 }
2997
mount_subtree(struct vfsmount * mnt,const char * name)2998 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2999 {
3000 struct mnt_namespace *ns;
3001 struct super_block *s;
3002 struct path path;
3003 int err;
3004
3005 ns = create_mnt_ns(mnt);
3006 if (IS_ERR(ns))
3007 return ERR_CAST(ns);
3008
3009 err = vfs_path_lookup(mnt->mnt_root, mnt,
3010 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3011
3012 put_mnt_ns(ns);
3013
3014 if (err)
3015 return ERR_PTR(err);
3016
3017 /* trade a vfsmount reference for active sb one */
3018 s = path.mnt->mnt_sb;
3019 atomic_inc(&s->s_active);
3020 mntput(path.mnt);
3021 /* lock the sucker */
3022 down_write(&s->s_umount);
3023 /* ... and return the root of (sub)tree on it */
3024 return path.dentry;
3025 }
3026 EXPORT_SYMBOL(mount_subtree);
3027
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)3028 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3029 char __user *, type, unsigned long, flags, void __user *, data)
3030 {
3031 int ret;
3032 char *kernel_type;
3033 char *kernel_dev;
3034 void *options;
3035
3036 kernel_type = copy_mount_string(type);
3037 ret = PTR_ERR(kernel_type);
3038 if (IS_ERR(kernel_type))
3039 goto out_type;
3040
3041 kernel_dev = copy_mount_string(dev_name);
3042 ret = PTR_ERR(kernel_dev);
3043 if (IS_ERR(kernel_dev))
3044 goto out_dev;
3045
3046 options = copy_mount_options(data);
3047 ret = PTR_ERR(options);
3048 if (IS_ERR(options))
3049 goto out_data;
3050
3051 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3052
3053 kfree(options);
3054 out_data:
3055 kfree(kernel_dev);
3056 out_dev:
3057 kfree(kernel_type);
3058 out_type:
3059 return ret;
3060 }
3061
3062 /*
3063 * Return true if path is reachable from root
3064 *
3065 * namespace_sem or mount_lock is held
3066 */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)3067 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3068 const struct path *root)
3069 {
3070 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3071 dentry = mnt->mnt_mountpoint;
3072 mnt = mnt->mnt_parent;
3073 }
3074 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3075 }
3076
path_is_under(struct path * path1,struct path * path2)3077 bool path_is_under(struct path *path1, struct path *path2)
3078 {
3079 bool res;
3080 read_seqlock_excl(&mount_lock);
3081 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3082 read_sequnlock_excl(&mount_lock);
3083 return res;
3084 }
3085 EXPORT_SYMBOL(path_is_under);
3086
3087 /*
3088 * pivot_root Semantics:
3089 * Moves the root file system of the current process to the directory put_old,
3090 * makes new_root as the new root file system of the current process, and sets
3091 * root/cwd of all processes which had them on the current root to new_root.
3092 *
3093 * Restrictions:
3094 * The new_root and put_old must be directories, and must not be on the
3095 * same file system as the current process root. The put_old must be
3096 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3097 * pointed to by put_old must yield the same directory as new_root. No other
3098 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3099 *
3100 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3101 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3102 * in this situation.
3103 *
3104 * Notes:
3105 * - we don't move root/cwd if they are not at the root (reason: if something
3106 * cared enough to change them, it's probably wrong to force them elsewhere)
3107 * - it's okay to pick a root that isn't the root of a file system, e.g.
3108 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3109 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3110 * first.
3111 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)3112 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3113 const char __user *, put_old)
3114 {
3115 struct path new, old, parent_path, root_parent, root;
3116 struct mount *new_mnt, *root_mnt, *old_mnt;
3117 struct mountpoint *old_mp, *root_mp;
3118 int error;
3119
3120 if (!may_mount())
3121 return -EPERM;
3122
3123 error = user_path_dir(new_root, &new);
3124 if (error)
3125 goto out0;
3126
3127 error = user_path_dir(put_old, &old);
3128 if (error)
3129 goto out1;
3130
3131 error = security_sb_pivotroot(&old, &new);
3132 if (error)
3133 goto out2;
3134
3135 get_fs_root(current->fs, &root);
3136 old_mp = lock_mount(&old);
3137 error = PTR_ERR(old_mp);
3138 if (IS_ERR(old_mp))
3139 goto out3;
3140
3141 error = -EINVAL;
3142 new_mnt = real_mount(new.mnt);
3143 root_mnt = real_mount(root.mnt);
3144 old_mnt = real_mount(old.mnt);
3145 if (IS_MNT_SHARED(old_mnt) ||
3146 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3147 IS_MNT_SHARED(root_mnt->mnt_parent))
3148 goto out4;
3149 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3150 goto out4;
3151 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3152 goto out4;
3153 error = -ENOENT;
3154 if (d_unlinked(new.dentry))
3155 goto out4;
3156 error = -EBUSY;
3157 if (new_mnt == root_mnt || old_mnt == root_mnt)
3158 goto out4; /* loop, on the same file system */
3159 error = -EINVAL;
3160 if (root.mnt->mnt_root != root.dentry)
3161 goto out4; /* not a mountpoint */
3162 if (!mnt_has_parent(root_mnt))
3163 goto out4; /* not attached */
3164 root_mp = root_mnt->mnt_mp;
3165 if (new.mnt->mnt_root != new.dentry)
3166 goto out4; /* not a mountpoint */
3167 if (!mnt_has_parent(new_mnt))
3168 goto out4; /* not attached */
3169 /* make sure we can reach put_old from new_root */
3170 if (!is_path_reachable(old_mnt, old.dentry, &new))
3171 goto out4;
3172 /* make certain new is below the root */
3173 if (!is_path_reachable(new_mnt, new.dentry, &root))
3174 goto out4;
3175 root_mp->m_count++; /* pin it so it won't go away */
3176 lock_mount_hash();
3177 detach_mnt(new_mnt, &parent_path);
3178 detach_mnt(root_mnt, &root_parent);
3179 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3180 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3181 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3182 }
3183 /* mount old root on put_old */
3184 attach_mnt(root_mnt, old_mnt, old_mp);
3185 /* mount new_root on / */
3186 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3187 touch_mnt_namespace(current->nsproxy->mnt_ns);
3188 /* A moved mount should not expire automatically */
3189 list_del_init(&new_mnt->mnt_expire);
3190 put_mountpoint(root_mp);
3191 unlock_mount_hash();
3192 chroot_fs_refs(&root, &new);
3193 error = 0;
3194 out4:
3195 unlock_mount(old_mp);
3196 if (!error) {
3197 path_put(&root_parent);
3198 path_put(&parent_path);
3199 }
3200 out3:
3201 path_put(&root);
3202 out2:
3203 path_put(&old);
3204 out1:
3205 path_put(&new);
3206 out0:
3207 return error;
3208 }
3209
init_mount_tree(void)3210 static void __init init_mount_tree(void)
3211 {
3212 struct vfsmount *mnt;
3213 struct mnt_namespace *ns;
3214 struct path root;
3215 struct file_system_type *type;
3216
3217 type = get_fs_type("rootfs");
3218 if (!type)
3219 panic("Can't find rootfs type");
3220 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3221 put_filesystem(type);
3222 if (IS_ERR(mnt))
3223 panic("Can't create rootfs");
3224
3225 ns = create_mnt_ns(mnt);
3226 if (IS_ERR(ns))
3227 panic("Can't allocate initial namespace");
3228
3229 init_task.nsproxy->mnt_ns = ns;
3230 get_mnt_ns(ns);
3231
3232 root.mnt = mnt;
3233 root.dentry = mnt->mnt_root;
3234 mnt->mnt_flags |= MNT_LOCKED;
3235
3236 set_fs_pwd(current->fs, &root);
3237 set_fs_root(current->fs, &root);
3238 }
3239
mnt_init(void)3240 void __init mnt_init(void)
3241 {
3242 unsigned u;
3243 int err;
3244
3245 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3246 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3247
3248 mount_hashtable = alloc_large_system_hash("Mount-cache",
3249 sizeof(struct hlist_head),
3250 mhash_entries, 19,
3251 0,
3252 &m_hash_shift, &m_hash_mask, 0, 0);
3253 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3254 sizeof(struct hlist_head),
3255 mphash_entries, 19,
3256 0,
3257 &mp_hash_shift, &mp_hash_mask, 0, 0);
3258
3259 if (!mount_hashtable || !mountpoint_hashtable)
3260 panic("Failed to allocate mount hash table\n");
3261
3262 for (u = 0; u <= m_hash_mask; u++)
3263 INIT_HLIST_HEAD(&mount_hashtable[u]);
3264 for (u = 0; u <= mp_hash_mask; u++)
3265 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3266
3267 kernfs_init();
3268
3269 err = sysfs_init();
3270 if (err)
3271 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3272 __func__, err);
3273 fs_kobj = kobject_create_and_add("fs", NULL);
3274 if (!fs_kobj)
3275 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3276 init_rootfs();
3277 init_mount_tree();
3278 }
3279
put_mnt_ns(struct mnt_namespace * ns)3280 void put_mnt_ns(struct mnt_namespace *ns)
3281 {
3282 if (!atomic_dec_and_test(&ns->count))
3283 return;
3284 drop_collected_mounts(&ns->root->mnt);
3285 free_mnt_ns(ns);
3286 }
3287
kern_mount_data(struct file_system_type * type,void * data)3288 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3289 {
3290 struct vfsmount *mnt;
3291 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3292 if (!IS_ERR(mnt)) {
3293 /*
3294 * it is a longterm mount, don't release mnt until
3295 * we unmount before file sys is unregistered
3296 */
3297 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3298 }
3299 return mnt;
3300 }
3301 EXPORT_SYMBOL_GPL(kern_mount_data);
3302
kern_unmount(struct vfsmount * mnt)3303 void kern_unmount(struct vfsmount *mnt)
3304 {
3305 /* release long term mount so mount point can be released */
3306 if (!IS_ERR_OR_NULL(mnt)) {
3307 real_mount(mnt)->mnt_ns = NULL;
3308 synchronize_rcu(); /* yecchhh... */
3309 mntput(mnt);
3310 }
3311 }
3312 EXPORT_SYMBOL(kern_unmount);
3313
our_mnt(struct vfsmount * mnt)3314 bool our_mnt(struct vfsmount *mnt)
3315 {
3316 return check_mnt(real_mount(mnt));
3317 }
3318
current_chrooted(void)3319 bool current_chrooted(void)
3320 {
3321 /* Does the current process have a non-standard root */
3322 struct path ns_root;
3323 struct path fs_root;
3324 bool chrooted;
3325
3326 /* Find the namespace root */
3327 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
3328 ns_root.dentry = ns_root.mnt->mnt_root;
3329 path_get(&ns_root);
3330 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3331 ;
3332
3333 get_fs_root(current->fs, &fs_root);
3334
3335 chrooted = !path_equal(&fs_root, &ns_root);
3336
3337 path_put(&fs_root);
3338 path_put(&ns_root);
3339
3340 return chrooted;
3341 }
3342
mnt_already_visible(struct mnt_namespace * ns,struct vfsmount * new,int * new_mnt_flags)3343 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3344 int *new_mnt_flags)
3345 {
3346 int new_flags = *new_mnt_flags;
3347 struct mount *mnt;
3348 bool visible = false;
3349
3350 down_read(&namespace_sem);
3351 list_for_each_entry(mnt, &ns->list, mnt_list) {
3352 struct mount *child;
3353 int mnt_flags;
3354
3355 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3356 continue;
3357
3358 /* This mount is not fully visible if it's root directory
3359 * is not the root directory of the filesystem.
3360 */
3361 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3362 continue;
3363
3364 /* A local view of the mount flags */
3365 mnt_flags = mnt->mnt.mnt_flags;
3366
3367 /* Don't miss readonly hidden in the superblock flags */
3368 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3369 mnt_flags |= MNT_LOCK_READONLY;
3370
3371 /* Verify the mount flags are equal to or more permissive
3372 * than the proposed new mount.
3373 */
3374 if ((mnt_flags & MNT_LOCK_READONLY) &&
3375 !(new_flags & MNT_READONLY))
3376 continue;
3377 if ((mnt_flags & MNT_LOCK_ATIME) &&
3378 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3379 continue;
3380
3381 /* This mount is not fully visible if there are any
3382 * locked child mounts that cover anything except for
3383 * empty directories.
3384 */
3385 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3386 struct inode *inode = child->mnt_mountpoint->d_inode;
3387 /* Only worry about locked mounts */
3388 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3389 continue;
3390 /* Is the directory permanetly empty? */
3391 if (!is_empty_dir_inode(inode))
3392 goto next;
3393 }
3394 /* Preserve the locked attributes */
3395 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3396 MNT_LOCK_ATIME);
3397 visible = true;
3398 goto found;
3399 next: ;
3400 }
3401 found:
3402 up_read(&namespace_sem);
3403 return visible;
3404 }
3405
mount_too_revealing(struct vfsmount * mnt,int * new_mnt_flags)3406 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3407 {
3408 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3409 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3410 unsigned long s_iflags;
3411
3412 if (ns->user_ns == &init_user_ns)
3413 return false;
3414
3415 /* Can this filesystem be too revealing? */
3416 s_iflags = mnt->mnt_sb->s_iflags;
3417 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3418 return false;
3419
3420 if ((s_iflags & required_iflags) != required_iflags) {
3421 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3422 required_iflags);
3423 return true;
3424 }
3425
3426 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3427 }
3428
mnt_may_suid(struct vfsmount * mnt)3429 bool mnt_may_suid(struct vfsmount *mnt)
3430 {
3431 /*
3432 * Foreign mounts (accessed via fchdir or through /proc
3433 * symlinks) are always treated as if they are nosuid. This
3434 * prevents namespaces from trusting potentially unsafe
3435 * suid/sgid bits, file caps, or security labels that originate
3436 * in other namespaces.
3437 */
3438 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3439 current_in_userns(mnt->mnt_sb->s_user_ns);
3440 }
3441
mntns_get(struct task_struct * task)3442 static struct ns_common *mntns_get(struct task_struct *task)
3443 {
3444 struct ns_common *ns = NULL;
3445 struct nsproxy *nsproxy;
3446
3447 task_lock(task);
3448 nsproxy = task->nsproxy;
3449 if (nsproxy) {
3450 ns = &nsproxy->mnt_ns->ns;
3451 get_mnt_ns(to_mnt_ns(ns));
3452 }
3453 task_unlock(task);
3454
3455 return ns;
3456 }
3457
mntns_put(struct ns_common * ns)3458 static void mntns_put(struct ns_common *ns)
3459 {
3460 put_mnt_ns(to_mnt_ns(ns));
3461 }
3462
mntns_install(struct nsproxy * nsproxy,struct ns_common * ns)3463 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3464 {
3465 struct fs_struct *fs = current->fs;
3466 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3467 struct path root;
3468
3469 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3470 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3471 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3472 return -EPERM;
3473
3474 if (fs->users != 1)
3475 return -EINVAL;
3476
3477 get_mnt_ns(mnt_ns);
3478 put_mnt_ns(nsproxy->mnt_ns);
3479 nsproxy->mnt_ns = mnt_ns;
3480
3481 /* Find the root */
3482 root.mnt = &mnt_ns->root->mnt;
3483 root.dentry = mnt_ns->root->mnt.mnt_root;
3484 path_get(&root);
3485 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3486 ;
3487
3488 /* Update the pwd and root */
3489 set_fs_pwd(fs, &root);
3490 set_fs_root(fs, &root);
3491
3492 path_put(&root);
3493 return 0;
3494 }
3495
mntns_owner(struct ns_common * ns)3496 static struct user_namespace *mntns_owner(struct ns_common *ns)
3497 {
3498 return to_mnt_ns(ns)->user_ns;
3499 }
3500
3501 const struct proc_ns_operations mntns_operations = {
3502 .name = "mnt",
3503 .type = CLONE_NEWNS,
3504 .get = mntns_get,
3505 .put = mntns_put,
3506 .install = mntns_install,
3507 .owner = mntns_owner,
3508 };
3509