1 #include "util.h"
2 #include "build-id.h"
3 #include "hist.h"
4 #include "map.h"
5 #include "session.h"
6 #include "sort.h"
7 #include "evlist.h"
8 #include "evsel.h"
9 #include "annotate.h"
10 #include "ui/progress.h"
11 #include <math.h>
12
13 static bool hists__filter_entry_by_dso(struct hists *hists,
14 struct hist_entry *he);
15 static bool hists__filter_entry_by_thread(struct hists *hists,
16 struct hist_entry *he);
17 static bool hists__filter_entry_by_symbol(struct hists *hists,
18 struct hist_entry *he);
19 static bool hists__filter_entry_by_socket(struct hists *hists,
20 struct hist_entry *he);
21
hists__col_len(struct hists * hists,enum hist_column col)22 u16 hists__col_len(struct hists *hists, enum hist_column col)
23 {
24 return hists->col_len[col];
25 }
26
hists__set_col_len(struct hists * hists,enum hist_column col,u16 len)27 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
28 {
29 hists->col_len[col] = len;
30 }
31
hists__new_col_len(struct hists * hists,enum hist_column col,u16 len)32 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
33 {
34 if (len > hists__col_len(hists, col)) {
35 hists__set_col_len(hists, col, len);
36 return true;
37 }
38 return false;
39 }
40
hists__reset_col_len(struct hists * hists)41 void hists__reset_col_len(struct hists *hists)
42 {
43 enum hist_column col;
44
45 for (col = 0; col < HISTC_NR_COLS; ++col)
46 hists__set_col_len(hists, col, 0);
47 }
48
hists__set_unres_dso_col_len(struct hists * hists,int dso)49 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
50 {
51 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
52
53 if (hists__col_len(hists, dso) < unresolved_col_width &&
54 !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
55 !symbol_conf.dso_list)
56 hists__set_col_len(hists, dso, unresolved_col_width);
57 }
58
hists__calc_col_len(struct hists * hists,struct hist_entry * h)59 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
60 {
61 const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
62 int symlen;
63 u16 len;
64
65 /*
66 * +4 accounts for '[x] ' priv level info
67 * +2 accounts for 0x prefix on raw addresses
68 * +3 accounts for ' y ' symtab origin info
69 */
70 if (h->ms.sym) {
71 symlen = h->ms.sym->namelen + 4;
72 if (verbose)
73 symlen += BITS_PER_LONG / 4 + 2 + 3;
74 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
75 } else {
76 symlen = unresolved_col_width + 4 + 2;
77 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
78 hists__set_unres_dso_col_len(hists, HISTC_DSO);
79 }
80
81 len = thread__comm_len(h->thread);
82 if (hists__new_col_len(hists, HISTC_COMM, len))
83 hists__set_col_len(hists, HISTC_THREAD, len + 8);
84
85 if (h->ms.map) {
86 len = dso__name_len(h->ms.map->dso);
87 hists__new_col_len(hists, HISTC_DSO, len);
88 }
89
90 if (h->parent)
91 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
92
93 if (h->branch_info) {
94 if (h->branch_info->from.sym) {
95 symlen = (int)h->branch_info->from.sym->namelen + 4;
96 if (verbose)
97 symlen += BITS_PER_LONG / 4 + 2 + 3;
98 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
99
100 symlen = dso__name_len(h->branch_info->from.map->dso);
101 hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
102 } else {
103 symlen = unresolved_col_width + 4 + 2;
104 hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
105 hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
106 }
107
108 if (h->branch_info->to.sym) {
109 symlen = (int)h->branch_info->to.sym->namelen + 4;
110 if (verbose)
111 symlen += BITS_PER_LONG / 4 + 2 + 3;
112 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
113
114 symlen = dso__name_len(h->branch_info->to.map->dso);
115 hists__new_col_len(hists, HISTC_DSO_TO, symlen);
116 } else {
117 symlen = unresolved_col_width + 4 + 2;
118 hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
119 hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
120 }
121
122 if (h->branch_info->srcline_from)
123 hists__new_col_len(hists, HISTC_SRCLINE_FROM,
124 strlen(h->branch_info->srcline_from));
125 if (h->branch_info->srcline_to)
126 hists__new_col_len(hists, HISTC_SRCLINE_TO,
127 strlen(h->branch_info->srcline_to));
128 }
129
130 if (h->mem_info) {
131 if (h->mem_info->daddr.sym) {
132 symlen = (int)h->mem_info->daddr.sym->namelen + 4
133 + unresolved_col_width + 2;
134 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
135 symlen);
136 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
137 symlen + 1);
138 } else {
139 symlen = unresolved_col_width + 4 + 2;
140 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
141 symlen);
142 hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
143 symlen);
144 }
145
146 if (h->mem_info->iaddr.sym) {
147 symlen = (int)h->mem_info->iaddr.sym->namelen + 4
148 + unresolved_col_width + 2;
149 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
150 symlen);
151 } else {
152 symlen = unresolved_col_width + 4 + 2;
153 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
154 symlen);
155 }
156
157 if (h->mem_info->daddr.map) {
158 symlen = dso__name_len(h->mem_info->daddr.map->dso);
159 hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
160 symlen);
161 } else {
162 symlen = unresolved_col_width + 4 + 2;
163 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
164 }
165 } else {
166 symlen = unresolved_col_width + 4 + 2;
167 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
168 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
169 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
170 }
171
172 hists__new_col_len(hists, HISTC_CPU, 3);
173 hists__new_col_len(hists, HISTC_SOCKET, 6);
174 hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
175 hists__new_col_len(hists, HISTC_MEM_TLB, 22);
176 hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
177 hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
178 hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
179 hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
180
181 if (h->srcline) {
182 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
183 hists__new_col_len(hists, HISTC_SRCLINE, len);
184 }
185
186 if (h->srcfile)
187 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
188
189 if (h->transaction)
190 hists__new_col_len(hists, HISTC_TRANSACTION,
191 hist_entry__transaction_len());
192
193 if (h->trace_output)
194 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
195 }
196
hists__output_recalc_col_len(struct hists * hists,int max_rows)197 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
198 {
199 struct rb_node *next = rb_first(&hists->entries);
200 struct hist_entry *n;
201 int row = 0;
202
203 hists__reset_col_len(hists);
204
205 while (next && row++ < max_rows) {
206 n = rb_entry(next, struct hist_entry, rb_node);
207 if (!n->filtered)
208 hists__calc_col_len(hists, n);
209 next = rb_next(&n->rb_node);
210 }
211 }
212
he_stat__add_cpumode_period(struct he_stat * he_stat,unsigned int cpumode,u64 period)213 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
214 unsigned int cpumode, u64 period)
215 {
216 switch (cpumode) {
217 case PERF_RECORD_MISC_KERNEL:
218 he_stat->period_sys += period;
219 break;
220 case PERF_RECORD_MISC_USER:
221 he_stat->period_us += period;
222 break;
223 case PERF_RECORD_MISC_GUEST_KERNEL:
224 he_stat->period_guest_sys += period;
225 break;
226 case PERF_RECORD_MISC_GUEST_USER:
227 he_stat->period_guest_us += period;
228 break;
229 default:
230 break;
231 }
232 }
233
he_stat__add_period(struct he_stat * he_stat,u64 period,u64 weight)234 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
235 u64 weight)
236 {
237
238 he_stat->period += period;
239 he_stat->weight += weight;
240 he_stat->nr_events += 1;
241 }
242
he_stat__add_stat(struct he_stat * dest,struct he_stat * src)243 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
244 {
245 dest->period += src->period;
246 dest->period_sys += src->period_sys;
247 dest->period_us += src->period_us;
248 dest->period_guest_sys += src->period_guest_sys;
249 dest->period_guest_us += src->period_guest_us;
250 dest->nr_events += src->nr_events;
251 dest->weight += src->weight;
252 }
253
he_stat__decay(struct he_stat * he_stat)254 static void he_stat__decay(struct he_stat *he_stat)
255 {
256 he_stat->period = (he_stat->period * 7) / 8;
257 he_stat->nr_events = (he_stat->nr_events * 7) / 8;
258 /* XXX need decay for weight too? */
259 }
260
261 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
262
hists__decay_entry(struct hists * hists,struct hist_entry * he)263 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
264 {
265 u64 prev_period = he->stat.period;
266 u64 diff;
267
268 if (prev_period == 0)
269 return true;
270
271 he_stat__decay(&he->stat);
272 if (symbol_conf.cumulate_callchain)
273 he_stat__decay(he->stat_acc);
274 decay_callchain(he->callchain);
275
276 diff = prev_period - he->stat.period;
277
278 if (!he->depth) {
279 hists->stats.total_period -= diff;
280 if (!he->filtered)
281 hists->stats.total_non_filtered_period -= diff;
282 }
283
284 if (!he->leaf) {
285 struct hist_entry *child;
286 struct rb_node *node = rb_first(&he->hroot_out);
287 while (node) {
288 child = rb_entry(node, struct hist_entry, rb_node);
289 node = rb_next(node);
290
291 if (hists__decay_entry(hists, child))
292 hists__delete_entry(hists, child);
293 }
294 }
295
296 return he->stat.period == 0;
297 }
298
hists__delete_entry(struct hists * hists,struct hist_entry * he)299 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
300 {
301 struct rb_root *root_in;
302 struct rb_root *root_out;
303
304 if (he->parent_he) {
305 root_in = &he->parent_he->hroot_in;
306 root_out = &he->parent_he->hroot_out;
307 } else {
308 if (hists__has(hists, need_collapse))
309 root_in = &hists->entries_collapsed;
310 else
311 root_in = hists->entries_in;
312 root_out = &hists->entries;
313 }
314
315 rb_erase(&he->rb_node_in, root_in);
316 rb_erase(&he->rb_node, root_out);
317
318 --hists->nr_entries;
319 if (!he->filtered)
320 --hists->nr_non_filtered_entries;
321
322 hist_entry__delete(he);
323 }
324
hists__decay_entries(struct hists * hists,bool zap_user,bool zap_kernel)325 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
326 {
327 struct rb_node *next = rb_first(&hists->entries);
328 struct hist_entry *n;
329
330 while (next) {
331 n = rb_entry(next, struct hist_entry, rb_node);
332 next = rb_next(&n->rb_node);
333 if (((zap_user && n->level == '.') ||
334 (zap_kernel && n->level != '.') ||
335 hists__decay_entry(hists, n))) {
336 hists__delete_entry(hists, n);
337 }
338 }
339 }
340
hists__delete_entries(struct hists * hists)341 void hists__delete_entries(struct hists *hists)
342 {
343 struct rb_node *next = rb_first(&hists->entries);
344 struct hist_entry *n;
345
346 while (next) {
347 n = rb_entry(next, struct hist_entry, rb_node);
348 next = rb_next(&n->rb_node);
349
350 hists__delete_entry(hists, n);
351 }
352 }
353
354 /*
355 * histogram, sorted on item, collects periods
356 */
357
hist_entry__init(struct hist_entry * he,struct hist_entry * template,bool sample_self)358 static int hist_entry__init(struct hist_entry *he,
359 struct hist_entry *template,
360 bool sample_self)
361 {
362 *he = *template;
363
364 if (symbol_conf.cumulate_callchain) {
365 he->stat_acc = malloc(sizeof(he->stat));
366 if (he->stat_acc == NULL)
367 return -ENOMEM;
368 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
369 if (!sample_self)
370 memset(&he->stat, 0, sizeof(he->stat));
371 }
372
373 map__get(he->ms.map);
374
375 if (he->branch_info) {
376 /*
377 * This branch info is (a part of) allocated from
378 * sample__resolve_bstack() and will be freed after
379 * adding new entries. So we need to save a copy.
380 */
381 he->branch_info = malloc(sizeof(*he->branch_info));
382 if (he->branch_info == NULL) {
383 map__zput(he->ms.map);
384 free(he->stat_acc);
385 return -ENOMEM;
386 }
387
388 memcpy(he->branch_info, template->branch_info,
389 sizeof(*he->branch_info));
390
391 map__get(he->branch_info->from.map);
392 map__get(he->branch_info->to.map);
393 }
394
395 if (he->mem_info) {
396 map__get(he->mem_info->iaddr.map);
397 map__get(he->mem_info->daddr.map);
398 }
399
400 if (symbol_conf.use_callchain)
401 callchain_init(he->callchain);
402
403 if (he->raw_data) {
404 he->raw_data = memdup(he->raw_data, he->raw_size);
405
406 if (he->raw_data == NULL) {
407 map__put(he->ms.map);
408 if (he->branch_info) {
409 map__put(he->branch_info->from.map);
410 map__put(he->branch_info->to.map);
411 free(he->branch_info);
412 }
413 if (he->mem_info) {
414 map__put(he->mem_info->iaddr.map);
415 map__put(he->mem_info->daddr.map);
416 }
417 free(he->stat_acc);
418 return -ENOMEM;
419 }
420 }
421 INIT_LIST_HEAD(&he->pairs.node);
422 thread__get(he->thread);
423 he->hroot_in = RB_ROOT;
424 he->hroot_out = RB_ROOT;
425
426 if (!symbol_conf.report_hierarchy)
427 he->leaf = true;
428
429 return 0;
430 }
431
hist_entry__zalloc(size_t size)432 static void *hist_entry__zalloc(size_t size)
433 {
434 return zalloc(size + sizeof(struct hist_entry));
435 }
436
hist_entry__free(void * ptr)437 static void hist_entry__free(void *ptr)
438 {
439 free(ptr);
440 }
441
442 static struct hist_entry_ops default_ops = {
443 .new = hist_entry__zalloc,
444 .free = hist_entry__free,
445 };
446
hist_entry__new(struct hist_entry * template,bool sample_self)447 static struct hist_entry *hist_entry__new(struct hist_entry *template,
448 bool sample_self)
449 {
450 struct hist_entry_ops *ops = template->ops;
451 size_t callchain_size = 0;
452 struct hist_entry *he;
453 int err = 0;
454
455 if (!ops)
456 ops = template->ops = &default_ops;
457
458 if (symbol_conf.use_callchain)
459 callchain_size = sizeof(struct callchain_root);
460
461 he = ops->new(callchain_size);
462 if (he) {
463 err = hist_entry__init(he, template, sample_self);
464 if (err) {
465 ops->free(he);
466 he = NULL;
467 }
468 }
469
470 return he;
471 }
472
symbol__parent_filter(const struct symbol * parent)473 static u8 symbol__parent_filter(const struct symbol *parent)
474 {
475 if (symbol_conf.exclude_other && parent == NULL)
476 return 1 << HIST_FILTER__PARENT;
477 return 0;
478 }
479
hist_entry__add_callchain_period(struct hist_entry * he,u64 period)480 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
481 {
482 if (!symbol_conf.use_callchain)
483 return;
484
485 he->hists->callchain_period += period;
486 if (!he->filtered)
487 he->hists->callchain_non_filtered_period += period;
488 }
489
hists__findnew_entry(struct hists * hists,struct hist_entry * entry,struct addr_location * al,bool sample_self)490 static struct hist_entry *hists__findnew_entry(struct hists *hists,
491 struct hist_entry *entry,
492 struct addr_location *al,
493 bool sample_self)
494 {
495 struct rb_node **p;
496 struct rb_node *parent = NULL;
497 struct hist_entry *he;
498 int64_t cmp;
499 u64 period = entry->stat.period;
500 u64 weight = entry->stat.weight;
501
502 p = &hists->entries_in->rb_node;
503
504 while (*p != NULL) {
505 parent = *p;
506 he = rb_entry(parent, struct hist_entry, rb_node_in);
507
508 /*
509 * Make sure that it receives arguments in a same order as
510 * hist_entry__collapse() so that we can use an appropriate
511 * function when searching an entry regardless which sort
512 * keys were used.
513 */
514 cmp = hist_entry__cmp(he, entry);
515
516 if (!cmp) {
517 if (sample_self) {
518 he_stat__add_period(&he->stat, period, weight);
519 hist_entry__add_callchain_period(he, period);
520 }
521 if (symbol_conf.cumulate_callchain)
522 he_stat__add_period(he->stat_acc, period, weight);
523
524 /*
525 * This mem info was allocated from sample__resolve_mem
526 * and will not be used anymore.
527 */
528 zfree(&entry->mem_info);
529
530 /* If the map of an existing hist_entry has
531 * become out-of-date due to an exec() or
532 * similar, update it. Otherwise we will
533 * mis-adjust symbol addresses when computing
534 * the history counter to increment.
535 */
536 if (he->ms.map != entry->ms.map) {
537 map__put(he->ms.map);
538 he->ms.map = map__get(entry->ms.map);
539 }
540 goto out;
541 }
542
543 if (cmp < 0)
544 p = &(*p)->rb_left;
545 else
546 p = &(*p)->rb_right;
547 }
548
549 he = hist_entry__new(entry, sample_self);
550 if (!he)
551 return NULL;
552
553 if (sample_self)
554 hist_entry__add_callchain_period(he, period);
555 hists->nr_entries++;
556
557 rb_link_node(&he->rb_node_in, parent, p);
558 rb_insert_color(&he->rb_node_in, hists->entries_in);
559 out:
560 if (sample_self)
561 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
562 if (symbol_conf.cumulate_callchain)
563 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
564 return he;
565 }
566
567 static struct hist_entry*
__hists__add_entry(struct hists * hists,struct addr_location * al,struct symbol * sym_parent,struct branch_info * bi,struct mem_info * mi,struct perf_sample * sample,bool sample_self,struct hist_entry_ops * ops)568 __hists__add_entry(struct hists *hists,
569 struct addr_location *al,
570 struct symbol *sym_parent,
571 struct branch_info *bi,
572 struct mem_info *mi,
573 struct perf_sample *sample,
574 bool sample_self,
575 struct hist_entry_ops *ops)
576 {
577 struct hist_entry entry = {
578 .thread = al->thread,
579 .comm = thread__comm(al->thread),
580 .ms = {
581 .map = al->map,
582 .sym = al->sym,
583 },
584 .socket = al->socket,
585 .cpu = al->cpu,
586 .cpumode = al->cpumode,
587 .ip = al->addr,
588 .level = al->level,
589 .stat = {
590 .nr_events = 1,
591 .period = sample->period,
592 .weight = sample->weight,
593 },
594 .parent = sym_parent,
595 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
596 .hists = hists,
597 .branch_info = bi,
598 .mem_info = mi,
599 .transaction = sample->transaction,
600 .raw_data = sample->raw_data,
601 .raw_size = sample->raw_size,
602 .ops = ops,
603 };
604
605 return hists__findnew_entry(hists, &entry, al, sample_self);
606 }
607
hists__add_entry(struct hists * hists,struct addr_location * al,struct symbol * sym_parent,struct branch_info * bi,struct mem_info * mi,struct perf_sample * sample,bool sample_self)608 struct hist_entry *hists__add_entry(struct hists *hists,
609 struct addr_location *al,
610 struct symbol *sym_parent,
611 struct branch_info *bi,
612 struct mem_info *mi,
613 struct perf_sample *sample,
614 bool sample_self)
615 {
616 return __hists__add_entry(hists, al, sym_parent, bi, mi,
617 sample, sample_self, NULL);
618 }
619
hists__add_entry_ops(struct hists * hists,struct hist_entry_ops * ops,struct addr_location * al,struct symbol * sym_parent,struct branch_info * bi,struct mem_info * mi,struct perf_sample * sample,bool sample_self)620 struct hist_entry *hists__add_entry_ops(struct hists *hists,
621 struct hist_entry_ops *ops,
622 struct addr_location *al,
623 struct symbol *sym_parent,
624 struct branch_info *bi,
625 struct mem_info *mi,
626 struct perf_sample *sample,
627 bool sample_self)
628 {
629 return __hists__add_entry(hists, al, sym_parent, bi, mi,
630 sample, sample_self, ops);
631 }
632
633 static int
iter_next_nop_entry(struct hist_entry_iter * iter __maybe_unused,struct addr_location * al __maybe_unused)634 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
635 struct addr_location *al __maybe_unused)
636 {
637 return 0;
638 }
639
640 static int
iter_add_next_nop_entry(struct hist_entry_iter * iter __maybe_unused,struct addr_location * al __maybe_unused)641 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
642 struct addr_location *al __maybe_unused)
643 {
644 return 0;
645 }
646
647 static int
iter_prepare_mem_entry(struct hist_entry_iter * iter,struct addr_location * al)648 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
649 {
650 struct perf_sample *sample = iter->sample;
651 struct mem_info *mi;
652
653 mi = sample__resolve_mem(sample, al);
654 if (mi == NULL)
655 return -ENOMEM;
656
657 iter->priv = mi;
658 return 0;
659 }
660
661 static int
iter_add_single_mem_entry(struct hist_entry_iter * iter,struct addr_location * al)662 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
663 {
664 u64 cost;
665 struct mem_info *mi = iter->priv;
666 struct hists *hists = evsel__hists(iter->evsel);
667 struct perf_sample *sample = iter->sample;
668 struct hist_entry *he;
669
670 if (mi == NULL)
671 return -EINVAL;
672
673 cost = sample->weight;
674 if (!cost)
675 cost = 1;
676
677 /*
678 * must pass period=weight in order to get the correct
679 * sorting from hists__collapse_resort() which is solely
680 * based on periods. We want sorting be done on nr_events * weight
681 * and this is indirectly achieved by passing period=weight here
682 * and the he_stat__add_period() function.
683 */
684 sample->period = cost;
685
686 he = hists__add_entry(hists, al, iter->parent, NULL, mi,
687 sample, true);
688 if (!he)
689 return -ENOMEM;
690
691 iter->he = he;
692 return 0;
693 }
694
695 static int
iter_finish_mem_entry(struct hist_entry_iter * iter,struct addr_location * al __maybe_unused)696 iter_finish_mem_entry(struct hist_entry_iter *iter,
697 struct addr_location *al __maybe_unused)
698 {
699 struct perf_evsel *evsel = iter->evsel;
700 struct hists *hists = evsel__hists(evsel);
701 struct hist_entry *he = iter->he;
702 int err = -EINVAL;
703
704 if (he == NULL)
705 goto out;
706
707 hists__inc_nr_samples(hists, he->filtered);
708
709 err = hist_entry__append_callchain(he, iter->sample);
710
711 out:
712 /*
713 * We don't need to free iter->priv (mem_info) here since the mem info
714 * was either already freed in hists__findnew_entry() or passed to a
715 * new hist entry by hist_entry__new().
716 */
717 iter->priv = NULL;
718
719 iter->he = NULL;
720 return err;
721 }
722
723 static int
iter_prepare_branch_entry(struct hist_entry_iter * iter,struct addr_location * al)724 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
725 {
726 struct branch_info *bi;
727 struct perf_sample *sample = iter->sample;
728
729 bi = sample__resolve_bstack(sample, al);
730 if (!bi)
731 return -ENOMEM;
732
733 iter->curr = 0;
734 iter->total = sample->branch_stack->nr;
735
736 iter->priv = bi;
737 return 0;
738 }
739
740 static int
iter_add_single_branch_entry(struct hist_entry_iter * iter,struct addr_location * al __maybe_unused)741 iter_add_single_branch_entry(struct hist_entry_iter *iter,
742 struct addr_location *al __maybe_unused)
743 {
744 /* to avoid calling callback function */
745 iter->he = NULL;
746
747 return 0;
748 }
749
750 static int
iter_next_branch_entry(struct hist_entry_iter * iter,struct addr_location * al)751 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
752 {
753 struct branch_info *bi = iter->priv;
754 int i = iter->curr;
755
756 if (bi == NULL)
757 return 0;
758
759 if (iter->curr >= iter->total)
760 return 0;
761
762 al->map = bi[i].to.map;
763 al->sym = bi[i].to.sym;
764 al->addr = bi[i].to.addr;
765 return 1;
766 }
767
768 static int
iter_add_next_branch_entry(struct hist_entry_iter * iter,struct addr_location * al)769 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
770 {
771 struct branch_info *bi;
772 struct perf_evsel *evsel = iter->evsel;
773 struct hists *hists = evsel__hists(evsel);
774 struct perf_sample *sample = iter->sample;
775 struct hist_entry *he = NULL;
776 int i = iter->curr;
777 int err = 0;
778
779 bi = iter->priv;
780
781 if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
782 goto out;
783
784 /*
785 * The report shows the percentage of total branches captured
786 * and not events sampled. Thus we use a pseudo period of 1.
787 */
788 sample->period = 1;
789 sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
790
791 he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
792 sample, true);
793 if (he == NULL)
794 return -ENOMEM;
795
796 hists__inc_nr_samples(hists, he->filtered);
797
798 out:
799 iter->he = he;
800 iter->curr++;
801 return err;
802 }
803
804 static int
iter_finish_branch_entry(struct hist_entry_iter * iter,struct addr_location * al __maybe_unused)805 iter_finish_branch_entry(struct hist_entry_iter *iter,
806 struct addr_location *al __maybe_unused)
807 {
808 zfree(&iter->priv);
809 iter->he = NULL;
810
811 return iter->curr >= iter->total ? 0 : -1;
812 }
813
814 static int
iter_prepare_normal_entry(struct hist_entry_iter * iter __maybe_unused,struct addr_location * al __maybe_unused)815 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
816 struct addr_location *al __maybe_unused)
817 {
818 return 0;
819 }
820
821 static int
iter_add_single_normal_entry(struct hist_entry_iter * iter,struct addr_location * al)822 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
823 {
824 struct perf_evsel *evsel = iter->evsel;
825 struct perf_sample *sample = iter->sample;
826 struct hist_entry *he;
827
828 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
829 sample, true);
830 if (he == NULL)
831 return -ENOMEM;
832
833 iter->he = he;
834 return 0;
835 }
836
837 static int
iter_finish_normal_entry(struct hist_entry_iter * iter,struct addr_location * al __maybe_unused)838 iter_finish_normal_entry(struct hist_entry_iter *iter,
839 struct addr_location *al __maybe_unused)
840 {
841 struct hist_entry *he = iter->he;
842 struct perf_evsel *evsel = iter->evsel;
843 struct perf_sample *sample = iter->sample;
844
845 if (he == NULL)
846 return 0;
847
848 iter->he = NULL;
849
850 hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
851
852 return hist_entry__append_callchain(he, sample);
853 }
854
855 static int
iter_prepare_cumulative_entry(struct hist_entry_iter * iter,struct addr_location * al __maybe_unused)856 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
857 struct addr_location *al __maybe_unused)
858 {
859 struct hist_entry **he_cache;
860
861 callchain_cursor_commit(&callchain_cursor);
862
863 /*
864 * This is for detecting cycles or recursions so that they're
865 * cumulated only one time to prevent entries more than 100%
866 * overhead.
867 */
868 he_cache = malloc(sizeof(*he_cache) * (iter->max_stack + 1));
869 if (he_cache == NULL)
870 return -ENOMEM;
871
872 iter->priv = he_cache;
873 iter->curr = 0;
874
875 return 0;
876 }
877
878 static int
iter_add_single_cumulative_entry(struct hist_entry_iter * iter,struct addr_location * al)879 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
880 struct addr_location *al)
881 {
882 struct perf_evsel *evsel = iter->evsel;
883 struct hists *hists = evsel__hists(evsel);
884 struct perf_sample *sample = iter->sample;
885 struct hist_entry **he_cache = iter->priv;
886 struct hist_entry *he;
887 int err = 0;
888
889 he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
890 sample, true);
891 if (he == NULL)
892 return -ENOMEM;
893
894 iter->he = he;
895 he_cache[iter->curr++] = he;
896
897 hist_entry__append_callchain(he, sample);
898
899 /*
900 * We need to re-initialize the cursor since callchain_append()
901 * advanced the cursor to the end.
902 */
903 callchain_cursor_commit(&callchain_cursor);
904
905 hists__inc_nr_samples(hists, he->filtered);
906
907 return err;
908 }
909
910 static int
iter_next_cumulative_entry(struct hist_entry_iter * iter,struct addr_location * al)911 iter_next_cumulative_entry(struct hist_entry_iter *iter,
912 struct addr_location *al)
913 {
914 struct callchain_cursor_node *node;
915
916 node = callchain_cursor_current(&callchain_cursor);
917 if (node == NULL)
918 return 0;
919
920 return fill_callchain_info(al, node, iter->hide_unresolved);
921 }
922
923 static int
iter_add_next_cumulative_entry(struct hist_entry_iter * iter,struct addr_location * al)924 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
925 struct addr_location *al)
926 {
927 struct perf_evsel *evsel = iter->evsel;
928 struct perf_sample *sample = iter->sample;
929 struct hist_entry **he_cache = iter->priv;
930 struct hist_entry *he;
931 struct hist_entry he_tmp = {
932 .hists = evsel__hists(evsel),
933 .cpu = al->cpu,
934 .thread = al->thread,
935 .comm = thread__comm(al->thread),
936 .ip = al->addr,
937 .ms = {
938 .map = al->map,
939 .sym = al->sym,
940 },
941 .parent = iter->parent,
942 .raw_data = sample->raw_data,
943 .raw_size = sample->raw_size,
944 };
945 int i;
946 struct callchain_cursor cursor;
947
948 callchain_cursor_snapshot(&cursor, &callchain_cursor);
949
950 callchain_cursor_advance(&callchain_cursor);
951
952 /*
953 * Check if there's duplicate entries in the callchain.
954 * It's possible that it has cycles or recursive calls.
955 */
956 for (i = 0; i < iter->curr; i++) {
957 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
958 /* to avoid calling callback function */
959 iter->he = NULL;
960 return 0;
961 }
962 }
963
964 he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
965 sample, false);
966 if (he == NULL)
967 return -ENOMEM;
968
969 iter->he = he;
970 he_cache[iter->curr++] = he;
971
972 if (symbol_conf.use_callchain)
973 callchain_append(he->callchain, &cursor, sample->period);
974 return 0;
975 }
976
977 static int
iter_finish_cumulative_entry(struct hist_entry_iter * iter,struct addr_location * al __maybe_unused)978 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
979 struct addr_location *al __maybe_unused)
980 {
981 zfree(&iter->priv);
982 iter->he = NULL;
983
984 return 0;
985 }
986
987 const struct hist_iter_ops hist_iter_mem = {
988 .prepare_entry = iter_prepare_mem_entry,
989 .add_single_entry = iter_add_single_mem_entry,
990 .next_entry = iter_next_nop_entry,
991 .add_next_entry = iter_add_next_nop_entry,
992 .finish_entry = iter_finish_mem_entry,
993 };
994
995 const struct hist_iter_ops hist_iter_branch = {
996 .prepare_entry = iter_prepare_branch_entry,
997 .add_single_entry = iter_add_single_branch_entry,
998 .next_entry = iter_next_branch_entry,
999 .add_next_entry = iter_add_next_branch_entry,
1000 .finish_entry = iter_finish_branch_entry,
1001 };
1002
1003 const struct hist_iter_ops hist_iter_normal = {
1004 .prepare_entry = iter_prepare_normal_entry,
1005 .add_single_entry = iter_add_single_normal_entry,
1006 .next_entry = iter_next_nop_entry,
1007 .add_next_entry = iter_add_next_nop_entry,
1008 .finish_entry = iter_finish_normal_entry,
1009 };
1010
1011 const struct hist_iter_ops hist_iter_cumulative = {
1012 .prepare_entry = iter_prepare_cumulative_entry,
1013 .add_single_entry = iter_add_single_cumulative_entry,
1014 .next_entry = iter_next_cumulative_entry,
1015 .add_next_entry = iter_add_next_cumulative_entry,
1016 .finish_entry = iter_finish_cumulative_entry,
1017 };
1018
hist_entry_iter__add(struct hist_entry_iter * iter,struct addr_location * al,int max_stack_depth,void * arg)1019 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1020 int max_stack_depth, void *arg)
1021 {
1022 int err, err2;
1023 struct map *alm = NULL;
1024
1025 if (al && al->map)
1026 alm = map__get(al->map);
1027
1028 err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1029 iter->evsel, al, max_stack_depth);
1030 if (err)
1031 return err;
1032
1033 iter->max_stack = max_stack_depth;
1034
1035 err = iter->ops->prepare_entry(iter, al);
1036 if (err)
1037 goto out;
1038
1039 err = iter->ops->add_single_entry(iter, al);
1040 if (err)
1041 goto out;
1042
1043 if (iter->he && iter->add_entry_cb) {
1044 err = iter->add_entry_cb(iter, al, true, arg);
1045 if (err)
1046 goto out;
1047 }
1048
1049 while (iter->ops->next_entry(iter, al)) {
1050 err = iter->ops->add_next_entry(iter, al);
1051 if (err)
1052 break;
1053
1054 if (iter->he && iter->add_entry_cb) {
1055 err = iter->add_entry_cb(iter, al, false, arg);
1056 if (err)
1057 goto out;
1058 }
1059 }
1060
1061 out:
1062 err2 = iter->ops->finish_entry(iter, al);
1063 if (!err)
1064 err = err2;
1065
1066 map__put(alm);
1067
1068 return err;
1069 }
1070
1071 int64_t
hist_entry__cmp(struct hist_entry * left,struct hist_entry * right)1072 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1073 {
1074 struct hists *hists = left->hists;
1075 struct perf_hpp_fmt *fmt;
1076 int64_t cmp = 0;
1077
1078 hists__for_each_sort_list(hists, fmt) {
1079 if (perf_hpp__is_dynamic_entry(fmt) &&
1080 !perf_hpp__defined_dynamic_entry(fmt, hists))
1081 continue;
1082
1083 cmp = fmt->cmp(fmt, left, right);
1084 if (cmp)
1085 break;
1086 }
1087
1088 return cmp;
1089 }
1090
1091 int64_t
hist_entry__collapse(struct hist_entry * left,struct hist_entry * right)1092 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1093 {
1094 struct hists *hists = left->hists;
1095 struct perf_hpp_fmt *fmt;
1096 int64_t cmp = 0;
1097
1098 hists__for_each_sort_list(hists, fmt) {
1099 if (perf_hpp__is_dynamic_entry(fmt) &&
1100 !perf_hpp__defined_dynamic_entry(fmt, hists))
1101 continue;
1102
1103 cmp = fmt->collapse(fmt, left, right);
1104 if (cmp)
1105 break;
1106 }
1107
1108 return cmp;
1109 }
1110
hist_entry__delete(struct hist_entry * he)1111 void hist_entry__delete(struct hist_entry *he)
1112 {
1113 struct hist_entry_ops *ops = he->ops;
1114
1115 thread__zput(he->thread);
1116 map__zput(he->ms.map);
1117
1118 if (he->branch_info) {
1119 map__zput(he->branch_info->from.map);
1120 map__zput(he->branch_info->to.map);
1121 free_srcline(he->branch_info->srcline_from);
1122 free_srcline(he->branch_info->srcline_to);
1123 zfree(&he->branch_info);
1124 }
1125
1126 if (he->mem_info) {
1127 map__zput(he->mem_info->iaddr.map);
1128 map__zput(he->mem_info->daddr.map);
1129 zfree(&he->mem_info);
1130 }
1131
1132 zfree(&he->stat_acc);
1133 free_srcline(he->srcline);
1134 if (he->srcfile && he->srcfile[0])
1135 free(he->srcfile);
1136 free_callchain(he->callchain);
1137 free(he->trace_output);
1138 free(he->raw_data);
1139 ops->free(he);
1140 }
1141
1142 /*
1143 * If this is not the last column, then we need to pad it according to the
1144 * pre-calculated max lenght for this column, otherwise don't bother adding
1145 * spaces because that would break viewing this with, for instance, 'less',
1146 * that would show tons of trailing spaces when a long C++ demangled method
1147 * names is sampled.
1148 */
hist_entry__snprintf_alignment(struct hist_entry * he,struct perf_hpp * hpp,struct perf_hpp_fmt * fmt,int printed)1149 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1150 struct perf_hpp_fmt *fmt, int printed)
1151 {
1152 if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1153 const int width = fmt->width(fmt, hpp, he->hists);
1154 if (printed < width) {
1155 advance_hpp(hpp, printed);
1156 printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1157 }
1158 }
1159
1160 return printed;
1161 }
1162
1163 /*
1164 * collapse the histogram
1165 */
1166
1167 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1168 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1169 enum hist_filter type);
1170
1171 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1172
check_thread_entry(struct perf_hpp_fmt * fmt)1173 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1174 {
1175 return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1176 }
1177
hist_entry__check_and_remove_filter(struct hist_entry * he,enum hist_filter type,fmt_chk_fn check)1178 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1179 enum hist_filter type,
1180 fmt_chk_fn check)
1181 {
1182 struct perf_hpp_fmt *fmt;
1183 bool type_match = false;
1184 struct hist_entry *parent = he->parent_he;
1185
1186 switch (type) {
1187 case HIST_FILTER__THREAD:
1188 if (symbol_conf.comm_list == NULL &&
1189 symbol_conf.pid_list == NULL &&
1190 symbol_conf.tid_list == NULL)
1191 return;
1192 break;
1193 case HIST_FILTER__DSO:
1194 if (symbol_conf.dso_list == NULL)
1195 return;
1196 break;
1197 case HIST_FILTER__SYMBOL:
1198 if (symbol_conf.sym_list == NULL)
1199 return;
1200 break;
1201 case HIST_FILTER__PARENT:
1202 case HIST_FILTER__GUEST:
1203 case HIST_FILTER__HOST:
1204 case HIST_FILTER__SOCKET:
1205 default:
1206 return;
1207 }
1208
1209 /* if it's filtered by own fmt, it has to have filter bits */
1210 perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1211 if (check(fmt)) {
1212 type_match = true;
1213 break;
1214 }
1215 }
1216
1217 if (type_match) {
1218 /*
1219 * If the filter is for current level entry, propagate
1220 * filter marker to parents. The marker bit was
1221 * already set by default so it only needs to clear
1222 * non-filtered entries.
1223 */
1224 if (!(he->filtered & (1 << type))) {
1225 while (parent) {
1226 parent->filtered &= ~(1 << type);
1227 parent = parent->parent_he;
1228 }
1229 }
1230 } else {
1231 /*
1232 * If current entry doesn't have matching formats, set
1233 * filter marker for upper level entries. it will be
1234 * cleared if its lower level entries is not filtered.
1235 *
1236 * For lower-level entries, it inherits parent's
1237 * filter bit so that lower level entries of a
1238 * non-filtered entry won't set the filter marker.
1239 */
1240 if (parent == NULL)
1241 he->filtered |= (1 << type);
1242 else
1243 he->filtered |= (parent->filtered & (1 << type));
1244 }
1245 }
1246
hist_entry__apply_hierarchy_filters(struct hist_entry * he)1247 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1248 {
1249 hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1250 check_thread_entry);
1251
1252 hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1253 perf_hpp__is_dso_entry);
1254
1255 hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1256 perf_hpp__is_sym_entry);
1257
1258 hists__apply_filters(he->hists, he);
1259 }
1260
hierarchy_insert_entry(struct hists * hists,struct rb_root * root,struct hist_entry * he,struct hist_entry * parent_he,struct perf_hpp_list * hpp_list)1261 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1262 struct rb_root *root,
1263 struct hist_entry *he,
1264 struct hist_entry *parent_he,
1265 struct perf_hpp_list *hpp_list)
1266 {
1267 struct rb_node **p = &root->rb_node;
1268 struct rb_node *parent = NULL;
1269 struct hist_entry *iter, *new;
1270 struct perf_hpp_fmt *fmt;
1271 int64_t cmp;
1272
1273 while (*p != NULL) {
1274 parent = *p;
1275 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1276
1277 cmp = 0;
1278 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1279 cmp = fmt->collapse(fmt, iter, he);
1280 if (cmp)
1281 break;
1282 }
1283
1284 if (!cmp) {
1285 he_stat__add_stat(&iter->stat, &he->stat);
1286 return iter;
1287 }
1288
1289 if (cmp < 0)
1290 p = &parent->rb_left;
1291 else
1292 p = &parent->rb_right;
1293 }
1294
1295 new = hist_entry__new(he, true);
1296 if (new == NULL)
1297 return NULL;
1298
1299 hists->nr_entries++;
1300
1301 /* save related format list for output */
1302 new->hpp_list = hpp_list;
1303 new->parent_he = parent_he;
1304
1305 hist_entry__apply_hierarchy_filters(new);
1306
1307 /* some fields are now passed to 'new' */
1308 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1309 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1310 he->trace_output = NULL;
1311 else
1312 new->trace_output = NULL;
1313
1314 if (perf_hpp__is_srcline_entry(fmt))
1315 he->srcline = NULL;
1316 else
1317 new->srcline = NULL;
1318
1319 if (perf_hpp__is_srcfile_entry(fmt))
1320 he->srcfile = NULL;
1321 else
1322 new->srcfile = NULL;
1323 }
1324
1325 rb_link_node(&new->rb_node_in, parent, p);
1326 rb_insert_color(&new->rb_node_in, root);
1327 return new;
1328 }
1329
hists__hierarchy_insert_entry(struct hists * hists,struct rb_root * root,struct hist_entry * he)1330 static int hists__hierarchy_insert_entry(struct hists *hists,
1331 struct rb_root *root,
1332 struct hist_entry *he)
1333 {
1334 struct perf_hpp_list_node *node;
1335 struct hist_entry *new_he = NULL;
1336 struct hist_entry *parent = NULL;
1337 int depth = 0;
1338 int ret = 0;
1339
1340 list_for_each_entry(node, &hists->hpp_formats, list) {
1341 /* skip period (overhead) and elided columns */
1342 if (node->level == 0 || node->skip)
1343 continue;
1344
1345 /* insert copy of 'he' for each fmt into the hierarchy */
1346 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1347 if (new_he == NULL) {
1348 ret = -1;
1349 break;
1350 }
1351
1352 root = &new_he->hroot_in;
1353 new_he->depth = depth++;
1354 parent = new_he;
1355 }
1356
1357 if (new_he) {
1358 new_he->leaf = true;
1359
1360 if (symbol_conf.use_callchain) {
1361 callchain_cursor_reset(&callchain_cursor);
1362 if (callchain_merge(&callchain_cursor,
1363 new_he->callchain,
1364 he->callchain) < 0)
1365 ret = -1;
1366 }
1367 }
1368
1369 /* 'he' is no longer used */
1370 hist_entry__delete(he);
1371
1372 /* return 0 (or -1) since it already applied filters */
1373 return ret;
1374 }
1375
hists__collapse_insert_entry(struct hists * hists,struct rb_root * root,struct hist_entry * he)1376 static int hists__collapse_insert_entry(struct hists *hists,
1377 struct rb_root *root,
1378 struct hist_entry *he)
1379 {
1380 struct rb_node **p = &root->rb_node;
1381 struct rb_node *parent = NULL;
1382 struct hist_entry *iter;
1383 int64_t cmp;
1384
1385 if (symbol_conf.report_hierarchy)
1386 return hists__hierarchy_insert_entry(hists, root, he);
1387
1388 while (*p != NULL) {
1389 parent = *p;
1390 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1391
1392 cmp = hist_entry__collapse(iter, he);
1393
1394 if (!cmp) {
1395 int ret = 0;
1396
1397 he_stat__add_stat(&iter->stat, &he->stat);
1398 if (symbol_conf.cumulate_callchain)
1399 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1400
1401 if (symbol_conf.use_callchain) {
1402 callchain_cursor_reset(&callchain_cursor);
1403 if (callchain_merge(&callchain_cursor,
1404 iter->callchain,
1405 he->callchain) < 0)
1406 ret = -1;
1407 }
1408 hist_entry__delete(he);
1409 return ret;
1410 }
1411
1412 if (cmp < 0)
1413 p = &(*p)->rb_left;
1414 else
1415 p = &(*p)->rb_right;
1416 }
1417 hists->nr_entries++;
1418
1419 rb_link_node(&he->rb_node_in, parent, p);
1420 rb_insert_color(&he->rb_node_in, root);
1421 return 1;
1422 }
1423
hists__get_rotate_entries_in(struct hists * hists)1424 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1425 {
1426 struct rb_root *root;
1427
1428 pthread_mutex_lock(&hists->lock);
1429
1430 root = hists->entries_in;
1431 if (++hists->entries_in > &hists->entries_in_array[1])
1432 hists->entries_in = &hists->entries_in_array[0];
1433
1434 pthread_mutex_unlock(&hists->lock);
1435
1436 return root;
1437 }
1438
hists__apply_filters(struct hists * hists,struct hist_entry * he)1439 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1440 {
1441 hists__filter_entry_by_dso(hists, he);
1442 hists__filter_entry_by_thread(hists, he);
1443 hists__filter_entry_by_symbol(hists, he);
1444 hists__filter_entry_by_socket(hists, he);
1445 }
1446
hists__collapse_resort(struct hists * hists,struct ui_progress * prog)1447 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1448 {
1449 struct rb_root *root;
1450 struct rb_node *next;
1451 struct hist_entry *n;
1452 int ret;
1453
1454 if (!hists__has(hists, need_collapse))
1455 return 0;
1456
1457 hists->nr_entries = 0;
1458
1459 root = hists__get_rotate_entries_in(hists);
1460
1461 next = rb_first(root);
1462
1463 while (next) {
1464 if (session_done())
1465 break;
1466 n = rb_entry(next, struct hist_entry, rb_node_in);
1467 next = rb_next(&n->rb_node_in);
1468
1469 rb_erase(&n->rb_node_in, root);
1470 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1471 if (ret < 0)
1472 return -1;
1473
1474 if (ret) {
1475 /*
1476 * If it wasn't combined with one of the entries already
1477 * collapsed, we need to apply the filters that may have
1478 * been set by, say, the hist_browser.
1479 */
1480 hists__apply_filters(hists, n);
1481 }
1482 if (prog)
1483 ui_progress__update(prog, 1);
1484 }
1485 return 0;
1486 }
1487
hist_entry__sort(struct hist_entry * a,struct hist_entry * b)1488 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1489 {
1490 struct hists *hists = a->hists;
1491 struct perf_hpp_fmt *fmt;
1492 int64_t cmp = 0;
1493
1494 hists__for_each_sort_list(hists, fmt) {
1495 if (perf_hpp__should_skip(fmt, a->hists))
1496 continue;
1497
1498 cmp = fmt->sort(fmt, a, b);
1499 if (cmp)
1500 break;
1501 }
1502
1503 return cmp;
1504 }
1505
hists__reset_filter_stats(struct hists * hists)1506 static void hists__reset_filter_stats(struct hists *hists)
1507 {
1508 hists->nr_non_filtered_entries = 0;
1509 hists->stats.total_non_filtered_period = 0;
1510 }
1511
hists__reset_stats(struct hists * hists)1512 void hists__reset_stats(struct hists *hists)
1513 {
1514 hists->nr_entries = 0;
1515 hists->stats.total_period = 0;
1516
1517 hists__reset_filter_stats(hists);
1518 }
1519
hists__inc_filter_stats(struct hists * hists,struct hist_entry * h)1520 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1521 {
1522 hists->nr_non_filtered_entries++;
1523 hists->stats.total_non_filtered_period += h->stat.period;
1524 }
1525
hists__inc_stats(struct hists * hists,struct hist_entry * h)1526 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1527 {
1528 if (!h->filtered)
1529 hists__inc_filter_stats(hists, h);
1530
1531 hists->nr_entries++;
1532 hists->stats.total_period += h->stat.period;
1533 }
1534
hierarchy_recalc_total_periods(struct hists * hists)1535 static void hierarchy_recalc_total_periods(struct hists *hists)
1536 {
1537 struct rb_node *node;
1538 struct hist_entry *he;
1539
1540 node = rb_first(&hists->entries);
1541
1542 hists->stats.total_period = 0;
1543 hists->stats.total_non_filtered_period = 0;
1544
1545 /*
1546 * recalculate total period using top-level entries only
1547 * since lower level entries only see non-filtered entries
1548 * but upper level entries have sum of both entries.
1549 */
1550 while (node) {
1551 he = rb_entry(node, struct hist_entry, rb_node);
1552 node = rb_next(node);
1553
1554 hists->stats.total_period += he->stat.period;
1555 if (!he->filtered)
1556 hists->stats.total_non_filtered_period += he->stat.period;
1557 }
1558 }
1559
hierarchy_insert_output_entry(struct rb_root * root,struct hist_entry * he)1560 static void hierarchy_insert_output_entry(struct rb_root *root,
1561 struct hist_entry *he)
1562 {
1563 struct rb_node **p = &root->rb_node;
1564 struct rb_node *parent = NULL;
1565 struct hist_entry *iter;
1566 struct perf_hpp_fmt *fmt;
1567
1568 while (*p != NULL) {
1569 parent = *p;
1570 iter = rb_entry(parent, struct hist_entry, rb_node);
1571
1572 if (hist_entry__sort(he, iter) > 0)
1573 p = &parent->rb_left;
1574 else
1575 p = &parent->rb_right;
1576 }
1577
1578 rb_link_node(&he->rb_node, parent, p);
1579 rb_insert_color(&he->rb_node, root);
1580
1581 /* update column width of dynamic entry */
1582 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1583 if (perf_hpp__is_dynamic_entry(fmt))
1584 fmt->sort(fmt, he, NULL);
1585 }
1586 }
1587
hists__hierarchy_output_resort(struct hists * hists,struct ui_progress * prog,struct rb_root * root_in,struct rb_root * root_out,u64 min_callchain_hits,bool use_callchain)1588 static void hists__hierarchy_output_resort(struct hists *hists,
1589 struct ui_progress *prog,
1590 struct rb_root *root_in,
1591 struct rb_root *root_out,
1592 u64 min_callchain_hits,
1593 bool use_callchain)
1594 {
1595 struct rb_node *node;
1596 struct hist_entry *he;
1597
1598 *root_out = RB_ROOT;
1599 node = rb_first(root_in);
1600
1601 while (node) {
1602 he = rb_entry(node, struct hist_entry, rb_node_in);
1603 node = rb_next(node);
1604
1605 hierarchy_insert_output_entry(root_out, he);
1606
1607 if (prog)
1608 ui_progress__update(prog, 1);
1609
1610 hists->nr_entries++;
1611 if (!he->filtered) {
1612 hists->nr_non_filtered_entries++;
1613 hists__calc_col_len(hists, he);
1614 }
1615
1616 if (!he->leaf) {
1617 hists__hierarchy_output_resort(hists, prog,
1618 &he->hroot_in,
1619 &he->hroot_out,
1620 min_callchain_hits,
1621 use_callchain);
1622 continue;
1623 }
1624
1625 if (!use_callchain)
1626 continue;
1627
1628 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1629 u64 total = he->stat.period;
1630
1631 if (symbol_conf.cumulate_callchain)
1632 total = he->stat_acc->period;
1633
1634 min_callchain_hits = total * (callchain_param.min_percent / 100);
1635 }
1636
1637 callchain_param.sort(&he->sorted_chain, he->callchain,
1638 min_callchain_hits, &callchain_param);
1639 }
1640 }
1641
__hists__insert_output_entry(struct rb_root * entries,struct hist_entry * he,u64 min_callchain_hits,bool use_callchain)1642 static void __hists__insert_output_entry(struct rb_root *entries,
1643 struct hist_entry *he,
1644 u64 min_callchain_hits,
1645 bool use_callchain)
1646 {
1647 struct rb_node **p = &entries->rb_node;
1648 struct rb_node *parent = NULL;
1649 struct hist_entry *iter;
1650 struct perf_hpp_fmt *fmt;
1651
1652 if (use_callchain) {
1653 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1654 u64 total = he->stat.period;
1655
1656 if (symbol_conf.cumulate_callchain)
1657 total = he->stat_acc->period;
1658
1659 min_callchain_hits = total * (callchain_param.min_percent / 100);
1660 }
1661 callchain_param.sort(&he->sorted_chain, he->callchain,
1662 min_callchain_hits, &callchain_param);
1663 }
1664
1665 while (*p != NULL) {
1666 parent = *p;
1667 iter = rb_entry(parent, struct hist_entry, rb_node);
1668
1669 if (hist_entry__sort(he, iter) > 0)
1670 p = &(*p)->rb_left;
1671 else
1672 p = &(*p)->rb_right;
1673 }
1674
1675 rb_link_node(&he->rb_node, parent, p);
1676 rb_insert_color(&he->rb_node, entries);
1677
1678 perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1679 if (perf_hpp__is_dynamic_entry(fmt) &&
1680 perf_hpp__defined_dynamic_entry(fmt, he->hists))
1681 fmt->sort(fmt, he, NULL); /* update column width */
1682 }
1683 }
1684
output_resort(struct hists * hists,struct ui_progress * prog,bool use_callchain,hists__resort_cb_t cb)1685 static void output_resort(struct hists *hists, struct ui_progress *prog,
1686 bool use_callchain, hists__resort_cb_t cb)
1687 {
1688 struct rb_root *root;
1689 struct rb_node *next;
1690 struct hist_entry *n;
1691 u64 callchain_total;
1692 u64 min_callchain_hits;
1693
1694 callchain_total = hists->callchain_period;
1695 if (symbol_conf.filter_relative)
1696 callchain_total = hists->callchain_non_filtered_period;
1697
1698 min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1699
1700 hists__reset_stats(hists);
1701 hists__reset_col_len(hists);
1702
1703 if (symbol_conf.report_hierarchy) {
1704 hists__hierarchy_output_resort(hists, prog,
1705 &hists->entries_collapsed,
1706 &hists->entries,
1707 min_callchain_hits,
1708 use_callchain);
1709 hierarchy_recalc_total_periods(hists);
1710 return;
1711 }
1712
1713 if (hists__has(hists, need_collapse))
1714 root = &hists->entries_collapsed;
1715 else
1716 root = hists->entries_in;
1717
1718 next = rb_first(root);
1719 hists->entries = RB_ROOT;
1720
1721 while (next) {
1722 n = rb_entry(next, struct hist_entry, rb_node_in);
1723 next = rb_next(&n->rb_node_in);
1724
1725 if (cb && cb(n))
1726 continue;
1727
1728 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1729 hists__inc_stats(hists, n);
1730
1731 if (!n->filtered)
1732 hists__calc_col_len(hists, n);
1733
1734 if (prog)
1735 ui_progress__update(prog, 1);
1736 }
1737 }
1738
perf_evsel__output_resort(struct perf_evsel * evsel,struct ui_progress * prog)1739 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1740 {
1741 bool use_callchain;
1742
1743 if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1744 use_callchain = evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN;
1745 else
1746 use_callchain = symbol_conf.use_callchain;
1747
1748 output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1749 }
1750
hists__output_resort(struct hists * hists,struct ui_progress * prog)1751 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1752 {
1753 output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1754 }
1755
hists__output_resort_cb(struct hists * hists,struct ui_progress * prog,hists__resort_cb_t cb)1756 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1757 hists__resort_cb_t cb)
1758 {
1759 output_resort(hists, prog, symbol_conf.use_callchain, cb);
1760 }
1761
can_goto_child(struct hist_entry * he,enum hierarchy_move_dir hmd)1762 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1763 {
1764 if (he->leaf || hmd == HMD_FORCE_SIBLING)
1765 return false;
1766
1767 if (he->unfolded || hmd == HMD_FORCE_CHILD)
1768 return true;
1769
1770 return false;
1771 }
1772
rb_hierarchy_last(struct rb_node * node)1773 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1774 {
1775 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1776
1777 while (can_goto_child(he, HMD_NORMAL)) {
1778 node = rb_last(&he->hroot_out);
1779 he = rb_entry(node, struct hist_entry, rb_node);
1780 }
1781 return node;
1782 }
1783
__rb_hierarchy_next(struct rb_node * node,enum hierarchy_move_dir hmd)1784 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1785 {
1786 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1787
1788 if (can_goto_child(he, hmd))
1789 node = rb_first(&he->hroot_out);
1790 else
1791 node = rb_next(node);
1792
1793 while (node == NULL) {
1794 he = he->parent_he;
1795 if (he == NULL)
1796 break;
1797
1798 node = rb_next(&he->rb_node);
1799 }
1800 return node;
1801 }
1802
rb_hierarchy_prev(struct rb_node * node)1803 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1804 {
1805 struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1806
1807 node = rb_prev(node);
1808 if (node)
1809 return rb_hierarchy_last(node);
1810
1811 he = he->parent_he;
1812 if (he == NULL)
1813 return NULL;
1814
1815 return &he->rb_node;
1816 }
1817
hist_entry__has_hierarchy_children(struct hist_entry * he,float limit)1818 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1819 {
1820 struct rb_node *node;
1821 struct hist_entry *child;
1822 float percent;
1823
1824 if (he->leaf)
1825 return false;
1826
1827 node = rb_first(&he->hroot_out);
1828 child = rb_entry(node, struct hist_entry, rb_node);
1829
1830 while (node && child->filtered) {
1831 node = rb_next(node);
1832 child = rb_entry(node, struct hist_entry, rb_node);
1833 }
1834
1835 if (node)
1836 percent = hist_entry__get_percent_limit(child);
1837 else
1838 percent = 0;
1839
1840 return node && percent >= limit;
1841 }
1842
hists__remove_entry_filter(struct hists * hists,struct hist_entry * h,enum hist_filter filter)1843 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1844 enum hist_filter filter)
1845 {
1846 h->filtered &= ~(1 << filter);
1847
1848 if (symbol_conf.report_hierarchy) {
1849 struct hist_entry *parent = h->parent_he;
1850
1851 while (parent) {
1852 he_stat__add_stat(&parent->stat, &h->stat);
1853
1854 parent->filtered &= ~(1 << filter);
1855
1856 if (parent->filtered)
1857 goto next;
1858
1859 /* force fold unfiltered entry for simplicity */
1860 parent->unfolded = false;
1861 parent->has_no_entry = false;
1862 parent->row_offset = 0;
1863 parent->nr_rows = 0;
1864 next:
1865 parent = parent->parent_he;
1866 }
1867 }
1868
1869 if (h->filtered)
1870 return;
1871
1872 /* force fold unfiltered entry for simplicity */
1873 h->unfolded = false;
1874 h->has_no_entry = false;
1875 h->row_offset = 0;
1876 h->nr_rows = 0;
1877
1878 hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1879
1880 hists__inc_filter_stats(hists, h);
1881 hists__calc_col_len(hists, h);
1882 }
1883
1884
hists__filter_entry_by_dso(struct hists * hists,struct hist_entry * he)1885 static bool hists__filter_entry_by_dso(struct hists *hists,
1886 struct hist_entry *he)
1887 {
1888 if (hists->dso_filter != NULL &&
1889 (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1890 he->filtered |= (1 << HIST_FILTER__DSO);
1891 return true;
1892 }
1893
1894 return false;
1895 }
1896
hists__filter_entry_by_thread(struct hists * hists,struct hist_entry * he)1897 static bool hists__filter_entry_by_thread(struct hists *hists,
1898 struct hist_entry *he)
1899 {
1900 if (hists->thread_filter != NULL &&
1901 he->thread != hists->thread_filter) {
1902 he->filtered |= (1 << HIST_FILTER__THREAD);
1903 return true;
1904 }
1905
1906 return false;
1907 }
1908
hists__filter_entry_by_symbol(struct hists * hists,struct hist_entry * he)1909 static bool hists__filter_entry_by_symbol(struct hists *hists,
1910 struct hist_entry *he)
1911 {
1912 if (hists->symbol_filter_str != NULL &&
1913 (!he->ms.sym || strstr(he->ms.sym->name,
1914 hists->symbol_filter_str) == NULL)) {
1915 he->filtered |= (1 << HIST_FILTER__SYMBOL);
1916 return true;
1917 }
1918
1919 return false;
1920 }
1921
hists__filter_entry_by_socket(struct hists * hists,struct hist_entry * he)1922 static bool hists__filter_entry_by_socket(struct hists *hists,
1923 struct hist_entry *he)
1924 {
1925 if ((hists->socket_filter > -1) &&
1926 (he->socket != hists->socket_filter)) {
1927 he->filtered |= (1 << HIST_FILTER__SOCKET);
1928 return true;
1929 }
1930
1931 return false;
1932 }
1933
1934 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1935
hists__filter_by_type(struct hists * hists,int type,filter_fn_t filter)1936 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1937 {
1938 struct rb_node *nd;
1939
1940 hists->stats.nr_non_filtered_samples = 0;
1941
1942 hists__reset_filter_stats(hists);
1943 hists__reset_col_len(hists);
1944
1945 for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1946 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1947
1948 if (filter(hists, h))
1949 continue;
1950
1951 hists__remove_entry_filter(hists, h, type);
1952 }
1953 }
1954
resort_filtered_entry(struct rb_root * root,struct hist_entry * he)1955 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1956 {
1957 struct rb_node **p = &root->rb_node;
1958 struct rb_node *parent = NULL;
1959 struct hist_entry *iter;
1960 struct rb_root new_root = RB_ROOT;
1961 struct rb_node *nd;
1962
1963 while (*p != NULL) {
1964 parent = *p;
1965 iter = rb_entry(parent, struct hist_entry, rb_node);
1966
1967 if (hist_entry__sort(he, iter) > 0)
1968 p = &(*p)->rb_left;
1969 else
1970 p = &(*p)->rb_right;
1971 }
1972
1973 rb_link_node(&he->rb_node, parent, p);
1974 rb_insert_color(&he->rb_node, root);
1975
1976 if (he->leaf || he->filtered)
1977 return;
1978
1979 nd = rb_first(&he->hroot_out);
1980 while (nd) {
1981 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1982
1983 nd = rb_next(nd);
1984 rb_erase(&h->rb_node, &he->hroot_out);
1985
1986 resort_filtered_entry(&new_root, h);
1987 }
1988
1989 he->hroot_out = new_root;
1990 }
1991
hists__filter_hierarchy(struct hists * hists,int type,const void * arg)1992 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
1993 {
1994 struct rb_node *nd;
1995 struct rb_root new_root = RB_ROOT;
1996
1997 hists->stats.nr_non_filtered_samples = 0;
1998
1999 hists__reset_filter_stats(hists);
2000 hists__reset_col_len(hists);
2001
2002 nd = rb_first(&hists->entries);
2003 while (nd) {
2004 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2005 int ret;
2006
2007 ret = hist_entry__filter(h, type, arg);
2008
2009 /*
2010 * case 1. non-matching type
2011 * zero out the period, set filter marker and move to child
2012 */
2013 if (ret < 0) {
2014 memset(&h->stat, 0, sizeof(h->stat));
2015 h->filtered |= (1 << type);
2016
2017 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2018 }
2019 /*
2020 * case 2. matched type (filter out)
2021 * set filter marker and move to next
2022 */
2023 else if (ret == 1) {
2024 h->filtered |= (1 << type);
2025
2026 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2027 }
2028 /*
2029 * case 3. ok (not filtered)
2030 * add period to hists and parents, erase the filter marker
2031 * and move to next sibling
2032 */
2033 else {
2034 hists__remove_entry_filter(hists, h, type);
2035
2036 nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2037 }
2038 }
2039
2040 hierarchy_recalc_total_periods(hists);
2041
2042 /*
2043 * resort output after applying a new filter since filter in a lower
2044 * hierarchy can change periods in a upper hierarchy.
2045 */
2046 nd = rb_first(&hists->entries);
2047 while (nd) {
2048 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2049
2050 nd = rb_next(nd);
2051 rb_erase(&h->rb_node, &hists->entries);
2052
2053 resort_filtered_entry(&new_root, h);
2054 }
2055
2056 hists->entries = new_root;
2057 }
2058
hists__filter_by_thread(struct hists * hists)2059 void hists__filter_by_thread(struct hists *hists)
2060 {
2061 if (symbol_conf.report_hierarchy)
2062 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2063 hists->thread_filter);
2064 else
2065 hists__filter_by_type(hists, HIST_FILTER__THREAD,
2066 hists__filter_entry_by_thread);
2067 }
2068
hists__filter_by_dso(struct hists * hists)2069 void hists__filter_by_dso(struct hists *hists)
2070 {
2071 if (symbol_conf.report_hierarchy)
2072 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2073 hists->dso_filter);
2074 else
2075 hists__filter_by_type(hists, HIST_FILTER__DSO,
2076 hists__filter_entry_by_dso);
2077 }
2078
hists__filter_by_symbol(struct hists * hists)2079 void hists__filter_by_symbol(struct hists *hists)
2080 {
2081 if (symbol_conf.report_hierarchy)
2082 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2083 hists->symbol_filter_str);
2084 else
2085 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2086 hists__filter_entry_by_symbol);
2087 }
2088
hists__filter_by_socket(struct hists * hists)2089 void hists__filter_by_socket(struct hists *hists)
2090 {
2091 if (symbol_conf.report_hierarchy)
2092 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2093 &hists->socket_filter);
2094 else
2095 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2096 hists__filter_entry_by_socket);
2097 }
2098
events_stats__inc(struct events_stats * stats,u32 type)2099 void events_stats__inc(struct events_stats *stats, u32 type)
2100 {
2101 ++stats->nr_events[0];
2102 ++stats->nr_events[type];
2103 }
2104
hists__inc_nr_events(struct hists * hists,u32 type)2105 void hists__inc_nr_events(struct hists *hists, u32 type)
2106 {
2107 events_stats__inc(&hists->stats, type);
2108 }
2109
hists__inc_nr_samples(struct hists * hists,bool filtered)2110 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2111 {
2112 events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2113 if (!filtered)
2114 hists->stats.nr_non_filtered_samples++;
2115 }
2116
hists__add_dummy_entry(struct hists * hists,struct hist_entry * pair)2117 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2118 struct hist_entry *pair)
2119 {
2120 struct rb_root *root;
2121 struct rb_node **p;
2122 struct rb_node *parent = NULL;
2123 struct hist_entry *he;
2124 int64_t cmp;
2125
2126 if (hists__has(hists, need_collapse))
2127 root = &hists->entries_collapsed;
2128 else
2129 root = hists->entries_in;
2130
2131 p = &root->rb_node;
2132
2133 while (*p != NULL) {
2134 parent = *p;
2135 he = rb_entry(parent, struct hist_entry, rb_node_in);
2136
2137 cmp = hist_entry__collapse(he, pair);
2138
2139 if (!cmp)
2140 goto out;
2141
2142 if (cmp < 0)
2143 p = &(*p)->rb_left;
2144 else
2145 p = &(*p)->rb_right;
2146 }
2147
2148 he = hist_entry__new(pair, true);
2149 if (he) {
2150 memset(&he->stat, 0, sizeof(he->stat));
2151 he->hists = hists;
2152 if (symbol_conf.cumulate_callchain)
2153 memset(he->stat_acc, 0, sizeof(he->stat));
2154 rb_link_node(&he->rb_node_in, parent, p);
2155 rb_insert_color(&he->rb_node_in, root);
2156 hists__inc_stats(hists, he);
2157 he->dummy = true;
2158 }
2159 out:
2160 return he;
2161 }
2162
add_dummy_hierarchy_entry(struct hists * hists,struct rb_root * root,struct hist_entry * pair)2163 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2164 struct rb_root *root,
2165 struct hist_entry *pair)
2166 {
2167 struct rb_node **p;
2168 struct rb_node *parent = NULL;
2169 struct hist_entry *he;
2170 struct perf_hpp_fmt *fmt;
2171
2172 p = &root->rb_node;
2173 while (*p != NULL) {
2174 int64_t cmp = 0;
2175
2176 parent = *p;
2177 he = rb_entry(parent, struct hist_entry, rb_node_in);
2178
2179 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2180 cmp = fmt->collapse(fmt, he, pair);
2181 if (cmp)
2182 break;
2183 }
2184 if (!cmp)
2185 goto out;
2186
2187 if (cmp < 0)
2188 p = &parent->rb_left;
2189 else
2190 p = &parent->rb_right;
2191 }
2192
2193 he = hist_entry__new(pair, true);
2194 if (he) {
2195 rb_link_node(&he->rb_node_in, parent, p);
2196 rb_insert_color(&he->rb_node_in, root);
2197
2198 he->dummy = true;
2199 he->hists = hists;
2200 memset(&he->stat, 0, sizeof(he->stat));
2201 hists__inc_stats(hists, he);
2202 }
2203 out:
2204 return he;
2205 }
2206
hists__find_entry(struct hists * hists,struct hist_entry * he)2207 static struct hist_entry *hists__find_entry(struct hists *hists,
2208 struct hist_entry *he)
2209 {
2210 struct rb_node *n;
2211
2212 if (hists__has(hists, need_collapse))
2213 n = hists->entries_collapsed.rb_node;
2214 else
2215 n = hists->entries_in->rb_node;
2216
2217 while (n) {
2218 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2219 int64_t cmp = hist_entry__collapse(iter, he);
2220
2221 if (cmp < 0)
2222 n = n->rb_left;
2223 else if (cmp > 0)
2224 n = n->rb_right;
2225 else
2226 return iter;
2227 }
2228
2229 return NULL;
2230 }
2231
hists__find_hierarchy_entry(struct rb_root * root,struct hist_entry * he)2232 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2233 struct hist_entry *he)
2234 {
2235 struct rb_node *n = root->rb_node;
2236
2237 while (n) {
2238 struct hist_entry *iter;
2239 struct perf_hpp_fmt *fmt;
2240 int64_t cmp = 0;
2241
2242 iter = rb_entry(n, struct hist_entry, rb_node_in);
2243 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2244 cmp = fmt->collapse(fmt, iter, he);
2245 if (cmp)
2246 break;
2247 }
2248
2249 if (cmp < 0)
2250 n = n->rb_left;
2251 else if (cmp > 0)
2252 n = n->rb_right;
2253 else
2254 return iter;
2255 }
2256
2257 return NULL;
2258 }
2259
hists__match_hierarchy(struct rb_root * leader_root,struct rb_root * other_root)2260 static void hists__match_hierarchy(struct rb_root *leader_root,
2261 struct rb_root *other_root)
2262 {
2263 struct rb_node *nd;
2264 struct hist_entry *pos, *pair;
2265
2266 for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2267 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2268 pair = hists__find_hierarchy_entry(other_root, pos);
2269
2270 if (pair) {
2271 hist_entry__add_pair(pair, pos);
2272 hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2273 }
2274 }
2275 }
2276
2277 /*
2278 * Look for pairs to link to the leader buckets (hist_entries):
2279 */
hists__match(struct hists * leader,struct hists * other)2280 void hists__match(struct hists *leader, struct hists *other)
2281 {
2282 struct rb_root *root;
2283 struct rb_node *nd;
2284 struct hist_entry *pos, *pair;
2285
2286 if (symbol_conf.report_hierarchy) {
2287 /* hierarchy report always collapses entries */
2288 return hists__match_hierarchy(&leader->entries_collapsed,
2289 &other->entries_collapsed);
2290 }
2291
2292 if (hists__has(leader, need_collapse))
2293 root = &leader->entries_collapsed;
2294 else
2295 root = leader->entries_in;
2296
2297 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2298 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2299 pair = hists__find_entry(other, pos);
2300
2301 if (pair)
2302 hist_entry__add_pair(pair, pos);
2303 }
2304 }
2305
hists__link_hierarchy(struct hists * leader_hists,struct hist_entry * parent,struct rb_root * leader_root,struct rb_root * other_root)2306 static int hists__link_hierarchy(struct hists *leader_hists,
2307 struct hist_entry *parent,
2308 struct rb_root *leader_root,
2309 struct rb_root *other_root)
2310 {
2311 struct rb_node *nd;
2312 struct hist_entry *pos, *leader;
2313
2314 for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2315 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2316
2317 if (hist_entry__has_pairs(pos)) {
2318 bool found = false;
2319
2320 list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2321 if (leader->hists == leader_hists) {
2322 found = true;
2323 break;
2324 }
2325 }
2326 if (!found)
2327 return -1;
2328 } else {
2329 leader = add_dummy_hierarchy_entry(leader_hists,
2330 leader_root, pos);
2331 if (leader == NULL)
2332 return -1;
2333
2334 /* do not point parent in the pos */
2335 leader->parent_he = parent;
2336
2337 hist_entry__add_pair(pos, leader);
2338 }
2339
2340 if (!pos->leaf) {
2341 if (hists__link_hierarchy(leader_hists, leader,
2342 &leader->hroot_in,
2343 &pos->hroot_in) < 0)
2344 return -1;
2345 }
2346 }
2347 return 0;
2348 }
2349
2350 /*
2351 * Look for entries in the other hists that are not present in the leader, if
2352 * we find them, just add a dummy entry on the leader hists, with period=0,
2353 * nr_events=0, to serve as the list header.
2354 */
hists__link(struct hists * leader,struct hists * other)2355 int hists__link(struct hists *leader, struct hists *other)
2356 {
2357 struct rb_root *root;
2358 struct rb_node *nd;
2359 struct hist_entry *pos, *pair;
2360
2361 if (symbol_conf.report_hierarchy) {
2362 /* hierarchy report always collapses entries */
2363 return hists__link_hierarchy(leader, NULL,
2364 &leader->entries_collapsed,
2365 &other->entries_collapsed);
2366 }
2367
2368 if (hists__has(other, need_collapse))
2369 root = &other->entries_collapsed;
2370 else
2371 root = other->entries_in;
2372
2373 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2374 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2375
2376 if (!hist_entry__has_pairs(pos)) {
2377 pair = hists__add_dummy_entry(leader, pos);
2378 if (pair == NULL)
2379 return -1;
2380 hist_entry__add_pair(pos, pair);
2381 }
2382 }
2383
2384 return 0;
2385 }
2386
hist__account_cycles(struct branch_stack * bs,struct addr_location * al,struct perf_sample * sample,bool nonany_branch_mode)2387 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2388 struct perf_sample *sample, bool nonany_branch_mode)
2389 {
2390 struct branch_info *bi;
2391
2392 /* If we have branch cycles always annotate them. */
2393 if (bs && bs->nr && bs->entries[0].flags.cycles) {
2394 int i;
2395
2396 bi = sample__resolve_bstack(sample, al);
2397 if (bi) {
2398 struct addr_map_symbol *prev = NULL;
2399
2400 /*
2401 * Ignore errors, still want to process the
2402 * other entries.
2403 *
2404 * For non standard branch modes always
2405 * force no IPC (prev == NULL)
2406 *
2407 * Note that perf stores branches reversed from
2408 * program order!
2409 */
2410 for (i = bs->nr - 1; i >= 0; i--) {
2411 addr_map_symbol__account_cycles(&bi[i].from,
2412 nonany_branch_mode ? NULL : prev,
2413 bi[i].flags.cycles);
2414 prev = &bi[i].to;
2415 }
2416 free(bi);
2417 }
2418 }
2419 }
2420
perf_evlist__fprintf_nr_events(struct perf_evlist * evlist,FILE * fp)2421 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2422 {
2423 struct perf_evsel *pos;
2424 size_t ret = 0;
2425
2426 evlist__for_each_entry(evlist, pos) {
2427 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2428 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2429 }
2430
2431 return ret;
2432 }
2433
2434
hists__total_period(struct hists * hists)2435 u64 hists__total_period(struct hists *hists)
2436 {
2437 return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2438 hists->stats.total_period;
2439 }
2440
parse_filter_percentage(const struct option * opt __maybe_unused,const char * arg,int unset __maybe_unused)2441 int parse_filter_percentage(const struct option *opt __maybe_unused,
2442 const char *arg, int unset __maybe_unused)
2443 {
2444 if (!strcmp(arg, "relative"))
2445 symbol_conf.filter_relative = true;
2446 else if (!strcmp(arg, "absolute"))
2447 symbol_conf.filter_relative = false;
2448 else
2449 return -1;
2450
2451 return 0;
2452 }
2453
perf_hist_config(const char * var,const char * value)2454 int perf_hist_config(const char *var, const char *value)
2455 {
2456 if (!strcmp(var, "hist.percentage"))
2457 return parse_filter_percentage(NULL, value, 0);
2458
2459 return 0;
2460 }
2461
__hists__init(struct hists * hists,struct perf_hpp_list * hpp_list)2462 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2463 {
2464 memset(hists, 0, sizeof(*hists));
2465 hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2466 hists->entries_in = &hists->entries_in_array[0];
2467 hists->entries_collapsed = RB_ROOT;
2468 hists->entries = RB_ROOT;
2469 pthread_mutex_init(&hists->lock, NULL);
2470 hists->socket_filter = -1;
2471 hists->hpp_list = hpp_list;
2472 INIT_LIST_HEAD(&hists->hpp_formats);
2473 return 0;
2474 }
2475
hists__delete_remaining_entries(struct rb_root * root)2476 static void hists__delete_remaining_entries(struct rb_root *root)
2477 {
2478 struct rb_node *node;
2479 struct hist_entry *he;
2480
2481 while (!RB_EMPTY_ROOT(root)) {
2482 node = rb_first(root);
2483 rb_erase(node, root);
2484
2485 he = rb_entry(node, struct hist_entry, rb_node_in);
2486 hist_entry__delete(he);
2487 }
2488 }
2489
hists__delete_all_entries(struct hists * hists)2490 static void hists__delete_all_entries(struct hists *hists)
2491 {
2492 hists__delete_entries(hists);
2493 hists__delete_remaining_entries(&hists->entries_in_array[0]);
2494 hists__delete_remaining_entries(&hists->entries_in_array[1]);
2495 hists__delete_remaining_entries(&hists->entries_collapsed);
2496 }
2497
hists_evsel__exit(struct perf_evsel * evsel)2498 static void hists_evsel__exit(struct perf_evsel *evsel)
2499 {
2500 struct hists *hists = evsel__hists(evsel);
2501 struct perf_hpp_fmt *fmt, *pos;
2502 struct perf_hpp_list_node *node, *tmp;
2503
2504 hists__delete_all_entries(hists);
2505
2506 list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2507 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2508 list_del(&fmt->list);
2509 free(fmt);
2510 }
2511 list_del(&node->list);
2512 free(node);
2513 }
2514 }
2515
hists_evsel__init(struct perf_evsel * evsel)2516 static int hists_evsel__init(struct perf_evsel *evsel)
2517 {
2518 struct hists *hists = evsel__hists(evsel);
2519
2520 __hists__init(hists, &perf_hpp_list);
2521 return 0;
2522 }
2523
2524 /*
2525 * XXX We probably need a hists_evsel__exit() to free the hist_entries
2526 * stored in the rbtree...
2527 */
2528
hists__init(void)2529 int hists__init(void)
2530 {
2531 int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2532 hists_evsel__init,
2533 hists_evsel__exit);
2534 if (err)
2535 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2536
2537 return err;
2538 }
2539
perf_hpp_list__init(struct perf_hpp_list * list)2540 void perf_hpp_list__init(struct perf_hpp_list *list)
2541 {
2542 INIT_LIST_HEAD(&list->fields);
2543 INIT_LIST_HEAD(&list->sorts);
2544 }
2545