1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
40 #include "xfs_sb.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44
45 static kmem_zone_t *xfs_buf_zone;
46
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
55 #endif
56
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59
60
61 static inline int
xfs_buf_is_vmapped(struct xfs_buf * bp)62 xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64 {
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
71 */
72 return bp->b_addr && bp->b_page_count > 1;
73 }
74
75 static inline int
xfs_buf_vmap_len(struct xfs_buf * bp)76 xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78 {
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81
82 /*
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
89 * in-flight buffers.
90 *
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
94 */
95 static inline void
xfs_buf_ioacct_inc(struct xfs_buf * bp)96 xfs_buf_ioacct_inc(
97 struct xfs_buf *bp)
98 {
99 if (bp->b_flags & XBF_NO_IOACCT)
100 return;
101
102 ASSERT(bp->b_flags & XBF_ASYNC);
103 spin_lock(&bp->b_lock);
104 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
105 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
106 percpu_counter_inc(&bp->b_target->bt_io_count);
107 }
108 spin_unlock(&bp->b_lock);
109 }
110
111 /*
112 * Clear the in-flight state on a buffer about to be released to the LRU or
113 * freed and unaccount from the buftarg.
114 */
115 static inline void
__xfs_buf_ioacct_dec(struct xfs_buf * bp)116 __xfs_buf_ioacct_dec(
117 struct xfs_buf *bp)
118 {
119 lockdep_assert_held(&bp->b_lock);
120
121 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
122 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
123 percpu_counter_dec(&bp->b_target->bt_io_count);
124 }
125 }
126
127 static inline void
xfs_buf_ioacct_dec(struct xfs_buf * bp)128 xfs_buf_ioacct_dec(
129 struct xfs_buf *bp)
130 {
131 spin_lock(&bp->b_lock);
132 __xfs_buf_ioacct_dec(bp);
133 spin_unlock(&bp->b_lock);
134 }
135
136 /*
137 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
138 * b_lru_ref count so that the buffer is freed immediately when the buffer
139 * reference count falls to zero. If the buffer is already on the LRU, we need
140 * to remove the reference that LRU holds on the buffer.
141 *
142 * This prevents build-up of stale buffers on the LRU.
143 */
144 void
xfs_buf_stale(struct xfs_buf * bp)145 xfs_buf_stale(
146 struct xfs_buf *bp)
147 {
148 ASSERT(xfs_buf_islocked(bp));
149
150 bp->b_flags |= XBF_STALE;
151
152 /*
153 * Clear the delwri status so that a delwri queue walker will not
154 * flush this buffer to disk now that it is stale. The delwri queue has
155 * a reference to the buffer, so this is safe to do.
156 */
157 bp->b_flags &= ~_XBF_DELWRI_Q;
158
159 /*
160 * Once the buffer is marked stale and unlocked, a subsequent lookup
161 * could reset b_flags. There is no guarantee that the buffer is
162 * unaccounted (released to LRU) before that occurs. Drop in-flight
163 * status now to preserve accounting consistency.
164 */
165 spin_lock(&bp->b_lock);
166 __xfs_buf_ioacct_dec(bp);
167
168 atomic_set(&bp->b_lru_ref, 0);
169 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
170 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
171 atomic_dec(&bp->b_hold);
172
173 ASSERT(atomic_read(&bp->b_hold) >= 1);
174 spin_unlock(&bp->b_lock);
175 }
176
177 static int
xfs_buf_get_maps(struct xfs_buf * bp,int map_count)178 xfs_buf_get_maps(
179 struct xfs_buf *bp,
180 int map_count)
181 {
182 ASSERT(bp->b_maps == NULL);
183 bp->b_map_count = map_count;
184
185 if (map_count == 1) {
186 bp->b_maps = &bp->__b_map;
187 return 0;
188 }
189
190 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
191 KM_NOFS);
192 if (!bp->b_maps)
193 return -ENOMEM;
194 return 0;
195 }
196
197 /*
198 * Frees b_pages if it was allocated.
199 */
200 static void
xfs_buf_free_maps(struct xfs_buf * bp)201 xfs_buf_free_maps(
202 struct xfs_buf *bp)
203 {
204 if (bp->b_maps != &bp->__b_map) {
205 kmem_free(bp->b_maps);
206 bp->b_maps = NULL;
207 }
208 }
209
210 struct xfs_buf *
_xfs_buf_alloc(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags)211 _xfs_buf_alloc(
212 struct xfs_buftarg *target,
213 struct xfs_buf_map *map,
214 int nmaps,
215 xfs_buf_flags_t flags)
216 {
217 struct xfs_buf *bp;
218 int error;
219 int i;
220
221 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
222 if (unlikely(!bp))
223 return NULL;
224
225 /*
226 * We don't want certain flags to appear in b_flags unless they are
227 * specifically set by later operations on the buffer.
228 */
229 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
230
231 atomic_set(&bp->b_hold, 1);
232 atomic_set(&bp->b_lru_ref, 1);
233 init_completion(&bp->b_iowait);
234 INIT_LIST_HEAD(&bp->b_lru);
235 INIT_LIST_HEAD(&bp->b_list);
236 RB_CLEAR_NODE(&bp->b_rbnode);
237 sema_init(&bp->b_sema, 0); /* held, no waiters */
238 spin_lock_init(&bp->b_lock);
239 XB_SET_OWNER(bp);
240 bp->b_target = target;
241 bp->b_flags = flags;
242
243 /*
244 * Set length and io_length to the same value initially.
245 * I/O routines should use io_length, which will be the same in
246 * most cases but may be reset (e.g. XFS recovery).
247 */
248 error = xfs_buf_get_maps(bp, nmaps);
249 if (error) {
250 kmem_zone_free(xfs_buf_zone, bp);
251 return NULL;
252 }
253
254 bp->b_bn = map[0].bm_bn;
255 bp->b_length = 0;
256 for (i = 0; i < nmaps; i++) {
257 bp->b_maps[i].bm_bn = map[i].bm_bn;
258 bp->b_maps[i].bm_len = map[i].bm_len;
259 bp->b_length += map[i].bm_len;
260 }
261 bp->b_io_length = bp->b_length;
262
263 atomic_set(&bp->b_pin_count, 0);
264 init_waitqueue_head(&bp->b_waiters);
265
266 XFS_STATS_INC(target->bt_mount, xb_create);
267 trace_xfs_buf_init(bp, _RET_IP_);
268
269 return bp;
270 }
271
272 /*
273 * Allocate a page array capable of holding a specified number
274 * of pages, and point the page buf at it.
275 */
276 STATIC int
_xfs_buf_get_pages(xfs_buf_t * bp,int page_count)277 _xfs_buf_get_pages(
278 xfs_buf_t *bp,
279 int page_count)
280 {
281 /* Make sure that we have a page list */
282 if (bp->b_pages == NULL) {
283 bp->b_page_count = page_count;
284 if (page_count <= XB_PAGES) {
285 bp->b_pages = bp->b_page_array;
286 } else {
287 bp->b_pages = kmem_alloc(sizeof(struct page *) *
288 page_count, KM_NOFS);
289 if (bp->b_pages == NULL)
290 return -ENOMEM;
291 }
292 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
293 }
294 return 0;
295 }
296
297 /*
298 * Frees b_pages if it was allocated.
299 */
300 STATIC void
_xfs_buf_free_pages(xfs_buf_t * bp)301 _xfs_buf_free_pages(
302 xfs_buf_t *bp)
303 {
304 if (bp->b_pages != bp->b_page_array) {
305 kmem_free(bp->b_pages);
306 bp->b_pages = NULL;
307 }
308 }
309
310 /*
311 * Releases the specified buffer.
312 *
313 * The modification state of any associated pages is left unchanged.
314 * The buffer must not be on any hash - use xfs_buf_rele instead for
315 * hashed and refcounted buffers
316 */
317 void
xfs_buf_free(xfs_buf_t * bp)318 xfs_buf_free(
319 xfs_buf_t *bp)
320 {
321 trace_xfs_buf_free(bp, _RET_IP_);
322
323 ASSERT(list_empty(&bp->b_lru));
324
325 if (bp->b_flags & _XBF_PAGES) {
326 uint i;
327
328 if (xfs_buf_is_vmapped(bp))
329 vm_unmap_ram(bp->b_addr - bp->b_offset,
330 bp->b_page_count);
331
332 for (i = 0; i < bp->b_page_count; i++) {
333 struct page *page = bp->b_pages[i];
334
335 __free_page(page);
336 }
337 } else if (bp->b_flags & _XBF_KMEM)
338 kmem_free(bp->b_addr);
339 _xfs_buf_free_pages(bp);
340 xfs_buf_free_maps(bp);
341 kmem_zone_free(xfs_buf_zone, bp);
342 }
343
344 /*
345 * Allocates all the pages for buffer in question and builds it's page list.
346 */
347 STATIC int
xfs_buf_allocate_memory(xfs_buf_t * bp,uint flags)348 xfs_buf_allocate_memory(
349 xfs_buf_t *bp,
350 uint flags)
351 {
352 size_t size;
353 size_t nbytes, offset;
354 gfp_t gfp_mask = xb_to_gfp(flags);
355 unsigned short page_count, i;
356 xfs_off_t start, end;
357 int error;
358
359 /*
360 * for buffers that are contained within a single page, just allocate
361 * the memory from the heap - there's no need for the complexity of
362 * page arrays to keep allocation down to order 0.
363 */
364 size = BBTOB(bp->b_length);
365 if (size < PAGE_SIZE) {
366 bp->b_addr = kmem_alloc(size, KM_NOFS);
367 if (!bp->b_addr) {
368 /* low memory - use alloc_page loop instead */
369 goto use_alloc_page;
370 }
371
372 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
373 ((unsigned long)bp->b_addr & PAGE_MASK)) {
374 /* b_addr spans two pages - use alloc_page instead */
375 kmem_free(bp->b_addr);
376 bp->b_addr = NULL;
377 goto use_alloc_page;
378 }
379 bp->b_offset = offset_in_page(bp->b_addr);
380 bp->b_pages = bp->b_page_array;
381 bp->b_pages[0] = virt_to_page(bp->b_addr);
382 bp->b_page_count = 1;
383 bp->b_flags |= _XBF_KMEM;
384 return 0;
385 }
386
387 use_alloc_page:
388 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
389 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
390 >> PAGE_SHIFT;
391 page_count = end - start;
392 error = _xfs_buf_get_pages(bp, page_count);
393 if (unlikely(error))
394 return error;
395
396 offset = bp->b_offset;
397 bp->b_flags |= _XBF_PAGES;
398
399 for (i = 0; i < bp->b_page_count; i++) {
400 struct page *page;
401 uint retries = 0;
402 retry:
403 page = alloc_page(gfp_mask);
404 if (unlikely(page == NULL)) {
405 if (flags & XBF_READ_AHEAD) {
406 bp->b_page_count = i;
407 error = -ENOMEM;
408 goto out_free_pages;
409 }
410
411 /*
412 * This could deadlock.
413 *
414 * But until all the XFS lowlevel code is revamped to
415 * handle buffer allocation failures we can't do much.
416 */
417 if (!(++retries % 100))
418 xfs_err(NULL,
419 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
420 current->comm, current->pid,
421 __func__, gfp_mask);
422
423 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
424 congestion_wait(BLK_RW_ASYNC, HZ/50);
425 goto retry;
426 }
427
428 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
429
430 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
431 size -= nbytes;
432 bp->b_pages[i] = page;
433 offset = 0;
434 }
435 return 0;
436
437 out_free_pages:
438 for (i = 0; i < bp->b_page_count; i++)
439 __free_page(bp->b_pages[i]);
440 bp->b_flags &= ~_XBF_PAGES;
441 return error;
442 }
443
444 /*
445 * Map buffer into kernel address-space if necessary.
446 */
447 STATIC int
_xfs_buf_map_pages(xfs_buf_t * bp,uint flags)448 _xfs_buf_map_pages(
449 xfs_buf_t *bp,
450 uint flags)
451 {
452 ASSERT(bp->b_flags & _XBF_PAGES);
453 if (bp->b_page_count == 1) {
454 /* A single page buffer is always mappable */
455 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
456 } else if (flags & XBF_UNMAPPED) {
457 bp->b_addr = NULL;
458 } else {
459 int retried = 0;
460 unsigned noio_flag;
461
462 /*
463 * vm_map_ram() will allocate auxillary structures (e.g.
464 * pagetables) with GFP_KERNEL, yet we are likely to be under
465 * GFP_NOFS context here. Hence we need to tell memory reclaim
466 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
467 * memory reclaim re-entering the filesystem here and
468 * potentially deadlocking.
469 */
470 noio_flag = memalloc_noio_save();
471 do {
472 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
473 -1, PAGE_KERNEL);
474 if (bp->b_addr)
475 break;
476 vm_unmap_aliases();
477 } while (retried++ <= 1);
478 memalloc_noio_restore(noio_flag);
479
480 if (!bp->b_addr)
481 return -ENOMEM;
482 bp->b_addr += bp->b_offset;
483 }
484
485 return 0;
486 }
487
488 /*
489 * Finding and Reading Buffers
490 */
491
492 /*
493 * Look up, and creates if absent, a lockable buffer for
494 * a given range of an inode. The buffer is returned
495 * locked. No I/O is implied by this call.
496 */
497 xfs_buf_t *
_xfs_buf_find(struct xfs_buftarg * btp,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,xfs_buf_t * new_bp)498 _xfs_buf_find(
499 struct xfs_buftarg *btp,
500 struct xfs_buf_map *map,
501 int nmaps,
502 xfs_buf_flags_t flags,
503 xfs_buf_t *new_bp)
504 {
505 struct xfs_perag *pag;
506 struct rb_node **rbp;
507 struct rb_node *parent;
508 xfs_buf_t *bp;
509 xfs_daddr_t blkno = map[0].bm_bn;
510 xfs_daddr_t eofs;
511 int numblks = 0;
512 int i;
513
514 for (i = 0; i < nmaps; i++)
515 numblks += map[i].bm_len;
516
517 /* Check for IOs smaller than the sector size / not sector aligned */
518 ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
519 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
520
521 /*
522 * Corrupted block numbers can get through to here, unfortunately, so we
523 * have to check that the buffer falls within the filesystem bounds.
524 */
525 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
526 if (blkno < 0 || blkno >= eofs) {
527 /*
528 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
529 * but none of the higher level infrastructure supports
530 * returning a specific error on buffer lookup failures.
531 */
532 xfs_alert(btp->bt_mount,
533 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
534 __func__, blkno, eofs);
535 WARN_ON(1);
536 return NULL;
537 }
538
539 /* get tree root */
540 pag = xfs_perag_get(btp->bt_mount,
541 xfs_daddr_to_agno(btp->bt_mount, blkno));
542
543 /* walk tree */
544 spin_lock(&pag->pag_buf_lock);
545 rbp = &pag->pag_buf_tree.rb_node;
546 parent = NULL;
547 bp = NULL;
548 while (*rbp) {
549 parent = *rbp;
550 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
551
552 if (blkno < bp->b_bn)
553 rbp = &(*rbp)->rb_left;
554 else if (blkno > bp->b_bn)
555 rbp = &(*rbp)->rb_right;
556 else {
557 /*
558 * found a block number match. If the range doesn't
559 * match, the only way this is allowed is if the buffer
560 * in the cache is stale and the transaction that made
561 * it stale has not yet committed. i.e. we are
562 * reallocating a busy extent. Skip this buffer and
563 * continue searching to the right for an exact match.
564 */
565 if (bp->b_length != numblks) {
566 ASSERT(bp->b_flags & XBF_STALE);
567 rbp = &(*rbp)->rb_right;
568 continue;
569 }
570 atomic_inc(&bp->b_hold);
571 goto found;
572 }
573 }
574
575 /* No match found */
576 if (new_bp) {
577 rb_link_node(&new_bp->b_rbnode, parent, rbp);
578 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
579 /* the buffer keeps the perag reference until it is freed */
580 new_bp->b_pag = pag;
581 spin_unlock(&pag->pag_buf_lock);
582 } else {
583 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
584 spin_unlock(&pag->pag_buf_lock);
585 xfs_perag_put(pag);
586 }
587 return new_bp;
588
589 found:
590 spin_unlock(&pag->pag_buf_lock);
591 xfs_perag_put(pag);
592
593 if (!xfs_buf_trylock(bp)) {
594 if (flags & XBF_TRYLOCK) {
595 xfs_buf_rele(bp);
596 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
597 return NULL;
598 }
599 xfs_buf_lock(bp);
600 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
601 }
602
603 /*
604 * if the buffer is stale, clear all the external state associated with
605 * it. We need to keep flags such as how we allocated the buffer memory
606 * intact here.
607 */
608 if (bp->b_flags & XBF_STALE) {
609 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
610 ASSERT(bp->b_iodone == NULL);
611 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
612 bp->b_ops = NULL;
613 }
614
615 trace_xfs_buf_find(bp, flags, _RET_IP_);
616 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
617 return bp;
618 }
619
620 /*
621 * Assembles a buffer covering the specified range. The code is optimised for
622 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
623 * more hits than misses.
624 */
625 struct xfs_buf *
xfs_buf_get_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags)626 xfs_buf_get_map(
627 struct xfs_buftarg *target,
628 struct xfs_buf_map *map,
629 int nmaps,
630 xfs_buf_flags_t flags)
631 {
632 struct xfs_buf *bp;
633 struct xfs_buf *new_bp;
634 int error = 0;
635
636 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
637 if (likely(bp))
638 goto found;
639
640 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
641 if (unlikely(!new_bp))
642 return NULL;
643
644 error = xfs_buf_allocate_memory(new_bp, flags);
645 if (error) {
646 xfs_buf_free(new_bp);
647 return NULL;
648 }
649
650 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
651 if (!bp) {
652 xfs_buf_free(new_bp);
653 return NULL;
654 }
655
656 if (bp != new_bp)
657 xfs_buf_free(new_bp);
658
659 found:
660 if (!bp->b_addr) {
661 error = _xfs_buf_map_pages(bp, flags);
662 if (unlikely(error)) {
663 xfs_warn(target->bt_mount,
664 "%s: failed to map pagesn", __func__);
665 xfs_buf_relse(bp);
666 return NULL;
667 }
668 }
669
670 /*
671 * Clear b_error if this is a lookup from a caller that doesn't expect
672 * valid data to be found in the buffer.
673 */
674 if (!(flags & XBF_READ))
675 xfs_buf_ioerror(bp, 0);
676
677 XFS_STATS_INC(target->bt_mount, xb_get);
678 trace_xfs_buf_get(bp, flags, _RET_IP_);
679 return bp;
680 }
681
682 STATIC int
_xfs_buf_read(xfs_buf_t * bp,xfs_buf_flags_t flags)683 _xfs_buf_read(
684 xfs_buf_t *bp,
685 xfs_buf_flags_t flags)
686 {
687 ASSERT(!(flags & XBF_WRITE));
688 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
689
690 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
691 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
692
693 if (flags & XBF_ASYNC) {
694 xfs_buf_submit(bp);
695 return 0;
696 }
697 return xfs_buf_submit_wait(bp);
698 }
699
700 xfs_buf_t *
xfs_buf_read_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,const struct xfs_buf_ops * ops)701 xfs_buf_read_map(
702 struct xfs_buftarg *target,
703 struct xfs_buf_map *map,
704 int nmaps,
705 xfs_buf_flags_t flags,
706 const struct xfs_buf_ops *ops)
707 {
708 struct xfs_buf *bp;
709
710 flags |= XBF_READ;
711
712 bp = xfs_buf_get_map(target, map, nmaps, flags);
713 if (bp) {
714 trace_xfs_buf_read(bp, flags, _RET_IP_);
715
716 if (!(bp->b_flags & XBF_DONE)) {
717 XFS_STATS_INC(target->bt_mount, xb_get_read);
718 bp->b_ops = ops;
719 _xfs_buf_read(bp, flags);
720 } else if (flags & XBF_ASYNC) {
721 /*
722 * Read ahead call which is already satisfied,
723 * drop the buffer
724 */
725 xfs_buf_relse(bp);
726 return NULL;
727 } else {
728 /* We do not want read in the flags */
729 bp->b_flags &= ~XBF_READ;
730 }
731 }
732
733 return bp;
734 }
735
736 /*
737 * If we are not low on memory then do the readahead in a deadlock
738 * safe manner.
739 */
740 void
xfs_buf_readahead_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,const struct xfs_buf_ops * ops)741 xfs_buf_readahead_map(
742 struct xfs_buftarg *target,
743 struct xfs_buf_map *map,
744 int nmaps,
745 const struct xfs_buf_ops *ops)
746 {
747 if (bdi_read_congested(target->bt_bdi))
748 return;
749
750 xfs_buf_read_map(target, map, nmaps,
751 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
752 }
753
754 /*
755 * Read an uncached buffer from disk. Allocates and returns a locked
756 * buffer containing the disk contents or nothing.
757 */
758 int
xfs_buf_read_uncached(struct xfs_buftarg * target,xfs_daddr_t daddr,size_t numblks,int flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)759 xfs_buf_read_uncached(
760 struct xfs_buftarg *target,
761 xfs_daddr_t daddr,
762 size_t numblks,
763 int flags,
764 struct xfs_buf **bpp,
765 const struct xfs_buf_ops *ops)
766 {
767 struct xfs_buf *bp;
768
769 *bpp = NULL;
770
771 bp = xfs_buf_get_uncached(target, numblks, flags);
772 if (!bp)
773 return -ENOMEM;
774
775 /* set up the buffer for a read IO */
776 ASSERT(bp->b_map_count == 1);
777 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
778 bp->b_maps[0].bm_bn = daddr;
779 bp->b_flags |= XBF_READ;
780 bp->b_ops = ops;
781
782 xfs_buf_submit_wait(bp);
783 if (bp->b_error) {
784 int error = bp->b_error;
785 xfs_buf_relse(bp);
786 return error;
787 }
788
789 *bpp = bp;
790 return 0;
791 }
792
793 /*
794 * Return a buffer allocated as an empty buffer and associated to external
795 * memory via xfs_buf_associate_memory() back to it's empty state.
796 */
797 void
xfs_buf_set_empty(struct xfs_buf * bp,size_t numblks)798 xfs_buf_set_empty(
799 struct xfs_buf *bp,
800 size_t numblks)
801 {
802 if (bp->b_pages)
803 _xfs_buf_free_pages(bp);
804
805 bp->b_pages = NULL;
806 bp->b_page_count = 0;
807 bp->b_addr = NULL;
808 bp->b_length = numblks;
809 bp->b_io_length = numblks;
810
811 ASSERT(bp->b_map_count == 1);
812 bp->b_bn = XFS_BUF_DADDR_NULL;
813 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
814 bp->b_maps[0].bm_len = bp->b_length;
815 }
816
817 static inline struct page *
mem_to_page(void * addr)818 mem_to_page(
819 void *addr)
820 {
821 if ((!is_vmalloc_addr(addr))) {
822 return virt_to_page(addr);
823 } else {
824 return vmalloc_to_page(addr);
825 }
826 }
827
828 int
xfs_buf_associate_memory(xfs_buf_t * bp,void * mem,size_t len)829 xfs_buf_associate_memory(
830 xfs_buf_t *bp,
831 void *mem,
832 size_t len)
833 {
834 int rval;
835 int i = 0;
836 unsigned long pageaddr;
837 unsigned long offset;
838 size_t buflen;
839 int page_count;
840
841 pageaddr = (unsigned long)mem & PAGE_MASK;
842 offset = (unsigned long)mem - pageaddr;
843 buflen = PAGE_ALIGN(len + offset);
844 page_count = buflen >> PAGE_SHIFT;
845
846 /* Free any previous set of page pointers */
847 if (bp->b_pages)
848 _xfs_buf_free_pages(bp);
849
850 bp->b_pages = NULL;
851 bp->b_addr = mem;
852
853 rval = _xfs_buf_get_pages(bp, page_count);
854 if (rval)
855 return rval;
856
857 bp->b_offset = offset;
858
859 for (i = 0; i < bp->b_page_count; i++) {
860 bp->b_pages[i] = mem_to_page((void *)pageaddr);
861 pageaddr += PAGE_SIZE;
862 }
863
864 bp->b_io_length = BTOBB(len);
865 bp->b_length = BTOBB(buflen);
866
867 return 0;
868 }
869
870 xfs_buf_t *
xfs_buf_get_uncached(struct xfs_buftarg * target,size_t numblks,int flags)871 xfs_buf_get_uncached(
872 struct xfs_buftarg *target,
873 size_t numblks,
874 int flags)
875 {
876 unsigned long page_count;
877 int error, i;
878 struct xfs_buf *bp;
879 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
880
881 /* flags might contain irrelevant bits, pass only what we care about */
882 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
883 if (unlikely(bp == NULL))
884 goto fail;
885
886 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
887 error = _xfs_buf_get_pages(bp, page_count);
888 if (error)
889 goto fail_free_buf;
890
891 for (i = 0; i < page_count; i++) {
892 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
893 if (!bp->b_pages[i])
894 goto fail_free_mem;
895 }
896 bp->b_flags |= _XBF_PAGES;
897
898 error = _xfs_buf_map_pages(bp, 0);
899 if (unlikely(error)) {
900 xfs_warn(target->bt_mount,
901 "%s: failed to map pages", __func__);
902 goto fail_free_mem;
903 }
904
905 trace_xfs_buf_get_uncached(bp, _RET_IP_);
906 return bp;
907
908 fail_free_mem:
909 while (--i >= 0)
910 __free_page(bp->b_pages[i]);
911 _xfs_buf_free_pages(bp);
912 fail_free_buf:
913 xfs_buf_free_maps(bp);
914 kmem_zone_free(xfs_buf_zone, bp);
915 fail:
916 return NULL;
917 }
918
919 /*
920 * Increment reference count on buffer, to hold the buffer concurrently
921 * with another thread which may release (free) the buffer asynchronously.
922 * Must hold the buffer already to call this function.
923 */
924 void
xfs_buf_hold(xfs_buf_t * bp)925 xfs_buf_hold(
926 xfs_buf_t *bp)
927 {
928 trace_xfs_buf_hold(bp, _RET_IP_);
929 atomic_inc(&bp->b_hold);
930 }
931
932 /*
933 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
934 * placed on LRU or freed (depending on b_lru_ref).
935 */
936 void
xfs_buf_rele(xfs_buf_t * bp)937 xfs_buf_rele(
938 xfs_buf_t *bp)
939 {
940 struct xfs_perag *pag = bp->b_pag;
941 bool release;
942 bool freebuf = false;
943
944 trace_xfs_buf_rele(bp, _RET_IP_);
945
946 if (!pag) {
947 ASSERT(list_empty(&bp->b_lru));
948 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
949 if (atomic_dec_and_test(&bp->b_hold)) {
950 xfs_buf_ioacct_dec(bp);
951 xfs_buf_free(bp);
952 }
953 return;
954 }
955
956 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
957
958 ASSERT(atomic_read(&bp->b_hold) > 0);
959
960 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
961 spin_lock(&bp->b_lock);
962 if (!release) {
963 /*
964 * Drop the in-flight state if the buffer is already on the LRU
965 * and it holds the only reference. This is racy because we
966 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
967 * ensures the decrement occurs only once per-buf.
968 */
969 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
970 __xfs_buf_ioacct_dec(bp);
971 goto out_unlock;
972 }
973
974 /* the last reference has been dropped ... */
975 __xfs_buf_ioacct_dec(bp);
976 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
977 /*
978 * If the buffer is added to the LRU take a new reference to the
979 * buffer for the LRU and clear the (now stale) dispose list
980 * state flag
981 */
982 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
983 bp->b_state &= ~XFS_BSTATE_DISPOSE;
984 atomic_inc(&bp->b_hold);
985 }
986 spin_unlock(&pag->pag_buf_lock);
987 } else {
988 /*
989 * most of the time buffers will already be removed from the
990 * LRU, so optimise that case by checking for the
991 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
992 * was on was the disposal list
993 */
994 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
995 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
996 } else {
997 ASSERT(list_empty(&bp->b_lru));
998 }
999
1000 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1001 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
1002 spin_unlock(&pag->pag_buf_lock);
1003 xfs_perag_put(pag);
1004 freebuf = true;
1005 }
1006
1007 out_unlock:
1008 spin_unlock(&bp->b_lock);
1009
1010 if (freebuf)
1011 xfs_buf_free(bp);
1012 }
1013
1014
1015 /*
1016 * Lock a buffer object, if it is not already locked.
1017 *
1018 * If we come across a stale, pinned, locked buffer, we know that we are
1019 * being asked to lock a buffer that has been reallocated. Because it is
1020 * pinned, we know that the log has not been pushed to disk and hence it
1021 * will still be locked. Rather than continuing to have trylock attempts
1022 * fail until someone else pushes the log, push it ourselves before
1023 * returning. This means that the xfsaild will not get stuck trying
1024 * to push on stale inode buffers.
1025 */
1026 int
xfs_buf_trylock(struct xfs_buf * bp)1027 xfs_buf_trylock(
1028 struct xfs_buf *bp)
1029 {
1030 int locked;
1031
1032 locked = down_trylock(&bp->b_sema) == 0;
1033 if (locked) {
1034 XB_SET_OWNER(bp);
1035 trace_xfs_buf_trylock(bp, _RET_IP_);
1036 } else {
1037 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1038 }
1039 return locked;
1040 }
1041
1042 /*
1043 * Lock a buffer object.
1044 *
1045 * If we come across a stale, pinned, locked buffer, we know that we
1046 * are being asked to lock a buffer that has been reallocated. Because
1047 * it is pinned, we know that the log has not been pushed to disk and
1048 * hence it will still be locked. Rather than sleeping until someone
1049 * else pushes the log, push it ourselves before trying to get the lock.
1050 */
1051 void
xfs_buf_lock(struct xfs_buf * bp)1052 xfs_buf_lock(
1053 struct xfs_buf *bp)
1054 {
1055 trace_xfs_buf_lock(bp, _RET_IP_);
1056
1057 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1058 xfs_log_force(bp->b_target->bt_mount, 0);
1059 down(&bp->b_sema);
1060 XB_SET_OWNER(bp);
1061
1062 trace_xfs_buf_lock_done(bp, _RET_IP_);
1063 }
1064
1065 void
xfs_buf_unlock(struct xfs_buf * bp)1066 xfs_buf_unlock(
1067 struct xfs_buf *bp)
1068 {
1069 ASSERT(xfs_buf_islocked(bp));
1070
1071 XB_CLEAR_OWNER(bp);
1072 up(&bp->b_sema);
1073
1074 trace_xfs_buf_unlock(bp, _RET_IP_);
1075 }
1076
1077 STATIC void
xfs_buf_wait_unpin(xfs_buf_t * bp)1078 xfs_buf_wait_unpin(
1079 xfs_buf_t *bp)
1080 {
1081 DECLARE_WAITQUEUE (wait, current);
1082
1083 if (atomic_read(&bp->b_pin_count) == 0)
1084 return;
1085
1086 add_wait_queue(&bp->b_waiters, &wait);
1087 for (;;) {
1088 set_current_state(TASK_UNINTERRUPTIBLE);
1089 if (atomic_read(&bp->b_pin_count) == 0)
1090 break;
1091 io_schedule();
1092 }
1093 remove_wait_queue(&bp->b_waiters, &wait);
1094 set_current_state(TASK_RUNNING);
1095 }
1096
1097 /*
1098 * Buffer Utility Routines
1099 */
1100
1101 void
xfs_buf_ioend(struct xfs_buf * bp)1102 xfs_buf_ioend(
1103 struct xfs_buf *bp)
1104 {
1105 bool read = bp->b_flags & XBF_READ;
1106
1107 trace_xfs_buf_iodone(bp, _RET_IP_);
1108
1109 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1110
1111 /*
1112 * Pull in IO completion errors now. We are guaranteed to be running
1113 * single threaded, so we don't need the lock to read b_io_error.
1114 */
1115 if (!bp->b_error && bp->b_io_error)
1116 xfs_buf_ioerror(bp, bp->b_io_error);
1117
1118 /* Only validate buffers that were read without errors */
1119 if (read && !bp->b_error && bp->b_ops) {
1120 ASSERT(!bp->b_iodone);
1121 bp->b_ops->verify_read(bp);
1122 }
1123
1124 if (!bp->b_error)
1125 bp->b_flags |= XBF_DONE;
1126
1127 if (bp->b_iodone)
1128 (*(bp->b_iodone))(bp);
1129 else if (bp->b_flags & XBF_ASYNC)
1130 xfs_buf_relse(bp);
1131 else
1132 complete(&bp->b_iowait);
1133 }
1134
1135 static void
xfs_buf_ioend_work(struct work_struct * work)1136 xfs_buf_ioend_work(
1137 struct work_struct *work)
1138 {
1139 struct xfs_buf *bp =
1140 container_of(work, xfs_buf_t, b_ioend_work);
1141
1142 xfs_buf_ioend(bp);
1143 }
1144
1145 static void
xfs_buf_ioend_async(struct xfs_buf * bp)1146 xfs_buf_ioend_async(
1147 struct xfs_buf *bp)
1148 {
1149 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1150 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1151 }
1152
1153 void
xfs_buf_ioerror(xfs_buf_t * bp,int error)1154 xfs_buf_ioerror(
1155 xfs_buf_t *bp,
1156 int error)
1157 {
1158 ASSERT(error <= 0 && error >= -1000);
1159 bp->b_error = error;
1160 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1161 }
1162
1163 void
xfs_buf_ioerror_alert(struct xfs_buf * bp,const char * func)1164 xfs_buf_ioerror_alert(
1165 struct xfs_buf *bp,
1166 const char *func)
1167 {
1168 xfs_alert(bp->b_target->bt_mount,
1169 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1170 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1171 }
1172
1173 int
xfs_bwrite(struct xfs_buf * bp)1174 xfs_bwrite(
1175 struct xfs_buf *bp)
1176 {
1177 int error;
1178
1179 ASSERT(xfs_buf_islocked(bp));
1180
1181 bp->b_flags |= XBF_WRITE;
1182 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1183 XBF_WRITE_FAIL | XBF_DONE);
1184
1185 error = xfs_buf_submit_wait(bp);
1186 if (error) {
1187 xfs_force_shutdown(bp->b_target->bt_mount,
1188 SHUTDOWN_META_IO_ERROR);
1189 }
1190 return error;
1191 }
1192
1193 static void
xfs_buf_bio_end_io(struct bio * bio)1194 xfs_buf_bio_end_io(
1195 struct bio *bio)
1196 {
1197 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1198
1199 /*
1200 * don't overwrite existing errors - otherwise we can lose errors on
1201 * buffers that require multiple bios to complete.
1202 */
1203 if (bio->bi_error)
1204 cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1205
1206 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1207 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1208
1209 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1210 xfs_buf_ioend_async(bp);
1211 bio_put(bio);
1212 }
1213
1214 static void
xfs_buf_ioapply_map(struct xfs_buf * bp,int map,int * buf_offset,int * count,int op,int op_flags)1215 xfs_buf_ioapply_map(
1216 struct xfs_buf *bp,
1217 int map,
1218 int *buf_offset,
1219 int *count,
1220 int op,
1221 int op_flags)
1222 {
1223 int page_index;
1224 int total_nr_pages = bp->b_page_count;
1225 int nr_pages;
1226 struct bio *bio;
1227 sector_t sector = bp->b_maps[map].bm_bn;
1228 int size;
1229 int offset;
1230
1231 total_nr_pages = bp->b_page_count;
1232
1233 /* skip the pages in the buffer before the start offset */
1234 page_index = 0;
1235 offset = *buf_offset;
1236 while (offset >= PAGE_SIZE) {
1237 page_index++;
1238 offset -= PAGE_SIZE;
1239 }
1240
1241 /*
1242 * Limit the IO size to the length of the current vector, and update the
1243 * remaining IO count for the next time around.
1244 */
1245 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1246 *count -= size;
1247 *buf_offset += size;
1248
1249 next_chunk:
1250 atomic_inc(&bp->b_io_remaining);
1251 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1252
1253 bio = bio_alloc(GFP_NOIO, nr_pages);
1254 bio->bi_bdev = bp->b_target->bt_bdev;
1255 bio->bi_iter.bi_sector = sector;
1256 bio->bi_end_io = xfs_buf_bio_end_io;
1257 bio->bi_private = bp;
1258 bio_set_op_attrs(bio, op, op_flags);
1259
1260 for (; size && nr_pages; nr_pages--, page_index++) {
1261 int rbytes, nbytes = PAGE_SIZE - offset;
1262
1263 if (nbytes > size)
1264 nbytes = size;
1265
1266 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1267 offset);
1268 if (rbytes < nbytes)
1269 break;
1270
1271 offset = 0;
1272 sector += BTOBB(nbytes);
1273 size -= nbytes;
1274 total_nr_pages--;
1275 }
1276
1277 if (likely(bio->bi_iter.bi_size)) {
1278 if (xfs_buf_is_vmapped(bp)) {
1279 flush_kernel_vmap_range(bp->b_addr,
1280 xfs_buf_vmap_len(bp));
1281 }
1282 submit_bio(bio);
1283 if (size)
1284 goto next_chunk;
1285 } else {
1286 /*
1287 * This is guaranteed not to be the last io reference count
1288 * because the caller (xfs_buf_submit) holds a count itself.
1289 */
1290 atomic_dec(&bp->b_io_remaining);
1291 xfs_buf_ioerror(bp, -EIO);
1292 bio_put(bio);
1293 }
1294
1295 }
1296
1297 STATIC void
_xfs_buf_ioapply(struct xfs_buf * bp)1298 _xfs_buf_ioapply(
1299 struct xfs_buf *bp)
1300 {
1301 struct blk_plug plug;
1302 int op;
1303 int op_flags = 0;
1304 int offset;
1305 int size;
1306 int i;
1307
1308 /*
1309 * Make sure we capture only current IO errors rather than stale errors
1310 * left over from previous use of the buffer (e.g. failed readahead).
1311 */
1312 bp->b_error = 0;
1313
1314 /*
1315 * Initialize the I/O completion workqueue if we haven't yet or the
1316 * submitter has not opted to specify a custom one.
1317 */
1318 if (!bp->b_ioend_wq)
1319 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1320
1321 if (bp->b_flags & XBF_WRITE) {
1322 op = REQ_OP_WRITE;
1323 if (bp->b_flags & XBF_SYNCIO)
1324 op_flags = WRITE_SYNC;
1325 if (bp->b_flags & XBF_FUA)
1326 op_flags |= REQ_FUA;
1327 if (bp->b_flags & XBF_FLUSH)
1328 op_flags |= REQ_PREFLUSH;
1329
1330 /*
1331 * Run the write verifier callback function if it exists. If
1332 * this function fails it will mark the buffer with an error and
1333 * the IO should not be dispatched.
1334 */
1335 if (bp->b_ops) {
1336 bp->b_ops->verify_write(bp);
1337 if (bp->b_error) {
1338 xfs_force_shutdown(bp->b_target->bt_mount,
1339 SHUTDOWN_CORRUPT_INCORE);
1340 return;
1341 }
1342 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1343 struct xfs_mount *mp = bp->b_target->bt_mount;
1344
1345 /*
1346 * non-crc filesystems don't attach verifiers during
1347 * log recovery, so don't warn for such filesystems.
1348 */
1349 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1350 xfs_warn(mp,
1351 "%s: no ops on block 0x%llx/0x%x",
1352 __func__, bp->b_bn, bp->b_length);
1353 xfs_hex_dump(bp->b_addr, 64);
1354 dump_stack();
1355 }
1356 }
1357 } else if (bp->b_flags & XBF_READ_AHEAD) {
1358 op = REQ_OP_READ;
1359 op_flags = REQ_RAHEAD;
1360 } else {
1361 op = REQ_OP_READ;
1362 }
1363
1364 /* we only use the buffer cache for meta-data */
1365 op_flags |= REQ_META;
1366
1367 /*
1368 * Walk all the vectors issuing IO on them. Set up the initial offset
1369 * into the buffer and the desired IO size before we start -
1370 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1371 * subsequent call.
1372 */
1373 offset = bp->b_offset;
1374 size = BBTOB(bp->b_io_length);
1375 blk_start_plug(&plug);
1376 for (i = 0; i < bp->b_map_count; i++) {
1377 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1378 if (bp->b_error)
1379 break;
1380 if (size <= 0)
1381 break; /* all done */
1382 }
1383 blk_finish_plug(&plug);
1384 }
1385
1386 /*
1387 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1388 * the current reference to the IO. It is not safe to reference the buffer after
1389 * a call to this function unless the caller holds an additional reference
1390 * itself.
1391 */
1392 void
xfs_buf_submit(struct xfs_buf * bp)1393 xfs_buf_submit(
1394 struct xfs_buf *bp)
1395 {
1396 trace_xfs_buf_submit(bp, _RET_IP_);
1397
1398 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1399 ASSERT(bp->b_flags & XBF_ASYNC);
1400
1401 /* on shutdown we stale and complete the buffer immediately */
1402 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1403 xfs_buf_ioerror(bp, -EIO);
1404 bp->b_flags &= ~XBF_DONE;
1405 xfs_buf_stale(bp);
1406 xfs_buf_ioend(bp);
1407 return;
1408 }
1409
1410 if (bp->b_flags & XBF_WRITE)
1411 xfs_buf_wait_unpin(bp);
1412
1413 /* clear the internal error state to avoid spurious errors */
1414 bp->b_io_error = 0;
1415
1416 /*
1417 * The caller's reference is released during I/O completion.
1418 * This occurs some time after the last b_io_remaining reference is
1419 * released, so after we drop our Io reference we have to have some
1420 * other reference to ensure the buffer doesn't go away from underneath
1421 * us. Take a direct reference to ensure we have safe access to the
1422 * buffer until we are finished with it.
1423 */
1424 xfs_buf_hold(bp);
1425
1426 /*
1427 * Set the count to 1 initially, this will stop an I/O completion
1428 * callout which happens before we have started all the I/O from calling
1429 * xfs_buf_ioend too early.
1430 */
1431 atomic_set(&bp->b_io_remaining, 1);
1432 xfs_buf_ioacct_inc(bp);
1433 _xfs_buf_ioapply(bp);
1434
1435 /*
1436 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1437 * reference we took above. If we drop it to zero, run completion so
1438 * that we don't return to the caller with completion still pending.
1439 */
1440 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1441 if (bp->b_error)
1442 xfs_buf_ioend(bp);
1443 else
1444 xfs_buf_ioend_async(bp);
1445 }
1446
1447 xfs_buf_rele(bp);
1448 /* Note: it is not safe to reference bp now we've dropped our ref */
1449 }
1450
1451 /*
1452 * Synchronous buffer IO submission path, read or write.
1453 */
1454 int
xfs_buf_submit_wait(struct xfs_buf * bp)1455 xfs_buf_submit_wait(
1456 struct xfs_buf *bp)
1457 {
1458 int error;
1459
1460 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1461
1462 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1463
1464 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1465 xfs_buf_ioerror(bp, -EIO);
1466 xfs_buf_stale(bp);
1467 bp->b_flags &= ~XBF_DONE;
1468 return -EIO;
1469 }
1470
1471 if (bp->b_flags & XBF_WRITE)
1472 xfs_buf_wait_unpin(bp);
1473
1474 /* clear the internal error state to avoid spurious errors */
1475 bp->b_io_error = 0;
1476
1477 /*
1478 * For synchronous IO, the IO does not inherit the submitters reference
1479 * count, nor the buffer lock. Hence we cannot release the reference we
1480 * are about to take until we've waited for all IO completion to occur,
1481 * including any xfs_buf_ioend_async() work that may be pending.
1482 */
1483 xfs_buf_hold(bp);
1484
1485 /*
1486 * Set the count to 1 initially, this will stop an I/O completion
1487 * callout which happens before we have started all the I/O from calling
1488 * xfs_buf_ioend too early.
1489 */
1490 atomic_set(&bp->b_io_remaining, 1);
1491 _xfs_buf_ioapply(bp);
1492
1493 /*
1494 * make sure we run completion synchronously if it raced with us and is
1495 * already complete.
1496 */
1497 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1498 xfs_buf_ioend(bp);
1499
1500 /* wait for completion before gathering the error from the buffer */
1501 trace_xfs_buf_iowait(bp, _RET_IP_);
1502 wait_for_completion(&bp->b_iowait);
1503 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1504 error = bp->b_error;
1505
1506 /*
1507 * all done now, we can release the hold that keeps the buffer
1508 * referenced for the entire IO.
1509 */
1510 xfs_buf_rele(bp);
1511 return error;
1512 }
1513
1514 void *
xfs_buf_offset(struct xfs_buf * bp,size_t offset)1515 xfs_buf_offset(
1516 struct xfs_buf *bp,
1517 size_t offset)
1518 {
1519 struct page *page;
1520
1521 if (bp->b_addr)
1522 return bp->b_addr + offset;
1523
1524 offset += bp->b_offset;
1525 page = bp->b_pages[offset >> PAGE_SHIFT];
1526 return page_address(page) + (offset & (PAGE_SIZE-1));
1527 }
1528
1529 /*
1530 * Move data into or out of a buffer.
1531 */
1532 void
xfs_buf_iomove(xfs_buf_t * bp,size_t boff,size_t bsize,void * data,xfs_buf_rw_t mode)1533 xfs_buf_iomove(
1534 xfs_buf_t *bp, /* buffer to process */
1535 size_t boff, /* starting buffer offset */
1536 size_t bsize, /* length to copy */
1537 void *data, /* data address */
1538 xfs_buf_rw_t mode) /* read/write/zero flag */
1539 {
1540 size_t bend;
1541
1542 bend = boff + bsize;
1543 while (boff < bend) {
1544 struct page *page;
1545 int page_index, page_offset, csize;
1546
1547 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1548 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1549 page = bp->b_pages[page_index];
1550 csize = min_t(size_t, PAGE_SIZE - page_offset,
1551 BBTOB(bp->b_io_length) - boff);
1552
1553 ASSERT((csize + page_offset) <= PAGE_SIZE);
1554
1555 switch (mode) {
1556 case XBRW_ZERO:
1557 memset(page_address(page) + page_offset, 0, csize);
1558 break;
1559 case XBRW_READ:
1560 memcpy(data, page_address(page) + page_offset, csize);
1561 break;
1562 case XBRW_WRITE:
1563 memcpy(page_address(page) + page_offset, data, csize);
1564 }
1565
1566 boff += csize;
1567 data += csize;
1568 }
1569 }
1570
1571 /*
1572 * Handling of buffer targets (buftargs).
1573 */
1574
1575 /*
1576 * Wait for any bufs with callbacks that have been submitted but have not yet
1577 * returned. These buffers will have an elevated hold count, so wait on those
1578 * while freeing all the buffers only held by the LRU.
1579 */
1580 static enum lru_status
xfs_buftarg_wait_rele(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1581 xfs_buftarg_wait_rele(
1582 struct list_head *item,
1583 struct list_lru_one *lru,
1584 spinlock_t *lru_lock,
1585 void *arg)
1586
1587 {
1588 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1589 struct list_head *dispose = arg;
1590
1591 if (atomic_read(&bp->b_hold) > 1) {
1592 /* need to wait, so skip it this pass */
1593 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1594 return LRU_SKIP;
1595 }
1596 if (!spin_trylock(&bp->b_lock))
1597 return LRU_SKIP;
1598
1599 /*
1600 * clear the LRU reference count so the buffer doesn't get
1601 * ignored in xfs_buf_rele().
1602 */
1603 atomic_set(&bp->b_lru_ref, 0);
1604 bp->b_state |= XFS_BSTATE_DISPOSE;
1605 list_lru_isolate_move(lru, item, dispose);
1606 spin_unlock(&bp->b_lock);
1607 return LRU_REMOVED;
1608 }
1609
1610 void
xfs_wait_buftarg(struct xfs_buftarg * btp)1611 xfs_wait_buftarg(
1612 struct xfs_buftarg *btp)
1613 {
1614 LIST_HEAD(dispose);
1615 int loop = 0;
1616
1617 /*
1618 * First wait on the buftarg I/O count for all in-flight buffers to be
1619 * released. This is critical as new buffers do not make the LRU until
1620 * they are released.
1621 *
1622 * Next, flush the buffer workqueue to ensure all completion processing
1623 * has finished. Just waiting on buffer locks is not sufficient for
1624 * async IO as the reference count held over IO is not released until
1625 * after the buffer lock is dropped. Hence we need to ensure here that
1626 * all reference counts have been dropped before we start walking the
1627 * LRU list.
1628 */
1629 while (percpu_counter_sum(&btp->bt_io_count))
1630 delay(100);
1631 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1632
1633 /* loop until there is nothing left on the lru list. */
1634 while (list_lru_count(&btp->bt_lru)) {
1635 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1636 &dispose, LONG_MAX);
1637
1638 while (!list_empty(&dispose)) {
1639 struct xfs_buf *bp;
1640 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1641 list_del_init(&bp->b_lru);
1642 if (bp->b_flags & XBF_WRITE_FAIL) {
1643 xfs_alert(btp->bt_mount,
1644 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1645 (long long)bp->b_bn);
1646 xfs_alert(btp->bt_mount,
1647 "Please run xfs_repair to determine the extent of the problem.");
1648 }
1649 xfs_buf_rele(bp);
1650 }
1651 if (loop++ != 0)
1652 delay(100);
1653 }
1654 }
1655
1656 static enum lru_status
xfs_buftarg_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1657 xfs_buftarg_isolate(
1658 struct list_head *item,
1659 struct list_lru_one *lru,
1660 spinlock_t *lru_lock,
1661 void *arg)
1662 {
1663 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1664 struct list_head *dispose = arg;
1665
1666 /*
1667 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1668 * If we fail to get the lock, just skip it.
1669 */
1670 if (!spin_trylock(&bp->b_lock))
1671 return LRU_SKIP;
1672 /*
1673 * Decrement the b_lru_ref count unless the value is already
1674 * zero. If the value is already zero, we need to reclaim the
1675 * buffer, otherwise it gets another trip through the LRU.
1676 */
1677 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1678 spin_unlock(&bp->b_lock);
1679 return LRU_ROTATE;
1680 }
1681
1682 bp->b_state |= XFS_BSTATE_DISPOSE;
1683 list_lru_isolate_move(lru, item, dispose);
1684 spin_unlock(&bp->b_lock);
1685 return LRU_REMOVED;
1686 }
1687
1688 static unsigned long
xfs_buftarg_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1689 xfs_buftarg_shrink_scan(
1690 struct shrinker *shrink,
1691 struct shrink_control *sc)
1692 {
1693 struct xfs_buftarg *btp = container_of(shrink,
1694 struct xfs_buftarg, bt_shrinker);
1695 LIST_HEAD(dispose);
1696 unsigned long freed;
1697
1698 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1699 xfs_buftarg_isolate, &dispose);
1700
1701 while (!list_empty(&dispose)) {
1702 struct xfs_buf *bp;
1703 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1704 list_del_init(&bp->b_lru);
1705 xfs_buf_rele(bp);
1706 }
1707
1708 return freed;
1709 }
1710
1711 static unsigned long
xfs_buftarg_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1712 xfs_buftarg_shrink_count(
1713 struct shrinker *shrink,
1714 struct shrink_control *sc)
1715 {
1716 struct xfs_buftarg *btp = container_of(shrink,
1717 struct xfs_buftarg, bt_shrinker);
1718 return list_lru_shrink_count(&btp->bt_lru, sc);
1719 }
1720
1721 void
xfs_free_buftarg(struct xfs_mount * mp,struct xfs_buftarg * btp)1722 xfs_free_buftarg(
1723 struct xfs_mount *mp,
1724 struct xfs_buftarg *btp)
1725 {
1726 unregister_shrinker(&btp->bt_shrinker);
1727 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1728 percpu_counter_destroy(&btp->bt_io_count);
1729 list_lru_destroy(&btp->bt_lru);
1730
1731 if (mp->m_flags & XFS_MOUNT_BARRIER)
1732 xfs_blkdev_issue_flush(btp);
1733
1734 kmem_free(btp);
1735 }
1736
1737 int
xfs_setsize_buftarg(xfs_buftarg_t * btp,unsigned int sectorsize)1738 xfs_setsize_buftarg(
1739 xfs_buftarg_t *btp,
1740 unsigned int sectorsize)
1741 {
1742 /* Set up metadata sector size info */
1743 btp->bt_meta_sectorsize = sectorsize;
1744 btp->bt_meta_sectormask = sectorsize - 1;
1745
1746 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1747 xfs_warn(btp->bt_mount,
1748 "Cannot set_blocksize to %u on device %pg",
1749 sectorsize, btp->bt_bdev);
1750 return -EINVAL;
1751 }
1752
1753 /* Set up device logical sector size mask */
1754 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1755 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1756
1757 return 0;
1758 }
1759
1760 /*
1761 * When allocating the initial buffer target we have not yet
1762 * read in the superblock, so don't know what sized sectors
1763 * are being used at this early stage. Play safe.
1764 */
1765 STATIC int
xfs_setsize_buftarg_early(xfs_buftarg_t * btp,struct block_device * bdev)1766 xfs_setsize_buftarg_early(
1767 xfs_buftarg_t *btp,
1768 struct block_device *bdev)
1769 {
1770 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1771 }
1772
1773 xfs_buftarg_t *
xfs_alloc_buftarg(struct xfs_mount * mp,struct block_device * bdev)1774 xfs_alloc_buftarg(
1775 struct xfs_mount *mp,
1776 struct block_device *bdev)
1777 {
1778 xfs_buftarg_t *btp;
1779
1780 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1781
1782 btp->bt_mount = mp;
1783 btp->bt_dev = bdev->bd_dev;
1784 btp->bt_bdev = bdev;
1785 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1786
1787 if (xfs_setsize_buftarg_early(btp, bdev))
1788 goto error_free;
1789
1790 if (list_lru_init(&btp->bt_lru))
1791 goto error_free;
1792
1793 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1794 goto error_lru;
1795
1796 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1797 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1798 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1799 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1800 if (register_shrinker(&btp->bt_shrinker))
1801 goto error_pcpu;
1802 return btp;
1803
1804 error_pcpu:
1805 percpu_counter_destroy(&btp->bt_io_count);
1806 error_lru:
1807 list_lru_destroy(&btp->bt_lru);
1808 error_free:
1809 kmem_free(btp);
1810 return NULL;
1811 }
1812
1813 /*
1814 * Cancel a delayed write list.
1815 *
1816 * Remove each buffer from the list, clear the delwri queue flag and drop the
1817 * associated buffer reference.
1818 */
1819 void
xfs_buf_delwri_cancel(struct list_head * list)1820 xfs_buf_delwri_cancel(
1821 struct list_head *list)
1822 {
1823 struct xfs_buf *bp;
1824
1825 while (!list_empty(list)) {
1826 bp = list_first_entry(list, struct xfs_buf, b_list);
1827
1828 xfs_buf_lock(bp);
1829 bp->b_flags &= ~_XBF_DELWRI_Q;
1830 list_del_init(&bp->b_list);
1831 xfs_buf_relse(bp);
1832 }
1833 }
1834
1835 /*
1836 * Add a buffer to the delayed write list.
1837 *
1838 * This queues a buffer for writeout if it hasn't already been. Note that
1839 * neither this routine nor the buffer list submission functions perform
1840 * any internal synchronization. It is expected that the lists are thread-local
1841 * to the callers.
1842 *
1843 * Returns true if we queued up the buffer, or false if it already had
1844 * been on the buffer list.
1845 */
1846 bool
xfs_buf_delwri_queue(struct xfs_buf * bp,struct list_head * list)1847 xfs_buf_delwri_queue(
1848 struct xfs_buf *bp,
1849 struct list_head *list)
1850 {
1851 ASSERT(xfs_buf_islocked(bp));
1852 ASSERT(!(bp->b_flags & XBF_READ));
1853
1854 /*
1855 * If the buffer is already marked delwri it already is queued up
1856 * by someone else for imediate writeout. Just ignore it in that
1857 * case.
1858 */
1859 if (bp->b_flags & _XBF_DELWRI_Q) {
1860 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1861 return false;
1862 }
1863
1864 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1865
1866 /*
1867 * If a buffer gets written out synchronously or marked stale while it
1868 * is on a delwri list we lazily remove it. To do this, the other party
1869 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1870 * It remains referenced and on the list. In a rare corner case it
1871 * might get readded to a delwri list after the synchronous writeout, in
1872 * which case we need just need to re-add the flag here.
1873 */
1874 bp->b_flags |= _XBF_DELWRI_Q;
1875 if (list_empty(&bp->b_list)) {
1876 atomic_inc(&bp->b_hold);
1877 list_add_tail(&bp->b_list, list);
1878 }
1879
1880 return true;
1881 }
1882
1883 /*
1884 * Compare function is more complex than it needs to be because
1885 * the return value is only 32 bits and we are doing comparisons
1886 * on 64 bit values
1887 */
1888 static int
xfs_buf_cmp(void * priv,struct list_head * a,struct list_head * b)1889 xfs_buf_cmp(
1890 void *priv,
1891 struct list_head *a,
1892 struct list_head *b)
1893 {
1894 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1895 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1896 xfs_daddr_t diff;
1897
1898 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1899 if (diff < 0)
1900 return -1;
1901 if (diff > 0)
1902 return 1;
1903 return 0;
1904 }
1905
1906 /*
1907 * submit buffers for write.
1908 *
1909 * When we have a large buffer list, we do not want to hold all the buffers
1910 * locked while we block on the request queue waiting for IO dispatch. To avoid
1911 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1912 * the lock hold times for lists which may contain thousands of objects.
1913 *
1914 * To do this, we sort the buffer list before we walk the list to lock and
1915 * submit buffers, and we plug and unplug around each group of buffers we
1916 * submit.
1917 */
1918 static int
xfs_buf_delwri_submit_buffers(struct list_head * buffer_list,struct list_head * wait_list)1919 xfs_buf_delwri_submit_buffers(
1920 struct list_head *buffer_list,
1921 struct list_head *wait_list)
1922 {
1923 struct xfs_buf *bp, *n;
1924 LIST_HEAD (submit_list);
1925 int pinned = 0;
1926 struct blk_plug plug;
1927
1928 list_sort(NULL, buffer_list, xfs_buf_cmp);
1929
1930 blk_start_plug(&plug);
1931 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1932 if (!wait_list) {
1933 if (xfs_buf_ispinned(bp)) {
1934 pinned++;
1935 continue;
1936 }
1937 if (!xfs_buf_trylock(bp))
1938 continue;
1939 } else {
1940 xfs_buf_lock(bp);
1941 }
1942
1943 /*
1944 * Someone else might have written the buffer synchronously or
1945 * marked it stale in the meantime. In that case only the
1946 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1947 * reference and remove it from the list here.
1948 */
1949 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1950 list_del_init(&bp->b_list);
1951 xfs_buf_relse(bp);
1952 continue;
1953 }
1954
1955 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1956
1957 /*
1958 * We do all IO submission async. This means if we need
1959 * to wait for IO completion we need to take an extra
1960 * reference so the buffer is still valid on the other
1961 * side. We need to move the buffer onto the io_list
1962 * at this point so the caller can still access it.
1963 */
1964 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1965 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1966 if (wait_list) {
1967 xfs_buf_hold(bp);
1968 list_move_tail(&bp->b_list, wait_list);
1969 } else
1970 list_del_init(&bp->b_list);
1971
1972 xfs_buf_submit(bp);
1973 }
1974 blk_finish_plug(&plug);
1975
1976 return pinned;
1977 }
1978
1979 /*
1980 * Write out a buffer list asynchronously.
1981 *
1982 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1983 * out and not wait for I/O completion on any of the buffers. This interface
1984 * is only safely useable for callers that can track I/O completion by higher
1985 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1986 * function.
1987 */
1988 int
xfs_buf_delwri_submit_nowait(struct list_head * buffer_list)1989 xfs_buf_delwri_submit_nowait(
1990 struct list_head *buffer_list)
1991 {
1992 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1993 }
1994
1995 /*
1996 * Write out a buffer list synchronously.
1997 *
1998 * This will take the @buffer_list, write all buffers out and wait for I/O
1999 * completion on all of the buffers. @buffer_list is consumed by the function,
2000 * so callers must have some other way of tracking buffers if they require such
2001 * functionality.
2002 */
2003 int
xfs_buf_delwri_submit(struct list_head * buffer_list)2004 xfs_buf_delwri_submit(
2005 struct list_head *buffer_list)
2006 {
2007 LIST_HEAD (wait_list);
2008 int error = 0, error2;
2009 struct xfs_buf *bp;
2010
2011 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2012
2013 /* Wait for IO to complete. */
2014 while (!list_empty(&wait_list)) {
2015 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2016
2017 list_del_init(&bp->b_list);
2018
2019 /* locking the buffer will wait for async IO completion. */
2020 xfs_buf_lock(bp);
2021 error2 = bp->b_error;
2022 xfs_buf_relse(bp);
2023 if (!error)
2024 error = error2;
2025 }
2026
2027 return error;
2028 }
2029
2030 /*
2031 * Push a single buffer on a delwri queue.
2032 *
2033 * The purpose of this function is to submit a single buffer of a delwri queue
2034 * and return with the buffer still on the original queue. The waiting delwri
2035 * buffer submission infrastructure guarantees transfer of the delwri queue
2036 * buffer reference to a temporary wait list. We reuse this infrastructure to
2037 * transfer the buffer back to the original queue.
2038 *
2039 * Note the buffer transitions from the queued state, to the submitted and wait
2040 * listed state and back to the queued state during this call. The buffer
2041 * locking and queue management logic between _delwri_pushbuf() and
2042 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2043 * before returning.
2044 */
2045 int
xfs_buf_delwri_pushbuf(struct xfs_buf * bp,struct list_head * buffer_list)2046 xfs_buf_delwri_pushbuf(
2047 struct xfs_buf *bp,
2048 struct list_head *buffer_list)
2049 {
2050 LIST_HEAD (submit_list);
2051 int error;
2052
2053 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2054
2055 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2056
2057 /*
2058 * Isolate the buffer to a new local list so we can submit it for I/O
2059 * independently from the rest of the original list.
2060 */
2061 xfs_buf_lock(bp);
2062 list_move(&bp->b_list, &submit_list);
2063 xfs_buf_unlock(bp);
2064
2065 /*
2066 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2067 * the buffer on the wait list with an associated reference. Rather than
2068 * bounce the buffer from a local wait list back to the original list
2069 * after I/O completion, reuse the original list as the wait list.
2070 */
2071 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2072
2073 /*
2074 * The buffer is now under I/O and wait listed as during typical delwri
2075 * submission. Lock the buffer to wait for I/O completion. Rather than
2076 * remove the buffer from the wait list and release the reference, we
2077 * want to return with the buffer queued to the original list. The
2078 * buffer already sits on the original list with a wait list reference,
2079 * however. If we let the queue inherit that wait list reference, all we
2080 * need to do is reset the DELWRI_Q flag.
2081 */
2082 xfs_buf_lock(bp);
2083 error = bp->b_error;
2084 bp->b_flags |= _XBF_DELWRI_Q;
2085 xfs_buf_unlock(bp);
2086
2087 return error;
2088 }
2089
2090 int __init
xfs_buf_init(void)2091 xfs_buf_init(void)
2092 {
2093 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2094 KM_ZONE_HWALIGN, NULL);
2095 if (!xfs_buf_zone)
2096 goto out;
2097
2098 return 0;
2099
2100 out:
2101 return -ENOMEM;
2102 }
2103
2104 void
xfs_buf_terminate(void)2105 xfs_buf_terminate(void)
2106 {
2107 kmem_zone_destroy(xfs_buf_zone);
2108 }
2109