• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
36 
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
40 #include "xfs_sb.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44 
45 static kmem_zone_t *xfs_buf_zone;
46 
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp)	do { } while (0)
53 # define XB_CLEAR_OWNER(bp)	do { } while (0)
54 # define XB_GET_OWNER(bp)	do { } while (0)
55 #endif
56 
57 #define xb_to_gfp(flags) \
58 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
59 
60 
61 static inline int
xfs_buf_is_vmapped(struct xfs_buf * bp)62 xfs_buf_is_vmapped(
63 	struct xfs_buf	*bp)
64 {
65 	/*
66 	 * Return true if the buffer is vmapped.
67 	 *
68 	 * b_addr is null if the buffer is not mapped, but the code is clever
69 	 * enough to know it doesn't have to map a single page, so the check has
70 	 * to be both for b_addr and bp->b_page_count > 1.
71 	 */
72 	return bp->b_addr && bp->b_page_count > 1;
73 }
74 
75 static inline int
xfs_buf_vmap_len(struct xfs_buf * bp)76 xfs_buf_vmap_len(
77 	struct xfs_buf	*bp)
78 {
79 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80 }
81 
82 /*
83  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84  * this buffer. The count is incremented once per buffer (per hold cycle)
85  * because the corresponding decrement is deferred to buffer release. Buffers
86  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87  * tracking adds unnecessary overhead. This is used for sychronization purposes
88  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
89  * in-flight buffers.
90  *
91  * Buffers that are never released (e.g., superblock, iclog buffers) must set
92  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93  * never reaches zero and unmount hangs indefinitely.
94  */
95 static inline void
xfs_buf_ioacct_inc(struct xfs_buf * bp)96 xfs_buf_ioacct_inc(
97 	struct xfs_buf	*bp)
98 {
99 	if (bp->b_flags & XBF_NO_IOACCT)
100 		return;
101 
102 	ASSERT(bp->b_flags & XBF_ASYNC);
103 	spin_lock(&bp->b_lock);
104 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
105 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
106 		percpu_counter_inc(&bp->b_target->bt_io_count);
107 	}
108 	spin_unlock(&bp->b_lock);
109 }
110 
111 /*
112  * Clear the in-flight state on a buffer about to be released to the LRU or
113  * freed and unaccount from the buftarg.
114  */
115 static inline void
__xfs_buf_ioacct_dec(struct xfs_buf * bp)116 __xfs_buf_ioacct_dec(
117 	struct xfs_buf	*bp)
118 {
119 	lockdep_assert_held(&bp->b_lock);
120 
121 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
122 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
123 		percpu_counter_dec(&bp->b_target->bt_io_count);
124 	}
125 }
126 
127 static inline void
xfs_buf_ioacct_dec(struct xfs_buf * bp)128 xfs_buf_ioacct_dec(
129 	struct xfs_buf	*bp)
130 {
131 	spin_lock(&bp->b_lock);
132 	__xfs_buf_ioacct_dec(bp);
133 	spin_unlock(&bp->b_lock);
134 }
135 
136 /*
137  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
138  * b_lru_ref count so that the buffer is freed immediately when the buffer
139  * reference count falls to zero. If the buffer is already on the LRU, we need
140  * to remove the reference that LRU holds on the buffer.
141  *
142  * This prevents build-up of stale buffers on the LRU.
143  */
144 void
xfs_buf_stale(struct xfs_buf * bp)145 xfs_buf_stale(
146 	struct xfs_buf	*bp)
147 {
148 	ASSERT(xfs_buf_islocked(bp));
149 
150 	bp->b_flags |= XBF_STALE;
151 
152 	/*
153 	 * Clear the delwri status so that a delwri queue walker will not
154 	 * flush this buffer to disk now that it is stale. The delwri queue has
155 	 * a reference to the buffer, so this is safe to do.
156 	 */
157 	bp->b_flags &= ~_XBF_DELWRI_Q;
158 
159 	/*
160 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
161 	 * could reset b_flags. There is no guarantee that the buffer is
162 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
163 	 * status now to preserve accounting consistency.
164 	 */
165 	spin_lock(&bp->b_lock);
166 	__xfs_buf_ioacct_dec(bp);
167 
168 	atomic_set(&bp->b_lru_ref, 0);
169 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
170 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
171 		atomic_dec(&bp->b_hold);
172 
173 	ASSERT(atomic_read(&bp->b_hold) >= 1);
174 	spin_unlock(&bp->b_lock);
175 }
176 
177 static int
xfs_buf_get_maps(struct xfs_buf * bp,int map_count)178 xfs_buf_get_maps(
179 	struct xfs_buf		*bp,
180 	int			map_count)
181 {
182 	ASSERT(bp->b_maps == NULL);
183 	bp->b_map_count = map_count;
184 
185 	if (map_count == 1) {
186 		bp->b_maps = &bp->__b_map;
187 		return 0;
188 	}
189 
190 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
191 				KM_NOFS);
192 	if (!bp->b_maps)
193 		return -ENOMEM;
194 	return 0;
195 }
196 
197 /*
198  *	Frees b_pages if it was allocated.
199  */
200 static void
xfs_buf_free_maps(struct xfs_buf * bp)201 xfs_buf_free_maps(
202 	struct xfs_buf	*bp)
203 {
204 	if (bp->b_maps != &bp->__b_map) {
205 		kmem_free(bp->b_maps);
206 		bp->b_maps = NULL;
207 	}
208 }
209 
210 struct xfs_buf *
_xfs_buf_alloc(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags)211 _xfs_buf_alloc(
212 	struct xfs_buftarg	*target,
213 	struct xfs_buf_map	*map,
214 	int			nmaps,
215 	xfs_buf_flags_t		flags)
216 {
217 	struct xfs_buf		*bp;
218 	int			error;
219 	int			i;
220 
221 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
222 	if (unlikely(!bp))
223 		return NULL;
224 
225 	/*
226 	 * We don't want certain flags to appear in b_flags unless they are
227 	 * specifically set by later operations on the buffer.
228 	 */
229 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
230 
231 	atomic_set(&bp->b_hold, 1);
232 	atomic_set(&bp->b_lru_ref, 1);
233 	init_completion(&bp->b_iowait);
234 	INIT_LIST_HEAD(&bp->b_lru);
235 	INIT_LIST_HEAD(&bp->b_list);
236 	RB_CLEAR_NODE(&bp->b_rbnode);
237 	sema_init(&bp->b_sema, 0); /* held, no waiters */
238 	spin_lock_init(&bp->b_lock);
239 	XB_SET_OWNER(bp);
240 	bp->b_target = target;
241 	bp->b_flags = flags;
242 
243 	/*
244 	 * Set length and io_length to the same value initially.
245 	 * I/O routines should use io_length, which will be the same in
246 	 * most cases but may be reset (e.g. XFS recovery).
247 	 */
248 	error = xfs_buf_get_maps(bp, nmaps);
249 	if (error)  {
250 		kmem_zone_free(xfs_buf_zone, bp);
251 		return NULL;
252 	}
253 
254 	bp->b_bn = map[0].bm_bn;
255 	bp->b_length = 0;
256 	for (i = 0; i < nmaps; i++) {
257 		bp->b_maps[i].bm_bn = map[i].bm_bn;
258 		bp->b_maps[i].bm_len = map[i].bm_len;
259 		bp->b_length += map[i].bm_len;
260 	}
261 	bp->b_io_length = bp->b_length;
262 
263 	atomic_set(&bp->b_pin_count, 0);
264 	init_waitqueue_head(&bp->b_waiters);
265 
266 	XFS_STATS_INC(target->bt_mount, xb_create);
267 	trace_xfs_buf_init(bp, _RET_IP_);
268 
269 	return bp;
270 }
271 
272 /*
273  *	Allocate a page array capable of holding a specified number
274  *	of pages, and point the page buf at it.
275  */
276 STATIC int
_xfs_buf_get_pages(xfs_buf_t * bp,int page_count)277 _xfs_buf_get_pages(
278 	xfs_buf_t		*bp,
279 	int			page_count)
280 {
281 	/* Make sure that we have a page list */
282 	if (bp->b_pages == NULL) {
283 		bp->b_page_count = page_count;
284 		if (page_count <= XB_PAGES) {
285 			bp->b_pages = bp->b_page_array;
286 		} else {
287 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
288 						 page_count, KM_NOFS);
289 			if (bp->b_pages == NULL)
290 				return -ENOMEM;
291 		}
292 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
293 	}
294 	return 0;
295 }
296 
297 /*
298  *	Frees b_pages if it was allocated.
299  */
300 STATIC void
_xfs_buf_free_pages(xfs_buf_t * bp)301 _xfs_buf_free_pages(
302 	xfs_buf_t	*bp)
303 {
304 	if (bp->b_pages != bp->b_page_array) {
305 		kmem_free(bp->b_pages);
306 		bp->b_pages = NULL;
307 	}
308 }
309 
310 /*
311  *	Releases the specified buffer.
312  *
313  * 	The modification state of any associated pages is left unchanged.
314  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
315  * 	hashed and refcounted buffers
316  */
317 void
xfs_buf_free(xfs_buf_t * bp)318 xfs_buf_free(
319 	xfs_buf_t		*bp)
320 {
321 	trace_xfs_buf_free(bp, _RET_IP_);
322 
323 	ASSERT(list_empty(&bp->b_lru));
324 
325 	if (bp->b_flags & _XBF_PAGES) {
326 		uint		i;
327 
328 		if (xfs_buf_is_vmapped(bp))
329 			vm_unmap_ram(bp->b_addr - bp->b_offset,
330 					bp->b_page_count);
331 
332 		for (i = 0; i < bp->b_page_count; i++) {
333 			struct page	*page = bp->b_pages[i];
334 
335 			__free_page(page);
336 		}
337 	} else if (bp->b_flags & _XBF_KMEM)
338 		kmem_free(bp->b_addr);
339 	_xfs_buf_free_pages(bp);
340 	xfs_buf_free_maps(bp);
341 	kmem_zone_free(xfs_buf_zone, bp);
342 }
343 
344 /*
345  * Allocates all the pages for buffer in question and builds it's page list.
346  */
347 STATIC int
xfs_buf_allocate_memory(xfs_buf_t * bp,uint flags)348 xfs_buf_allocate_memory(
349 	xfs_buf_t		*bp,
350 	uint			flags)
351 {
352 	size_t			size;
353 	size_t			nbytes, offset;
354 	gfp_t			gfp_mask = xb_to_gfp(flags);
355 	unsigned short		page_count, i;
356 	xfs_off_t		start, end;
357 	int			error;
358 
359 	/*
360 	 * for buffers that are contained within a single page, just allocate
361 	 * the memory from the heap - there's no need for the complexity of
362 	 * page arrays to keep allocation down to order 0.
363 	 */
364 	size = BBTOB(bp->b_length);
365 	if (size < PAGE_SIZE) {
366 		bp->b_addr = kmem_alloc(size, KM_NOFS);
367 		if (!bp->b_addr) {
368 			/* low memory - use alloc_page loop instead */
369 			goto use_alloc_page;
370 		}
371 
372 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
373 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
374 			/* b_addr spans two pages - use alloc_page instead */
375 			kmem_free(bp->b_addr);
376 			bp->b_addr = NULL;
377 			goto use_alloc_page;
378 		}
379 		bp->b_offset = offset_in_page(bp->b_addr);
380 		bp->b_pages = bp->b_page_array;
381 		bp->b_pages[0] = virt_to_page(bp->b_addr);
382 		bp->b_page_count = 1;
383 		bp->b_flags |= _XBF_KMEM;
384 		return 0;
385 	}
386 
387 use_alloc_page:
388 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
389 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
390 								>> PAGE_SHIFT;
391 	page_count = end - start;
392 	error = _xfs_buf_get_pages(bp, page_count);
393 	if (unlikely(error))
394 		return error;
395 
396 	offset = bp->b_offset;
397 	bp->b_flags |= _XBF_PAGES;
398 
399 	for (i = 0; i < bp->b_page_count; i++) {
400 		struct page	*page;
401 		uint		retries = 0;
402 retry:
403 		page = alloc_page(gfp_mask);
404 		if (unlikely(page == NULL)) {
405 			if (flags & XBF_READ_AHEAD) {
406 				bp->b_page_count = i;
407 				error = -ENOMEM;
408 				goto out_free_pages;
409 			}
410 
411 			/*
412 			 * This could deadlock.
413 			 *
414 			 * But until all the XFS lowlevel code is revamped to
415 			 * handle buffer allocation failures we can't do much.
416 			 */
417 			if (!(++retries % 100))
418 				xfs_err(NULL,
419 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
420 					current->comm, current->pid,
421 					__func__, gfp_mask);
422 
423 			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
424 			congestion_wait(BLK_RW_ASYNC, HZ/50);
425 			goto retry;
426 		}
427 
428 		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
429 
430 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
431 		size -= nbytes;
432 		bp->b_pages[i] = page;
433 		offset = 0;
434 	}
435 	return 0;
436 
437 out_free_pages:
438 	for (i = 0; i < bp->b_page_count; i++)
439 		__free_page(bp->b_pages[i]);
440 	bp->b_flags &= ~_XBF_PAGES;
441 	return error;
442 }
443 
444 /*
445  *	Map buffer into kernel address-space if necessary.
446  */
447 STATIC int
_xfs_buf_map_pages(xfs_buf_t * bp,uint flags)448 _xfs_buf_map_pages(
449 	xfs_buf_t		*bp,
450 	uint			flags)
451 {
452 	ASSERT(bp->b_flags & _XBF_PAGES);
453 	if (bp->b_page_count == 1) {
454 		/* A single page buffer is always mappable */
455 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
456 	} else if (flags & XBF_UNMAPPED) {
457 		bp->b_addr = NULL;
458 	} else {
459 		int retried = 0;
460 		unsigned noio_flag;
461 
462 		/*
463 		 * vm_map_ram() will allocate auxillary structures (e.g.
464 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
465 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
466 		 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
467 		 * memory reclaim re-entering the filesystem here and
468 		 * potentially deadlocking.
469 		 */
470 		noio_flag = memalloc_noio_save();
471 		do {
472 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
473 						-1, PAGE_KERNEL);
474 			if (bp->b_addr)
475 				break;
476 			vm_unmap_aliases();
477 		} while (retried++ <= 1);
478 		memalloc_noio_restore(noio_flag);
479 
480 		if (!bp->b_addr)
481 			return -ENOMEM;
482 		bp->b_addr += bp->b_offset;
483 	}
484 
485 	return 0;
486 }
487 
488 /*
489  *	Finding and Reading Buffers
490  */
491 
492 /*
493  *	Look up, and creates if absent, a lockable buffer for
494  *	a given range of an inode.  The buffer is returned
495  *	locked.	No I/O is implied by this call.
496  */
497 xfs_buf_t *
_xfs_buf_find(struct xfs_buftarg * btp,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,xfs_buf_t * new_bp)498 _xfs_buf_find(
499 	struct xfs_buftarg	*btp,
500 	struct xfs_buf_map	*map,
501 	int			nmaps,
502 	xfs_buf_flags_t		flags,
503 	xfs_buf_t		*new_bp)
504 {
505 	struct xfs_perag	*pag;
506 	struct rb_node		**rbp;
507 	struct rb_node		*parent;
508 	xfs_buf_t		*bp;
509 	xfs_daddr_t		blkno = map[0].bm_bn;
510 	xfs_daddr_t		eofs;
511 	int			numblks = 0;
512 	int			i;
513 
514 	for (i = 0; i < nmaps; i++)
515 		numblks += map[i].bm_len;
516 
517 	/* Check for IOs smaller than the sector size / not sector aligned */
518 	ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
519 	ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
520 
521 	/*
522 	 * Corrupted block numbers can get through to here, unfortunately, so we
523 	 * have to check that the buffer falls within the filesystem bounds.
524 	 */
525 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
526 	if (blkno < 0 || blkno >= eofs) {
527 		/*
528 		 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
529 		 * but none of the higher level infrastructure supports
530 		 * returning a specific error on buffer lookup failures.
531 		 */
532 		xfs_alert(btp->bt_mount,
533 			  "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
534 			  __func__, blkno, eofs);
535 		WARN_ON(1);
536 		return NULL;
537 	}
538 
539 	/* get tree root */
540 	pag = xfs_perag_get(btp->bt_mount,
541 				xfs_daddr_to_agno(btp->bt_mount, blkno));
542 
543 	/* walk tree */
544 	spin_lock(&pag->pag_buf_lock);
545 	rbp = &pag->pag_buf_tree.rb_node;
546 	parent = NULL;
547 	bp = NULL;
548 	while (*rbp) {
549 		parent = *rbp;
550 		bp = rb_entry(parent, struct xfs_buf, b_rbnode);
551 
552 		if (blkno < bp->b_bn)
553 			rbp = &(*rbp)->rb_left;
554 		else if (blkno > bp->b_bn)
555 			rbp = &(*rbp)->rb_right;
556 		else {
557 			/*
558 			 * found a block number match. If the range doesn't
559 			 * match, the only way this is allowed is if the buffer
560 			 * in the cache is stale and the transaction that made
561 			 * it stale has not yet committed. i.e. we are
562 			 * reallocating a busy extent. Skip this buffer and
563 			 * continue searching to the right for an exact match.
564 			 */
565 			if (bp->b_length != numblks) {
566 				ASSERT(bp->b_flags & XBF_STALE);
567 				rbp = &(*rbp)->rb_right;
568 				continue;
569 			}
570 			atomic_inc(&bp->b_hold);
571 			goto found;
572 		}
573 	}
574 
575 	/* No match found */
576 	if (new_bp) {
577 		rb_link_node(&new_bp->b_rbnode, parent, rbp);
578 		rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
579 		/* the buffer keeps the perag reference until it is freed */
580 		new_bp->b_pag = pag;
581 		spin_unlock(&pag->pag_buf_lock);
582 	} else {
583 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
584 		spin_unlock(&pag->pag_buf_lock);
585 		xfs_perag_put(pag);
586 	}
587 	return new_bp;
588 
589 found:
590 	spin_unlock(&pag->pag_buf_lock);
591 	xfs_perag_put(pag);
592 
593 	if (!xfs_buf_trylock(bp)) {
594 		if (flags & XBF_TRYLOCK) {
595 			xfs_buf_rele(bp);
596 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
597 			return NULL;
598 		}
599 		xfs_buf_lock(bp);
600 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
601 	}
602 
603 	/*
604 	 * if the buffer is stale, clear all the external state associated with
605 	 * it. We need to keep flags such as how we allocated the buffer memory
606 	 * intact here.
607 	 */
608 	if (bp->b_flags & XBF_STALE) {
609 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
610 		ASSERT(bp->b_iodone == NULL);
611 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
612 		bp->b_ops = NULL;
613 	}
614 
615 	trace_xfs_buf_find(bp, flags, _RET_IP_);
616 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
617 	return bp;
618 }
619 
620 /*
621  * Assembles a buffer covering the specified range. The code is optimised for
622  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
623  * more hits than misses.
624  */
625 struct xfs_buf *
xfs_buf_get_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags)626 xfs_buf_get_map(
627 	struct xfs_buftarg	*target,
628 	struct xfs_buf_map	*map,
629 	int			nmaps,
630 	xfs_buf_flags_t		flags)
631 {
632 	struct xfs_buf		*bp;
633 	struct xfs_buf		*new_bp;
634 	int			error = 0;
635 
636 	bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
637 	if (likely(bp))
638 		goto found;
639 
640 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
641 	if (unlikely(!new_bp))
642 		return NULL;
643 
644 	error = xfs_buf_allocate_memory(new_bp, flags);
645 	if (error) {
646 		xfs_buf_free(new_bp);
647 		return NULL;
648 	}
649 
650 	bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
651 	if (!bp) {
652 		xfs_buf_free(new_bp);
653 		return NULL;
654 	}
655 
656 	if (bp != new_bp)
657 		xfs_buf_free(new_bp);
658 
659 found:
660 	if (!bp->b_addr) {
661 		error = _xfs_buf_map_pages(bp, flags);
662 		if (unlikely(error)) {
663 			xfs_warn(target->bt_mount,
664 				"%s: failed to map pagesn", __func__);
665 			xfs_buf_relse(bp);
666 			return NULL;
667 		}
668 	}
669 
670 	/*
671 	 * Clear b_error if this is a lookup from a caller that doesn't expect
672 	 * valid data to be found in the buffer.
673 	 */
674 	if (!(flags & XBF_READ))
675 		xfs_buf_ioerror(bp, 0);
676 
677 	XFS_STATS_INC(target->bt_mount, xb_get);
678 	trace_xfs_buf_get(bp, flags, _RET_IP_);
679 	return bp;
680 }
681 
682 STATIC int
_xfs_buf_read(xfs_buf_t * bp,xfs_buf_flags_t flags)683 _xfs_buf_read(
684 	xfs_buf_t		*bp,
685 	xfs_buf_flags_t		flags)
686 {
687 	ASSERT(!(flags & XBF_WRITE));
688 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
689 
690 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
691 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
692 
693 	if (flags & XBF_ASYNC) {
694 		xfs_buf_submit(bp);
695 		return 0;
696 	}
697 	return xfs_buf_submit_wait(bp);
698 }
699 
700 xfs_buf_t *
xfs_buf_read_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,const struct xfs_buf_ops * ops)701 xfs_buf_read_map(
702 	struct xfs_buftarg	*target,
703 	struct xfs_buf_map	*map,
704 	int			nmaps,
705 	xfs_buf_flags_t		flags,
706 	const struct xfs_buf_ops *ops)
707 {
708 	struct xfs_buf		*bp;
709 
710 	flags |= XBF_READ;
711 
712 	bp = xfs_buf_get_map(target, map, nmaps, flags);
713 	if (bp) {
714 		trace_xfs_buf_read(bp, flags, _RET_IP_);
715 
716 		if (!(bp->b_flags & XBF_DONE)) {
717 			XFS_STATS_INC(target->bt_mount, xb_get_read);
718 			bp->b_ops = ops;
719 			_xfs_buf_read(bp, flags);
720 		} else if (flags & XBF_ASYNC) {
721 			/*
722 			 * Read ahead call which is already satisfied,
723 			 * drop the buffer
724 			 */
725 			xfs_buf_relse(bp);
726 			return NULL;
727 		} else {
728 			/* We do not want read in the flags */
729 			bp->b_flags &= ~XBF_READ;
730 		}
731 	}
732 
733 	return bp;
734 }
735 
736 /*
737  *	If we are not low on memory then do the readahead in a deadlock
738  *	safe manner.
739  */
740 void
xfs_buf_readahead_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,const struct xfs_buf_ops * ops)741 xfs_buf_readahead_map(
742 	struct xfs_buftarg	*target,
743 	struct xfs_buf_map	*map,
744 	int			nmaps,
745 	const struct xfs_buf_ops *ops)
746 {
747 	if (bdi_read_congested(target->bt_bdi))
748 		return;
749 
750 	xfs_buf_read_map(target, map, nmaps,
751 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
752 }
753 
754 /*
755  * Read an uncached buffer from disk. Allocates and returns a locked
756  * buffer containing the disk contents or nothing.
757  */
758 int
xfs_buf_read_uncached(struct xfs_buftarg * target,xfs_daddr_t daddr,size_t numblks,int flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)759 xfs_buf_read_uncached(
760 	struct xfs_buftarg	*target,
761 	xfs_daddr_t		daddr,
762 	size_t			numblks,
763 	int			flags,
764 	struct xfs_buf		**bpp,
765 	const struct xfs_buf_ops *ops)
766 {
767 	struct xfs_buf		*bp;
768 
769 	*bpp = NULL;
770 
771 	bp = xfs_buf_get_uncached(target, numblks, flags);
772 	if (!bp)
773 		return -ENOMEM;
774 
775 	/* set up the buffer for a read IO */
776 	ASSERT(bp->b_map_count == 1);
777 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
778 	bp->b_maps[0].bm_bn = daddr;
779 	bp->b_flags |= XBF_READ;
780 	bp->b_ops = ops;
781 
782 	xfs_buf_submit_wait(bp);
783 	if (bp->b_error) {
784 		int	error = bp->b_error;
785 		xfs_buf_relse(bp);
786 		return error;
787 	}
788 
789 	*bpp = bp;
790 	return 0;
791 }
792 
793 /*
794  * Return a buffer allocated as an empty buffer and associated to external
795  * memory via xfs_buf_associate_memory() back to it's empty state.
796  */
797 void
xfs_buf_set_empty(struct xfs_buf * bp,size_t numblks)798 xfs_buf_set_empty(
799 	struct xfs_buf		*bp,
800 	size_t			numblks)
801 {
802 	if (bp->b_pages)
803 		_xfs_buf_free_pages(bp);
804 
805 	bp->b_pages = NULL;
806 	bp->b_page_count = 0;
807 	bp->b_addr = NULL;
808 	bp->b_length = numblks;
809 	bp->b_io_length = numblks;
810 
811 	ASSERT(bp->b_map_count == 1);
812 	bp->b_bn = XFS_BUF_DADDR_NULL;
813 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
814 	bp->b_maps[0].bm_len = bp->b_length;
815 }
816 
817 static inline struct page *
mem_to_page(void * addr)818 mem_to_page(
819 	void			*addr)
820 {
821 	if ((!is_vmalloc_addr(addr))) {
822 		return virt_to_page(addr);
823 	} else {
824 		return vmalloc_to_page(addr);
825 	}
826 }
827 
828 int
xfs_buf_associate_memory(xfs_buf_t * bp,void * mem,size_t len)829 xfs_buf_associate_memory(
830 	xfs_buf_t		*bp,
831 	void			*mem,
832 	size_t			len)
833 {
834 	int			rval;
835 	int			i = 0;
836 	unsigned long		pageaddr;
837 	unsigned long		offset;
838 	size_t			buflen;
839 	int			page_count;
840 
841 	pageaddr = (unsigned long)mem & PAGE_MASK;
842 	offset = (unsigned long)mem - pageaddr;
843 	buflen = PAGE_ALIGN(len + offset);
844 	page_count = buflen >> PAGE_SHIFT;
845 
846 	/* Free any previous set of page pointers */
847 	if (bp->b_pages)
848 		_xfs_buf_free_pages(bp);
849 
850 	bp->b_pages = NULL;
851 	bp->b_addr = mem;
852 
853 	rval = _xfs_buf_get_pages(bp, page_count);
854 	if (rval)
855 		return rval;
856 
857 	bp->b_offset = offset;
858 
859 	for (i = 0; i < bp->b_page_count; i++) {
860 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
861 		pageaddr += PAGE_SIZE;
862 	}
863 
864 	bp->b_io_length = BTOBB(len);
865 	bp->b_length = BTOBB(buflen);
866 
867 	return 0;
868 }
869 
870 xfs_buf_t *
xfs_buf_get_uncached(struct xfs_buftarg * target,size_t numblks,int flags)871 xfs_buf_get_uncached(
872 	struct xfs_buftarg	*target,
873 	size_t			numblks,
874 	int			flags)
875 {
876 	unsigned long		page_count;
877 	int			error, i;
878 	struct xfs_buf		*bp;
879 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
880 
881 	/* flags might contain irrelevant bits, pass only what we care about */
882 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
883 	if (unlikely(bp == NULL))
884 		goto fail;
885 
886 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
887 	error = _xfs_buf_get_pages(bp, page_count);
888 	if (error)
889 		goto fail_free_buf;
890 
891 	for (i = 0; i < page_count; i++) {
892 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
893 		if (!bp->b_pages[i])
894 			goto fail_free_mem;
895 	}
896 	bp->b_flags |= _XBF_PAGES;
897 
898 	error = _xfs_buf_map_pages(bp, 0);
899 	if (unlikely(error)) {
900 		xfs_warn(target->bt_mount,
901 			"%s: failed to map pages", __func__);
902 		goto fail_free_mem;
903 	}
904 
905 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
906 	return bp;
907 
908  fail_free_mem:
909 	while (--i >= 0)
910 		__free_page(bp->b_pages[i]);
911 	_xfs_buf_free_pages(bp);
912  fail_free_buf:
913 	xfs_buf_free_maps(bp);
914 	kmem_zone_free(xfs_buf_zone, bp);
915  fail:
916 	return NULL;
917 }
918 
919 /*
920  *	Increment reference count on buffer, to hold the buffer concurrently
921  *	with another thread which may release (free) the buffer asynchronously.
922  *	Must hold the buffer already to call this function.
923  */
924 void
xfs_buf_hold(xfs_buf_t * bp)925 xfs_buf_hold(
926 	xfs_buf_t		*bp)
927 {
928 	trace_xfs_buf_hold(bp, _RET_IP_);
929 	atomic_inc(&bp->b_hold);
930 }
931 
932 /*
933  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
934  * placed on LRU or freed (depending on b_lru_ref).
935  */
936 void
xfs_buf_rele(xfs_buf_t * bp)937 xfs_buf_rele(
938 	xfs_buf_t		*bp)
939 {
940 	struct xfs_perag	*pag = bp->b_pag;
941 	bool			release;
942 	bool			freebuf = false;
943 
944 	trace_xfs_buf_rele(bp, _RET_IP_);
945 
946 	if (!pag) {
947 		ASSERT(list_empty(&bp->b_lru));
948 		ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
949 		if (atomic_dec_and_test(&bp->b_hold)) {
950 			xfs_buf_ioacct_dec(bp);
951 			xfs_buf_free(bp);
952 		}
953 		return;
954 	}
955 
956 	ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
957 
958 	ASSERT(atomic_read(&bp->b_hold) > 0);
959 
960 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
961 	spin_lock(&bp->b_lock);
962 	if (!release) {
963 		/*
964 		 * Drop the in-flight state if the buffer is already on the LRU
965 		 * and it holds the only reference. This is racy because we
966 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
967 		 * ensures the decrement occurs only once per-buf.
968 		 */
969 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
970 			__xfs_buf_ioacct_dec(bp);
971 		goto out_unlock;
972 	}
973 
974 	/* the last reference has been dropped ... */
975 	__xfs_buf_ioacct_dec(bp);
976 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
977 		/*
978 		 * If the buffer is added to the LRU take a new reference to the
979 		 * buffer for the LRU and clear the (now stale) dispose list
980 		 * state flag
981 		 */
982 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
983 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
984 			atomic_inc(&bp->b_hold);
985 		}
986 		spin_unlock(&pag->pag_buf_lock);
987 	} else {
988 		/*
989 		 * most of the time buffers will already be removed from the
990 		 * LRU, so optimise that case by checking for the
991 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
992 		 * was on was the disposal list
993 		 */
994 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
995 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
996 		} else {
997 			ASSERT(list_empty(&bp->b_lru));
998 		}
999 
1000 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1001 		rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
1002 		spin_unlock(&pag->pag_buf_lock);
1003 		xfs_perag_put(pag);
1004 		freebuf = true;
1005 	}
1006 
1007 out_unlock:
1008 	spin_unlock(&bp->b_lock);
1009 
1010 	if (freebuf)
1011 		xfs_buf_free(bp);
1012 }
1013 
1014 
1015 /*
1016  *	Lock a buffer object, if it is not already locked.
1017  *
1018  *	If we come across a stale, pinned, locked buffer, we know that we are
1019  *	being asked to lock a buffer that has been reallocated. Because it is
1020  *	pinned, we know that the log has not been pushed to disk and hence it
1021  *	will still be locked.  Rather than continuing to have trylock attempts
1022  *	fail until someone else pushes the log, push it ourselves before
1023  *	returning.  This means that the xfsaild will not get stuck trying
1024  *	to push on stale inode buffers.
1025  */
1026 int
xfs_buf_trylock(struct xfs_buf * bp)1027 xfs_buf_trylock(
1028 	struct xfs_buf		*bp)
1029 {
1030 	int			locked;
1031 
1032 	locked = down_trylock(&bp->b_sema) == 0;
1033 	if (locked) {
1034 		XB_SET_OWNER(bp);
1035 		trace_xfs_buf_trylock(bp, _RET_IP_);
1036 	} else {
1037 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1038 	}
1039 	return locked;
1040 }
1041 
1042 /*
1043  *	Lock a buffer object.
1044  *
1045  *	If we come across a stale, pinned, locked buffer, we know that we
1046  *	are being asked to lock a buffer that has been reallocated. Because
1047  *	it is pinned, we know that the log has not been pushed to disk and
1048  *	hence it will still be locked. Rather than sleeping until someone
1049  *	else pushes the log, push it ourselves before trying to get the lock.
1050  */
1051 void
xfs_buf_lock(struct xfs_buf * bp)1052 xfs_buf_lock(
1053 	struct xfs_buf		*bp)
1054 {
1055 	trace_xfs_buf_lock(bp, _RET_IP_);
1056 
1057 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1058 		xfs_log_force(bp->b_target->bt_mount, 0);
1059 	down(&bp->b_sema);
1060 	XB_SET_OWNER(bp);
1061 
1062 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1063 }
1064 
1065 void
xfs_buf_unlock(struct xfs_buf * bp)1066 xfs_buf_unlock(
1067 	struct xfs_buf		*bp)
1068 {
1069 	ASSERT(xfs_buf_islocked(bp));
1070 
1071 	XB_CLEAR_OWNER(bp);
1072 	up(&bp->b_sema);
1073 
1074 	trace_xfs_buf_unlock(bp, _RET_IP_);
1075 }
1076 
1077 STATIC void
xfs_buf_wait_unpin(xfs_buf_t * bp)1078 xfs_buf_wait_unpin(
1079 	xfs_buf_t		*bp)
1080 {
1081 	DECLARE_WAITQUEUE	(wait, current);
1082 
1083 	if (atomic_read(&bp->b_pin_count) == 0)
1084 		return;
1085 
1086 	add_wait_queue(&bp->b_waiters, &wait);
1087 	for (;;) {
1088 		set_current_state(TASK_UNINTERRUPTIBLE);
1089 		if (atomic_read(&bp->b_pin_count) == 0)
1090 			break;
1091 		io_schedule();
1092 	}
1093 	remove_wait_queue(&bp->b_waiters, &wait);
1094 	set_current_state(TASK_RUNNING);
1095 }
1096 
1097 /*
1098  *	Buffer Utility Routines
1099  */
1100 
1101 void
xfs_buf_ioend(struct xfs_buf * bp)1102 xfs_buf_ioend(
1103 	struct xfs_buf	*bp)
1104 {
1105 	bool		read = bp->b_flags & XBF_READ;
1106 
1107 	trace_xfs_buf_iodone(bp, _RET_IP_);
1108 
1109 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1110 
1111 	/*
1112 	 * Pull in IO completion errors now. We are guaranteed to be running
1113 	 * single threaded, so we don't need the lock to read b_io_error.
1114 	 */
1115 	if (!bp->b_error && bp->b_io_error)
1116 		xfs_buf_ioerror(bp, bp->b_io_error);
1117 
1118 	/* Only validate buffers that were read without errors */
1119 	if (read && !bp->b_error && bp->b_ops) {
1120 		ASSERT(!bp->b_iodone);
1121 		bp->b_ops->verify_read(bp);
1122 	}
1123 
1124 	if (!bp->b_error)
1125 		bp->b_flags |= XBF_DONE;
1126 
1127 	if (bp->b_iodone)
1128 		(*(bp->b_iodone))(bp);
1129 	else if (bp->b_flags & XBF_ASYNC)
1130 		xfs_buf_relse(bp);
1131 	else
1132 		complete(&bp->b_iowait);
1133 }
1134 
1135 static void
xfs_buf_ioend_work(struct work_struct * work)1136 xfs_buf_ioend_work(
1137 	struct work_struct	*work)
1138 {
1139 	struct xfs_buf		*bp =
1140 		container_of(work, xfs_buf_t, b_ioend_work);
1141 
1142 	xfs_buf_ioend(bp);
1143 }
1144 
1145 static void
xfs_buf_ioend_async(struct xfs_buf * bp)1146 xfs_buf_ioend_async(
1147 	struct xfs_buf	*bp)
1148 {
1149 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1150 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1151 }
1152 
1153 void
xfs_buf_ioerror(xfs_buf_t * bp,int error)1154 xfs_buf_ioerror(
1155 	xfs_buf_t		*bp,
1156 	int			error)
1157 {
1158 	ASSERT(error <= 0 && error >= -1000);
1159 	bp->b_error = error;
1160 	trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1161 }
1162 
1163 void
xfs_buf_ioerror_alert(struct xfs_buf * bp,const char * func)1164 xfs_buf_ioerror_alert(
1165 	struct xfs_buf		*bp,
1166 	const char		*func)
1167 {
1168 	xfs_alert(bp->b_target->bt_mount,
1169 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1170 		(__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1171 }
1172 
1173 int
xfs_bwrite(struct xfs_buf * bp)1174 xfs_bwrite(
1175 	struct xfs_buf		*bp)
1176 {
1177 	int			error;
1178 
1179 	ASSERT(xfs_buf_islocked(bp));
1180 
1181 	bp->b_flags |= XBF_WRITE;
1182 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1183 			 XBF_WRITE_FAIL | XBF_DONE);
1184 
1185 	error = xfs_buf_submit_wait(bp);
1186 	if (error) {
1187 		xfs_force_shutdown(bp->b_target->bt_mount,
1188 				   SHUTDOWN_META_IO_ERROR);
1189 	}
1190 	return error;
1191 }
1192 
1193 static void
xfs_buf_bio_end_io(struct bio * bio)1194 xfs_buf_bio_end_io(
1195 	struct bio		*bio)
1196 {
1197 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1198 
1199 	/*
1200 	 * don't overwrite existing errors - otherwise we can lose errors on
1201 	 * buffers that require multiple bios to complete.
1202 	 */
1203 	if (bio->bi_error)
1204 		cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1205 
1206 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1207 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1208 
1209 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1210 		xfs_buf_ioend_async(bp);
1211 	bio_put(bio);
1212 }
1213 
1214 static void
xfs_buf_ioapply_map(struct xfs_buf * bp,int map,int * buf_offset,int * count,int op,int op_flags)1215 xfs_buf_ioapply_map(
1216 	struct xfs_buf	*bp,
1217 	int		map,
1218 	int		*buf_offset,
1219 	int		*count,
1220 	int		op,
1221 	int		op_flags)
1222 {
1223 	int		page_index;
1224 	int		total_nr_pages = bp->b_page_count;
1225 	int		nr_pages;
1226 	struct bio	*bio;
1227 	sector_t	sector =  bp->b_maps[map].bm_bn;
1228 	int		size;
1229 	int		offset;
1230 
1231 	total_nr_pages = bp->b_page_count;
1232 
1233 	/* skip the pages in the buffer before the start offset */
1234 	page_index = 0;
1235 	offset = *buf_offset;
1236 	while (offset >= PAGE_SIZE) {
1237 		page_index++;
1238 		offset -= PAGE_SIZE;
1239 	}
1240 
1241 	/*
1242 	 * Limit the IO size to the length of the current vector, and update the
1243 	 * remaining IO count for the next time around.
1244 	 */
1245 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1246 	*count -= size;
1247 	*buf_offset += size;
1248 
1249 next_chunk:
1250 	atomic_inc(&bp->b_io_remaining);
1251 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1252 
1253 	bio = bio_alloc(GFP_NOIO, nr_pages);
1254 	bio->bi_bdev = bp->b_target->bt_bdev;
1255 	bio->bi_iter.bi_sector = sector;
1256 	bio->bi_end_io = xfs_buf_bio_end_io;
1257 	bio->bi_private = bp;
1258 	bio_set_op_attrs(bio, op, op_flags);
1259 
1260 	for (; size && nr_pages; nr_pages--, page_index++) {
1261 		int	rbytes, nbytes = PAGE_SIZE - offset;
1262 
1263 		if (nbytes > size)
1264 			nbytes = size;
1265 
1266 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1267 				      offset);
1268 		if (rbytes < nbytes)
1269 			break;
1270 
1271 		offset = 0;
1272 		sector += BTOBB(nbytes);
1273 		size -= nbytes;
1274 		total_nr_pages--;
1275 	}
1276 
1277 	if (likely(bio->bi_iter.bi_size)) {
1278 		if (xfs_buf_is_vmapped(bp)) {
1279 			flush_kernel_vmap_range(bp->b_addr,
1280 						xfs_buf_vmap_len(bp));
1281 		}
1282 		submit_bio(bio);
1283 		if (size)
1284 			goto next_chunk;
1285 	} else {
1286 		/*
1287 		 * This is guaranteed not to be the last io reference count
1288 		 * because the caller (xfs_buf_submit) holds a count itself.
1289 		 */
1290 		atomic_dec(&bp->b_io_remaining);
1291 		xfs_buf_ioerror(bp, -EIO);
1292 		bio_put(bio);
1293 	}
1294 
1295 }
1296 
1297 STATIC void
_xfs_buf_ioapply(struct xfs_buf * bp)1298 _xfs_buf_ioapply(
1299 	struct xfs_buf	*bp)
1300 {
1301 	struct blk_plug	plug;
1302 	int		op;
1303 	int		op_flags = 0;
1304 	int		offset;
1305 	int		size;
1306 	int		i;
1307 
1308 	/*
1309 	 * Make sure we capture only current IO errors rather than stale errors
1310 	 * left over from previous use of the buffer (e.g. failed readahead).
1311 	 */
1312 	bp->b_error = 0;
1313 
1314 	/*
1315 	 * Initialize the I/O completion workqueue if we haven't yet or the
1316 	 * submitter has not opted to specify a custom one.
1317 	 */
1318 	if (!bp->b_ioend_wq)
1319 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1320 
1321 	if (bp->b_flags & XBF_WRITE) {
1322 		op = REQ_OP_WRITE;
1323 		if (bp->b_flags & XBF_SYNCIO)
1324 			op_flags = WRITE_SYNC;
1325 		if (bp->b_flags & XBF_FUA)
1326 			op_flags |= REQ_FUA;
1327 		if (bp->b_flags & XBF_FLUSH)
1328 			op_flags |= REQ_PREFLUSH;
1329 
1330 		/*
1331 		 * Run the write verifier callback function if it exists. If
1332 		 * this function fails it will mark the buffer with an error and
1333 		 * the IO should not be dispatched.
1334 		 */
1335 		if (bp->b_ops) {
1336 			bp->b_ops->verify_write(bp);
1337 			if (bp->b_error) {
1338 				xfs_force_shutdown(bp->b_target->bt_mount,
1339 						   SHUTDOWN_CORRUPT_INCORE);
1340 				return;
1341 			}
1342 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1343 			struct xfs_mount *mp = bp->b_target->bt_mount;
1344 
1345 			/*
1346 			 * non-crc filesystems don't attach verifiers during
1347 			 * log recovery, so don't warn for such filesystems.
1348 			 */
1349 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1350 				xfs_warn(mp,
1351 					"%s: no ops on block 0x%llx/0x%x",
1352 					__func__, bp->b_bn, bp->b_length);
1353 				xfs_hex_dump(bp->b_addr, 64);
1354 				dump_stack();
1355 			}
1356 		}
1357 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1358 		op = REQ_OP_READ;
1359 		op_flags = REQ_RAHEAD;
1360 	} else {
1361 		op = REQ_OP_READ;
1362 	}
1363 
1364 	/* we only use the buffer cache for meta-data */
1365 	op_flags |= REQ_META;
1366 
1367 	/*
1368 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1369 	 * into the buffer and the desired IO size before we start -
1370 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1371 	 * subsequent call.
1372 	 */
1373 	offset = bp->b_offset;
1374 	size = BBTOB(bp->b_io_length);
1375 	blk_start_plug(&plug);
1376 	for (i = 0; i < bp->b_map_count; i++) {
1377 		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1378 		if (bp->b_error)
1379 			break;
1380 		if (size <= 0)
1381 			break;	/* all done */
1382 	}
1383 	blk_finish_plug(&plug);
1384 }
1385 
1386 /*
1387  * Asynchronous IO submission path. This transfers the buffer lock ownership and
1388  * the current reference to the IO. It is not safe to reference the buffer after
1389  * a call to this function unless the caller holds an additional reference
1390  * itself.
1391  */
1392 void
xfs_buf_submit(struct xfs_buf * bp)1393 xfs_buf_submit(
1394 	struct xfs_buf	*bp)
1395 {
1396 	trace_xfs_buf_submit(bp, _RET_IP_);
1397 
1398 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1399 	ASSERT(bp->b_flags & XBF_ASYNC);
1400 
1401 	/* on shutdown we stale and complete the buffer immediately */
1402 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1403 		xfs_buf_ioerror(bp, -EIO);
1404 		bp->b_flags &= ~XBF_DONE;
1405 		xfs_buf_stale(bp);
1406 		xfs_buf_ioend(bp);
1407 		return;
1408 	}
1409 
1410 	if (bp->b_flags & XBF_WRITE)
1411 		xfs_buf_wait_unpin(bp);
1412 
1413 	/* clear the internal error state to avoid spurious errors */
1414 	bp->b_io_error = 0;
1415 
1416 	/*
1417 	 * The caller's reference is released during I/O completion.
1418 	 * This occurs some time after the last b_io_remaining reference is
1419 	 * released, so after we drop our Io reference we have to have some
1420 	 * other reference to ensure the buffer doesn't go away from underneath
1421 	 * us. Take a direct reference to ensure we have safe access to the
1422 	 * buffer until we are finished with it.
1423 	 */
1424 	xfs_buf_hold(bp);
1425 
1426 	/*
1427 	 * Set the count to 1 initially, this will stop an I/O completion
1428 	 * callout which happens before we have started all the I/O from calling
1429 	 * xfs_buf_ioend too early.
1430 	 */
1431 	atomic_set(&bp->b_io_remaining, 1);
1432 	xfs_buf_ioacct_inc(bp);
1433 	_xfs_buf_ioapply(bp);
1434 
1435 	/*
1436 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1437 	 * reference we took above. If we drop it to zero, run completion so
1438 	 * that we don't return to the caller with completion still pending.
1439 	 */
1440 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1441 		if (bp->b_error)
1442 			xfs_buf_ioend(bp);
1443 		else
1444 			xfs_buf_ioend_async(bp);
1445 	}
1446 
1447 	xfs_buf_rele(bp);
1448 	/* Note: it is not safe to reference bp now we've dropped our ref */
1449 }
1450 
1451 /*
1452  * Synchronous buffer IO submission path, read or write.
1453  */
1454 int
xfs_buf_submit_wait(struct xfs_buf * bp)1455 xfs_buf_submit_wait(
1456 	struct xfs_buf	*bp)
1457 {
1458 	int		error;
1459 
1460 	trace_xfs_buf_submit_wait(bp, _RET_IP_);
1461 
1462 	ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1463 
1464 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1465 		xfs_buf_ioerror(bp, -EIO);
1466 		xfs_buf_stale(bp);
1467 		bp->b_flags &= ~XBF_DONE;
1468 		return -EIO;
1469 	}
1470 
1471 	if (bp->b_flags & XBF_WRITE)
1472 		xfs_buf_wait_unpin(bp);
1473 
1474 	/* clear the internal error state to avoid spurious errors */
1475 	bp->b_io_error = 0;
1476 
1477 	/*
1478 	 * For synchronous IO, the IO does not inherit the submitters reference
1479 	 * count, nor the buffer lock. Hence we cannot release the reference we
1480 	 * are about to take until we've waited for all IO completion to occur,
1481 	 * including any xfs_buf_ioend_async() work that may be pending.
1482 	 */
1483 	xfs_buf_hold(bp);
1484 
1485 	/*
1486 	 * Set the count to 1 initially, this will stop an I/O completion
1487 	 * callout which happens before we have started all the I/O from calling
1488 	 * xfs_buf_ioend too early.
1489 	 */
1490 	atomic_set(&bp->b_io_remaining, 1);
1491 	_xfs_buf_ioapply(bp);
1492 
1493 	/*
1494 	 * make sure we run completion synchronously if it raced with us and is
1495 	 * already complete.
1496 	 */
1497 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1498 		xfs_buf_ioend(bp);
1499 
1500 	/* wait for completion before gathering the error from the buffer */
1501 	trace_xfs_buf_iowait(bp, _RET_IP_);
1502 	wait_for_completion(&bp->b_iowait);
1503 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1504 	error = bp->b_error;
1505 
1506 	/*
1507 	 * all done now, we can release the hold that keeps the buffer
1508 	 * referenced for the entire IO.
1509 	 */
1510 	xfs_buf_rele(bp);
1511 	return error;
1512 }
1513 
1514 void *
xfs_buf_offset(struct xfs_buf * bp,size_t offset)1515 xfs_buf_offset(
1516 	struct xfs_buf		*bp,
1517 	size_t			offset)
1518 {
1519 	struct page		*page;
1520 
1521 	if (bp->b_addr)
1522 		return bp->b_addr + offset;
1523 
1524 	offset += bp->b_offset;
1525 	page = bp->b_pages[offset >> PAGE_SHIFT];
1526 	return page_address(page) + (offset & (PAGE_SIZE-1));
1527 }
1528 
1529 /*
1530  *	Move data into or out of a buffer.
1531  */
1532 void
xfs_buf_iomove(xfs_buf_t * bp,size_t boff,size_t bsize,void * data,xfs_buf_rw_t mode)1533 xfs_buf_iomove(
1534 	xfs_buf_t		*bp,	/* buffer to process		*/
1535 	size_t			boff,	/* starting buffer offset	*/
1536 	size_t			bsize,	/* length to copy		*/
1537 	void			*data,	/* data address			*/
1538 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1539 {
1540 	size_t			bend;
1541 
1542 	bend = boff + bsize;
1543 	while (boff < bend) {
1544 		struct page	*page;
1545 		int		page_index, page_offset, csize;
1546 
1547 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1548 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1549 		page = bp->b_pages[page_index];
1550 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1551 				      BBTOB(bp->b_io_length) - boff);
1552 
1553 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1554 
1555 		switch (mode) {
1556 		case XBRW_ZERO:
1557 			memset(page_address(page) + page_offset, 0, csize);
1558 			break;
1559 		case XBRW_READ:
1560 			memcpy(data, page_address(page) + page_offset, csize);
1561 			break;
1562 		case XBRW_WRITE:
1563 			memcpy(page_address(page) + page_offset, data, csize);
1564 		}
1565 
1566 		boff += csize;
1567 		data += csize;
1568 	}
1569 }
1570 
1571 /*
1572  *	Handling of buffer targets (buftargs).
1573  */
1574 
1575 /*
1576  * Wait for any bufs with callbacks that have been submitted but have not yet
1577  * returned. These buffers will have an elevated hold count, so wait on those
1578  * while freeing all the buffers only held by the LRU.
1579  */
1580 static enum lru_status
xfs_buftarg_wait_rele(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1581 xfs_buftarg_wait_rele(
1582 	struct list_head	*item,
1583 	struct list_lru_one	*lru,
1584 	spinlock_t		*lru_lock,
1585 	void			*arg)
1586 
1587 {
1588 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1589 	struct list_head	*dispose = arg;
1590 
1591 	if (atomic_read(&bp->b_hold) > 1) {
1592 		/* need to wait, so skip it this pass */
1593 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1594 		return LRU_SKIP;
1595 	}
1596 	if (!spin_trylock(&bp->b_lock))
1597 		return LRU_SKIP;
1598 
1599 	/*
1600 	 * clear the LRU reference count so the buffer doesn't get
1601 	 * ignored in xfs_buf_rele().
1602 	 */
1603 	atomic_set(&bp->b_lru_ref, 0);
1604 	bp->b_state |= XFS_BSTATE_DISPOSE;
1605 	list_lru_isolate_move(lru, item, dispose);
1606 	spin_unlock(&bp->b_lock);
1607 	return LRU_REMOVED;
1608 }
1609 
1610 void
xfs_wait_buftarg(struct xfs_buftarg * btp)1611 xfs_wait_buftarg(
1612 	struct xfs_buftarg	*btp)
1613 {
1614 	LIST_HEAD(dispose);
1615 	int loop = 0;
1616 
1617 	/*
1618 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1619 	 * released. This is critical as new buffers do not make the LRU until
1620 	 * they are released.
1621 	 *
1622 	 * Next, flush the buffer workqueue to ensure all completion processing
1623 	 * has finished. Just waiting on buffer locks is not sufficient for
1624 	 * async IO as the reference count held over IO is not released until
1625 	 * after the buffer lock is dropped. Hence we need to ensure here that
1626 	 * all reference counts have been dropped before we start walking the
1627 	 * LRU list.
1628 	 */
1629 	while (percpu_counter_sum(&btp->bt_io_count))
1630 		delay(100);
1631 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1632 
1633 	/* loop until there is nothing left on the lru list. */
1634 	while (list_lru_count(&btp->bt_lru)) {
1635 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1636 			      &dispose, LONG_MAX);
1637 
1638 		while (!list_empty(&dispose)) {
1639 			struct xfs_buf *bp;
1640 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1641 			list_del_init(&bp->b_lru);
1642 			if (bp->b_flags & XBF_WRITE_FAIL) {
1643 				xfs_alert(btp->bt_mount,
1644 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1645 					(long long)bp->b_bn);
1646 				xfs_alert(btp->bt_mount,
1647 "Please run xfs_repair to determine the extent of the problem.");
1648 			}
1649 			xfs_buf_rele(bp);
1650 		}
1651 		if (loop++ != 0)
1652 			delay(100);
1653 	}
1654 }
1655 
1656 static enum lru_status
xfs_buftarg_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1657 xfs_buftarg_isolate(
1658 	struct list_head	*item,
1659 	struct list_lru_one	*lru,
1660 	spinlock_t		*lru_lock,
1661 	void			*arg)
1662 {
1663 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1664 	struct list_head	*dispose = arg;
1665 
1666 	/*
1667 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1668 	 * If we fail to get the lock, just skip it.
1669 	 */
1670 	if (!spin_trylock(&bp->b_lock))
1671 		return LRU_SKIP;
1672 	/*
1673 	 * Decrement the b_lru_ref count unless the value is already
1674 	 * zero. If the value is already zero, we need to reclaim the
1675 	 * buffer, otherwise it gets another trip through the LRU.
1676 	 */
1677 	if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1678 		spin_unlock(&bp->b_lock);
1679 		return LRU_ROTATE;
1680 	}
1681 
1682 	bp->b_state |= XFS_BSTATE_DISPOSE;
1683 	list_lru_isolate_move(lru, item, dispose);
1684 	spin_unlock(&bp->b_lock);
1685 	return LRU_REMOVED;
1686 }
1687 
1688 static unsigned long
xfs_buftarg_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1689 xfs_buftarg_shrink_scan(
1690 	struct shrinker		*shrink,
1691 	struct shrink_control	*sc)
1692 {
1693 	struct xfs_buftarg	*btp = container_of(shrink,
1694 					struct xfs_buftarg, bt_shrinker);
1695 	LIST_HEAD(dispose);
1696 	unsigned long		freed;
1697 
1698 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1699 				     xfs_buftarg_isolate, &dispose);
1700 
1701 	while (!list_empty(&dispose)) {
1702 		struct xfs_buf *bp;
1703 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1704 		list_del_init(&bp->b_lru);
1705 		xfs_buf_rele(bp);
1706 	}
1707 
1708 	return freed;
1709 }
1710 
1711 static unsigned long
xfs_buftarg_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1712 xfs_buftarg_shrink_count(
1713 	struct shrinker		*shrink,
1714 	struct shrink_control	*sc)
1715 {
1716 	struct xfs_buftarg	*btp = container_of(shrink,
1717 					struct xfs_buftarg, bt_shrinker);
1718 	return list_lru_shrink_count(&btp->bt_lru, sc);
1719 }
1720 
1721 void
xfs_free_buftarg(struct xfs_mount * mp,struct xfs_buftarg * btp)1722 xfs_free_buftarg(
1723 	struct xfs_mount	*mp,
1724 	struct xfs_buftarg	*btp)
1725 {
1726 	unregister_shrinker(&btp->bt_shrinker);
1727 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1728 	percpu_counter_destroy(&btp->bt_io_count);
1729 	list_lru_destroy(&btp->bt_lru);
1730 
1731 	if (mp->m_flags & XFS_MOUNT_BARRIER)
1732 		xfs_blkdev_issue_flush(btp);
1733 
1734 	kmem_free(btp);
1735 }
1736 
1737 int
xfs_setsize_buftarg(xfs_buftarg_t * btp,unsigned int sectorsize)1738 xfs_setsize_buftarg(
1739 	xfs_buftarg_t		*btp,
1740 	unsigned int		sectorsize)
1741 {
1742 	/* Set up metadata sector size info */
1743 	btp->bt_meta_sectorsize = sectorsize;
1744 	btp->bt_meta_sectormask = sectorsize - 1;
1745 
1746 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1747 		xfs_warn(btp->bt_mount,
1748 			"Cannot set_blocksize to %u on device %pg",
1749 			sectorsize, btp->bt_bdev);
1750 		return -EINVAL;
1751 	}
1752 
1753 	/* Set up device logical sector size mask */
1754 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1755 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1756 
1757 	return 0;
1758 }
1759 
1760 /*
1761  * When allocating the initial buffer target we have not yet
1762  * read in the superblock, so don't know what sized sectors
1763  * are being used at this early stage.  Play safe.
1764  */
1765 STATIC int
xfs_setsize_buftarg_early(xfs_buftarg_t * btp,struct block_device * bdev)1766 xfs_setsize_buftarg_early(
1767 	xfs_buftarg_t		*btp,
1768 	struct block_device	*bdev)
1769 {
1770 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1771 }
1772 
1773 xfs_buftarg_t *
xfs_alloc_buftarg(struct xfs_mount * mp,struct block_device * bdev)1774 xfs_alloc_buftarg(
1775 	struct xfs_mount	*mp,
1776 	struct block_device	*bdev)
1777 {
1778 	xfs_buftarg_t		*btp;
1779 
1780 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1781 
1782 	btp->bt_mount = mp;
1783 	btp->bt_dev =  bdev->bd_dev;
1784 	btp->bt_bdev = bdev;
1785 	btp->bt_bdi = blk_get_backing_dev_info(bdev);
1786 
1787 	if (xfs_setsize_buftarg_early(btp, bdev))
1788 		goto error_free;
1789 
1790 	if (list_lru_init(&btp->bt_lru))
1791 		goto error_free;
1792 
1793 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1794 		goto error_lru;
1795 
1796 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1797 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1798 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1799 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1800 	if (register_shrinker(&btp->bt_shrinker))
1801 		goto error_pcpu;
1802 	return btp;
1803 
1804 error_pcpu:
1805 	percpu_counter_destroy(&btp->bt_io_count);
1806 error_lru:
1807 	list_lru_destroy(&btp->bt_lru);
1808 error_free:
1809 	kmem_free(btp);
1810 	return NULL;
1811 }
1812 
1813 /*
1814  * Cancel a delayed write list.
1815  *
1816  * Remove each buffer from the list, clear the delwri queue flag and drop the
1817  * associated buffer reference.
1818  */
1819 void
xfs_buf_delwri_cancel(struct list_head * list)1820 xfs_buf_delwri_cancel(
1821 	struct list_head	*list)
1822 {
1823 	struct xfs_buf		*bp;
1824 
1825 	while (!list_empty(list)) {
1826 		bp = list_first_entry(list, struct xfs_buf, b_list);
1827 
1828 		xfs_buf_lock(bp);
1829 		bp->b_flags &= ~_XBF_DELWRI_Q;
1830 		list_del_init(&bp->b_list);
1831 		xfs_buf_relse(bp);
1832 	}
1833 }
1834 
1835 /*
1836  * Add a buffer to the delayed write list.
1837  *
1838  * This queues a buffer for writeout if it hasn't already been.  Note that
1839  * neither this routine nor the buffer list submission functions perform
1840  * any internal synchronization.  It is expected that the lists are thread-local
1841  * to the callers.
1842  *
1843  * Returns true if we queued up the buffer, or false if it already had
1844  * been on the buffer list.
1845  */
1846 bool
xfs_buf_delwri_queue(struct xfs_buf * bp,struct list_head * list)1847 xfs_buf_delwri_queue(
1848 	struct xfs_buf		*bp,
1849 	struct list_head	*list)
1850 {
1851 	ASSERT(xfs_buf_islocked(bp));
1852 	ASSERT(!(bp->b_flags & XBF_READ));
1853 
1854 	/*
1855 	 * If the buffer is already marked delwri it already is queued up
1856 	 * by someone else for imediate writeout.  Just ignore it in that
1857 	 * case.
1858 	 */
1859 	if (bp->b_flags & _XBF_DELWRI_Q) {
1860 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1861 		return false;
1862 	}
1863 
1864 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1865 
1866 	/*
1867 	 * If a buffer gets written out synchronously or marked stale while it
1868 	 * is on a delwri list we lazily remove it. To do this, the other party
1869 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1870 	 * It remains referenced and on the list.  In a rare corner case it
1871 	 * might get readded to a delwri list after the synchronous writeout, in
1872 	 * which case we need just need to re-add the flag here.
1873 	 */
1874 	bp->b_flags |= _XBF_DELWRI_Q;
1875 	if (list_empty(&bp->b_list)) {
1876 		atomic_inc(&bp->b_hold);
1877 		list_add_tail(&bp->b_list, list);
1878 	}
1879 
1880 	return true;
1881 }
1882 
1883 /*
1884  * Compare function is more complex than it needs to be because
1885  * the return value is only 32 bits and we are doing comparisons
1886  * on 64 bit values
1887  */
1888 static int
xfs_buf_cmp(void * priv,struct list_head * a,struct list_head * b)1889 xfs_buf_cmp(
1890 	void		*priv,
1891 	struct list_head *a,
1892 	struct list_head *b)
1893 {
1894 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1895 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1896 	xfs_daddr_t		diff;
1897 
1898 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1899 	if (diff < 0)
1900 		return -1;
1901 	if (diff > 0)
1902 		return 1;
1903 	return 0;
1904 }
1905 
1906 /*
1907  * submit buffers for write.
1908  *
1909  * When we have a large buffer list, we do not want to hold all the buffers
1910  * locked while we block on the request queue waiting for IO dispatch. To avoid
1911  * this problem, we lock and submit buffers in groups of 50, thereby minimising
1912  * the lock hold times for lists which may contain thousands of objects.
1913  *
1914  * To do this, we sort the buffer list before we walk the list to lock and
1915  * submit buffers, and we plug and unplug around each group of buffers we
1916  * submit.
1917  */
1918 static int
xfs_buf_delwri_submit_buffers(struct list_head * buffer_list,struct list_head * wait_list)1919 xfs_buf_delwri_submit_buffers(
1920 	struct list_head	*buffer_list,
1921 	struct list_head	*wait_list)
1922 {
1923 	struct xfs_buf		*bp, *n;
1924 	LIST_HEAD		(submit_list);
1925 	int			pinned = 0;
1926 	struct blk_plug		plug;
1927 
1928 	list_sort(NULL, buffer_list, xfs_buf_cmp);
1929 
1930 	blk_start_plug(&plug);
1931 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1932 		if (!wait_list) {
1933 			if (xfs_buf_ispinned(bp)) {
1934 				pinned++;
1935 				continue;
1936 			}
1937 			if (!xfs_buf_trylock(bp))
1938 				continue;
1939 		} else {
1940 			xfs_buf_lock(bp);
1941 		}
1942 
1943 		/*
1944 		 * Someone else might have written the buffer synchronously or
1945 		 * marked it stale in the meantime.  In that case only the
1946 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1947 		 * reference and remove it from the list here.
1948 		 */
1949 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1950 			list_del_init(&bp->b_list);
1951 			xfs_buf_relse(bp);
1952 			continue;
1953 		}
1954 
1955 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1956 
1957 		/*
1958 		 * We do all IO submission async. This means if we need
1959 		 * to wait for IO completion we need to take an extra
1960 		 * reference so the buffer is still valid on the other
1961 		 * side. We need to move the buffer onto the io_list
1962 		 * at this point so the caller can still access it.
1963 		 */
1964 		bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1965 		bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1966 		if (wait_list) {
1967 			xfs_buf_hold(bp);
1968 			list_move_tail(&bp->b_list, wait_list);
1969 		} else
1970 			list_del_init(&bp->b_list);
1971 
1972 		xfs_buf_submit(bp);
1973 	}
1974 	blk_finish_plug(&plug);
1975 
1976 	return pinned;
1977 }
1978 
1979 /*
1980  * Write out a buffer list asynchronously.
1981  *
1982  * This will take the @buffer_list, write all non-locked and non-pinned buffers
1983  * out and not wait for I/O completion on any of the buffers.  This interface
1984  * is only safely useable for callers that can track I/O completion by higher
1985  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1986  * function.
1987  */
1988 int
xfs_buf_delwri_submit_nowait(struct list_head * buffer_list)1989 xfs_buf_delwri_submit_nowait(
1990 	struct list_head	*buffer_list)
1991 {
1992 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1993 }
1994 
1995 /*
1996  * Write out a buffer list synchronously.
1997  *
1998  * This will take the @buffer_list, write all buffers out and wait for I/O
1999  * completion on all of the buffers. @buffer_list is consumed by the function,
2000  * so callers must have some other way of tracking buffers if they require such
2001  * functionality.
2002  */
2003 int
xfs_buf_delwri_submit(struct list_head * buffer_list)2004 xfs_buf_delwri_submit(
2005 	struct list_head	*buffer_list)
2006 {
2007 	LIST_HEAD		(wait_list);
2008 	int			error = 0, error2;
2009 	struct xfs_buf		*bp;
2010 
2011 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2012 
2013 	/* Wait for IO to complete. */
2014 	while (!list_empty(&wait_list)) {
2015 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2016 
2017 		list_del_init(&bp->b_list);
2018 
2019 		/* locking the buffer will wait for async IO completion. */
2020 		xfs_buf_lock(bp);
2021 		error2 = bp->b_error;
2022 		xfs_buf_relse(bp);
2023 		if (!error)
2024 			error = error2;
2025 	}
2026 
2027 	return error;
2028 }
2029 
2030 /*
2031  * Push a single buffer on a delwri queue.
2032  *
2033  * The purpose of this function is to submit a single buffer of a delwri queue
2034  * and return with the buffer still on the original queue. The waiting delwri
2035  * buffer submission infrastructure guarantees transfer of the delwri queue
2036  * buffer reference to a temporary wait list. We reuse this infrastructure to
2037  * transfer the buffer back to the original queue.
2038  *
2039  * Note the buffer transitions from the queued state, to the submitted and wait
2040  * listed state and back to the queued state during this call. The buffer
2041  * locking and queue management logic between _delwri_pushbuf() and
2042  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2043  * before returning.
2044  */
2045 int
xfs_buf_delwri_pushbuf(struct xfs_buf * bp,struct list_head * buffer_list)2046 xfs_buf_delwri_pushbuf(
2047 	struct xfs_buf		*bp,
2048 	struct list_head	*buffer_list)
2049 {
2050 	LIST_HEAD		(submit_list);
2051 	int			error;
2052 
2053 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2054 
2055 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2056 
2057 	/*
2058 	 * Isolate the buffer to a new local list so we can submit it for I/O
2059 	 * independently from the rest of the original list.
2060 	 */
2061 	xfs_buf_lock(bp);
2062 	list_move(&bp->b_list, &submit_list);
2063 	xfs_buf_unlock(bp);
2064 
2065 	/*
2066 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2067 	 * the buffer on the wait list with an associated reference. Rather than
2068 	 * bounce the buffer from a local wait list back to the original list
2069 	 * after I/O completion, reuse the original list as the wait list.
2070 	 */
2071 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2072 
2073 	/*
2074 	 * The buffer is now under I/O and wait listed as during typical delwri
2075 	 * submission. Lock the buffer to wait for I/O completion. Rather than
2076 	 * remove the buffer from the wait list and release the reference, we
2077 	 * want to return with the buffer queued to the original list. The
2078 	 * buffer already sits on the original list with a wait list reference,
2079 	 * however. If we let the queue inherit that wait list reference, all we
2080 	 * need to do is reset the DELWRI_Q flag.
2081 	 */
2082 	xfs_buf_lock(bp);
2083 	error = bp->b_error;
2084 	bp->b_flags |= _XBF_DELWRI_Q;
2085 	xfs_buf_unlock(bp);
2086 
2087 	return error;
2088 }
2089 
2090 int __init
xfs_buf_init(void)2091 xfs_buf_init(void)
2092 {
2093 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2094 						KM_ZONE_HWALIGN, NULL);
2095 	if (!xfs_buf_zone)
2096 		goto out;
2097 
2098 	return 0;
2099 
2100  out:
2101 	return -ENOMEM;
2102 }
2103 
2104 void
xfs_buf_terminate(void)2105 xfs_buf_terminate(void)
2106 {
2107 	kmem_zone_destroy(xfs_buf_zone);
2108 }
2109