1 /******************************************************************************
2 *
3 * Module Name: exmisc - ACPI AML (p-code) execution - specific opcodes
4 *
5 *****************************************************************************/
6
7 /*
8 * Copyright (C) 2000 - 2016, Intel Corp.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
29 *
30 * NO WARRANTY
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
42 */
43
44 #include <acpi/acpi.h>
45 #include "accommon.h"
46 #include "acinterp.h"
47 #include "amlcode.h"
48
49 #define _COMPONENT ACPI_EXECUTER
50 ACPI_MODULE_NAME("exmisc")
51
52 /*******************************************************************************
53 *
54 * FUNCTION: acpi_ex_get_object_reference
55 *
56 * PARAMETERS: obj_desc - Create a reference to this object
57 * return_desc - Where to store the reference
58 * walk_state - Current state
59 *
60 * RETURN: Status
61 *
62 * DESCRIPTION: Obtain and return a "reference" to the target object
63 * Common code for the ref_of_op and the cond_ref_of_op.
64 *
65 ******************************************************************************/
66 acpi_status
acpi_ex_get_object_reference(union acpi_operand_object * obj_desc,union acpi_operand_object ** return_desc,struct acpi_walk_state * walk_state)67 acpi_ex_get_object_reference(union acpi_operand_object *obj_desc,
68 union acpi_operand_object **return_desc,
69 struct acpi_walk_state *walk_state)
70 {
71 union acpi_operand_object *reference_obj;
72 union acpi_operand_object *referenced_obj;
73
74 ACPI_FUNCTION_TRACE_PTR(ex_get_object_reference, obj_desc);
75
76 *return_desc = NULL;
77
78 switch (ACPI_GET_DESCRIPTOR_TYPE(obj_desc)) {
79 case ACPI_DESC_TYPE_OPERAND:
80
81 if (obj_desc->common.type != ACPI_TYPE_LOCAL_REFERENCE) {
82 return_ACPI_STATUS(AE_AML_OPERAND_TYPE);
83 }
84
85 /*
86 * Must be a reference to a Local or Arg
87 */
88 switch (obj_desc->reference.class) {
89 case ACPI_REFCLASS_LOCAL:
90 case ACPI_REFCLASS_ARG:
91 case ACPI_REFCLASS_DEBUG:
92
93 /* The referenced object is the pseudo-node for the local/arg */
94
95 referenced_obj = obj_desc->reference.object;
96 break;
97
98 default:
99
100 ACPI_ERROR((AE_INFO, "Invalid Reference Class 0x%2.2X",
101 obj_desc->reference.class));
102 return_ACPI_STATUS(AE_AML_OPERAND_TYPE);
103 }
104 break;
105
106 case ACPI_DESC_TYPE_NAMED:
107 /*
108 * A named reference that has already been resolved to a Node
109 */
110 referenced_obj = obj_desc;
111 break;
112
113 default:
114
115 ACPI_ERROR((AE_INFO, "Invalid descriptor type 0x%X",
116 ACPI_GET_DESCRIPTOR_TYPE(obj_desc)));
117 return_ACPI_STATUS(AE_TYPE);
118 }
119
120 /* Create a new reference object */
121
122 reference_obj =
123 acpi_ut_create_internal_object(ACPI_TYPE_LOCAL_REFERENCE);
124 if (!reference_obj) {
125 return_ACPI_STATUS(AE_NO_MEMORY);
126 }
127
128 reference_obj->reference.class = ACPI_REFCLASS_REFOF;
129 reference_obj->reference.object = referenced_obj;
130 *return_desc = reference_obj;
131
132 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
133 "Object %p Type [%s], returning Reference %p\n",
134 obj_desc, acpi_ut_get_object_type_name(obj_desc),
135 *return_desc));
136
137 return_ACPI_STATUS(AE_OK);
138 }
139
140 /*******************************************************************************
141 *
142 * FUNCTION: acpi_ex_do_math_op
143 *
144 * PARAMETERS: opcode - AML opcode
145 * integer0 - Integer operand #0
146 * integer1 - Integer operand #1
147 *
148 * RETURN: Integer result of the operation
149 *
150 * DESCRIPTION: Execute a math AML opcode. The purpose of having all of the
151 * math functions here is to prevent a lot of pointer dereferencing
152 * to obtain the operands.
153 *
154 ******************************************************************************/
155
acpi_ex_do_math_op(u16 opcode,u64 integer0,u64 integer1)156 u64 acpi_ex_do_math_op(u16 opcode, u64 integer0, u64 integer1)
157 {
158
159 ACPI_FUNCTION_ENTRY();
160
161 switch (opcode) {
162 case AML_ADD_OP: /* Add (Integer0, Integer1, Result) */
163
164 return (integer0 + integer1);
165
166 case AML_BIT_AND_OP: /* And (Integer0, Integer1, Result) */
167
168 return (integer0 & integer1);
169
170 case AML_BIT_NAND_OP: /* NAnd (Integer0, Integer1, Result) */
171
172 return (~(integer0 & integer1));
173
174 case AML_BIT_OR_OP: /* Or (Integer0, Integer1, Result) */
175
176 return (integer0 | integer1);
177
178 case AML_BIT_NOR_OP: /* NOr (Integer0, Integer1, Result) */
179
180 return (~(integer0 | integer1));
181
182 case AML_BIT_XOR_OP: /* XOr (Integer0, Integer1, Result) */
183
184 return (integer0 ^ integer1);
185
186 case AML_MULTIPLY_OP: /* Multiply (Integer0, Integer1, Result) */
187
188 return (integer0 * integer1);
189
190 case AML_SHIFT_LEFT_OP: /* shift_left (Operand, shift_count, Result) */
191
192 /*
193 * We need to check if the shiftcount is larger than the integer bit
194 * width since the behavior of this is not well-defined in the C language.
195 */
196 if (integer1 >= acpi_gbl_integer_bit_width) {
197 return (0);
198 }
199 return (integer0 << integer1);
200
201 case AML_SHIFT_RIGHT_OP: /* shift_right (Operand, shift_count, Result) */
202
203 /*
204 * We need to check if the shiftcount is larger than the integer bit
205 * width since the behavior of this is not well-defined in the C language.
206 */
207 if (integer1 >= acpi_gbl_integer_bit_width) {
208 return (0);
209 }
210 return (integer0 >> integer1);
211
212 case AML_SUBTRACT_OP: /* Subtract (Integer0, Integer1, Result) */
213
214 return (integer0 - integer1);
215
216 default:
217
218 return (0);
219 }
220 }
221
222 /*******************************************************************************
223 *
224 * FUNCTION: acpi_ex_do_logical_numeric_op
225 *
226 * PARAMETERS: opcode - AML opcode
227 * integer0 - Integer operand #0
228 * integer1 - Integer operand #1
229 * logical_result - TRUE/FALSE result of the operation
230 *
231 * RETURN: Status
232 *
233 * DESCRIPTION: Execute a logical "Numeric" AML opcode. For these Numeric
234 * operators (LAnd and LOr), both operands must be integers.
235 *
236 * Note: cleanest machine code seems to be produced by the code
237 * below, rather than using statements of the form:
238 * Result = (Integer0 && Integer1);
239 *
240 ******************************************************************************/
241
242 acpi_status
acpi_ex_do_logical_numeric_op(u16 opcode,u64 integer0,u64 integer1,u8 * logical_result)243 acpi_ex_do_logical_numeric_op(u16 opcode,
244 u64 integer0, u64 integer1, u8 *logical_result)
245 {
246 acpi_status status = AE_OK;
247 u8 local_result = FALSE;
248
249 ACPI_FUNCTION_TRACE(ex_do_logical_numeric_op);
250
251 switch (opcode) {
252 case AML_LAND_OP: /* LAnd (Integer0, Integer1) */
253
254 if (integer0 && integer1) {
255 local_result = TRUE;
256 }
257 break;
258
259 case AML_LOR_OP: /* LOr (Integer0, Integer1) */
260
261 if (integer0 || integer1) {
262 local_result = TRUE;
263 }
264 break;
265
266 default:
267
268 status = AE_AML_INTERNAL;
269 break;
270 }
271
272 /* Return the logical result and status */
273
274 *logical_result = local_result;
275 return_ACPI_STATUS(status);
276 }
277
278 /*******************************************************************************
279 *
280 * FUNCTION: acpi_ex_do_logical_op
281 *
282 * PARAMETERS: opcode - AML opcode
283 * operand0 - operand #0
284 * operand1 - operand #1
285 * logical_result - TRUE/FALSE result of the operation
286 *
287 * RETURN: Status
288 *
289 * DESCRIPTION: Execute a logical AML opcode. The purpose of having all of the
290 * functions here is to prevent a lot of pointer dereferencing
291 * to obtain the operands and to simplify the generation of the
292 * logical value. For the Numeric operators (LAnd and LOr), both
293 * operands must be integers. For the other logical operators,
294 * operands can be any combination of Integer/String/Buffer. The
295 * first operand determines the type to which the second operand
296 * will be converted.
297 *
298 * Note: cleanest machine code seems to be produced by the code
299 * below, rather than using statements of the form:
300 * Result = (Operand0 == Operand1);
301 *
302 ******************************************************************************/
303
304 acpi_status
acpi_ex_do_logical_op(u16 opcode,union acpi_operand_object * operand0,union acpi_operand_object * operand1,u8 * logical_result)305 acpi_ex_do_logical_op(u16 opcode,
306 union acpi_operand_object *operand0,
307 union acpi_operand_object *operand1, u8 * logical_result)
308 {
309 union acpi_operand_object *local_operand1 = operand1;
310 u64 integer0;
311 u64 integer1;
312 u32 length0;
313 u32 length1;
314 acpi_status status = AE_OK;
315 u8 local_result = FALSE;
316 int compare;
317
318 ACPI_FUNCTION_TRACE(ex_do_logical_op);
319
320 /*
321 * Convert the second operand if necessary. The first operand
322 * determines the type of the second operand, (See the Data Types
323 * section of the ACPI 3.0+ specification.) Both object types are
324 * guaranteed to be either Integer/String/Buffer by the operand
325 * resolution mechanism.
326 */
327 switch (operand0->common.type) {
328 case ACPI_TYPE_INTEGER:
329
330 status = acpi_ex_convert_to_integer(operand1, &local_operand1,
331 ACPI_STRTOUL_BASE16);
332 break;
333
334 case ACPI_TYPE_STRING:
335
336 status =
337 acpi_ex_convert_to_string(operand1, &local_operand1,
338 ACPI_IMPLICIT_CONVERT_HEX);
339 break;
340
341 case ACPI_TYPE_BUFFER:
342
343 status = acpi_ex_convert_to_buffer(operand1, &local_operand1);
344 break;
345
346 default:
347
348 status = AE_AML_INTERNAL;
349 break;
350 }
351
352 if (ACPI_FAILURE(status)) {
353 goto cleanup;
354 }
355
356 /*
357 * Two cases: 1) Both Integers, 2) Both Strings or Buffers
358 */
359 if (operand0->common.type == ACPI_TYPE_INTEGER) {
360 /*
361 * 1) Both operands are of type integer
362 * Note: local_operand1 may have changed above
363 */
364 integer0 = operand0->integer.value;
365 integer1 = local_operand1->integer.value;
366
367 switch (opcode) {
368 case AML_LEQUAL_OP: /* LEqual (Operand0, Operand1) */
369
370 if (integer0 == integer1) {
371 local_result = TRUE;
372 }
373 break;
374
375 case AML_LGREATER_OP: /* LGreater (Operand0, Operand1) */
376
377 if (integer0 > integer1) {
378 local_result = TRUE;
379 }
380 break;
381
382 case AML_LLESS_OP: /* LLess (Operand0, Operand1) */
383
384 if (integer0 < integer1) {
385 local_result = TRUE;
386 }
387 break;
388
389 default:
390
391 status = AE_AML_INTERNAL;
392 break;
393 }
394 } else {
395 /*
396 * 2) Both operands are Strings or both are Buffers
397 * Note: Code below takes advantage of common Buffer/String
398 * object fields. local_operand1 may have changed above. Use
399 * memcmp to handle nulls in buffers.
400 */
401 length0 = operand0->buffer.length;
402 length1 = local_operand1->buffer.length;
403
404 /* Lexicographic compare: compare the data bytes */
405
406 compare = memcmp(operand0->buffer.pointer,
407 local_operand1->buffer.pointer,
408 (length0 > length1) ? length1 : length0);
409
410 switch (opcode) {
411 case AML_LEQUAL_OP: /* LEqual (Operand0, Operand1) */
412
413 /* Length and all bytes must be equal */
414
415 if ((length0 == length1) && (compare == 0)) {
416
417 /* Length and all bytes match ==> TRUE */
418
419 local_result = TRUE;
420 }
421 break;
422
423 case AML_LGREATER_OP: /* LGreater (Operand0, Operand1) */
424
425 if (compare > 0) {
426 local_result = TRUE;
427 goto cleanup; /* TRUE */
428 }
429 if (compare < 0) {
430 goto cleanup; /* FALSE */
431 }
432
433 /* Bytes match (to shortest length), compare lengths */
434
435 if (length0 > length1) {
436 local_result = TRUE;
437 }
438 break;
439
440 case AML_LLESS_OP: /* LLess (Operand0, Operand1) */
441
442 if (compare > 0) {
443 goto cleanup; /* FALSE */
444 }
445 if (compare < 0) {
446 local_result = TRUE;
447 goto cleanup; /* TRUE */
448 }
449
450 /* Bytes match (to shortest length), compare lengths */
451
452 if (length0 < length1) {
453 local_result = TRUE;
454 }
455 break;
456
457 default:
458
459 status = AE_AML_INTERNAL;
460 break;
461 }
462 }
463
464 cleanup:
465
466 /* New object was created if implicit conversion performed - delete */
467
468 if (local_operand1 != operand1) {
469 acpi_ut_remove_reference(local_operand1);
470 }
471
472 /* Return the logical result and status */
473
474 *logical_result = local_result;
475 return_ACPI_STATUS(status);
476 }
477