1 /*
2 * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3 *
4 * Copyright (C) 2000 Andrew Henroid
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (c) 2008 Intel Corporation
8 * Author: Matthew Wilcox <willy@linux.intel.com>
9 *
10 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23 *
24 */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <asm/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "internal.h"
49
50 #define _COMPONENT ACPI_OS_SERVICES
51 ACPI_MODULE_NAME("osl");
52
53 struct acpi_os_dpc {
54 acpi_osd_exec_callback function;
55 void *context;
56 struct work_struct work;
57 };
58
59 #ifdef ENABLE_DEBUGGER
60 #include <linux/kdb.h>
61
62 /* stuff for debugger support */
63 int acpi_in_debugger;
64 EXPORT_SYMBOL(acpi_in_debugger);
65 #endif /*ENABLE_DEBUGGER */
66
67 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
68 u32 pm1b_ctrl);
69 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
70 u32 val_b);
71
72 static acpi_osd_handler acpi_irq_handler;
73 static void *acpi_irq_context;
74 static struct workqueue_struct *kacpid_wq;
75 static struct workqueue_struct *kacpi_notify_wq;
76 static struct workqueue_struct *kacpi_hotplug_wq;
77 static bool acpi_os_initialized;
78 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
79
80 /*
81 * This list of permanent mappings is for memory that may be accessed from
82 * interrupt context, where we can't do the ioremap().
83 */
84 struct acpi_ioremap {
85 struct list_head list;
86 void __iomem *virt;
87 acpi_physical_address phys;
88 acpi_size size;
89 unsigned long refcount;
90 };
91
92 static LIST_HEAD(acpi_ioremaps);
93 static DEFINE_MUTEX(acpi_ioremap_lock);
94
acpi_request_region(struct acpi_generic_address * gas,unsigned int length,char * desc)95 static void __init acpi_request_region (struct acpi_generic_address *gas,
96 unsigned int length, char *desc)
97 {
98 u64 addr;
99
100 /* Handle possible alignment issues */
101 memcpy(&addr, &gas->address, sizeof(addr));
102 if (!addr || !length)
103 return;
104
105 /* Resources are never freed */
106 if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
107 request_region(addr, length, desc);
108 else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
109 request_mem_region(addr, length, desc);
110 }
111
acpi_reserve_resources(void)112 static int __init acpi_reserve_resources(void)
113 {
114 acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
115 "ACPI PM1a_EVT_BLK");
116
117 acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
118 "ACPI PM1b_EVT_BLK");
119
120 acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
121 "ACPI PM1a_CNT_BLK");
122
123 acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
124 "ACPI PM1b_CNT_BLK");
125
126 if (acpi_gbl_FADT.pm_timer_length == 4)
127 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
128
129 acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
130 "ACPI PM2_CNT_BLK");
131
132 /* Length of GPE blocks must be a non-negative multiple of 2 */
133
134 if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
135 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
136 acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
137
138 if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
139 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
140 acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
141
142 return 0;
143 }
144 fs_initcall_sync(acpi_reserve_resources);
145
acpi_os_printf(const char * fmt,...)146 void acpi_os_printf(const char *fmt, ...)
147 {
148 va_list args;
149 va_start(args, fmt);
150 acpi_os_vprintf(fmt, args);
151 va_end(args);
152 }
153 EXPORT_SYMBOL(acpi_os_printf);
154
acpi_os_vprintf(const char * fmt,va_list args)155 void acpi_os_vprintf(const char *fmt, va_list args)
156 {
157 static char buffer[512];
158
159 vsprintf(buffer, fmt, args);
160
161 #ifdef ENABLE_DEBUGGER
162 if (acpi_in_debugger) {
163 kdb_printf("%s", buffer);
164 } else {
165 if (printk_get_level(buffer))
166 printk("%s", buffer);
167 else
168 printk(KERN_CONT "%s", buffer);
169 }
170 #else
171 if (acpi_debugger_write_log(buffer) < 0) {
172 if (printk_get_level(buffer))
173 printk("%s", buffer);
174 else
175 printk(KERN_CONT "%s", buffer);
176 }
177 #endif
178 }
179
180 #ifdef CONFIG_KEXEC
181 static unsigned long acpi_rsdp;
setup_acpi_rsdp(char * arg)182 static int __init setup_acpi_rsdp(char *arg)
183 {
184 if (kstrtoul(arg, 16, &acpi_rsdp))
185 return -EINVAL;
186 return 0;
187 }
188 early_param("acpi_rsdp", setup_acpi_rsdp);
189 #endif
190
acpi_os_get_root_pointer(void)191 acpi_physical_address __init acpi_os_get_root_pointer(void)
192 {
193 #ifdef CONFIG_KEXEC
194 if (acpi_rsdp)
195 return acpi_rsdp;
196 #endif
197
198 if (efi_enabled(EFI_CONFIG_TABLES)) {
199 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
200 return efi.acpi20;
201 else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
202 return efi.acpi;
203 else {
204 printk(KERN_ERR PREFIX
205 "System description tables not found\n");
206 return 0;
207 }
208 } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
209 acpi_physical_address pa = 0;
210
211 acpi_find_root_pointer(&pa);
212 return pa;
213 }
214
215 return 0;
216 }
217
218 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
219 static struct acpi_ioremap *
acpi_map_lookup(acpi_physical_address phys,acpi_size size)220 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
221 {
222 struct acpi_ioremap *map;
223
224 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
225 if (map->phys <= phys &&
226 phys + size <= map->phys + map->size)
227 return map;
228
229 return NULL;
230 }
231
232 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
233 static void __iomem *
acpi_map_vaddr_lookup(acpi_physical_address phys,unsigned int size)234 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
235 {
236 struct acpi_ioremap *map;
237
238 map = acpi_map_lookup(phys, size);
239 if (map)
240 return map->virt + (phys - map->phys);
241
242 return NULL;
243 }
244
acpi_os_get_iomem(acpi_physical_address phys,unsigned int size)245 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
246 {
247 struct acpi_ioremap *map;
248 void __iomem *virt = NULL;
249
250 mutex_lock(&acpi_ioremap_lock);
251 map = acpi_map_lookup(phys, size);
252 if (map) {
253 virt = map->virt + (phys - map->phys);
254 map->refcount++;
255 }
256 mutex_unlock(&acpi_ioremap_lock);
257 return virt;
258 }
259 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
260
261 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
262 static struct acpi_ioremap *
acpi_map_lookup_virt(void __iomem * virt,acpi_size size)263 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
264 {
265 struct acpi_ioremap *map;
266
267 list_for_each_entry_rcu(map, &acpi_ioremaps, list)
268 if (map->virt <= virt &&
269 virt + size <= map->virt + map->size)
270 return map;
271
272 return NULL;
273 }
274
275 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
276 /* ioremap will take care of cache attributes */
277 #define should_use_kmap(pfn) 0
278 #else
279 #define should_use_kmap(pfn) page_is_ram(pfn)
280 #endif
281
acpi_map(acpi_physical_address pg_off,unsigned long pg_sz)282 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
283 {
284 unsigned long pfn;
285
286 pfn = pg_off >> PAGE_SHIFT;
287 if (should_use_kmap(pfn)) {
288 if (pg_sz > PAGE_SIZE)
289 return NULL;
290 return (void __iomem __force *)kmap(pfn_to_page(pfn));
291 } else
292 return acpi_os_ioremap(pg_off, pg_sz);
293 }
294
acpi_unmap(acpi_physical_address pg_off,void __iomem * vaddr)295 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
296 {
297 unsigned long pfn;
298
299 pfn = pg_off >> PAGE_SHIFT;
300 if (should_use_kmap(pfn))
301 kunmap(pfn_to_page(pfn));
302 else
303 iounmap(vaddr);
304 }
305
306 /**
307 * acpi_os_map_iomem - Get a virtual address for a given physical address range.
308 * @phys: Start of the physical address range to map.
309 * @size: Size of the physical address range to map.
310 *
311 * Look up the given physical address range in the list of existing ACPI memory
312 * mappings. If found, get a reference to it and return a pointer to it (its
313 * virtual address). If not found, map it, add it to that list and return a
314 * pointer to it.
315 *
316 * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
317 * routine simply calls __acpi_map_table() to get the job done.
318 */
319 void __iomem *__ref
acpi_os_map_iomem(acpi_physical_address phys,acpi_size size)320 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
321 {
322 struct acpi_ioremap *map;
323 void __iomem *virt;
324 acpi_physical_address pg_off;
325 acpi_size pg_sz;
326
327 if (phys > ULONG_MAX) {
328 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
329 return NULL;
330 }
331
332 if (!acpi_gbl_permanent_mmap)
333 return __acpi_map_table((unsigned long)phys, size);
334
335 mutex_lock(&acpi_ioremap_lock);
336 /* Check if there's a suitable mapping already. */
337 map = acpi_map_lookup(phys, size);
338 if (map) {
339 map->refcount++;
340 goto out;
341 }
342
343 map = kzalloc(sizeof(*map), GFP_KERNEL);
344 if (!map) {
345 mutex_unlock(&acpi_ioremap_lock);
346 return NULL;
347 }
348
349 pg_off = round_down(phys, PAGE_SIZE);
350 pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
351 virt = acpi_map(pg_off, pg_sz);
352 if (!virt) {
353 mutex_unlock(&acpi_ioremap_lock);
354 kfree(map);
355 return NULL;
356 }
357
358 INIT_LIST_HEAD(&map->list);
359 map->virt = virt;
360 map->phys = pg_off;
361 map->size = pg_sz;
362 map->refcount = 1;
363
364 list_add_tail_rcu(&map->list, &acpi_ioremaps);
365
366 out:
367 mutex_unlock(&acpi_ioremap_lock);
368 return map->virt + (phys - map->phys);
369 }
370 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
371
acpi_os_map_memory(acpi_physical_address phys,acpi_size size)372 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
373 {
374 return (void *)acpi_os_map_iomem(phys, size);
375 }
376 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
377
acpi_os_drop_map_ref(struct acpi_ioremap * map)378 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
379 {
380 if (!--map->refcount)
381 list_del_rcu(&map->list);
382 }
383
acpi_os_map_cleanup(struct acpi_ioremap * map)384 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
385 {
386 if (!map->refcount) {
387 synchronize_rcu_expedited();
388 acpi_unmap(map->phys, map->virt);
389 kfree(map);
390 }
391 }
392
393 /**
394 * acpi_os_unmap_iomem - Drop a memory mapping reference.
395 * @virt: Start of the address range to drop a reference to.
396 * @size: Size of the address range to drop a reference to.
397 *
398 * Look up the given virtual address range in the list of existing ACPI memory
399 * mappings, drop a reference to it and unmap it if there are no more active
400 * references to it.
401 *
402 * During early init (when acpi_gbl_permanent_mmap has not been set yet) this
403 * routine simply calls __acpi_unmap_table() to get the job done. Since
404 * __acpi_unmap_table() is an __init function, the __ref annotation is needed
405 * here.
406 */
acpi_os_unmap_iomem(void __iomem * virt,acpi_size size)407 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
408 {
409 struct acpi_ioremap *map;
410
411 if (!acpi_gbl_permanent_mmap) {
412 __acpi_unmap_table(virt, size);
413 return;
414 }
415
416 mutex_lock(&acpi_ioremap_lock);
417 map = acpi_map_lookup_virt(virt, size);
418 if (!map) {
419 mutex_unlock(&acpi_ioremap_lock);
420 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
421 return;
422 }
423 acpi_os_drop_map_ref(map);
424 mutex_unlock(&acpi_ioremap_lock);
425
426 acpi_os_map_cleanup(map);
427 }
428 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
429
acpi_os_unmap_memory(void * virt,acpi_size size)430 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
431 {
432 return acpi_os_unmap_iomem((void __iomem *)virt, size);
433 }
434 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
435
early_acpi_os_unmap_memory(void __iomem * virt,acpi_size size)436 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
437 {
438 if (!acpi_gbl_permanent_mmap)
439 __acpi_unmap_table(virt, size);
440 }
441
acpi_os_map_generic_address(struct acpi_generic_address * gas)442 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
443 {
444 u64 addr;
445 void __iomem *virt;
446
447 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
448 return 0;
449
450 /* Handle possible alignment issues */
451 memcpy(&addr, &gas->address, sizeof(addr));
452 if (!addr || !gas->bit_width)
453 return -EINVAL;
454
455 virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
456 if (!virt)
457 return -EIO;
458
459 return 0;
460 }
461 EXPORT_SYMBOL(acpi_os_map_generic_address);
462
acpi_os_unmap_generic_address(struct acpi_generic_address * gas)463 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
464 {
465 u64 addr;
466 struct acpi_ioremap *map;
467
468 if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
469 return;
470
471 /* Handle possible alignment issues */
472 memcpy(&addr, &gas->address, sizeof(addr));
473 if (!addr || !gas->bit_width)
474 return;
475
476 mutex_lock(&acpi_ioremap_lock);
477 map = acpi_map_lookup(addr, gas->bit_width / 8);
478 if (!map) {
479 mutex_unlock(&acpi_ioremap_lock);
480 return;
481 }
482 acpi_os_drop_map_ref(map);
483 mutex_unlock(&acpi_ioremap_lock);
484
485 acpi_os_map_cleanup(map);
486 }
487 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
488
489 #ifdef ACPI_FUTURE_USAGE
490 acpi_status
acpi_os_get_physical_address(void * virt,acpi_physical_address * phys)491 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
492 {
493 if (!phys || !virt)
494 return AE_BAD_PARAMETER;
495
496 *phys = virt_to_phys(virt);
497
498 return AE_OK;
499 }
500 #endif
501
502 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
503 static bool acpi_rev_override;
504
acpi_rev_override_setup(char * str)505 int __init acpi_rev_override_setup(char *str)
506 {
507 acpi_rev_override = true;
508 return 1;
509 }
510 __setup("acpi_rev_override", acpi_rev_override_setup);
511 #else
512 #define acpi_rev_override false
513 #endif
514
515 #define ACPI_MAX_OVERRIDE_LEN 100
516
517 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
518
519 acpi_status
acpi_os_predefined_override(const struct acpi_predefined_names * init_val,acpi_string * new_val)520 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
521 acpi_string *new_val)
522 {
523 if (!init_val || !new_val)
524 return AE_BAD_PARAMETER;
525
526 *new_val = NULL;
527 if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
528 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
529 acpi_os_name);
530 *new_val = acpi_os_name;
531 }
532
533 if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
534 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
535 *new_val = (char *)5;
536 }
537
538 return AE_OK;
539 }
540
acpi_irq(int irq,void * dev_id)541 static irqreturn_t acpi_irq(int irq, void *dev_id)
542 {
543 u32 handled;
544
545 handled = (*acpi_irq_handler) (acpi_irq_context);
546
547 if (handled) {
548 acpi_irq_handled++;
549 return IRQ_HANDLED;
550 } else {
551 acpi_irq_not_handled++;
552 return IRQ_NONE;
553 }
554 }
555
556 acpi_status
acpi_os_install_interrupt_handler(u32 gsi,acpi_osd_handler handler,void * context)557 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
558 void *context)
559 {
560 unsigned int irq;
561
562 acpi_irq_stats_init();
563
564 /*
565 * ACPI interrupts different from the SCI in our copy of the FADT are
566 * not supported.
567 */
568 if (gsi != acpi_gbl_FADT.sci_interrupt)
569 return AE_BAD_PARAMETER;
570
571 if (acpi_irq_handler)
572 return AE_ALREADY_ACQUIRED;
573
574 if (acpi_gsi_to_irq(gsi, &irq) < 0) {
575 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
576 gsi);
577 return AE_OK;
578 }
579
580 acpi_irq_handler = handler;
581 acpi_irq_context = context;
582 if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
583 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
584 acpi_irq_handler = NULL;
585 return AE_NOT_ACQUIRED;
586 }
587 acpi_sci_irq = irq;
588
589 return AE_OK;
590 }
591
acpi_os_remove_interrupt_handler(u32 gsi,acpi_osd_handler handler)592 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
593 {
594 if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
595 return AE_BAD_PARAMETER;
596
597 free_irq(acpi_sci_irq, acpi_irq);
598 acpi_irq_handler = NULL;
599 acpi_sci_irq = INVALID_ACPI_IRQ;
600
601 return AE_OK;
602 }
603
604 /*
605 * Running in interpreter thread context, safe to sleep
606 */
607
acpi_os_sleep(u64 ms)608 void acpi_os_sleep(u64 ms)
609 {
610 msleep(ms);
611 }
612
acpi_os_stall(u32 us)613 void acpi_os_stall(u32 us)
614 {
615 while (us) {
616 u32 delay = 1000;
617
618 if (delay > us)
619 delay = us;
620 udelay(delay);
621 touch_nmi_watchdog();
622 us -= delay;
623 }
624 }
625
626 /*
627 * Support ACPI 3.0 AML Timer operand
628 * Returns 64-bit free-running, monotonically increasing timer
629 * with 100ns granularity
630 */
acpi_os_get_timer(void)631 u64 acpi_os_get_timer(void)
632 {
633 u64 time_ns = ktime_to_ns(ktime_get());
634 do_div(time_ns, 100);
635 return time_ns;
636 }
637
acpi_os_read_port(acpi_io_address port,u32 * value,u32 width)638 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
639 {
640 u32 dummy;
641
642 if (!value)
643 value = &dummy;
644
645 *value = 0;
646 if (width <= 8) {
647 *(u8 *) value = inb(port);
648 } else if (width <= 16) {
649 *(u16 *) value = inw(port);
650 } else if (width <= 32) {
651 *(u32 *) value = inl(port);
652 } else {
653 BUG();
654 }
655
656 return AE_OK;
657 }
658
659 EXPORT_SYMBOL(acpi_os_read_port);
660
acpi_os_write_port(acpi_io_address port,u32 value,u32 width)661 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
662 {
663 if (width <= 8) {
664 outb(value, port);
665 } else if (width <= 16) {
666 outw(value, port);
667 } else if (width <= 32) {
668 outl(value, port);
669 } else {
670 BUG();
671 }
672
673 return AE_OK;
674 }
675
676 EXPORT_SYMBOL(acpi_os_write_port);
677
678 acpi_status
acpi_os_read_memory(acpi_physical_address phys_addr,u64 * value,u32 width)679 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
680 {
681 void __iomem *virt_addr;
682 unsigned int size = width / 8;
683 bool unmap = false;
684 u64 dummy;
685
686 rcu_read_lock();
687 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
688 if (!virt_addr) {
689 rcu_read_unlock();
690 virt_addr = acpi_os_ioremap(phys_addr, size);
691 if (!virt_addr)
692 return AE_BAD_ADDRESS;
693 unmap = true;
694 }
695
696 if (!value)
697 value = &dummy;
698
699 switch (width) {
700 case 8:
701 *(u8 *) value = readb(virt_addr);
702 break;
703 case 16:
704 *(u16 *) value = readw(virt_addr);
705 break;
706 case 32:
707 *(u32 *) value = readl(virt_addr);
708 break;
709 case 64:
710 *(u64 *) value = readq(virt_addr);
711 break;
712 default:
713 BUG();
714 }
715
716 if (unmap)
717 iounmap(virt_addr);
718 else
719 rcu_read_unlock();
720
721 return AE_OK;
722 }
723
724 acpi_status
acpi_os_write_memory(acpi_physical_address phys_addr,u64 value,u32 width)725 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
726 {
727 void __iomem *virt_addr;
728 unsigned int size = width / 8;
729 bool unmap = false;
730
731 rcu_read_lock();
732 virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
733 if (!virt_addr) {
734 rcu_read_unlock();
735 virt_addr = acpi_os_ioremap(phys_addr, size);
736 if (!virt_addr)
737 return AE_BAD_ADDRESS;
738 unmap = true;
739 }
740
741 switch (width) {
742 case 8:
743 writeb(value, virt_addr);
744 break;
745 case 16:
746 writew(value, virt_addr);
747 break;
748 case 32:
749 writel(value, virt_addr);
750 break;
751 case 64:
752 writeq(value, virt_addr);
753 break;
754 default:
755 BUG();
756 }
757
758 if (unmap)
759 iounmap(virt_addr);
760 else
761 rcu_read_unlock();
762
763 return AE_OK;
764 }
765
766 acpi_status
acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 * value,u32 width)767 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
768 u64 *value, u32 width)
769 {
770 int result, size;
771 u32 value32;
772
773 if (!value)
774 return AE_BAD_PARAMETER;
775
776 switch (width) {
777 case 8:
778 size = 1;
779 break;
780 case 16:
781 size = 2;
782 break;
783 case 32:
784 size = 4;
785 break;
786 default:
787 return AE_ERROR;
788 }
789
790 result = raw_pci_read(pci_id->segment, pci_id->bus,
791 PCI_DEVFN(pci_id->device, pci_id->function),
792 reg, size, &value32);
793 *value = value32;
794
795 return (result ? AE_ERROR : AE_OK);
796 }
797
798 acpi_status
acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 value,u32 width)799 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
800 u64 value, u32 width)
801 {
802 int result, size;
803
804 switch (width) {
805 case 8:
806 size = 1;
807 break;
808 case 16:
809 size = 2;
810 break;
811 case 32:
812 size = 4;
813 break;
814 default:
815 return AE_ERROR;
816 }
817
818 result = raw_pci_write(pci_id->segment, pci_id->bus,
819 PCI_DEVFN(pci_id->device, pci_id->function),
820 reg, size, value);
821
822 return (result ? AE_ERROR : AE_OK);
823 }
824
acpi_os_execute_deferred(struct work_struct * work)825 static void acpi_os_execute_deferred(struct work_struct *work)
826 {
827 struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
828
829 dpc->function(dpc->context);
830 kfree(dpc);
831 }
832
833 #ifdef CONFIG_ACPI_DEBUGGER
834 static struct acpi_debugger acpi_debugger;
835 static bool acpi_debugger_initialized;
836
acpi_register_debugger(struct module * owner,const struct acpi_debugger_ops * ops)837 int acpi_register_debugger(struct module *owner,
838 const struct acpi_debugger_ops *ops)
839 {
840 int ret = 0;
841
842 mutex_lock(&acpi_debugger.lock);
843 if (acpi_debugger.ops) {
844 ret = -EBUSY;
845 goto err_lock;
846 }
847
848 acpi_debugger.owner = owner;
849 acpi_debugger.ops = ops;
850
851 err_lock:
852 mutex_unlock(&acpi_debugger.lock);
853 return ret;
854 }
855 EXPORT_SYMBOL(acpi_register_debugger);
856
acpi_unregister_debugger(const struct acpi_debugger_ops * ops)857 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
858 {
859 mutex_lock(&acpi_debugger.lock);
860 if (ops == acpi_debugger.ops) {
861 acpi_debugger.ops = NULL;
862 acpi_debugger.owner = NULL;
863 }
864 mutex_unlock(&acpi_debugger.lock);
865 }
866 EXPORT_SYMBOL(acpi_unregister_debugger);
867
acpi_debugger_create_thread(acpi_osd_exec_callback function,void * context)868 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
869 {
870 int ret;
871 int (*func)(acpi_osd_exec_callback, void *);
872 struct module *owner;
873
874 if (!acpi_debugger_initialized)
875 return -ENODEV;
876 mutex_lock(&acpi_debugger.lock);
877 if (!acpi_debugger.ops) {
878 ret = -ENODEV;
879 goto err_lock;
880 }
881 if (!try_module_get(acpi_debugger.owner)) {
882 ret = -ENODEV;
883 goto err_lock;
884 }
885 func = acpi_debugger.ops->create_thread;
886 owner = acpi_debugger.owner;
887 mutex_unlock(&acpi_debugger.lock);
888
889 ret = func(function, context);
890
891 mutex_lock(&acpi_debugger.lock);
892 module_put(owner);
893 err_lock:
894 mutex_unlock(&acpi_debugger.lock);
895 return ret;
896 }
897
acpi_debugger_write_log(const char * msg)898 ssize_t acpi_debugger_write_log(const char *msg)
899 {
900 ssize_t ret;
901 ssize_t (*func)(const char *);
902 struct module *owner;
903
904 if (!acpi_debugger_initialized)
905 return -ENODEV;
906 mutex_lock(&acpi_debugger.lock);
907 if (!acpi_debugger.ops) {
908 ret = -ENODEV;
909 goto err_lock;
910 }
911 if (!try_module_get(acpi_debugger.owner)) {
912 ret = -ENODEV;
913 goto err_lock;
914 }
915 func = acpi_debugger.ops->write_log;
916 owner = acpi_debugger.owner;
917 mutex_unlock(&acpi_debugger.lock);
918
919 ret = func(msg);
920
921 mutex_lock(&acpi_debugger.lock);
922 module_put(owner);
923 err_lock:
924 mutex_unlock(&acpi_debugger.lock);
925 return ret;
926 }
927
acpi_debugger_read_cmd(char * buffer,size_t buffer_length)928 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
929 {
930 ssize_t ret;
931 ssize_t (*func)(char *, size_t);
932 struct module *owner;
933
934 if (!acpi_debugger_initialized)
935 return -ENODEV;
936 mutex_lock(&acpi_debugger.lock);
937 if (!acpi_debugger.ops) {
938 ret = -ENODEV;
939 goto err_lock;
940 }
941 if (!try_module_get(acpi_debugger.owner)) {
942 ret = -ENODEV;
943 goto err_lock;
944 }
945 func = acpi_debugger.ops->read_cmd;
946 owner = acpi_debugger.owner;
947 mutex_unlock(&acpi_debugger.lock);
948
949 ret = func(buffer, buffer_length);
950
951 mutex_lock(&acpi_debugger.lock);
952 module_put(owner);
953 err_lock:
954 mutex_unlock(&acpi_debugger.lock);
955 return ret;
956 }
957
acpi_debugger_wait_command_ready(void)958 int acpi_debugger_wait_command_ready(void)
959 {
960 int ret;
961 int (*func)(bool, char *, size_t);
962 struct module *owner;
963
964 if (!acpi_debugger_initialized)
965 return -ENODEV;
966 mutex_lock(&acpi_debugger.lock);
967 if (!acpi_debugger.ops) {
968 ret = -ENODEV;
969 goto err_lock;
970 }
971 if (!try_module_get(acpi_debugger.owner)) {
972 ret = -ENODEV;
973 goto err_lock;
974 }
975 func = acpi_debugger.ops->wait_command_ready;
976 owner = acpi_debugger.owner;
977 mutex_unlock(&acpi_debugger.lock);
978
979 ret = func(acpi_gbl_method_executing,
980 acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
981
982 mutex_lock(&acpi_debugger.lock);
983 module_put(owner);
984 err_lock:
985 mutex_unlock(&acpi_debugger.lock);
986 return ret;
987 }
988
acpi_debugger_notify_command_complete(void)989 int acpi_debugger_notify_command_complete(void)
990 {
991 int ret;
992 int (*func)(void);
993 struct module *owner;
994
995 if (!acpi_debugger_initialized)
996 return -ENODEV;
997 mutex_lock(&acpi_debugger.lock);
998 if (!acpi_debugger.ops) {
999 ret = -ENODEV;
1000 goto err_lock;
1001 }
1002 if (!try_module_get(acpi_debugger.owner)) {
1003 ret = -ENODEV;
1004 goto err_lock;
1005 }
1006 func = acpi_debugger.ops->notify_command_complete;
1007 owner = acpi_debugger.owner;
1008 mutex_unlock(&acpi_debugger.lock);
1009
1010 ret = func();
1011
1012 mutex_lock(&acpi_debugger.lock);
1013 module_put(owner);
1014 err_lock:
1015 mutex_unlock(&acpi_debugger.lock);
1016 return ret;
1017 }
1018
acpi_debugger_init(void)1019 int __init acpi_debugger_init(void)
1020 {
1021 mutex_init(&acpi_debugger.lock);
1022 acpi_debugger_initialized = true;
1023 return 0;
1024 }
1025 #endif
1026
1027 /*******************************************************************************
1028 *
1029 * FUNCTION: acpi_os_execute
1030 *
1031 * PARAMETERS: Type - Type of the callback
1032 * Function - Function to be executed
1033 * Context - Function parameters
1034 *
1035 * RETURN: Status
1036 *
1037 * DESCRIPTION: Depending on type, either queues function for deferred execution or
1038 * immediately executes function on a separate thread.
1039 *
1040 ******************************************************************************/
1041
acpi_os_execute(acpi_execute_type type,acpi_osd_exec_callback function,void * context)1042 acpi_status acpi_os_execute(acpi_execute_type type,
1043 acpi_osd_exec_callback function, void *context)
1044 {
1045 acpi_status status = AE_OK;
1046 struct acpi_os_dpc *dpc;
1047 struct workqueue_struct *queue;
1048 int ret;
1049 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1050 "Scheduling function [%p(%p)] for deferred execution.\n",
1051 function, context));
1052
1053 if (type == OSL_DEBUGGER_MAIN_THREAD) {
1054 ret = acpi_debugger_create_thread(function, context);
1055 if (ret) {
1056 pr_err("Call to kthread_create() failed.\n");
1057 status = AE_ERROR;
1058 }
1059 goto out_thread;
1060 }
1061
1062 /*
1063 * Allocate/initialize DPC structure. Note that this memory will be
1064 * freed by the callee. The kernel handles the work_struct list in a
1065 * way that allows us to also free its memory inside the callee.
1066 * Because we may want to schedule several tasks with different
1067 * parameters we can't use the approach some kernel code uses of
1068 * having a static work_struct.
1069 */
1070
1071 dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1072 if (!dpc)
1073 return AE_NO_MEMORY;
1074
1075 dpc->function = function;
1076 dpc->context = context;
1077
1078 /*
1079 * To prevent lockdep from complaining unnecessarily, make sure that
1080 * there is a different static lockdep key for each workqueue by using
1081 * INIT_WORK() for each of them separately.
1082 */
1083 if (type == OSL_NOTIFY_HANDLER) {
1084 queue = kacpi_notify_wq;
1085 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1086 } else if (type == OSL_GPE_HANDLER) {
1087 queue = kacpid_wq;
1088 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1089 } else {
1090 pr_err("Unsupported os_execute type %d.\n", type);
1091 status = AE_ERROR;
1092 }
1093
1094 if (ACPI_FAILURE(status))
1095 goto err_workqueue;
1096
1097 /*
1098 * On some machines, a software-initiated SMI causes corruption unless
1099 * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
1100 * typically it's done in GPE-related methods that are run via
1101 * workqueues, so we can avoid the known corruption cases by always
1102 * queueing on CPU 0.
1103 */
1104 ret = queue_work_on(0, queue, &dpc->work);
1105 if (!ret) {
1106 printk(KERN_ERR PREFIX
1107 "Call to queue_work() failed.\n");
1108 status = AE_ERROR;
1109 }
1110 err_workqueue:
1111 if (ACPI_FAILURE(status))
1112 kfree(dpc);
1113 out_thread:
1114 return status;
1115 }
1116 EXPORT_SYMBOL(acpi_os_execute);
1117
acpi_os_wait_events_complete(void)1118 void acpi_os_wait_events_complete(void)
1119 {
1120 /*
1121 * Make sure the GPE handler or the fixed event handler is not used
1122 * on another CPU after removal.
1123 */
1124 if (acpi_sci_irq_valid())
1125 synchronize_hardirq(acpi_sci_irq);
1126 flush_workqueue(kacpid_wq);
1127 flush_workqueue(kacpi_notify_wq);
1128 }
1129
1130 struct acpi_hp_work {
1131 struct work_struct work;
1132 struct acpi_device *adev;
1133 u32 src;
1134 };
1135
acpi_hotplug_work_fn(struct work_struct * work)1136 static void acpi_hotplug_work_fn(struct work_struct *work)
1137 {
1138 struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1139
1140 acpi_os_wait_events_complete();
1141 acpi_device_hotplug(hpw->adev, hpw->src);
1142 kfree(hpw);
1143 }
1144
acpi_hotplug_schedule(struct acpi_device * adev,u32 src)1145 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1146 {
1147 struct acpi_hp_work *hpw;
1148
1149 ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1150 "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1151 adev, src));
1152
1153 hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1154 if (!hpw)
1155 return AE_NO_MEMORY;
1156
1157 INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1158 hpw->adev = adev;
1159 hpw->src = src;
1160 /*
1161 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1162 * the hotplug code may call driver .remove() functions, which may
1163 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1164 * these workqueues.
1165 */
1166 if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1167 kfree(hpw);
1168 return AE_ERROR;
1169 }
1170 return AE_OK;
1171 }
1172
acpi_queue_hotplug_work(struct work_struct * work)1173 bool acpi_queue_hotplug_work(struct work_struct *work)
1174 {
1175 return queue_work(kacpi_hotplug_wq, work);
1176 }
1177
1178 acpi_status
acpi_os_create_semaphore(u32 max_units,u32 initial_units,acpi_handle * handle)1179 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1180 {
1181 struct semaphore *sem = NULL;
1182
1183 sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1184 if (!sem)
1185 return AE_NO_MEMORY;
1186
1187 sema_init(sem, initial_units);
1188
1189 *handle = (acpi_handle *) sem;
1190
1191 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1192 *handle, initial_units));
1193
1194 return AE_OK;
1195 }
1196
1197 /*
1198 * TODO: A better way to delete semaphores? Linux doesn't have a
1199 * 'delete_semaphore()' function -- may result in an invalid
1200 * pointer dereference for non-synchronized consumers. Should
1201 * we at least check for blocked threads and signal/cancel them?
1202 */
1203
acpi_os_delete_semaphore(acpi_handle handle)1204 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1205 {
1206 struct semaphore *sem = (struct semaphore *)handle;
1207
1208 if (!sem)
1209 return AE_BAD_PARAMETER;
1210
1211 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1212
1213 BUG_ON(!list_empty(&sem->wait_list));
1214 kfree(sem);
1215 sem = NULL;
1216
1217 return AE_OK;
1218 }
1219
1220 /*
1221 * TODO: Support for units > 1?
1222 */
acpi_os_wait_semaphore(acpi_handle handle,u32 units,u16 timeout)1223 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1224 {
1225 acpi_status status = AE_OK;
1226 struct semaphore *sem = (struct semaphore *)handle;
1227 long jiffies;
1228 int ret = 0;
1229
1230 if (!acpi_os_initialized)
1231 return AE_OK;
1232
1233 if (!sem || (units < 1))
1234 return AE_BAD_PARAMETER;
1235
1236 if (units > 1)
1237 return AE_SUPPORT;
1238
1239 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1240 handle, units, timeout));
1241
1242 if (timeout == ACPI_WAIT_FOREVER)
1243 jiffies = MAX_SCHEDULE_TIMEOUT;
1244 else
1245 jiffies = msecs_to_jiffies(timeout);
1246
1247 ret = down_timeout(sem, jiffies);
1248 if (ret)
1249 status = AE_TIME;
1250
1251 if (ACPI_FAILURE(status)) {
1252 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1253 "Failed to acquire semaphore[%p|%d|%d], %s",
1254 handle, units, timeout,
1255 acpi_format_exception(status)));
1256 } else {
1257 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1258 "Acquired semaphore[%p|%d|%d]", handle,
1259 units, timeout));
1260 }
1261
1262 return status;
1263 }
1264
1265 /*
1266 * TODO: Support for units > 1?
1267 */
acpi_os_signal_semaphore(acpi_handle handle,u32 units)1268 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1269 {
1270 struct semaphore *sem = (struct semaphore *)handle;
1271
1272 if (!acpi_os_initialized)
1273 return AE_OK;
1274
1275 if (!sem || (units < 1))
1276 return AE_BAD_PARAMETER;
1277
1278 if (units > 1)
1279 return AE_SUPPORT;
1280
1281 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1282 units));
1283
1284 up(sem);
1285
1286 return AE_OK;
1287 }
1288
acpi_os_get_line(char * buffer,u32 buffer_length,u32 * bytes_read)1289 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1290 {
1291 #ifdef ENABLE_DEBUGGER
1292 if (acpi_in_debugger) {
1293 u32 chars;
1294
1295 kdb_read(buffer, buffer_length);
1296
1297 /* remove the CR kdb includes */
1298 chars = strlen(buffer) - 1;
1299 buffer[chars] = '\0';
1300 }
1301 #else
1302 int ret;
1303
1304 ret = acpi_debugger_read_cmd(buffer, buffer_length);
1305 if (ret < 0)
1306 return AE_ERROR;
1307 if (bytes_read)
1308 *bytes_read = ret;
1309 #endif
1310
1311 return AE_OK;
1312 }
1313 EXPORT_SYMBOL(acpi_os_get_line);
1314
acpi_os_wait_command_ready(void)1315 acpi_status acpi_os_wait_command_ready(void)
1316 {
1317 int ret;
1318
1319 ret = acpi_debugger_wait_command_ready();
1320 if (ret < 0)
1321 return AE_ERROR;
1322 return AE_OK;
1323 }
1324
acpi_os_notify_command_complete(void)1325 acpi_status acpi_os_notify_command_complete(void)
1326 {
1327 int ret;
1328
1329 ret = acpi_debugger_notify_command_complete();
1330 if (ret < 0)
1331 return AE_ERROR;
1332 return AE_OK;
1333 }
1334
acpi_os_signal(u32 function,void * info)1335 acpi_status acpi_os_signal(u32 function, void *info)
1336 {
1337 switch (function) {
1338 case ACPI_SIGNAL_FATAL:
1339 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1340 break;
1341 case ACPI_SIGNAL_BREAKPOINT:
1342 /*
1343 * AML Breakpoint
1344 * ACPI spec. says to treat it as a NOP unless
1345 * you are debugging. So if/when we integrate
1346 * AML debugger into the kernel debugger its
1347 * hook will go here. But until then it is
1348 * not useful to print anything on breakpoints.
1349 */
1350 break;
1351 default:
1352 break;
1353 }
1354
1355 return AE_OK;
1356 }
1357
acpi_os_name_setup(char * str)1358 static int __init acpi_os_name_setup(char *str)
1359 {
1360 char *p = acpi_os_name;
1361 int count = ACPI_MAX_OVERRIDE_LEN - 1;
1362
1363 if (!str || !*str)
1364 return 0;
1365
1366 for (; count-- && *str; str++) {
1367 if (isalnum(*str) || *str == ' ' || *str == ':')
1368 *p++ = *str;
1369 else if (*str == '\'' || *str == '"')
1370 continue;
1371 else
1372 break;
1373 }
1374 *p = 0;
1375
1376 return 1;
1377
1378 }
1379
1380 __setup("acpi_os_name=", acpi_os_name_setup);
1381
1382 /*
1383 * Disable the auto-serialization of named objects creation methods.
1384 *
1385 * This feature is enabled by default. It marks the AML control methods
1386 * that contain the opcodes to create named objects as "Serialized".
1387 */
acpi_no_auto_serialize_setup(char * str)1388 static int __init acpi_no_auto_serialize_setup(char *str)
1389 {
1390 acpi_gbl_auto_serialize_methods = FALSE;
1391 pr_info("ACPI: auto-serialization disabled\n");
1392
1393 return 1;
1394 }
1395
1396 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1397
1398 /* Check of resource interference between native drivers and ACPI
1399 * OperationRegions (SystemIO and System Memory only).
1400 * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1401 * in arbitrary AML code and can interfere with legacy drivers.
1402 * acpi_enforce_resources= can be set to:
1403 *
1404 * - strict (default) (2)
1405 * -> further driver trying to access the resources will not load
1406 * - lax (1)
1407 * -> further driver trying to access the resources will load, but you
1408 * get a system message that something might go wrong...
1409 *
1410 * - no (0)
1411 * -> ACPI Operation Region resources will not be registered
1412 *
1413 */
1414 #define ENFORCE_RESOURCES_STRICT 2
1415 #define ENFORCE_RESOURCES_LAX 1
1416 #define ENFORCE_RESOURCES_NO 0
1417
1418 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1419
acpi_enforce_resources_setup(char * str)1420 static int __init acpi_enforce_resources_setup(char *str)
1421 {
1422 if (str == NULL || *str == '\0')
1423 return 0;
1424
1425 if (!strcmp("strict", str))
1426 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1427 else if (!strcmp("lax", str))
1428 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1429 else if (!strcmp("no", str))
1430 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1431
1432 return 1;
1433 }
1434
1435 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1436
1437 /* Check for resource conflicts between ACPI OperationRegions and native
1438 * drivers */
acpi_check_resource_conflict(const struct resource * res)1439 int acpi_check_resource_conflict(const struct resource *res)
1440 {
1441 acpi_adr_space_type space_id;
1442 acpi_size length;
1443 u8 warn = 0;
1444 int clash = 0;
1445
1446 if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1447 return 0;
1448 if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1449 return 0;
1450
1451 if (res->flags & IORESOURCE_IO)
1452 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1453 else
1454 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1455
1456 length = resource_size(res);
1457 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1458 warn = 1;
1459 clash = acpi_check_address_range(space_id, res->start, length, warn);
1460
1461 if (clash) {
1462 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1463 if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1464 printk(KERN_NOTICE "ACPI: This conflict may"
1465 " cause random problems and system"
1466 " instability\n");
1467 printk(KERN_INFO "ACPI: If an ACPI driver is available"
1468 " for this device, you should use it instead of"
1469 " the native driver\n");
1470 }
1471 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1472 return -EBUSY;
1473 }
1474 return 0;
1475 }
1476 EXPORT_SYMBOL(acpi_check_resource_conflict);
1477
acpi_check_region(resource_size_t start,resource_size_t n,const char * name)1478 int acpi_check_region(resource_size_t start, resource_size_t n,
1479 const char *name)
1480 {
1481 struct resource res = {
1482 .start = start,
1483 .end = start + n - 1,
1484 .name = name,
1485 .flags = IORESOURCE_IO,
1486 };
1487
1488 return acpi_check_resource_conflict(&res);
1489 }
1490 EXPORT_SYMBOL(acpi_check_region);
1491
1492 /*
1493 * Let drivers know whether the resource checks are effective
1494 */
acpi_resources_are_enforced(void)1495 int acpi_resources_are_enforced(void)
1496 {
1497 return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1498 }
1499 EXPORT_SYMBOL(acpi_resources_are_enforced);
1500
1501 /*
1502 * Deallocate the memory for a spinlock.
1503 */
acpi_os_delete_lock(acpi_spinlock handle)1504 void acpi_os_delete_lock(acpi_spinlock handle)
1505 {
1506 ACPI_FREE(handle);
1507 }
1508
1509 /*
1510 * Acquire a spinlock.
1511 *
1512 * handle is a pointer to the spinlock_t.
1513 */
1514
acpi_os_acquire_lock(acpi_spinlock lockp)1515 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1516 {
1517 acpi_cpu_flags flags;
1518 spin_lock_irqsave(lockp, flags);
1519 return flags;
1520 }
1521
1522 /*
1523 * Release a spinlock. See above.
1524 */
1525
acpi_os_release_lock(acpi_spinlock lockp,acpi_cpu_flags flags)1526 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1527 {
1528 spin_unlock_irqrestore(lockp, flags);
1529 }
1530
1531 #ifndef ACPI_USE_LOCAL_CACHE
1532
1533 /*******************************************************************************
1534 *
1535 * FUNCTION: acpi_os_create_cache
1536 *
1537 * PARAMETERS: name - Ascii name for the cache
1538 * size - Size of each cached object
1539 * depth - Maximum depth of the cache (in objects) <ignored>
1540 * cache - Where the new cache object is returned
1541 *
1542 * RETURN: status
1543 *
1544 * DESCRIPTION: Create a cache object
1545 *
1546 ******************************************************************************/
1547
1548 acpi_status
acpi_os_create_cache(char * name,u16 size,u16 depth,acpi_cache_t ** cache)1549 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1550 {
1551 *cache = kmem_cache_create(name, size, 0, 0, NULL);
1552 if (*cache == NULL)
1553 return AE_ERROR;
1554 else
1555 return AE_OK;
1556 }
1557
1558 /*******************************************************************************
1559 *
1560 * FUNCTION: acpi_os_purge_cache
1561 *
1562 * PARAMETERS: Cache - Handle to cache object
1563 *
1564 * RETURN: Status
1565 *
1566 * DESCRIPTION: Free all objects within the requested cache.
1567 *
1568 ******************************************************************************/
1569
acpi_os_purge_cache(acpi_cache_t * cache)1570 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1571 {
1572 kmem_cache_shrink(cache);
1573 return (AE_OK);
1574 }
1575
1576 /*******************************************************************************
1577 *
1578 * FUNCTION: acpi_os_delete_cache
1579 *
1580 * PARAMETERS: Cache - Handle to cache object
1581 *
1582 * RETURN: Status
1583 *
1584 * DESCRIPTION: Free all objects within the requested cache and delete the
1585 * cache object.
1586 *
1587 ******************************************************************************/
1588
acpi_os_delete_cache(acpi_cache_t * cache)1589 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1590 {
1591 kmem_cache_destroy(cache);
1592 return (AE_OK);
1593 }
1594
1595 /*******************************************************************************
1596 *
1597 * FUNCTION: acpi_os_release_object
1598 *
1599 * PARAMETERS: Cache - Handle to cache object
1600 * Object - The object to be released
1601 *
1602 * RETURN: None
1603 *
1604 * DESCRIPTION: Release an object to the specified cache. If cache is full,
1605 * the object is deleted.
1606 *
1607 ******************************************************************************/
1608
acpi_os_release_object(acpi_cache_t * cache,void * object)1609 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1610 {
1611 kmem_cache_free(cache, object);
1612 return (AE_OK);
1613 }
1614 #endif
1615
acpi_no_static_ssdt_setup(char * s)1616 static int __init acpi_no_static_ssdt_setup(char *s)
1617 {
1618 acpi_gbl_disable_ssdt_table_install = TRUE;
1619 pr_info("ACPI: static SSDT installation disabled\n");
1620
1621 return 0;
1622 }
1623
1624 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1625
acpi_disable_return_repair(char * s)1626 static int __init acpi_disable_return_repair(char *s)
1627 {
1628 printk(KERN_NOTICE PREFIX
1629 "ACPI: Predefined validation mechanism disabled\n");
1630 acpi_gbl_disable_auto_repair = TRUE;
1631
1632 return 1;
1633 }
1634
1635 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1636
acpi_os_initialize(void)1637 acpi_status __init acpi_os_initialize(void)
1638 {
1639 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1640 acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1641 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1642 acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1643 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1644 /*
1645 * Use acpi_os_map_generic_address to pre-map the reset
1646 * register if it's in system memory.
1647 */
1648 int rv;
1649
1650 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1651 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1652 }
1653 acpi_os_initialized = true;
1654
1655 return AE_OK;
1656 }
1657
acpi_os_initialize1(void)1658 acpi_status __init acpi_os_initialize1(void)
1659 {
1660 kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1661 kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1662 kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1663 BUG_ON(!kacpid_wq);
1664 BUG_ON(!kacpi_notify_wq);
1665 BUG_ON(!kacpi_hotplug_wq);
1666 acpi_osi_init();
1667 return AE_OK;
1668 }
1669
acpi_os_terminate(void)1670 acpi_status acpi_os_terminate(void)
1671 {
1672 if (acpi_irq_handler) {
1673 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1674 acpi_irq_handler);
1675 }
1676
1677 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1678 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1679 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1680 acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1681 if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1682 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1683
1684 destroy_workqueue(kacpid_wq);
1685 destroy_workqueue(kacpi_notify_wq);
1686 destroy_workqueue(kacpi_hotplug_wq);
1687
1688 return AE_OK;
1689 }
1690
acpi_os_prepare_sleep(u8 sleep_state,u32 pm1a_control,u32 pm1b_control)1691 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1692 u32 pm1b_control)
1693 {
1694 int rc = 0;
1695 if (__acpi_os_prepare_sleep)
1696 rc = __acpi_os_prepare_sleep(sleep_state,
1697 pm1a_control, pm1b_control);
1698 if (rc < 0)
1699 return AE_ERROR;
1700 else if (rc > 0)
1701 return AE_CTRL_SKIP;
1702
1703 return AE_OK;
1704 }
1705
acpi_os_set_prepare_sleep(int (* func)(u8 sleep_state,u32 pm1a_ctrl,u32 pm1b_ctrl))1706 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1707 u32 pm1a_ctrl, u32 pm1b_ctrl))
1708 {
1709 __acpi_os_prepare_sleep = func;
1710 }
1711
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1712 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1713 u32 val_b)
1714 {
1715 int rc = 0;
1716 if (__acpi_os_prepare_extended_sleep)
1717 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1718 val_a, val_b);
1719 if (rc < 0)
1720 return AE_ERROR;
1721 else if (rc > 0)
1722 return AE_CTRL_SKIP;
1723
1724 return AE_OK;
1725 }
1726
acpi_os_set_prepare_extended_sleep(int (* func)(u8 sleep_state,u32 val_a,u32 val_b))1727 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1728 u32 val_a, u32 val_b))
1729 {
1730 __acpi_os_prepare_extended_sleep = func;
1731 }
1732