• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37 
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
42 
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 				 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47 
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /*
52  * Some modules use swappable objects and may try to swap them out under
53  * memory pressure (via the shrinker). Before doing so, they may wish to
54  * check to see if any swap space is available.
55  */
56 EXPORT_SYMBOL_GPL(nr_swap_pages);
57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
58 long total_swap_pages;
59 static int least_priority;
60 
61 static const char Bad_file[] = "Bad swap file entry ";
62 static const char Unused_file[] = "Unused swap file entry ";
63 static const char Bad_offset[] = "Bad swap offset entry ";
64 static const char Unused_offset[] = "Unused swap offset entry ";
65 
66 /*
67  * all active swap_info_structs
68  * protected with swap_lock, and ordered by priority.
69  */
70 PLIST_HEAD(swap_active_head);
71 
72 /*
73  * all available (active, not full) swap_info_structs
74  * protected with swap_avail_lock, ordered by priority.
75  * This is used by get_swap_page() instead of swap_active_head
76  * because swap_active_head includes all swap_info_structs,
77  * but get_swap_page() doesn't need to look at full ones.
78  * This uses its own lock instead of swap_lock because when a
79  * swap_info_struct changes between not-full/full, it needs to
80  * add/remove itself to/from this list, but the swap_info_struct->lock
81  * is held and the locking order requires swap_lock to be taken
82  * before any swap_info_struct->lock.
83  */
84 static PLIST_HEAD(swap_avail_head);
85 static DEFINE_SPINLOCK(swap_avail_lock);
86 
87 struct swap_info_struct *swap_info[MAX_SWAPFILES];
88 
89 static DEFINE_MUTEX(swapon_mutex);
90 
91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92 /* Activity counter to indicate that a swapon or swapoff has occurred */
93 static atomic_t proc_poll_event = ATOMIC_INIT(0);
94 
swap_count(unsigned char ent)95 static inline unsigned char swap_count(unsigned char ent)
96 {
97 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
98 }
99 
100 /* returns 1 if swap entry is freed */
101 static int
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset)102 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
103 {
104 	swp_entry_t entry = swp_entry(si->type, offset);
105 	struct page *page;
106 	int ret = 0;
107 
108 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
109 	if (!page)
110 		return 0;
111 	/*
112 	 * This function is called from scan_swap_map() and it's called
113 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114 	 * We have to use trylock for avoiding deadlock. This is a special
115 	 * case and you should use try_to_free_swap() with explicit lock_page()
116 	 * in usual operations.
117 	 */
118 	if (trylock_page(page)) {
119 		ret = try_to_free_swap(page);
120 		unlock_page(page);
121 	}
122 	put_page(page);
123 	return ret;
124 }
125 
126 /*
127  * swapon tell device that all the old swap contents can be discarded,
128  * to allow the swap device to optimize its wear-levelling.
129  */
discard_swap(struct swap_info_struct * si)130 static int discard_swap(struct swap_info_struct *si)
131 {
132 	struct swap_extent *se;
133 	sector_t start_block;
134 	sector_t nr_blocks;
135 	int err = 0;
136 
137 	/* Do not discard the swap header page! */
138 	se = &si->first_swap_extent;
139 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141 	if (nr_blocks) {
142 		err = blkdev_issue_discard(si->bdev, start_block,
143 				nr_blocks, GFP_KERNEL, 0);
144 		if (err)
145 			return err;
146 		cond_resched();
147 	}
148 
149 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
150 		start_block = se->start_block << (PAGE_SHIFT - 9);
151 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
152 
153 		err = blkdev_issue_discard(si->bdev, start_block,
154 				nr_blocks, GFP_KERNEL, 0);
155 		if (err)
156 			break;
157 
158 		cond_resched();
159 	}
160 	return err;		/* That will often be -EOPNOTSUPP */
161 }
162 
163 /*
164  * swap allocation tell device that a cluster of swap can now be discarded,
165  * to allow the swap device to optimize its wear-levelling.
166  */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)167 static void discard_swap_cluster(struct swap_info_struct *si,
168 				 pgoff_t start_page, pgoff_t nr_pages)
169 {
170 	struct swap_extent *se = si->curr_swap_extent;
171 	int found_extent = 0;
172 
173 	while (nr_pages) {
174 		if (se->start_page <= start_page &&
175 		    start_page < se->start_page + se->nr_pages) {
176 			pgoff_t offset = start_page - se->start_page;
177 			sector_t start_block = se->start_block + offset;
178 			sector_t nr_blocks = se->nr_pages - offset;
179 
180 			if (nr_blocks > nr_pages)
181 				nr_blocks = nr_pages;
182 			start_page += nr_blocks;
183 			nr_pages -= nr_blocks;
184 
185 			if (!found_extent++)
186 				si->curr_swap_extent = se;
187 
188 			start_block <<= PAGE_SHIFT - 9;
189 			nr_blocks <<= PAGE_SHIFT - 9;
190 			if (blkdev_issue_discard(si->bdev, start_block,
191 				    nr_blocks, GFP_NOIO, 0))
192 				break;
193 		}
194 
195 		se = list_next_entry(se, list);
196 	}
197 }
198 
199 #define SWAPFILE_CLUSTER	256
200 #define LATENCY_LIMIT		256
201 
cluster_set_flag(struct swap_cluster_info * info,unsigned int flag)202 static inline void cluster_set_flag(struct swap_cluster_info *info,
203 	unsigned int flag)
204 {
205 	info->flags = flag;
206 }
207 
cluster_count(struct swap_cluster_info * info)208 static inline unsigned int cluster_count(struct swap_cluster_info *info)
209 {
210 	return info->data;
211 }
212 
cluster_set_count(struct swap_cluster_info * info,unsigned int c)213 static inline void cluster_set_count(struct swap_cluster_info *info,
214 				     unsigned int c)
215 {
216 	info->data = c;
217 }
218 
cluster_set_count_flag(struct swap_cluster_info * info,unsigned int c,unsigned int f)219 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220 					 unsigned int c, unsigned int f)
221 {
222 	info->flags = f;
223 	info->data = c;
224 }
225 
cluster_next(struct swap_cluster_info * info)226 static inline unsigned int cluster_next(struct swap_cluster_info *info)
227 {
228 	return info->data;
229 }
230 
cluster_set_next(struct swap_cluster_info * info,unsigned int n)231 static inline void cluster_set_next(struct swap_cluster_info *info,
232 				    unsigned int n)
233 {
234 	info->data = n;
235 }
236 
cluster_set_next_flag(struct swap_cluster_info * info,unsigned int n,unsigned int f)237 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238 					 unsigned int n, unsigned int f)
239 {
240 	info->flags = f;
241 	info->data = n;
242 }
243 
cluster_is_free(struct swap_cluster_info * info)244 static inline bool cluster_is_free(struct swap_cluster_info *info)
245 {
246 	return info->flags & CLUSTER_FLAG_FREE;
247 }
248 
cluster_is_null(struct swap_cluster_info * info)249 static inline bool cluster_is_null(struct swap_cluster_info *info)
250 {
251 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
252 }
253 
cluster_set_null(struct swap_cluster_info * info)254 static inline void cluster_set_null(struct swap_cluster_info *info)
255 {
256 	info->flags = CLUSTER_FLAG_NEXT_NULL;
257 	info->data = 0;
258 }
259 
cluster_list_empty(struct swap_cluster_list * list)260 static inline bool cluster_list_empty(struct swap_cluster_list *list)
261 {
262 	return cluster_is_null(&list->head);
263 }
264 
cluster_list_first(struct swap_cluster_list * list)265 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
266 {
267 	return cluster_next(&list->head);
268 }
269 
cluster_list_init(struct swap_cluster_list * list)270 static void cluster_list_init(struct swap_cluster_list *list)
271 {
272 	cluster_set_null(&list->head);
273 	cluster_set_null(&list->tail);
274 }
275 
cluster_list_add_tail(struct swap_cluster_list * list,struct swap_cluster_info * ci,unsigned int idx)276 static void cluster_list_add_tail(struct swap_cluster_list *list,
277 				  struct swap_cluster_info *ci,
278 				  unsigned int idx)
279 {
280 	if (cluster_list_empty(list)) {
281 		cluster_set_next_flag(&list->head, idx, 0);
282 		cluster_set_next_flag(&list->tail, idx, 0);
283 	} else {
284 		unsigned int tail = cluster_next(&list->tail);
285 
286 		cluster_set_next(&ci[tail], idx);
287 		cluster_set_next_flag(&list->tail, idx, 0);
288 	}
289 }
290 
cluster_list_del_first(struct swap_cluster_list * list,struct swap_cluster_info * ci)291 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
292 					   struct swap_cluster_info *ci)
293 {
294 	unsigned int idx;
295 
296 	idx = cluster_next(&list->head);
297 	if (cluster_next(&list->tail) == idx) {
298 		cluster_set_null(&list->head);
299 		cluster_set_null(&list->tail);
300 	} else
301 		cluster_set_next_flag(&list->head,
302 				      cluster_next(&ci[idx]), 0);
303 
304 	return idx;
305 }
306 
307 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,unsigned int idx)308 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
309 		unsigned int idx)
310 {
311 	/*
312 	 * If scan_swap_map() can't find a free cluster, it will check
313 	 * si->swap_map directly. To make sure the discarding cluster isn't
314 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
315 	 * will be cleared after discard
316 	 */
317 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
318 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
319 
320 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
321 
322 	schedule_work(&si->discard_work);
323 }
324 
325 /*
326  * Doing discard actually. After a cluster discard is finished, the cluster
327  * will be added to free cluster list. caller should hold si->lock.
328 */
swap_do_scheduled_discard(struct swap_info_struct * si)329 static void swap_do_scheduled_discard(struct swap_info_struct *si)
330 {
331 	struct swap_cluster_info *info;
332 	unsigned int idx;
333 
334 	info = si->cluster_info;
335 
336 	while (!cluster_list_empty(&si->discard_clusters)) {
337 		idx = cluster_list_del_first(&si->discard_clusters, info);
338 		spin_unlock(&si->lock);
339 
340 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
341 				SWAPFILE_CLUSTER);
342 
343 		spin_lock(&si->lock);
344 		cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
345 		cluster_list_add_tail(&si->free_clusters, info, idx);
346 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
347 				0, SWAPFILE_CLUSTER);
348 	}
349 }
350 
swap_discard_work(struct work_struct * work)351 static void swap_discard_work(struct work_struct *work)
352 {
353 	struct swap_info_struct *si;
354 
355 	si = container_of(work, struct swap_info_struct, discard_work);
356 
357 	spin_lock(&si->lock);
358 	swap_do_scheduled_discard(si);
359 	spin_unlock(&si->lock);
360 }
361 
362 /*
363  * The cluster corresponding to page_nr will be used. The cluster will be
364  * removed from free cluster list and its usage counter will be increased.
365  */
inc_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)366 static void inc_cluster_info_page(struct swap_info_struct *p,
367 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
368 {
369 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
370 
371 	if (!cluster_info)
372 		return;
373 	if (cluster_is_free(&cluster_info[idx])) {
374 		VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
375 		cluster_list_del_first(&p->free_clusters, cluster_info);
376 		cluster_set_count_flag(&cluster_info[idx], 0, 0);
377 	}
378 
379 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
380 	cluster_set_count(&cluster_info[idx],
381 		cluster_count(&cluster_info[idx]) + 1);
382 }
383 
384 /*
385  * The cluster corresponding to page_nr decreases one usage. If the usage
386  * counter becomes 0, which means no page in the cluster is in using, we can
387  * optionally discard the cluster and add it to free cluster list.
388  */
dec_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)389 static void dec_cluster_info_page(struct swap_info_struct *p,
390 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
391 {
392 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
393 
394 	if (!cluster_info)
395 		return;
396 
397 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
398 	cluster_set_count(&cluster_info[idx],
399 		cluster_count(&cluster_info[idx]) - 1);
400 
401 	if (cluster_count(&cluster_info[idx]) == 0) {
402 		/*
403 		 * If the swap is discardable, prepare discard the cluster
404 		 * instead of free it immediately. The cluster will be freed
405 		 * after discard.
406 		 */
407 		if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
408 				 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
409 			swap_cluster_schedule_discard(p, idx);
410 			return;
411 		}
412 
413 		cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
414 		cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
415 	}
416 }
417 
418 /*
419  * It's possible scan_swap_map() uses a free cluster in the middle of free
420  * cluster list. Avoiding such abuse to avoid list corruption.
421  */
422 static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct * si,unsigned long offset)423 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
424 	unsigned long offset)
425 {
426 	struct percpu_cluster *percpu_cluster;
427 	bool conflict;
428 
429 	offset /= SWAPFILE_CLUSTER;
430 	conflict = !cluster_list_empty(&si->free_clusters) &&
431 		offset != cluster_list_first(&si->free_clusters) &&
432 		cluster_is_free(&si->cluster_info[offset]);
433 
434 	if (!conflict)
435 		return false;
436 
437 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
438 	cluster_set_null(&percpu_cluster->index);
439 	return true;
440 }
441 
442 /*
443  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
444  * might involve allocating a new cluster for current CPU too.
445  */
scan_swap_map_try_ssd_cluster(struct swap_info_struct * si,unsigned long * offset,unsigned long * scan_base)446 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
447 	unsigned long *offset, unsigned long *scan_base)
448 {
449 	struct percpu_cluster *cluster;
450 	bool found_free;
451 	unsigned long tmp;
452 
453 new_cluster:
454 	cluster = this_cpu_ptr(si->percpu_cluster);
455 	if (cluster_is_null(&cluster->index)) {
456 		if (!cluster_list_empty(&si->free_clusters)) {
457 			cluster->index = si->free_clusters.head;
458 			cluster->next = cluster_next(&cluster->index) *
459 					SWAPFILE_CLUSTER;
460 		} else if (!cluster_list_empty(&si->discard_clusters)) {
461 			/*
462 			 * we don't have free cluster but have some clusters in
463 			 * discarding, do discard now and reclaim them
464 			 */
465 			swap_do_scheduled_discard(si);
466 			*scan_base = *offset = si->cluster_next;
467 			goto new_cluster;
468 		} else
469 			return;
470 	}
471 
472 	found_free = false;
473 
474 	/*
475 	 * Other CPUs can use our cluster if they can't find a free cluster,
476 	 * check if there is still free entry in the cluster
477 	 */
478 	tmp = cluster->next;
479 	while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
480 	       SWAPFILE_CLUSTER) {
481 		if (!si->swap_map[tmp]) {
482 			found_free = true;
483 			break;
484 		}
485 		tmp++;
486 	}
487 	if (!found_free) {
488 		cluster_set_null(&cluster->index);
489 		goto new_cluster;
490 	}
491 	cluster->next = tmp + 1;
492 	*offset = tmp;
493 	*scan_base = tmp;
494 }
495 
scan_swap_map(struct swap_info_struct * si,unsigned char usage)496 static unsigned long scan_swap_map(struct swap_info_struct *si,
497 				   unsigned char usage)
498 {
499 	unsigned long offset;
500 	unsigned long scan_base;
501 	unsigned long last_in_cluster = 0;
502 	int latency_ration = LATENCY_LIMIT;
503 
504 	/*
505 	 * We try to cluster swap pages by allocating them sequentially
506 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
507 	 * way, however, we resort to first-free allocation, starting
508 	 * a new cluster.  This prevents us from scattering swap pages
509 	 * all over the entire swap partition, so that we reduce
510 	 * overall disk seek times between swap pages.  -- sct
511 	 * But we do now try to find an empty cluster.  -Andrea
512 	 * And we let swap pages go all over an SSD partition.  Hugh
513 	 */
514 
515 	si->flags += SWP_SCANNING;
516 	scan_base = offset = si->cluster_next;
517 
518 	/* SSD algorithm */
519 	if (si->cluster_info) {
520 		scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
521 		goto checks;
522 	}
523 
524 	if (unlikely(!si->cluster_nr--)) {
525 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
526 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
527 			goto checks;
528 		}
529 
530 		spin_unlock(&si->lock);
531 
532 		/*
533 		 * If seek is expensive, start searching for new cluster from
534 		 * start of partition, to minimize the span of allocated swap.
535 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
536 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
537 		 */
538 		scan_base = offset = si->lowest_bit;
539 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
540 
541 		/* Locate the first empty (unaligned) cluster */
542 		for (; last_in_cluster <= si->highest_bit; offset++) {
543 			if (si->swap_map[offset])
544 				last_in_cluster = offset + SWAPFILE_CLUSTER;
545 			else if (offset == last_in_cluster) {
546 				spin_lock(&si->lock);
547 				offset -= SWAPFILE_CLUSTER - 1;
548 				si->cluster_next = offset;
549 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
550 				goto checks;
551 			}
552 			if (unlikely(--latency_ration < 0)) {
553 				cond_resched();
554 				latency_ration = LATENCY_LIMIT;
555 			}
556 		}
557 
558 		offset = scan_base;
559 		spin_lock(&si->lock);
560 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
561 	}
562 
563 checks:
564 	if (si->cluster_info) {
565 		while (scan_swap_map_ssd_cluster_conflict(si, offset))
566 			scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
567 	}
568 	if (!(si->flags & SWP_WRITEOK))
569 		goto no_page;
570 	if (!si->highest_bit)
571 		goto no_page;
572 	if (offset > si->highest_bit)
573 		scan_base = offset = si->lowest_bit;
574 
575 	/* reuse swap entry of cache-only swap if not busy. */
576 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
577 		int swap_was_freed;
578 		spin_unlock(&si->lock);
579 		swap_was_freed = __try_to_reclaim_swap(si, offset);
580 		spin_lock(&si->lock);
581 		/* entry was freed successfully, try to use this again */
582 		if (swap_was_freed)
583 			goto checks;
584 		goto scan; /* check next one */
585 	}
586 
587 	if (si->swap_map[offset])
588 		goto scan;
589 
590 	if (offset == si->lowest_bit)
591 		si->lowest_bit++;
592 	if (offset == si->highest_bit)
593 		si->highest_bit--;
594 	si->inuse_pages++;
595 	if (si->inuse_pages == si->pages) {
596 		si->lowest_bit = si->max;
597 		si->highest_bit = 0;
598 		spin_lock(&swap_avail_lock);
599 		plist_del(&si->avail_list, &swap_avail_head);
600 		spin_unlock(&swap_avail_lock);
601 	}
602 	si->swap_map[offset] = usage;
603 	inc_cluster_info_page(si, si->cluster_info, offset);
604 	si->cluster_next = offset + 1;
605 	si->flags -= SWP_SCANNING;
606 
607 	return offset;
608 
609 scan:
610 	spin_unlock(&si->lock);
611 	while (++offset <= si->highest_bit) {
612 		if (!si->swap_map[offset]) {
613 			spin_lock(&si->lock);
614 			goto checks;
615 		}
616 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
617 			spin_lock(&si->lock);
618 			goto checks;
619 		}
620 		if (unlikely(--latency_ration < 0)) {
621 			cond_resched();
622 			latency_ration = LATENCY_LIMIT;
623 		}
624 	}
625 	offset = si->lowest_bit;
626 	while (offset < scan_base) {
627 		if (!si->swap_map[offset]) {
628 			spin_lock(&si->lock);
629 			goto checks;
630 		}
631 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
632 			spin_lock(&si->lock);
633 			goto checks;
634 		}
635 		if (unlikely(--latency_ration < 0)) {
636 			cond_resched();
637 			latency_ration = LATENCY_LIMIT;
638 		}
639 		offset++;
640 	}
641 	spin_lock(&si->lock);
642 
643 no_page:
644 	si->flags -= SWP_SCANNING;
645 	return 0;
646 }
647 
get_swap_page(void)648 swp_entry_t get_swap_page(void)
649 {
650 	struct swap_info_struct *si, *next;
651 	pgoff_t offset;
652 
653 	if (atomic_long_read(&nr_swap_pages) <= 0)
654 		goto noswap;
655 	atomic_long_dec(&nr_swap_pages);
656 
657 	spin_lock(&swap_avail_lock);
658 
659 start_over:
660 	plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
661 		/* requeue si to after same-priority siblings */
662 		plist_requeue(&si->avail_list, &swap_avail_head);
663 		spin_unlock(&swap_avail_lock);
664 		spin_lock(&si->lock);
665 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
666 			spin_lock(&swap_avail_lock);
667 			if (plist_node_empty(&si->avail_list)) {
668 				spin_unlock(&si->lock);
669 				goto nextsi;
670 			}
671 			WARN(!si->highest_bit,
672 			     "swap_info %d in list but !highest_bit\n",
673 			     si->type);
674 			WARN(!(si->flags & SWP_WRITEOK),
675 			     "swap_info %d in list but !SWP_WRITEOK\n",
676 			     si->type);
677 			plist_del(&si->avail_list, &swap_avail_head);
678 			spin_unlock(&si->lock);
679 			goto nextsi;
680 		}
681 
682 		/* This is called for allocating swap entry for cache */
683 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
684 		spin_unlock(&si->lock);
685 		if (offset)
686 			return swp_entry(si->type, offset);
687 		pr_debug("scan_swap_map of si %d failed to find offset\n",
688 		       si->type);
689 		spin_lock(&swap_avail_lock);
690 nextsi:
691 		/*
692 		 * if we got here, it's likely that si was almost full before,
693 		 * and since scan_swap_map() can drop the si->lock, multiple
694 		 * callers probably all tried to get a page from the same si
695 		 * and it filled up before we could get one; or, the si filled
696 		 * up between us dropping swap_avail_lock and taking si->lock.
697 		 * Since we dropped the swap_avail_lock, the swap_avail_head
698 		 * list may have been modified; so if next is still in the
699 		 * swap_avail_head list then try it, otherwise start over.
700 		 */
701 		if (plist_node_empty(&next->avail_list))
702 			goto start_over;
703 	}
704 
705 	spin_unlock(&swap_avail_lock);
706 
707 	atomic_long_inc(&nr_swap_pages);
708 noswap:
709 	return (swp_entry_t) {0};
710 }
711 
712 /* The only caller of this function is now suspend routine */
get_swap_page_of_type(int type)713 swp_entry_t get_swap_page_of_type(int type)
714 {
715 	struct swap_info_struct *si;
716 	pgoff_t offset;
717 
718 	si = swap_info[type];
719 	spin_lock(&si->lock);
720 	if (si && (si->flags & SWP_WRITEOK)) {
721 		atomic_long_dec(&nr_swap_pages);
722 		/* This is called for allocating swap entry, not cache */
723 		offset = scan_swap_map(si, 1);
724 		if (offset) {
725 			spin_unlock(&si->lock);
726 			return swp_entry(type, offset);
727 		}
728 		atomic_long_inc(&nr_swap_pages);
729 	}
730 	spin_unlock(&si->lock);
731 	return (swp_entry_t) {0};
732 }
733 
swap_info_get(swp_entry_t entry)734 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
735 {
736 	struct swap_info_struct *p;
737 	unsigned long offset, type;
738 
739 	if (!entry.val)
740 		goto out;
741 	type = swp_type(entry);
742 	if (type >= nr_swapfiles)
743 		goto bad_nofile;
744 	p = swap_info[type];
745 	if (!(p->flags & SWP_USED))
746 		goto bad_device;
747 	offset = swp_offset(entry);
748 	if (offset >= p->max)
749 		goto bad_offset;
750 	if (!p->swap_map[offset])
751 		goto bad_free;
752 	spin_lock(&p->lock);
753 	return p;
754 
755 bad_free:
756 	pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
757 	goto out;
758 bad_offset:
759 	pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
760 	goto out;
761 bad_device:
762 	pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
763 	goto out;
764 bad_nofile:
765 	pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
766 out:
767 	return NULL;
768 }
769 
swap_entry_free(struct swap_info_struct * p,swp_entry_t entry,unsigned char usage)770 static unsigned char swap_entry_free(struct swap_info_struct *p,
771 				     swp_entry_t entry, unsigned char usage)
772 {
773 	unsigned long offset = swp_offset(entry);
774 	unsigned char count;
775 	unsigned char has_cache;
776 
777 	count = p->swap_map[offset];
778 	has_cache = count & SWAP_HAS_CACHE;
779 	count &= ~SWAP_HAS_CACHE;
780 
781 	if (usage == SWAP_HAS_CACHE) {
782 		VM_BUG_ON(!has_cache);
783 		has_cache = 0;
784 	} else if (count == SWAP_MAP_SHMEM) {
785 		/*
786 		 * Or we could insist on shmem.c using a special
787 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
788 		 */
789 		count = 0;
790 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
791 		if (count == COUNT_CONTINUED) {
792 			if (swap_count_continued(p, offset, count))
793 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
794 			else
795 				count = SWAP_MAP_MAX;
796 		} else
797 			count--;
798 	}
799 
800 	usage = count | has_cache;
801 	p->swap_map[offset] = usage;
802 
803 	/* free if no reference */
804 	if (!usage) {
805 		mem_cgroup_uncharge_swap(entry);
806 		dec_cluster_info_page(p, p->cluster_info, offset);
807 		if (offset < p->lowest_bit)
808 			p->lowest_bit = offset;
809 		if (offset > p->highest_bit) {
810 			bool was_full = !p->highest_bit;
811 			p->highest_bit = offset;
812 			if (was_full && (p->flags & SWP_WRITEOK)) {
813 				spin_lock(&swap_avail_lock);
814 				WARN_ON(!plist_node_empty(&p->avail_list));
815 				if (plist_node_empty(&p->avail_list))
816 					plist_add(&p->avail_list,
817 						  &swap_avail_head);
818 				spin_unlock(&swap_avail_lock);
819 			}
820 		}
821 		atomic_long_inc(&nr_swap_pages);
822 		p->inuse_pages--;
823 		frontswap_invalidate_page(p->type, offset);
824 		if (p->flags & SWP_BLKDEV) {
825 			struct gendisk *disk = p->bdev->bd_disk;
826 			if (disk->fops->swap_slot_free_notify)
827 				disk->fops->swap_slot_free_notify(p->bdev,
828 								  offset);
829 		}
830 	}
831 
832 	return usage;
833 }
834 
835 /*
836  * Caller has made sure that the swap device corresponding to entry
837  * is still around or has not been recycled.
838  */
swap_free(swp_entry_t entry)839 void swap_free(swp_entry_t entry)
840 {
841 	struct swap_info_struct *p;
842 
843 	p = swap_info_get(entry);
844 	if (p) {
845 		swap_entry_free(p, entry, 1);
846 		spin_unlock(&p->lock);
847 	}
848 }
849 
850 /*
851  * Called after dropping swapcache to decrease refcnt to swap entries.
852  */
swapcache_free(swp_entry_t entry)853 void swapcache_free(swp_entry_t entry)
854 {
855 	struct swap_info_struct *p;
856 
857 	p = swap_info_get(entry);
858 	if (p) {
859 		swap_entry_free(p, entry, SWAP_HAS_CACHE);
860 		spin_unlock(&p->lock);
861 	}
862 }
863 
864 /*
865  * How many references to page are currently swapped out?
866  * This does not give an exact answer when swap count is continued,
867  * but does include the high COUNT_CONTINUED flag to allow for that.
868  */
page_swapcount(struct page * page)869 int page_swapcount(struct page *page)
870 {
871 	int count = 0;
872 	struct swap_info_struct *p;
873 	swp_entry_t entry;
874 
875 	entry.val = page_private(page);
876 	p = swap_info_get(entry);
877 	if (p) {
878 		count = swap_count(p->swap_map[swp_offset(entry)]);
879 		spin_unlock(&p->lock);
880 	}
881 	return count;
882 }
883 
884 /*
885  * How many references to @entry are currently swapped out?
886  * This considers COUNT_CONTINUED so it returns exact answer.
887  */
swp_swapcount(swp_entry_t entry)888 int swp_swapcount(swp_entry_t entry)
889 {
890 	int count, tmp_count, n;
891 	struct swap_info_struct *p;
892 	struct page *page;
893 	pgoff_t offset;
894 	unsigned char *map;
895 
896 	p = swap_info_get(entry);
897 	if (!p)
898 		return 0;
899 
900 	count = swap_count(p->swap_map[swp_offset(entry)]);
901 	if (!(count & COUNT_CONTINUED))
902 		goto out;
903 
904 	count &= ~COUNT_CONTINUED;
905 	n = SWAP_MAP_MAX + 1;
906 
907 	offset = swp_offset(entry);
908 	page = vmalloc_to_page(p->swap_map + offset);
909 	offset &= ~PAGE_MASK;
910 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
911 
912 	do {
913 		page = list_next_entry(page, lru);
914 		map = kmap_atomic(page);
915 		tmp_count = map[offset];
916 		kunmap_atomic(map);
917 
918 		count += (tmp_count & ~COUNT_CONTINUED) * n;
919 		n *= (SWAP_CONT_MAX + 1);
920 	} while (tmp_count & COUNT_CONTINUED);
921 out:
922 	spin_unlock(&p->lock);
923 	return count;
924 }
925 
926 /*
927  * We can write to an anon page without COW if there are no other references
928  * to it.  And as a side-effect, free up its swap: because the old content
929  * on disk will never be read, and seeking back there to write new content
930  * later would only waste time away from clustering.
931  *
932  * NOTE: total_mapcount should not be relied upon by the caller if
933  * reuse_swap_page() returns false, but it may be always overwritten
934  * (see the other implementation for CONFIG_SWAP=n).
935  */
reuse_swap_page(struct page * page,int * total_mapcount)936 bool reuse_swap_page(struct page *page, int *total_mapcount)
937 {
938 	int count;
939 
940 	VM_BUG_ON_PAGE(!PageLocked(page), page);
941 	if (unlikely(PageKsm(page)))
942 		return false;
943 	count = page_trans_huge_mapcount(page, total_mapcount);
944 	if (count <= 1 && PageSwapCache(page)) {
945 		count += page_swapcount(page);
946 		if (count != 1)
947 			goto out;
948 		if (!PageWriteback(page)) {
949 			delete_from_swap_cache(page);
950 			SetPageDirty(page);
951 		} else {
952 			swp_entry_t entry;
953 			struct swap_info_struct *p;
954 
955 			entry.val = page_private(page);
956 			p = swap_info_get(entry);
957 			if (p->flags & SWP_STABLE_WRITES) {
958 				spin_unlock(&p->lock);
959 				return false;
960 			}
961 			spin_unlock(&p->lock);
962 		}
963 	}
964 out:
965 	return count <= 1;
966 }
967 
968 /*
969  * If swap is getting full, or if there are no more mappings of this page,
970  * then try_to_free_swap is called to free its swap space.
971  */
try_to_free_swap(struct page * page)972 int try_to_free_swap(struct page *page)
973 {
974 	VM_BUG_ON_PAGE(!PageLocked(page), page);
975 
976 	if (!PageSwapCache(page))
977 		return 0;
978 	if (PageWriteback(page))
979 		return 0;
980 	if (page_swapcount(page))
981 		return 0;
982 
983 	/*
984 	 * Once hibernation has begun to create its image of memory,
985 	 * there's a danger that one of the calls to try_to_free_swap()
986 	 * - most probably a call from __try_to_reclaim_swap() while
987 	 * hibernation is allocating its own swap pages for the image,
988 	 * but conceivably even a call from memory reclaim - will free
989 	 * the swap from a page which has already been recorded in the
990 	 * image as a clean swapcache page, and then reuse its swap for
991 	 * another page of the image.  On waking from hibernation, the
992 	 * original page might be freed under memory pressure, then
993 	 * later read back in from swap, now with the wrong data.
994 	 *
995 	 * Hibernation suspends storage while it is writing the image
996 	 * to disk so check that here.
997 	 */
998 	if (pm_suspended_storage())
999 		return 0;
1000 
1001 	delete_from_swap_cache(page);
1002 	SetPageDirty(page);
1003 	return 1;
1004 }
1005 
1006 /*
1007  * Free the swap entry like above, but also try to
1008  * free the page cache entry if it is the last user.
1009  */
free_swap_and_cache(swp_entry_t entry)1010 int free_swap_and_cache(swp_entry_t entry)
1011 {
1012 	struct swap_info_struct *p;
1013 	struct page *page = NULL;
1014 
1015 	if (non_swap_entry(entry))
1016 		return 1;
1017 
1018 	p = swap_info_get(entry);
1019 	if (p) {
1020 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
1021 			page = find_get_page(swap_address_space(entry),
1022 					     swp_offset(entry));
1023 			if (page && !trylock_page(page)) {
1024 				put_page(page);
1025 				page = NULL;
1026 			}
1027 		}
1028 		spin_unlock(&p->lock);
1029 	}
1030 	if (page) {
1031 		/*
1032 		 * Not mapped elsewhere, or swap space full? Free it!
1033 		 * Also recheck PageSwapCache now page is locked (above).
1034 		 */
1035 		if (PageSwapCache(page) && !PageWriteback(page) &&
1036 		    (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1037 			delete_from_swap_cache(page);
1038 			SetPageDirty(page);
1039 		}
1040 		unlock_page(page);
1041 		put_page(page);
1042 	}
1043 	return p != NULL;
1044 }
1045 
1046 #ifdef CONFIG_HIBERNATION
1047 /*
1048  * Find the swap type that corresponds to given device (if any).
1049  *
1050  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1051  * from 0, in which the swap header is expected to be located.
1052  *
1053  * This is needed for the suspend to disk (aka swsusp).
1054  */
swap_type_of(dev_t device,sector_t offset,struct block_device ** bdev_p)1055 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1056 {
1057 	struct block_device *bdev = NULL;
1058 	int type;
1059 
1060 	if (device)
1061 		bdev = bdget(device);
1062 
1063 	spin_lock(&swap_lock);
1064 	for (type = 0; type < nr_swapfiles; type++) {
1065 		struct swap_info_struct *sis = swap_info[type];
1066 
1067 		if (!(sis->flags & SWP_WRITEOK))
1068 			continue;
1069 
1070 		if (!bdev) {
1071 			if (bdev_p)
1072 				*bdev_p = bdgrab(sis->bdev);
1073 
1074 			spin_unlock(&swap_lock);
1075 			return type;
1076 		}
1077 		if (bdev == sis->bdev) {
1078 			struct swap_extent *se = &sis->first_swap_extent;
1079 
1080 			if (se->start_block == offset) {
1081 				if (bdev_p)
1082 					*bdev_p = bdgrab(sis->bdev);
1083 
1084 				spin_unlock(&swap_lock);
1085 				bdput(bdev);
1086 				return type;
1087 			}
1088 		}
1089 	}
1090 	spin_unlock(&swap_lock);
1091 	if (bdev)
1092 		bdput(bdev);
1093 
1094 	return -ENODEV;
1095 }
1096 
1097 /*
1098  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1099  * corresponding to given index in swap_info (swap type).
1100  */
swapdev_block(int type,pgoff_t offset)1101 sector_t swapdev_block(int type, pgoff_t offset)
1102 {
1103 	struct block_device *bdev;
1104 
1105 	if ((unsigned int)type >= nr_swapfiles)
1106 		return 0;
1107 	if (!(swap_info[type]->flags & SWP_WRITEOK))
1108 		return 0;
1109 	return map_swap_entry(swp_entry(type, offset), &bdev);
1110 }
1111 
1112 /*
1113  * Return either the total number of swap pages of given type, or the number
1114  * of free pages of that type (depending on @free)
1115  *
1116  * This is needed for software suspend
1117  */
count_swap_pages(int type,int free)1118 unsigned int count_swap_pages(int type, int free)
1119 {
1120 	unsigned int n = 0;
1121 
1122 	spin_lock(&swap_lock);
1123 	if ((unsigned int)type < nr_swapfiles) {
1124 		struct swap_info_struct *sis = swap_info[type];
1125 
1126 		spin_lock(&sis->lock);
1127 		if (sis->flags & SWP_WRITEOK) {
1128 			n = sis->pages;
1129 			if (free)
1130 				n -= sis->inuse_pages;
1131 		}
1132 		spin_unlock(&sis->lock);
1133 	}
1134 	spin_unlock(&swap_lock);
1135 	return n;
1136 }
1137 #endif /* CONFIG_HIBERNATION */
1138 
pte_same_as_swp(pte_t pte,pte_t swp_pte)1139 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1140 {
1141 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1142 }
1143 
1144 /*
1145  * No need to decide whether this PTE shares the swap entry with others,
1146  * just let do_wp_page work it out if a write is requested later - to
1147  * force COW, vm_page_prot omits write permission from any private vma.
1148  */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct page * page)1149 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1150 		unsigned long addr, swp_entry_t entry, struct page *page)
1151 {
1152 	struct page *swapcache;
1153 	struct mem_cgroup *memcg;
1154 	spinlock_t *ptl;
1155 	pte_t *pte;
1156 	int ret = 1;
1157 
1158 	swapcache = page;
1159 	page = ksm_might_need_to_copy(page, vma, addr);
1160 	if (unlikely(!page))
1161 		return -ENOMEM;
1162 
1163 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1164 				&memcg, false)) {
1165 		ret = -ENOMEM;
1166 		goto out_nolock;
1167 	}
1168 
1169 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1170 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1171 		mem_cgroup_cancel_charge(page, memcg, false);
1172 		ret = 0;
1173 		goto out;
1174 	}
1175 
1176 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1177 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1178 	get_page(page);
1179 	set_pte_at(vma->vm_mm, addr, pte,
1180 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1181 	if (page == swapcache) {
1182 		page_add_anon_rmap(page, vma, addr, false);
1183 		mem_cgroup_commit_charge(page, memcg, true, false);
1184 	} else { /* ksm created a completely new copy */
1185 		page_add_new_anon_rmap(page, vma, addr, false);
1186 		mem_cgroup_commit_charge(page, memcg, false, false);
1187 		lru_cache_add_active_or_unevictable(page, vma);
1188 	}
1189 	swap_free(entry);
1190 	/*
1191 	 * Move the page to the active list so it is not
1192 	 * immediately swapped out again after swapon.
1193 	 */
1194 	activate_page(page);
1195 out:
1196 	pte_unmap_unlock(pte, ptl);
1197 out_nolock:
1198 	if (page != swapcache) {
1199 		unlock_page(page);
1200 		put_page(page);
1201 	}
1202 	return ret;
1203 }
1204 
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,swp_entry_t entry,struct page * page)1205 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1206 				unsigned long addr, unsigned long end,
1207 				swp_entry_t entry, struct page *page)
1208 {
1209 	pte_t swp_pte = swp_entry_to_pte(entry);
1210 	pte_t *pte;
1211 	int ret = 0;
1212 
1213 	/*
1214 	 * We don't actually need pte lock while scanning for swp_pte: since
1215 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1216 	 * page table while we're scanning; though it could get zapped, and on
1217 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1218 	 * of unmatched parts which look like swp_pte, so unuse_pte must
1219 	 * recheck under pte lock.  Scanning without pte lock lets it be
1220 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1221 	 */
1222 	pte = pte_offset_map(pmd, addr);
1223 	do {
1224 		/*
1225 		 * swapoff spends a _lot_ of time in this loop!
1226 		 * Test inline before going to call unuse_pte.
1227 		 */
1228 		if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1229 			pte_unmap(pte);
1230 			ret = unuse_pte(vma, pmd, addr, entry, page);
1231 			if (ret)
1232 				goto out;
1233 			pte = pte_offset_map(pmd, addr);
1234 		}
1235 	} while (pte++, addr += PAGE_SIZE, addr != end);
1236 	pte_unmap(pte - 1);
1237 out:
1238 	return ret;
1239 }
1240 
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,swp_entry_t entry,struct page * page)1241 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1242 				unsigned long addr, unsigned long end,
1243 				swp_entry_t entry, struct page *page)
1244 {
1245 	pmd_t *pmd;
1246 	unsigned long next;
1247 	int ret;
1248 
1249 	pmd = pmd_offset(pud, addr);
1250 	do {
1251 		next = pmd_addr_end(addr, end);
1252 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1253 			continue;
1254 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1255 		if (ret)
1256 			return ret;
1257 	} while (pmd++, addr = next, addr != end);
1258 	return 0;
1259 }
1260 
unuse_pud_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,swp_entry_t entry,struct page * page)1261 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1262 				unsigned long addr, unsigned long end,
1263 				swp_entry_t entry, struct page *page)
1264 {
1265 	pud_t *pud;
1266 	unsigned long next;
1267 	int ret;
1268 
1269 	pud = pud_offset(pgd, addr);
1270 	do {
1271 		next = pud_addr_end(addr, end);
1272 		if (pud_none_or_clear_bad(pud))
1273 			continue;
1274 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1275 		if (ret)
1276 			return ret;
1277 	} while (pud++, addr = next, addr != end);
1278 	return 0;
1279 }
1280 
unuse_vma(struct vm_area_struct * vma,swp_entry_t entry,struct page * page)1281 static int unuse_vma(struct vm_area_struct *vma,
1282 				swp_entry_t entry, struct page *page)
1283 {
1284 	pgd_t *pgd;
1285 	unsigned long addr, end, next;
1286 	int ret;
1287 
1288 	if (page_anon_vma(page)) {
1289 		addr = page_address_in_vma(page, vma);
1290 		if (addr == -EFAULT)
1291 			return 0;
1292 		else
1293 			end = addr + PAGE_SIZE;
1294 	} else {
1295 		addr = vma->vm_start;
1296 		end = vma->vm_end;
1297 	}
1298 
1299 	pgd = pgd_offset(vma->vm_mm, addr);
1300 	do {
1301 		next = pgd_addr_end(addr, end);
1302 		if (pgd_none_or_clear_bad(pgd))
1303 			continue;
1304 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1305 		if (ret)
1306 			return ret;
1307 	} while (pgd++, addr = next, addr != end);
1308 	return 0;
1309 }
1310 
unuse_mm(struct mm_struct * mm,swp_entry_t entry,struct page * page)1311 static int unuse_mm(struct mm_struct *mm,
1312 				swp_entry_t entry, struct page *page)
1313 {
1314 	struct vm_area_struct *vma;
1315 	int ret = 0;
1316 
1317 	if (!down_read_trylock(&mm->mmap_sem)) {
1318 		/*
1319 		 * Activate page so shrink_inactive_list is unlikely to unmap
1320 		 * its ptes while lock is dropped, so swapoff can make progress.
1321 		 */
1322 		activate_page(page);
1323 		unlock_page(page);
1324 		down_read(&mm->mmap_sem);
1325 		lock_page(page);
1326 	}
1327 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1328 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1329 			break;
1330 	}
1331 	up_read(&mm->mmap_sem);
1332 	return (ret < 0)? ret: 0;
1333 }
1334 
1335 /*
1336  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1337  * from current position to next entry still in use.
1338  * Recycle to start on reaching the end, returning 0 when empty.
1339  */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev,bool frontswap)1340 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1341 					unsigned int prev, bool frontswap)
1342 {
1343 	unsigned int max = si->max;
1344 	unsigned int i = prev;
1345 	unsigned char count;
1346 
1347 	/*
1348 	 * No need for swap_lock here: we're just looking
1349 	 * for whether an entry is in use, not modifying it; false
1350 	 * hits are okay, and sys_swapoff() has already prevented new
1351 	 * allocations from this area (while holding swap_lock).
1352 	 */
1353 	for (;;) {
1354 		if (++i >= max) {
1355 			if (!prev) {
1356 				i = 0;
1357 				break;
1358 			}
1359 			/*
1360 			 * No entries in use at top of swap_map,
1361 			 * loop back to start and recheck there.
1362 			 */
1363 			max = prev + 1;
1364 			prev = 0;
1365 			i = 1;
1366 		}
1367 		if (frontswap) {
1368 			if (frontswap_test(si, i))
1369 				break;
1370 			else
1371 				continue;
1372 		}
1373 		count = READ_ONCE(si->swap_map[i]);
1374 		if (count && swap_count(count) != SWAP_MAP_BAD)
1375 			break;
1376 	}
1377 	return i;
1378 }
1379 
1380 /*
1381  * We completely avoid races by reading each swap page in advance,
1382  * and then search for the process using it.  All the necessary
1383  * page table adjustments can then be made atomically.
1384  *
1385  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1386  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1387  */
try_to_unuse(unsigned int type,bool frontswap,unsigned long pages_to_unuse)1388 int try_to_unuse(unsigned int type, bool frontswap,
1389 		 unsigned long pages_to_unuse)
1390 {
1391 	struct swap_info_struct *si = swap_info[type];
1392 	struct mm_struct *start_mm;
1393 	volatile unsigned char *swap_map; /* swap_map is accessed without
1394 					   * locking. Mark it as volatile
1395 					   * to prevent compiler doing
1396 					   * something odd.
1397 					   */
1398 	unsigned char swcount;
1399 	struct page *page;
1400 	swp_entry_t entry;
1401 	unsigned int i = 0;
1402 	int retval = 0;
1403 
1404 	/*
1405 	 * When searching mms for an entry, a good strategy is to
1406 	 * start at the first mm we freed the previous entry from
1407 	 * (though actually we don't notice whether we or coincidence
1408 	 * freed the entry).  Initialize this start_mm with a hold.
1409 	 *
1410 	 * A simpler strategy would be to start at the last mm we
1411 	 * freed the previous entry from; but that would take less
1412 	 * advantage of mmlist ordering, which clusters forked mms
1413 	 * together, child after parent.  If we race with dup_mmap(), we
1414 	 * prefer to resolve parent before child, lest we miss entries
1415 	 * duplicated after we scanned child: using last mm would invert
1416 	 * that.
1417 	 */
1418 	start_mm = &init_mm;
1419 	atomic_inc(&init_mm.mm_users);
1420 
1421 	/*
1422 	 * Keep on scanning until all entries have gone.  Usually,
1423 	 * one pass through swap_map is enough, but not necessarily:
1424 	 * there are races when an instance of an entry might be missed.
1425 	 */
1426 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1427 		if (signal_pending(current)) {
1428 			retval = -EINTR;
1429 			break;
1430 		}
1431 
1432 		/*
1433 		 * Get a page for the entry, using the existing swap
1434 		 * cache page if there is one.  Otherwise, get a clean
1435 		 * page and read the swap into it.
1436 		 */
1437 		swap_map = &si->swap_map[i];
1438 		entry = swp_entry(type, i);
1439 		page = read_swap_cache_async(entry,
1440 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1441 		if (!page) {
1442 			/*
1443 			 * Either swap_duplicate() failed because entry
1444 			 * has been freed independently, and will not be
1445 			 * reused since sys_swapoff() already disabled
1446 			 * allocation from here, or alloc_page() failed.
1447 			 */
1448 			swcount = *swap_map;
1449 			/*
1450 			 * We don't hold lock here, so the swap entry could be
1451 			 * SWAP_MAP_BAD (when the cluster is discarding).
1452 			 * Instead of fail out, We can just skip the swap
1453 			 * entry because swapoff will wait for discarding
1454 			 * finish anyway.
1455 			 */
1456 			if (!swcount || swcount == SWAP_MAP_BAD)
1457 				continue;
1458 			retval = -ENOMEM;
1459 			break;
1460 		}
1461 
1462 		/*
1463 		 * Don't hold on to start_mm if it looks like exiting.
1464 		 */
1465 		if (atomic_read(&start_mm->mm_users) == 1) {
1466 			mmput(start_mm);
1467 			start_mm = &init_mm;
1468 			atomic_inc(&init_mm.mm_users);
1469 		}
1470 
1471 		/*
1472 		 * Wait for and lock page.  When do_swap_page races with
1473 		 * try_to_unuse, do_swap_page can handle the fault much
1474 		 * faster than try_to_unuse can locate the entry.  This
1475 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1476 		 * defer to do_swap_page in such a case - in some tests,
1477 		 * do_swap_page and try_to_unuse repeatedly compete.
1478 		 */
1479 		wait_on_page_locked(page);
1480 		wait_on_page_writeback(page);
1481 		lock_page(page);
1482 		wait_on_page_writeback(page);
1483 
1484 		/*
1485 		 * Remove all references to entry.
1486 		 */
1487 		swcount = *swap_map;
1488 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1489 			retval = shmem_unuse(entry, page);
1490 			/* page has already been unlocked and released */
1491 			if (retval < 0)
1492 				break;
1493 			continue;
1494 		}
1495 		if (swap_count(swcount) && start_mm != &init_mm)
1496 			retval = unuse_mm(start_mm, entry, page);
1497 
1498 		if (swap_count(*swap_map)) {
1499 			int set_start_mm = (*swap_map >= swcount);
1500 			struct list_head *p = &start_mm->mmlist;
1501 			struct mm_struct *new_start_mm = start_mm;
1502 			struct mm_struct *prev_mm = start_mm;
1503 			struct mm_struct *mm;
1504 
1505 			atomic_inc(&new_start_mm->mm_users);
1506 			atomic_inc(&prev_mm->mm_users);
1507 			spin_lock(&mmlist_lock);
1508 			while (swap_count(*swap_map) && !retval &&
1509 					(p = p->next) != &start_mm->mmlist) {
1510 				mm = list_entry(p, struct mm_struct, mmlist);
1511 				if (!atomic_inc_not_zero(&mm->mm_users))
1512 					continue;
1513 				spin_unlock(&mmlist_lock);
1514 				mmput(prev_mm);
1515 				prev_mm = mm;
1516 
1517 				cond_resched();
1518 
1519 				swcount = *swap_map;
1520 				if (!swap_count(swcount)) /* any usage ? */
1521 					;
1522 				else if (mm == &init_mm)
1523 					set_start_mm = 1;
1524 				else
1525 					retval = unuse_mm(mm, entry, page);
1526 
1527 				if (set_start_mm && *swap_map < swcount) {
1528 					mmput(new_start_mm);
1529 					atomic_inc(&mm->mm_users);
1530 					new_start_mm = mm;
1531 					set_start_mm = 0;
1532 				}
1533 				spin_lock(&mmlist_lock);
1534 			}
1535 			spin_unlock(&mmlist_lock);
1536 			mmput(prev_mm);
1537 			mmput(start_mm);
1538 			start_mm = new_start_mm;
1539 		}
1540 		if (retval) {
1541 			unlock_page(page);
1542 			put_page(page);
1543 			break;
1544 		}
1545 
1546 		/*
1547 		 * If a reference remains (rare), we would like to leave
1548 		 * the page in the swap cache; but try_to_unmap could
1549 		 * then re-duplicate the entry once we drop page lock,
1550 		 * so we might loop indefinitely; also, that page could
1551 		 * not be swapped out to other storage meanwhile.  So:
1552 		 * delete from cache even if there's another reference,
1553 		 * after ensuring that the data has been saved to disk -
1554 		 * since if the reference remains (rarer), it will be
1555 		 * read from disk into another page.  Splitting into two
1556 		 * pages would be incorrect if swap supported "shared
1557 		 * private" pages, but they are handled by tmpfs files.
1558 		 *
1559 		 * Given how unuse_vma() targets one particular offset
1560 		 * in an anon_vma, once the anon_vma has been determined,
1561 		 * this splitting happens to be just what is needed to
1562 		 * handle where KSM pages have been swapped out: re-reading
1563 		 * is unnecessarily slow, but we can fix that later on.
1564 		 */
1565 		if (swap_count(*swap_map) &&
1566 		     PageDirty(page) && PageSwapCache(page)) {
1567 			struct writeback_control wbc = {
1568 				.sync_mode = WB_SYNC_NONE,
1569 			};
1570 
1571 			swap_writepage(page, &wbc);
1572 			lock_page(page);
1573 			wait_on_page_writeback(page);
1574 		}
1575 
1576 		/*
1577 		 * It is conceivable that a racing task removed this page from
1578 		 * swap cache just before we acquired the page lock at the top,
1579 		 * or while we dropped it in unuse_mm().  The page might even
1580 		 * be back in swap cache on another swap area: that we must not
1581 		 * delete, since it may not have been written out to swap yet.
1582 		 */
1583 		if (PageSwapCache(page) &&
1584 		    likely(page_private(page) == entry.val))
1585 			delete_from_swap_cache(page);
1586 
1587 		/*
1588 		 * So we could skip searching mms once swap count went
1589 		 * to 1, we did not mark any present ptes as dirty: must
1590 		 * mark page dirty so shrink_page_list will preserve it.
1591 		 */
1592 		SetPageDirty(page);
1593 		unlock_page(page);
1594 		put_page(page);
1595 
1596 		/*
1597 		 * Make sure that we aren't completely killing
1598 		 * interactive performance.
1599 		 */
1600 		cond_resched();
1601 		if (frontswap && pages_to_unuse > 0) {
1602 			if (!--pages_to_unuse)
1603 				break;
1604 		}
1605 	}
1606 
1607 	mmput(start_mm);
1608 	return retval;
1609 }
1610 
1611 /*
1612  * After a successful try_to_unuse, if no swap is now in use, we know
1613  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1614  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1615  * added to the mmlist just after page_duplicate - before would be racy.
1616  */
drain_mmlist(void)1617 static void drain_mmlist(void)
1618 {
1619 	struct list_head *p, *next;
1620 	unsigned int type;
1621 
1622 	for (type = 0; type < nr_swapfiles; type++)
1623 		if (swap_info[type]->inuse_pages)
1624 			return;
1625 	spin_lock(&mmlist_lock);
1626 	list_for_each_safe(p, next, &init_mm.mmlist)
1627 		list_del_init(p);
1628 	spin_unlock(&mmlist_lock);
1629 }
1630 
1631 /*
1632  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1633  * corresponds to page offset for the specified swap entry.
1634  * Note that the type of this function is sector_t, but it returns page offset
1635  * into the bdev, not sector offset.
1636  */
map_swap_entry(swp_entry_t entry,struct block_device ** bdev)1637 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1638 {
1639 	struct swap_info_struct *sis;
1640 	struct swap_extent *start_se;
1641 	struct swap_extent *se;
1642 	pgoff_t offset;
1643 
1644 	sis = swap_info[swp_type(entry)];
1645 	*bdev = sis->bdev;
1646 
1647 	offset = swp_offset(entry);
1648 	start_se = sis->curr_swap_extent;
1649 	se = start_se;
1650 
1651 	for ( ; ; ) {
1652 		if (se->start_page <= offset &&
1653 				offset < (se->start_page + se->nr_pages)) {
1654 			return se->start_block + (offset - se->start_page);
1655 		}
1656 		se = list_next_entry(se, list);
1657 		sis->curr_swap_extent = se;
1658 		BUG_ON(se == start_se);		/* It *must* be present */
1659 	}
1660 }
1661 
1662 /*
1663  * Returns the page offset into bdev for the specified page's swap entry.
1664  */
map_swap_page(struct page * page,struct block_device ** bdev)1665 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1666 {
1667 	swp_entry_t entry;
1668 	entry.val = page_private(page);
1669 	return map_swap_entry(entry, bdev);
1670 }
1671 
1672 /*
1673  * Free all of a swapdev's extent information
1674  */
destroy_swap_extents(struct swap_info_struct * sis)1675 static void destroy_swap_extents(struct swap_info_struct *sis)
1676 {
1677 	while (!list_empty(&sis->first_swap_extent.list)) {
1678 		struct swap_extent *se;
1679 
1680 		se = list_first_entry(&sis->first_swap_extent.list,
1681 				struct swap_extent, list);
1682 		list_del(&se->list);
1683 		kfree(se);
1684 	}
1685 
1686 	if (sis->flags & SWP_FILE) {
1687 		struct file *swap_file = sis->swap_file;
1688 		struct address_space *mapping = swap_file->f_mapping;
1689 
1690 		sis->flags &= ~SWP_FILE;
1691 		mapping->a_ops->swap_deactivate(swap_file);
1692 	}
1693 }
1694 
1695 /*
1696  * Add a block range (and the corresponding page range) into this swapdev's
1697  * extent list.  The extent list is kept sorted in page order.
1698  *
1699  * This function rather assumes that it is called in ascending page order.
1700  */
1701 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)1702 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1703 		unsigned long nr_pages, sector_t start_block)
1704 {
1705 	struct swap_extent *se;
1706 	struct swap_extent *new_se;
1707 	struct list_head *lh;
1708 
1709 	if (start_page == 0) {
1710 		se = &sis->first_swap_extent;
1711 		sis->curr_swap_extent = se;
1712 		se->start_page = 0;
1713 		se->nr_pages = nr_pages;
1714 		se->start_block = start_block;
1715 		return 1;
1716 	} else {
1717 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1718 		se = list_entry(lh, struct swap_extent, list);
1719 		BUG_ON(se->start_page + se->nr_pages != start_page);
1720 		if (se->start_block + se->nr_pages == start_block) {
1721 			/* Merge it */
1722 			se->nr_pages += nr_pages;
1723 			return 0;
1724 		}
1725 	}
1726 
1727 	/*
1728 	 * No merge.  Insert a new extent, preserving ordering.
1729 	 */
1730 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1731 	if (new_se == NULL)
1732 		return -ENOMEM;
1733 	new_se->start_page = start_page;
1734 	new_se->nr_pages = nr_pages;
1735 	new_se->start_block = start_block;
1736 
1737 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1738 	return 1;
1739 }
1740 
1741 /*
1742  * A `swap extent' is a simple thing which maps a contiguous range of pages
1743  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1744  * is built at swapon time and is then used at swap_writepage/swap_readpage
1745  * time for locating where on disk a page belongs.
1746  *
1747  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1748  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1749  * swap files identically.
1750  *
1751  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1752  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1753  * swapfiles are handled *identically* after swapon time.
1754  *
1755  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1756  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1757  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1758  * requirements, they are simply tossed out - we will never use those blocks
1759  * for swapping.
1760  *
1761  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1762  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1763  * which will scribble on the fs.
1764  *
1765  * The amount of disk space which a single swap extent represents varies.
1766  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1767  * extents in the list.  To avoid much list walking, we cache the previous
1768  * search location in `curr_swap_extent', and start new searches from there.
1769  * This is extremely effective.  The average number of iterations in
1770  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1771  */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)1772 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1773 {
1774 	struct file *swap_file = sis->swap_file;
1775 	struct address_space *mapping = swap_file->f_mapping;
1776 	struct inode *inode = mapping->host;
1777 	int ret;
1778 
1779 	if (S_ISBLK(inode->i_mode)) {
1780 		ret = add_swap_extent(sis, 0, sis->max, 0);
1781 		*span = sis->pages;
1782 		return ret;
1783 	}
1784 
1785 	if (mapping->a_ops->swap_activate) {
1786 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1787 		if (!ret) {
1788 			sis->flags |= SWP_FILE;
1789 			ret = add_swap_extent(sis, 0, sis->max, 0);
1790 			*span = sis->pages;
1791 		}
1792 		return ret;
1793 	}
1794 
1795 	return generic_swapfile_activate(sis, swap_file, span);
1796 }
1797 
_enable_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info)1798 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1799 				unsigned char *swap_map,
1800 				struct swap_cluster_info *cluster_info)
1801 {
1802 	if (prio >= 0)
1803 		p->prio = prio;
1804 	else
1805 		p->prio = --least_priority;
1806 	/*
1807 	 * the plist prio is negated because plist ordering is
1808 	 * low-to-high, while swap ordering is high-to-low
1809 	 */
1810 	p->list.prio = -p->prio;
1811 	p->avail_list.prio = -p->prio;
1812 	p->swap_map = swap_map;
1813 	p->cluster_info = cluster_info;
1814 	p->flags |= SWP_WRITEOK;
1815 	atomic_long_add(p->pages, &nr_swap_pages);
1816 	total_swap_pages += p->pages;
1817 
1818 	assert_spin_locked(&swap_lock);
1819 	/*
1820 	 * both lists are plists, and thus priority ordered.
1821 	 * swap_active_head needs to be priority ordered for swapoff(),
1822 	 * which on removal of any swap_info_struct with an auto-assigned
1823 	 * (i.e. negative) priority increments the auto-assigned priority
1824 	 * of any lower-priority swap_info_structs.
1825 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
1826 	 * which allocates swap pages from the highest available priority
1827 	 * swap_info_struct.
1828 	 */
1829 	plist_add(&p->list, &swap_active_head);
1830 	spin_lock(&swap_avail_lock);
1831 	plist_add(&p->avail_list, &swap_avail_head);
1832 	spin_unlock(&swap_avail_lock);
1833 }
1834 
enable_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * frontswap_map)1835 static void enable_swap_info(struct swap_info_struct *p, int prio,
1836 				unsigned char *swap_map,
1837 				struct swap_cluster_info *cluster_info,
1838 				unsigned long *frontswap_map)
1839 {
1840 	frontswap_init(p->type, frontswap_map);
1841 	spin_lock(&swap_lock);
1842 	spin_lock(&p->lock);
1843 	 _enable_swap_info(p, prio, swap_map, cluster_info);
1844 	spin_unlock(&p->lock);
1845 	spin_unlock(&swap_lock);
1846 }
1847 
reinsert_swap_info(struct swap_info_struct * p)1848 static void reinsert_swap_info(struct swap_info_struct *p)
1849 {
1850 	spin_lock(&swap_lock);
1851 	spin_lock(&p->lock);
1852 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1853 	spin_unlock(&p->lock);
1854 	spin_unlock(&swap_lock);
1855 }
1856 
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)1857 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1858 {
1859 	struct swap_info_struct *p = NULL;
1860 	unsigned char *swap_map;
1861 	struct swap_cluster_info *cluster_info;
1862 	unsigned long *frontswap_map;
1863 	struct file *swap_file, *victim;
1864 	struct address_space *mapping;
1865 	struct inode *inode;
1866 	struct filename *pathname;
1867 	int err, found = 0;
1868 	unsigned int old_block_size;
1869 
1870 	if (!capable(CAP_SYS_ADMIN))
1871 		return -EPERM;
1872 
1873 	BUG_ON(!current->mm);
1874 
1875 	pathname = getname(specialfile);
1876 	if (IS_ERR(pathname))
1877 		return PTR_ERR(pathname);
1878 
1879 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1880 	err = PTR_ERR(victim);
1881 	if (IS_ERR(victim))
1882 		goto out;
1883 
1884 	mapping = victim->f_mapping;
1885 	spin_lock(&swap_lock);
1886 	plist_for_each_entry(p, &swap_active_head, list) {
1887 		if (p->flags & SWP_WRITEOK) {
1888 			if (p->swap_file->f_mapping == mapping) {
1889 				found = 1;
1890 				break;
1891 			}
1892 		}
1893 	}
1894 	if (!found) {
1895 		err = -EINVAL;
1896 		spin_unlock(&swap_lock);
1897 		goto out_dput;
1898 	}
1899 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1900 		vm_unacct_memory(p->pages);
1901 	else {
1902 		err = -ENOMEM;
1903 		spin_unlock(&swap_lock);
1904 		goto out_dput;
1905 	}
1906 	spin_lock(&swap_avail_lock);
1907 	plist_del(&p->avail_list, &swap_avail_head);
1908 	spin_unlock(&swap_avail_lock);
1909 	spin_lock(&p->lock);
1910 	if (p->prio < 0) {
1911 		struct swap_info_struct *si = p;
1912 
1913 		plist_for_each_entry_continue(si, &swap_active_head, list) {
1914 			si->prio++;
1915 			si->list.prio--;
1916 			si->avail_list.prio--;
1917 		}
1918 		least_priority++;
1919 	}
1920 	plist_del(&p->list, &swap_active_head);
1921 	atomic_long_sub(p->pages, &nr_swap_pages);
1922 	total_swap_pages -= p->pages;
1923 	p->flags &= ~SWP_WRITEOK;
1924 	spin_unlock(&p->lock);
1925 	spin_unlock(&swap_lock);
1926 
1927 	set_current_oom_origin();
1928 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1929 	clear_current_oom_origin();
1930 
1931 	if (err) {
1932 		/* re-insert swap space back into swap_list */
1933 		reinsert_swap_info(p);
1934 		goto out_dput;
1935 	}
1936 
1937 	flush_work(&p->discard_work);
1938 
1939 	destroy_swap_extents(p);
1940 	if (p->flags & SWP_CONTINUED)
1941 		free_swap_count_continuations(p);
1942 
1943 	mutex_lock(&swapon_mutex);
1944 	spin_lock(&swap_lock);
1945 	spin_lock(&p->lock);
1946 	drain_mmlist();
1947 
1948 	/* wait for anyone still in scan_swap_map */
1949 	p->highest_bit = 0;		/* cuts scans short */
1950 	while (p->flags >= SWP_SCANNING) {
1951 		spin_unlock(&p->lock);
1952 		spin_unlock(&swap_lock);
1953 		schedule_timeout_uninterruptible(1);
1954 		spin_lock(&swap_lock);
1955 		spin_lock(&p->lock);
1956 	}
1957 
1958 	swap_file = p->swap_file;
1959 	old_block_size = p->old_block_size;
1960 	p->swap_file = NULL;
1961 	p->max = 0;
1962 	swap_map = p->swap_map;
1963 	p->swap_map = NULL;
1964 	cluster_info = p->cluster_info;
1965 	p->cluster_info = NULL;
1966 	frontswap_map = frontswap_map_get(p);
1967 	spin_unlock(&p->lock);
1968 	spin_unlock(&swap_lock);
1969 	frontswap_invalidate_area(p->type);
1970 	frontswap_map_set(p, NULL);
1971 	mutex_unlock(&swapon_mutex);
1972 	free_percpu(p->percpu_cluster);
1973 	p->percpu_cluster = NULL;
1974 	vfree(swap_map);
1975 	vfree(cluster_info);
1976 	vfree(frontswap_map);
1977 	/* Destroy swap account information */
1978 	swap_cgroup_swapoff(p->type);
1979 
1980 	inode = mapping->host;
1981 	if (S_ISBLK(inode->i_mode)) {
1982 		struct block_device *bdev = I_BDEV(inode);
1983 		set_blocksize(bdev, old_block_size);
1984 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1985 	} else {
1986 		inode_lock(inode);
1987 		inode->i_flags &= ~S_SWAPFILE;
1988 		inode_unlock(inode);
1989 	}
1990 	filp_close(swap_file, NULL);
1991 
1992 	/*
1993 	 * Clear the SWP_USED flag after all resources are freed so that swapon
1994 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1995 	 * not hold p->lock after we cleared its SWP_WRITEOK.
1996 	 */
1997 	spin_lock(&swap_lock);
1998 	p->flags = 0;
1999 	spin_unlock(&swap_lock);
2000 
2001 	err = 0;
2002 	atomic_inc(&proc_poll_event);
2003 	wake_up_interruptible(&proc_poll_wait);
2004 
2005 out_dput:
2006 	filp_close(victim, NULL);
2007 out:
2008 	putname(pathname);
2009 	return err;
2010 }
2011 
2012 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2013 static unsigned swaps_poll(struct file *file, poll_table *wait)
2014 {
2015 	struct seq_file *seq = file->private_data;
2016 
2017 	poll_wait(file, &proc_poll_wait, wait);
2018 
2019 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2020 		seq->poll_event = atomic_read(&proc_poll_event);
2021 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2022 	}
2023 
2024 	return POLLIN | POLLRDNORM;
2025 }
2026 
2027 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2028 static void *swap_start(struct seq_file *swap, loff_t *pos)
2029 {
2030 	struct swap_info_struct *si;
2031 	int type;
2032 	loff_t l = *pos;
2033 
2034 	mutex_lock(&swapon_mutex);
2035 
2036 	if (!l)
2037 		return SEQ_START_TOKEN;
2038 
2039 	for (type = 0; type < nr_swapfiles; type++) {
2040 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2041 		si = swap_info[type];
2042 		if (!(si->flags & SWP_USED) || !si->swap_map)
2043 			continue;
2044 		if (!--l)
2045 			return si;
2046 	}
2047 
2048 	return NULL;
2049 }
2050 
swap_next(struct seq_file * swap,void * v,loff_t * pos)2051 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2052 {
2053 	struct swap_info_struct *si = v;
2054 	int type;
2055 
2056 	if (v == SEQ_START_TOKEN)
2057 		type = 0;
2058 	else
2059 		type = si->type + 1;
2060 
2061 	for (; type < nr_swapfiles; type++) {
2062 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2063 		si = swap_info[type];
2064 		if (!(si->flags & SWP_USED) || !si->swap_map)
2065 			continue;
2066 		++*pos;
2067 		return si;
2068 	}
2069 
2070 	return NULL;
2071 }
2072 
swap_stop(struct seq_file * swap,void * v)2073 static void swap_stop(struct seq_file *swap, void *v)
2074 {
2075 	mutex_unlock(&swapon_mutex);
2076 }
2077 
swap_show(struct seq_file * swap,void * v)2078 static int swap_show(struct seq_file *swap, void *v)
2079 {
2080 	struct swap_info_struct *si = v;
2081 	struct file *file;
2082 	int len;
2083 
2084 	if (si == SEQ_START_TOKEN) {
2085 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2086 		return 0;
2087 	}
2088 
2089 	file = si->swap_file;
2090 	len = seq_file_path(swap, file, " \t\n\\");
2091 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2092 			len < 40 ? 40 - len : 1, " ",
2093 			S_ISBLK(file_inode(file)->i_mode) ?
2094 				"partition" : "file\t",
2095 			si->pages << (PAGE_SHIFT - 10),
2096 			si->inuse_pages << (PAGE_SHIFT - 10),
2097 			si->prio);
2098 	return 0;
2099 }
2100 
2101 static const struct seq_operations swaps_op = {
2102 	.start =	swap_start,
2103 	.next =		swap_next,
2104 	.stop =		swap_stop,
2105 	.show =		swap_show
2106 };
2107 
swaps_open(struct inode * inode,struct file * file)2108 static int swaps_open(struct inode *inode, struct file *file)
2109 {
2110 	struct seq_file *seq;
2111 	int ret;
2112 
2113 	ret = seq_open(file, &swaps_op);
2114 	if (ret)
2115 		return ret;
2116 
2117 	seq = file->private_data;
2118 	seq->poll_event = atomic_read(&proc_poll_event);
2119 	return 0;
2120 }
2121 
2122 static const struct file_operations proc_swaps_operations = {
2123 	.open		= swaps_open,
2124 	.read		= seq_read,
2125 	.llseek		= seq_lseek,
2126 	.release	= seq_release,
2127 	.poll		= swaps_poll,
2128 };
2129 
procswaps_init(void)2130 static int __init procswaps_init(void)
2131 {
2132 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2133 	return 0;
2134 }
2135 __initcall(procswaps_init);
2136 #endif /* CONFIG_PROC_FS */
2137 
2138 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2139 static int __init max_swapfiles_check(void)
2140 {
2141 	MAX_SWAPFILES_CHECK();
2142 	return 0;
2143 }
2144 late_initcall(max_swapfiles_check);
2145 #endif
2146 
alloc_swap_info(void)2147 static struct swap_info_struct *alloc_swap_info(void)
2148 {
2149 	struct swap_info_struct *p;
2150 	unsigned int type;
2151 
2152 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2153 	if (!p)
2154 		return ERR_PTR(-ENOMEM);
2155 
2156 	spin_lock(&swap_lock);
2157 	for (type = 0; type < nr_swapfiles; type++) {
2158 		if (!(swap_info[type]->flags & SWP_USED))
2159 			break;
2160 	}
2161 	if (type >= MAX_SWAPFILES) {
2162 		spin_unlock(&swap_lock);
2163 		kfree(p);
2164 		return ERR_PTR(-EPERM);
2165 	}
2166 	if (type >= nr_swapfiles) {
2167 		p->type = type;
2168 		swap_info[type] = p;
2169 		/*
2170 		 * Write swap_info[type] before nr_swapfiles, in case a
2171 		 * racing procfs swap_start() or swap_next() is reading them.
2172 		 * (We never shrink nr_swapfiles, we never free this entry.)
2173 		 */
2174 		smp_wmb();
2175 		nr_swapfiles++;
2176 	} else {
2177 		kfree(p);
2178 		p = swap_info[type];
2179 		/*
2180 		 * Do not memset this entry: a racing procfs swap_next()
2181 		 * would be relying on p->type to remain valid.
2182 		 */
2183 	}
2184 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2185 	plist_node_init(&p->list, 0);
2186 	plist_node_init(&p->avail_list, 0);
2187 	p->flags = SWP_USED;
2188 	spin_unlock(&swap_lock);
2189 	spin_lock_init(&p->lock);
2190 
2191 	return p;
2192 }
2193 
claim_swapfile(struct swap_info_struct * p,struct inode * inode)2194 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2195 {
2196 	int error;
2197 
2198 	if (S_ISBLK(inode->i_mode)) {
2199 		p->bdev = bdgrab(I_BDEV(inode));
2200 		error = blkdev_get(p->bdev,
2201 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2202 		if (error < 0) {
2203 			p->bdev = NULL;
2204 			return error;
2205 		}
2206 		p->old_block_size = block_size(p->bdev);
2207 		error = set_blocksize(p->bdev, PAGE_SIZE);
2208 		if (error < 0)
2209 			return error;
2210 		p->flags |= SWP_BLKDEV;
2211 	} else if (S_ISREG(inode->i_mode)) {
2212 		p->bdev = inode->i_sb->s_bdev;
2213 		inode_lock(inode);
2214 		if (IS_SWAPFILE(inode))
2215 			return -EBUSY;
2216 	} else
2217 		return -EINVAL;
2218 
2219 	return 0;
2220 }
2221 
read_swap_header(struct swap_info_struct * p,union swap_header * swap_header,struct inode * inode)2222 static unsigned long read_swap_header(struct swap_info_struct *p,
2223 					union swap_header *swap_header,
2224 					struct inode *inode)
2225 {
2226 	int i;
2227 	unsigned long maxpages;
2228 	unsigned long swapfilepages;
2229 	unsigned long last_page;
2230 
2231 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2232 		pr_err("Unable to find swap-space signature\n");
2233 		return 0;
2234 	}
2235 
2236 	/* swap partition endianess hack... */
2237 	if (swab32(swap_header->info.version) == 1) {
2238 		swab32s(&swap_header->info.version);
2239 		swab32s(&swap_header->info.last_page);
2240 		swab32s(&swap_header->info.nr_badpages);
2241 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2242 			return 0;
2243 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2244 			swab32s(&swap_header->info.badpages[i]);
2245 	}
2246 	/* Check the swap header's sub-version */
2247 	if (swap_header->info.version != 1) {
2248 		pr_warn("Unable to handle swap header version %d\n",
2249 			swap_header->info.version);
2250 		return 0;
2251 	}
2252 
2253 	p->lowest_bit  = 1;
2254 	p->cluster_next = 1;
2255 	p->cluster_nr = 0;
2256 
2257 	/*
2258 	 * Find out how many pages are allowed for a single swap
2259 	 * device. There are two limiting factors: 1) the number
2260 	 * of bits for the swap offset in the swp_entry_t type, and
2261 	 * 2) the number of bits in the swap pte as defined by the
2262 	 * different architectures. In order to find the
2263 	 * largest possible bit mask, a swap entry with swap type 0
2264 	 * and swap offset ~0UL is created, encoded to a swap pte,
2265 	 * decoded to a swp_entry_t again, and finally the swap
2266 	 * offset is extracted. This will mask all the bits from
2267 	 * the initial ~0UL mask that can't be encoded in either
2268 	 * the swp_entry_t or the architecture definition of a
2269 	 * swap pte.
2270 	 */
2271 	maxpages = swp_offset(pte_to_swp_entry(
2272 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2273 	last_page = swap_header->info.last_page;
2274 	if (last_page > maxpages) {
2275 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2276 			maxpages << (PAGE_SHIFT - 10),
2277 			last_page << (PAGE_SHIFT - 10));
2278 	}
2279 	if (maxpages > last_page) {
2280 		maxpages = last_page + 1;
2281 		/* p->max is an unsigned int: don't overflow it */
2282 		if ((unsigned int)maxpages == 0)
2283 			maxpages = UINT_MAX;
2284 	}
2285 	p->highest_bit = maxpages - 1;
2286 
2287 	if (!maxpages)
2288 		return 0;
2289 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2290 	if (swapfilepages && maxpages > swapfilepages) {
2291 		pr_warn("Swap area shorter than signature indicates\n");
2292 		return 0;
2293 	}
2294 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2295 		return 0;
2296 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2297 		return 0;
2298 
2299 	return maxpages;
2300 }
2301 
setup_swap_map_and_extents(struct swap_info_struct * p,union swap_header * swap_header,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long maxpages,sector_t * span)2302 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2303 					union swap_header *swap_header,
2304 					unsigned char *swap_map,
2305 					struct swap_cluster_info *cluster_info,
2306 					unsigned long maxpages,
2307 					sector_t *span)
2308 {
2309 	int i;
2310 	unsigned int nr_good_pages;
2311 	int nr_extents;
2312 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2313 	unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2314 
2315 	nr_good_pages = maxpages - 1;	/* omit header page */
2316 
2317 	cluster_list_init(&p->free_clusters);
2318 	cluster_list_init(&p->discard_clusters);
2319 
2320 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2321 		unsigned int page_nr = swap_header->info.badpages[i];
2322 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2323 			return -EINVAL;
2324 		if (page_nr < maxpages) {
2325 			swap_map[page_nr] = SWAP_MAP_BAD;
2326 			nr_good_pages--;
2327 			/*
2328 			 * Haven't marked the cluster free yet, no list
2329 			 * operation involved
2330 			 */
2331 			inc_cluster_info_page(p, cluster_info, page_nr);
2332 		}
2333 	}
2334 
2335 	/* Haven't marked the cluster free yet, no list operation involved */
2336 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2337 		inc_cluster_info_page(p, cluster_info, i);
2338 
2339 	if (nr_good_pages) {
2340 		swap_map[0] = SWAP_MAP_BAD;
2341 		/*
2342 		 * Not mark the cluster free yet, no list
2343 		 * operation involved
2344 		 */
2345 		inc_cluster_info_page(p, cluster_info, 0);
2346 		p->max = maxpages;
2347 		p->pages = nr_good_pages;
2348 		nr_extents = setup_swap_extents(p, span);
2349 		if (nr_extents < 0)
2350 			return nr_extents;
2351 		nr_good_pages = p->pages;
2352 	}
2353 	if (!nr_good_pages) {
2354 		pr_warn("Empty swap-file\n");
2355 		return -EINVAL;
2356 	}
2357 
2358 	if (!cluster_info)
2359 		return nr_extents;
2360 
2361 	for (i = 0; i < nr_clusters; i++) {
2362 		if (!cluster_count(&cluster_info[idx])) {
2363 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2364 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2365 					      idx);
2366 		}
2367 		idx++;
2368 		if (idx == nr_clusters)
2369 			idx = 0;
2370 	}
2371 	return nr_extents;
2372 }
2373 
2374 /*
2375  * Helper to sys_swapon determining if a given swap
2376  * backing device queue supports DISCARD operations.
2377  */
swap_discardable(struct swap_info_struct * si)2378 static bool swap_discardable(struct swap_info_struct *si)
2379 {
2380 	struct request_queue *q = bdev_get_queue(si->bdev);
2381 
2382 	if (!q || !blk_queue_discard(q))
2383 		return false;
2384 
2385 	return true;
2386 }
2387 
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)2388 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2389 {
2390 	struct swap_info_struct *p;
2391 	struct filename *name;
2392 	struct file *swap_file = NULL;
2393 	struct address_space *mapping;
2394 	int prio;
2395 	int error;
2396 	union swap_header *swap_header;
2397 	int nr_extents;
2398 	sector_t span;
2399 	unsigned long maxpages;
2400 	unsigned char *swap_map = NULL;
2401 	struct swap_cluster_info *cluster_info = NULL;
2402 	unsigned long *frontswap_map = NULL;
2403 	struct page *page = NULL;
2404 	struct inode *inode = NULL;
2405 
2406 	if (swap_flags & ~SWAP_FLAGS_VALID)
2407 		return -EINVAL;
2408 
2409 	if (!capable(CAP_SYS_ADMIN))
2410 		return -EPERM;
2411 
2412 	p = alloc_swap_info();
2413 	if (IS_ERR(p))
2414 		return PTR_ERR(p);
2415 
2416 	INIT_WORK(&p->discard_work, swap_discard_work);
2417 
2418 	name = getname(specialfile);
2419 	if (IS_ERR(name)) {
2420 		error = PTR_ERR(name);
2421 		name = NULL;
2422 		goto bad_swap;
2423 	}
2424 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2425 	if (IS_ERR(swap_file)) {
2426 		error = PTR_ERR(swap_file);
2427 		swap_file = NULL;
2428 		goto bad_swap;
2429 	}
2430 
2431 	p->swap_file = swap_file;
2432 	mapping = swap_file->f_mapping;
2433 	inode = mapping->host;
2434 
2435 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2436 	error = claim_swapfile(p, inode);
2437 	if (unlikely(error))
2438 		goto bad_swap;
2439 
2440 	/*
2441 	 * Read the swap header.
2442 	 */
2443 	if (!mapping->a_ops->readpage) {
2444 		error = -EINVAL;
2445 		goto bad_swap;
2446 	}
2447 	page = read_mapping_page(mapping, 0, swap_file);
2448 	if (IS_ERR(page)) {
2449 		error = PTR_ERR(page);
2450 		goto bad_swap;
2451 	}
2452 	swap_header = kmap(page);
2453 
2454 	maxpages = read_swap_header(p, swap_header, inode);
2455 	if (unlikely(!maxpages)) {
2456 		error = -EINVAL;
2457 		goto bad_swap;
2458 	}
2459 
2460 	/* OK, set up the swap map and apply the bad block list */
2461 	swap_map = vzalloc(maxpages);
2462 	if (!swap_map) {
2463 		error = -ENOMEM;
2464 		goto bad_swap;
2465 	}
2466 
2467 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2468 		p->flags |= SWP_STABLE_WRITES;
2469 
2470 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2471 		int cpu;
2472 
2473 		p->flags |= SWP_SOLIDSTATE;
2474 		/*
2475 		 * select a random position to start with to help wear leveling
2476 		 * SSD
2477 		 */
2478 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2479 
2480 		cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2481 			SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2482 		if (!cluster_info) {
2483 			error = -ENOMEM;
2484 			goto bad_swap;
2485 		}
2486 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2487 		if (!p->percpu_cluster) {
2488 			error = -ENOMEM;
2489 			goto bad_swap;
2490 		}
2491 		for_each_possible_cpu(cpu) {
2492 			struct percpu_cluster *cluster;
2493 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2494 			cluster_set_null(&cluster->index);
2495 		}
2496 	}
2497 
2498 	error = swap_cgroup_swapon(p->type, maxpages);
2499 	if (error)
2500 		goto bad_swap;
2501 
2502 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2503 		cluster_info, maxpages, &span);
2504 	if (unlikely(nr_extents < 0)) {
2505 		error = nr_extents;
2506 		goto bad_swap;
2507 	}
2508 	/* frontswap enabled? set up bit-per-page map for frontswap */
2509 	if (IS_ENABLED(CONFIG_FRONTSWAP))
2510 		frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2511 
2512 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2513 		/*
2514 		 * When discard is enabled for swap with no particular
2515 		 * policy flagged, we set all swap discard flags here in
2516 		 * order to sustain backward compatibility with older
2517 		 * swapon(8) releases.
2518 		 */
2519 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2520 			     SWP_PAGE_DISCARD);
2521 
2522 		/*
2523 		 * By flagging sys_swapon, a sysadmin can tell us to
2524 		 * either do single-time area discards only, or to just
2525 		 * perform discards for released swap page-clusters.
2526 		 * Now it's time to adjust the p->flags accordingly.
2527 		 */
2528 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2529 			p->flags &= ~SWP_PAGE_DISCARD;
2530 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2531 			p->flags &= ~SWP_AREA_DISCARD;
2532 
2533 		/* issue a swapon-time discard if it's still required */
2534 		if (p->flags & SWP_AREA_DISCARD) {
2535 			int err = discard_swap(p);
2536 			if (unlikely(err))
2537 				pr_err("swapon: discard_swap(%p): %d\n",
2538 					p, err);
2539 		}
2540 	}
2541 
2542 	mutex_lock(&swapon_mutex);
2543 	prio = -1;
2544 	if (swap_flags & SWAP_FLAG_PREFER)
2545 		prio =
2546 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2547 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2548 
2549 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2550 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2551 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2552 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2553 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2554 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
2555 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2556 		(frontswap_map) ? "FS" : "");
2557 
2558 	mutex_unlock(&swapon_mutex);
2559 	atomic_inc(&proc_poll_event);
2560 	wake_up_interruptible(&proc_poll_wait);
2561 
2562 	if (S_ISREG(inode->i_mode))
2563 		inode->i_flags |= S_SWAPFILE;
2564 	error = 0;
2565 	goto out;
2566 bad_swap:
2567 	free_percpu(p->percpu_cluster);
2568 	p->percpu_cluster = NULL;
2569 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2570 		set_blocksize(p->bdev, p->old_block_size);
2571 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2572 	}
2573 	destroy_swap_extents(p);
2574 	swap_cgroup_swapoff(p->type);
2575 	spin_lock(&swap_lock);
2576 	p->swap_file = NULL;
2577 	p->flags = 0;
2578 	spin_unlock(&swap_lock);
2579 	vfree(swap_map);
2580 	vfree(cluster_info);
2581 	if (swap_file) {
2582 		if (inode && S_ISREG(inode->i_mode)) {
2583 			inode_unlock(inode);
2584 			inode = NULL;
2585 		}
2586 		filp_close(swap_file, NULL);
2587 	}
2588 out:
2589 	if (page && !IS_ERR(page)) {
2590 		kunmap(page);
2591 		put_page(page);
2592 	}
2593 	if (name)
2594 		putname(name);
2595 	if (inode && S_ISREG(inode->i_mode))
2596 		inode_unlock(inode);
2597 	return error;
2598 }
2599 
si_swapinfo(struct sysinfo * val)2600 void si_swapinfo(struct sysinfo *val)
2601 {
2602 	unsigned int type;
2603 	unsigned long nr_to_be_unused = 0;
2604 
2605 	spin_lock(&swap_lock);
2606 	for (type = 0; type < nr_swapfiles; type++) {
2607 		struct swap_info_struct *si = swap_info[type];
2608 
2609 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2610 			nr_to_be_unused += si->inuse_pages;
2611 	}
2612 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2613 	val->totalswap = total_swap_pages + nr_to_be_unused;
2614 	spin_unlock(&swap_lock);
2615 }
2616 
2617 /*
2618  * Verify that a swap entry is valid and increment its swap map count.
2619  *
2620  * Returns error code in following case.
2621  * - success -> 0
2622  * - swp_entry is invalid -> EINVAL
2623  * - swp_entry is migration entry -> EINVAL
2624  * - swap-cache reference is requested but there is already one. -> EEXIST
2625  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2626  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2627  */
__swap_duplicate(swp_entry_t entry,unsigned char usage)2628 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2629 {
2630 	struct swap_info_struct *p;
2631 	unsigned long offset, type;
2632 	unsigned char count;
2633 	unsigned char has_cache;
2634 	int err = -EINVAL;
2635 
2636 	if (non_swap_entry(entry))
2637 		goto out;
2638 
2639 	type = swp_type(entry);
2640 	if (type >= nr_swapfiles)
2641 		goto bad_file;
2642 	p = swap_info[type];
2643 	offset = swp_offset(entry);
2644 
2645 	spin_lock(&p->lock);
2646 	if (unlikely(offset >= p->max))
2647 		goto unlock_out;
2648 
2649 	count = p->swap_map[offset];
2650 
2651 	/*
2652 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
2653 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2654 	 */
2655 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2656 		err = -ENOENT;
2657 		goto unlock_out;
2658 	}
2659 
2660 	has_cache = count & SWAP_HAS_CACHE;
2661 	count &= ~SWAP_HAS_CACHE;
2662 	err = 0;
2663 
2664 	if (usage == SWAP_HAS_CACHE) {
2665 
2666 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2667 		if (!has_cache && count)
2668 			has_cache = SWAP_HAS_CACHE;
2669 		else if (has_cache)		/* someone else added cache */
2670 			err = -EEXIST;
2671 		else				/* no users remaining */
2672 			err = -ENOENT;
2673 
2674 	} else if (count || has_cache) {
2675 
2676 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2677 			count += usage;
2678 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2679 			err = -EINVAL;
2680 		else if (swap_count_continued(p, offset, count))
2681 			count = COUNT_CONTINUED;
2682 		else
2683 			err = -ENOMEM;
2684 	} else
2685 		err = -ENOENT;			/* unused swap entry */
2686 
2687 	p->swap_map[offset] = count | has_cache;
2688 
2689 unlock_out:
2690 	spin_unlock(&p->lock);
2691 out:
2692 	return err;
2693 
2694 bad_file:
2695 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2696 	goto out;
2697 }
2698 
2699 /*
2700  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2701  * (in which case its reference count is never incremented).
2702  */
swap_shmem_alloc(swp_entry_t entry)2703 void swap_shmem_alloc(swp_entry_t entry)
2704 {
2705 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2706 }
2707 
2708 /*
2709  * Increase reference count of swap entry by 1.
2710  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2711  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2712  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2713  * might occur if a page table entry has got corrupted.
2714  */
swap_duplicate(swp_entry_t entry)2715 int swap_duplicate(swp_entry_t entry)
2716 {
2717 	int err = 0;
2718 
2719 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2720 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2721 	return err;
2722 }
2723 
2724 /*
2725  * @entry: swap entry for which we allocate swap cache.
2726  *
2727  * Called when allocating swap cache for existing swap entry,
2728  * This can return error codes. Returns 0 at success.
2729  * -EBUSY means there is a swap cache.
2730  * Note: return code is different from swap_duplicate().
2731  */
swapcache_prepare(swp_entry_t entry)2732 int swapcache_prepare(swp_entry_t entry)
2733 {
2734 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2735 }
2736 
page_swap_info(struct page * page)2737 struct swap_info_struct *page_swap_info(struct page *page)
2738 {
2739 	swp_entry_t swap = { .val = page_private(page) };
2740 	return swap_info[swp_type(swap)];
2741 }
2742 
2743 /*
2744  * out-of-line __page_file_ methods to avoid include hell.
2745  */
__page_file_mapping(struct page * page)2746 struct address_space *__page_file_mapping(struct page *page)
2747 {
2748 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2749 	return page_swap_info(page)->swap_file->f_mapping;
2750 }
2751 EXPORT_SYMBOL_GPL(__page_file_mapping);
2752 
__page_file_index(struct page * page)2753 pgoff_t __page_file_index(struct page *page)
2754 {
2755 	swp_entry_t swap = { .val = page_private(page) };
2756 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2757 	return swp_offset(swap);
2758 }
2759 EXPORT_SYMBOL_GPL(__page_file_index);
2760 
2761 /*
2762  * add_swap_count_continuation - called when a swap count is duplicated
2763  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2764  * page of the original vmalloc'ed swap_map, to hold the continuation count
2765  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2766  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2767  *
2768  * These continuation pages are seldom referenced: the common paths all work
2769  * on the original swap_map, only referring to a continuation page when the
2770  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2771  *
2772  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2773  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2774  * can be called after dropping locks.
2775  */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)2776 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2777 {
2778 	struct swap_info_struct *si;
2779 	struct page *head;
2780 	struct page *page;
2781 	struct page *list_page;
2782 	pgoff_t offset;
2783 	unsigned char count;
2784 
2785 	/*
2786 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2787 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2788 	 */
2789 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2790 
2791 	si = swap_info_get(entry);
2792 	if (!si) {
2793 		/*
2794 		 * An acceptable race has occurred since the failing
2795 		 * __swap_duplicate(): the swap entry has been freed,
2796 		 * perhaps even the whole swap_map cleared for swapoff.
2797 		 */
2798 		goto outer;
2799 	}
2800 
2801 	offset = swp_offset(entry);
2802 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2803 
2804 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2805 		/*
2806 		 * The higher the swap count, the more likely it is that tasks
2807 		 * will race to add swap count continuation: we need to avoid
2808 		 * over-provisioning.
2809 		 */
2810 		goto out;
2811 	}
2812 
2813 	if (!page) {
2814 		spin_unlock(&si->lock);
2815 		return -ENOMEM;
2816 	}
2817 
2818 	/*
2819 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2820 	 * no architecture is using highmem pages for kernel page tables: so it
2821 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2822 	 */
2823 	head = vmalloc_to_page(si->swap_map + offset);
2824 	offset &= ~PAGE_MASK;
2825 
2826 	/*
2827 	 * Page allocation does not initialize the page's lru field,
2828 	 * but it does always reset its private field.
2829 	 */
2830 	if (!page_private(head)) {
2831 		BUG_ON(count & COUNT_CONTINUED);
2832 		INIT_LIST_HEAD(&head->lru);
2833 		set_page_private(head, SWP_CONTINUED);
2834 		si->flags |= SWP_CONTINUED;
2835 	}
2836 
2837 	list_for_each_entry(list_page, &head->lru, lru) {
2838 		unsigned char *map;
2839 
2840 		/*
2841 		 * If the previous map said no continuation, but we've found
2842 		 * a continuation page, free our allocation and use this one.
2843 		 */
2844 		if (!(count & COUNT_CONTINUED))
2845 			goto out;
2846 
2847 		map = kmap_atomic(list_page) + offset;
2848 		count = *map;
2849 		kunmap_atomic(map);
2850 
2851 		/*
2852 		 * If this continuation count now has some space in it,
2853 		 * free our allocation and use this one.
2854 		 */
2855 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2856 			goto out;
2857 	}
2858 
2859 	list_add_tail(&page->lru, &head->lru);
2860 	page = NULL;			/* now it's attached, don't free it */
2861 out:
2862 	spin_unlock(&si->lock);
2863 outer:
2864 	if (page)
2865 		__free_page(page);
2866 	return 0;
2867 }
2868 
2869 /*
2870  * swap_count_continued - when the original swap_map count is incremented
2871  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2872  * into, carry if so, or else fail until a new continuation page is allocated;
2873  * when the original swap_map count is decremented from 0 with continuation,
2874  * borrow from the continuation and report whether it still holds more.
2875  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2876  */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)2877 static bool swap_count_continued(struct swap_info_struct *si,
2878 				 pgoff_t offset, unsigned char count)
2879 {
2880 	struct page *head;
2881 	struct page *page;
2882 	unsigned char *map;
2883 
2884 	head = vmalloc_to_page(si->swap_map + offset);
2885 	if (page_private(head) != SWP_CONTINUED) {
2886 		BUG_ON(count & COUNT_CONTINUED);
2887 		return false;		/* need to add count continuation */
2888 	}
2889 
2890 	offset &= ~PAGE_MASK;
2891 	page = list_entry(head->lru.next, struct page, lru);
2892 	map = kmap_atomic(page) + offset;
2893 
2894 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2895 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2896 
2897 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2898 		/*
2899 		 * Think of how you add 1 to 999
2900 		 */
2901 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2902 			kunmap_atomic(map);
2903 			page = list_entry(page->lru.next, struct page, lru);
2904 			BUG_ON(page == head);
2905 			map = kmap_atomic(page) + offset;
2906 		}
2907 		if (*map == SWAP_CONT_MAX) {
2908 			kunmap_atomic(map);
2909 			page = list_entry(page->lru.next, struct page, lru);
2910 			if (page == head)
2911 				return false;	/* add count continuation */
2912 			map = kmap_atomic(page) + offset;
2913 init_map:		*map = 0;		/* we didn't zero the page */
2914 		}
2915 		*map += 1;
2916 		kunmap_atomic(map);
2917 		page = list_entry(page->lru.prev, struct page, lru);
2918 		while (page != head) {
2919 			map = kmap_atomic(page) + offset;
2920 			*map = COUNT_CONTINUED;
2921 			kunmap_atomic(map);
2922 			page = list_entry(page->lru.prev, struct page, lru);
2923 		}
2924 		return true;			/* incremented */
2925 
2926 	} else {				/* decrementing */
2927 		/*
2928 		 * Think of how you subtract 1 from 1000
2929 		 */
2930 		BUG_ON(count != COUNT_CONTINUED);
2931 		while (*map == COUNT_CONTINUED) {
2932 			kunmap_atomic(map);
2933 			page = list_entry(page->lru.next, struct page, lru);
2934 			BUG_ON(page == head);
2935 			map = kmap_atomic(page) + offset;
2936 		}
2937 		BUG_ON(*map == 0);
2938 		*map -= 1;
2939 		if (*map == 0)
2940 			count = 0;
2941 		kunmap_atomic(map);
2942 		page = list_entry(page->lru.prev, struct page, lru);
2943 		while (page != head) {
2944 			map = kmap_atomic(page) + offset;
2945 			*map = SWAP_CONT_MAX | count;
2946 			count = COUNT_CONTINUED;
2947 			kunmap_atomic(map);
2948 			page = list_entry(page->lru.prev, struct page, lru);
2949 		}
2950 		return count == COUNT_CONTINUED;
2951 	}
2952 }
2953 
2954 /*
2955  * free_swap_count_continuations - swapoff free all the continuation pages
2956  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2957  */
free_swap_count_continuations(struct swap_info_struct * si)2958 static void free_swap_count_continuations(struct swap_info_struct *si)
2959 {
2960 	pgoff_t offset;
2961 
2962 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2963 		struct page *head;
2964 		head = vmalloc_to_page(si->swap_map + offset);
2965 		if (page_private(head)) {
2966 			struct page *page, *next;
2967 
2968 			list_for_each_entry_safe(page, next, &head->lru, lru) {
2969 				list_del(&page->lru);
2970 				__free_page(page);
2971 			}
2972 		}
2973 	}
2974 }
2975