• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Maintain an RxRPC server socket to do AFS communications through
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/slab.h>
13 #include <net/sock.h>
14 #include <net/af_rxrpc.h>
15 #include <rxrpc/packet.h>
16 #include "internal.h"
17 #include "afs_cm.h"
18 
19 struct socket *afs_socket; /* my RxRPC socket */
20 static struct workqueue_struct *afs_async_calls;
21 static struct afs_call *afs_spare_incoming_call;
22 static atomic_t afs_outstanding_calls;
23 
24 static void afs_free_call(struct afs_call *);
25 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
26 static int afs_wait_for_call_to_complete(struct afs_call *);
27 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
28 static int afs_dont_wait_for_call_to_complete(struct afs_call *);
29 static void afs_process_async_call(struct work_struct *);
30 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
31 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
32 static int afs_deliver_cm_op_id(struct afs_call *);
33 
34 /* synchronous call management */
35 const struct afs_wait_mode afs_sync_call = {
36 	.notify_rx	= afs_wake_up_call_waiter,
37 	.wait		= afs_wait_for_call_to_complete,
38 };
39 
40 /* asynchronous call management */
41 const struct afs_wait_mode afs_async_call = {
42 	.notify_rx	= afs_wake_up_async_call,
43 	.wait		= afs_dont_wait_for_call_to_complete,
44 };
45 
46 /* asynchronous incoming call management */
47 static const struct afs_wait_mode afs_async_incoming_call = {
48 	.notify_rx	= afs_wake_up_async_call,
49 };
50 
51 /* asynchronous incoming call initial processing */
52 static const struct afs_call_type afs_RXCMxxxx = {
53 	.name		= "CB.xxxx",
54 	.deliver	= afs_deliver_cm_op_id,
55 	.abort_to_error	= afs_abort_to_error,
56 };
57 
58 static void afs_charge_preallocation(struct work_struct *);
59 
60 static DECLARE_WORK(afs_charge_preallocation_work, afs_charge_preallocation);
61 
afs_wait_atomic_t(atomic_t * p)62 static int afs_wait_atomic_t(atomic_t *p)
63 {
64 	schedule();
65 	return 0;
66 }
67 
68 /*
69  * open an RxRPC socket and bind it to be a server for callback notifications
70  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
71  */
afs_open_socket(void)72 int afs_open_socket(void)
73 {
74 	struct sockaddr_rxrpc srx;
75 	struct socket *socket;
76 	int ret;
77 
78 	_enter("");
79 
80 	ret = -ENOMEM;
81 	afs_async_calls = alloc_workqueue("kafsd", WQ_MEM_RECLAIM, 0);
82 	if (!afs_async_calls)
83 		goto error_0;
84 
85 	ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket);
86 	if (ret < 0)
87 		goto error_1;
88 
89 	socket->sk->sk_allocation = GFP_NOFS;
90 
91 	/* bind the callback manager's address to make this a server socket */
92 	srx.srx_family			= AF_RXRPC;
93 	srx.srx_service			= CM_SERVICE;
94 	srx.transport_type		= SOCK_DGRAM;
95 	srx.transport_len		= sizeof(srx.transport.sin);
96 	srx.transport.sin.sin_family	= AF_INET;
97 	srx.transport.sin.sin_port	= htons(AFS_CM_PORT);
98 	memset(&srx.transport.sin.sin_addr, 0,
99 	       sizeof(srx.transport.sin.sin_addr));
100 
101 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
102 	if (ret < 0)
103 		goto error_2;
104 
105 	rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
106 					   afs_rx_discard_new_call);
107 
108 	ret = kernel_listen(socket, INT_MAX);
109 	if (ret < 0)
110 		goto error_2;
111 
112 	afs_socket = socket;
113 	afs_charge_preallocation(NULL);
114 	_leave(" = 0");
115 	return 0;
116 
117 error_2:
118 	sock_release(socket);
119 error_1:
120 	destroy_workqueue(afs_async_calls);
121 error_0:
122 	_leave(" = %d", ret);
123 	return ret;
124 }
125 
126 /*
127  * close the RxRPC socket AFS was using
128  */
afs_close_socket(void)129 void afs_close_socket(void)
130 {
131 	_enter("");
132 
133 	if (afs_spare_incoming_call) {
134 		atomic_inc(&afs_outstanding_calls);
135 		afs_free_call(afs_spare_incoming_call);
136 		afs_spare_incoming_call = NULL;
137 	}
138 
139 	_debug("outstanding %u", atomic_read(&afs_outstanding_calls));
140 	wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t,
141 			 TASK_UNINTERRUPTIBLE);
142 	_debug("no outstanding calls");
143 
144 	flush_workqueue(afs_async_calls);
145 	kernel_sock_shutdown(afs_socket, SHUT_RDWR);
146 	flush_workqueue(afs_async_calls);
147 	sock_release(afs_socket);
148 
149 	_debug("dework");
150 	destroy_workqueue(afs_async_calls);
151 	_leave("");
152 }
153 
154 /*
155  * free a call
156  */
afs_free_call(struct afs_call * call)157 static void afs_free_call(struct afs_call *call)
158 {
159 	_debug("DONE %p{%s} [%d]",
160 	       call, call->type->name, atomic_read(&afs_outstanding_calls));
161 
162 	ASSERTCMP(call->rxcall, ==, NULL);
163 	ASSERT(!work_pending(&call->async_work));
164 	ASSERT(call->type->name != NULL);
165 
166 	kfree(call->request);
167 	kfree(call);
168 
169 	if (atomic_dec_and_test(&afs_outstanding_calls))
170 		wake_up_atomic_t(&afs_outstanding_calls);
171 }
172 
173 /*
174  * End a call but do not free it
175  */
afs_end_call_nofree(struct afs_call * call)176 static void afs_end_call_nofree(struct afs_call *call)
177 {
178 	if (call->rxcall) {
179 		rxrpc_kernel_end_call(afs_socket, call->rxcall);
180 		call->rxcall = NULL;
181 	}
182 	if (call->type->destructor)
183 		call->type->destructor(call);
184 }
185 
186 /*
187  * End a call and free it
188  */
afs_end_call(struct afs_call * call)189 static void afs_end_call(struct afs_call *call)
190 {
191 	afs_end_call_nofree(call);
192 	afs_free_call(call);
193 }
194 
195 /*
196  * allocate a call with flat request and reply buffers
197  */
afs_alloc_flat_call(const struct afs_call_type * type,size_t request_size,size_t reply_max)198 struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type,
199 				     size_t request_size, size_t reply_max)
200 {
201 	struct afs_call *call;
202 
203 	call = kzalloc(sizeof(*call), GFP_NOFS);
204 	if (!call)
205 		goto nomem_call;
206 
207 	_debug("CALL %p{%s} [%d]",
208 	       call, type->name, atomic_read(&afs_outstanding_calls));
209 	atomic_inc(&afs_outstanding_calls);
210 
211 	call->type = type;
212 	call->request_size = request_size;
213 	call->reply_max = reply_max;
214 
215 	if (request_size) {
216 		call->request = kmalloc(request_size, GFP_NOFS);
217 		if (!call->request)
218 			goto nomem_free;
219 	}
220 
221 	if (reply_max) {
222 		call->buffer = kmalloc(reply_max, GFP_NOFS);
223 		if (!call->buffer)
224 			goto nomem_free;
225 	}
226 
227 	init_waitqueue_head(&call->waitq);
228 	return call;
229 
230 nomem_free:
231 	afs_free_call(call);
232 nomem_call:
233 	return NULL;
234 }
235 
236 /*
237  * clean up a call with flat buffer
238  */
afs_flat_call_destructor(struct afs_call * call)239 void afs_flat_call_destructor(struct afs_call *call)
240 {
241 	_enter("");
242 
243 	kfree(call->request);
244 	call->request = NULL;
245 	kfree(call->buffer);
246 	call->buffer = NULL;
247 }
248 
249 /*
250  * attach the data from a bunch of pages on an inode to a call
251  */
afs_send_pages(struct afs_call * call,struct msghdr * msg,struct kvec * iov)252 static int afs_send_pages(struct afs_call *call, struct msghdr *msg,
253 			  struct kvec *iov)
254 {
255 	struct page *pages[8];
256 	unsigned count, n, loop, offset, to;
257 	pgoff_t first = call->first, last = call->last;
258 	int ret;
259 
260 	_enter("");
261 
262 	offset = call->first_offset;
263 	call->first_offset = 0;
264 
265 	do {
266 		_debug("attach %lx-%lx", first, last);
267 
268 		count = last - first + 1;
269 		if (count > ARRAY_SIZE(pages))
270 			count = ARRAY_SIZE(pages);
271 		n = find_get_pages_contig(call->mapping, first, count, pages);
272 		ASSERTCMP(n, ==, count);
273 
274 		loop = 0;
275 		do {
276 			msg->msg_flags = 0;
277 			to = PAGE_SIZE;
278 			if (first + loop >= last)
279 				to = call->last_to;
280 			else
281 				msg->msg_flags = MSG_MORE;
282 			iov->iov_base = kmap(pages[loop]) + offset;
283 			iov->iov_len = to - offset;
284 			offset = 0;
285 
286 			_debug("- range %u-%u%s",
287 			       offset, to, msg->msg_flags ? " [more]" : "");
288 			iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC,
289 				      iov, 1, to - offset);
290 
291 			/* have to change the state *before* sending the last
292 			 * packet as RxRPC might give us the reply before it
293 			 * returns from sending the request */
294 			if (first + loop >= last)
295 				call->state = AFS_CALL_AWAIT_REPLY;
296 			ret = rxrpc_kernel_send_data(afs_socket, call->rxcall,
297 						     msg, to - offset);
298 			kunmap(pages[loop]);
299 			if (ret < 0)
300 				break;
301 		} while (++loop < count);
302 		first += count;
303 
304 		for (loop = 0; loop < count; loop++)
305 			put_page(pages[loop]);
306 		if (ret < 0)
307 			break;
308 	} while (first <= last);
309 
310 	_leave(" = %d", ret);
311 	return ret;
312 }
313 
314 /*
315  * initiate a call
316  */
afs_make_call(struct in_addr * addr,struct afs_call * call,gfp_t gfp,const struct afs_wait_mode * wait_mode)317 int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp,
318 		  const struct afs_wait_mode *wait_mode)
319 {
320 	struct sockaddr_rxrpc srx;
321 	struct rxrpc_call *rxcall;
322 	struct msghdr msg;
323 	struct kvec iov[1];
324 	size_t offset;
325 	u32 abort_code;
326 	int ret;
327 
328 	_enter("%x,{%d},", addr->s_addr, ntohs(call->port));
329 
330 	ASSERT(call->type != NULL);
331 	ASSERT(call->type->name != NULL);
332 
333 	_debug("____MAKE %p{%s,%x} [%d]____",
334 	       call, call->type->name, key_serial(call->key),
335 	       atomic_read(&afs_outstanding_calls));
336 
337 	call->wait_mode = wait_mode;
338 	INIT_WORK(&call->async_work, afs_process_async_call);
339 
340 	memset(&srx, 0, sizeof(srx));
341 	srx.srx_family = AF_RXRPC;
342 	srx.srx_service = call->service_id;
343 	srx.transport_type = SOCK_DGRAM;
344 	srx.transport_len = sizeof(srx.transport.sin);
345 	srx.transport.sin.sin_family = AF_INET;
346 	srx.transport.sin.sin_port = call->port;
347 	memcpy(&srx.transport.sin.sin_addr, addr, 4);
348 
349 	/* create a call */
350 	rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key,
351 					 (unsigned long) call, gfp,
352 					 wait_mode->notify_rx);
353 	call->key = NULL;
354 	if (IS_ERR(rxcall)) {
355 		ret = PTR_ERR(rxcall);
356 		goto error_kill_call;
357 	}
358 
359 	call->rxcall = rxcall;
360 
361 	/* send the request */
362 	iov[0].iov_base	= call->request;
363 	iov[0].iov_len	= call->request_size;
364 
365 	msg.msg_name		= NULL;
366 	msg.msg_namelen		= 0;
367 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
368 		      call->request_size);
369 	msg.msg_control		= NULL;
370 	msg.msg_controllen	= 0;
371 	msg.msg_flags		= (call->send_pages ? MSG_MORE : 0);
372 
373 	/* We have to change the state *before* sending the last packet as
374 	 * rxrpc might give us the reply before it returns from sending the
375 	 * request.  Further, if the send fails, we may already have been given
376 	 * a notification and may have collected it.
377 	 */
378 	if (!call->send_pages)
379 		call->state = AFS_CALL_AWAIT_REPLY;
380 	ret = rxrpc_kernel_send_data(afs_socket, rxcall,
381 				     &msg, call->request_size);
382 	if (ret < 0)
383 		goto error_do_abort;
384 
385 	if (call->send_pages) {
386 		ret = afs_send_pages(call, &msg, iov);
387 		if (ret < 0)
388 			goto error_do_abort;
389 	}
390 
391 	/* at this point, an async call may no longer exist as it may have
392 	 * already completed */
393 	return wait_mode->wait(call);
394 
395 error_do_abort:
396 	call->state = AFS_CALL_COMPLETE;
397 	if (ret != -ECONNABORTED) {
398 		rxrpc_kernel_abort_call(afs_socket, rxcall, RX_USER_ABORT,
399 					-ret, "KSD");
400 	} else {
401 		abort_code = 0;
402 		offset = 0;
403 		rxrpc_kernel_recv_data(afs_socket, rxcall, NULL, 0, &offset,
404 				       false, &abort_code);
405 		ret = call->type->abort_to_error(abort_code);
406 	}
407 error_kill_call:
408 	afs_end_call(call);
409 	_leave(" = %d", ret);
410 	return ret;
411 }
412 
413 /*
414  * deliver messages to a call
415  */
afs_deliver_to_call(struct afs_call * call)416 static void afs_deliver_to_call(struct afs_call *call)
417 {
418 	u32 abort_code;
419 	int ret;
420 
421 	_enter("%s", call->type->name);
422 
423 	while (call->state == AFS_CALL_AWAIT_REPLY ||
424 	       call->state == AFS_CALL_AWAIT_OP_ID ||
425 	       call->state == AFS_CALL_AWAIT_REQUEST ||
426 	       call->state == AFS_CALL_AWAIT_ACK
427 	       ) {
428 		if (call->state == AFS_CALL_AWAIT_ACK) {
429 			size_t offset = 0;
430 			ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
431 						     NULL, 0, &offset, false,
432 						     &call->abort_code);
433 			if (ret == -EINPROGRESS || ret == -EAGAIN)
434 				return;
435 			if (ret == 1 || ret < 0) {
436 				call->state = AFS_CALL_COMPLETE;
437 				goto done;
438 			}
439 			return;
440 		}
441 
442 		ret = call->type->deliver(call);
443 		switch (ret) {
444 		case 0:
445 			if (call->state == AFS_CALL_AWAIT_REPLY)
446 				call->state = AFS_CALL_COMPLETE;
447 			goto done;
448 		case -EINPROGRESS:
449 		case -EAGAIN:
450 			goto out;
451 		case -ECONNABORTED:
452 			goto call_complete;
453 		case -ENOTCONN:
454 			abort_code = RX_CALL_DEAD;
455 			rxrpc_kernel_abort_call(afs_socket, call->rxcall,
456 						abort_code, -ret, "KNC");
457 			goto save_error;
458 		case -ENOTSUPP:
459 			abort_code = RXGEN_OPCODE;
460 			rxrpc_kernel_abort_call(afs_socket, call->rxcall,
461 						abort_code, -ret, "KIV");
462 			goto save_error;
463 		case -ENODATA:
464 		case -EBADMSG:
465 		case -EMSGSIZE:
466 		default:
467 			abort_code = RXGEN_CC_UNMARSHAL;
468 			if (call->state != AFS_CALL_AWAIT_REPLY)
469 				abort_code = RXGEN_SS_UNMARSHAL;
470 			rxrpc_kernel_abort_call(afs_socket, call->rxcall,
471 						abort_code, EBADMSG, "KUM");
472 			goto save_error;
473 		}
474 	}
475 
476 done:
477 	if (call->state == AFS_CALL_COMPLETE && call->incoming)
478 		afs_end_call(call);
479 out:
480 	_leave("");
481 	return;
482 
483 save_error:
484 	call->error = ret;
485 call_complete:
486 	call->state = AFS_CALL_COMPLETE;
487 	goto done;
488 }
489 
490 /*
491  * wait synchronously for a call to complete
492  */
afs_wait_for_call_to_complete(struct afs_call * call)493 static int afs_wait_for_call_to_complete(struct afs_call *call)
494 {
495 	int ret;
496 
497 	DECLARE_WAITQUEUE(myself, current);
498 
499 	_enter("");
500 
501 	add_wait_queue(&call->waitq, &myself);
502 	for (;;) {
503 		set_current_state(TASK_INTERRUPTIBLE);
504 
505 		/* deliver any messages that are in the queue */
506 		if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
507 			call->need_attention = false;
508 			__set_current_state(TASK_RUNNING);
509 			afs_deliver_to_call(call);
510 			continue;
511 		}
512 
513 		if (call->state == AFS_CALL_COMPLETE ||
514 		    signal_pending(current))
515 			break;
516 		schedule();
517 	}
518 
519 	remove_wait_queue(&call->waitq, &myself);
520 	__set_current_state(TASK_RUNNING);
521 
522 	/* Kill off the call if it's still live. */
523 	if (call->state < AFS_CALL_COMPLETE) {
524 		_debug("call interrupted");
525 		rxrpc_kernel_abort_call(afs_socket, call->rxcall,
526 					RX_USER_ABORT, -EINTR, "KWI");
527 	}
528 
529 	ret = call->error;
530 	_debug("call complete");
531 	afs_end_call(call);
532 	_leave(" = %d", ret);
533 	return ret;
534 }
535 
536 /*
537  * wake up a waiting call
538  */
afs_wake_up_call_waiter(struct sock * sk,struct rxrpc_call * rxcall,unsigned long call_user_ID)539 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
540 				    unsigned long call_user_ID)
541 {
542 	struct afs_call *call = (struct afs_call *)call_user_ID;
543 
544 	call->need_attention = true;
545 	wake_up(&call->waitq);
546 }
547 
548 /*
549  * wake up an asynchronous call
550  */
afs_wake_up_async_call(struct sock * sk,struct rxrpc_call * rxcall,unsigned long call_user_ID)551 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
552 				   unsigned long call_user_ID)
553 {
554 	struct afs_call *call = (struct afs_call *)call_user_ID;
555 
556 	call->need_attention = true;
557 	queue_work(afs_async_calls, &call->async_work);
558 }
559 
560 /*
561  * put a call into asynchronous mode
562  * - mustn't touch the call descriptor as the call my have completed by the
563  *   time we get here
564  */
afs_dont_wait_for_call_to_complete(struct afs_call * call)565 static int afs_dont_wait_for_call_to_complete(struct afs_call *call)
566 {
567 	_enter("");
568 	return -EINPROGRESS;
569 }
570 
571 /*
572  * delete an asynchronous call
573  */
afs_delete_async_call(struct work_struct * work)574 static void afs_delete_async_call(struct work_struct *work)
575 {
576 	struct afs_call *call = container_of(work, struct afs_call, async_work);
577 
578 	_enter("");
579 
580 	afs_free_call(call);
581 
582 	_leave("");
583 }
584 
585 /*
586  * perform processing on an asynchronous call
587  */
afs_process_async_call(struct work_struct * work)588 static void afs_process_async_call(struct work_struct *work)
589 {
590 	struct afs_call *call = container_of(work, struct afs_call, async_work);
591 
592 	_enter("");
593 
594 	if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
595 		call->need_attention = false;
596 		afs_deliver_to_call(call);
597 	}
598 
599 	if (call->state == AFS_CALL_COMPLETE && call->wait_mode) {
600 		if (call->wait_mode->async_complete)
601 			call->wait_mode->async_complete(call->reply,
602 							call->error);
603 		call->reply = NULL;
604 
605 		/* kill the call */
606 		afs_end_call_nofree(call);
607 
608 		/* we can't just delete the call because the work item may be
609 		 * queued */
610 		call->async_work.func = afs_delete_async_call;
611 		queue_work(afs_async_calls, &call->async_work);
612 	}
613 
614 	_leave("");
615 }
616 
afs_rx_attach(struct rxrpc_call * rxcall,unsigned long user_call_ID)617 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
618 {
619 	struct afs_call *call = (struct afs_call *)user_call_ID;
620 
621 	call->rxcall = rxcall;
622 }
623 
624 /*
625  * Charge the incoming call preallocation.
626  */
afs_charge_preallocation(struct work_struct * work)627 static void afs_charge_preallocation(struct work_struct *work)
628 {
629 	struct afs_call *call = afs_spare_incoming_call;
630 
631 	for (;;) {
632 		if (!call) {
633 			call = kzalloc(sizeof(struct afs_call), GFP_KERNEL);
634 			if (!call)
635 				break;
636 
637 			INIT_WORK(&call->async_work, afs_process_async_call);
638 			call->wait_mode = &afs_async_incoming_call;
639 			call->type = &afs_RXCMxxxx;
640 			init_waitqueue_head(&call->waitq);
641 			call->state = AFS_CALL_AWAIT_OP_ID;
642 		}
643 
644 		if (rxrpc_kernel_charge_accept(afs_socket,
645 					       afs_wake_up_async_call,
646 					       afs_rx_attach,
647 					       (unsigned long)call,
648 					       GFP_KERNEL) < 0)
649 			break;
650 		call = NULL;
651 	}
652 	afs_spare_incoming_call = call;
653 }
654 
655 /*
656  * Discard a preallocated call when a socket is shut down.
657  */
afs_rx_discard_new_call(struct rxrpc_call * rxcall,unsigned long user_call_ID)658 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
659 				    unsigned long user_call_ID)
660 {
661 	struct afs_call *call = (struct afs_call *)user_call_ID;
662 
663 	atomic_inc(&afs_outstanding_calls);
664 	call->rxcall = NULL;
665 	afs_free_call(call);
666 }
667 
668 /*
669  * Notification of an incoming call.
670  */
afs_rx_new_call(struct sock * sk,struct rxrpc_call * rxcall,unsigned long user_call_ID)671 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
672 			    unsigned long user_call_ID)
673 {
674 	atomic_inc(&afs_outstanding_calls);
675 	queue_work(afs_wq, &afs_charge_preallocation_work);
676 }
677 
678 /*
679  * Grab the operation ID from an incoming cache manager call.  The socket
680  * buffer is discarded on error or if we don't yet have sufficient data.
681  */
afs_deliver_cm_op_id(struct afs_call * call)682 static int afs_deliver_cm_op_id(struct afs_call *call)
683 {
684 	int ret;
685 
686 	_enter("{%zu}", call->offset);
687 
688 	ASSERTCMP(call->offset, <, 4);
689 
690 	/* the operation ID forms the first four bytes of the request data */
691 	ret = afs_extract_data(call, &call->tmp, 4, true);
692 	if (ret < 0)
693 		return ret;
694 
695 	call->operation_ID = ntohl(call->tmp);
696 	call->state = AFS_CALL_AWAIT_REQUEST;
697 	call->offset = 0;
698 
699 	/* ask the cache manager to route the call (it'll change the call type
700 	 * if successful) */
701 	if (!afs_cm_incoming_call(call))
702 		return -ENOTSUPP;
703 
704 	/* pass responsibility for the remainer of this message off to the
705 	 * cache manager op */
706 	return call->type->deliver(call);
707 }
708 
709 /*
710  * send an empty reply
711  */
afs_send_empty_reply(struct afs_call * call)712 void afs_send_empty_reply(struct afs_call *call)
713 {
714 	struct msghdr msg;
715 
716 	_enter("");
717 
718 	msg.msg_name		= NULL;
719 	msg.msg_namelen		= 0;
720 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
721 	msg.msg_control		= NULL;
722 	msg.msg_controllen	= 0;
723 	msg.msg_flags		= 0;
724 
725 	call->state = AFS_CALL_AWAIT_ACK;
726 	switch (rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, 0)) {
727 	case 0:
728 		_leave(" [replied]");
729 		return;
730 
731 	case -ENOMEM:
732 		_debug("oom");
733 		rxrpc_kernel_abort_call(afs_socket, call->rxcall,
734 					RX_USER_ABORT, ENOMEM, "KOO");
735 	default:
736 		afs_end_call(call);
737 		_leave(" [error]");
738 		return;
739 	}
740 }
741 
742 /*
743  * send a simple reply
744  */
afs_send_simple_reply(struct afs_call * call,const void * buf,size_t len)745 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
746 {
747 	struct msghdr msg;
748 	struct kvec iov[1];
749 	int n;
750 
751 	_enter("");
752 
753 	iov[0].iov_base		= (void *) buf;
754 	iov[0].iov_len		= len;
755 	msg.msg_name		= NULL;
756 	msg.msg_namelen		= 0;
757 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
758 	msg.msg_control		= NULL;
759 	msg.msg_controllen	= 0;
760 	msg.msg_flags		= 0;
761 
762 	call->state = AFS_CALL_AWAIT_ACK;
763 	n = rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, len);
764 	if (n >= 0) {
765 		/* Success */
766 		_leave(" [replied]");
767 		return;
768 	}
769 
770 	if (n == -ENOMEM) {
771 		_debug("oom");
772 		rxrpc_kernel_abort_call(afs_socket, call->rxcall,
773 					RX_USER_ABORT, ENOMEM, "KOO");
774 	}
775 	afs_end_call(call);
776 	_leave(" [error]");
777 }
778 
779 /*
780  * Extract a piece of data from the received data socket buffers.
781  */
afs_extract_data(struct afs_call * call,void * buf,size_t count,bool want_more)782 int afs_extract_data(struct afs_call *call, void *buf, size_t count,
783 		     bool want_more)
784 {
785 	int ret;
786 
787 	_enter("{%s,%zu},,%zu,%d",
788 	       call->type->name, call->offset, count, want_more);
789 
790 	ASSERTCMP(call->offset, <=, count);
791 
792 	ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
793 				     buf, count, &call->offset,
794 				     want_more, &call->abort_code);
795 	if (ret == 0 || ret == -EAGAIN)
796 		return ret;
797 
798 	if (ret == 1) {
799 		switch (call->state) {
800 		case AFS_CALL_AWAIT_REPLY:
801 			call->state = AFS_CALL_COMPLETE;
802 			break;
803 		case AFS_CALL_AWAIT_REQUEST:
804 			call->state = AFS_CALL_REPLYING;
805 			break;
806 		default:
807 			break;
808 		}
809 		return 0;
810 	}
811 
812 	if (ret == -ECONNABORTED)
813 		call->error = call->type->abort_to_error(call->abort_code);
814 	else
815 		call->error = ret;
816 	call->state = AFS_CALL_COMPLETE;
817 	return ret;
818 }
819