1 /*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 #include "lapic.h"
23
24 #include <linux/kvm_host.h>
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/mm.h>
28 #include <linux/highmem.h>
29 #include <linux/sched.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/trace_events.h>
33 #include <linux/slab.h>
34 #include <linux/tboot.h>
35 #include <linux/hrtimer.h>
36 #include <linux/nospec.h>
37 #include "kvm_cache_regs.h"
38 #include "x86.h"
39
40 #include <asm/cpu.h>
41 #include <asm/io.h>
42 #include <asm/desc.h>
43 #include <asm/vmx.h>
44 #include <asm/virtext.h>
45 #include <asm/mce.h>
46 #include <asm/fpu/internal.h>
47 #include <asm/perf_event.h>
48 #include <asm/debugreg.h>
49 #include <asm/kexec.h>
50 #include <asm/apic.h>
51 #include <asm/irq_remapping.h>
52 #include <asm/microcode.h>
53 #include <asm/nospec-branch.h>
54
55 #include "trace.h"
56 #include "pmu.h"
57
58 #define __ex(x) __kvm_handle_fault_on_reboot(x)
59 #define __ex_clear(x, reg) \
60 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
61
62 MODULE_AUTHOR("Qumranet");
63 MODULE_LICENSE("GPL");
64
65 static const struct x86_cpu_id vmx_cpu_id[] = {
66 X86_FEATURE_MATCH(X86_FEATURE_VMX),
67 {}
68 };
69 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
70
71 static bool __read_mostly enable_vpid = 1;
72 module_param_named(vpid, enable_vpid, bool, 0444);
73
74 static bool __read_mostly flexpriority_enabled = 1;
75 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
76
77 static bool __read_mostly enable_ept = 1;
78 module_param_named(ept, enable_ept, bool, S_IRUGO);
79
80 static bool __read_mostly enable_unrestricted_guest = 1;
81 module_param_named(unrestricted_guest,
82 enable_unrestricted_guest, bool, S_IRUGO);
83
84 static bool __read_mostly enable_ept_ad_bits = 1;
85 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
86
87 static bool __read_mostly emulate_invalid_guest_state = true;
88 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
89
90 static bool __read_mostly vmm_exclusive = 1;
91 module_param(vmm_exclusive, bool, S_IRUGO);
92
93 static bool __read_mostly fasteoi = 1;
94 module_param(fasteoi, bool, S_IRUGO);
95
96 static bool __read_mostly enable_apicv = 1;
97 module_param(enable_apicv, bool, S_IRUGO);
98
99 static bool __read_mostly enable_shadow_vmcs = 1;
100 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
101 /*
102 * If nested=1, nested virtualization is supported, i.e., guests may use
103 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
104 * use VMX instructions.
105 */
106 static bool __read_mostly nested = 0;
107 module_param(nested, bool, S_IRUGO);
108
109 static u64 __read_mostly host_xss;
110
111 static bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
113
114 #define MSR_TYPE_R 1
115 #define MSR_TYPE_W 2
116 #define MSR_TYPE_RW 3
117
118 #define MSR_BITMAP_MODE_X2APIC 1
119 #define MSR_BITMAP_MODE_X2APIC_APICV 2
120 #define MSR_BITMAP_MODE_LM 4
121
122 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
123
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
127 #ifdef CONFIG_X86_64
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #endif
130
131 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
132 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
133 #define KVM_VM_CR0_ALWAYS_ON \
134 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
135 #define KVM_CR4_GUEST_OWNED_BITS \
136 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
137 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
138
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143
144 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
145
146 #define VMX_VPID_EXTENT_SUPPORTED_MASK \
147 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
148 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
149 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
150 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
151
152 /*
153 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154 * ple_gap: upper bound on the amount of time between two successive
155 * executions of PAUSE in a loop. Also indicate if ple enabled.
156 * According to test, this time is usually smaller than 128 cycles.
157 * ple_window: upper bound on the amount of time a guest is allowed to execute
158 * in a PAUSE loop. Tests indicate that most spinlocks are held for
159 * less than 2^12 cycles
160 * Time is measured based on a counter that runs at the same rate as the TSC,
161 * refer SDM volume 3b section 21.6.13 & 22.1.3.
162 */
163 #define KVM_VMX_DEFAULT_PLE_GAP 128
164 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
165 #define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
166 #define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
167 #define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
168 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
169
170 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
171 module_param(ple_gap, int, S_IRUGO);
172
173 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
174 module_param(ple_window, int, S_IRUGO);
175
176 /* Default doubles per-vcpu window every exit. */
177 static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
178 module_param(ple_window_grow, int, S_IRUGO);
179
180 /* Default resets per-vcpu window every exit to ple_window. */
181 static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
182 module_param(ple_window_shrink, int, S_IRUGO);
183
184 /* Default is to compute the maximum so we can never overflow. */
185 static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
186 static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
187 module_param(ple_window_max, int, S_IRUGO);
188
189 extern const ulong vmx_return;
190
191 #define NR_AUTOLOAD_MSRS 8
192
193 struct vmcs {
194 u32 revision_id;
195 u32 abort;
196 char data[0];
197 };
198
199 /*
200 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
201 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
202 * loaded on this CPU (so we can clear them if the CPU goes down).
203 */
204 struct loaded_vmcs {
205 struct vmcs *vmcs;
206 struct vmcs *shadow_vmcs;
207 int cpu;
208 int launched;
209 unsigned long *msr_bitmap;
210 struct list_head loaded_vmcss_on_cpu_link;
211 };
212
213 struct shared_msr_entry {
214 unsigned index;
215 u64 data;
216 u64 mask;
217 };
218
219 /*
220 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
221 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
222 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
223 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
224 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
225 * More than one of these structures may exist, if L1 runs multiple L2 guests.
226 * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
227 * underlying hardware which will be used to run L2.
228 * This structure is packed to ensure that its layout is identical across
229 * machines (necessary for live migration).
230 * If there are changes in this struct, VMCS12_REVISION must be changed.
231 */
232 typedef u64 natural_width;
233 struct __packed vmcs12 {
234 /* According to the Intel spec, a VMCS region must start with the
235 * following two fields. Then follow implementation-specific data.
236 */
237 u32 revision_id;
238 u32 abort;
239
240 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
241 u32 padding[7]; /* room for future expansion */
242
243 u64 io_bitmap_a;
244 u64 io_bitmap_b;
245 u64 msr_bitmap;
246 u64 vm_exit_msr_store_addr;
247 u64 vm_exit_msr_load_addr;
248 u64 vm_entry_msr_load_addr;
249 u64 tsc_offset;
250 u64 virtual_apic_page_addr;
251 u64 apic_access_addr;
252 u64 posted_intr_desc_addr;
253 u64 ept_pointer;
254 u64 eoi_exit_bitmap0;
255 u64 eoi_exit_bitmap1;
256 u64 eoi_exit_bitmap2;
257 u64 eoi_exit_bitmap3;
258 u64 xss_exit_bitmap;
259 u64 guest_physical_address;
260 u64 vmcs_link_pointer;
261 u64 guest_ia32_debugctl;
262 u64 guest_ia32_pat;
263 u64 guest_ia32_efer;
264 u64 guest_ia32_perf_global_ctrl;
265 u64 guest_pdptr0;
266 u64 guest_pdptr1;
267 u64 guest_pdptr2;
268 u64 guest_pdptr3;
269 u64 guest_bndcfgs;
270 u64 host_ia32_pat;
271 u64 host_ia32_efer;
272 u64 host_ia32_perf_global_ctrl;
273 u64 padding64[8]; /* room for future expansion */
274 /*
275 * To allow migration of L1 (complete with its L2 guests) between
276 * machines of different natural widths (32 or 64 bit), we cannot have
277 * unsigned long fields with no explict size. We use u64 (aliased
278 * natural_width) instead. Luckily, x86 is little-endian.
279 */
280 natural_width cr0_guest_host_mask;
281 natural_width cr4_guest_host_mask;
282 natural_width cr0_read_shadow;
283 natural_width cr4_read_shadow;
284 natural_width cr3_target_value0;
285 natural_width cr3_target_value1;
286 natural_width cr3_target_value2;
287 natural_width cr3_target_value3;
288 natural_width exit_qualification;
289 natural_width guest_linear_address;
290 natural_width guest_cr0;
291 natural_width guest_cr3;
292 natural_width guest_cr4;
293 natural_width guest_es_base;
294 natural_width guest_cs_base;
295 natural_width guest_ss_base;
296 natural_width guest_ds_base;
297 natural_width guest_fs_base;
298 natural_width guest_gs_base;
299 natural_width guest_ldtr_base;
300 natural_width guest_tr_base;
301 natural_width guest_gdtr_base;
302 natural_width guest_idtr_base;
303 natural_width guest_dr7;
304 natural_width guest_rsp;
305 natural_width guest_rip;
306 natural_width guest_rflags;
307 natural_width guest_pending_dbg_exceptions;
308 natural_width guest_sysenter_esp;
309 natural_width guest_sysenter_eip;
310 natural_width host_cr0;
311 natural_width host_cr3;
312 natural_width host_cr4;
313 natural_width host_fs_base;
314 natural_width host_gs_base;
315 natural_width host_tr_base;
316 natural_width host_gdtr_base;
317 natural_width host_idtr_base;
318 natural_width host_ia32_sysenter_esp;
319 natural_width host_ia32_sysenter_eip;
320 natural_width host_rsp;
321 natural_width host_rip;
322 natural_width paddingl[8]; /* room for future expansion */
323 u32 pin_based_vm_exec_control;
324 u32 cpu_based_vm_exec_control;
325 u32 exception_bitmap;
326 u32 page_fault_error_code_mask;
327 u32 page_fault_error_code_match;
328 u32 cr3_target_count;
329 u32 vm_exit_controls;
330 u32 vm_exit_msr_store_count;
331 u32 vm_exit_msr_load_count;
332 u32 vm_entry_controls;
333 u32 vm_entry_msr_load_count;
334 u32 vm_entry_intr_info_field;
335 u32 vm_entry_exception_error_code;
336 u32 vm_entry_instruction_len;
337 u32 tpr_threshold;
338 u32 secondary_vm_exec_control;
339 u32 vm_instruction_error;
340 u32 vm_exit_reason;
341 u32 vm_exit_intr_info;
342 u32 vm_exit_intr_error_code;
343 u32 idt_vectoring_info_field;
344 u32 idt_vectoring_error_code;
345 u32 vm_exit_instruction_len;
346 u32 vmx_instruction_info;
347 u32 guest_es_limit;
348 u32 guest_cs_limit;
349 u32 guest_ss_limit;
350 u32 guest_ds_limit;
351 u32 guest_fs_limit;
352 u32 guest_gs_limit;
353 u32 guest_ldtr_limit;
354 u32 guest_tr_limit;
355 u32 guest_gdtr_limit;
356 u32 guest_idtr_limit;
357 u32 guest_es_ar_bytes;
358 u32 guest_cs_ar_bytes;
359 u32 guest_ss_ar_bytes;
360 u32 guest_ds_ar_bytes;
361 u32 guest_fs_ar_bytes;
362 u32 guest_gs_ar_bytes;
363 u32 guest_ldtr_ar_bytes;
364 u32 guest_tr_ar_bytes;
365 u32 guest_interruptibility_info;
366 u32 guest_activity_state;
367 u32 guest_sysenter_cs;
368 u32 host_ia32_sysenter_cs;
369 u32 vmx_preemption_timer_value;
370 u32 padding32[7]; /* room for future expansion */
371 u16 virtual_processor_id;
372 u16 posted_intr_nv;
373 u16 guest_es_selector;
374 u16 guest_cs_selector;
375 u16 guest_ss_selector;
376 u16 guest_ds_selector;
377 u16 guest_fs_selector;
378 u16 guest_gs_selector;
379 u16 guest_ldtr_selector;
380 u16 guest_tr_selector;
381 u16 guest_intr_status;
382 u16 host_es_selector;
383 u16 host_cs_selector;
384 u16 host_ss_selector;
385 u16 host_ds_selector;
386 u16 host_fs_selector;
387 u16 host_gs_selector;
388 u16 host_tr_selector;
389 };
390
391 /*
392 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
393 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
394 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
395 */
396 #define VMCS12_REVISION 0x11e57ed0
397
398 /*
399 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
400 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
401 * current implementation, 4K are reserved to avoid future complications.
402 */
403 #define VMCS12_SIZE 0x1000
404
405 /*
406 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
407 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
408 */
409 struct nested_vmx {
410 /* Has the level1 guest done vmxon? */
411 bool vmxon;
412 gpa_t vmxon_ptr;
413
414 /* The guest-physical address of the current VMCS L1 keeps for L2 */
415 gpa_t current_vmptr;
416 /* The host-usable pointer to the above */
417 struct page *current_vmcs12_page;
418 struct vmcs12 *current_vmcs12;
419 /*
420 * Cache of the guest's VMCS, existing outside of guest memory.
421 * Loaded from guest memory during VMPTRLD. Flushed to guest
422 * memory during VMXOFF, VMCLEAR, VMPTRLD.
423 */
424 struct vmcs12 *cached_vmcs12;
425 /*
426 * Indicates if the shadow vmcs must be updated with the
427 * data hold by vmcs12
428 */
429 bool sync_shadow_vmcs;
430
431 bool change_vmcs01_virtual_x2apic_mode;
432 /* L2 must run next, and mustn't decide to exit to L1. */
433 bool nested_run_pending;
434
435 struct loaded_vmcs vmcs02;
436
437 /*
438 * Guest pages referred to in the vmcs02 with host-physical
439 * pointers, so we must keep them pinned while L2 runs.
440 */
441 struct page *apic_access_page;
442 struct page *virtual_apic_page;
443 struct page *pi_desc_page;
444 struct pi_desc *pi_desc;
445 bool pi_pending;
446 u16 posted_intr_nv;
447
448 struct hrtimer preemption_timer;
449 bool preemption_timer_expired;
450
451 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
452 u64 vmcs01_debugctl;
453
454 u16 vpid02;
455 u16 last_vpid;
456
457 u32 nested_vmx_procbased_ctls_low;
458 u32 nested_vmx_procbased_ctls_high;
459 u32 nested_vmx_true_procbased_ctls_low;
460 u32 nested_vmx_secondary_ctls_low;
461 u32 nested_vmx_secondary_ctls_high;
462 u32 nested_vmx_pinbased_ctls_low;
463 u32 nested_vmx_pinbased_ctls_high;
464 u32 nested_vmx_exit_ctls_low;
465 u32 nested_vmx_exit_ctls_high;
466 u32 nested_vmx_true_exit_ctls_low;
467 u32 nested_vmx_entry_ctls_low;
468 u32 nested_vmx_entry_ctls_high;
469 u32 nested_vmx_true_entry_ctls_low;
470 u32 nested_vmx_misc_low;
471 u32 nested_vmx_misc_high;
472 u32 nested_vmx_ept_caps;
473 u32 nested_vmx_vpid_caps;
474 };
475
476 #define POSTED_INTR_ON 0
477 #define POSTED_INTR_SN 1
478
479 /* Posted-Interrupt Descriptor */
480 struct pi_desc {
481 u32 pir[8]; /* Posted interrupt requested */
482 union {
483 struct {
484 /* bit 256 - Outstanding Notification */
485 u16 on : 1,
486 /* bit 257 - Suppress Notification */
487 sn : 1,
488 /* bit 271:258 - Reserved */
489 rsvd_1 : 14;
490 /* bit 279:272 - Notification Vector */
491 u8 nv;
492 /* bit 287:280 - Reserved */
493 u8 rsvd_2;
494 /* bit 319:288 - Notification Destination */
495 u32 ndst;
496 };
497 u64 control;
498 };
499 u32 rsvd[6];
500 } __aligned(64);
501
pi_test_and_set_on(struct pi_desc * pi_desc)502 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
503 {
504 return test_and_set_bit(POSTED_INTR_ON,
505 (unsigned long *)&pi_desc->control);
506 }
507
pi_test_and_clear_on(struct pi_desc * pi_desc)508 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
509 {
510 return test_and_clear_bit(POSTED_INTR_ON,
511 (unsigned long *)&pi_desc->control);
512 }
513
pi_test_and_set_pir(int vector,struct pi_desc * pi_desc)514 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
515 {
516 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
517 }
518
pi_clear_sn(struct pi_desc * pi_desc)519 static inline void pi_clear_sn(struct pi_desc *pi_desc)
520 {
521 return clear_bit(POSTED_INTR_SN,
522 (unsigned long *)&pi_desc->control);
523 }
524
pi_set_sn(struct pi_desc * pi_desc)525 static inline void pi_set_sn(struct pi_desc *pi_desc)
526 {
527 return set_bit(POSTED_INTR_SN,
528 (unsigned long *)&pi_desc->control);
529 }
530
pi_test_on(struct pi_desc * pi_desc)531 static inline int pi_test_on(struct pi_desc *pi_desc)
532 {
533 return test_bit(POSTED_INTR_ON,
534 (unsigned long *)&pi_desc->control);
535 }
536
pi_test_sn(struct pi_desc * pi_desc)537 static inline int pi_test_sn(struct pi_desc *pi_desc)
538 {
539 return test_bit(POSTED_INTR_SN,
540 (unsigned long *)&pi_desc->control);
541 }
542
543 struct vcpu_vmx {
544 struct kvm_vcpu vcpu;
545 unsigned long host_rsp;
546 u8 fail;
547 bool nmi_known_unmasked;
548 u8 msr_bitmap_mode;
549 u32 exit_intr_info;
550 u32 idt_vectoring_info;
551 ulong rflags;
552 struct shared_msr_entry *guest_msrs;
553 int nmsrs;
554 int save_nmsrs;
555 unsigned long host_idt_base;
556 #ifdef CONFIG_X86_64
557 u64 msr_host_kernel_gs_base;
558 u64 msr_guest_kernel_gs_base;
559 #endif
560
561 u64 arch_capabilities;
562 u64 spec_ctrl;
563
564 u32 vm_entry_controls_shadow;
565 u32 vm_exit_controls_shadow;
566 /*
567 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
568 * non-nested (L1) guest, it always points to vmcs01. For a nested
569 * guest (L2), it points to a different VMCS.
570 */
571 struct loaded_vmcs vmcs01;
572 struct loaded_vmcs *loaded_vmcs;
573 bool __launched; /* temporary, used in vmx_vcpu_run */
574 struct msr_autoload {
575 unsigned nr;
576 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
577 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
578 } msr_autoload;
579 struct {
580 int loaded;
581 u16 fs_sel, gs_sel, ldt_sel;
582 #ifdef CONFIG_X86_64
583 u16 ds_sel, es_sel;
584 #endif
585 int gs_ldt_reload_needed;
586 int fs_reload_needed;
587 u64 msr_host_bndcfgs;
588 unsigned long vmcs_host_cr4; /* May not match real cr4 */
589 } host_state;
590 struct {
591 int vm86_active;
592 ulong save_rflags;
593 struct kvm_segment segs[8];
594 } rmode;
595 struct {
596 u32 bitmask; /* 4 bits per segment (1 bit per field) */
597 struct kvm_save_segment {
598 u16 selector;
599 unsigned long base;
600 u32 limit;
601 u32 ar;
602 } seg[8];
603 } segment_cache;
604 int vpid;
605 bool emulation_required;
606
607 /* Support for vnmi-less CPUs */
608 int soft_vnmi_blocked;
609 ktime_t entry_time;
610 s64 vnmi_blocked_time;
611 u32 exit_reason;
612
613 /* Posted interrupt descriptor */
614 struct pi_desc pi_desc;
615
616 /* Support for a guest hypervisor (nested VMX) */
617 struct nested_vmx nested;
618
619 /* Dynamic PLE window. */
620 int ple_window;
621 bool ple_window_dirty;
622
623 /* Support for PML */
624 #define PML_ENTITY_NUM 512
625 struct page *pml_pg;
626
627 /* apic deadline value in host tsc */
628 u64 hv_deadline_tsc;
629
630 u64 current_tsc_ratio;
631
632 bool guest_pkru_valid;
633 u32 guest_pkru;
634 u32 host_pkru;
635
636 /*
637 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
638 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
639 * in msr_ia32_feature_control_valid_bits.
640 */
641 u64 msr_ia32_feature_control;
642 u64 msr_ia32_feature_control_valid_bits;
643 };
644
645 enum segment_cache_field {
646 SEG_FIELD_SEL = 0,
647 SEG_FIELD_BASE = 1,
648 SEG_FIELD_LIMIT = 2,
649 SEG_FIELD_AR = 3,
650
651 SEG_FIELD_NR = 4
652 };
653
to_vmx(struct kvm_vcpu * vcpu)654 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
655 {
656 return container_of(vcpu, struct vcpu_vmx, vcpu);
657 }
658
vcpu_to_pi_desc(struct kvm_vcpu * vcpu)659 static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
660 {
661 return &(to_vmx(vcpu)->pi_desc);
662 }
663
664 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
665 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
666 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
667 [number##_HIGH] = VMCS12_OFFSET(name)+4
668
669
670 static unsigned long shadow_read_only_fields[] = {
671 /*
672 * We do NOT shadow fields that are modified when L0
673 * traps and emulates any vmx instruction (e.g. VMPTRLD,
674 * VMXON...) executed by L1.
675 * For example, VM_INSTRUCTION_ERROR is read
676 * by L1 if a vmx instruction fails (part of the error path).
677 * Note the code assumes this logic. If for some reason
678 * we start shadowing these fields then we need to
679 * force a shadow sync when L0 emulates vmx instructions
680 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
681 * by nested_vmx_failValid)
682 */
683 VM_EXIT_REASON,
684 VM_EXIT_INTR_INFO,
685 VM_EXIT_INSTRUCTION_LEN,
686 IDT_VECTORING_INFO_FIELD,
687 IDT_VECTORING_ERROR_CODE,
688 VM_EXIT_INTR_ERROR_CODE,
689 EXIT_QUALIFICATION,
690 GUEST_LINEAR_ADDRESS,
691 GUEST_PHYSICAL_ADDRESS
692 };
693 static int max_shadow_read_only_fields =
694 ARRAY_SIZE(shadow_read_only_fields);
695
696 static unsigned long shadow_read_write_fields[] = {
697 TPR_THRESHOLD,
698 GUEST_RIP,
699 GUEST_RSP,
700 GUEST_CR0,
701 GUEST_CR3,
702 GUEST_CR4,
703 GUEST_INTERRUPTIBILITY_INFO,
704 GUEST_RFLAGS,
705 GUEST_CS_SELECTOR,
706 GUEST_CS_AR_BYTES,
707 GUEST_CS_LIMIT,
708 GUEST_CS_BASE,
709 GUEST_ES_BASE,
710 GUEST_BNDCFGS,
711 CR0_GUEST_HOST_MASK,
712 CR0_READ_SHADOW,
713 CR4_READ_SHADOW,
714 TSC_OFFSET,
715 EXCEPTION_BITMAP,
716 CPU_BASED_VM_EXEC_CONTROL,
717 VM_ENTRY_EXCEPTION_ERROR_CODE,
718 VM_ENTRY_INTR_INFO_FIELD,
719 VM_ENTRY_INSTRUCTION_LEN,
720 VM_ENTRY_EXCEPTION_ERROR_CODE,
721 HOST_FS_BASE,
722 HOST_GS_BASE,
723 HOST_FS_SELECTOR,
724 HOST_GS_SELECTOR
725 };
726 static int max_shadow_read_write_fields =
727 ARRAY_SIZE(shadow_read_write_fields);
728
729 static const unsigned short vmcs_field_to_offset_table[] = {
730 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
731 FIELD(POSTED_INTR_NV, posted_intr_nv),
732 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
733 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
734 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
735 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
736 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
737 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
738 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
739 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
740 FIELD(GUEST_INTR_STATUS, guest_intr_status),
741 FIELD(HOST_ES_SELECTOR, host_es_selector),
742 FIELD(HOST_CS_SELECTOR, host_cs_selector),
743 FIELD(HOST_SS_SELECTOR, host_ss_selector),
744 FIELD(HOST_DS_SELECTOR, host_ds_selector),
745 FIELD(HOST_FS_SELECTOR, host_fs_selector),
746 FIELD(HOST_GS_SELECTOR, host_gs_selector),
747 FIELD(HOST_TR_SELECTOR, host_tr_selector),
748 FIELD64(IO_BITMAP_A, io_bitmap_a),
749 FIELD64(IO_BITMAP_B, io_bitmap_b),
750 FIELD64(MSR_BITMAP, msr_bitmap),
751 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
752 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
753 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
754 FIELD64(TSC_OFFSET, tsc_offset),
755 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
756 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
757 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
758 FIELD64(EPT_POINTER, ept_pointer),
759 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
760 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
761 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
762 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
763 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
764 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
765 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
766 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
767 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
768 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
769 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
770 FIELD64(GUEST_PDPTR0, guest_pdptr0),
771 FIELD64(GUEST_PDPTR1, guest_pdptr1),
772 FIELD64(GUEST_PDPTR2, guest_pdptr2),
773 FIELD64(GUEST_PDPTR3, guest_pdptr3),
774 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
775 FIELD64(HOST_IA32_PAT, host_ia32_pat),
776 FIELD64(HOST_IA32_EFER, host_ia32_efer),
777 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
778 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
779 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
780 FIELD(EXCEPTION_BITMAP, exception_bitmap),
781 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
782 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
783 FIELD(CR3_TARGET_COUNT, cr3_target_count),
784 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
785 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
786 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
787 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
788 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
789 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
790 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
791 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
792 FIELD(TPR_THRESHOLD, tpr_threshold),
793 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
794 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
795 FIELD(VM_EXIT_REASON, vm_exit_reason),
796 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
797 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
798 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
799 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
800 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
801 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
802 FIELD(GUEST_ES_LIMIT, guest_es_limit),
803 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
804 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
805 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
806 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
807 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
808 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
809 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
810 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
811 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
812 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
813 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
814 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
815 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
816 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
817 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
818 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
819 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
820 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
821 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
822 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
823 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
824 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
825 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
826 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
827 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
828 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
829 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
830 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
831 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
832 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
833 FIELD(EXIT_QUALIFICATION, exit_qualification),
834 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
835 FIELD(GUEST_CR0, guest_cr0),
836 FIELD(GUEST_CR3, guest_cr3),
837 FIELD(GUEST_CR4, guest_cr4),
838 FIELD(GUEST_ES_BASE, guest_es_base),
839 FIELD(GUEST_CS_BASE, guest_cs_base),
840 FIELD(GUEST_SS_BASE, guest_ss_base),
841 FIELD(GUEST_DS_BASE, guest_ds_base),
842 FIELD(GUEST_FS_BASE, guest_fs_base),
843 FIELD(GUEST_GS_BASE, guest_gs_base),
844 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
845 FIELD(GUEST_TR_BASE, guest_tr_base),
846 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
847 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
848 FIELD(GUEST_DR7, guest_dr7),
849 FIELD(GUEST_RSP, guest_rsp),
850 FIELD(GUEST_RIP, guest_rip),
851 FIELD(GUEST_RFLAGS, guest_rflags),
852 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
853 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
854 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
855 FIELD(HOST_CR0, host_cr0),
856 FIELD(HOST_CR3, host_cr3),
857 FIELD(HOST_CR4, host_cr4),
858 FIELD(HOST_FS_BASE, host_fs_base),
859 FIELD(HOST_GS_BASE, host_gs_base),
860 FIELD(HOST_TR_BASE, host_tr_base),
861 FIELD(HOST_GDTR_BASE, host_gdtr_base),
862 FIELD(HOST_IDTR_BASE, host_idtr_base),
863 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
864 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
865 FIELD(HOST_RSP, host_rsp),
866 FIELD(HOST_RIP, host_rip),
867 };
868
vmcs_field_to_offset(unsigned long field)869 static inline short vmcs_field_to_offset(unsigned long field)
870 {
871 const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table);
872 unsigned short offset;
873
874 BUILD_BUG_ON(size > SHRT_MAX);
875 if (field >= size)
876 return -ENOENT;
877
878 field = array_index_nospec(field, size);
879 offset = vmcs_field_to_offset_table[field];
880 if (offset == 0)
881 return -ENOENT;
882 return offset;
883 }
884
get_vmcs12(struct kvm_vcpu * vcpu)885 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
886 {
887 return to_vmx(vcpu)->nested.cached_vmcs12;
888 }
889
nested_get_page(struct kvm_vcpu * vcpu,gpa_t addr)890 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
891 {
892 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
893 if (is_error_page(page))
894 return NULL;
895
896 return page;
897 }
898
nested_release_page(struct page * page)899 static void nested_release_page(struct page *page)
900 {
901 kvm_release_page_dirty(page);
902 }
903
nested_release_page_clean(struct page * page)904 static void nested_release_page_clean(struct page *page)
905 {
906 kvm_release_page_clean(page);
907 }
908
909 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
910 static u64 construct_eptp(unsigned long root_hpa);
911 static void kvm_cpu_vmxon(u64 addr);
912 static void kvm_cpu_vmxoff(void);
913 static bool vmx_xsaves_supported(void);
914 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
915 static void vmx_set_segment(struct kvm_vcpu *vcpu,
916 struct kvm_segment *var, int seg);
917 static void vmx_get_segment(struct kvm_vcpu *vcpu,
918 struct kvm_segment *var, int seg);
919 static bool guest_state_valid(struct kvm_vcpu *vcpu);
920 static u32 vmx_segment_access_rights(struct kvm_segment *var);
921 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
922 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
923 static int alloc_identity_pagetable(struct kvm *kvm);
924 static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
925 static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
926 u32 msr, int type);
927
928 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
929 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
930 /*
931 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
932 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
933 */
934 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
935 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
936
937 /*
938 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
939 * can find which vCPU should be waken up.
940 */
941 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
942 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
943
944 static unsigned long *vmx_io_bitmap_a;
945 static unsigned long *vmx_io_bitmap_b;
946 static unsigned long *vmx_vmread_bitmap;
947 static unsigned long *vmx_vmwrite_bitmap;
948
949 static bool cpu_has_load_ia32_efer;
950 static bool cpu_has_load_perf_global_ctrl;
951
952 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
953 static DEFINE_SPINLOCK(vmx_vpid_lock);
954
955 static struct vmcs_config {
956 int size;
957 int order;
958 u32 basic_cap;
959 u32 revision_id;
960 u32 pin_based_exec_ctrl;
961 u32 cpu_based_exec_ctrl;
962 u32 cpu_based_2nd_exec_ctrl;
963 u32 vmexit_ctrl;
964 u32 vmentry_ctrl;
965 } vmcs_config;
966
967 static struct vmx_capability {
968 u32 ept;
969 u32 vpid;
970 } vmx_capability;
971
972 #define VMX_SEGMENT_FIELD(seg) \
973 [VCPU_SREG_##seg] = { \
974 .selector = GUEST_##seg##_SELECTOR, \
975 .base = GUEST_##seg##_BASE, \
976 .limit = GUEST_##seg##_LIMIT, \
977 .ar_bytes = GUEST_##seg##_AR_BYTES, \
978 }
979
980 static const struct kvm_vmx_segment_field {
981 unsigned selector;
982 unsigned base;
983 unsigned limit;
984 unsigned ar_bytes;
985 } kvm_vmx_segment_fields[] = {
986 VMX_SEGMENT_FIELD(CS),
987 VMX_SEGMENT_FIELD(DS),
988 VMX_SEGMENT_FIELD(ES),
989 VMX_SEGMENT_FIELD(FS),
990 VMX_SEGMENT_FIELD(GS),
991 VMX_SEGMENT_FIELD(SS),
992 VMX_SEGMENT_FIELD(TR),
993 VMX_SEGMENT_FIELD(LDTR),
994 };
995
996 static u64 host_efer;
997
998 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
999
1000 /*
1001 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
1002 * away by decrementing the array size.
1003 */
1004 static const u32 vmx_msr_index[] = {
1005 #ifdef CONFIG_X86_64
1006 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
1007 #endif
1008 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
1009 };
1010
is_exception_n(u32 intr_info,u8 vector)1011 static inline bool is_exception_n(u32 intr_info, u8 vector)
1012 {
1013 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1014 INTR_INFO_VALID_MASK)) ==
1015 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1016 }
1017
is_debug(u32 intr_info)1018 static inline bool is_debug(u32 intr_info)
1019 {
1020 return is_exception_n(intr_info, DB_VECTOR);
1021 }
1022
is_breakpoint(u32 intr_info)1023 static inline bool is_breakpoint(u32 intr_info)
1024 {
1025 return is_exception_n(intr_info, BP_VECTOR);
1026 }
1027
is_page_fault(u32 intr_info)1028 static inline bool is_page_fault(u32 intr_info)
1029 {
1030 return is_exception_n(intr_info, PF_VECTOR);
1031 }
1032
is_no_device(u32 intr_info)1033 static inline bool is_no_device(u32 intr_info)
1034 {
1035 return is_exception_n(intr_info, NM_VECTOR);
1036 }
1037
is_invalid_opcode(u32 intr_info)1038 static inline bool is_invalid_opcode(u32 intr_info)
1039 {
1040 return is_exception_n(intr_info, UD_VECTOR);
1041 }
1042
is_external_interrupt(u32 intr_info)1043 static inline bool is_external_interrupt(u32 intr_info)
1044 {
1045 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1046 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1047 }
1048
is_machine_check(u32 intr_info)1049 static inline bool is_machine_check(u32 intr_info)
1050 {
1051 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1052 INTR_INFO_VALID_MASK)) ==
1053 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1054 }
1055
1056 /* Undocumented: icebp/int1 */
is_icebp(u32 intr_info)1057 static inline bool is_icebp(u32 intr_info)
1058 {
1059 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1060 == (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK);
1061 }
1062
cpu_has_vmx_msr_bitmap(void)1063 static inline bool cpu_has_vmx_msr_bitmap(void)
1064 {
1065 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1066 }
1067
cpu_has_vmx_tpr_shadow(void)1068 static inline bool cpu_has_vmx_tpr_shadow(void)
1069 {
1070 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1071 }
1072
cpu_need_tpr_shadow(struct kvm_vcpu * vcpu)1073 static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1074 {
1075 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1076 }
1077
cpu_has_secondary_exec_ctrls(void)1078 static inline bool cpu_has_secondary_exec_ctrls(void)
1079 {
1080 return vmcs_config.cpu_based_exec_ctrl &
1081 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1082 }
1083
cpu_has_vmx_virtualize_apic_accesses(void)1084 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1085 {
1086 return vmcs_config.cpu_based_2nd_exec_ctrl &
1087 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1088 }
1089
cpu_has_vmx_virtualize_x2apic_mode(void)1090 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1091 {
1092 return vmcs_config.cpu_based_2nd_exec_ctrl &
1093 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1094 }
1095
cpu_has_vmx_apic_register_virt(void)1096 static inline bool cpu_has_vmx_apic_register_virt(void)
1097 {
1098 return vmcs_config.cpu_based_2nd_exec_ctrl &
1099 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1100 }
1101
cpu_has_vmx_virtual_intr_delivery(void)1102 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1103 {
1104 return vmcs_config.cpu_based_2nd_exec_ctrl &
1105 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1106 }
1107
1108 /*
1109 * Comment's format: document - errata name - stepping - processor name.
1110 * Refer from
1111 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1112 */
1113 static u32 vmx_preemption_cpu_tfms[] = {
1114 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
1115 0x000206E6,
1116 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1117 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1118 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
1119 0x00020652,
1120 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
1121 0x00020655,
1122 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1123 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1124 /*
1125 * 320767.pdf - AAP86 - B1 -
1126 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1127 */
1128 0x000106E5,
1129 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
1130 0x000106A0,
1131 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
1132 0x000106A1,
1133 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
1134 0x000106A4,
1135 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1136 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1137 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
1138 0x000106A5,
1139 };
1140
cpu_has_broken_vmx_preemption_timer(void)1141 static inline bool cpu_has_broken_vmx_preemption_timer(void)
1142 {
1143 u32 eax = cpuid_eax(0x00000001), i;
1144
1145 /* Clear the reserved bits */
1146 eax &= ~(0x3U << 14 | 0xfU << 28);
1147 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1148 if (eax == vmx_preemption_cpu_tfms[i])
1149 return true;
1150
1151 return false;
1152 }
1153
cpu_has_vmx_preemption_timer(void)1154 static inline bool cpu_has_vmx_preemption_timer(void)
1155 {
1156 return vmcs_config.pin_based_exec_ctrl &
1157 PIN_BASED_VMX_PREEMPTION_TIMER;
1158 }
1159
cpu_has_vmx_posted_intr(void)1160 static inline bool cpu_has_vmx_posted_intr(void)
1161 {
1162 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1163 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1164 }
1165
cpu_has_vmx_apicv(void)1166 static inline bool cpu_has_vmx_apicv(void)
1167 {
1168 return cpu_has_vmx_apic_register_virt() &&
1169 cpu_has_vmx_virtual_intr_delivery() &&
1170 cpu_has_vmx_posted_intr();
1171 }
1172
cpu_has_vmx_flexpriority(void)1173 static inline bool cpu_has_vmx_flexpriority(void)
1174 {
1175 return cpu_has_vmx_tpr_shadow() &&
1176 cpu_has_vmx_virtualize_apic_accesses();
1177 }
1178
cpu_has_vmx_ept_execute_only(void)1179 static inline bool cpu_has_vmx_ept_execute_only(void)
1180 {
1181 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1182 }
1183
cpu_has_vmx_ept_2m_page(void)1184 static inline bool cpu_has_vmx_ept_2m_page(void)
1185 {
1186 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1187 }
1188
cpu_has_vmx_ept_1g_page(void)1189 static inline bool cpu_has_vmx_ept_1g_page(void)
1190 {
1191 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1192 }
1193
cpu_has_vmx_ept_4levels(void)1194 static inline bool cpu_has_vmx_ept_4levels(void)
1195 {
1196 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1197 }
1198
cpu_has_vmx_ept_ad_bits(void)1199 static inline bool cpu_has_vmx_ept_ad_bits(void)
1200 {
1201 return vmx_capability.ept & VMX_EPT_AD_BIT;
1202 }
1203
cpu_has_vmx_invept_context(void)1204 static inline bool cpu_has_vmx_invept_context(void)
1205 {
1206 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1207 }
1208
cpu_has_vmx_invept_global(void)1209 static inline bool cpu_has_vmx_invept_global(void)
1210 {
1211 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1212 }
1213
cpu_has_vmx_invvpid_single(void)1214 static inline bool cpu_has_vmx_invvpid_single(void)
1215 {
1216 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1217 }
1218
cpu_has_vmx_invvpid_global(void)1219 static inline bool cpu_has_vmx_invvpid_global(void)
1220 {
1221 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1222 }
1223
cpu_has_vmx_invvpid(void)1224 static inline bool cpu_has_vmx_invvpid(void)
1225 {
1226 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1227 }
1228
cpu_has_vmx_ept(void)1229 static inline bool cpu_has_vmx_ept(void)
1230 {
1231 return vmcs_config.cpu_based_2nd_exec_ctrl &
1232 SECONDARY_EXEC_ENABLE_EPT;
1233 }
1234
cpu_has_vmx_unrestricted_guest(void)1235 static inline bool cpu_has_vmx_unrestricted_guest(void)
1236 {
1237 return vmcs_config.cpu_based_2nd_exec_ctrl &
1238 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1239 }
1240
cpu_has_vmx_ple(void)1241 static inline bool cpu_has_vmx_ple(void)
1242 {
1243 return vmcs_config.cpu_based_2nd_exec_ctrl &
1244 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1245 }
1246
cpu_has_vmx_basic_inout(void)1247 static inline bool cpu_has_vmx_basic_inout(void)
1248 {
1249 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1250 }
1251
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)1252 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1253 {
1254 return flexpriority_enabled && lapic_in_kernel(vcpu);
1255 }
1256
cpu_has_vmx_vpid(void)1257 static inline bool cpu_has_vmx_vpid(void)
1258 {
1259 return vmcs_config.cpu_based_2nd_exec_ctrl &
1260 SECONDARY_EXEC_ENABLE_VPID;
1261 }
1262
cpu_has_vmx_rdtscp(void)1263 static inline bool cpu_has_vmx_rdtscp(void)
1264 {
1265 return vmcs_config.cpu_based_2nd_exec_ctrl &
1266 SECONDARY_EXEC_RDTSCP;
1267 }
1268
cpu_has_vmx_invpcid(void)1269 static inline bool cpu_has_vmx_invpcid(void)
1270 {
1271 return vmcs_config.cpu_based_2nd_exec_ctrl &
1272 SECONDARY_EXEC_ENABLE_INVPCID;
1273 }
1274
cpu_has_virtual_nmis(void)1275 static inline bool cpu_has_virtual_nmis(void)
1276 {
1277 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1278 }
1279
cpu_has_vmx_wbinvd_exit(void)1280 static inline bool cpu_has_vmx_wbinvd_exit(void)
1281 {
1282 return vmcs_config.cpu_based_2nd_exec_ctrl &
1283 SECONDARY_EXEC_WBINVD_EXITING;
1284 }
1285
cpu_has_vmx_shadow_vmcs(void)1286 static inline bool cpu_has_vmx_shadow_vmcs(void)
1287 {
1288 u64 vmx_msr;
1289 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1290 /* check if the cpu supports writing r/o exit information fields */
1291 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1292 return false;
1293
1294 return vmcs_config.cpu_based_2nd_exec_ctrl &
1295 SECONDARY_EXEC_SHADOW_VMCS;
1296 }
1297
cpu_has_vmx_pml(void)1298 static inline bool cpu_has_vmx_pml(void)
1299 {
1300 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1301 }
1302
cpu_has_vmx_tsc_scaling(void)1303 static inline bool cpu_has_vmx_tsc_scaling(void)
1304 {
1305 return vmcs_config.cpu_based_2nd_exec_ctrl &
1306 SECONDARY_EXEC_TSC_SCALING;
1307 }
1308
report_flexpriority(void)1309 static inline bool report_flexpriority(void)
1310 {
1311 return flexpriority_enabled;
1312 }
1313
nested_cpu_has(struct vmcs12 * vmcs12,u32 bit)1314 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1315 {
1316 return vmcs12->cpu_based_vm_exec_control & bit;
1317 }
1318
nested_cpu_has2(struct vmcs12 * vmcs12,u32 bit)1319 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1320 {
1321 return (vmcs12->cpu_based_vm_exec_control &
1322 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1323 (vmcs12->secondary_vm_exec_control & bit);
1324 }
1325
nested_cpu_has_virtual_nmis(struct vmcs12 * vmcs12)1326 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1327 {
1328 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1329 }
1330
nested_cpu_has_preemption_timer(struct vmcs12 * vmcs12)1331 static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1332 {
1333 return vmcs12->pin_based_vm_exec_control &
1334 PIN_BASED_VMX_PREEMPTION_TIMER;
1335 }
1336
nested_cpu_has_ept(struct vmcs12 * vmcs12)1337 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1338 {
1339 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1340 }
1341
nested_cpu_has_xsaves(struct vmcs12 * vmcs12)1342 static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1343 {
1344 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1345 vmx_xsaves_supported();
1346 }
1347
nested_cpu_has_virt_x2apic_mode(struct vmcs12 * vmcs12)1348 static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1349 {
1350 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1351 }
1352
nested_cpu_has_vpid(struct vmcs12 * vmcs12)1353 static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1354 {
1355 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1356 }
1357
nested_cpu_has_apic_reg_virt(struct vmcs12 * vmcs12)1358 static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1359 {
1360 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1361 }
1362
nested_cpu_has_vid(struct vmcs12 * vmcs12)1363 static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1364 {
1365 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1366 }
1367
nested_cpu_has_posted_intr(struct vmcs12 * vmcs12)1368 static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1369 {
1370 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1371 }
1372
is_nmi(u32 intr_info)1373 static inline bool is_nmi(u32 intr_info)
1374 {
1375 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1376 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
1377 }
1378
1379 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1380 u32 exit_intr_info,
1381 unsigned long exit_qualification);
1382 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1383 struct vmcs12 *vmcs12,
1384 u32 reason, unsigned long qualification);
1385
__find_msr_index(struct vcpu_vmx * vmx,u32 msr)1386 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1387 {
1388 int i;
1389
1390 for (i = 0; i < vmx->nmsrs; ++i)
1391 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1392 return i;
1393 return -1;
1394 }
1395
__invvpid(int ext,u16 vpid,gva_t gva)1396 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1397 {
1398 struct {
1399 u64 vpid : 16;
1400 u64 rsvd : 48;
1401 u64 gva;
1402 } operand = { vpid, 0, gva };
1403
1404 asm volatile (__ex(ASM_VMX_INVVPID)
1405 /* CF==1 or ZF==1 --> rc = -1 */
1406 "; ja 1f ; ud2 ; 1:"
1407 : : "a"(&operand), "c"(ext) : "cc", "memory");
1408 }
1409
__invept(int ext,u64 eptp,gpa_t gpa)1410 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1411 {
1412 struct {
1413 u64 eptp, gpa;
1414 } operand = {eptp, gpa};
1415
1416 asm volatile (__ex(ASM_VMX_INVEPT)
1417 /* CF==1 or ZF==1 --> rc = -1 */
1418 "; ja 1f ; ud2 ; 1:\n"
1419 : : "a" (&operand), "c" (ext) : "cc", "memory");
1420 }
1421
find_msr_entry(struct vcpu_vmx * vmx,u32 msr)1422 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1423 {
1424 int i;
1425
1426 i = __find_msr_index(vmx, msr);
1427 if (i >= 0)
1428 return &vmx->guest_msrs[i];
1429 return NULL;
1430 }
1431
vmcs_clear(struct vmcs * vmcs)1432 static void vmcs_clear(struct vmcs *vmcs)
1433 {
1434 u64 phys_addr = __pa(vmcs);
1435 u8 error;
1436
1437 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1438 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1439 : "cc", "memory");
1440 if (error)
1441 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1442 vmcs, phys_addr);
1443 }
1444
loaded_vmcs_init(struct loaded_vmcs * loaded_vmcs)1445 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1446 {
1447 vmcs_clear(loaded_vmcs->vmcs);
1448 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1449 vmcs_clear(loaded_vmcs->shadow_vmcs);
1450 loaded_vmcs->cpu = -1;
1451 loaded_vmcs->launched = 0;
1452 }
1453
vmcs_load(struct vmcs * vmcs)1454 static void vmcs_load(struct vmcs *vmcs)
1455 {
1456 u64 phys_addr = __pa(vmcs);
1457 u8 error;
1458
1459 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1460 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1461 : "cc", "memory");
1462 if (error)
1463 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1464 vmcs, phys_addr);
1465 }
1466
1467 #ifdef CONFIG_KEXEC_CORE
1468 /*
1469 * This bitmap is used to indicate whether the vmclear
1470 * operation is enabled on all cpus. All disabled by
1471 * default.
1472 */
1473 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1474
crash_enable_local_vmclear(int cpu)1475 static inline void crash_enable_local_vmclear(int cpu)
1476 {
1477 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1478 }
1479
crash_disable_local_vmclear(int cpu)1480 static inline void crash_disable_local_vmclear(int cpu)
1481 {
1482 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1483 }
1484
crash_local_vmclear_enabled(int cpu)1485 static inline int crash_local_vmclear_enabled(int cpu)
1486 {
1487 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1488 }
1489
crash_vmclear_local_loaded_vmcss(void)1490 static void crash_vmclear_local_loaded_vmcss(void)
1491 {
1492 int cpu = raw_smp_processor_id();
1493 struct loaded_vmcs *v;
1494
1495 if (!crash_local_vmclear_enabled(cpu))
1496 return;
1497
1498 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1499 loaded_vmcss_on_cpu_link)
1500 vmcs_clear(v->vmcs);
1501 }
1502 #else
crash_enable_local_vmclear(int cpu)1503 static inline void crash_enable_local_vmclear(int cpu) { }
crash_disable_local_vmclear(int cpu)1504 static inline void crash_disable_local_vmclear(int cpu) { }
1505 #endif /* CONFIG_KEXEC_CORE */
1506
__loaded_vmcs_clear(void * arg)1507 static void __loaded_vmcs_clear(void *arg)
1508 {
1509 struct loaded_vmcs *loaded_vmcs = arg;
1510 int cpu = raw_smp_processor_id();
1511
1512 if (loaded_vmcs->cpu != cpu)
1513 return; /* vcpu migration can race with cpu offline */
1514 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1515 per_cpu(current_vmcs, cpu) = NULL;
1516 crash_disable_local_vmclear(cpu);
1517 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1518
1519 /*
1520 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1521 * is before setting loaded_vmcs->vcpu to -1 which is done in
1522 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1523 * then adds the vmcs into percpu list before it is deleted.
1524 */
1525 smp_wmb();
1526
1527 loaded_vmcs_init(loaded_vmcs);
1528 crash_enable_local_vmclear(cpu);
1529 }
1530
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)1531 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1532 {
1533 int cpu = loaded_vmcs->cpu;
1534
1535 if (cpu != -1)
1536 smp_call_function_single(cpu,
1537 __loaded_vmcs_clear, loaded_vmcs, 1);
1538 }
1539
vpid_sync_vcpu_single(int vpid)1540 static inline void vpid_sync_vcpu_single(int vpid)
1541 {
1542 if (vpid == 0)
1543 return;
1544
1545 if (cpu_has_vmx_invvpid_single())
1546 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1547 }
1548
vpid_sync_vcpu_global(void)1549 static inline void vpid_sync_vcpu_global(void)
1550 {
1551 if (cpu_has_vmx_invvpid_global())
1552 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1553 }
1554
vpid_sync_context(int vpid)1555 static inline void vpid_sync_context(int vpid)
1556 {
1557 if (cpu_has_vmx_invvpid_single())
1558 vpid_sync_vcpu_single(vpid);
1559 else
1560 vpid_sync_vcpu_global();
1561 }
1562
ept_sync_global(void)1563 static inline void ept_sync_global(void)
1564 {
1565 if (cpu_has_vmx_invept_global())
1566 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1567 }
1568
ept_sync_context(u64 eptp)1569 static inline void ept_sync_context(u64 eptp)
1570 {
1571 if (enable_ept) {
1572 if (cpu_has_vmx_invept_context())
1573 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1574 else
1575 ept_sync_global();
1576 }
1577 }
1578
vmcs_check16(unsigned long field)1579 static __always_inline void vmcs_check16(unsigned long field)
1580 {
1581 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1582 "16-bit accessor invalid for 64-bit field");
1583 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1584 "16-bit accessor invalid for 64-bit high field");
1585 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1586 "16-bit accessor invalid for 32-bit high field");
1587 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1588 "16-bit accessor invalid for natural width field");
1589 }
1590
vmcs_check32(unsigned long field)1591 static __always_inline void vmcs_check32(unsigned long field)
1592 {
1593 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1594 "32-bit accessor invalid for 16-bit field");
1595 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1596 "32-bit accessor invalid for natural width field");
1597 }
1598
vmcs_check64(unsigned long field)1599 static __always_inline void vmcs_check64(unsigned long field)
1600 {
1601 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1602 "64-bit accessor invalid for 16-bit field");
1603 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1604 "64-bit accessor invalid for 64-bit high field");
1605 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1606 "64-bit accessor invalid for 32-bit field");
1607 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1608 "64-bit accessor invalid for natural width field");
1609 }
1610
vmcs_checkl(unsigned long field)1611 static __always_inline void vmcs_checkl(unsigned long field)
1612 {
1613 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1614 "Natural width accessor invalid for 16-bit field");
1615 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1616 "Natural width accessor invalid for 64-bit field");
1617 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1618 "Natural width accessor invalid for 64-bit high field");
1619 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1620 "Natural width accessor invalid for 32-bit field");
1621 }
1622
__vmcs_readl(unsigned long field)1623 static __always_inline unsigned long __vmcs_readl(unsigned long field)
1624 {
1625 unsigned long value;
1626
1627 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1628 : "=a"(value) : "d"(field) : "cc");
1629 return value;
1630 }
1631
vmcs_read16(unsigned long field)1632 static __always_inline u16 vmcs_read16(unsigned long field)
1633 {
1634 vmcs_check16(field);
1635 return __vmcs_readl(field);
1636 }
1637
vmcs_read32(unsigned long field)1638 static __always_inline u32 vmcs_read32(unsigned long field)
1639 {
1640 vmcs_check32(field);
1641 return __vmcs_readl(field);
1642 }
1643
vmcs_read64(unsigned long field)1644 static __always_inline u64 vmcs_read64(unsigned long field)
1645 {
1646 vmcs_check64(field);
1647 #ifdef CONFIG_X86_64
1648 return __vmcs_readl(field);
1649 #else
1650 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1651 #endif
1652 }
1653
vmcs_readl(unsigned long field)1654 static __always_inline unsigned long vmcs_readl(unsigned long field)
1655 {
1656 vmcs_checkl(field);
1657 return __vmcs_readl(field);
1658 }
1659
vmwrite_error(unsigned long field,unsigned long value)1660 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1661 {
1662 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1663 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1664 dump_stack();
1665 }
1666
__vmcs_writel(unsigned long field,unsigned long value)1667 static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1668 {
1669 u8 error;
1670
1671 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1672 : "=q"(error) : "a"(value), "d"(field) : "cc");
1673 if (unlikely(error))
1674 vmwrite_error(field, value);
1675 }
1676
vmcs_write16(unsigned long field,u16 value)1677 static __always_inline void vmcs_write16(unsigned long field, u16 value)
1678 {
1679 vmcs_check16(field);
1680 __vmcs_writel(field, value);
1681 }
1682
vmcs_write32(unsigned long field,u32 value)1683 static __always_inline void vmcs_write32(unsigned long field, u32 value)
1684 {
1685 vmcs_check32(field);
1686 __vmcs_writel(field, value);
1687 }
1688
vmcs_write64(unsigned long field,u64 value)1689 static __always_inline void vmcs_write64(unsigned long field, u64 value)
1690 {
1691 vmcs_check64(field);
1692 __vmcs_writel(field, value);
1693 #ifndef CONFIG_X86_64
1694 asm volatile ("");
1695 __vmcs_writel(field+1, value >> 32);
1696 #endif
1697 }
1698
vmcs_writel(unsigned long field,unsigned long value)1699 static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1700 {
1701 vmcs_checkl(field);
1702 __vmcs_writel(field, value);
1703 }
1704
vmcs_clear_bits(unsigned long field,u32 mask)1705 static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1706 {
1707 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1708 "vmcs_clear_bits does not support 64-bit fields");
1709 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1710 }
1711
vmcs_set_bits(unsigned long field,u32 mask)1712 static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1713 {
1714 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1715 "vmcs_set_bits does not support 64-bit fields");
1716 __vmcs_writel(field, __vmcs_readl(field) | mask);
1717 }
1718
vm_entry_controls_reset_shadow(struct vcpu_vmx * vmx)1719 static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1720 {
1721 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1722 }
1723
vm_entry_controls_init(struct vcpu_vmx * vmx,u32 val)1724 static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1725 {
1726 vmcs_write32(VM_ENTRY_CONTROLS, val);
1727 vmx->vm_entry_controls_shadow = val;
1728 }
1729
vm_entry_controls_set(struct vcpu_vmx * vmx,u32 val)1730 static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1731 {
1732 if (vmx->vm_entry_controls_shadow != val)
1733 vm_entry_controls_init(vmx, val);
1734 }
1735
vm_entry_controls_get(struct vcpu_vmx * vmx)1736 static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1737 {
1738 return vmx->vm_entry_controls_shadow;
1739 }
1740
1741
vm_entry_controls_setbit(struct vcpu_vmx * vmx,u32 val)1742 static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1743 {
1744 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1745 }
1746
vm_entry_controls_clearbit(struct vcpu_vmx * vmx,u32 val)1747 static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1748 {
1749 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1750 }
1751
vm_exit_controls_reset_shadow(struct vcpu_vmx * vmx)1752 static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1753 {
1754 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1755 }
1756
vm_exit_controls_init(struct vcpu_vmx * vmx,u32 val)1757 static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1758 {
1759 vmcs_write32(VM_EXIT_CONTROLS, val);
1760 vmx->vm_exit_controls_shadow = val;
1761 }
1762
vm_exit_controls_set(struct vcpu_vmx * vmx,u32 val)1763 static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1764 {
1765 if (vmx->vm_exit_controls_shadow != val)
1766 vm_exit_controls_init(vmx, val);
1767 }
1768
vm_exit_controls_get(struct vcpu_vmx * vmx)1769 static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1770 {
1771 return vmx->vm_exit_controls_shadow;
1772 }
1773
1774
vm_exit_controls_setbit(struct vcpu_vmx * vmx,u32 val)1775 static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1776 {
1777 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1778 }
1779
vm_exit_controls_clearbit(struct vcpu_vmx * vmx,u32 val)1780 static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1781 {
1782 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1783 }
1784
vmx_segment_cache_clear(struct vcpu_vmx * vmx)1785 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1786 {
1787 vmx->segment_cache.bitmask = 0;
1788 }
1789
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)1790 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1791 unsigned field)
1792 {
1793 bool ret;
1794 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1795
1796 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1797 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1798 vmx->segment_cache.bitmask = 0;
1799 }
1800 ret = vmx->segment_cache.bitmask & mask;
1801 vmx->segment_cache.bitmask |= mask;
1802 return ret;
1803 }
1804
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)1805 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1806 {
1807 u16 *p = &vmx->segment_cache.seg[seg].selector;
1808
1809 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1810 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1811 return *p;
1812 }
1813
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)1814 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1815 {
1816 ulong *p = &vmx->segment_cache.seg[seg].base;
1817
1818 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1819 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1820 return *p;
1821 }
1822
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)1823 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1824 {
1825 u32 *p = &vmx->segment_cache.seg[seg].limit;
1826
1827 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1828 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1829 return *p;
1830 }
1831
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)1832 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1833 {
1834 u32 *p = &vmx->segment_cache.seg[seg].ar;
1835
1836 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1837 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1838 return *p;
1839 }
1840
update_exception_bitmap(struct kvm_vcpu * vcpu)1841 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1842 {
1843 u32 eb;
1844
1845 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1846 (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
1847 if ((vcpu->guest_debug &
1848 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1849 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1850 eb |= 1u << BP_VECTOR;
1851 if (to_vmx(vcpu)->rmode.vm86_active)
1852 eb = ~0;
1853 if (enable_ept)
1854 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1855 if (vcpu->fpu_active)
1856 eb &= ~(1u << NM_VECTOR);
1857
1858 /* When we are running a nested L2 guest and L1 specified for it a
1859 * certain exception bitmap, we must trap the same exceptions and pass
1860 * them to L1. When running L2, we will only handle the exceptions
1861 * specified above if L1 did not want them.
1862 */
1863 if (is_guest_mode(vcpu))
1864 eb |= get_vmcs12(vcpu)->exception_bitmap;
1865
1866 vmcs_write32(EXCEPTION_BITMAP, eb);
1867 }
1868
1869 /*
1870 * Check if MSR is intercepted for currently loaded MSR bitmap.
1871 */
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)1872 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
1873 {
1874 unsigned long *msr_bitmap;
1875 int f = sizeof(unsigned long);
1876
1877 if (!cpu_has_vmx_msr_bitmap())
1878 return true;
1879
1880 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
1881
1882 if (msr <= 0x1fff) {
1883 return !!test_bit(msr, msr_bitmap + 0x800 / f);
1884 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1885 msr &= 0x1fff;
1886 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
1887 }
1888
1889 return true;
1890 }
1891
1892 /*
1893 * Check if MSR is intercepted for L01 MSR bitmap.
1894 */
msr_write_intercepted_l01(struct kvm_vcpu * vcpu,u32 msr)1895 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
1896 {
1897 unsigned long *msr_bitmap;
1898 int f = sizeof(unsigned long);
1899
1900 if (!cpu_has_vmx_msr_bitmap())
1901 return true;
1902
1903 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
1904
1905 if (msr <= 0x1fff) {
1906 return !!test_bit(msr, msr_bitmap + 0x800 / f);
1907 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
1908 msr &= 0x1fff;
1909 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
1910 }
1911
1912 return true;
1913 }
1914
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)1915 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1916 unsigned long entry, unsigned long exit)
1917 {
1918 vm_entry_controls_clearbit(vmx, entry);
1919 vm_exit_controls_clearbit(vmx, exit);
1920 }
1921
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)1922 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1923 {
1924 unsigned i;
1925 struct msr_autoload *m = &vmx->msr_autoload;
1926
1927 switch (msr) {
1928 case MSR_EFER:
1929 if (cpu_has_load_ia32_efer) {
1930 clear_atomic_switch_msr_special(vmx,
1931 VM_ENTRY_LOAD_IA32_EFER,
1932 VM_EXIT_LOAD_IA32_EFER);
1933 return;
1934 }
1935 break;
1936 case MSR_CORE_PERF_GLOBAL_CTRL:
1937 if (cpu_has_load_perf_global_ctrl) {
1938 clear_atomic_switch_msr_special(vmx,
1939 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1940 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1941 return;
1942 }
1943 break;
1944 }
1945
1946 for (i = 0; i < m->nr; ++i)
1947 if (m->guest[i].index == msr)
1948 break;
1949
1950 if (i == m->nr)
1951 return;
1952 --m->nr;
1953 m->guest[i] = m->guest[m->nr];
1954 m->host[i] = m->host[m->nr];
1955 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1956 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1957 }
1958
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1959 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1960 unsigned long entry, unsigned long exit,
1961 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1962 u64 guest_val, u64 host_val)
1963 {
1964 vmcs_write64(guest_val_vmcs, guest_val);
1965 vmcs_write64(host_val_vmcs, host_val);
1966 vm_entry_controls_setbit(vmx, entry);
1967 vm_exit_controls_setbit(vmx, exit);
1968 }
1969
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val)1970 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1971 u64 guest_val, u64 host_val)
1972 {
1973 unsigned i;
1974 struct msr_autoload *m = &vmx->msr_autoload;
1975
1976 switch (msr) {
1977 case MSR_EFER:
1978 if (cpu_has_load_ia32_efer) {
1979 add_atomic_switch_msr_special(vmx,
1980 VM_ENTRY_LOAD_IA32_EFER,
1981 VM_EXIT_LOAD_IA32_EFER,
1982 GUEST_IA32_EFER,
1983 HOST_IA32_EFER,
1984 guest_val, host_val);
1985 return;
1986 }
1987 break;
1988 case MSR_CORE_PERF_GLOBAL_CTRL:
1989 if (cpu_has_load_perf_global_ctrl) {
1990 add_atomic_switch_msr_special(vmx,
1991 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1992 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1993 GUEST_IA32_PERF_GLOBAL_CTRL,
1994 HOST_IA32_PERF_GLOBAL_CTRL,
1995 guest_val, host_val);
1996 return;
1997 }
1998 break;
1999 case MSR_IA32_PEBS_ENABLE:
2000 /* PEBS needs a quiescent period after being disabled (to write
2001 * a record). Disabling PEBS through VMX MSR swapping doesn't
2002 * provide that period, so a CPU could write host's record into
2003 * guest's memory.
2004 */
2005 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
2006 }
2007
2008 for (i = 0; i < m->nr; ++i)
2009 if (m->guest[i].index == msr)
2010 break;
2011
2012 if (i == NR_AUTOLOAD_MSRS) {
2013 printk_once(KERN_WARNING "Not enough msr switch entries. "
2014 "Can't add msr %x\n", msr);
2015 return;
2016 } else if (i == m->nr) {
2017 ++m->nr;
2018 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2019 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2020 }
2021
2022 m->guest[i].index = msr;
2023 m->guest[i].value = guest_val;
2024 m->host[i].index = msr;
2025 m->host[i].value = host_val;
2026 }
2027
reload_tss(void)2028 static void reload_tss(void)
2029 {
2030 /*
2031 * VT restores TR but not its size. Useless.
2032 */
2033 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2034 struct desc_struct *descs;
2035
2036 descs = (void *)gdt->address;
2037 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
2038 load_TR_desc();
2039 }
2040
update_transition_efer(struct vcpu_vmx * vmx,int efer_offset)2041 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2042 {
2043 u64 guest_efer = vmx->vcpu.arch.efer;
2044 u64 ignore_bits = 0;
2045
2046 if (!enable_ept) {
2047 /*
2048 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2049 * host CPUID is more efficient than testing guest CPUID
2050 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2051 */
2052 if (boot_cpu_has(X86_FEATURE_SMEP))
2053 guest_efer |= EFER_NX;
2054 else if (!(guest_efer & EFER_NX))
2055 ignore_bits |= EFER_NX;
2056 }
2057
2058 /*
2059 * LMA and LME handled by hardware; SCE meaningless outside long mode.
2060 */
2061 ignore_bits |= EFER_SCE;
2062 #ifdef CONFIG_X86_64
2063 ignore_bits |= EFER_LMA | EFER_LME;
2064 /* SCE is meaningful only in long mode on Intel */
2065 if (guest_efer & EFER_LMA)
2066 ignore_bits &= ~(u64)EFER_SCE;
2067 #endif
2068
2069 clear_atomic_switch_msr(vmx, MSR_EFER);
2070
2071 /*
2072 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2073 * On CPUs that support "load IA32_EFER", always switch EFER
2074 * atomically, since it's faster than switching it manually.
2075 */
2076 if (cpu_has_load_ia32_efer ||
2077 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
2078 if (!(guest_efer & EFER_LMA))
2079 guest_efer &= ~EFER_LME;
2080 if (guest_efer != host_efer)
2081 add_atomic_switch_msr(vmx, MSR_EFER,
2082 guest_efer, host_efer);
2083 return false;
2084 } else {
2085 guest_efer &= ~ignore_bits;
2086 guest_efer |= host_efer & ignore_bits;
2087
2088 vmx->guest_msrs[efer_offset].data = guest_efer;
2089 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2090
2091 return true;
2092 }
2093 }
2094
segment_base(u16 selector)2095 static unsigned long segment_base(u16 selector)
2096 {
2097 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2098 struct desc_struct *d;
2099 unsigned long table_base;
2100 unsigned long v;
2101
2102 if (!(selector & ~3))
2103 return 0;
2104
2105 table_base = gdt->address;
2106
2107 if (selector & 4) { /* from ldt */
2108 u16 ldt_selector = kvm_read_ldt();
2109
2110 if (!(ldt_selector & ~3))
2111 return 0;
2112
2113 table_base = segment_base(ldt_selector);
2114 }
2115 d = (struct desc_struct *)(table_base + (selector & ~7));
2116 v = get_desc_base(d);
2117 #ifdef CONFIG_X86_64
2118 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
2119 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
2120 #endif
2121 return v;
2122 }
2123
kvm_read_tr_base(void)2124 static inline unsigned long kvm_read_tr_base(void)
2125 {
2126 u16 tr;
2127 asm("str %0" : "=g"(tr));
2128 return segment_base(tr);
2129 }
2130
vmx_save_host_state(struct kvm_vcpu * vcpu)2131 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2132 {
2133 struct vcpu_vmx *vmx = to_vmx(vcpu);
2134 int i;
2135
2136 if (vmx->host_state.loaded)
2137 return;
2138
2139 vmx->host_state.loaded = 1;
2140 /*
2141 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2142 * allow segment selectors with cpl > 0 or ti == 1.
2143 */
2144 vmx->host_state.ldt_sel = kvm_read_ldt();
2145 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2146 savesegment(fs, vmx->host_state.fs_sel);
2147 if (!(vmx->host_state.fs_sel & 7)) {
2148 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2149 vmx->host_state.fs_reload_needed = 0;
2150 } else {
2151 vmcs_write16(HOST_FS_SELECTOR, 0);
2152 vmx->host_state.fs_reload_needed = 1;
2153 }
2154 savesegment(gs, vmx->host_state.gs_sel);
2155 if (!(vmx->host_state.gs_sel & 7))
2156 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2157 else {
2158 vmcs_write16(HOST_GS_SELECTOR, 0);
2159 vmx->host_state.gs_ldt_reload_needed = 1;
2160 }
2161
2162 #ifdef CONFIG_X86_64
2163 savesegment(ds, vmx->host_state.ds_sel);
2164 savesegment(es, vmx->host_state.es_sel);
2165 #endif
2166
2167 #ifdef CONFIG_X86_64
2168 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2169 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2170 #else
2171 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2172 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2173 #endif
2174
2175 #ifdef CONFIG_X86_64
2176 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2177 if (is_long_mode(&vmx->vcpu))
2178 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2179 #endif
2180 if (boot_cpu_has(X86_FEATURE_MPX))
2181 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2182 for (i = 0; i < vmx->save_nmsrs; ++i)
2183 kvm_set_shared_msr(vmx->guest_msrs[i].index,
2184 vmx->guest_msrs[i].data,
2185 vmx->guest_msrs[i].mask);
2186 }
2187
__vmx_load_host_state(struct vcpu_vmx * vmx)2188 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2189 {
2190 if (!vmx->host_state.loaded)
2191 return;
2192
2193 ++vmx->vcpu.stat.host_state_reload;
2194 vmx->host_state.loaded = 0;
2195 #ifdef CONFIG_X86_64
2196 if (is_long_mode(&vmx->vcpu))
2197 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2198 #endif
2199 if (vmx->host_state.gs_ldt_reload_needed) {
2200 kvm_load_ldt(vmx->host_state.ldt_sel);
2201 #ifdef CONFIG_X86_64
2202 load_gs_index(vmx->host_state.gs_sel);
2203 #else
2204 loadsegment(gs, vmx->host_state.gs_sel);
2205 #endif
2206 }
2207 if (vmx->host_state.fs_reload_needed)
2208 loadsegment(fs, vmx->host_state.fs_sel);
2209 #ifdef CONFIG_X86_64
2210 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2211 loadsegment(ds, vmx->host_state.ds_sel);
2212 loadsegment(es, vmx->host_state.es_sel);
2213 }
2214 #endif
2215 reload_tss();
2216 #ifdef CONFIG_X86_64
2217 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2218 #endif
2219 if (vmx->host_state.msr_host_bndcfgs)
2220 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2221 /*
2222 * If the FPU is not active (through the host task or
2223 * the guest vcpu), then restore the cr0.TS bit.
2224 */
2225 if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
2226 stts();
2227 load_gdt(this_cpu_ptr(&host_gdt));
2228 }
2229
vmx_load_host_state(struct vcpu_vmx * vmx)2230 static void vmx_load_host_state(struct vcpu_vmx *vmx)
2231 {
2232 preempt_disable();
2233 __vmx_load_host_state(vmx);
2234 preempt_enable();
2235 }
2236
vmx_vcpu_pi_load(struct kvm_vcpu * vcpu,int cpu)2237 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2238 {
2239 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2240 struct pi_desc old, new;
2241 unsigned int dest;
2242
2243 /*
2244 * In case of hot-plug or hot-unplug, we may have to undo
2245 * vmx_vcpu_pi_put even if there is no assigned device. And we
2246 * always keep PI.NDST up to date for simplicity: it makes the
2247 * code easier, and CPU migration is not a fast path.
2248 */
2249 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
2250 return;
2251
2252 /*
2253 * First handle the simple case where no cmpxchg is necessary; just
2254 * allow posting non-urgent interrupts.
2255 *
2256 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2257 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2258 * expects the VCPU to be on the blocked_vcpu_list that matches
2259 * PI.NDST.
2260 */
2261 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
2262 vcpu->cpu == cpu) {
2263 pi_clear_sn(pi_desc);
2264 return;
2265 }
2266
2267 /* The full case. */
2268 do {
2269 old.control = new.control = pi_desc->control;
2270
2271 dest = cpu_physical_id(cpu);
2272
2273 if (x2apic_enabled())
2274 new.ndst = dest;
2275 else
2276 new.ndst = (dest << 8) & 0xFF00;
2277
2278 new.sn = 0;
2279 } while (cmpxchg64(&pi_desc->control, old.control,
2280 new.control) != old.control);
2281 }
2282
decache_tsc_multiplier(struct vcpu_vmx * vmx)2283 static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2284 {
2285 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2286 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2287 }
2288
2289 /*
2290 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2291 * vcpu mutex is already taken.
2292 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)2293 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2294 {
2295 struct vcpu_vmx *vmx = to_vmx(vcpu);
2296 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2297 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2298
2299 if (!vmm_exclusive)
2300 kvm_cpu_vmxon(phys_addr);
2301 else if (!already_loaded)
2302 loaded_vmcs_clear(vmx->loaded_vmcs);
2303
2304 if (!already_loaded) {
2305 local_irq_disable();
2306 crash_disable_local_vmclear(cpu);
2307
2308 /*
2309 * Read loaded_vmcs->cpu should be before fetching
2310 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2311 * See the comments in __loaded_vmcs_clear().
2312 */
2313 smp_rmb();
2314
2315 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2316 &per_cpu(loaded_vmcss_on_cpu, cpu));
2317 crash_enable_local_vmclear(cpu);
2318 local_irq_enable();
2319 }
2320
2321 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2322 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2323 vmcs_load(vmx->loaded_vmcs->vmcs);
2324 indirect_branch_prediction_barrier();
2325 }
2326
2327 if (!already_loaded) {
2328 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2329 unsigned long sysenter_esp;
2330
2331 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2332
2333 /*
2334 * Linux uses per-cpu TSS and GDT, so set these when switching
2335 * processors.
2336 */
2337 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
2338 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
2339
2340 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2341 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2342
2343 vmx->loaded_vmcs->cpu = cpu;
2344 }
2345
2346 /* Setup TSC multiplier */
2347 if (kvm_has_tsc_control &&
2348 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2349 decache_tsc_multiplier(vmx);
2350
2351 vmx_vcpu_pi_load(vcpu, cpu);
2352 vmx->host_pkru = read_pkru();
2353 }
2354
vmx_vcpu_pi_put(struct kvm_vcpu * vcpu)2355 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2356 {
2357 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2358
2359 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2360 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2361 !kvm_vcpu_apicv_active(vcpu))
2362 return;
2363
2364 /* Set SN when the vCPU is preempted */
2365 if (vcpu->preempted)
2366 pi_set_sn(pi_desc);
2367 }
2368
vmx_vcpu_put(struct kvm_vcpu * vcpu)2369 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2370 {
2371 vmx_vcpu_pi_put(vcpu);
2372
2373 __vmx_load_host_state(to_vmx(vcpu));
2374 if (!vmm_exclusive) {
2375 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2376 vcpu->cpu = -1;
2377 kvm_cpu_vmxoff();
2378 }
2379 }
2380
vmx_fpu_activate(struct kvm_vcpu * vcpu)2381 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2382 {
2383 ulong cr0;
2384
2385 if (vcpu->fpu_active)
2386 return;
2387 vcpu->fpu_active = 1;
2388 cr0 = vmcs_readl(GUEST_CR0);
2389 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2390 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2391 vmcs_writel(GUEST_CR0, cr0);
2392 update_exception_bitmap(vcpu);
2393 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
2394 if (is_guest_mode(vcpu))
2395 vcpu->arch.cr0_guest_owned_bits &=
2396 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
2397 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2398 }
2399
2400 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2401
2402 /*
2403 * Return the cr0 value that a nested guest would read. This is a combination
2404 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2405 * its hypervisor (cr0_read_shadow).
2406 */
nested_read_cr0(struct vmcs12 * fields)2407 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2408 {
2409 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2410 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2411 }
nested_read_cr4(struct vmcs12 * fields)2412 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2413 {
2414 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2415 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2416 }
2417
vmx_fpu_deactivate(struct kvm_vcpu * vcpu)2418 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2419 {
2420 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2421 * set this *before* calling this function.
2422 */
2423 vmx_decache_cr0_guest_bits(vcpu);
2424 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2425 update_exception_bitmap(vcpu);
2426 vcpu->arch.cr0_guest_owned_bits = 0;
2427 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2428 if (is_guest_mode(vcpu)) {
2429 /*
2430 * L1's specified read shadow might not contain the TS bit,
2431 * so now that we turned on shadowing of this bit, we need to
2432 * set this bit of the shadow. Like in nested_vmx_run we need
2433 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2434 * up-to-date here because we just decached cr0.TS (and we'll
2435 * only update vmcs12->guest_cr0 on nested exit).
2436 */
2437 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2438 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2439 (vcpu->arch.cr0 & X86_CR0_TS);
2440 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2441 } else
2442 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2443 }
2444
vmx_get_rflags(struct kvm_vcpu * vcpu)2445 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2446 {
2447 unsigned long rflags, save_rflags;
2448
2449 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2450 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2451 rflags = vmcs_readl(GUEST_RFLAGS);
2452 if (to_vmx(vcpu)->rmode.vm86_active) {
2453 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2454 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2455 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2456 }
2457 to_vmx(vcpu)->rflags = rflags;
2458 }
2459 return to_vmx(vcpu)->rflags;
2460 }
2461
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)2462 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2463 {
2464 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2465 to_vmx(vcpu)->rflags = rflags;
2466 if (to_vmx(vcpu)->rmode.vm86_active) {
2467 to_vmx(vcpu)->rmode.save_rflags = rflags;
2468 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2469 }
2470 vmcs_writel(GUEST_RFLAGS, rflags);
2471 }
2472
vmx_get_pkru(struct kvm_vcpu * vcpu)2473 static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2474 {
2475 return to_vmx(vcpu)->guest_pkru;
2476 }
2477
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)2478 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2479 {
2480 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2481 int ret = 0;
2482
2483 if (interruptibility & GUEST_INTR_STATE_STI)
2484 ret |= KVM_X86_SHADOW_INT_STI;
2485 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2486 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2487
2488 return ret;
2489 }
2490
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)2491 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2492 {
2493 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2494 u32 interruptibility = interruptibility_old;
2495
2496 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2497
2498 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2499 interruptibility |= GUEST_INTR_STATE_MOV_SS;
2500 else if (mask & KVM_X86_SHADOW_INT_STI)
2501 interruptibility |= GUEST_INTR_STATE_STI;
2502
2503 if ((interruptibility != interruptibility_old))
2504 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2505 }
2506
skip_emulated_instruction(struct kvm_vcpu * vcpu)2507 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2508 {
2509 unsigned long rip;
2510
2511 rip = kvm_rip_read(vcpu);
2512 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2513 kvm_rip_write(vcpu, rip);
2514
2515 /* skipping an emulated instruction also counts */
2516 vmx_set_interrupt_shadow(vcpu, 0);
2517 }
2518
2519 /*
2520 * KVM wants to inject page-faults which it got to the guest. This function
2521 * checks whether in a nested guest, we need to inject them to L1 or L2.
2522 */
nested_vmx_check_exception(struct kvm_vcpu * vcpu,unsigned nr)2523 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2524 {
2525 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2526
2527 if (!(vmcs12->exception_bitmap & (1u << nr)))
2528 return 0;
2529
2530 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
2531 vmcs_read32(VM_EXIT_INTR_INFO),
2532 vmcs_readl(EXIT_QUALIFICATION));
2533 return 1;
2534 }
2535
vmx_queue_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error_code,u32 error_code,bool reinject)2536 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2537 bool has_error_code, u32 error_code,
2538 bool reinject)
2539 {
2540 struct vcpu_vmx *vmx = to_vmx(vcpu);
2541 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2542
2543 if (!reinject && is_guest_mode(vcpu) &&
2544 nested_vmx_check_exception(vcpu, nr))
2545 return;
2546
2547 if (has_error_code) {
2548 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2549 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2550 }
2551
2552 if (vmx->rmode.vm86_active) {
2553 int inc_eip = 0;
2554 if (kvm_exception_is_soft(nr))
2555 inc_eip = vcpu->arch.event_exit_inst_len;
2556 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2557 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2558 return;
2559 }
2560
2561 if (kvm_exception_is_soft(nr)) {
2562 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2563 vmx->vcpu.arch.event_exit_inst_len);
2564 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2565 } else
2566 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2567
2568 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2569 }
2570
vmx_rdtscp_supported(void)2571 static bool vmx_rdtscp_supported(void)
2572 {
2573 return cpu_has_vmx_rdtscp();
2574 }
2575
vmx_invpcid_supported(void)2576 static bool vmx_invpcid_supported(void)
2577 {
2578 return cpu_has_vmx_invpcid() && enable_ept;
2579 }
2580
2581 /*
2582 * Swap MSR entry in host/guest MSR entry array.
2583 */
move_msr_up(struct vcpu_vmx * vmx,int from,int to)2584 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2585 {
2586 struct shared_msr_entry tmp;
2587
2588 tmp = vmx->guest_msrs[to];
2589 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2590 vmx->guest_msrs[from] = tmp;
2591 }
2592
2593 /*
2594 * Set up the vmcs to automatically save and restore system
2595 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2596 * mode, as fiddling with msrs is very expensive.
2597 */
setup_msrs(struct vcpu_vmx * vmx)2598 static void setup_msrs(struct vcpu_vmx *vmx)
2599 {
2600 int save_nmsrs, index;
2601
2602 save_nmsrs = 0;
2603 #ifdef CONFIG_X86_64
2604 if (is_long_mode(&vmx->vcpu)) {
2605 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2606 if (index >= 0)
2607 move_msr_up(vmx, index, save_nmsrs++);
2608 index = __find_msr_index(vmx, MSR_LSTAR);
2609 if (index >= 0)
2610 move_msr_up(vmx, index, save_nmsrs++);
2611 index = __find_msr_index(vmx, MSR_CSTAR);
2612 if (index >= 0)
2613 move_msr_up(vmx, index, save_nmsrs++);
2614 index = __find_msr_index(vmx, MSR_TSC_AUX);
2615 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2616 move_msr_up(vmx, index, save_nmsrs++);
2617 /*
2618 * MSR_STAR is only needed on long mode guests, and only
2619 * if efer.sce is enabled.
2620 */
2621 index = __find_msr_index(vmx, MSR_STAR);
2622 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2623 move_msr_up(vmx, index, save_nmsrs++);
2624 }
2625 #endif
2626 index = __find_msr_index(vmx, MSR_EFER);
2627 if (index >= 0 && update_transition_efer(vmx, index))
2628 move_msr_up(vmx, index, save_nmsrs++);
2629
2630 vmx->save_nmsrs = save_nmsrs;
2631
2632 if (cpu_has_vmx_msr_bitmap())
2633 vmx_update_msr_bitmap(&vmx->vcpu);
2634 }
2635
2636 /*
2637 * reads and returns guest's timestamp counter "register"
2638 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2639 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2640 */
guest_read_tsc(struct kvm_vcpu * vcpu)2641 static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2642 {
2643 u64 host_tsc, tsc_offset;
2644
2645 host_tsc = rdtsc();
2646 tsc_offset = vmcs_read64(TSC_OFFSET);
2647 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2648 }
2649
2650 /*
2651 * writes 'offset' into guest's timestamp counter offset register
2652 */
vmx_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)2653 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2654 {
2655 if (is_guest_mode(vcpu)) {
2656 /*
2657 * We're here if L1 chose not to trap WRMSR to TSC. According
2658 * to the spec, this should set L1's TSC; The offset that L1
2659 * set for L2 remains unchanged, and still needs to be added
2660 * to the newly set TSC to get L2's TSC.
2661 */
2662 struct vmcs12 *vmcs12;
2663 /* recalculate vmcs02.TSC_OFFSET: */
2664 vmcs12 = get_vmcs12(vcpu);
2665 vmcs_write64(TSC_OFFSET, offset +
2666 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2667 vmcs12->tsc_offset : 0));
2668 } else {
2669 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2670 vmcs_read64(TSC_OFFSET), offset);
2671 vmcs_write64(TSC_OFFSET, offset);
2672 }
2673 }
2674
guest_cpuid_has_vmx(struct kvm_vcpu * vcpu)2675 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2676 {
2677 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2678 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2679 }
2680
2681 /*
2682 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2683 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2684 * all guests if the "nested" module option is off, and can also be disabled
2685 * for a single guest by disabling its VMX cpuid bit.
2686 */
nested_vmx_allowed(struct kvm_vcpu * vcpu)2687 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2688 {
2689 return nested && guest_cpuid_has_vmx(vcpu);
2690 }
2691
2692 /*
2693 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2694 * returned for the various VMX controls MSRs when nested VMX is enabled.
2695 * The same values should also be used to verify that vmcs12 control fields are
2696 * valid during nested entry from L1 to L2.
2697 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2698 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2699 * bit in the high half is on if the corresponding bit in the control field
2700 * may be on. See also vmx_control_verify().
2701 */
nested_vmx_setup_ctls_msrs(struct vcpu_vmx * vmx)2702 static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2703 {
2704 /*
2705 * Note that as a general rule, the high half of the MSRs (bits in
2706 * the control fields which may be 1) should be initialized by the
2707 * intersection of the underlying hardware's MSR (i.e., features which
2708 * can be supported) and the list of features we want to expose -
2709 * because they are known to be properly supported in our code.
2710 * Also, usually, the low half of the MSRs (bits which must be 1) can
2711 * be set to 0, meaning that L1 may turn off any of these bits. The
2712 * reason is that if one of these bits is necessary, it will appear
2713 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2714 * fields of vmcs01 and vmcs02, will turn these bits off - and
2715 * nested_vmx_exit_handled() will not pass related exits to L1.
2716 * These rules have exceptions below.
2717 */
2718
2719 /* pin-based controls */
2720 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2721 vmx->nested.nested_vmx_pinbased_ctls_low,
2722 vmx->nested.nested_vmx_pinbased_ctls_high);
2723 vmx->nested.nested_vmx_pinbased_ctls_low |=
2724 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2725 vmx->nested.nested_vmx_pinbased_ctls_high &=
2726 PIN_BASED_EXT_INTR_MASK |
2727 PIN_BASED_NMI_EXITING |
2728 PIN_BASED_VIRTUAL_NMIS;
2729 vmx->nested.nested_vmx_pinbased_ctls_high |=
2730 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2731 PIN_BASED_VMX_PREEMPTION_TIMER;
2732 if (kvm_vcpu_apicv_active(&vmx->vcpu))
2733 vmx->nested.nested_vmx_pinbased_ctls_high |=
2734 PIN_BASED_POSTED_INTR;
2735
2736 /* exit controls */
2737 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2738 vmx->nested.nested_vmx_exit_ctls_low,
2739 vmx->nested.nested_vmx_exit_ctls_high);
2740 vmx->nested.nested_vmx_exit_ctls_low =
2741 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2742
2743 vmx->nested.nested_vmx_exit_ctls_high &=
2744 #ifdef CONFIG_X86_64
2745 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2746 #endif
2747 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2748 vmx->nested.nested_vmx_exit_ctls_high |=
2749 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2750 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2751 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2752
2753 if (kvm_mpx_supported())
2754 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2755
2756 /* We support free control of debug control saving. */
2757 vmx->nested.nested_vmx_true_exit_ctls_low =
2758 vmx->nested.nested_vmx_exit_ctls_low &
2759 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2760
2761 /* entry controls */
2762 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2763 vmx->nested.nested_vmx_entry_ctls_low,
2764 vmx->nested.nested_vmx_entry_ctls_high);
2765 vmx->nested.nested_vmx_entry_ctls_low =
2766 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2767 vmx->nested.nested_vmx_entry_ctls_high &=
2768 #ifdef CONFIG_X86_64
2769 VM_ENTRY_IA32E_MODE |
2770 #endif
2771 VM_ENTRY_LOAD_IA32_PAT;
2772 vmx->nested.nested_vmx_entry_ctls_high |=
2773 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2774 if (kvm_mpx_supported())
2775 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2776
2777 /* We support free control of debug control loading. */
2778 vmx->nested.nested_vmx_true_entry_ctls_low =
2779 vmx->nested.nested_vmx_entry_ctls_low &
2780 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2781
2782 /* cpu-based controls */
2783 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2784 vmx->nested.nested_vmx_procbased_ctls_low,
2785 vmx->nested.nested_vmx_procbased_ctls_high);
2786 vmx->nested.nested_vmx_procbased_ctls_low =
2787 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2788 vmx->nested.nested_vmx_procbased_ctls_high &=
2789 CPU_BASED_VIRTUAL_INTR_PENDING |
2790 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2791 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2792 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2793 CPU_BASED_CR3_STORE_EXITING |
2794 #ifdef CONFIG_X86_64
2795 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2796 #endif
2797 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2798 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2799 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2800 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2801 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2802 /*
2803 * We can allow some features even when not supported by the
2804 * hardware. For example, L1 can specify an MSR bitmap - and we
2805 * can use it to avoid exits to L1 - even when L0 runs L2
2806 * without MSR bitmaps.
2807 */
2808 vmx->nested.nested_vmx_procbased_ctls_high |=
2809 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2810 CPU_BASED_USE_MSR_BITMAPS;
2811
2812 /* We support free control of CR3 access interception. */
2813 vmx->nested.nested_vmx_true_procbased_ctls_low =
2814 vmx->nested.nested_vmx_procbased_ctls_low &
2815 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2816
2817 /* secondary cpu-based controls */
2818 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2819 vmx->nested.nested_vmx_secondary_ctls_low,
2820 vmx->nested.nested_vmx_secondary_ctls_high);
2821 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2822 vmx->nested.nested_vmx_secondary_ctls_high &=
2823 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2824 SECONDARY_EXEC_RDTSCP |
2825 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2826 SECONDARY_EXEC_ENABLE_VPID |
2827 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2828 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2829 SECONDARY_EXEC_WBINVD_EXITING |
2830 SECONDARY_EXEC_XSAVES;
2831
2832 if (enable_ept) {
2833 /* nested EPT: emulate EPT also to L1 */
2834 vmx->nested.nested_vmx_secondary_ctls_high |=
2835 SECONDARY_EXEC_ENABLE_EPT;
2836 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2837 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2838 VMX_EPT_INVEPT_BIT;
2839 if (cpu_has_vmx_ept_execute_only())
2840 vmx->nested.nested_vmx_ept_caps |=
2841 VMX_EPT_EXECUTE_ONLY_BIT;
2842 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2843 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2844 VMX_EPT_EXTENT_CONTEXT_BIT;
2845 } else
2846 vmx->nested.nested_vmx_ept_caps = 0;
2847
2848 /*
2849 * Old versions of KVM use the single-context version without
2850 * checking for support, so declare that it is supported even
2851 * though it is treated as global context. The alternative is
2852 * not failing the single-context invvpid, and it is worse.
2853 */
2854 if (enable_vpid)
2855 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2856 VMX_VPID_EXTENT_SUPPORTED_MASK;
2857 else
2858 vmx->nested.nested_vmx_vpid_caps = 0;
2859
2860 if (enable_unrestricted_guest)
2861 vmx->nested.nested_vmx_secondary_ctls_high |=
2862 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2863
2864 /* miscellaneous data */
2865 rdmsr(MSR_IA32_VMX_MISC,
2866 vmx->nested.nested_vmx_misc_low,
2867 vmx->nested.nested_vmx_misc_high);
2868 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2869 vmx->nested.nested_vmx_misc_low |=
2870 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2871 VMX_MISC_ACTIVITY_HLT;
2872 vmx->nested.nested_vmx_misc_high = 0;
2873 }
2874
vmx_control_verify(u32 control,u32 low,u32 high)2875 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2876 {
2877 /*
2878 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2879 */
2880 return ((control & high) | low) == control;
2881 }
2882
vmx_control_msr(u32 low,u32 high)2883 static inline u64 vmx_control_msr(u32 low, u32 high)
2884 {
2885 return low | ((u64)high << 32);
2886 }
2887
2888 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 * pdata)2889 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2890 {
2891 struct vcpu_vmx *vmx = to_vmx(vcpu);
2892
2893 switch (msr_index) {
2894 case MSR_IA32_VMX_BASIC:
2895 /*
2896 * This MSR reports some information about VMX support. We
2897 * should return information about the VMX we emulate for the
2898 * guest, and the VMCS structure we give it - not about the
2899 * VMX support of the underlying hardware.
2900 */
2901 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2902 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2903 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2904 if (cpu_has_vmx_basic_inout())
2905 *pdata |= VMX_BASIC_INOUT;
2906 break;
2907 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2908 case MSR_IA32_VMX_PINBASED_CTLS:
2909 *pdata = vmx_control_msr(
2910 vmx->nested.nested_vmx_pinbased_ctls_low,
2911 vmx->nested.nested_vmx_pinbased_ctls_high);
2912 break;
2913 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2914 *pdata = vmx_control_msr(
2915 vmx->nested.nested_vmx_true_procbased_ctls_low,
2916 vmx->nested.nested_vmx_procbased_ctls_high);
2917 break;
2918 case MSR_IA32_VMX_PROCBASED_CTLS:
2919 *pdata = vmx_control_msr(
2920 vmx->nested.nested_vmx_procbased_ctls_low,
2921 vmx->nested.nested_vmx_procbased_ctls_high);
2922 break;
2923 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2924 *pdata = vmx_control_msr(
2925 vmx->nested.nested_vmx_true_exit_ctls_low,
2926 vmx->nested.nested_vmx_exit_ctls_high);
2927 break;
2928 case MSR_IA32_VMX_EXIT_CTLS:
2929 *pdata = vmx_control_msr(
2930 vmx->nested.nested_vmx_exit_ctls_low,
2931 vmx->nested.nested_vmx_exit_ctls_high);
2932 break;
2933 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2934 *pdata = vmx_control_msr(
2935 vmx->nested.nested_vmx_true_entry_ctls_low,
2936 vmx->nested.nested_vmx_entry_ctls_high);
2937 break;
2938 case MSR_IA32_VMX_ENTRY_CTLS:
2939 *pdata = vmx_control_msr(
2940 vmx->nested.nested_vmx_entry_ctls_low,
2941 vmx->nested.nested_vmx_entry_ctls_high);
2942 break;
2943 case MSR_IA32_VMX_MISC:
2944 *pdata = vmx_control_msr(
2945 vmx->nested.nested_vmx_misc_low,
2946 vmx->nested.nested_vmx_misc_high);
2947 break;
2948 /*
2949 * These MSRs specify bits which the guest must keep fixed (on or off)
2950 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2951 * We picked the standard core2 setting.
2952 */
2953 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2954 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2955 case MSR_IA32_VMX_CR0_FIXED0:
2956 *pdata = VMXON_CR0_ALWAYSON;
2957 break;
2958 case MSR_IA32_VMX_CR0_FIXED1:
2959 *pdata = -1ULL;
2960 break;
2961 case MSR_IA32_VMX_CR4_FIXED0:
2962 *pdata = VMXON_CR4_ALWAYSON;
2963 break;
2964 case MSR_IA32_VMX_CR4_FIXED1:
2965 *pdata = -1ULL;
2966 break;
2967 case MSR_IA32_VMX_VMCS_ENUM:
2968 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2969 break;
2970 case MSR_IA32_VMX_PROCBASED_CTLS2:
2971 *pdata = vmx_control_msr(
2972 vmx->nested.nested_vmx_secondary_ctls_low,
2973 vmx->nested.nested_vmx_secondary_ctls_high);
2974 break;
2975 case MSR_IA32_VMX_EPT_VPID_CAP:
2976 *pdata = vmx->nested.nested_vmx_ept_caps |
2977 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
2978 break;
2979 default:
2980 return 1;
2981 }
2982
2983 return 0;
2984 }
2985
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)2986 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
2987 uint64_t val)
2988 {
2989 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
2990
2991 return !(val & ~valid_bits);
2992 }
2993
2994 /*
2995 * Reads an msr value (of 'msr_index') into 'pdata'.
2996 * Returns 0 on success, non-0 otherwise.
2997 * Assumes vcpu_load() was already called.
2998 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2999 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3000 {
3001 struct shared_msr_entry *msr;
3002
3003 switch (msr_info->index) {
3004 #ifdef CONFIG_X86_64
3005 case MSR_FS_BASE:
3006 msr_info->data = vmcs_readl(GUEST_FS_BASE);
3007 break;
3008 case MSR_GS_BASE:
3009 msr_info->data = vmcs_readl(GUEST_GS_BASE);
3010 break;
3011 case MSR_KERNEL_GS_BASE:
3012 vmx_load_host_state(to_vmx(vcpu));
3013 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
3014 break;
3015 #endif
3016 case MSR_EFER:
3017 return kvm_get_msr_common(vcpu, msr_info);
3018 case MSR_IA32_TSC:
3019 msr_info->data = guest_read_tsc(vcpu);
3020 break;
3021 case MSR_IA32_SPEC_CTRL:
3022 if (!msr_info->host_initiated &&
3023 !guest_cpuid_has_ibrs(vcpu))
3024 return 1;
3025
3026 msr_info->data = to_vmx(vcpu)->spec_ctrl;
3027 break;
3028 case MSR_IA32_ARCH_CAPABILITIES:
3029 if (!msr_info->host_initiated &&
3030 !guest_cpuid_has_arch_capabilities(vcpu))
3031 return 1;
3032 msr_info->data = to_vmx(vcpu)->arch_capabilities;
3033 break;
3034 case MSR_IA32_SYSENTER_CS:
3035 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
3036 break;
3037 case MSR_IA32_SYSENTER_EIP:
3038 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3039 break;
3040 case MSR_IA32_SYSENTER_ESP:
3041 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3042 break;
3043 case MSR_IA32_BNDCFGS:
3044 if (!kvm_mpx_supported() ||
3045 (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
3046 return 1;
3047 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3048 break;
3049 case MSR_IA32_MCG_EXT_CTL:
3050 if (!msr_info->host_initiated &&
3051 !(to_vmx(vcpu)->msr_ia32_feature_control &
3052 FEATURE_CONTROL_LMCE))
3053 return 1;
3054 msr_info->data = vcpu->arch.mcg_ext_ctl;
3055 break;
3056 case MSR_IA32_FEATURE_CONTROL:
3057 msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3058 break;
3059 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3060 if (!nested_vmx_allowed(vcpu))
3061 return 1;
3062 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3063 case MSR_IA32_XSS:
3064 if (!vmx_xsaves_supported())
3065 return 1;
3066 msr_info->data = vcpu->arch.ia32_xss;
3067 break;
3068 case MSR_TSC_AUX:
3069 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3070 return 1;
3071 /* Otherwise falls through */
3072 default:
3073 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3074 if (msr) {
3075 msr_info->data = msr->data;
3076 break;
3077 }
3078 return kvm_get_msr_common(vcpu, msr_info);
3079 }
3080
3081 return 0;
3082 }
3083
3084 static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3085
3086 /*
3087 * Writes msr value into into the appropriate "register".
3088 * Returns 0 on success, non-0 otherwise.
3089 * Assumes vcpu_load() was already called.
3090 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3091 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3092 {
3093 struct vcpu_vmx *vmx = to_vmx(vcpu);
3094 struct shared_msr_entry *msr;
3095 int ret = 0;
3096 u32 msr_index = msr_info->index;
3097 u64 data = msr_info->data;
3098
3099 switch (msr_index) {
3100 case MSR_EFER:
3101 ret = kvm_set_msr_common(vcpu, msr_info);
3102 break;
3103 #ifdef CONFIG_X86_64
3104 case MSR_FS_BASE:
3105 vmx_segment_cache_clear(vmx);
3106 vmcs_writel(GUEST_FS_BASE, data);
3107 break;
3108 case MSR_GS_BASE:
3109 vmx_segment_cache_clear(vmx);
3110 vmcs_writel(GUEST_GS_BASE, data);
3111 break;
3112 case MSR_KERNEL_GS_BASE:
3113 vmx_load_host_state(vmx);
3114 vmx->msr_guest_kernel_gs_base = data;
3115 break;
3116 #endif
3117 case MSR_IA32_SYSENTER_CS:
3118 vmcs_write32(GUEST_SYSENTER_CS, data);
3119 break;
3120 case MSR_IA32_SYSENTER_EIP:
3121 vmcs_writel(GUEST_SYSENTER_EIP, data);
3122 break;
3123 case MSR_IA32_SYSENTER_ESP:
3124 vmcs_writel(GUEST_SYSENTER_ESP, data);
3125 break;
3126 case MSR_IA32_BNDCFGS:
3127 if (!kvm_mpx_supported() ||
3128 (!msr_info->host_initiated && !guest_cpuid_has_mpx(vcpu)))
3129 return 1;
3130 if (is_noncanonical_address(data & PAGE_MASK) ||
3131 (data & MSR_IA32_BNDCFGS_RSVD))
3132 return 1;
3133 vmcs_write64(GUEST_BNDCFGS, data);
3134 break;
3135 case MSR_IA32_TSC:
3136 kvm_write_tsc(vcpu, msr_info);
3137 break;
3138 case MSR_IA32_SPEC_CTRL:
3139 if (!msr_info->host_initiated &&
3140 !guest_cpuid_has_ibrs(vcpu))
3141 return 1;
3142
3143 /* The STIBP bit doesn't fault even if it's not advertised */
3144 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP))
3145 return 1;
3146
3147 vmx->spec_ctrl = data;
3148
3149 if (!data)
3150 break;
3151
3152 /*
3153 * For non-nested:
3154 * When it's written (to non-zero) for the first time, pass
3155 * it through.
3156 *
3157 * For nested:
3158 * The handling of the MSR bitmap for L2 guests is done in
3159 * nested_vmx_merge_msr_bitmap. We should not touch the
3160 * vmcs02.msr_bitmap here since it gets completely overwritten
3161 * in the merging. We update the vmcs01 here for L1 as well
3162 * since it will end up touching the MSR anyway now.
3163 */
3164 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
3165 MSR_IA32_SPEC_CTRL,
3166 MSR_TYPE_RW);
3167 break;
3168 case MSR_IA32_PRED_CMD:
3169 if (!msr_info->host_initiated &&
3170 !guest_cpuid_has_ibpb(vcpu))
3171 return 1;
3172
3173 if (data & ~PRED_CMD_IBPB)
3174 return 1;
3175
3176 if (!data)
3177 break;
3178
3179 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3180
3181 /*
3182 * For non-nested:
3183 * When it's written (to non-zero) for the first time, pass
3184 * it through.
3185 *
3186 * For nested:
3187 * The handling of the MSR bitmap for L2 guests is done in
3188 * nested_vmx_merge_msr_bitmap. We should not touch the
3189 * vmcs02.msr_bitmap here since it gets completely overwritten
3190 * in the merging.
3191 */
3192 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
3193 MSR_TYPE_W);
3194 break;
3195 case MSR_IA32_ARCH_CAPABILITIES:
3196 if (!msr_info->host_initiated)
3197 return 1;
3198 vmx->arch_capabilities = data;
3199 break;
3200 case MSR_IA32_CR_PAT:
3201 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3202 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3203 return 1;
3204 vmcs_write64(GUEST_IA32_PAT, data);
3205 vcpu->arch.pat = data;
3206 break;
3207 }
3208 ret = kvm_set_msr_common(vcpu, msr_info);
3209 break;
3210 case MSR_IA32_TSC_ADJUST:
3211 ret = kvm_set_msr_common(vcpu, msr_info);
3212 break;
3213 case MSR_IA32_MCG_EXT_CTL:
3214 if ((!msr_info->host_initiated &&
3215 !(to_vmx(vcpu)->msr_ia32_feature_control &
3216 FEATURE_CONTROL_LMCE)) ||
3217 (data & ~MCG_EXT_CTL_LMCE_EN))
3218 return 1;
3219 vcpu->arch.mcg_ext_ctl = data;
3220 break;
3221 case MSR_IA32_FEATURE_CONTROL:
3222 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3223 (to_vmx(vcpu)->msr_ia32_feature_control &
3224 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3225 return 1;
3226 vmx->msr_ia32_feature_control = data;
3227 if (msr_info->host_initiated && data == 0)
3228 vmx_leave_nested(vcpu);
3229 break;
3230 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3231 return 1; /* they are read-only */
3232 case MSR_IA32_XSS:
3233 if (!vmx_xsaves_supported())
3234 return 1;
3235 /*
3236 * The only supported bit as of Skylake is bit 8, but
3237 * it is not supported on KVM.
3238 */
3239 if (data != 0)
3240 return 1;
3241 vcpu->arch.ia32_xss = data;
3242 if (vcpu->arch.ia32_xss != host_xss)
3243 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3244 vcpu->arch.ia32_xss, host_xss);
3245 else
3246 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3247 break;
3248 case MSR_TSC_AUX:
3249 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3250 return 1;
3251 /* Check reserved bit, higher 32 bits should be zero */
3252 if ((data >> 32) != 0)
3253 return 1;
3254 /* Otherwise falls through */
3255 default:
3256 msr = find_msr_entry(vmx, msr_index);
3257 if (msr) {
3258 u64 old_msr_data = msr->data;
3259 msr->data = data;
3260 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3261 preempt_disable();
3262 ret = kvm_set_shared_msr(msr->index, msr->data,
3263 msr->mask);
3264 preempt_enable();
3265 if (ret)
3266 msr->data = old_msr_data;
3267 }
3268 break;
3269 }
3270 ret = kvm_set_msr_common(vcpu, msr_info);
3271 }
3272
3273 return ret;
3274 }
3275
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)3276 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3277 {
3278 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3279 switch (reg) {
3280 case VCPU_REGS_RSP:
3281 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3282 break;
3283 case VCPU_REGS_RIP:
3284 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3285 break;
3286 case VCPU_EXREG_PDPTR:
3287 if (enable_ept)
3288 ept_save_pdptrs(vcpu);
3289 break;
3290 default:
3291 break;
3292 }
3293 }
3294
cpu_has_kvm_support(void)3295 static __init int cpu_has_kvm_support(void)
3296 {
3297 return cpu_has_vmx();
3298 }
3299
vmx_disabled_by_bios(void)3300 static __init int vmx_disabled_by_bios(void)
3301 {
3302 u64 msr;
3303
3304 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3305 if (msr & FEATURE_CONTROL_LOCKED) {
3306 /* launched w/ TXT and VMX disabled */
3307 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3308 && tboot_enabled())
3309 return 1;
3310 /* launched w/o TXT and VMX only enabled w/ TXT */
3311 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3312 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3313 && !tboot_enabled()) {
3314 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3315 "activate TXT before enabling KVM\n");
3316 return 1;
3317 }
3318 /* launched w/o TXT and VMX disabled */
3319 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3320 && !tboot_enabled())
3321 return 1;
3322 }
3323
3324 return 0;
3325 }
3326
kvm_cpu_vmxon(u64 addr)3327 static void kvm_cpu_vmxon(u64 addr)
3328 {
3329 intel_pt_handle_vmx(1);
3330
3331 asm volatile (ASM_VMX_VMXON_RAX
3332 : : "a"(&addr), "m"(addr)
3333 : "memory", "cc");
3334 }
3335
hardware_enable(void)3336 static int hardware_enable(void)
3337 {
3338 int cpu = raw_smp_processor_id();
3339 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3340 u64 old, test_bits;
3341
3342 if (cr4_read_shadow() & X86_CR4_VMXE)
3343 return -EBUSY;
3344
3345 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3346 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3347 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3348
3349 /*
3350 * Now we can enable the vmclear operation in kdump
3351 * since the loaded_vmcss_on_cpu list on this cpu
3352 * has been initialized.
3353 *
3354 * Though the cpu is not in VMX operation now, there
3355 * is no problem to enable the vmclear operation
3356 * for the loaded_vmcss_on_cpu list is empty!
3357 */
3358 crash_enable_local_vmclear(cpu);
3359
3360 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3361
3362 test_bits = FEATURE_CONTROL_LOCKED;
3363 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3364 if (tboot_enabled())
3365 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3366
3367 if ((old & test_bits) != test_bits) {
3368 /* enable and lock */
3369 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3370 }
3371 cr4_set_bits(X86_CR4_VMXE);
3372
3373 if (vmm_exclusive) {
3374 kvm_cpu_vmxon(phys_addr);
3375 ept_sync_global();
3376 }
3377
3378 native_store_gdt(this_cpu_ptr(&host_gdt));
3379
3380 return 0;
3381 }
3382
vmclear_local_loaded_vmcss(void)3383 static void vmclear_local_loaded_vmcss(void)
3384 {
3385 int cpu = raw_smp_processor_id();
3386 struct loaded_vmcs *v, *n;
3387
3388 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3389 loaded_vmcss_on_cpu_link)
3390 __loaded_vmcs_clear(v);
3391 }
3392
3393
3394 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3395 * tricks.
3396 */
kvm_cpu_vmxoff(void)3397 static void kvm_cpu_vmxoff(void)
3398 {
3399 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3400
3401 intel_pt_handle_vmx(0);
3402 }
3403
hardware_disable(void)3404 static void hardware_disable(void)
3405 {
3406 if (vmm_exclusive) {
3407 vmclear_local_loaded_vmcss();
3408 kvm_cpu_vmxoff();
3409 }
3410 cr4_clear_bits(X86_CR4_VMXE);
3411 }
3412
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)3413 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3414 u32 msr, u32 *result)
3415 {
3416 u32 vmx_msr_low, vmx_msr_high;
3417 u32 ctl = ctl_min | ctl_opt;
3418
3419 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3420
3421 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3422 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3423
3424 /* Ensure minimum (required) set of control bits are supported. */
3425 if (ctl_min & ~ctl)
3426 return -EIO;
3427
3428 *result = ctl;
3429 return 0;
3430 }
3431
allow_1_setting(u32 msr,u32 ctl)3432 static __init bool allow_1_setting(u32 msr, u32 ctl)
3433 {
3434 u32 vmx_msr_low, vmx_msr_high;
3435
3436 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3437 return vmx_msr_high & ctl;
3438 }
3439
setup_vmcs_config(struct vmcs_config * vmcs_conf)3440 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3441 {
3442 u32 vmx_msr_low, vmx_msr_high;
3443 u32 min, opt, min2, opt2;
3444 u32 _pin_based_exec_control = 0;
3445 u32 _cpu_based_exec_control = 0;
3446 u32 _cpu_based_2nd_exec_control = 0;
3447 u32 _vmexit_control = 0;
3448 u32 _vmentry_control = 0;
3449
3450 min = CPU_BASED_HLT_EXITING |
3451 #ifdef CONFIG_X86_64
3452 CPU_BASED_CR8_LOAD_EXITING |
3453 CPU_BASED_CR8_STORE_EXITING |
3454 #endif
3455 CPU_BASED_CR3_LOAD_EXITING |
3456 CPU_BASED_CR3_STORE_EXITING |
3457 CPU_BASED_USE_IO_BITMAPS |
3458 CPU_BASED_MOV_DR_EXITING |
3459 CPU_BASED_USE_TSC_OFFSETING |
3460 CPU_BASED_MWAIT_EXITING |
3461 CPU_BASED_MONITOR_EXITING |
3462 CPU_BASED_INVLPG_EXITING |
3463 CPU_BASED_RDPMC_EXITING;
3464
3465 opt = CPU_BASED_TPR_SHADOW |
3466 CPU_BASED_USE_MSR_BITMAPS |
3467 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3468 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3469 &_cpu_based_exec_control) < 0)
3470 return -EIO;
3471 #ifdef CONFIG_X86_64
3472 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3473 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3474 ~CPU_BASED_CR8_STORE_EXITING;
3475 #endif
3476 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3477 min2 = 0;
3478 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3479 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3480 SECONDARY_EXEC_WBINVD_EXITING |
3481 SECONDARY_EXEC_ENABLE_VPID |
3482 SECONDARY_EXEC_ENABLE_EPT |
3483 SECONDARY_EXEC_UNRESTRICTED_GUEST |
3484 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3485 SECONDARY_EXEC_RDTSCP |
3486 SECONDARY_EXEC_ENABLE_INVPCID |
3487 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3488 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3489 SECONDARY_EXEC_SHADOW_VMCS |
3490 SECONDARY_EXEC_XSAVES |
3491 SECONDARY_EXEC_ENABLE_PML |
3492 SECONDARY_EXEC_TSC_SCALING;
3493 if (adjust_vmx_controls(min2, opt2,
3494 MSR_IA32_VMX_PROCBASED_CTLS2,
3495 &_cpu_based_2nd_exec_control) < 0)
3496 return -EIO;
3497 }
3498 #ifndef CONFIG_X86_64
3499 if (!(_cpu_based_2nd_exec_control &
3500 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3501 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3502 #endif
3503
3504 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3505 _cpu_based_2nd_exec_control &= ~(
3506 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3507 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3508 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3509
3510 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3511 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3512 enabled */
3513 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3514 CPU_BASED_CR3_STORE_EXITING |
3515 CPU_BASED_INVLPG_EXITING);
3516 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3517 vmx_capability.ept, vmx_capability.vpid);
3518 }
3519
3520 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3521 #ifdef CONFIG_X86_64
3522 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3523 #endif
3524 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3525 VM_EXIT_CLEAR_BNDCFGS;
3526 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3527 &_vmexit_control) < 0)
3528 return -EIO;
3529
3530 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3531 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
3532 PIN_BASED_VMX_PREEMPTION_TIMER;
3533 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3534 &_pin_based_exec_control) < 0)
3535 return -EIO;
3536
3537 if (cpu_has_broken_vmx_preemption_timer())
3538 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3539 if (!(_cpu_based_2nd_exec_control &
3540 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3541 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3542
3543 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3544 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3545 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3546 &_vmentry_control) < 0)
3547 return -EIO;
3548
3549 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3550
3551 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3552 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3553 return -EIO;
3554
3555 #ifdef CONFIG_X86_64
3556 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3557 if (vmx_msr_high & (1u<<16))
3558 return -EIO;
3559 #endif
3560
3561 /* Require Write-Back (WB) memory type for VMCS accesses. */
3562 if (((vmx_msr_high >> 18) & 15) != 6)
3563 return -EIO;
3564
3565 vmcs_conf->size = vmx_msr_high & 0x1fff;
3566 vmcs_conf->order = get_order(vmcs_conf->size);
3567 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
3568 vmcs_conf->revision_id = vmx_msr_low;
3569
3570 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3571 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3572 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3573 vmcs_conf->vmexit_ctrl = _vmexit_control;
3574 vmcs_conf->vmentry_ctrl = _vmentry_control;
3575
3576 cpu_has_load_ia32_efer =
3577 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3578 VM_ENTRY_LOAD_IA32_EFER)
3579 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3580 VM_EXIT_LOAD_IA32_EFER);
3581
3582 cpu_has_load_perf_global_ctrl =
3583 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3584 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3585 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3586 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3587
3588 /*
3589 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3590 * but due to errata below it can't be used. Workaround is to use
3591 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3592 *
3593 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3594 *
3595 * AAK155 (model 26)
3596 * AAP115 (model 30)
3597 * AAT100 (model 37)
3598 * BC86,AAY89,BD102 (model 44)
3599 * BA97 (model 46)
3600 *
3601 */
3602 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3603 switch (boot_cpu_data.x86_model) {
3604 case 26:
3605 case 30:
3606 case 37:
3607 case 44:
3608 case 46:
3609 cpu_has_load_perf_global_ctrl = false;
3610 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3611 "does not work properly. Using workaround\n");
3612 break;
3613 default:
3614 break;
3615 }
3616 }
3617
3618 if (boot_cpu_has(X86_FEATURE_XSAVES))
3619 rdmsrl(MSR_IA32_XSS, host_xss);
3620
3621 return 0;
3622 }
3623
alloc_vmcs_cpu(int cpu)3624 static struct vmcs *alloc_vmcs_cpu(int cpu)
3625 {
3626 int node = cpu_to_node(cpu);
3627 struct page *pages;
3628 struct vmcs *vmcs;
3629
3630 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3631 if (!pages)
3632 return NULL;
3633 vmcs = page_address(pages);
3634 memset(vmcs, 0, vmcs_config.size);
3635 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3636 return vmcs;
3637 }
3638
free_vmcs(struct vmcs * vmcs)3639 static void free_vmcs(struct vmcs *vmcs)
3640 {
3641 free_pages((unsigned long)vmcs, vmcs_config.order);
3642 }
3643
3644 /*
3645 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3646 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)3647 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3648 {
3649 if (!loaded_vmcs->vmcs)
3650 return;
3651 loaded_vmcs_clear(loaded_vmcs);
3652 free_vmcs(loaded_vmcs->vmcs);
3653 loaded_vmcs->vmcs = NULL;
3654 if (loaded_vmcs->msr_bitmap)
3655 free_page((unsigned long)loaded_vmcs->msr_bitmap);
3656 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
3657 }
3658
alloc_vmcs(void)3659 static struct vmcs *alloc_vmcs(void)
3660 {
3661 return alloc_vmcs_cpu(raw_smp_processor_id());
3662 }
3663
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)3664 static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3665 {
3666 loaded_vmcs->vmcs = alloc_vmcs();
3667 if (!loaded_vmcs->vmcs)
3668 return -ENOMEM;
3669
3670 loaded_vmcs->shadow_vmcs = NULL;
3671 loaded_vmcs_init(loaded_vmcs);
3672
3673 if (cpu_has_vmx_msr_bitmap()) {
3674 loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
3675 if (!loaded_vmcs->msr_bitmap)
3676 goto out_vmcs;
3677 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
3678 }
3679 return 0;
3680
3681 out_vmcs:
3682 free_loaded_vmcs(loaded_vmcs);
3683 return -ENOMEM;
3684 }
3685
free_kvm_area(void)3686 static void free_kvm_area(void)
3687 {
3688 int cpu;
3689
3690 for_each_possible_cpu(cpu) {
3691 free_vmcs(per_cpu(vmxarea, cpu));
3692 per_cpu(vmxarea, cpu) = NULL;
3693 }
3694 }
3695
init_vmcs_shadow_fields(void)3696 static void init_vmcs_shadow_fields(void)
3697 {
3698 int i, j;
3699
3700 /* No checks for read only fields yet */
3701
3702 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3703 switch (shadow_read_write_fields[i]) {
3704 case GUEST_BNDCFGS:
3705 if (!kvm_mpx_supported())
3706 continue;
3707 break;
3708 default:
3709 break;
3710 }
3711
3712 if (j < i)
3713 shadow_read_write_fields[j] =
3714 shadow_read_write_fields[i];
3715 j++;
3716 }
3717 max_shadow_read_write_fields = j;
3718
3719 /* shadowed fields guest access without vmexit */
3720 for (i = 0; i < max_shadow_read_write_fields; i++) {
3721 clear_bit(shadow_read_write_fields[i],
3722 vmx_vmwrite_bitmap);
3723 clear_bit(shadow_read_write_fields[i],
3724 vmx_vmread_bitmap);
3725 }
3726 for (i = 0; i < max_shadow_read_only_fields; i++)
3727 clear_bit(shadow_read_only_fields[i],
3728 vmx_vmread_bitmap);
3729 }
3730
alloc_kvm_area(void)3731 static __init int alloc_kvm_area(void)
3732 {
3733 int cpu;
3734
3735 for_each_possible_cpu(cpu) {
3736 struct vmcs *vmcs;
3737
3738 vmcs = alloc_vmcs_cpu(cpu);
3739 if (!vmcs) {
3740 free_kvm_area();
3741 return -ENOMEM;
3742 }
3743
3744 per_cpu(vmxarea, cpu) = vmcs;
3745 }
3746 return 0;
3747 }
3748
emulation_required(struct kvm_vcpu * vcpu)3749 static bool emulation_required(struct kvm_vcpu *vcpu)
3750 {
3751 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3752 }
3753
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)3754 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3755 struct kvm_segment *save)
3756 {
3757 if (!emulate_invalid_guest_state) {
3758 /*
3759 * CS and SS RPL should be equal during guest entry according
3760 * to VMX spec, but in reality it is not always so. Since vcpu
3761 * is in the middle of the transition from real mode to
3762 * protected mode it is safe to assume that RPL 0 is a good
3763 * default value.
3764 */
3765 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3766 save->selector &= ~SEGMENT_RPL_MASK;
3767 save->dpl = save->selector & SEGMENT_RPL_MASK;
3768 save->s = 1;
3769 }
3770 vmx_set_segment(vcpu, save, seg);
3771 }
3772
enter_pmode(struct kvm_vcpu * vcpu)3773 static void enter_pmode(struct kvm_vcpu *vcpu)
3774 {
3775 unsigned long flags;
3776 struct vcpu_vmx *vmx = to_vmx(vcpu);
3777
3778 /*
3779 * Update real mode segment cache. It may be not up-to-date if sement
3780 * register was written while vcpu was in a guest mode.
3781 */
3782 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3783 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3784 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3785 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3786 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3787 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3788
3789 vmx->rmode.vm86_active = 0;
3790
3791 vmx_segment_cache_clear(vmx);
3792
3793 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3794
3795 flags = vmcs_readl(GUEST_RFLAGS);
3796 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3797 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3798 vmcs_writel(GUEST_RFLAGS, flags);
3799
3800 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3801 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3802
3803 update_exception_bitmap(vcpu);
3804
3805 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3806 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3807 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3808 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3809 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3810 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3811 }
3812
fix_rmode_seg(int seg,struct kvm_segment * save)3813 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3814 {
3815 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3816 struct kvm_segment var = *save;
3817
3818 var.dpl = 0x3;
3819 if (seg == VCPU_SREG_CS)
3820 var.type = 0x3;
3821
3822 if (!emulate_invalid_guest_state) {
3823 var.selector = var.base >> 4;
3824 var.base = var.base & 0xffff0;
3825 var.limit = 0xffff;
3826 var.g = 0;
3827 var.db = 0;
3828 var.present = 1;
3829 var.s = 1;
3830 var.l = 0;
3831 var.unusable = 0;
3832 var.type = 0x3;
3833 var.avl = 0;
3834 if (save->base & 0xf)
3835 printk_once(KERN_WARNING "kvm: segment base is not "
3836 "paragraph aligned when entering "
3837 "protected mode (seg=%d)", seg);
3838 }
3839
3840 vmcs_write16(sf->selector, var.selector);
3841 vmcs_writel(sf->base, var.base);
3842 vmcs_write32(sf->limit, var.limit);
3843 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3844 }
3845
enter_rmode(struct kvm_vcpu * vcpu)3846 static void enter_rmode(struct kvm_vcpu *vcpu)
3847 {
3848 unsigned long flags;
3849 struct vcpu_vmx *vmx = to_vmx(vcpu);
3850
3851 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3852 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3853 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3854 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3855 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3856 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3857 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3858
3859 vmx->rmode.vm86_active = 1;
3860
3861 /*
3862 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3863 * vcpu. Warn the user that an update is overdue.
3864 */
3865 if (!vcpu->kvm->arch.tss_addr)
3866 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3867 "called before entering vcpu\n");
3868
3869 vmx_segment_cache_clear(vmx);
3870
3871 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3872 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3873 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3874
3875 flags = vmcs_readl(GUEST_RFLAGS);
3876 vmx->rmode.save_rflags = flags;
3877
3878 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3879
3880 vmcs_writel(GUEST_RFLAGS, flags);
3881 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3882 update_exception_bitmap(vcpu);
3883
3884 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3885 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3886 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3887 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3888 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3889 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3890
3891 kvm_mmu_reset_context(vcpu);
3892 }
3893
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3894 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3895 {
3896 struct vcpu_vmx *vmx = to_vmx(vcpu);
3897 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3898
3899 if (!msr)
3900 return;
3901
3902 /*
3903 * Force kernel_gs_base reloading before EFER changes, as control
3904 * of this msr depends on is_long_mode().
3905 */
3906 vmx_load_host_state(to_vmx(vcpu));
3907 vcpu->arch.efer = efer;
3908 if (efer & EFER_LMA) {
3909 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3910 msr->data = efer;
3911 } else {
3912 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3913
3914 msr->data = efer & ~EFER_LME;
3915 }
3916 setup_msrs(vmx);
3917 }
3918
3919 #ifdef CONFIG_X86_64
3920
enter_lmode(struct kvm_vcpu * vcpu)3921 static void enter_lmode(struct kvm_vcpu *vcpu)
3922 {
3923 u32 guest_tr_ar;
3924
3925 vmx_segment_cache_clear(to_vmx(vcpu));
3926
3927 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3928 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3929 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3930 __func__);
3931 vmcs_write32(GUEST_TR_AR_BYTES,
3932 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3933 | VMX_AR_TYPE_BUSY_64_TSS);
3934 }
3935 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3936 }
3937
exit_lmode(struct kvm_vcpu * vcpu)3938 static void exit_lmode(struct kvm_vcpu *vcpu)
3939 {
3940 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3941 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3942 }
3943
3944 #endif
3945
__vmx_flush_tlb(struct kvm_vcpu * vcpu,int vpid)3946 static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
3947 {
3948 vpid_sync_context(vpid);
3949 if (enable_ept) {
3950 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3951 return;
3952 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3953 }
3954 }
3955
vmx_flush_tlb(struct kvm_vcpu * vcpu)3956 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3957 {
3958 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3959 }
3960
vmx_flush_tlb_ept_only(struct kvm_vcpu * vcpu)3961 static void vmx_flush_tlb_ept_only(struct kvm_vcpu *vcpu)
3962 {
3963 if (enable_ept)
3964 vmx_flush_tlb(vcpu);
3965 }
3966
vmx_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)3967 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3968 {
3969 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3970
3971 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3972 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3973 }
3974
vmx_decache_cr3(struct kvm_vcpu * vcpu)3975 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3976 {
3977 if (enable_ept && is_paging(vcpu))
3978 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3979 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3980 }
3981
vmx_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)3982 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3983 {
3984 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3985
3986 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3987 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3988 }
3989
ept_load_pdptrs(struct kvm_vcpu * vcpu)3990 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3991 {
3992 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3993
3994 if (!test_bit(VCPU_EXREG_PDPTR,
3995 (unsigned long *)&vcpu->arch.regs_dirty))
3996 return;
3997
3998 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3999 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4000 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4001 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4002 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
4003 }
4004 }
4005
ept_save_pdptrs(struct kvm_vcpu * vcpu)4006 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4007 {
4008 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4009
4010 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
4011 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4012 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4013 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4014 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
4015 }
4016
4017 __set_bit(VCPU_EXREG_PDPTR,
4018 (unsigned long *)&vcpu->arch.regs_avail);
4019 __set_bit(VCPU_EXREG_PDPTR,
4020 (unsigned long *)&vcpu->arch.regs_dirty);
4021 }
4022
4023 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
4024
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)4025 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4026 unsigned long cr0,
4027 struct kvm_vcpu *vcpu)
4028 {
4029 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4030 vmx_decache_cr3(vcpu);
4031 if (!(cr0 & X86_CR0_PG)) {
4032 /* From paging/starting to nonpaging */
4033 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4034 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
4035 (CPU_BASED_CR3_LOAD_EXITING |
4036 CPU_BASED_CR3_STORE_EXITING));
4037 vcpu->arch.cr0 = cr0;
4038 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4039 } else if (!is_paging(vcpu)) {
4040 /* From nonpaging to paging */
4041 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
4042 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
4043 ~(CPU_BASED_CR3_LOAD_EXITING |
4044 CPU_BASED_CR3_STORE_EXITING));
4045 vcpu->arch.cr0 = cr0;
4046 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
4047 }
4048
4049 if (!(cr0 & X86_CR0_WP))
4050 *hw_cr0 &= ~X86_CR0_WP;
4051 }
4052
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)4053 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4054 {
4055 struct vcpu_vmx *vmx = to_vmx(vcpu);
4056 unsigned long hw_cr0;
4057
4058 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
4059 if (enable_unrestricted_guest)
4060 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
4061 else {
4062 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
4063
4064 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4065 enter_pmode(vcpu);
4066
4067 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4068 enter_rmode(vcpu);
4069 }
4070
4071 #ifdef CONFIG_X86_64
4072 if (vcpu->arch.efer & EFER_LME) {
4073 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
4074 enter_lmode(vcpu);
4075 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
4076 exit_lmode(vcpu);
4077 }
4078 #endif
4079
4080 if (enable_ept)
4081 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4082
4083 if (!vcpu->fpu_active)
4084 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
4085
4086 vmcs_writel(CR0_READ_SHADOW, cr0);
4087 vmcs_writel(GUEST_CR0, hw_cr0);
4088 vcpu->arch.cr0 = cr0;
4089
4090 /* depends on vcpu->arch.cr0 to be set to a new value */
4091 vmx->emulation_required = emulation_required(vcpu);
4092 }
4093
construct_eptp(unsigned long root_hpa)4094 static u64 construct_eptp(unsigned long root_hpa)
4095 {
4096 u64 eptp;
4097
4098 /* TODO write the value reading from MSR */
4099 eptp = VMX_EPT_DEFAULT_MT |
4100 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
4101 if (enable_ept_ad_bits)
4102 eptp |= VMX_EPT_AD_ENABLE_BIT;
4103 eptp |= (root_hpa & PAGE_MASK);
4104
4105 return eptp;
4106 }
4107
vmx_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)4108 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4109 {
4110 unsigned long guest_cr3;
4111 u64 eptp;
4112
4113 guest_cr3 = cr3;
4114 if (enable_ept) {
4115 eptp = construct_eptp(cr3);
4116 vmcs_write64(EPT_POINTER, eptp);
4117 if (is_paging(vcpu) || is_guest_mode(vcpu))
4118 guest_cr3 = kvm_read_cr3(vcpu);
4119 else
4120 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
4121 ept_load_pdptrs(vcpu);
4122 }
4123
4124 vmx_flush_tlb(vcpu);
4125 vmcs_writel(GUEST_CR3, guest_cr3);
4126 }
4127
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)4128 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
4129 {
4130 /*
4131 * Pass through host's Machine Check Enable value to hw_cr4, which
4132 * is in force while we are in guest mode. Do not let guests control
4133 * this bit, even if host CR4.MCE == 0.
4134 */
4135 unsigned long hw_cr4 =
4136 (cr4_read_shadow() & X86_CR4_MCE) |
4137 (cr4 & ~X86_CR4_MCE) |
4138 (to_vmx(vcpu)->rmode.vm86_active ?
4139 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4140
4141 if (cr4 & X86_CR4_VMXE) {
4142 /*
4143 * To use VMXON (and later other VMX instructions), a guest
4144 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4145 * So basically the check on whether to allow nested VMX
4146 * is here.
4147 */
4148 if (!nested_vmx_allowed(vcpu))
4149 return 1;
4150 }
4151 if (to_vmx(vcpu)->nested.vmxon &&
4152 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
4153 return 1;
4154
4155 vcpu->arch.cr4 = cr4;
4156 if (enable_ept) {
4157 if (!is_paging(vcpu)) {
4158 hw_cr4 &= ~X86_CR4_PAE;
4159 hw_cr4 |= X86_CR4_PSE;
4160 } else if (!(cr4 & X86_CR4_PAE)) {
4161 hw_cr4 &= ~X86_CR4_PAE;
4162 }
4163 }
4164
4165 if (!enable_unrestricted_guest && !is_paging(vcpu))
4166 /*
4167 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4168 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4169 * to be manually disabled when guest switches to non-paging
4170 * mode.
4171 *
4172 * If !enable_unrestricted_guest, the CPU is always running
4173 * with CR0.PG=1 and CR4 needs to be modified.
4174 * If enable_unrestricted_guest, the CPU automatically
4175 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4176 */
4177 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4178
4179 vmcs_writel(CR4_READ_SHADOW, cr4);
4180 vmcs_writel(GUEST_CR4, hw_cr4);
4181 return 0;
4182 }
4183
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4184 static void vmx_get_segment(struct kvm_vcpu *vcpu,
4185 struct kvm_segment *var, int seg)
4186 {
4187 struct vcpu_vmx *vmx = to_vmx(vcpu);
4188 u32 ar;
4189
4190 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4191 *var = vmx->rmode.segs[seg];
4192 if (seg == VCPU_SREG_TR
4193 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4194 return;
4195 var->base = vmx_read_guest_seg_base(vmx, seg);
4196 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4197 return;
4198 }
4199 var->base = vmx_read_guest_seg_base(vmx, seg);
4200 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4201 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4202 ar = vmx_read_guest_seg_ar(vmx, seg);
4203 var->unusable = (ar >> 16) & 1;
4204 var->type = ar & 15;
4205 var->s = (ar >> 4) & 1;
4206 var->dpl = (ar >> 5) & 3;
4207 /*
4208 * Some userspaces do not preserve unusable property. Since usable
4209 * segment has to be present according to VMX spec we can use present
4210 * property to amend userspace bug by making unusable segment always
4211 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4212 * segment as unusable.
4213 */
4214 var->present = !var->unusable;
4215 var->avl = (ar >> 12) & 1;
4216 var->l = (ar >> 13) & 1;
4217 var->db = (ar >> 14) & 1;
4218 var->g = (ar >> 15) & 1;
4219 }
4220
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)4221 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4222 {
4223 struct kvm_segment s;
4224
4225 if (to_vmx(vcpu)->rmode.vm86_active) {
4226 vmx_get_segment(vcpu, &s, seg);
4227 return s.base;
4228 }
4229 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4230 }
4231
vmx_get_cpl(struct kvm_vcpu * vcpu)4232 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4233 {
4234 struct vcpu_vmx *vmx = to_vmx(vcpu);
4235
4236 if (unlikely(vmx->rmode.vm86_active))
4237 return 0;
4238 else {
4239 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4240 return VMX_AR_DPL(ar);
4241 }
4242 }
4243
vmx_segment_access_rights(struct kvm_segment * var)4244 static u32 vmx_segment_access_rights(struct kvm_segment *var)
4245 {
4246 u32 ar;
4247
4248 if (var->unusable || !var->present)
4249 ar = 1 << 16;
4250 else {
4251 ar = var->type & 15;
4252 ar |= (var->s & 1) << 4;
4253 ar |= (var->dpl & 3) << 5;
4254 ar |= (var->present & 1) << 7;
4255 ar |= (var->avl & 1) << 12;
4256 ar |= (var->l & 1) << 13;
4257 ar |= (var->db & 1) << 14;
4258 ar |= (var->g & 1) << 15;
4259 }
4260
4261 return ar;
4262 }
4263
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)4264 static void vmx_set_segment(struct kvm_vcpu *vcpu,
4265 struct kvm_segment *var, int seg)
4266 {
4267 struct vcpu_vmx *vmx = to_vmx(vcpu);
4268 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4269
4270 vmx_segment_cache_clear(vmx);
4271
4272 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4273 vmx->rmode.segs[seg] = *var;
4274 if (seg == VCPU_SREG_TR)
4275 vmcs_write16(sf->selector, var->selector);
4276 else if (var->s)
4277 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4278 goto out;
4279 }
4280
4281 vmcs_writel(sf->base, var->base);
4282 vmcs_write32(sf->limit, var->limit);
4283 vmcs_write16(sf->selector, var->selector);
4284
4285 /*
4286 * Fix the "Accessed" bit in AR field of segment registers for older
4287 * qemu binaries.
4288 * IA32 arch specifies that at the time of processor reset the
4289 * "Accessed" bit in the AR field of segment registers is 1. And qemu
4290 * is setting it to 0 in the userland code. This causes invalid guest
4291 * state vmexit when "unrestricted guest" mode is turned on.
4292 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4293 * tree. Newer qemu binaries with that qemu fix would not need this
4294 * kvm hack.
4295 */
4296 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4297 var->type |= 0x1; /* Accessed */
4298
4299 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4300
4301 out:
4302 vmx->emulation_required = emulation_required(vcpu);
4303 }
4304
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)4305 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4306 {
4307 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4308
4309 *db = (ar >> 14) & 1;
4310 *l = (ar >> 13) & 1;
4311 }
4312
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)4313 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4314 {
4315 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4316 dt->address = vmcs_readl(GUEST_IDTR_BASE);
4317 }
4318
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)4319 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4320 {
4321 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4322 vmcs_writel(GUEST_IDTR_BASE, dt->address);
4323 }
4324
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)4325 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4326 {
4327 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4328 dt->address = vmcs_readl(GUEST_GDTR_BASE);
4329 }
4330
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)4331 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4332 {
4333 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4334 vmcs_writel(GUEST_GDTR_BASE, dt->address);
4335 }
4336
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)4337 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4338 {
4339 struct kvm_segment var;
4340 u32 ar;
4341
4342 vmx_get_segment(vcpu, &var, seg);
4343 var.dpl = 0x3;
4344 if (seg == VCPU_SREG_CS)
4345 var.type = 0x3;
4346 ar = vmx_segment_access_rights(&var);
4347
4348 if (var.base != (var.selector << 4))
4349 return false;
4350 if (var.limit != 0xffff)
4351 return false;
4352 if (ar != 0xf3)
4353 return false;
4354
4355 return true;
4356 }
4357
code_segment_valid(struct kvm_vcpu * vcpu)4358 static bool code_segment_valid(struct kvm_vcpu *vcpu)
4359 {
4360 struct kvm_segment cs;
4361 unsigned int cs_rpl;
4362
4363 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4364 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4365
4366 if (cs.unusable)
4367 return false;
4368 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4369 return false;
4370 if (!cs.s)
4371 return false;
4372 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4373 if (cs.dpl > cs_rpl)
4374 return false;
4375 } else {
4376 if (cs.dpl != cs_rpl)
4377 return false;
4378 }
4379 if (!cs.present)
4380 return false;
4381
4382 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4383 return true;
4384 }
4385
stack_segment_valid(struct kvm_vcpu * vcpu)4386 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4387 {
4388 struct kvm_segment ss;
4389 unsigned int ss_rpl;
4390
4391 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4392 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4393
4394 if (ss.unusable)
4395 return true;
4396 if (ss.type != 3 && ss.type != 7)
4397 return false;
4398 if (!ss.s)
4399 return false;
4400 if (ss.dpl != ss_rpl) /* DPL != RPL */
4401 return false;
4402 if (!ss.present)
4403 return false;
4404
4405 return true;
4406 }
4407
data_segment_valid(struct kvm_vcpu * vcpu,int seg)4408 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4409 {
4410 struct kvm_segment var;
4411 unsigned int rpl;
4412
4413 vmx_get_segment(vcpu, &var, seg);
4414 rpl = var.selector & SEGMENT_RPL_MASK;
4415
4416 if (var.unusable)
4417 return true;
4418 if (!var.s)
4419 return false;
4420 if (!var.present)
4421 return false;
4422 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4423 if (var.dpl < rpl) /* DPL < RPL */
4424 return false;
4425 }
4426
4427 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4428 * rights flags
4429 */
4430 return true;
4431 }
4432
tr_valid(struct kvm_vcpu * vcpu)4433 static bool tr_valid(struct kvm_vcpu *vcpu)
4434 {
4435 struct kvm_segment tr;
4436
4437 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4438
4439 if (tr.unusable)
4440 return false;
4441 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4442 return false;
4443 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4444 return false;
4445 if (!tr.present)
4446 return false;
4447
4448 return true;
4449 }
4450
ldtr_valid(struct kvm_vcpu * vcpu)4451 static bool ldtr_valid(struct kvm_vcpu *vcpu)
4452 {
4453 struct kvm_segment ldtr;
4454
4455 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4456
4457 if (ldtr.unusable)
4458 return true;
4459 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
4460 return false;
4461 if (ldtr.type != 2)
4462 return false;
4463 if (!ldtr.present)
4464 return false;
4465
4466 return true;
4467 }
4468
cs_ss_rpl_check(struct kvm_vcpu * vcpu)4469 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4470 {
4471 struct kvm_segment cs, ss;
4472
4473 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4474 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4475
4476 return ((cs.selector & SEGMENT_RPL_MASK) ==
4477 (ss.selector & SEGMENT_RPL_MASK));
4478 }
4479
4480 /*
4481 * Check if guest state is valid. Returns true if valid, false if
4482 * not.
4483 * We assume that registers are always usable
4484 */
guest_state_valid(struct kvm_vcpu * vcpu)4485 static bool guest_state_valid(struct kvm_vcpu *vcpu)
4486 {
4487 if (enable_unrestricted_guest)
4488 return true;
4489
4490 /* real mode guest state checks */
4491 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4492 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4493 return false;
4494 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4495 return false;
4496 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4497 return false;
4498 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4499 return false;
4500 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4501 return false;
4502 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4503 return false;
4504 } else {
4505 /* protected mode guest state checks */
4506 if (!cs_ss_rpl_check(vcpu))
4507 return false;
4508 if (!code_segment_valid(vcpu))
4509 return false;
4510 if (!stack_segment_valid(vcpu))
4511 return false;
4512 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4513 return false;
4514 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4515 return false;
4516 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4517 return false;
4518 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4519 return false;
4520 if (!tr_valid(vcpu))
4521 return false;
4522 if (!ldtr_valid(vcpu))
4523 return false;
4524 }
4525 /* TODO:
4526 * - Add checks on RIP
4527 * - Add checks on RFLAGS
4528 */
4529
4530 return true;
4531 }
4532
init_rmode_tss(struct kvm * kvm)4533 static int init_rmode_tss(struct kvm *kvm)
4534 {
4535 gfn_t fn;
4536 u16 data = 0;
4537 int idx, r;
4538
4539 idx = srcu_read_lock(&kvm->srcu);
4540 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4541 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4542 if (r < 0)
4543 goto out;
4544 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4545 r = kvm_write_guest_page(kvm, fn++, &data,
4546 TSS_IOPB_BASE_OFFSET, sizeof(u16));
4547 if (r < 0)
4548 goto out;
4549 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4550 if (r < 0)
4551 goto out;
4552 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4553 if (r < 0)
4554 goto out;
4555 data = ~0;
4556 r = kvm_write_guest_page(kvm, fn, &data,
4557 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4558 sizeof(u8));
4559 out:
4560 srcu_read_unlock(&kvm->srcu, idx);
4561 return r;
4562 }
4563
init_rmode_identity_map(struct kvm * kvm)4564 static int init_rmode_identity_map(struct kvm *kvm)
4565 {
4566 int i, idx, r = 0;
4567 kvm_pfn_t identity_map_pfn;
4568 u32 tmp;
4569
4570 if (!enable_ept)
4571 return 0;
4572
4573 /* Protect kvm->arch.ept_identity_pagetable_done. */
4574 mutex_lock(&kvm->slots_lock);
4575
4576 if (likely(kvm->arch.ept_identity_pagetable_done))
4577 goto out2;
4578
4579 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4580
4581 r = alloc_identity_pagetable(kvm);
4582 if (r < 0)
4583 goto out2;
4584
4585 idx = srcu_read_lock(&kvm->srcu);
4586 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4587 if (r < 0)
4588 goto out;
4589 /* Set up identity-mapping pagetable for EPT in real mode */
4590 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4591 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4592 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4593 r = kvm_write_guest_page(kvm, identity_map_pfn,
4594 &tmp, i * sizeof(tmp), sizeof(tmp));
4595 if (r < 0)
4596 goto out;
4597 }
4598 kvm->arch.ept_identity_pagetable_done = true;
4599
4600 out:
4601 srcu_read_unlock(&kvm->srcu, idx);
4602
4603 out2:
4604 mutex_unlock(&kvm->slots_lock);
4605 return r;
4606 }
4607
seg_setup(int seg)4608 static void seg_setup(int seg)
4609 {
4610 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4611 unsigned int ar;
4612
4613 vmcs_write16(sf->selector, 0);
4614 vmcs_writel(sf->base, 0);
4615 vmcs_write32(sf->limit, 0xffff);
4616 ar = 0x93;
4617 if (seg == VCPU_SREG_CS)
4618 ar |= 0x08; /* code segment */
4619
4620 vmcs_write32(sf->ar_bytes, ar);
4621 }
4622
alloc_apic_access_page(struct kvm * kvm)4623 static int alloc_apic_access_page(struct kvm *kvm)
4624 {
4625 struct page *page;
4626 int r = 0;
4627
4628 mutex_lock(&kvm->slots_lock);
4629 if (kvm->arch.apic_access_page_done)
4630 goto out;
4631 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4632 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4633 if (r)
4634 goto out;
4635
4636 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4637 if (is_error_page(page)) {
4638 r = -EFAULT;
4639 goto out;
4640 }
4641
4642 /*
4643 * Do not pin the page in memory, so that memory hot-unplug
4644 * is able to migrate it.
4645 */
4646 put_page(page);
4647 kvm->arch.apic_access_page_done = true;
4648 out:
4649 mutex_unlock(&kvm->slots_lock);
4650 return r;
4651 }
4652
alloc_identity_pagetable(struct kvm * kvm)4653 static int alloc_identity_pagetable(struct kvm *kvm)
4654 {
4655 /* Called with kvm->slots_lock held. */
4656
4657 int r = 0;
4658
4659 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4660
4661 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4662 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4663
4664 return r;
4665 }
4666
allocate_vpid(void)4667 static int allocate_vpid(void)
4668 {
4669 int vpid;
4670
4671 if (!enable_vpid)
4672 return 0;
4673 spin_lock(&vmx_vpid_lock);
4674 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4675 if (vpid < VMX_NR_VPIDS)
4676 __set_bit(vpid, vmx_vpid_bitmap);
4677 else
4678 vpid = 0;
4679 spin_unlock(&vmx_vpid_lock);
4680 return vpid;
4681 }
4682
free_vpid(int vpid)4683 static void free_vpid(int vpid)
4684 {
4685 if (!enable_vpid || vpid == 0)
4686 return;
4687 spin_lock(&vmx_vpid_lock);
4688 __clear_bit(vpid, vmx_vpid_bitmap);
4689 spin_unlock(&vmx_vpid_lock);
4690 }
4691
vmx_disable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)4692 static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4693 u32 msr, int type)
4694 {
4695 int f = sizeof(unsigned long);
4696
4697 if (!cpu_has_vmx_msr_bitmap())
4698 return;
4699
4700 /*
4701 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4702 * have the write-low and read-high bitmap offsets the wrong way round.
4703 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4704 */
4705 if (msr <= 0x1fff) {
4706 if (type & MSR_TYPE_R)
4707 /* read-low */
4708 __clear_bit(msr, msr_bitmap + 0x000 / f);
4709
4710 if (type & MSR_TYPE_W)
4711 /* write-low */
4712 __clear_bit(msr, msr_bitmap + 0x800 / f);
4713
4714 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4715 msr &= 0x1fff;
4716 if (type & MSR_TYPE_R)
4717 /* read-high */
4718 __clear_bit(msr, msr_bitmap + 0x400 / f);
4719
4720 if (type & MSR_TYPE_W)
4721 /* write-high */
4722 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4723
4724 }
4725 }
4726
vmx_enable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)4727 static void __always_inline vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4728 u32 msr, int type)
4729 {
4730 int f = sizeof(unsigned long);
4731
4732 if (!cpu_has_vmx_msr_bitmap())
4733 return;
4734
4735 /*
4736 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4737 * have the write-low and read-high bitmap offsets the wrong way round.
4738 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4739 */
4740 if (msr <= 0x1fff) {
4741 if (type & MSR_TYPE_R)
4742 /* read-low */
4743 __set_bit(msr, msr_bitmap + 0x000 / f);
4744
4745 if (type & MSR_TYPE_W)
4746 /* write-low */
4747 __set_bit(msr, msr_bitmap + 0x800 / f);
4748
4749 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4750 msr &= 0x1fff;
4751 if (type & MSR_TYPE_R)
4752 /* read-high */
4753 __set_bit(msr, msr_bitmap + 0x400 / f);
4754
4755 if (type & MSR_TYPE_W)
4756 /* write-high */
4757 __set_bit(msr, msr_bitmap + 0xc00 / f);
4758
4759 }
4760 }
4761
vmx_set_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type,bool value)4762 static void __always_inline vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
4763 u32 msr, int type, bool value)
4764 {
4765 if (value)
4766 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
4767 else
4768 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
4769 }
4770
4771 /*
4772 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4773 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4774 */
nested_vmx_disable_intercept_for_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_nested,u32 msr,int type)4775 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4776 unsigned long *msr_bitmap_nested,
4777 u32 msr, int type)
4778 {
4779 int f = sizeof(unsigned long);
4780
4781 if (!cpu_has_vmx_msr_bitmap()) {
4782 WARN_ON(1);
4783 return;
4784 }
4785
4786 /*
4787 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4788 * have the write-low and read-high bitmap offsets the wrong way round.
4789 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4790 */
4791 if (msr <= 0x1fff) {
4792 if (type & MSR_TYPE_R &&
4793 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4794 /* read-low */
4795 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4796
4797 if (type & MSR_TYPE_W &&
4798 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4799 /* write-low */
4800 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4801
4802 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4803 msr &= 0x1fff;
4804 if (type & MSR_TYPE_R &&
4805 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4806 /* read-high */
4807 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4808
4809 if (type & MSR_TYPE_W &&
4810 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4811 /* write-high */
4812 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4813
4814 }
4815 }
4816
vmx_msr_bitmap_mode(struct kvm_vcpu * vcpu)4817 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
4818 {
4819 u8 mode = 0;
4820
4821 if (cpu_has_secondary_exec_ctrls() &&
4822 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
4823 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4824 mode |= MSR_BITMAP_MODE_X2APIC;
4825 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4826 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4827 }
4828
4829 if (is_long_mode(vcpu))
4830 mode |= MSR_BITMAP_MODE_LM;
4831
4832 return mode;
4833 }
4834
4835 #define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
4836
vmx_update_msr_bitmap_x2apic(unsigned long * msr_bitmap,u8 mode)4837 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
4838 u8 mode)
4839 {
4840 int msr;
4841
4842 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
4843 unsigned word = msr / BITS_PER_LONG;
4844 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
4845 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
4846 }
4847
4848 if (mode & MSR_BITMAP_MODE_X2APIC) {
4849 /*
4850 * TPR reads and writes can be virtualized even if virtual interrupt
4851 * delivery is not in use.
4852 */
4853 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
4854 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4855 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
4856 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4857 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4858 }
4859 }
4860 }
4861
vmx_update_msr_bitmap(struct kvm_vcpu * vcpu)4862 static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
4863 {
4864 struct vcpu_vmx *vmx = to_vmx(vcpu);
4865 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4866 u8 mode = vmx_msr_bitmap_mode(vcpu);
4867 u8 changed = mode ^ vmx->msr_bitmap_mode;
4868
4869 if (!changed)
4870 return;
4871
4872 vmx_set_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW,
4873 !(mode & MSR_BITMAP_MODE_LM));
4874
4875 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
4876 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
4877
4878 vmx->msr_bitmap_mode = mode;
4879 }
4880
vmx_get_enable_apicv(void)4881 static bool vmx_get_enable_apicv(void)
4882 {
4883 return enable_apicv;
4884 }
4885
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)4886 static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
4887 {
4888 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4889 gfn_t gfn;
4890
4891 /*
4892 * Don't need to mark the APIC access page dirty; it is never
4893 * written to by the CPU during APIC virtualization.
4894 */
4895
4896 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
4897 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
4898 kvm_vcpu_mark_page_dirty(vcpu, gfn);
4899 }
4900
4901 if (nested_cpu_has_posted_intr(vmcs12)) {
4902 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
4903 kvm_vcpu_mark_page_dirty(vcpu, gfn);
4904 }
4905 }
4906
4907
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)4908 static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4909 {
4910 struct vcpu_vmx *vmx = to_vmx(vcpu);
4911 int max_irr;
4912 void *vapic_page;
4913 u16 status;
4914
4915 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
4916 return;
4917
4918 vmx->nested.pi_pending = false;
4919 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4920 return;
4921
4922 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
4923 if (max_irr != 256) {
4924 vapic_page = kmap(vmx->nested.virtual_apic_page);
4925 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4926 kunmap(vmx->nested.virtual_apic_page);
4927
4928 status = vmcs_read16(GUEST_INTR_STATUS);
4929 if ((u8)max_irr > ((u8)status & 0xff)) {
4930 status &= ~0xff;
4931 status |= (u8)max_irr;
4932 vmcs_write16(GUEST_INTR_STATUS, status);
4933 }
4934 }
4935
4936 nested_mark_vmcs12_pages_dirty(vcpu);
4937 }
4938
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu)4939 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4940 {
4941 #ifdef CONFIG_SMP
4942 if (vcpu->mode == IN_GUEST_MODE) {
4943 /*
4944 * The vector of interrupt to be delivered to vcpu had
4945 * been set in PIR before this function.
4946 *
4947 * Following cases will be reached in this block, and
4948 * we always send a notification event in all cases as
4949 * explained below.
4950 *
4951 * Case 1: vcpu keeps in non-root mode. Sending a
4952 * notification event posts the interrupt to vcpu.
4953 *
4954 * Case 2: vcpu exits to root mode and is still
4955 * runnable. PIR will be synced to vIRR before the
4956 * next vcpu entry. Sending a notification event in
4957 * this case has no effect, as vcpu is not in root
4958 * mode.
4959 *
4960 * Case 3: vcpu exits to root mode and is blocked.
4961 * vcpu_block() has already synced PIR to vIRR and
4962 * never blocks vcpu if vIRR is not cleared. Therefore,
4963 * a blocked vcpu here does not wait for any requested
4964 * interrupts in PIR, and sending a notification event
4965 * which has no effect is safe here.
4966 */
4967
4968 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4969 POSTED_INTR_VECTOR);
4970 return true;
4971 }
4972 #endif
4973 return false;
4974 }
4975
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4976 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4977 int vector)
4978 {
4979 struct vcpu_vmx *vmx = to_vmx(vcpu);
4980
4981 if (is_guest_mode(vcpu) &&
4982 vector == vmx->nested.posted_intr_nv) {
4983 /*
4984 * If a posted intr is not recognized by hardware,
4985 * we will accomplish it in the next vmentry.
4986 */
4987 vmx->nested.pi_pending = true;
4988 kvm_make_request(KVM_REQ_EVENT, vcpu);
4989 /* the PIR and ON have been set by L1. */
4990 if (!kvm_vcpu_trigger_posted_interrupt(vcpu))
4991 kvm_vcpu_kick(vcpu);
4992 return 0;
4993 }
4994 return -1;
4995 }
4996 /*
4997 * Send interrupt to vcpu via posted interrupt way.
4998 * 1. If target vcpu is running(non-root mode), send posted interrupt
4999 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5000 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5001 * interrupt from PIR in next vmentry.
5002 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)5003 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5004 {
5005 struct vcpu_vmx *vmx = to_vmx(vcpu);
5006 int r;
5007
5008 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5009 if (!r)
5010 return;
5011
5012 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5013 return;
5014
5015 r = pi_test_and_set_on(&vmx->pi_desc);
5016 kvm_make_request(KVM_REQ_EVENT, vcpu);
5017 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
5018 kvm_vcpu_kick(vcpu);
5019 }
5020
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)5021 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
5022 {
5023 struct vcpu_vmx *vmx = to_vmx(vcpu);
5024
5025 if (!pi_test_and_clear_on(&vmx->pi_desc))
5026 return;
5027
5028 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
5029 }
5030
5031 /*
5032 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5033 * will not change in the lifetime of the guest.
5034 * Note that host-state that does change is set elsewhere. E.g., host-state
5035 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5036 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)5037 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
5038 {
5039 u32 low32, high32;
5040 unsigned long tmpl;
5041 struct desc_ptr dt;
5042 unsigned long cr4;
5043
5044 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
5045 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
5046
5047 /* Save the most likely value for this task's CR4 in the VMCS. */
5048 cr4 = cr4_read_shadow();
5049 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
5050 vmx->host_state.vmcs_host_cr4 = cr4;
5051
5052 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
5053 #ifdef CONFIG_X86_64
5054 /*
5055 * Load null selectors, so we can avoid reloading them in
5056 * __vmx_load_host_state(), in case userspace uses the null selectors
5057 * too (the expected case).
5058 */
5059 vmcs_write16(HOST_DS_SELECTOR, 0);
5060 vmcs_write16(HOST_ES_SELECTOR, 0);
5061 #else
5062 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5063 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5064 #endif
5065 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5066 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5067
5068 native_store_idt(&dt);
5069 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
5070 vmx->host_idt_base = dt.address;
5071
5072 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
5073
5074 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5075 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5076 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5077 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5078
5079 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5080 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5081 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5082 }
5083 }
5084
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)5085 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5086 {
5087 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5088 if (enable_ept)
5089 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
5090 if (is_guest_mode(&vmx->vcpu))
5091 vmx->vcpu.arch.cr4_guest_owned_bits &=
5092 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
5093 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5094 }
5095
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)5096 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5097 {
5098 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5099
5100 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5101 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
5102 /* Enable the preemption timer dynamically */
5103 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
5104 return pin_based_exec_ctrl;
5105 }
5106
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)5107 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5108 {
5109 struct vcpu_vmx *vmx = to_vmx(vcpu);
5110
5111 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5112 if (cpu_has_secondary_exec_ctrls()) {
5113 if (kvm_vcpu_apicv_active(vcpu))
5114 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5115 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5116 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5117 else
5118 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5119 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5120 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5121 }
5122
5123 if (cpu_has_vmx_msr_bitmap())
5124 vmx_update_msr_bitmap(vcpu);
5125 }
5126
vmx_exec_control(struct vcpu_vmx * vmx)5127 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5128 {
5129 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
5130
5131 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5132 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5133
5134 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
5135 exec_control &= ~CPU_BASED_TPR_SHADOW;
5136 #ifdef CONFIG_X86_64
5137 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5138 CPU_BASED_CR8_LOAD_EXITING;
5139 #endif
5140 }
5141 if (!enable_ept)
5142 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5143 CPU_BASED_CR3_LOAD_EXITING |
5144 CPU_BASED_INVLPG_EXITING;
5145 return exec_control;
5146 }
5147
vmx_secondary_exec_control(struct vcpu_vmx * vmx)5148 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
5149 {
5150 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
5151 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
5152 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5153 if (vmx->vpid == 0)
5154 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5155 if (!enable_ept) {
5156 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5157 enable_unrestricted_guest = 0;
5158 /* Enable INVPCID for non-ept guests may cause performance regression. */
5159 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5160 }
5161 if (!enable_unrestricted_guest)
5162 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
5163 if (!ple_gap)
5164 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
5165 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
5166 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5167 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5168 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5169 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5170 (handle_vmptrld).
5171 We can NOT enable shadow_vmcs here because we don't have yet
5172 a current VMCS12
5173 */
5174 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5175
5176 if (!enable_pml)
5177 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
5178
5179 return exec_control;
5180 }
5181
ept_set_mmio_spte_mask(void)5182 static void ept_set_mmio_spte_mask(void)
5183 {
5184 /*
5185 * EPT Misconfigurations can be generated if the value of bits 2:0
5186 * of an EPT paging-structure entry is 110b (write/execute).
5187 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
5188 * spte.
5189 */
5190 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
5191 }
5192
5193 #define VMX_XSS_EXIT_BITMAP 0
5194 /*
5195 * Sets up the vmcs for emulated real mode.
5196 */
vmx_vcpu_setup(struct vcpu_vmx * vmx)5197 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
5198 {
5199 #ifdef CONFIG_X86_64
5200 unsigned long a;
5201 #endif
5202 int i;
5203
5204 /* I/O */
5205 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5206 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5207
5208 if (enable_shadow_vmcs) {
5209 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5210 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5211 }
5212 if (cpu_has_vmx_msr_bitmap())
5213 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
5214
5215 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5216
5217 /* Control */
5218 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5219 vmx->hv_deadline_tsc = -1;
5220
5221 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5222
5223 if (cpu_has_secondary_exec_ctrls()) {
5224 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5225 vmx_secondary_exec_control(vmx));
5226 }
5227
5228 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5229 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5230 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5231 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5232 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5233
5234 vmcs_write16(GUEST_INTR_STATUS, 0);
5235
5236 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5237 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5238 }
5239
5240 if (ple_gap) {
5241 vmcs_write32(PLE_GAP, ple_gap);
5242 vmx->ple_window = ple_window;
5243 vmx->ple_window_dirty = true;
5244 }
5245
5246 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5247 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5248 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5249
5250 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5251 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
5252 vmx_set_constant_host_state(vmx);
5253 #ifdef CONFIG_X86_64
5254 rdmsrl(MSR_FS_BASE, a);
5255 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5256 rdmsrl(MSR_GS_BASE, a);
5257 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5258 #else
5259 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5260 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5261 #endif
5262
5263 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5264 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5265 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5266 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5267 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5268
5269 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5270 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5271
5272 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5273 u32 index = vmx_msr_index[i];
5274 u32 data_low, data_high;
5275 int j = vmx->nmsrs;
5276
5277 if (rdmsr_safe(index, &data_low, &data_high) < 0)
5278 continue;
5279 if (wrmsr_safe(index, data_low, data_high) < 0)
5280 continue;
5281 vmx->guest_msrs[j].index = i;
5282 vmx->guest_msrs[j].data = 0;
5283 vmx->guest_msrs[j].mask = -1ull;
5284 ++vmx->nmsrs;
5285 }
5286
5287 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
5288 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, vmx->arch_capabilities);
5289
5290 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5291
5292 /* 22.2.1, 20.8.1 */
5293 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5294
5295 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
5296 set_cr4_guest_host_mask(vmx);
5297
5298 if (vmx_xsaves_supported())
5299 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5300
5301 if (enable_pml) {
5302 ASSERT(vmx->pml_pg);
5303 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5304 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5305 }
5306
5307 return 0;
5308 }
5309
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)5310 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5311 {
5312 struct vcpu_vmx *vmx = to_vmx(vcpu);
5313 struct msr_data apic_base_msr;
5314 u64 cr0;
5315
5316 vmx->rmode.vm86_active = 0;
5317 vmx->spec_ctrl = 0;
5318
5319 vmx->soft_vnmi_blocked = 0;
5320
5321 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5322 kvm_set_cr8(vcpu, 0);
5323
5324 if (!init_event) {
5325 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5326 MSR_IA32_APICBASE_ENABLE;
5327 if (kvm_vcpu_is_reset_bsp(vcpu))
5328 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5329 apic_base_msr.host_initiated = true;
5330 kvm_set_apic_base(vcpu, &apic_base_msr);
5331 }
5332
5333 vmx_segment_cache_clear(vmx);
5334
5335 seg_setup(VCPU_SREG_CS);
5336 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5337 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5338
5339 seg_setup(VCPU_SREG_DS);
5340 seg_setup(VCPU_SREG_ES);
5341 seg_setup(VCPU_SREG_FS);
5342 seg_setup(VCPU_SREG_GS);
5343 seg_setup(VCPU_SREG_SS);
5344
5345 vmcs_write16(GUEST_TR_SELECTOR, 0);
5346 vmcs_writel(GUEST_TR_BASE, 0);
5347 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5348 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5349
5350 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5351 vmcs_writel(GUEST_LDTR_BASE, 0);
5352 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5353 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5354
5355 if (!init_event) {
5356 vmcs_write32(GUEST_SYSENTER_CS, 0);
5357 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5358 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5359 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5360 }
5361
5362 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
5363 kvm_rip_write(vcpu, 0xfff0);
5364
5365 vmcs_writel(GUEST_GDTR_BASE, 0);
5366 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5367
5368 vmcs_writel(GUEST_IDTR_BASE, 0);
5369 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5370
5371 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5372 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5373 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5374
5375 setup_msrs(vmx);
5376
5377 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5378
5379 if (cpu_has_vmx_tpr_shadow() && !init_event) {
5380 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5381 if (cpu_need_tpr_shadow(vcpu))
5382 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5383 __pa(vcpu->arch.apic->regs));
5384 vmcs_write32(TPR_THRESHOLD, 0);
5385 }
5386
5387 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5388
5389 if (kvm_vcpu_apicv_active(vcpu))
5390 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5391
5392 if (vmx->vpid != 0)
5393 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5394
5395 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5396 vmx->vcpu.arch.cr0 = cr0;
5397 vmx_set_cr0(vcpu, cr0); /* enter rmode */
5398 vmx_set_cr4(vcpu, 0);
5399 vmx_set_efer(vcpu, 0);
5400 vmx_fpu_activate(vcpu);
5401 update_exception_bitmap(vcpu);
5402
5403 vpid_sync_context(vmx->vpid);
5404 }
5405
5406 /*
5407 * In nested virtualization, check if L1 asked to exit on external interrupts.
5408 * For most existing hypervisors, this will always return true.
5409 */
nested_exit_on_intr(struct kvm_vcpu * vcpu)5410 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5411 {
5412 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5413 PIN_BASED_EXT_INTR_MASK;
5414 }
5415
5416 /*
5417 * In nested virtualization, check if L1 has set
5418 * VM_EXIT_ACK_INTR_ON_EXIT
5419 */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)5420 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5421 {
5422 return get_vmcs12(vcpu)->vm_exit_controls &
5423 VM_EXIT_ACK_INTR_ON_EXIT;
5424 }
5425
nested_exit_on_nmi(struct kvm_vcpu * vcpu)5426 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5427 {
5428 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5429 PIN_BASED_NMI_EXITING;
5430 }
5431
enable_irq_window(struct kvm_vcpu * vcpu)5432 static void enable_irq_window(struct kvm_vcpu *vcpu)
5433 {
5434 u32 cpu_based_vm_exec_control;
5435
5436 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5437 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
5438 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5439 }
5440
enable_nmi_window(struct kvm_vcpu * vcpu)5441 static void enable_nmi_window(struct kvm_vcpu *vcpu)
5442 {
5443 u32 cpu_based_vm_exec_control;
5444
5445 if (!cpu_has_virtual_nmis() ||
5446 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5447 enable_irq_window(vcpu);
5448 return;
5449 }
5450
5451 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5452 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5453 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5454 }
5455
vmx_inject_irq(struct kvm_vcpu * vcpu)5456 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5457 {
5458 struct vcpu_vmx *vmx = to_vmx(vcpu);
5459 uint32_t intr;
5460 int irq = vcpu->arch.interrupt.nr;
5461
5462 trace_kvm_inj_virq(irq);
5463
5464 ++vcpu->stat.irq_injections;
5465 if (vmx->rmode.vm86_active) {
5466 int inc_eip = 0;
5467 if (vcpu->arch.interrupt.soft)
5468 inc_eip = vcpu->arch.event_exit_inst_len;
5469 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5470 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5471 return;
5472 }
5473 intr = irq | INTR_INFO_VALID_MASK;
5474 if (vcpu->arch.interrupt.soft) {
5475 intr |= INTR_TYPE_SOFT_INTR;
5476 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5477 vmx->vcpu.arch.event_exit_inst_len);
5478 } else
5479 intr |= INTR_TYPE_EXT_INTR;
5480 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5481 }
5482
vmx_inject_nmi(struct kvm_vcpu * vcpu)5483 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5484 {
5485 struct vcpu_vmx *vmx = to_vmx(vcpu);
5486
5487 if (!is_guest_mode(vcpu)) {
5488 if (!cpu_has_virtual_nmis()) {
5489 /*
5490 * Tracking the NMI-blocked state in software is built upon
5491 * finding the next open IRQ window. This, in turn, depends on
5492 * well-behaving guests: They have to keep IRQs disabled at
5493 * least as long as the NMI handler runs. Otherwise we may
5494 * cause NMI nesting, maybe breaking the guest. But as this is
5495 * highly unlikely, we can live with the residual risk.
5496 */
5497 vmx->soft_vnmi_blocked = 1;
5498 vmx->vnmi_blocked_time = 0;
5499 }
5500
5501 ++vcpu->stat.nmi_injections;
5502 vmx->nmi_known_unmasked = false;
5503 }
5504
5505 if (vmx->rmode.vm86_active) {
5506 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5507 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5508 return;
5509 }
5510
5511 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5512 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5513 }
5514
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)5515 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5516 {
5517 if (!cpu_has_virtual_nmis())
5518 return to_vmx(vcpu)->soft_vnmi_blocked;
5519 if (to_vmx(vcpu)->nmi_known_unmasked)
5520 return false;
5521 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5522 }
5523
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5524 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5525 {
5526 struct vcpu_vmx *vmx = to_vmx(vcpu);
5527
5528 if (!cpu_has_virtual_nmis()) {
5529 if (vmx->soft_vnmi_blocked != masked) {
5530 vmx->soft_vnmi_blocked = masked;
5531 vmx->vnmi_blocked_time = 0;
5532 }
5533 } else {
5534 vmx->nmi_known_unmasked = !masked;
5535 if (masked)
5536 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5537 GUEST_INTR_STATE_NMI);
5538 else
5539 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5540 GUEST_INTR_STATE_NMI);
5541 }
5542 }
5543
vmx_nmi_allowed(struct kvm_vcpu * vcpu)5544 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5545 {
5546 if (to_vmx(vcpu)->nested.nested_run_pending)
5547 return 0;
5548
5549 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5550 return 0;
5551
5552 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5553 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5554 | GUEST_INTR_STATE_NMI));
5555 }
5556
vmx_interrupt_allowed(struct kvm_vcpu * vcpu)5557 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5558 {
5559 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5560 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5561 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5562 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5563 }
5564
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)5565 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5566 {
5567 int ret;
5568
5569 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5570 PAGE_SIZE * 3);
5571 if (ret)
5572 return ret;
5573 kvm->arch.tss_addr = addr;
5574 return init_rmode_tss(kvm);
5575 }
5576
rmode_exception(struct kvm_vcpu * vcpu,int vec)5577 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5578 {
5579 switch (vec) {
5580 case BP_VECTOR:
5581 /*
5582 * Update instruction length as we may reinject the exception
5583 * from user space while in guest debugging mode.
5584 */
5585 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5586 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5587 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5588 return false;
5589 /* fall through */
5590 case DB_VECTOR:
5591 if (vcpu->guest_debug &
5592 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5593 return false;
5594 /* fall through */
5595 case DE_VECTOR:
5596 case OF_VECTOR:
5597 case BR_VECTOR:
5598 case UD_VECTOR:
5599 case DF_VECTOR:
5600 case SS_VECTOR:
5601 case GP_VECTOR:
5602 case MF_VECTOR:
5603 return true;
5604 break;
5605 }
5606 return false;
5607 }
5608
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5609 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5610 int vec, u32 err_code)
5611 {
5612 /*
5613 * Instruction with address size override prefix opcode 0x67
5614 * Cause the #SS fault with 0 error code in VM86 mode.
5615 */
5616 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5617 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5618 if (vcpu->arch.halt_request) {
5619 vcpu->arch.halt_request = 0;
5620 return kvm_vcpu_halt(vcpu);
5621 }
5622 return 1;
5623 }
5624 return 0;
5625 }
5626
5627 /*
5628 * Forward all other exceptions that are valid in real mode.
5629 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5630 * the required debugging infrastructure rework.
5631 */
5632 kvm_queue_exception(vcpu, vec);
5633 return 1;
5634 }
5635
5636 /*
5637 * Trigger machine check on the host. We assume all the MSRs are already set up
5638 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5639 * We pass a fake environment to the machine check handler because we want
5640 * the guest to be always treated like user space, no matter what context
5641 * it used internally.
5642 */
kvm_machine_check(void)5643 static void kvm_machine_check(void)
5644 {
5645 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5646 struct pt_regs regs = {
5647 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5648 .flags = X86_EFLAGS_IF,
5649 };
5650
5651 do_machine_check(®s, 0);
5652 #endif
5653 }
5654
handle_machine_check(struct kvm_vcpu * vcpu)5655 static int handle_machine_check(struct kvm_vcpu *vcpu)
5656 {
5657 /* already handled by vcpu_run */
5658 return 1;
5659 }
5660
handle_exception(struct kvm_vcpu * vcpu)5661 static int handle_exception(struct kvm_vcpu *vcpu)
5662 {
5663 struct vcpu_vmx *vmx = to_vmx(vcpu);
5664 struct kvm_run *kvm_run = vcpu->run;
5665 u32 intr_info, ex_no, error_code;
5666 unsigned long cr2, rip, dr6;
5667 u32 vect_info;
5668 enum emulation_result er;
5669
5670 vect_info = vmx->idt_vectoring_info;
5671 intr_info = vmx->exit_intr_info;
5672
5673 if (is_machine_check(intr_info))
5674 return handle_machine_check(vcpu);
5675
5676 if (is_nmi(intr_info))
5677 return 1; /* already handled by vmx_vcpu_run() */
5678
5679 if (is_no_device(intr_info)) {
5680 vmx_fpu_activate(vcpu);
5681 return 1;
5682 }
5683
5684 if (is_invalid_opcode(intr_info)) {
5685 if (is_guest_mode(vcpu)) {
5686 kvm_queue_exception(vcpu, UD_VECTOR);
5687 return 1;
5688 }
5689 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5690 if (er == EMULATE_USER_EXIT)
5691 return 0;
5692 if (er != EMULATE_DONE)
5693 kvm_queue_exception(vcpu, UD_VECTOR);
5694 return 1;
5695 }
5696
5697 error_code = 0;
5698 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5699 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5700
5701 /*
5702 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5703 * MMIO, it is better to report an internal error.
5704 * See the comments in vmx_handle_exit.
5705 */
5706 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5707 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5708 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5709 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5710 vcpu->run->internal.ndata = 3;
5711 vcpu->run->internal.data[0] = vect_info;
5712 vcpu->run->internal.data[1] = intr_info;
5713 vcpu->run->internal.data[2] = error_code;
5714 return 0;
5715 }
5716
5717 if (is_page_fault(intr_info)) {
5718 /* EPT won't cause page fault directly */
5719 BUG_ON(enable_ept);
5720 cr2 = vmcs_readl(EXIT_QUALIFICATION);
5721 trace_kvm_page_fault(cr2, error_code);
5722
5723 if (kvm_event_needs_reinjection(vcpu))
5724 kvm_mmu_unprotect_page_virt(vcpu, cr2);
5725 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5726 }
5727
5728 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5729
5730 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5731 return handle_rmode_exception(vcpu, ex_no, error_code);
5732
5733 switch (ex_no) {
5734 case AC_VECTOR:
5735 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5736 return 1;
5737 case DB_VECTOR:
5738 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5739 if (!(vcpu->guest_debug &
5740 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5741 vcpu->arch.dr6 &= ~15;
5742 vcpu->arch.dr6 |= dr6 | DR6_RTM;
5743 if (is_icebp(intr_info))
5744 skip_emulated_instruction(vcpu);
5745
5746 kvm_queue_exception(vcpu, DB_VECTOR);
5747 return 1;
5748 }
5749 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5750 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5751 /* fall through */
5752 case BP_VECTOR:
5753 /*
5754 * Update instruction length as we may reinject #BP from
5755 * user space while in guest debugging mode. Reading it for
5756 * #DB as well causes no harm, it is not used in that case.
5757 */
5758 vmx->vcpu.arch.event_exit_inst_len =
5759 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5760 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5761 rip = kvm_rip_read(vcpu);
5762 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5763 kvm_run->debug.arch.exception = ex_no;
5764 break;
5765 default:
5766 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5767 kvm_run->ex.exception = ex_no;
5768 kvm_run->ex.error_code = error_code;
5769 break;
5770 }
5771 return 0;
5772 }
5773
handle_external_interrupt(struct kvm_vcpu * vcpu)5774 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5775 {
5776 ++vcpu->stat.irq_exits;
5777 return 1;
5778 }
5779
handle_triple_fault(struct kvm_vcpu * vcpu)5780 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5781 {
5782 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5783 return 0;
5784 }
5785
handle_io(struct kvm_vcpu * vcpu)5786 static int handle_io(struct kvm_vcpu *vcpu)
5787 {
5788 unsigned long exit_qualification;
5789 int size, in, string;
5790 unsigned port;
5791
5792 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5793 string = (exit_qualification & 16) != 0;
5794 in = (exit_qualification & 8) != 0;
5795
5796 ++vcpu->stat.io_exits;
5797
5798 if (string || in)
5799 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5800
5801 port = exit_qualification >> 16;
5802 size = (exit_qualification & 7) + 1;
5803 skip_emulated_instruction(vcpu);
5804
5805 return kvm_fast_pio_out(vcpu, size, port);
5806 }
5807
5808 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5809 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5810 {
5811 /*
5812 * Patch in the VMCALL instruction:
5813 */
5814 hypercall[0] = 0x0f;
5815 hypercall[1] = 0x01;
5816 hypercall[2] = 0xc1;
5817 }
5818
nested_cr0_valid(struct kvm_vcpu * vcpu,unsigned long val)5819 static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5820 {
5821 unsigned long always_on = VMXON_CR0_ALWAYSON;
5822 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5823
5824 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5825 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5826 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5827 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5828 return (val & always_on) == always_on;
5829 }
5830
5831 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5832 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5833 {
5834 if (is_guest_mode(vcpu)) {
5835 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5836 unsigned long orig_val = val;
5837
5838 /*
5839 * We get here when L2 changed cr0 in a way that did not change
5840 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5841 * but did change L0 shadowed bits. So we first calculate the
5842 * effective cr0 value that L1 would like to write into the
5843 * hardware. It consists of the L2-owned bits from the new
5844 * value combined with the L1-owned bits from L1's guest_cr0.
5845 */
5846 val = (val & ~vmcs12->cr0_guest_host_mask) |
5847 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5848
5849 if (!nested_cr0_valid(vcpu, val))
5850 return 1;
5851
5852 if (kvm_set_cr0(vcpu, val))
5853 return 1;
5854 vmcs_writel(CR0_READ_SHADOW, orig_val);
5855 return 0;
5856 } else {
5857 if (to_vmx(vcpu)->nested.vmxon &&
5858 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5859 return 1;
5860 return kvm_set_cr0(vcpu, val);
5861 }
5862 }
5863
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5864 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5865 {
5866 if (is_guest_mode(vcpu)) {
5867 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5868 unsigned long orig_val = val;
5869
5870 /* analogously to handle_set_cr0 */
5871 val = (val & ~vmcs12->cr4_guest_host_mask) |
5872 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5873 if (kvm_set_cr4(vcpu, val))
5874 return 1;
5875 vmcs_writel(CR4_READ_SHADOW, orig_val);
5876 return 0;
5877 } else
5878 return kvm_set_cr4(vcpu, val);
5879 }
5880
5881 /* called to set cr0 as appropriate for clts instruction exit. */
handle_clts(struct kvm_vcpu * vcpu)5882 static void handle_clts(struct kvm_vcpu *vcpu)
5883 {
5884 if (is_guest_mode(vcpu)) {
5885 /*
5886 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5887 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5888 * just pretend it's off (also in arch.cr0 for fpu_activate).
5889 */
5890 vmcs_writel(CR0_READ_SHADOW,
5891 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5892 vcpu->arch.cr0 &= ~X86_CR0_TS;
5893 } else
5894 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5895 }
5896
handle_cr(struct kvm_vcpu * vcpu)5897 static int handle_cr(struct kvm_vcpu *vcpu)
5898 {
5899 unsigned long exit_qualification, val;
5900 int cr;
5901 int reg;
5902 int err;
5903
5904 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5905 cr = exit_qualification & 15;
5906 reg = (exit_qualification >> 8) & 15;
5907 switch ((exit_qualification >> 4) & 3) {
5908 case 0: /* mov to cr */
5909 val = kvm_register_readl(vcpu, reg);
5910 trace_kvm_cr_write(cr, val);
5911 switch (cr) {
5912 case 0:
5913 err = handle_set_cr0(vcpu, val);
5914 kvm_complete_insn_gp(vcpu, err);
5915 return 1;
5916 case 3:
5917 err = kvm_set_cr3(vcpu, val);
5918 kvm_complete_insn_gp(vcpu, err);
5919 return 1;
5920 case 4:
5921 err = handle_set_cr4(vcpu, val);
5922 kvm_complete_insn_gp(vcpu, err);
5923 return 1;
5924 case 8: {
5925 u8 cr8_prev = kvm_get_cr8(vcpu);
5926 u8 cr8 = (u8)val;
5927 err = kvm_set_cr8(vcpu, cr8);
5928 kvm_complete_insn_gp(vcpu, err);
5929 if (lapic_in_kernel(vcpu))
5930 return 1;
5931 if (cr8_prev <= cr8)
5932 return 1;
5933 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5934 return 0;
5935 }
5936 }
5937 break;
5938 case 2: /* clts */
5939 handle_clts(vcpu);
5940 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5941 skip_emulated_instruction(vcpu);
5942 vmx_fpu_activate(vcpu);
5943 return 1;
5944 case 1: /*mov from cr*/
5945 switch (cr) {
5946 case 3:
5947 val = kvm_read_cr3(vcpu);
5948 kvm_register_write(vcpu, reg, val);
5949 trace_kvm_cr_read(cr, val);
5950 skip_emulated_instruction(vcpu);
5951 return 1;
5952 case 8:
5953 val = kvm_get_cr8(vcpu);
5954 kvm_register_write(vcpu, reg, val);
5955 trace_kvm_cr_read(cr, val);
5956 skip_emulated_instruction(vcpu);
5957 return 1;
5958 }
5959 break;
5960 case 3: /* lmsw */
5961 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5962 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5963 kvm_lmsw(vcpu, val);
5964
5965 skip_emulated_instruction(vcpu);
5966 return 1;
5967 default:
5968 break;
5969 }
5970 vcpu->run->exit_reason = 0;
5971 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5972 (int)(exit_qualification >> 4) & 3, cr);
5973 return 0;
5974 }
5975
handle_dr(struct kvm_vcpu * vcpu)5976 static int handle_dr(struct kvm_vcpu *vcpu)
5977 {
5978 unsigned long exit_qualification;
5979 int dr, dr7, reg;
5980
5981 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5982 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5983
5984 /* First, if DR does not exist, trigger UD */
5985 if (!kvm_require_dr(vcpu, dr))
5986 return 1;
5987
5988 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5989 if (!kvm_require_cpl(vcpu, 0))
5990 return 1;
5991 dr7 = vmcs_readl(GUEST_DR7);
5992 if (dr7 & DR7_GD) {
5993 /*
5994 * As the vm-exit takes precedence over the debug trap, we
5995 * need to emulate the latter, either for the host or the
5996 * guest debugging itself.
5997 */
5998 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5999 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
6000 vcpu->run->debug.arch.dr7 = dr7;
6001 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
6002 vcpu->run->debug.arch.exception = DB_VECTOR;
6003 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
6004 return 0;
6005 } else {
6006 vcpu->arch.dr6 &= ~15;
6007 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
6008 kvm_queue_exception(vcpu, DB_VECTOR);
6009 return 1;
6010 }
6011 }
6012
6013 if (vcpu->guest_debug == 0) {
6014 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6015 CPU_BASED_MOV_DR_EXITING);
6016
6017 /*
6018 * No more DR vmexits; force a reload of the debug registers
6019 * and reenter on this instruction. The next vmexit will
6020 * retrieve the full state of the debug registers.
6021 */
6022 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6023 return 1;
6024 }
6025
6026 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6027 if (exit_qualification & TYPE_MOV_FROM_DR) {
6028 unsigned long val;
6029
6030 if (kvm_get_dr(vcpu, dr, &val))
6031 return 1;
6032 kvm_register_write(vcpu, reg, val);
6033 } else
6034 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
6035 return 1;
6036
6037 skip_emulated_instruction(vcpu);
6038 return 1;
6039 }
6040
vmx_get_dr6(struct kvm_vcpu * vcpu)6041 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6042 {
6043 return vcpu->arch.dr6;
6044 }
6045
vmx_set_dr6(struct kvm_vcpu * vcpu,unsigned long val)6046 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6047 {
6048 }
6049
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)6050 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6051 {
6052 get_debugreg(vcpu->arch.db[0], 0);
6053 get_debugreg(vcpu->arch.db[1], 1);
6054 get_debugreg(vcpu->arch.db[2], 2);
6055 get_debugreg(vcpu->arch.db[3], 3);
6056 get_debugreg(vcpu->arch.dr6, 6);
6057 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6058
6059 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
6060 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
6061 }
6062
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)6063 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6064 {
6065 vmcs_writel(GUEST_DR7, val);
6066 }
6067
handle_cpuid(struct kvm_vcpu * vcpu)6068 static int handle_cpuid(struct kvm_vcpu *vcpu)
6069 {
6070 kvm_emulate_cpuid(vcpu);
6071 return 1;
6072 }
6073
handle_rdmsr(struct kvm_vcpu * vcpu)6074 static int handle_rdmsr(struct kvm_vcpu *vcpu)
6075 {
6076 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6077 struct msr_data msr_info;
6078
6079 msr_info.index = ecx;
6080 msr_info.host_initiated = false;
6081 if (vmx_get_msr(vcpu, &msr_info)) {
6082 trace_kvm_msr_read_ex(ecx);
6083 kvm_inject_gp(vcpu, 0);
6084 return 1;
6085 }
6086
6087 trace_kvm_msr_read(ecx, msr_info.data);
6088
6089 /* FIXME: handling of bits 32:63 of rax, rdx */
6090 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6091 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6092 skip_emulated_instruction(vcpu);
6093 return 1;
6094 }
6095
handle_wrmsr(struct kvm_vcpu * vcpu)6096 static int handle_wrmsr(struct kvm_vcpu *vcpu)
6097 {
6098 struct msr_data msr;
6099 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6100 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6101 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6102
6103 msr.data = data;
6104 msr.index = ecx;
6105 msr.host_initiated = false;
6106 if (kvm_set_msr(vcpu, &msr) != 0) {
6107 trace_kvm_msr_write_ex(ecx, data);
6108 kvm_inject_gp(vcpu, 0);
6109 return 1;
6110 }
6111
6112 trace_kvm_msr_write(ecx, data);
6113 skip_emulated_instruction(vcpu);
6114 return 1;
6115 }
6116
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)6117 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6118 {
6119 kvm_make_request(KVM_REQ_EVENT, vcpu);
6120 return 1;
6121 }
6122
handle_interrupt_window(struct kvm_vcpu * vcpu)6123 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6124 {
6125 u32 cpu_based_vm_exec_control;
6126
6127 /* clear pending irq */
6128 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6129 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6130 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
6131
6132 kvm_make_request(KVM_REQ_EVENT, vcpu);
6133
6134 ++vcpu->stat.irq_window_exits;
6135 return 1;
6136 }
6137
handle_halt(struct kvm_vcpu * vcpu)6138 static int handle_halt(struct kvm_vcpu *vcpu)
6139 {
6140 return kvm_emulate_halt(vcpu);
6141 }
6142
handle_vmcall(struct kvm_vcpu * vcpu)6143 static int handle_vmcall(struct kvm_vcpu *vcpu)
6144 {
6145 return kvm_emulate_hypercall(vcpu);
6146 }
6147
handle_invd(struct kvm_vcpu * vcpu)6148 static int handle_invd(struct kvm_vcpu *vcpu)
6149 {
6150 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6151 }
6152
handle_invlpg(struct kvm_vcpu * vcpu)6153 static int handle_invlpg(struct kvm_vcpu *vcpu)
6154 {
6155 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6156
6157 kvm_mmu_invlpg(vcpu, exit_qualification);
6158 skip_emulated_instruction(vcpu);
6159 return 1;
6160 }
6161
handle_rdpmc(struct kvm_vcpu * vcpu)6162 static int handle_rdpmc(struct kvm_vcpu *vcpu)
6163 {
6164 int err;
6165
6166 err = kvm_rdpmc(vcpu);
6167 kvm_complete_insn_gp(vcpu, err);
6168
6169 return 1;
6170 }
6171
handle_wbinvd(struct kvm_vcpu * vcpu)6172 static int handle_wbinvd(struct kvm_vcpu *vcpu)
6173 {
6174 kvm_emulate_wbinvd(vcpu);
6175 return 1;
6176 }
6177
handle_xsetbv(struct kvm_vcpu * vcpu)6178 static int handle_xsetbv(struct kvm_vcpu *vcpu)
6179 {
6180 u64 new_bv = kvm_read_edx_eax(vcpu);
6181 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6182
6183 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6184 skip_emulated_instruction(vcpu);
6185 return 1;
6186 }
6187
handle_xsaves(struct kvm_vcpu * vcpu)6188 static int handle_xsaves(struct kvm_vcpu *vcpu)
6189 {
6190 skip_emulated_instruction(vcpu);
6191 WARN(1, "this should never happen\n");
6192 return 1;
6193 }
6194
handle_xrstors(struct kvm_vcpu * vcpu)6195 static int handle_xrstors(struct kvm_vcpu *vcpu)
6196 {
6197 skip_emulated_instruction(vcpu);
6198 WARN(1, "this should never happen\n");
6199 return 1;
6200 }
6201
handle_apic_access(struct kvm_vcpu * vcpu)6202 static int handle_apic_access(struct kvm_vcpu *vcpu)
6203 {
6204 if (likely(fasteoi)) {
6205 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6206 int access_type, offset;
6207
6208 access_type = exit_qualification & APIC_ACCESS_TYPE;
6209 offset = exit_qualification & APIC_ACCESS_OFFSET;
6210 /*
6211 * Sane guest uses MOV to write EOI, with written value
6212 * not cared. So make a short-circuit here by avoiding
6213 * heavy instruction emulation.
6214 */
6215 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6216 (offset == APIC_EOI)) {
6217 kvm_lapic_set_eoi(vcpu);
6218 skip_emulated_instruction(vcpu);
6219 return 1;
6220 }
6221 }
6222 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6223 }
6224
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)6225 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6226 {
6227 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6228 int vector = exit_qualification & 0xff;
6229
6230 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6231 kvm_apic_set_eoi_accelerated(vcpu, vector);
6232 return 1;
6233 }
6234
handle_apic_write(struct kvm_vcpu * vcpu)6235 static int handle_apic_write(struct kvm_vcpu *vcpu)
6236 {
6237 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6238 u32 offset = exit_qualification & 0xfff;
6239
6240 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6241 kvm_apic_write_nodecode(vcpu, offset);
6242 return 1;
6243 }
6244
handle_task_switch(struct kvm_vcpu * vcpu)6245 static int handle_task_switch(struct kvm_vcpu *vcpu)
6246 {
6247 struct vcpu_vmx *vmx = to_vmx(vcpu);
6248 unsigned long exit_qualification;
6249 bool has_error_code = false;
6250 u32 error_code = 0;
6251 u16 tss_selector;
6252 int reason, type, idt_v, idt_index;
6253
6254 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6255 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6256 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6257
6258 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6259
6260 reason = (u32)exit_qualification >> 30;
6261 if (reason == TASK_SWITCH_GATE && idt_v) {
6262 switch (type) {
6263 case INTR_TYPE_NMI_INTR:
6264 vcpu->arch.nmi_injected = false;
6265 vmx_set_nmi_mask(vcpu, true);
6266 break;
6267 case INTR_TYPE_EXT_INTR:
6268 case INTR_TYPE_SOFT_INTR:
6269 kvm_clear_interrupt_queue(vcpu);
6270 break;
6271 case INTR_TYPE_HARD_EXCEPTION:
6272 if (vmx->idt_vectoring_info &
6273 VECTORING_INFO_DELIVER_CODE_MASK) {
6274 has_error_code = true;
6275 error_code =
6276 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6277 }
6278 /* fall through */
6279 case INTR_TYPE_SOFT_EXCEPTION:
6280 kvm_clear_exception_queue(vcpu);
6281 break;
6282 default:
6283 break;
6284 }
6285 }
6286 tss_selector = exit_qualification;
6287
6288 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6289 type != INTR_TYPE_EXT_INTR &&
6290 type != INTR_TYPE_NMI_INTR))
6291 skip_emulated_instruction(vcpu);
6292
6293 if (kvm_task_switch(vcpu, tss_selector,
6294 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6295 has_error_code, error_code) == EMULATE_FAIL) {
6296 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6297 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6298 vcpu->run->internal.ndata = 0;
6299 return 0;
6300 }
6301
6302 /*
6303 * TODO: What about debug traps on tss switch?
6304 * Are we supposed to inject them and update dr6?
6305 */
6306
6307 return 1;
6308 }
6309
handle_ept_violation(struct kvm_vcpu * vcpu)6310 static int handle_ept_violation(struct kvm_vcpu *vcpu)
6311 {
6312 unsigned long exit_qualification;
6313 gpa_t gpa;
6314 u32 error_code;
6315 int gla_validity;
6316
6317 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6318
6319 gla_validity = (exit_qualification >> 7) & 0x3;
6320 if (gla_validity == 0x2) {
6321 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
6322 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
6323 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
6324 vmcs_readl(GUEST_LINEAR_ADDRESS));
6325 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
6326 (long unsigned int)exit_qualification);
6327 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6328 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
6329 return 0;
6330 }
6331
6332 /*
6333 * EPT violation happened while executing iret from NMI,
6334 * "blocked by NMI" bit has to be set before next VM entry.
6335 * There are errata that may cause this bit to not be set:
6336 * AAK134, BY25.
6337 */
6338 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6339 cpu_has_virtual_nmis() &&
6340 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6341 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6342
6343 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6344 trace_kvm_page_fault(gpa, exit_qualification);
6345
6346 /* it is a read fault? */
6347 error_code = (exit_qualification << 2) & PFERR_USER_MASK;
6348 /* it is a write fault? */
6349 error_code |= exit_qualification & PFERR_WRITE_MASK;
6350 /* It is a fetch fault? */
6351 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
6352 /* ept page table is present? */
6353 error_code |= (exit_qualification & 0x38) != 0;
6354
6355 vcpu->arch.exit_qualification = exit_qualification;
6356
6357 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6358 }
6359
handle_ept_misconfig(struct kvm_vcpu * vcpu)6360 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6361 {
6362 int ret;
6363 gpa_t gpa;
6364
6365 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6366 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6367 skip_emulated_instruction(vcpu);
6368 trace_kvm_fast_mmio(gpa);
6369 return 1;
6370 }
6371
6372 ret = handle_mmio_page_fault(vcpu, gpa, true);
6373 if (likely(ret == RET_MMIO_PF_EMULATE))
6374 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6375 EMULATE_DONE;
6376
6377 if (unlikely(ret == RET_MMIO_PF_INVALID))
6378 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6379
6380 if (unlikely(ret == RET_MMIO_PF_RETRY))
6381 return 1;
6382
6383 /* It is the real ept misconfig */
6384 WARN_ON(1);
6385
6386 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6387 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6388
6389 return 0;
6390 }
6391
handle_nmi_window(struct kvm_vcpu * vcpu)6392 static int handle_nmi_window(struct kvm_vcpu *vcpu)
6393 {
6394 u32 cpu_based_vm_exec_control;
6395
6396 /* clear pending NMI */
6397 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6398 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6399 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
6400 ++vcpu->stat.nmi_window_exits;
6401 kvm_make_request(KVM_REQ_EVENT, vcpu);
6402
6403 return 1;
6404 }
6405
handle_invalid_guest_state(struct kvm_vcpu * vcpu)6406 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6407 {
6408 struct vcpu_vmx *vmx = to_vmx(vcpu);
6409 enum emulation_result err = EMULATE_DONE;
6410 int ret = 1;
6411 u32 cpu_exec_ctrl;
6412 bool intr_window_requested;
6413 unsigned count = 130;
6414
6415 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6416 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6417
6418 while (vmx->emulation_required && count-- != 0) {
6419 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6420 return handle_interrupt_window(&vmx->vcpu);
6421
6422 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6423 return 1;
6424
6425 err = emulate_instruction(vcpu, 0);
6426
6427 if (err == EMULATE_USER_EXIT) {
6428 ++vcpu->stat.mmio_exits;
6429 ret = 0;
6430 goto out;
6431 }
6432
6433 if (err != EMULATE_DONE) {
6434 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6435 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6436 vcpu->run->internal.ndata = 0;
6437 return 0;
6438 }
6439
6440 if (vcpu->arch.halt_request) {
6441 vcpu->arch.halt_request = 0;
6442 ret = kvm_vcpu_halt(vcpu);
6443 goto out;
6444 }
6445
6446 if (signal_pending(current))
6447 goto out;
6448 if (need_resched())
6449 schedule();
6450 }
6451
6452 out:
6453 return ret;
6454 }
6455
__grow_ple_window(int val)6456 static int __grow_ple_window(int val)
6457 {
6458 if (ple_window_grow < 1)
6459 return ple_window;
6460
6461 val = min(val, ple_window_actual_max);
6462
6463 if (ple_window_grow < ple_window)
6464 val *= ple_window_grow;
6465 else
6466 val += ple_window_grow;
6467
6468 return val;
6469 }
6470
__shrink_ple_window(int val,int modifier,int minimum)6471 static int __shrink_ple_window(int val, int modifier, int minimum)
6472 {
6473 if (modifier < 1)
6474 return ple_window;
6475
6476 if (modifier < ple_window)
6477 val /= modifier;
6478 else
6479 val -= modifier;
6480
6481 return max(val, minimum);
6482 }
6483
grow_ple_window(struct kvm_vcpu * vcpu)6484 static void grow_ple_window(struct kvm_vcpu *vcpu)
6485 {
6486 struct vcpu_vmx *vmx = to_vmx(vcpu);
6487 int old = vmx->ple_window;
6488
6489 vmx->ple_window = __grow_ple_window(old);
6490
6491 if (vmx->ple_window != old)
6492 vmx->ple_window_dirty = true;
6493
6494 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6495 }
6496
shrink_ple_window(struct kvm_vcpu * vcpu)6497 static void shrink_ple_window(struct kvm_vcpu *vcpu)
6498 {
6499 struct vcpu_vmx *vmx = to_vmx(vcpu);
6500 int old = vmx->ple_window;
6501
6502 vmx->ple_window = __shrink_ple_window(old,
6503 ple_window_shrink, ple_window);
6504
6505 if (vmx->ple_window != old)
6506 vmx->ple_window_dirty = true;
6507
6508 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6509 }
6510
6511 /*
6512 * ple_window_actual_max is computed to be one grow_ple_window() below
6513 * ple_window_max. (See __grow_ple_window for the reason.)
6514 * This prevents overflows, because ple_window_max is int.
6515 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6516 * this process.
6517 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6518 */
update_ple_window_actual_max(void)6519 static void update_ple_window_actual_max(void)
6520 {
6521 ple_window_actual_max =
6522 __shrink_ple_window(max(ple_window_max, ple_window),
6523 ple_window_grow, INT_MIN);
6524 }
6525
6526 /*
6527 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6528 */
wakeup_handler(void)6529 static void wakeup_handler(void)
6530 {
6531 struct kvm_vcpu *vcpu;
6532 int cpu = smp_processor_id();
6533
6534 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6535 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6536 blocked_vcpu_list) {
6537 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6538
6539 if (pi_test_on(pi_desc) == 1)
6540 kvm_vcpu_kick(vcpu);
6541 }
6542 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6543 }
6544
hardware_setup(void)6545 static __init int hardware_setup(void)
6546 {
6547 int r = -ENOMEM, i;
6548
6549 rdmsrl_safe(MSR_EFER, &host_efer);
6550
6551 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6552 kvm_define_shared_msr(i, vmx_msr_index[i]);
6553
6554 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6555 if (!vmx_io_bitmap_a)
6556 return r;
6557
6558 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6559 if (!vmx_io_bitmap_b)
6560 goto out;
6561
6562 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6563 if (!vmx_vmread_bitmap)
6564 goto out1;
6565
6566 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6567 if (!vmx_vmwrite_bitmap)
6568 goto out2;
6569
6570 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6571 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6572
6573 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6574
6575 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6576
6577 if (setup_vmcs_config(&vmcs_config) < 0) {
6578 r = -EIO;
6579 goto out3;
6580 }
6581
6582 if (boot_cpu_has(X86_FEATURE_NX))
6583 kvm_enable_efer_bits(EFER_NX);
6584
6585 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
6586 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
6587 enable_vpid = 0;
6588
6589 if (!cpu_has_vmx_shadow_vmcs())
6590 enable_shadow_vmcs = 0;
6591 if (enable_shadow_vmcs)
6592 init_vmcs_shadow_fields();
6593
6594 if (!cpu_has_vmx_ept() ||
6595 !cpu_has_vmx_ept_4levels()) {
6596 enable_ept = 0;
6597 enable_unrestricted_guest = 0;
6598 enable_ept_ad_bits = 0;
6599 }
6600
6601 if (!cpu_has_vmx_ept_ad_bits())
6602 enable_ept_ad_bits = 0;
6603
6604 if (!cpu_has_vmx_unrestricted_guest())
6605 enable_unrestricted_guest = 0;
6606
6607 if (!cpu_has_vmx_flexpriority())
6608 flexpriority_enabled = 0;
6609
6610 /*
6611 * set_apic_access_page_addr() is used to reload apic access
6612 * page upon invalidation. No need to do anything if not
6613 * using the APIC_ACCESS_ADDR VMCS field.
6614 */
6615 if (!flexpriority_enabled)
6616 kvm_x86_ops->set_apic_access_page_addr = NULL;
6617
6618 if (!cpu_has_vmx_tpr_shadow())
6619 kvm_x86_ops->update_cr8_intercept = NULL;
6620
6621 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6622 kvm_disable_largepages();
6623
6624 if (!cpu_has_vmx_ple())
6625 ple_gap = 0;
6626
6627 if (!cpu_has_vmx_apicv())
6628 enable_apicv = 0;
6629
6630 if (cpu_has_vmx_tsc_scaling()) {
6631 kvm_has_tsc_control = true;
6632 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6633 kvm_tsc_scaling_ratio_frac_bits = 48;
6634 }
6635
6636 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6637
6638 if (enable_ept) {
6639 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6640 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6641 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6642 0ull, VMX_EPT_EXECUTABLE_MASK,
6643 cpu_has_vmx_ept_execute_only() ?
6644 0ull : VMX_EPT_READABLE_MASK);
6645 ept_set_mmio_spte_mask();
6646 kvm_enable_tdp();
6647 } else
6648 kvm_disable_tdp();
6649
6650 update_ple_window_actual_max();
6651
6652 /*
6653 * Only enable PML when hardware supports PML feature, and both EPT
6654 * and EPT A/D bit features are enabled -- PML depends on them to work.
6655 */
6656 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6657 enable_pml = 0;
6658
6659 if (!enable_pml) {
6660 kvm_x86_ops->slot_enable_log_dirty = NULL;
6661 kvm_x86_ops->slot_disable_log_dirty = NULL;
6662 kvm_x86_ops->flush_log_dirty = NULL;
6663 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6664 }
6665
6666 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6667 u64 vmx_msr;
6668
6669 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6670 cpu_preemption_timer_multi =
6671 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6672 } else {
6673 kvm_x86_ops->set_hv_timer = NULL;
6674 kvm_x86_ops->cancel_hv_timer = NULL;
6675 }
6676
6677 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6678
6679 kvm_mce_cap_supported |= MCG_LMCE_P;
6680
6681 return alloc_kvm_area();
6682
6683 out3:
6684 free_page((unsigned long)vmx_vmwrite_bitmap);
6685 out2:
6686 free_page((unsigned long)vmx_vmread_bitmap);
6687 out1:
6688 free_page((unsigned long)vmx_io_bitmap_b);
6689 out:
6690 free_page((unsigned long)vmx_io_bitmap_a);
6691
6692 return r;
6693 }
6694
hardware_unsetup(void)6695 static __exit void hardware_unsetup(void)
6696 {
6697 free_page((unsigned long)vmx_io_bitmap_b);
6698 free_page((unsigned long)vmx_io_bitmap_a);
6699 free_page((unsigned long)vmx_vmwrite_bitmap);
6700 free_page((unsigned long)vmx_vmread_bitmap);
6701
6702 free_kvm_area();
6703 }
6704
6705 /*
6706 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6707 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6708 */
handle_pause(struct kvm_vcpu * vcpu)6709 static int handle_pause(struct kvm_vcpu *vcpu)
6710 {
6711 if (ple_gap)
6712 grow_ple_window(vcpu);
6713
6714 skip_emulated_instruction(vcpu);
6715 kvm_vcpu_on_spin(vcpu);
6716
6717 return 1;
6718 }
6719
handle_nop(struct kvm_vcpu * vcpu)6720 static int handle_nop(struct kvm_vcpu *vcpu)
6721 {
6722 skip_emulated_instruction(vcpu);
6723 return 1;
6724 }
6725
handle_mwait(struct kvm_vcpu * vcpu)6726 static int handle_mwait(struct kvm_vcpu *vcpu)
6727 {
6728 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6729 return handle_nop(vcpu);
6730 }
6731
handle_monitor_trap(struct kvm_vcpu * vcpu)6732 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6733 {
6734 return 1;
6735 }
6736
handle_monitor(struct kvm_vcpu * vcpu)6737 static int handle_monitor(struct kvm_vcpu *vcpu)
6738 {
6739 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6740 return handle_nop(vcpu);
6741 }
6742
6743 /*
6744 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6745 * set the success or error code of an emulated VMX instruction, as specified
6746 * by Vol 2B, VMX Instruction Reference, "Conventions".
6747 */
nested_vmx_succeed(struct kvm_vcpu * vcpu)6748 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6749 {
6750 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6751 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6752 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6753 }
6754
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)6755 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6756 {
6757 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6758 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6759 X86_EFLAGS_SF | X86_EFLAGS_OF))
6760 | X86_EFLAGS_CF);
6761 }
6762
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)6763 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6764 u32 vm_instruction_error)
6765 {
6766 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6767 /*
6768 * failValid writes the error number to the current VMCS, which
6769 * can't be done there isn't a current VMCS.
6770 */
6771 nested_vmx_failInvalid(vcpu);
6772 return;
6773 }
6774 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6775 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6776 X86_EFLAGS_SF | X86_EFLAGS_OF))
6777 | X86_EFLAGS_ZF);
6778 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6779 /*
6780 * We don't need to force a shadow sync because
6781 * VM_INSTRUCTION_ERROR is not shadowed
6782 */
6783 }
6784
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)6785 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6786 {
6787 /* TODO: not to reset guest simply here. */
6788 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6789 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
6790 }
6791
vmx_preemption_timer_fn(struct hrtimer * timer)6792 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6793 {
6794 struct vcpu_vmx *vmx =
6795 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6796
6797 vmx->nested.preemption_timer_expired = true;
6798 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6799 kvm_vcpu_kick(&vmx->vcpu);
6800
6801 return HRTIMER_NORESTART;
6802 }
6803
6804 /*
6805 * Decode the memory-address operand of a vmx instruction, as recorded on an
6806 * exit caused by such an instruction (run by a guest hypervisor).
6807 * On success, returns 0. When the operand is invalid, returns 1 and throws
6808 * #UD or #GP.
6809 */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,gva_t * ret)6810 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6811 unsigned long exit_qualification,
6812 u32 vmx_instruction_info, bool wr, gva_t *ret)
6813 {
6814 gva_t off;
6815 bool exn;
6816 struct kvm_segment s;
6817
6818 /*
6819 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6820 * Execution", on an exit, vmx_instruction_info holds most of the
6821 * addressing components of the operand. Only the displacement part
6822 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6823 * For how an actual address is calculated from all these components,
6824 * refer to Vol. 1, "Operand Addressing".
6825 */
6826 int scaling = vmx_instruction_info & 3;
6827 int addr_size = (vmx_instruction_info >> 7) & 7;
6828 bool is_reg = vmx_instruction_info & (1u << 10);
6829 int seg_reg = (vmx_instruction_info >> 15) & 7;
6830 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6831 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6832 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6833 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6834
6835 if (is_reg) {
6836 kvm_queue_exception(vcpu, UD_VECTOR);
6837 return 1;
6838 }
6839
6840 /* Addr = segment_base + offset */
6841 /* offset = base + [index * scale] + displacement */
6842 off = exit_qualification; /* holds the displacement */
6843 if (base_is_valid)
6844 off += kvm_register_read(vcpu, base_reg);
6845 if (index_is_valid)
6846 off += kvm_register_read(vcpu, index_reg)<<scaling;
6847 vmx_get_segment(vcpu, &s, seg_reg);
6848 *ret = s.base + off;
6849
6850 if (addr_size == 1) /* 32 bit */
6851 *ret &= 0xffffffff;
6852
6853 /* Checks for #GP/#SS exceptions. */
6854 exn = false;
6855 if (is_long_mode(vcpu)) {
6856 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6857 * non-canonical form. This is the only check on the memory
6858 * destination for long mode!
6859 */
6860 exn = is_noncanonical_address(*ret);
6861 } else if (is_protmode(vcpu)) {
6862 /* Protected mode: apply checks for segment validity in the
6863 * following order:
6864 * - segment type check (#GP(0) may be thrown)
6865 * - usability check (#GP(0)/#SS(0))
6866 * - limit check (#GP(0)/#SS(0))
6867 */
6868 if (wr)
6869 /* #GP(0) if the destination operand is located in a
6870 * read-only data segment or any code segment.
6871 */
6872 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6873 else
6874 /* #GP(0) if the source operand is located in an
6875 * execute-only code segment
6876 */
6877 exn = ((s.type & 0xa) == 8);
6878 if (exn) {
6879 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6880 return 1;
6881 }
6882 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6883 */
6884 exn = (s.unusable != 0);
6885 /* Protected mode: #GP(0)/#SS(0) if the memory
6886 * operand is outside the segment limit.
6887 */
6888 exn = exn || (off + sizeof(u64) > s.limit);
6889 }
6890 if (exn) {
6891 kvm_queue_exception_e(vcpu,
6892 seg_reg == VCPU_SREG_SS ?
6893 SS_VECTOR : GP_VECTOR,
6894 0);
6895 return 1;
6896 }
6897
6898 return 0;
6899 }
6900
6901 /*
6902 * This function performs the various checks including
6903 * - if it's 4KB aligned
6904 * - No bits beyond the physical address width are set
6905 * - Returns 0 on success or else 1
6906 * (Intel SDM Section 30.3)
6907 */
nested_vmx_check_vmptr(struct kvm_vcpu * vcpu,int exit_reason,gpa_t * vmpointer)6908 static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6909 gpa_t *vmpointer)
6910 {
6911 gva_t gva;
6912 gpa_t vmptr;
6913 struct x86_exception e;
6914 struct page *page;
6915 struct vcpu_vmx *vmx = to_vmx(vcpu);
6916 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6917
6918 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6919 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6920 return 1;
6921
6922 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6923 sizeof(vmptr), &e)) {
6924 kvm_inject_page_fault(vcpu, &e);
6925 return 1;
6926 }
6927
6928 switch (exit_reason) {
6929 case EXIT_REASON_VMON:
6930 /*
6931 * SDM 3: 24.11.5
6932 * The first 4 bytes of VMXON region contain the supported
6933 * VMCS revision identifier
6934 *
6935 * Note - IA32_VMX_BASIC[48] will never be 1
6936 * for the nested case;
6937 * which replaces physical address width with 32
6938 *
6939 */
6940 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6941 nested_vmx_failInvalid(vcpu);
6942 skip_emulated_instruction(vcpu);
6943 return 1;
6944 }
6945
6946 page = nested_get_page(vcpu, vmptr);
6947 if (page == NULL) {
6948 nested_vmx_failInvalid(vcpu);
6949 skip_emulated_instruction(vcpu);
6950 return 1;
6951 }
6952 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
6953 kunmap(page);
6954 nested_release_page_clean(page);
6955 nested_vmx_failInvalid(vcpu);
6956 skip_emulated_instruction(vcpu);
6957 return 1;
6958 }
6959 kunmap(page);
6960 nested_release_page_clean(page);
6961 vmx->nested.vmxon_ptr = vmptr;
6962 break;
6963 case EXIT_REASON_VMCLEAR:
6964 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6965 nested_vmx_failValid(vcpu,
6966 VMXERR_VMCLEAR_INVALID_ADDRESS);
6967 skip_emulated_instruction(vcpu);
6968 return 1;
6969 }
6970
6971 if (vmptr == vmx->nested.vmxon_ptr) {
6972 nested_vmx_failValid(vcpu,
6973 VMXERR_VMCLEAR_VMXON_POINTER);
6974 skip_emulated_instruction(vcpu);
6975 return 1;
6976 }
6977 break;
6978 case EXIT_REASON_VMPTRLD:
6979 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6980 nested_vmx_failValid(vcpu,
6981 VMXERR_VMPTRLD_INVALID_ADDRESS);
6982 skip_emulated_instruction(vcpu);
6983 return 1;
6984 }
6985
6986 if (vmptr == vmx->nested.vmxon_ptr) {
6987 nested_vmx_failValid(vcpu,
6988 VMXERR_VMCLEAR_VMXON_POINTER);
6989 skip_emulated_instruction(vcpu);
6990 return 1;
6991 }
6992 break;
6993 default:
6994 return 1; /* shouldn't happen */
6995 }
6996
6997 if (vmpointer)
6998 *vmpointer = vmptr;
6999 return 0;
7000 }
7001
7002 /*
7003 * Emulate the VMXON instruction.
7004 * Currently, we just remember that VMX is active, and do not save or even
7005 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7006 * do not currently need to store anything in that guest-allocated memory
7007 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7008 * argument is different from the VMXON pointer (which the spec says they do).
7009 */
handle_vmon(struct kvm_vcpu * vcpu)7010 static int handle_vmon(struct kvm_vcpu *vcpu)
7011 {
7012 struct kvm_segment cs;
7013 struct vcpu_vmx *vmx = to_vmx(vcpu);
7014 struct vmcs *shadow_vmcs;
7015 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7016 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7017 int r;
7018
7019 /* The Intel VMX Instruction Reference lists a bunch of bits that
7020 * are prerequisite to running VMXON, most notably cr4.VMXE must be
7021 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
7022 * Otherwise, we should fail with #UD. We test these now:
7023 */
7024 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
7025 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
7026 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
7027 kvm_queue_exception(vcpu, UD_VECTOR);
7028 return 1;
7029 }
7030
7031 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
7032 if (is_long_mode(vcpu) && !cs.l) {
7033 kvm_queue_exception(vcpu, UD_VECTOR);
7034 return 1;
7035 }
7036
7037 if (vmx_get_cpl(vcpu)) {
7038 kvm_inject_gp(vcpu, 0);
7039 return 1;
7040 }
7041
7042 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
7043 return 1;
7044
7045 if (vmx->nested.vmxon) {
7046 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
7047 skip_emulated_instruction(vcpu);
7048 return 1;
7049 }
7050
7051 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
7052 != VMXON_NEEDED_FEATURES) {
7053 kvm_inject_gp(vcpu, 0);
7054 return 1;
7055 }
7056
7057 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
7058 if (r < 0)
7059 goto out_vmcs02;
7060
7061 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7062 if (!vmx->nested.cached_vmcs12)
7063 goto out_cached_vmcs12;
7064
7065 if (enable_shadow_vmcs) {
7066 shadow_vmcs = alloc_vmcs();
7067 if (!shadow_vmcs)
7068 goto out_shadow_vmcs;
7069 /* mark vmcs as shadow */
7070 shadow_vmcs->revision_id |= (1u << 31);
7071 /* init shadow vmcs */
7072 vmcs_clear(shadow_vmcs);
7073 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7074 }
7075
7076 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7077 HRTIMER_MODE_REL_PINNED);
7078 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7079
7080 vmx->nested.vmxon = true;
7081
7082 skip_emulated_instruction(vcpu);
7083 nested_vmx_succeed(vcpu);
7084 return 1;
7085
7086 out_shadow_vmcs:
7087 kfree(vmx->nested.cached_vmcs12);
7088
7089 out_cached_vmcs12:
7090 free_loaded_vmcs(&vmx->nested.vmcs02);
7091
7092 out_vmcs02:
7093 return -ENOMEM;
7094 }
7095
7096 /*
7097 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7098 * for running VMX instructions (except VMXON, whose prerequisites are
7099 * slightly different). It also specifies what exception to inject otherwise.
7100 */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)7101 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7102 {
7103 struct kvm_segment cs;
7104 struct vcpu_vmx *vmx = to_vmx(vcpu);
7105
7106 if (!vmx->nested.vmxon) {
7107 kvm_queue_exception(vcpu, UD_VECTOR);
7108 return 0;
7109 }
7110
7111 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
7112 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
7113 (is_long_mode(vcpu) && !cs.l)) {
7114 kvm_queue_exception(vcpu, UD_VECTOR);
7115 return 0;
7116 }
7117
7118 if (vmx_get_cpl(vcpu)) {
7119 kvm_inject_gp(vcpu, 0);
7120 return 0;
7121 }
7122
7123 return 1;
7124 }
7125
nested_release_vmcs12(struct vcpu_vmx * vmx)7126 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7127 {
7128 if (vmx->nested.current_vmptr == -1ull)
7129 return;
7130
7131 /* current_vmptr and current_vmcs12 are always set/reset together */
7132 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7133 return;
7134
7135 if (enable_shadow_vmcs) {
7136 /* copy to memory all shadowed fields in case
7137 they were modified */
7138 copy_shadow_to_vmcs12(vmx);
7139 vmx->nested.sync_shadow_vmcs = false;
7140 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7141 SECONDARY_EXEC_SHADOW_VMCS);
7142 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7143 }
7144 vmx->nested.posted_intr_nv = -1;
7145
7146 /* Flush VMCS12 to guest memory */
7147 memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
7148 VMCS12_SIZE);
7149
7150 kunmap(vmx->nested.current_vmcs12_page);
7151 nested_release_page(vmx->nested.current_vmcs12_page);
7152 vmx->nested.current_vmptr = -1ull;
7153 vmx->nested.current_vmcs12 = NULL;
7154 }
7155
7156 /*
7157 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7158 * just stops using VMX.
7159 */
free_nested(struct vcpu_vmx * vmx)7160 static void free_nested(struct vcpu_vmx *vmx)
7161 {
7162 if (!vmx->nested.vmxon)
7163 return;
7164
7165 vmx->nested.vmxon = false;
7166 free_vpid(vmx->nested.vpid02);
7167 nested_release_vmcs12(vmx);
7168 if (enable_shadow_vmcs) {
7169 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7170 free_vmcs(vmx->vmcs01.shadow_vmcs);
7171 vmx->vmcs01.shadow_vmcs = NULL;
7172 }
7173 kfree(vmx->nested.cached_vmcs12);
7174 /* Unpin physical memory we referred to in the vmcs02 */
7175 if (vmx->nested.apic_access_page) {
7176 nested_release_page(vmx->nested.apic_access_page);
7177 vmx->nested.apic_access_page = NULL;
7178 }
7179 if (vmx->nested.virtual_apic_page) {
7180 nested_release_page(vmx->nested.virtual_apic_page);
7181 vmx->nested.virtual_apic_page = NULL;
7182 }
7183 if (vmx->nested.pi_desc_page) {
7184 kunmap(vmx->nested.pi_desc_page);
7185 nested_release_page(vmx->nested.pi_desc_page);
7186 vmx->nested.pi_desc_page = NULL;
7187 vmx->nested.pi_desc = NULL;
7188 }
7189
7190 free_loaded_vmcs(&vmx->nested.vmcs02);
7191 }
7192
7193 /* Emulate the VMXOFF instruction */
handle_vmoff(struct kvm_vcpu * vcpu)7194 static int handle_vmoff(struct kvm_vcpu *vcpu)
7195 {
7196 if (!nested_vmx_check_permission(vcpu))
7197 return 1;
7198 free_nested(to_vmx(vcpu));
7199 skip_emulated_instruction(vcpu);
7200 nested_vmx_succeed(vcpu);
7201 return 1;
7202 }
7203
7204 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)7205 static int handle_vmclear(struct kvm_vcpu *vcpu)
7206 {
7207 struct vcpu_vmx *vmx = to_vmx(vcpu);
7208 u32 zero = 0;
7209 gpa_t vmptr;
7210
7211 if (!nested_vmx_check_permission(vcpu))
7212 return 1;
7213
7214 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
7215 return 1;
7216
7217 if (vmptr == vmx->nested.current_vmptr)
7218 nested_release_vmcs12(vmx);
7219
7220 kvm_vcpu_write_guest(vcpu,
7221 vmptr + offsetof(struct vmcs12, launch_state),
7222 &zero, sizeof(zero));
7223
7224 skip_emulated_instruction(vcpu);
7225 nested_vmx_succeed(vcpu);
7226 return 1;
7227 }
7228
7229 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7230
7231 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)7232 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7233 {
7234 return nested_vmx_run(vcpu, true);
7235 }
7236
7237 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)7238 static int handle_vmresume(struct kvm_vcpu *vcpu)
7239 {
7240
7241 return nested_vmx_run(vcpu, false);
7242 }
7243
7244 enum vmcs_field_type {
7245 VMCS_FIELD_TYPE_U16 = 0,
7246 VMCS_FIELD_TYPE_U64 = 1,
7247 VMCS_FIELD_TYPE_U32 = 2,
7248 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7249 };
7250
vmcs_field_type(unsigned long field)7251 static inline int vmcs_field_type(unsigned long field)
7252 {
7253 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
7254 return VMCS_FIELD_TYPE_U32;
7255 return (field >> 13) & 0x3 ;
7256 }
7257
vmcs_field_readonly(unsigned long field)7258 static inline int vmcs_field_readonly(unsigned long field)
7259 {
7260 return (((field >> 10) & 0x3) == 1);
7261 }
7262
7263 /*
7264 * Read a vmcs12 field. Since these can have varying lengths and we return
7265 * one type, we chose the biggest type (u64) and zero-extend the return value
7266 * to that size. Note that the caller, handle_vmread, might need to use only
7267 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7268 * 64-bit fields are to be returned).
7269 */
vmcs12_read_any(struct kvm_vcpu * vcpu,unsigned long field,u64 * ret)7270 static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7271 unsigned long field, u64 *ret)
7272 {
7273 short offset = vmcs_field_to_offset(field);
7274 char *p;
7275
7276 if (offset < 0)
7277 return offset;
7278
7279 p = ((char *)(get_vmcs12(vcpu))) + offset;
7280
7281 switch (vmcs_field_type(field)) {
7282 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7283 *ret = *((natural_width *)p);
7284 return 0;
7285 case VMCS_FIELD_TYPE_U16:
7286 *ret = *((u16 *)p);
7287 return 0;
7288 case VMCS_FIELD_TYPE_U32:
7289 *ret = *((u32 *)p);
7290 return 0;
7291 case VMCS_FIELD_TYPE_U64:
7292 *ret = *((u64 *)p);
7293 return 0;
7294 default:
7295 WARN_ON(1);
7296 return -ENOENT;
7297 }
7298 }
7299
7300
vmcs12_write_any(struct kvm_vcpu * vcpu,unsigned long field,u64 field_value)7301 static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7302 unsigned long field, u64 field_value){
7303 short offset = vmcs_field_to_offset(field);
7304 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7305 if (offset < 0)
7306 return offset;
7307
7308 switch (vmcs_field_type(field)) {
7309 case VMCS_FIELD_TYPE_U16:
7310 *(u16 *)p = field_value;
7311 return 0;
7312 case VMCS_FIELD_TYPE_U32:
7313 *(u32 *)p = field_value;
7314 return 0;
7315 case VMCS_FIELD_TYPE_U64:
7316 *(u64 *)p = field_value;
7317 return 0;
7318 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7319 *(natural_width *)p = field_value;
7320 return 0;
7321 default:
7322 WARN_ON(1);
7323 return -ENOENT;
7324 }
7325
7326 }
7327
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)7328 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7329 {
7330 int i;
7331 unsigned long field;
7332 u64 field_value;
7333 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7334 const unsigned long *fields = shadow_read_write_fields;
7335 const int num_fields = max_shadow_read_write_fields;
7336
7337 preempt_disable();
7338
7339 vmcs_load(shadow_vmcs);
7340
7341 for (i = 0; i < num_fields; i++) {
7342 field = fields[i];
7343 switch (vmcs_field_type(field)) {
7344 case VMCS_FIELD_TYPE_U16:
7345 field_value = vmcs_read16(field);
7346 break;
7347 case VMCS_FIELD_TYPE_U32:
7348 field_value = vmcs_read32(field);
7349 break;
7350 case VMCS_FIELD_TYPE_U64:
7351 field_value = vmcs_read64(field);
7352 break;
7353 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7354 field_value = vmcs_readl(field);
7355 break;
7356 default:
7357 WARN_ON(1);
7358 continue;
7359 }
7360 vmcs12_write_any(&vmx->vcpu, field, field_value);
7361 }
7362
7363 vmcs_clear(shadow_vmcs);
7364 vmcs_load(vmx->loaded_vmcs->vmcs);
7365
7366 preempt_enable();
7367 }
7368
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)7369 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7370 {
7371 const unsigned long *fields[] = {
7372 shadow_read_write_fields,
7373 shadow_read_only_fields
7374 };
7375 const int max_fields[] = {
7376 max_shadow_read_write_fields,
7377 max_shadow_read_only_fields
7378 };
7379 int i, q;
7380 unsigned long field;
7381 u64 field_value = 0;
7382 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
7383
7384 vmcs_load(shadow_vmcs);
7385
7386 for (q = 0; q < ARRAY_SIZE(fields); q++) {
7387 for (i = 0; i < max_fields[q]; i++) {
7388 field = fields[q][i];
7389 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7390
7391 switch (vmcs_field_type(field)) {
7392 case VMCS_FIELD_TYPE_U16:
7393 vmcs_write16(field, (u16)field_value);
7394 break;
7395 case VMCS_FIELD_TYPE_U32:
7396 vmcs_write32(field, (u32)field_value);
7397 break;
7398 case VMCS_FIELD_TYPE_U64:
7399 vmcs_write64(field, (u64)field_value);
7400 break;
7401 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7402 vmcs_writel(field, (long)field_value);
7403 break;
7404 default:
7405 WARN_ON(1);
7406 break;
7407 }
7408 }
7409 }
7410
7411 vmcs_clear(shadow_vmcs);
7412 vmcs_load(vmx->loaded_vmcs->vmcs);
7413 }
7414
7415 /*
7416 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7417 * used before) all generate the same failure when it is missing.
7418 */
nested_vmx_check_vmcs12(struct kvm_vcpu * vcpu)7419 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7420 {
7421 struct vcpu_vmx *vmx = to_vmx(vcpu);
7422 if (vmx->nested.current_vmptr == -1ull) {
7423 nested_vmx_failInvalid(vcpu);
7424 skip_emulated_instruction(vcpu);
7425 return 0;
7426 }
7427 return 1;
7428 }
7429
handle_vmread(struct kvm_vcpu * vcpu)7430 static int handle_vmread(struct kvm_vcpu *vcpu)
7431 {
7432 unsigned long field;
7433 u64 field_value;
7434 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7435 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7436 gva_t gva = 0;
7437
7438 if (!nested_vmx_check_permission(vcpu) ||
7439 !nested_vmx_check_vmcs12(vcpu))
7440 return 1;
7441
7442 /* Decode instruction info and find the field to read */
7443 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7444 /* Read the field, zero-extended to a u64 field_value */
7445 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7446 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7447 skip_emulated_instruction(vcpu);
7448 return 1;
7449 }
7450 /*
7451 * Now copy part of this value to register or memory, as requested.
7452 * Note that the number of bits actually copied is 32 or 64 depending
7453 * on the guest's mode (32 or 64 bit), not on the given field's length.
7454 */
7455 if (vmx_instruction_info & (1u << 10)) {
7456 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7457 field_value);
7458 } else {
7459 if (get_vmx_mem_address(vcpu, exit_qualification,
7460 vmx_instruction_info, true, &gva))
7461 return 1;
7462 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7463 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7464 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7465 }
7466
7467 nested_vmx_succeed(vcpu);
7468 skip_emulated_instruction(vcpu);
7469 return 1;
7470 }
7471
7472
handle_vmwrite(struct kvm_vcpu * vcpu)7473 static int handle_vmwrite(struct kvm_vcpu *vcpu)
7474 {
7475 unsigned long field;
7476 gva_t gva;
7477 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7478 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7479 /* The value to write might be 32 or 64 bits, depending on L1's long
7480 * mode, and eventually we need to write that into a field of several
7481 * possible lengths. The code below first zero-extends the value to 64
7482 * bit (field_value), and then copies only the appropriate number of
7483 * bits into the vmcs12 field.
7484 */
7485 u64 field_value = 0;
7486 struct x86_exception e;
7487
7488 if (!nested_vmx_check_permission(vcpu) ||
7489 !nested_vmx_check_vmcs12(vcpu))
7490 return 1;
7491
7492 if (vmx_instruction_info & (1u << 10))
7493 field_value = kvm_register_readl(vcpu,
7494 (((vmx_instruction_info) >> 3) & 0xf));
7495 else {
7496 if (get_vmx_mem_address(vcpu, exit_qualification,
7497 vmx_instruction_info, false, &gva))
7498 return 1;
7499 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7500 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7501 kvm_inject_page_fault(vcpu, &e);
7502 return 1;
7503 }
7504 }
7505
7506
7507 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7508 if (vmcs_field_readonly(field)) {
7509 nested_vmx_failValid(vcpu,
7510 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7511 skip_emulated_instruction(vcpu);
7512 return 1;
7513 }
7514
7515 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7516 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7517 skip_emulated_instruction(vcpu);
7518 return 1;
7519 }
7520
7521 nested_vmx_succeed(vcpu);
7522 skip_emulated_instruction(vcpu);
7523 return 1;
7524 }
7525
7526 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)7527 static int handle_vmptrld(struct kvm_vcpu *vcpu)
7528 {
7529 struct vcpu_vmx *vmx = to_vmx(vcpu);
7530 gpa_t vmptr;
7531
7532 if (!nested_vmx_check_permission(vcpu))
7533 return 1;
7534
7535 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7536 return 1;
7537
7538 if (vmx->nested.current_vmptr != vmptr) {
7539 struct vmcs12 *new_vmcs12;
7540 struct page *page;
7541 page = nested_get_page(vcpu, vmptr);
7542 if (page == NULL) {
7543 nested_vmx_failInvalid(vcpu);
7544 skip_emulated_instruction(vcpu);
7545 return 1;
7546 }
7547 new_vmcs12 = kmap(page);
7548 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7549 kunmap(page);
7550 nested_release_page_clean(page);
7551 nested_vmx_failValid(vcpu,
7552 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7553 skip_emulated_instruction(vcpu);
7554 return 1;
7555 }
7556
7557 nested_release_vmcs12(vmx);
7558 vmx->nested.current_vmptr = vmptr;
7559 vmx->nested.current_vmcs12 = new_vmcs12;
7560 vmx->nested.current_vmcs12_page = page;
7561 /*
7562 * Load VMCS12 from guest memory since it is not already
7563 * cached.
7564 */
7565 memcpy(vmx->nested.cached_vmcs12,
7566 vmx->nested.current_vmcs12, VMCS12_SIZE);
7567
7568 if (enable_shadow_vmcs) {
7569 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7570 SECONDARY_EXEC_SHADOW_VMCS);
7571 vmcs_write64(VMCS_LINK_POINTER,
7572 __pa(vmx->vmcs01.shadow_vmcs));
7573 vmx->nested.sync_shadow_vmcs = true;
7574 }
7575 }
7576
7577 nested_vmx_succeed(vcpu);
7578 skip_emulated_instruction(vcpu);
7579 return 1;
7580 }
7581
7582 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)7583 static int handle_vmptrst(struct kvm_vcpu *vcpu)
7584 {
7585 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7586 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7587 gva_t vmcs_gva;
7588 struct x86_exception e;
7589
7590 if (!nested_vmx_check_permission(vcpu))
7591 return 1;
7592
7593 if (get_vmx_mem_address(vcpu, exit_qualification,
7594 vmx_instruction_info, true, &vmcs_gva))
7595 return 1;
7596 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7597 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7598 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7599 sizeof(u64), &e)) {
7600 kvm_inject_page_fault(vcpu, &e);
7601 return 1;
7602 }
7603 nested_vmx_succeed(vcpu);
7604 skip_emulated_instruction(vcpu);
7605 return 1;
7606 }
7607
7608 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)7609 static int handle_invept(struct kvm_vcpu *vcpu)
7610 {
7611 struct vcpu_vmx *vmx = to_vmx(vcpu);
7612 u32 vmx_instruction_info, types;
7613 unsigned long type;
7614 gva_t gva;
7615 struct x86_exception e;
7616 struct {
7617 u64 eptp, gpa;
7618 } operand;
7619
7620 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7621 SECONDARY_EXEC_ENABLE_EPT) ||
7622 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7623 kvm_queue_exception(vcpu, UD_VECTOR);
7624 return 1;
7625 }
7626
7627 if (!nested_vmx_check_permission(vcpu))
7628 return 1;
7629
7630 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7631 kvm_queue_exception(vcpu, UD_VECTOR);
7632 return 1;
7633 }
7634
7635 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7636 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7637
7638 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7639
7640 if (type >= 32 || !(types & (1 << type))) {
7641 nested_vmx_failValid(vcpu,
7642 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7643 skip_emulated_instruction(vcpu);
7644 return 1;
7645 }
7646
7647 /* According to the Intel VMX instruction reference, the memory
7648 * operand is read even if it isn't needed (e.g., for type==global)
7649 */
7650 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7651 vmx_instruction_info, false, &gva))
7652 return 1;
7653 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7654 sizeof(operand), &e)) {
7655 kvm_inject_page_fault(vcpu, &e);
7656 return 1;
7657 }
7658
7659 switch (type) {
7660 case VMX_EPT_EXTENT_GLOBAL:
7661 /*
7662 * TODO: track mappings and invalidate
7663 * single context requests appropriately
7664 */
7665 case VMX_EPT_EXTENT_CONTEXT:
7666 kvm_mmu_sync_roots(vcpu);
7667 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7668 nested_vmx_succeed(vcpu);
7669 break;
7670 default:
7671 BUG_ON(1);
7672 break;
7673 }
7674
7675 skip_emulated_instruction(vcpu);
7676 return 1;
7677 }
7678
handle_invvpid(struct kvm_vcpu * vcpu)7679 static int handle_invvpid(struct kvm_vcpu *vcpu)
7680 {
7681 struct vcpu_vmx *vmx = to_vmx(vcpu);
7682 u32 vmx_instruction_info;
7683 unsigned long type, types;
7684 gva_t gva;
7685 struct x86_exception e;
7686 int vpid;
7687
7688 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7689 SECONDARY_EXEC_ENABLE_VPID) ||
7690 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7691 kvm_queue_exception(vcpu, UD_VECTOR);
7692 return 1;
7693 }
7694
7695 if (!nested_vmx_check_permission(vcpu))
7696 return 1;
7697
7698 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7699 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7700
7701 types = (vmx->nested.nested_vmx_vpid_caps &
7702 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
7703
7704 if (type >= 32 || !(types & (1 << type))) {
7705 nested_vmx_failValid(vcpu,
7706 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7707 skip_emulated_instruction(vcpu);
7708 return 1;
7709 }
7710
7711 /* according to the intel vmx instruction reference, the memory
7712 * operand is read even if it isn't needed (e.g., for type==global)
7713 */
7714 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7715 vmx_instruction_info, false, &gva))
7716 return 1;
7717 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7718 sizeof(u32), &e)) {
7719 kvm_inject_page_fault(vcpu, &e);
7720 return 1;
7721 }
7722
7723 switch (type) {
7724 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
7725 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7726 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
7727 if (!vpid) {
7728 nested_vmx_failValid(vcpu,
7729 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7730 skip_emulated_instruction(vcpu);
7731 return 1;
7732 }
7733 break;
7734 case VMX_VPID_EXTENT_ALL_CONTEXT:
7735 break;
7736 default:
7737 WARN_ON_ONCE(1);
7738 skip_emulated_instruction(vcpu);
7739 return 1;
7740 }
7741
7742 __vmx_flush_tlb(vcpu, vmx->nested.vpid02);
7743 nested_vmx_succeed(vcpu);
7744
7745 skip_emulated_instruction(vcpu);
7746 return 1;
7747 }
7748
handle_pml_full(struct kvm_vcpu * vcpu)7749 static int handle_pml_full(struct kvm_vcpu *vcpu)
7750 {
7751 unsigned long exit_qualification;
7752
7753 trace_kvm_pml_full(vcpu->vcpu_id);
7754
7755 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7756
7757 /*
7758 * PML buffer FULL happened while executing iret from NMI,
7759 * "blocked by NMI" bit has to be set before next VM entry.
7760 */
7761 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7762 cpu_has_virtual_nmis() &&
7763 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7764 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7765 GUEST_INTR_STATE_NMI);
7766
7767 /*
7768 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7769 * here.., and there's no userspace involvement needed for PML.
7770 */
7771 return 1;
7772 }
7773
handle_preemption_timer(struct kvm_vcpu * vcpu)7774 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7775 {
7776 kvm_lapic_expired_hv_timer(vcpu);
7777 return 1;
7778 }
7779
7780 /*
7781 * The exit handlers return 1 if the exit was handled fully and guest execution
7782 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7783 * to be done to userspace and return 0.
7784 */
7785 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7786 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7787 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
7788 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
7789 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
7790 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
7791 [EXIT_REASON_CR_ACCESS] = handle_cr,
7792 [EXIT_REASON_DR_ACCESS] = handle_dr,
7793 [EXIT_REASON_CPUID] = handle_cpuid,
7794 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7795 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7796 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7797 [EXIT_REASON_HLT] = handle_halt,
7798 [EXIT_REASON_INVD] = handle_invd,
7799 [EXIT_REASON_INVLPG] = handle_invlpg,
7800 [EXIT_REASON_RDPMC] = handle_rdpmc,
7801 [EXIT_REASON_VMCALL] = handle_vmcall,
7802 [EXIT_REASON_VMCLEAR] = handle_vmclear,
7803 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
7804 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
7805 [EXIT_REASON_VMPTRST] = handle_vmptrst,
7806 [EXIT_REASON_VMREAD] = handle_vmread,
7807 [EXIT_REASON_VMRESUME] = handle_vmresume,
7808 [EXIT_REASON_VMWRITE] = handle_vmwrite,
7809 [EXIT_REASON_VMOFF] = handle_vmoff,
7810 [EXIT_REASON_VMON] = handle_vmon,
7811 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7812 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
7813 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
7814 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
7815 [EXIT_REASON_WBINVD] = handle_wbinvd,
7816 [EXIT_REASON_XSETBV] = handle_xsetbv,
7817 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
7818 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
7819 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7820 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
7821 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
7822 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
7823 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
7824 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
7825 [EXIT_REASON_INVEPT] = handle_invept,
7826 [EXIT_REASON_INVVPID] = handle_invvpid,
7827 [EXIT_REASON_XSAVES] = handle_xsaves,
7828 [EXIT_REASON_XRSTORS] = handle_xrstors,
7829 [EXIT_REASON_PML_FULL] = handle_pml_full,
7830 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
7831 };
7832
7833 static const int kvm_vmx_max_exit_handlers =
7834 ARRAY_SIZE(kvm_vmx_exit_handlers);
7835
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)7836 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7837 struct vmcs12 *vmcs12)
7838 {
7839 unsigned long exit_qualification;
7840 gpa_t bitmap, last_bitmap;
7841 unsigned int port;
7842 int size;
7843 u8 b;
7844
7845 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7846 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7847
7848 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7849
7850 port = exit_qualification >> 16;
7851 size = (exit_qualification & 7) + 1;
7852
7853 last_bitmap = (gpa_t)-1;
7854 b = -1;
7855
7856 while (size > 0) {
7857 if (port < 0x8000)
7858 bitmap = vmcs12->io_bitmap_a;
7859 else if (port < 0x10000)
7860 bitmap = vmcs12->io_bitmap_b;
7861 else
7862 return true;
7863 bitmap += (port & 0x7fff) / 8;
7864
7865 if (last_bitmap != bitmap)
7866 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7867 return true;
7868 if (b & (1 << (port & 7)))
7869 return true;
7870
7871 port++;
7872 size--;
7873 last_bitmap = bitmap;
7874 }
7875
7876 return false;
7877 }
7878
7879 /*
7880 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7881 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7882 * disinterest in the current event (read or write a specific MSR) by using an
7883 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7884 */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason)7885 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7886 struct vmcs12 *vmcs12, u32 exit_reason)
7887 {
7888 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7889 gpa_t bitmap;
7890
7891 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7892 return true;
7893
7894 /*
7895 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7896 * for the four combinations of read/write and low/high MSR numbers.
7897 * First we need to figure out which of the four to use:
7898 */
7899 bitmap = vmcs12->msr_bitmap;
7900 if (exit_reason == EXIT_REASON_MSR_WRITE)
7901 bitmap += 2048;
7902 if (msr_index >= 0xc0000000) {
7903 msr_index -= 0xc0000000;
7904 bitmap += 1024;
7905 }
7906
7907 /* Then read the msr_index'th bit from this bitmap: */
7908 if (msr_index < 1024*8) {
7909 unsigned char b;
7910 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7911 return true;
7912 return 1 & (b >> (msr_index & 7));
7913 } else
7914 return true; /* let L1 handle the wrong parameter */
7915 }
7916
7917 /*
7918 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7919 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7920 * intercept (via guest_host_mask etc.) the current event.
7921 */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)7922 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7923 struct vmcs12 *vmcs12)
7924 {
7925 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7926 int cr = exit_qualification & 15;
7927 int reg;
7928 unsigned long val;
7929
7930 switch ((exit_qualification >> 4) & 3) {
7931 case 0: /* mov to cr */
7932 reg = (exit_qualification >> 8) & 15;
7933 val = kvm_register_readl(vcpu, reg);
7934 switch (cr) {
7935 case 0:
7936 if (vmcs12->cr0_guest_host_mask &
7937 (val ^ vmcs12->cr0_read_shadow))
7938 return true;
7939 break;
7940 case 3:
7941 if ((vmcs12->cr3_target_count >= 1 &&
7942 vmcs12->cr3_target_value0 == val) ||
7943 (vmcs12->cr3_target_count >= 2 &&
7944 vmcs12->cr3_target_value1 == val) ||
7945 (vmcs12->cr3_target_count >= 3 &&
7946 vmcs12->cr3_target_value2 == val) ||
7947 (vmcs12->cr3_target_count >= 4 &&
7948 vmcs12->cr3_target_value3 == val))
7949 return false;
7950 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7951 return true;
7952 break;
7953 case 4:
7954 if (vmcs12->cr4_guest_host_mask &
7955 (vmcs12->cr4_read_shadow ^ val))
7956 return true;
7957 break;
7958 case 8:
7959 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7960 return true;
7961 break;
7962 }
7963 break;
7964 case 2: /* clts */
7965 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7966 (vmcs12->cr0_read_shadow & X86_CR0_TS))
7967 return true;
7968 break;
7969 case 1: /* mov from cr */
7970 switch (cr) {
7971 case 3:
7972 if (vmcs12->cpu_based_vm_exec_control &
7973 CPU_BASED_CR3_STORE_EXITING)
7974 return true;
7975 break;
7976 case 8:
7977 if (vmcs12->cpu_based_vm_exec_control &
7978 CPU_BASED_CR8_STORE_EXITING)
7979 return true;
7980 break;
7981 }
7982 break;
7983 case 3: /* lmsw */
7984 /*
7985 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7986 * cr0. Other attempted changes are ignored, with no exit.
7987 */
7988 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
7989 if (vmcs12->cr0_guest_host_mask & 0xe &
7990 (val ^ vmcs12->cr0_read_shadow))
7991 return true;
7992 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7993 !(vmcs12->cr0_read_shadow & 0x1) &&
7994 (val & 0x1))
7995 return true;
7996 break;
7997 }
7998 return false;
7999 }
8000
8001 /*
8002 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8003 * should handle it ourselves in L0 (and then continue L2). Only call this
8004 * when in is_guest_mode (L2).
8005 */
nested_vmx_exit_handled(struct kvm_vcpu * vcpu)8006 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
8007 {
8008 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8009 struct vcpu_vmx *vmx = to_vmx(vcpu);
8010 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8011 u32 exit_reason = vmx->exit_reason;
8012
8013 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8014 vmcs_readl(EXIT_QUALIFICATION),
8015 vmx->idt_vectoring_info,
8016 intr_info,
8017 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8018 KVM_ISA_VMX);
8019
8020 /*
8021 * The host physical addresses of some pages of guest memory
8022 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
8023 * Page). The CPU may write to these pages via their host
8024 * physical address while L2 is running, bypassing any
8025 * address-translation-based dirty tracking (e.g. EPT write
8026 * protection).
8027 *
8028 * Mark them dirty on every exit from L2 to prevent them from
8029 * getting out of sync with dirty tracking.
8030 */
8031 nested_mark_vmcs12_pages_dirty(vcpu);
8032
8033 if (vmx->nested.nested_run_pending)
8034 return false;
8035
8036 if (unlikely(vmx->fail)) {
8037 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8038 vmcs_read32(VM_INSTRUCTION_ERROR));
8039 return true;
8040 }
8041
8042 switch (exit_reason) {
8043 case EXIT_REASON_EXCEPTION_NMI:
8044 if (is_nmi(intr_info))
8045 return false;
8046 else if (is_page_fault(intr_info))
8047 return enable_ept;
8048 else if (is_no_device(intr_info) &&
8049 !(vmcs12->guest_cr0 & X86_CR0_TS))
8050 return false;
8051 else if (is_debug(intr_info) &&
8052 vcpu->guest_debug &
8053 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8054 return false;
8055 else if (is_breakpoint(intr_info) &&
8056 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8057 return false;
8058 return vmcs12->exception_bitmap &
8059 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8060 case EXIT_REASON_EXTERNAL_INTERRUPT:
8061 return false;
8062 case EXIT_REASON_TRIPLE_FAULT:
8063 return true;
8064 case EXIT_REASON_PENDING_INTERRUPT:
8065 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
8066 case EXIT_REASON_NMI_WINDOW:
8067 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8068 case EXIT_REASON_TASK_SWITCH:
8069 return true;
8070 case EXIT_REASON_CPUID:
8071 return true;
8072 case EXIT_REASON_HLT:
8073 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8074 case EXIT_REASON_INVD:
8075 return true;
8076 case EXIT_REASON_INVLPG:
8077 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8078 case EXIT_REASON_RDPMC:
8079 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8080 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8081 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8082 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8083 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8084 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8085 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8086 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8087 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8088 /*
8089 * VMX instructions trap unconditionally. This allows L1 to
8090 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8091 */
8092 return true;
8093 case EXIT_REASON_CR_ACCESS:
8094 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8095 case EXIT_REASON_DR_ACCESS:
8096 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8097 case EXIT_REASON_IO_INSTRUCTION:
8098 return nested_vmx_exit_handled_io(vcpu, vmcs12);
8099 case EXIT_REASON_MSR_READ:
8100 case EXIT_REASON_MSR_WRITE:
8101 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8102 case EXIT_REASON_INVALID_STATE:
8103 return true;
8104 case EXIT_REASON_MWAIT_INSTRUCTION:
8105 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8106 case EXIT_REASON_MONITOR_TRAP_FLAG:
8107 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8108 case EXIT_REASON_MONITOR_INSTRUCTION:
8109 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8110 case EXIT_REASON_PAUSE_INSTRUCTION:
8111 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8112 nested_cpu_has2(vmcs12,
8113 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8114 case EXIT_REASON_MCE_DURING_VMENTRY:
8115 return false;
8116 case EXIT_REASON_TPR_BELOW_THRESHOLD:
8117 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8118 case EXIT_REASON_APIC_ACCESS:
8119 return nested_cpu_has2(vmcs12,
8120 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8121 case EXIT_REASON_APIC_WRITE:
8122 case EXIT_REASON_EOI_INDUCED:
8123 /* apic_write and eoi_induced should exit unconditionally. */
8124 return true;
8125 case EXIT_REASON_EPT_VIOLATION:
8126 /*
8127 * L0 always deals with the EPT violation. If nested EPT is
8128 * used, and the nested mmu code discovers that the address is
8129 * missing in the guest EPT table (EPT12), the EPT violation
8130 * will be injected with nested_ept_inject_page_fault()
8131 */
8132 return false;
8133 case EXIT_REASON_EPT_MISCONFIG:
8134 /*
8135 * L2 never uses directly L1's EPT, but rather L0's own EPT
8136 * table (shadow on EPT) or a merged EPT table that L0 built
8137 * (EPT on EPT). So any problems with the structure of the
8138 * table is L0's fault.
8139 */
8140 return false;
8141 case EXIT_REASON_WBINVD:
8142 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8143 case EXIT_REASON_XSETBV:
8144 return true;
8145 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8146 /*
8147 * This should never happen, since it is not possible to
8148 * set XSS to a non-zero value---neither in L1 nor in L2.
8149 * If if it were, XSS would have to be checked against
8150 * the XSS exit bitmap in vmcs12.
8151 */
8152 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8153 case EXIT_REASON_PREEMPTION_TIMER:
8154 return false;
8155 case EXIT_REASON_PML_FULL:
8156 /* We don't expose PML support to L1. */
8157 return false;
8158 default:
8159 return true;
8160 }
8161 }
8162
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)8163 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8164 {
8165 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8166 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8167 }
8168
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)8169 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8170 {
8171 if (vmx->pml_pg) {
8172 __free_page(vmx->pml_pg);
8173 vmx->pml_pg = NULL;
8174 }
8175 }
8176
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)8177 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8178 {
8179 struct vcpu_vmx *vmx = to_vmx(vcpu);
8180 u64 *pml_buf;
8181 u16 pml_idx;
8182
8183 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8184
8185 /* Do nothing if PML buffer is empty */
8186 if (pml_idx == (PML_ENTITY_NUM - 1))
8187 return;
8188
8189 /* PML index always points to next available PML buffer entity */
8190 if (pml_idx >= PML_ENTITY_NUM)
8191 pml_idx = 0;
8192 else
8193 pml_idx++;
8194
8195 pml_buf = page_address(vmx->pml_pg);
8196 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8197 u64 gpa;
8198
8199 gpa = pml_buf[pml_idx];
8200 WARN_ON(gpa & (PAGE_SIZE - 1));
8201 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8202 }
8203
8204 /* reset PML index */
8205 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8206 }
8207
8208 /*
8209 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8210 * Called before reporting dirty_bitmap to userspace.
8211 */
kvm_flush_pml_buffers(struct kvm * kvm)8212 static void kvm_flush_pml_buffers(struct kvm *kvm)
8213 {
8214 int i;
8215 struct kvm_vcpu *vcpu;
8216 /*
8217 * We only need to kick vcpu out of guest mode here, as PML buffer
8218 * is flushed at beginning of all VMEXITs, and it's obvious that only
8219 * vcpus running in guest are possible to have unflushed GPAs in PML
8220 * buffer.
8221 */
8222 kvm_for_each_vcpu(i, vcpu, kvm)
8223 kvm_vcpu_kick(vcpu);
8224 }
8225
vmx_dump_sel(char * name,uint32_t sel)8226 static void vmx_dump_sel(char *name, uint32_t sel)
8227 {
8228 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8229 name, vmcs_read16(sel),
8230 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8231 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8232 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8233 }
8234
vmx_dump_dtsel(char * name,uint32_t limit)8235 static void vmx_dump_dtsel(char *name, uint32_t limit)
8236 {
8237 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8238 name, vmcs_read32(limit),
8239 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8240 }
8241
dump_vmcs(void)8242 static void dump_vmcs(void)
8243 {
8244 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8245 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8246 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8247 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8248 u32 secondary_exec_control = 0;
8249 unsigned long cr4 = vmcs_readl(GUEST_CR4);
8250 u64 efer = vmcs_read64(GUEST_IA32_EFER);
8251 int i, n;
8252
8253 if (cpu_has_secondary_exec_ctrls())
8254 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8255
8256 pr_err("*** Guest State ***\n");
8257 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8258 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8259 vmcs_readl(CR0_GUEST_HOST_MASK));
8260 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8261 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8262 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8263 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8264 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8265 {
8266 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8267 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8268 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8269 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8270 }
8271 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8272 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8273 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8274 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8275 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8276 vmcs_readl(GUEST_SYSENTER_ESP),
8277 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8278 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8279 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8280 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8281 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8282 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8283 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8284 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8285 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8286 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8287 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8288 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8289 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8290 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8291 efer, vmcs_read64(GUEST_IA32_PAT));
8292 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8293 vmcs_read64(GUEST_IA32_DEBUGCTL),
8294 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8295 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8296 pr_err("PerfGlobCtl = 0x%016llx\n",
8297 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8298 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8299 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8300 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8301 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8302 vmcs_read32(GUEST_ACTIVITY_STATE));
8303 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8304 pr_err("InterruptStatus = %04x\n",
8305 vmcs_read16(GUEST_INTR_STATUS));
8306
8307 pr_err("*** Host State ***\n");
8308 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8309 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8310 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8311 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8312 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8313 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8314 vmcs_read16(HOST_TR_SELECTOR));
8315 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8316 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8317 vmcs_readl(HOST_TR_BASE));
8318 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8319 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8320 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8321 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8322 vmcs_readl(HOST_CR4));
8323 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8324 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8325 vmcs_read32(HOST_IA32_SYSENTER_CS),
8326 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8327 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8328 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8329 vmcs_read64(HOST_IA32_EFER),
8330 vmcs_read64(HOST_IA32_PAT));
8331 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8332 pr_err("PerfGlobCtl = 0x%016llx\n",
8333 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8334
8335 pr_err("*** Control State ***\n");
8336 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8337 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8338 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8339 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8340 vmcs_read32(EXCEPTION_BITMAP),
8341 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8342 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8343 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8344 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8345 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8346 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8347 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8348 vmcs_read32(VM_EXIT_INTR_INFO),
8349 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8350 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8351 pr_err(" reason=%08x qualification=%016lx\n",
8352 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8353 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8354 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8355 vmcs_read32(IDT_VECTORING_ERROR_CODE));
8356 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8357 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8358 pr_err("TSC Multiplier = 0x%016llx\n",
8359 vmcs_read64(TSC_MULTIPLIER));
8360 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8361 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8362 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8363 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8364 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8365 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8366 n = vmcs_read32(CR3_TARGET_COUNT);
8367 for (i = 0; i + 1 < n; i += 4)
8368 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8369 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8370 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8371 if (i < n)
8372 pr_err("CR3 target%u=%016lx\n",
8373 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8374 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8375 pr_err("PLE Gap=%08x Window=%08x\n",
8376 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8377 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8378 pr_err("Virtual processor ID = 0x%04x\n",
8379 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8380 }
8381
8382 /*
8383 * The guest has exited. See if we can fix it or if we need userspace
8384 * assistance.
8385 */
vmx_handle_exit(struct kvm_vcpu * vcpu)8386 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8387 {
8388 struct vcpu_vmx *vmx = to_vmx(vcpu);
8389 u32 exit_reason = vmx->exit_reason;
8390 u32 vectoring_info = vmx->idt_vectoring_info;
8391
8392 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8393
8394 /*
8395 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8396 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8397 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8398 * mode as if vcpus is in root mode, the PML buffer must has been
8399 * flushed already.
8400 */
8401 if (enable_pml)
8402 vmx_flush_pml_buffer(vcpu);
8403
8404 /* If guest state is invalid, start emulating */
8405 if (vmx->emulation_required)
8406 return handle_invalid_guest_state(vcpu);
8407
8408 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8409 nested_vmx_vmexit(vcpu, exit_reason,
8410 vmcs_read32(VM_EXIT_INTR_INFO),
8411 vmcs_readl(EXIT_QUALIFICATION));
8412 return 1;
8413 }
8414
8415 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8416 dump_vmcs();
8417 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8418 vcpu->run->fail_entry.hardware_entry_failure_reason
8419 = exit_reason;
8420 return 0;
8421 }
8422
8423 if (unlikely(vmx->fail)) {
8424 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8425 vcpu->run->fail_entry.hardware_entry_failure_reason
8426 = vmcs_read32(VM_INSTRUCTION_ERROR);
8427 return 0;
8428 }
8429
8430 /*
8431 * Note:
8432 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8433 * delivery event since it indicates guest is accessing MMIO.
8434 * The vm-exit can be triggered again after return to guest that
8435 * will cause infinite loop.
8436 */
8437 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8438 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8439 exit_reason != EXIT_REASON_EPT_VIOLATION &&
8440 exit_reason != EXIT_REASON_PML_FULL &&
8441 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8442 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8443 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8444 vcpu->run->internal.ndata = 2;
8445 vcpu->run->internal.data[0] = vectoring_info;
8446 vcpu->run->internal.data[1] = exit_reason;
8447 return 0;
8448 }
8449
8450 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8451 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
8452 get_vmcs12(vcpu))))) {
8453 if (vmx_interrupt_allowed(vcpu)) {
8454 vmx->soft_vnmi_blocked = 0;
8455 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
8456 vcpu->arch.nmi_pending) {
8457 /*
8458 * This CPU don't support us in finding the end of an
8459 * NMI-blocked window if the guest runs with IRQs
8460 * disabled. So we pull the trigger after 1 s of
8461 * futile waiting, but inform the user about this.
8462 */
8463 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8464 "state on VCPU %d after 1 s timeout\n",
8465 __func__, vcpu->vcpu_id);
8466 vmx->soft_vnmi_blocked = 0;
8467 }
8468 }
8469
8470 if (exit_reason < kvm_vmx_max_exit_handlers
8471 && kvm_vmx_exit_handlers[exit_reason])
8472 return kvm_vmx_exit_handlers[exit_reason](vcpu);
8473 else {
8474 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8475 kvm_queue_exception(vcpu, UD_VECTOR);
8476 return 1;
8477 }
8478 }
8479
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)8480 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8481 {
8482 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8483
8484 if (is_guest_mode(vcpu) &&
8485 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8486 return;
8487
8488 if (irr == -1 || tpr < irr) {
8489 vmcs_write32(TPR_THRESHOLD, 0);
8490 return;
8491 }
8492
8493 vmcs_write32(TPR_THRESHOLD, irr);
8494 }
8495
vmx_set_virtual_x2apic_mode(struct kvm_vcpu * vcpu,bool set)8496 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8497 {
8498 u32 sec_exec_control;
8499
8500 /* Postpone execution until vmcs01 is the current VMCS. */
8501 if (is_guest_mode(vcpu)) {
8502 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8503 return;
8504 }
8505
8506 if (!cpu_has_vmx_virtualize_x2apic_mode())
8507 return;
8508
8509 if (!cpu_need_tpr_shadow(vcpu))
8510 return;
8511
8512 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8513
8514 if (set) {
8515 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8516 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8517 } else {
8518 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8519 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8520 vmx_flush_tlb_ept_only(vcpu);
8521 }
8522 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8523
8524 vmx_update_msr_bitmap(vcpu);
8525 }
8526
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu,hpa_t hpa)8527 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8528 {
8529 struct vcpu_vmx *vmx = to_vmx(vcpu);
8530
8531 /*
8532 * Currently we do not handle the nested case where L2 has an
8533 * APIC access page of its own; that page is still pinned.
8534 * Hence, we skip the case where the VCPU is in guest mode _and_
8535 * L1 prepared an APIC access page for L2.
8536 *
8537 * For the case where L1 and L2 share the same APIC access page
8538 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8539 * in the vmcs12), this function will only update either the vmcs01
8540 * or the vmcs02. If the former, the vmcs02 will be updated by
8541 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8542 * the next L2->L1 exit.
8543 */
8544 if (!is_guest_mode(vcpu) ||
8545 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8546 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8547 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8548 vmx_flush_tlb_ept_only(vcpu);
8549 }
8550 }
8551
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)8552 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8553 {
8554 u16 status;
8555 u8 old;
8556
8557 if (max_isr == -1)
8558 max_isr = 0;
8559
8560 status = vmcs_read16(GUEST_INTR_STATUS);
8561 old = status >> 8;
8562 if (max_isr != old) {
8563 status &= 0xff;
8564 status |= max_isr << 8;
8565 vmcs_write16(GUEST_INTR_STATUS, status);
8566 }
8567 }
8568
vmx_set_rvi(int vector)8569 static void vmx_set_rvi(int vector)
8570 {
8571 u16 status;
8572 u8 old;
8573
8574 if (vector == -1)
8575 vector = 0;
8576
8577 status = vmcs_read16(GUEST_INTR_STATUS);
8578 old = (u8)status & 0xff;
8579 if ((u8)vector != old) {
8580 status &= ~0xff;
8581 status |= (u8)vector;
8582 vmcs_write16(GUEST_INTR_STATUS, status);
8583 }
8584 }
8585
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)8586 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8587 {
8588 if (!is_guest_mode(vcpu)) {
8589 vmx_set_rvi(max_irr);
8590 return;
8591 }
8592
8593 if (max_irr == -1)
8594 return;
8595
8596 /*
8597 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8598 * handles it.
8599 */
8600 if (nested_exit_on_intr(vcpu))
8601 return;
8602
8603 /*
8604 * Else, fall back to pre-APICv interrupt injection since L2
8605 * is run without virtual interrupt delivery.
8606 */
8607 if (!kvm_event_needs_reinjection(vcpu) &&
8608 vmx_interrupt_allowed(vcpu)) {
8609 kvm_queue_interrupt(vcpu, max_irr, false);
8610 vmx_inject_irq(vcpu);
8611 }
8612 }
8613
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)8614 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8615 {
8616 if (!kvm_vcpu_apicv_active(vcpu))
8617 return;
8618
8619 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8620 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8621 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8622 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8623 }
8624
vmx_complete_atomic_exit(struct vcpu_vmx * vmx)8625 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8626 {
8627 u32 exit_intr_info;
8628
8629 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8630 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8631 return;
8632
8633 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8634 exit_intr_info = vmx->exit_intr_info;
8635
8636 /* Handle machine checks before interrupts are enabled */
8637 if (is_machine_check(exit_intr_info))
8638 kvm_machine_check();
8639
8640 /* We need to handle NMIs before interrupts are enabled */
8641 if (is_nmi(exit_intr_info)) {
8642 kvm_before_handle_nmi(&vmx->vcpu);
8643 asm("int $2");
8644 kvm_after_handle_nmi(&vmx->vcpu);
8645 }
8646 }
8647
vmx_handle_external_intr(struct kvm_vcpu * vcpu)8648 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8649 {
8650 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8651
8652 /*
8653 * If external interrupt exists, IF bit is set in rflags/eflags on the
8654 * interrupt stack frame, and interrupt will be enabled on a return
8655 * from interrupt handler.
8656 */
8657 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8658 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8659 unsigned int vector;
8660 unsigned long entry;
8661 gate_desc *desc;
8662 struct vcpu_vmx *vmx = to_vmx(vcpu);
8663 #ifdef CONFIG_X86_64
8664 unsigned long tmp;
8665 #endif
8666
8667 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8668 desc = (gate_desc *)vmx->host_idt_base + vector;
8669 entry = gate_offset(*desc);
8670 asm volatile(
8671 #ifdef CONFIG_X86_64
8672 "mov %%" _ASM_SP ", %[sp]\n\t"
8673 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8674 "push $%c[ss]\n\t"
8675 "push %[sp]\n\t"
8676 #endif
8677 "pushf\n\t"
8678 __ASM_SIZE(push) " $%c[cs]\n\t"
8679 CALL_NOSPEC
8680 :
8681 #ifdef CONFIG_X86_64
8682 [sp]"=&r"(tmp),
8683 #endif
8684 ASM_CALL_CONSTRAINT
8685 :
8686 THUNK_TARGET(entry),
8687 [ss]"i"(__KERNEL_DS),
8688 [cs]"i"(__KERNEL_CS)
8689 );
8690 }
8691 }
8692
vmx_has_high_real_mode_segbase(void)8693 static bool vmx_has_high_real_mode_segbase(void)
8694 {
8695 return enable_unrestricted_guest || emulate_invalid_guest_state;
8696 }
8697
vmx_mpx_supported(void)8698 static bool vmx_mpx_supported(void)
8699 {
8700 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8701 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8702 }
8703
vmx_xsaves_supported(void)8704 static bool vmx_xsaves_supported(void)
8705 {
8706 return vmcs_config.cpu_based_2nd_exec_ctrl &
8707 SECONDARY_EXEC_XSAVES;
8708 }
8709
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)8710 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8711 {
8712 u32 exit_intr_info;
8713 bool unblock_nmi;
8714 u8 vector;
8715 bool idtv_info_valid;
8716
8717 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8718
8719 if (cpu_has_virtual_nmis()) {
8720 if (vmx->nmi_known_unmasked)
8721 return;
8722 /*
8723 * Can't use vmx->exit_intr_info since we're not sure what
8724 * the exit reason is.
8725 */
8726 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8727 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8728 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8729 /*
8730 * SDM 3: 27.7.1.2 (September 2008)
8731 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8732 * a guest IRET fault.
8733 * SDM 3: 23.2.2 (September 2008)
8734 * Bit 12 is undefined in any of the following cases:
8735 * If the VM exit sets the valid bit in the IDT-vectoring
8736 * information field.
8737 * If the VM exit is due to a double fault.
8738 */
8739 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8740 vector != DF_VECTOR && !idtv_info_valid)
8741 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8742 GUEST_INTR_STATE_NMI);
8743 else
8744 vmx->nmi_known_unmasked =
8745 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8746 & GUEST_INTR_STATE_NMI);
8747 } else if (unlikely(vmx->soft_vnmi_blocked))
8748 vmx->vnmi_blocked_time +=
8749 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8750 }
8751
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)8752 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8753 u32 idt_vectoring_info,
8754 int instr_len_field,
8755 int error_code_field)
8756 {
8757 u8 vector;
8758 int type;
8759 bool idtv_info_valid;
8760
8761 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8762
8763 vcpu->arch.nmi_injected = false;
8764 kvm_clear_exception_queue(vcpu);
8765 kvm_clear_interrupt_queue(vcpu);
8766
8767 if (!idtv_info_valid)
8768 return;
8769
8770 kvm_make_request(KVM_REQ_EVENT, vcpu);
8771
8772 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8773 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8774
8775 switch (type) {
8776 case INTR_TYPE_NMI_INTR:
8777 vcpu->arch.nmi_injected = true;
8778 /*
8779 * SDM 3: 27.7.1.2 (September 2008)
8780 * Clear bit "block by NMI" before VM entry if a NMI
8781 * delivery faulted.
8782 */
8783 vmx_set_nmi_mask(vcpu, false);
8784 break;
8785 case INTR_TYPE_SOFT_EXCEPTION:
8786 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8787 /* fall through */
8788 case INTR_TYPE_HARD_EXCEPTION:
8789 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8790 u32 err = vmcs_read32(error_code_field);
8791 kvm_requeue_exception_e(vcpu, vector, err);
8792 } else
8793 kvm_requeue_exception(vcpu, vector);
8794 break;
8795 case INTR_TYPE_SOFT_INTR:
8796 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8797 /* fall through */
8798 case INTR_TYPE_EXT_INTR:
8799 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8800 break;
8801 default:
8802 break;
8803 }
8804 }
8805
vmx_complete_interrupts(struct vcpu_vmx * vmx)8806 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8807 {
8808 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8809 VM_EXIT_INSTRUCTION_LEN,
8810 IDT_VECTORING_ERROR_CODE);
8811 }
8812
vmx_cancel_injection(struct kvm_vcpu * vcpu)8813 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8814 {
8815 __vmx_complete_interrupts(vcpu,
8816 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8817 VM_ENTRY_INSTRUCTION_LEN,
8818 VM_ENTRY_EXCEPTION_ERROR_CODE);
8819
8820 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8821 }
8822
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)8823 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8824 {
8825 int i, nr_msrs;
8826 struct perf_guest_switch_msr *msrs;
8827
8828 msrs = perf_guest_get_msrs(&nr_msrs);
8829
8830 if (!msrs)
8831 return;
8832
8833 for (i = 0; i < nr_msrs; i++)
8834 if (msrs[i].host == msrs[i].guest)
8835 clear_atomic_switch_msr(vmx, msrs[i].msr);
8836 else
8837 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8838 msrs[i].host);
8839 }
8840
vmx_arm_hv_timer(struct kvm_vcpu * vcpu)8841 void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
8842 {
8843 struct vcpu_vmx *vmx = to_vmx(vcpu);
8844 u64 tscl;
8845 u32 delta_tsc;
8846
8847 if (vmx->hv_deadline_tsc == -1)
8848 return;
8849
8850 tscl = rdtsc();
8851 if (vmx->hv_deadline_tsc > tscl)
8852 /* sure to be 32 bit only because checked on set_hv_timer */
8853 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8854 cpu_preemption_timer_multi);
8855 else
8856 delta_tsc = 0;
8857
8858 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8859 }
8860
vmx_vcpu_run(struct kvm_vcpu * vcpu)8861 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8862 {
8863 struct vcpu_vmx *vmx = to_vmx(vcpu);
8864 unsigned long debugctlmsr, cr4;
8865
8866 /* Record the guest's net vcpu time for enforced NMI injections. */
8867 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8868 vmx->entry_time = ktime_get();
8869
8870 /* Don't enter VMX if guest state is invalid, let the exit handler
8871 start emulation until we arrive back to a valid state */
8872 if (vmx->emulation_required)
8873 return;
8874
8875 if (vmx->ple_window_dirty) {
8876 vmx->ple_window_dirty = false;
8877 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8878 }
8879
8880 if (vmx->nested.sync_shadow_vmcs) {
8881 copy_vmcs12_to_shadow(vmx);
8882 vmx->nested.sync_shadow_vmcs = false;
8883 }
8884
8885 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8886 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8887 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8888 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8889
8890 cr4 = cr4_read_shadow();
8891 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8892 vmcs_writel(HOST_CR4, cr4);
8893 vmx->host_state.vmcs_host_cr4 = cr4;
8894 }
8895
8896 /* When single-stepping over STI and MOV SS, we must clear the
8897 * corresponding interruptibility bits in the guest state. Otherwise
8898 * vmentry fails as it then expects bit 14 (BS) in pending debug
8899 * exceptions being set, but that's not correct for the guest debugging
8900 * case. */
8901 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8902 vmx_set_interrupt_shadow(vcpu, 0);
8903
8904 if (vmx->guest_pkru_valid)
8905 __write_pkru(vmx->guest_pkru);
8906
8907 atomic_switch_perf_msrs(vmx);
8908 debugctlmsr = get_debugctlmsr();
8909
8910 vmx_arm_hv_timer(vcpu);
8911
8912 /*
8913 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
8914 * it's non-zero. Since vmentry is serialising on affected CPUs, there
8915 * is no need to worry about the conditional branch over the wrmsr
8916 * being speculatively taken.
8917 */
8918 if (vmx->spec_ctrl)
8919 native_wrmsrl(MSR_IA32_SPEC_CTRL, vmx->spec_ctrl);
8920
8921 vmx->__launched = vmx->loaded_vmcs->launched;
8922 asm(
8923 /* Store host registers */
8924 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8925 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8926 "push %%" _ASM_CX " \n\t"
8927 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8928 "je 1f \n\t"
8929 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8930 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8931 "1: \n\t"
8932 /* Reload cr2 if changed */
8933 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8934 "mov %%cr2, %%" _ASM_DX " \n\t"
8935 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8936 "je 2f \n\t"
8937 "mov %%" _ASM_AX", %%cr2 \n\t"
8938 "2: \n\t"
8939 /* Check if vmlaunch of vmresume is needed */
8940 "cmpl $0, %c[launched](%0) \n\t"
8941 /* Load guest registers. Don't clobber flags. */
8942 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8943 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8944 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8945 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8946 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8947 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8948 #ifdef CONFIG_X86_64
8949 "mov %c[r8](%0), %%r8 \n\t"
8950 "mov %c[r9](%0), %%r9 \n\t"
8951 "mov %c[r10](%0), %%r10 \n\t"
8952 "mov %c[r11](%0), %%r11 \n\t"
8953 "mov %c[r12](%0), %%r12 \n\t"
8954 "mov %c[r13](%0), %%r13 \n\t"
8955 "mov %c[r14](%0), %%r14 \n\t"
8956 "mov %c[r15](%0), %%r15 \n\t"
8957 #endif
8958 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8959
8960 /* Enter guest mode */
8961 "jne 1f \n\t"
8962 __ex(ASM_VMX_VMLAUNCH) "\n\t"
8963 "jmp 2f \n\t"
8964 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8965 "2: "
8966 /* Save guest registers, load host registers, keep flags */
8967 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8968 "pop %0 \n\t"
8969 "setbe %c[fail](%0)\n\t"
8970 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8971 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8972 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8973 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8974 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8975 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8976 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8977 #ifdef CONFIG_X86_64
8978 "mov %%r8, %c[r8](%0) \n\t"
8979 "mov %%r9, %c[r9](%0) \n\t"
8980 "mov %%r10, %c[r10](%0) \n\t"
8981 "mov %%r11, %c[r11](%0) \n\t"
8982 "mov %%r12, %c[r12](%0) \n\t"
8983 "mov %%r13, %c[r13](%0) \n\t"
8984 "mov %%r14, %c[r14](%0) \n\t"
8985 "mov %%r15, %c[r15](%0) \n\t"
8986 "xor %%r8d, %%r8d \n\t"
8987 "xor %%r9d, %%r9d \n\t"
8988 "xor %%r10d, %%r10d \n\t"
8989 "xor %%r11d, %%r11d \n\t"
8990 "xor %%r12d, %%r12d \n\t"
8991 "xor %%r13d, %%r13d \n\t"
8992 "xor %%r14d, %%r14d \n\t"
8993 "xor %%r15d, %%r15d \n\t"
8994 #endif
8995 "mov %%cr2, %%" _ASM_AX " \n\t"
8996 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8997
8998 "xor %%eax, %%eax \n\t"
8999 "xor %%ebx, %%ebx \n\t"
9000 "xor %%esi, %%esi \n\t"
9001 "xor %%edi, %%edi \n\t"
9002 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
9003 ".pushsection .rodata \n\t"
9004 ".global vmx_return \n\t"
9005 "vmx_return: " _ASM_PTR " 2b \n\t"
9006 ".popsection"
9007 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
9008 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
9009 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
9010 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
9011 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9012 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9013 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9014 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9015 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9016 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9017 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
9018 #ifdef CONFIG_X86_64
9019 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9020 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9021 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9022 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9023 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9024 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9025 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9026 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
9027 #endif
9028 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9029 [wordsize]"i"(sizeof(ulong))
9030 : "cc", "memory"
9031 #ifdef CONFIG_X86_64
9032 , "rax", "rbx", "rdi", "rsi"
9033 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
9034 #else
9035 , "eax", "ebx", "edi", "esi"
9036 #endif
9037 );
9038
9039 /*
9040 * We do not use IBRS in the kernel. If this vCPU has used the
9041 * SPEC_CTRL MSR it may have left it on; save the value and
9042 * turn it off. This is much more efficient than blindly adding
9043 * it to the atomic save/restore list. Especially as the former
9044 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
9045 *
9046 * For non-nested case:
9047 * If the L01 MSR bitmap does not intercept the MSR, then we need to
9048 * save it.
9049 *
9050 * For nested case:
9051 * If the L02 MSR bitmap does not intercept the MSR, then we need to
9052 * save it.
9053 */
9054 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
9055 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
9056
9057 if (vmx->spec_ctrl)
9058 native_wrmsrl(MSR_IA32_SPEC_CTRL, 0);
9059
9060 /* Eliminate branch target predictions from guest mode */
9061 vmexit_fill_RSB();
9062
9063 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
9064 if (debugctlmsr)
9065 update_debugctlmsr(debugctlmsr);
9066
9067 #ifndef CONFIG_X86_64
9068 /*
9069 * The sysexit path does not restore ds/es, so we must set them to
9070 * a reasonable value ourselves.
9071 *
9072 * We can't defer this to vmx_load_host_state() since that function
9073 * may be executed in interrupt context, which saves and restore segments
9074 * around it, nullifying its effect.
9075 */
9076 loadsegment(ds, __USER_DS);
9077 loadsegment(es, __USER_DS);
9078 #endif
9079
9080 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
9081 | (1 << VCPU_EXREG_RFLAGS)
9082 | (1 << VCPU_EXREG_PDPTR)
9083 | (1 << VCPU_EXREG_SEGMENTS)
9084 | (1 << VCPU_EXREG_CR3));
9085 vcpu->arch.regs_dirty = 0;
9086
9087 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
9088
9089 vmx->loaded_vmcs->launched = 1;
9090
9091 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
9092
9093 /*
9094 * eager fpu is enabled if PKEY is supported and CR4 is switched
9095 * back on host, so it is safe to read guest PKRU from current
9096 * XSAVE.
9097 */
9098 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
9099 vmx->guest_pkru = __read_pkru();
9100 if (vmx->guest_pkru != vmx->host_pkru) {
9101 vmx->guest_pkru_valid = true;
9102 __write_pkru(vmx->host_pkru);
9103 } else
9104 vmx->guest_pkru_valid = false;
9105 }
9106
9107 /*
9108 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9109 * we did not inject a still-pending event to L1 now because of
9110 * nested_run_pending, we need to re-enable this bit.
9111 */
9112 if (vmx->nested.nested_run_pending)
9113 kvm_make_request(KVM_REQ_EVENT, vcpu);
9114
9115 vmx->nested.nested_run_pending = 0;
9116
9117 vmx_complete_atomic_exit(vmx);
9118 vmx_recover_nmi_blocking(vmx);
9119 vmx_complete_interrupts(vmx);
9120 }
9121
vmx_load_vmcs01(struct kvm_vcpu * vcpu)9122 static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
9123 {
9124 struct vcpu_vmx *vmx = to_vmx(vcpu);
9125 int cpu;
9126
9127 if (vmx->loaded_vmcs == &vmx->vmcs01)
9128 return;
9129
9130 cpu = get_cpu();
9131 vmx->loaded_vmcs = &vmx->vmcs01;
9132 vmx_vcpu_put(vcpu);
9133 vmx_vcpu_load(vcpu, cpu);
9134 vcpu->cpu = cpu;
9135 put_cpu();
9136 }
9137
9138 /*
9139 * Ensure that the current vmcs of the logical processor is the
9140 * vmcs01 of the vcpu before calling free_nested().
9141 */
vmx_free_vcpu_nested(struct kvm_vcpu * vcpu)9142 static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9143 {
9144 struct vcpu_vmx *vmx = to_vmx(vcpu);
9145 int r;
9146
9147 r = vcpu_load(vcpu);
9148 BUG_ON(r);
9149 vmx_load_vmcs01(vcpu);
9150 free_nested(vmx);
9151 vcpu_put(vcpu);
9152 }
9153
vmx_free_vcpu(struct kvm_vcpu * vcpu)9154 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9155 {
9156 struct vcpu_vmx *vmx = to_vmx(vcpu);
9157
9158 if (enable_pml)
9159 vmx_destroy_pml_buffer(vmx);
9160 free_vpid(vmx->vpid);
9161 leave_guest_mode(vcpu);
9162 vmx_free_vcpu_nested(vcpu);
9163 free_loaded_vmcs(vmx->loaded_vmcs);
9164 kfree(vmx->guest_msrs);
9165 kvm_vcpu_uninit(vcpu);
9166 kmem_cache_free(kvm_vcpu_cache, vmx);
9167 }
9168
vmx_create_vcpu(struct kvm * kvm,unsigned int id)9169 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9170 {
9171 int err;
9172 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9173 unsigned long *msr_bitmap;
9174 int cpu;
9175
9176 if (!vmx)
9177 return ERR_PTR(-ENOMEM);
9178
9179 vmx->vpid = allocate_vpid();
9180
9181 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9182 if (err)
9183 goto free_vcpu;
9184
9185 err = -ENOMEM;
9186
9187 /*
9188 * If PML is turned on, failure on enabling PML just results in failure
9189 * of creating the vcpu, therefore we can simplify PML logic (by
9190 * avoiding dealing with cases, such as enabling PML partially on vcpus
9191 * for the guest, etc.
9192 */
9193 if (enable_pml) {
9194 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9195 if (!vmx->pml_pg)
9196 goto uninit_vcpu;
9197 }
9198
9199 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9200 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9201 > PAGE_SIZE);
9202
9203 if (!vmx->guest_msrs)
9204 goto free_pml;
9205
9206 if (!vmm_exclusive)
9207 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
9208 err = alloc_loaded_vmcs(&vmx->vmcs01);
9209 if (!vmm_exclusive)
9210 kvm_cpu_vmxoff();
9211 if (err < 0)
9212 goto free_msrs;
9213
9214 msr_bitmap = vmx->vmcs01.msr_bitmap;
9215 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
9216 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
9217 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
9218 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
9219 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
9220 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
9221 vmx->msr_bitmap_mode = 0;
9222
9223 vmx->loaded_vmcs = &vmx->vmcs01;
9224 cpu = get_cpu();
9225 vmx_vcpu_load(&vmx->vcpu, cpu);
9226 vmx->vcpu.cpu = cpu;
9227 err = vmx_vcpu_setup(vmx);
9228 vmx_vcpu_put(&vmx->vcpu);
9229 put_cpu();
9230 if (err)
9231 goto free_vmcs;
9232 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9233 err = alloc_apic_access_page(kvm);
9234 if (err)
9235 goto free_vmcs;
9236 }
9237
9238 if (enable_ept) {
9239 if (!kvm->arch.ept_identity_map_addr)
9240 kvm->arch.ept_identity_map_addr =
9241 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9242 err = init_rmode_identity_map(kvm);
9243 if (err)
9244 goto free_vmcs;
9245 }
9246
9247 if (nested) {
9248 nested_vmx_setup_ctls_msrs(vmx);
9249 vmx->nested.vpid02 = allocate_vpid();
9250 }
9251
9252 vmx->nested.posted_intr_nv = -1;
9253 vmx->nested.current_vmptr = -1ull;
9254 vmx->nested.current_vmcs12 = NULL;
9255
9256 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9257
9258 /*
9259 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
9260 * or POSTED_INTR_WAKEUP_VECTOR.
9261 */
9262 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
9263 vmx->pi_desc.sn = 1;
9264
9265 return &vmx->vcpu;
9266
9267 free_vmcs:
9268 free_vpid(vmx->nested.vpid02);
9269 free_loaded_vmcs(vmx->loaded_vmcs);
9270 free_msrs:
9271 kfree(vmx->guest_msrs);
9272 free_pml:
9273 vmx_destroy_pml_buffer(vmx);
9274 uninit_vcpu:
9275 kvm_vcpu_uninit(&vmx->vcpu);
9276 free_vcpu:
9277 free_vpid(vmx->vpid);
9278 kmem_cache_free(kvm_vcpu_cache, vmx);
9279 return ERR_PTR(err);
9280 }
9281
vmx_check_processor_compat(void * rtn)9282 static void __init vmx_check_processor_compat(void *rtn)
9283 {
9284 struct vmcs_config vmcs_conf;
9285
9286 *(int *)rtn = 0;
9287 if (setup_vmcs_config(&vmcs_conf) < 0)
9288 *(int *)rtn = -EIO;
9289 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9290 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9291 smp_processor_id());
9292 *(int *)rtn = -EIO;
9293 }
9294 }
9295
get_ept_level(void)9296 static int get_ept_level(void)
9297 {
9298 return VMX_EPT_DEFAULT_GAW + 1;
9299 }
9300
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)9301 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9302 {
9303 u8 cache;
9304 u64 ipat = 0;
9305
9306 /* For VT-d and EPT combination
9307 * 1. MMIO: always map as UC
9308 * 2. EPT with VT-d:
9309 * a. VT-d without snooping control feature: can't guarantee the
9310 * result, try to trust guest.
9311 * b. VT-d with snooping control feature: snooping control feature of
9312 * VT-d engine can guarantee the cache correctness. Just set it
9313 * to WB to keep consistent with host. So the same as item 3.
9314 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9315 * consistent with host MTRR
9316 */
9317 if (is_mmio) {
9318 cache = MTRR_TYPE_UNCACHABLE;
9319 goto exit;
9320 }
9321
9322 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9323 ipat = VMX_EPT_IPAT_BIT;
9324 cache = MTRR_TYPE_WRBACK;
9325 goto exit;
9326 }
9327
9328 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9329 ipat = VMX_EPT_IPAT_BIT;
9330 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9331 cache = MTRR_TYPE_WRBACK;
9332 else
9333 cache = MTRR_TYPE_UNCACHABLE;
9334 goto exit;
9335 }
9336
9337 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9338
9339 exit:
9340 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9341 }
9342
vmx_get_lpage_level(void)9343 static int vmx_get_lpage_level(void)
9344 {
9345 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9346 return PT_DIRECTORY_LEVEL;
9347 else
9348 /* For shadow and EPT supported 1GB page */
9349 return PT_PDPE_LEVEL;
9350 }
9351
vmcs_set_secondary_exec_control(u32 new_ctl)9352 static void vmcs_set_secondary_exec_control(u32 new_ctl)
9353 {
9354 /*
9355 * These bits in the secondary execution controls field
9356 * are dynamic, the others are mostly based on the hypervisor
9357 * architecture and the guest's CPUID. Do not touch the
9358 * dynamic bits.
9359 */
9360 u32 mask =
9361 SECONDARY_EXEC_SHADOW_VMCS |
9362 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9363 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9364
9365 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9366
9367 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9368 (new_ctl & ~mask) | (cur_ctl & mask));
9369 }
9370
vmx_cpuid_update(struct kvm_vcpu * vcpu)9371 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9372 {
9373 struct kvm_cpuid_entry2 *best;
9374 struct vcpu_vmx *vmx = to_vmx(vcpu);
9375 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9376
9377 if (vmx_rdtscp_supported()) {
9378 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9379 if (!rdtscp_enabled)
9380 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9381
9382 if (nested) {
9383 if (rdtscp_enabled)
9384 vmx->nested.nested_vmx_secondary_ctls_high |=
9385 SECONDARY_EXEC_RDTSCP;
9386 else
9387 vmx->nested.nested_vmx_secondary_ctls_high &=
9388 ~SECONDARY_EXEC_RDTSCP;
9389 }
9390 }
9391
9392 /* Exposing INVPCID only when PCID is exposed */
9393 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9394 if (vmx_invpcid_supported() &&
9395 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9396 !guest_cpuid_has_pcid(vcpu))) {
9397 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9398
9399 if (best)
9400 best->ebx &= ~bit(X86_FEATURE_INVPCID);
9401 }
9402
9403 if (cpu_has_secondary_exec_ctrls())
9404 vmcs_set_secondary_exec_control(secondary_exec_ctl);
9405
9406 if (nested_vmx_allowed(vcpu))
9407 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9408 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9409 else
9410 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9411 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9412 }
9413
vmx_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)9414 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9415 {
9416 if (func == 1 && nested)
9417 entry->ecx |= bit(X86_FEATURE_VMX);
9418 }
9419
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)9420 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9421 struct x86_exception *fault)
9422 {
9423 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9424 u32 exit_reason;
9425
9426 if (fault->error_code & PFERR_RSVD_MASK)
9427 exit_reason = EXIT_REASON_EPT_MISCONFIG;
9428 else
9429 exit_reason = EXIT_REASON_EPT_VIOLATION;
9430 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
9431 vmcs12->guest_physical_address = fault->address;
9432 }
9433
9434 /* Callbacks for nested_ept_init_mmu_context: */
9435
nested_ept_get_cr3(struct kvm_vcpu * vcpu)9436 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9437 {
9438 /* return the page table to be shadowed - in our case, EPT12 */
9439 return get_vmcs12(vcpu)->ept_pointer;
9440 }
9441
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)9442 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9443 {
9444 WARN_ON(mmu_is_nested(vcpu));
9445 kvm_init_shadow_ept_mmu(vcpu,
9446 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9447 VMX_EPT_EXECUTE_ONLY_BIT);
9448 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9449 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9450 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9451
9452 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
9453 }
9454
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)9455 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9456 {
9457 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9458 }
9459
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)9460 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9461 u16 error_code)
9462 {
9463 bool inequality, bit;
9464
9465 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9466 inequality =
9467 (error_code & vmcs12->page_fault_error_code_mask) !=
9468 vmcs12->page_fault_error_code_match;
9469 return inequality ^ bit;
9470 }
9471
vmx_inject_page_fault_nested(struct kvm_vcpu * vcpu,struct x86_exception * fault)9472 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9473 struct x86_exception *fault)
9474 {
9475 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9476
9477 WARN_ON(!is_guest_mode(vcpu));
9478
9479 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9480 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9481 vmcs_read32(VM_EXIT_INTR_INFO),
9482 vmcs_readl(EXIT_QUALIFICATION));
9483 else
9484 kvm_inject_page_fault(vcpu, fault);
9485 }
9486
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9487 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9488 struct vmcs12 *vmcs12)
9489 {
9490 struct vcpu_vmx *vmx = to_vmx(vcpu);
9491 int maxphyaddr = cpuid_maxphyaddr(vcpu);
9492
9493 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9494 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9495 vmcs12->apic_access_addr >> maxphyaddr)
9496 return false;
9497
9498 /*
9499 * Translate L1 physical address to host physical
9500 * address for vmcs02. Keep the page pinned, so this
9501 * physical address remains valid. We keep a reference
9502 * to it so we can release it later.
9503 */
9504 if (vmx->nested.apic_access_page) /* shouldn't happen */
9505 nested_release_page(vmx->nested.apic_access_page);
9506 vmx->nested.apic_access_page =
9507 nested_get_page(vcpu, vmcs12->apic_access_addr);
9508 }
9509
9510 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9511 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9512 vmcs12->virtual_apic_page_addr >> maxphyaddr)
9513 return false;
9514
9515 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9516 nested_release_page(vmx->nested.virtual_apic_page);
9517 vmx->nested.virtual_apic_page =
9518 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9519
9520 /*
9521 * Failing the vm entry is _not_ what the processor does
9522 * but it's basically the only possibility we have.
9523 * We could still enter the guest if CR8 load exits are
9524 * enabled, CR8 store exits are enabled, and virtualize APIC
9525 * access is disabled; in this case the processor would never
9526 * use the TPR shadow and we could simply clear the bit from
9527 * the execution control. But such a configuration is useless,
9528 * so let's keep the code simple.
9529 */
9530 if (!vmx->nested.virtual_apic_page)
9531 return false;
9532 }
9533
9534 if (nested_cpu_has_posted_intr(vmcs12)) {
9535 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9536 vmcs12->posted_intr_desc_addr >> maxphyaddr)
9537 return false;
9538
9539 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9540 kunmap(vmx->nested.pi_desc_page);
9541 nested_release_page(vmx->nested.pi_desc_page);
9542 }
9543 vmx->nested.pi_desc_page =
9544 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9545 if (!vmx->nested.pi_desc_page)
9546 return false;
9547
9548 vmx->nested.pi_desc =
9549 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9550 if (!vmx->nested.pi_desc) {
9551 nested_release_page_clean(vmx->nested.pi_desc_page);
9552 return false;
9553 }
9554 vmx->nested.pi_desc =
9555 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9556 (unsigned long)(vmcs12->posted_intr_desc_addr &
9557 (PAGE_SIZE - 1)));
9558 }
9559
9560 return true;
9561 }
9562
vmx_start_preemption_timer(struct kvm_vcpu * vcpu)9563 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9564 {
9565 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9566 struct vcpu_vmx *vmx = to_vmx(vcpu);
9567
9568 if (vcpu->arch.virtual_tsc_khz == 0)
9569 return;
9570
9571 /* Make sure short timeouts reliably trigger an immediate vmexit.
9572 * hrtimer_start does not guarantee this. */
9573 if (preemption_timeout <= 1) {
9574 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9575 return;
9576 }
9577
9578 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9579 preemption_timeout *= 1000000;
9580 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9581 hrtimer_start(&vmx->nested.preemption_timer,
9582 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9583 }
9584
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9585 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9586 struct vmcs12 *vmcs12)
9587 {
9588 int maxphyaddr;
9589 u64 addr;
9590
9591 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9592 return 0;
9593
9594 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9595 WARN_ON(1);
9596 return -EINVAL;
9597 }
9598 maxphyaddr = cpuid_maxphyaddr(vcpu);
9599
9600 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9601 ((addr + PAGE_SIZE) >> maxphyaddr))
9602 return -EINVAL;
9603
9604 return 0;
9605 }
9606
9607 /*
9608 * Merge L0's and L1's MSR bitmap, return false to indicate that
9609 * we do not use the hardware.
9610 */
nested_vmx_merge_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9611 static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9612 struct vmcs12 *vmcs12)
9613 {
9614 int msr;
9615 struct page *page;
9616 unsigned long *msr_bitmap_l1;
9617 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
9618 /*
9619 * pred_cmd & spec_ctrl are trying to verify two things:
9620 *
9621 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
9622 * ensures that we do not accidentally generate an L02 MSR bitmap
9623 * from the L12 MSR bitmap that is too permissive.
9624 * 2. That L1 or L2s have actually used the MSR. This avoids
9625 * unnecessarily merging of the bitmap if the MSR is unused. This
9626 * works properly because we only update the L01 MSR bitmap lazily.
9627 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
9628 * updated to reflect this when L1 (or its L2s) actually write to
9629 * the MSR.
9630 */
9631 bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
9632 bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
9633
9634 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9635 !pred_cmd && !spec_ctrl)
9636 return false;
9637
9638 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9639 if (!page)
9640 return false;
9641 msr_bitmap_l1 = (unsigned long *)kmap(page);
9642
9643 memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9644
9645 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9646 if (nested_cpu_has_apic_reg_virt(vmcs12))
9647 for (msr = 0x800; msr <= 0x8ff; msr++)
9648 nested_vmx_disable_intercept_for_msr(
9649 msr_bitmap_l1, msr_bitmap_l0,
9650 msr, MSR_TYPE_R);
9651
9652 nested_vmx_disable_intercept_for_msr(
9653 msr_bitmap_l1, msr_bitmap_l0,
9654 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9655 MSR_TYPE_R | MSR_TYPE_W);
9656
9657 if (nested_cpu_has_vid(vmcs12)) {
9658 nested_vmx_disable_intercept_for_msr(
9659 msr_bitmap_l1, msr_bitmap_l0,
9660 APIC_BASE_MSR + (APIC_EOI >> 4),
9661 MSR_TYPE_W);
9662 nested_vmx_disable_intercept_for_msr(
9663 msr_bitmap_l1, msr_bitmap_l0,
9664 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9665 MSR_TYPE_W);
9666 }
9667 }
9668
9669 if (spec_ctrl)
9670 nested_vmx_disable_intercept_for_msr(
9671 msr_bitmap_l1, msr_bitmap_l0,
9672 MSR_IA32_SPEC_CTRL,
9673 MSR_TYPE_R | MSR_TYPE_W);
9674
9675 if (pred_cmd)
9676 nested_vmx_disable_intercept_for_msr(
9677 msr_bitmap_l1, msr_bitmap_l0,
9678 MSR_IA32_PRED_CMD,
9679 MSR_TYPE_W);
9680
9681 kunmap(page);
9682 nested_release_page_clean(page);
9683
9684 return true;
9685 }
9686
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9687 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9688 struct vmcs12 *vmcs12)
9689 {
9690 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9691 !nested_cpu_has_apic_reg_virt(vmcs12) &&
9692 !nested_cpu_has_vid(vmcs12) &&
9693 !nested_cpu_has_posted_intr(vmcs12))
9694 return 0;
9695
9696 /*
9697 * If virtualize x2apic mode is enabled,
9698 * virtualize apic access must be disabled.
9699 */
9700 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9701 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9702 return -EINVAL;
9703
9704 /*
9705 * If virtual interrupt delivery is enabled,
9706 * we must exit on external interrupts.
9707 */
9708 if (nested_cpu_has_vid(vmcs12) &&
9709 !nested_exit_on_intr(vcpu))
9710 return -EINVAL;
9711
9712 /*
9713 * bits 15:8 should be zero in posted_intr_nv,
9714 * the descriptor address has been already checked
9715 * in nested_get_vmcs12_pages.
9716 */
9717 if (nested_cpu_has_posted_intr(vmcs12) &&
9718 (!nested_cpu_has_vid(vmcs12) ||
9719 !nested_exit_intr_ack_set(vcpu) ||
9720 vmcs12->posted_intr_nv & 0xff00))
9721 return -EINVAL;
9722
9723 /* tpr shadow is needed by all apicv features. */
9724 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9725 return -EINVAL;
9726
9727 return 0;
9728 }
9729
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,unsigned long count_field,unsigned long addr_field)9730 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9731 unsigned long count_field,
9732 unsigned long addr_field)
9733 {
9734 int maxphyaddr;
9735 u64 count, addr;
9736
9737 if (vmcs12_read_any(vcpu, count_field, &count) ||
9738 vmcs12_read_any(vcpu, addr_field, &addr)) {
9739 WARN_ON(1);
9740 return -EINVAL;
9741 }
9742 if (count == 0)
9743 return 0;
9744 maxphyaddr = cpuid_maxphyaddr(vcpu);
9745 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9746 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9747 pr_debug_ratelimited(
9748 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9749 addr_field, maxphyaddr, count, addr);
9750 return -EINVAL;
9751 }
9752 return 0;
9753 }
9754
nested_vmx_check_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9755 static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9756 struct vmcs12 *vmcs12)
9757 {
9758 if (vmcs12->vm_exit_msr_load_count == 0 &&
9759 vmcs12->vm_exit_msr_store_count == 0 &&
9760 vmcs12->vm_entry_msr_load_count == 0)
9761 return 0; /* Fast path */
9762 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9763 VM_EXIT_MSR_LOAD_ADDR) ||
9764 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9765 VM_EXIT_MSR_STORE_ADDR) ||
9766 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9767 VM_ENTRY_MSR_LOAD_ADDR))
9768 return -EINVAL;
9769 return 0;
9770 }
9771
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)9772 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9773 struct vmx_msr_entry *e)
9774 {
9775 /* x2APIC MSR accesses are not allowed */
9776 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9777 return -EINVAL;
9778 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9779 e->index == MSR_IA32_UCODE_REV)
9780 return -EINVAL;
9781 if (e->reserved != 0)
9782 return -EINVAL;
9783 return 0;
9784 }
9785
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)9786 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9787 struct vmx_msr_entry *e)
9788 {
9789 if (e->index == MSR_FS_BASE ||
9790 e->index == MSR_GS_BASE ||
9791 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9792 nested_vmx_msr_check_common(vcpu, e))
9793 return -EINVAL;
9794 return 0;
9795 }
9796
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)9797 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9798 struct vmx_msr_entry *e)
9799 {
9800 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9801 nested_vmx_msr_check_common(vcpu, e))
9802 return -EINVAL;
9803 return 0;
9804 }
9805
9806 /*
9807 * Load guest's/host's msr at nested entry/exit.
9808 * return 0 for success, entry index for failure.
9809 */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)9810 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9811 {
9812 u32 i;
9813 struct vmx_msr_entry e;
9814 struct msr_data msr;
9815
9816 msr.host_initiated = false;
9817 for (i = 0; i < count; i++) {
9818 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9819 &e, sizeof(e))) {
9820 pr_debug_ratelimited(
9821 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9822 __func__, i, gpa + i * sizeof(e));
9823 goto fail;
9824 }
9825 if (nested_vmx_load_msr_check(vcpu, &e)) {
9826 pr_debug_ratelimited(
9827 "%s check failed (%u, 0x%x, 0x%x)\n",
9828 __func__, i, e.index, e.reserved);
9829 goto fail;
9830 }
9831 msr.index = e.index;
9832 msr.data = e.value;
9833 if (kvm_set_msr(vcpu, &msr)) {
9834 pr_debug_ratelimited(
9835 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9836 __func__, i, e.index, e.value);
9837 goto fail;
9838 }
9839 }
9840 return 0;
9841 fail:
9842 return i + 1;
9843 }
9844
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)9845 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9846 {
9847 u32 i;
9848 struct vmx_msr_entry e;
9849
9850 for (i = 0; i < count; i++) {
9851 struct msr_data msr_info;
9852 if (kvm_vcpu_read_guest(vcpu,
9853 gpa + i * sizeof(e),
9854 &e, 2 * sizeof(u32))) {
9855 pr_debug_ratelimited(
9856 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9857 __func__, i, gpa + i * sizeof(e));
9858 return -EINVAL;
9859 }
9860 if (nested_vmx_store_msr_check(vcpu, &e)) {
9861 pr_debug_ratelimited(
9862 "%s check failed (%u, 0x%x, 0x%x)\n",
9863 __func__, i, e.index, e.reserved);
9864 return -EINVAL;
9865 }
9866 msr_info.host_initiated = false;
9867 msr_info.index = e.index;
9868 if (kvm_get_msr(vcpu, &msr_info)) {
9869 pr_debug_ratelimited(
9870 "%s cannot read MSR (%u, 0x%x)\n",
9871 __func__, i, e.index);
9872 return -EINVAL;
9873 }
9874 if (kvm_vcpu_write_guest(vcpu,
9875 gpa + i * sizeof(e) +
9876 offsetof(struct vmx_msr_entry, value),
9877 &msr_info.data, sizeof(msr_info.data))) {
9878 pr_debug_ratelimited(
9879 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9880 __func__, i, e.index, msr_info.data);
9881 return -EINVAL;
9882 }
9883 }
9884 return 0;
9885 }
9886
9887 /*
9888 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9889 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9890 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9891 * guest in a way that will both be appropriate to L1's requests, and our
9892 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9893 * function also has additional necessary side-effects, like setting various
9894 * vcpu->arch fields.
9895 */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)9896 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9897 {
9898 struct vcpu_vmx *vmx = to_vmx(vcpu);
9899 u32 exec_control;
9900
9901 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9902 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9903 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9904 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9905 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9906 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9907 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9908 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9909 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9910 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9911 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9912 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9913 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9914 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9915 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9916 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9917 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9918 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9919 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9920 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9921 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9922 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9923 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9924 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9925 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9926 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9927 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9928 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9929 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9930 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9931 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9932 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9933 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9934 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9935 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9936 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9937
9938 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9939 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9940 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9941 } else {
9942 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9943 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9944 }
9945 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9946 vmcs12->vm_entry_intr_info_field);
9947 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9948 vmcs12->vm_entry_exception_error_code);
9949 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9950 vmcs12->vm_entry_instruction_len);
9951 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9952 vmcs12->guest_interruptibility_info);
9953 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9954 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9955 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9956 vmcs12->guest_pending_dbg_exceptions);
9957 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9958 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9959
9960 if (nested_cpu_has_xsaves(vmcs12))
9961 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9962 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9963
9964 exec_control = vmcs12->pin_based_vm_exec_control;
9965
9966 /* Preemption timer setting is only taken from vmcs01. */
9967 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9968 exec_control |= vmcs_config.pin_based_exec_ctrl;
9969 if (vmx->hv_deadline_tsc == -1)
9970 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9971
9972 /* Posted interrupts setting is only taken from vmcs12. */
9973 if (nested_cpu_has_posted_intr(vmcs12)) {
9974 /*
9975 * Note that we use L0's vector here and in
9976 * vmx_deliver_nested_posted_interrupt.
9977 */
9978 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9979 vmx->nested.pi_pending = false;
9980 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9981 vmcs_write64(POSTED_INTR_DESC_ADDR,
9982 page_to_phys(vmx->nested.pi_desc_page) +
9983 (unsigned long)(vmcs12->posted_intr_desc_addr &
9984 (PAGE_SIZE - 1)));
9985 } else
9986 exec_control &= ~PIN_BASED_POSTED_INTR;
9987
9988 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9989
9990 vmx->nested.preemption_timer_expired = false;
9991 if (nested_cpu_has_preemption_timer(vmcs12))
9992 vmx_start_preemption_timer(vcpu);
9993
9994 /*
9995 * Whether page-faults are trapped is determined by a combination of
9996 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9997 * If enable_ept, L0 doesn't care about page faults and we should
9998 * set all of these to L1's desires. However, if !enable_ept, L0 does
9999 * care about (at least some) page faults, and because it is not easy
10000 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10001 * to exit on each and every L2 page fault. This is done by setting
10002 * MASK=MATCH=0 and (see below) EB.PF=1.
10003 * Note that below we don't need special code to set EB.PF beyond the
10004 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10005 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10006 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10007 *
10008 * A problem with this approach (when !enable_ept) is that L1 may be
10009 * injected with more page faults than it asked for. This could have
10010 * caused problems, but in practice existing hypervisors don't care.
10011 * To fix this, we will need to emulate the PFEC checking (on the L1
10012 * page tables), using walk_addr(), when injecting PFs to L1.
10013 */
10014 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10015 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10016 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10017 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10018
10019 if (cpu_has_secondary_exec_ctrls()) {
10020 exec_control = vmx_secondary_exec_control(vmx);
10021
10022 /* Take the following fields only from vmcs12 */
10023 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10024 SECONDARY_EXEC_RDTSCP |
10025 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
10026 SECONDARY_EXEC_APIC_REGISTER_VIRT);
10027 if (nested_cpu_has(vmcs12,
10028 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
10029 exec_control |= vmcs12->secondary_vm_exec_control;
10030
10031 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
10032 /*
10033 * If translation failed, no matter: This feature asks
10034 * to exit when accessing the given address, and if it
10035 * can never be accessed, this feature won't do
10036 * anything anyway.
10037 */
10038 if (!vmx->nested.apic_access_page)
10039 exec_control &=
10040 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
10041 else
10042 vmcs_write64(APIC_ACCESS_ADDR,
10043 page_to_phys(vmx->nested.apic_access_page));
10044 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
10045 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
10046 exec_control |=
10047 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
10048 kvm_vcpu_reload_apic_access_page(vcpu);
10049 }
10050
10051 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
10052 vmcs_write64(EOI_EXIT_BITMAP0,
10053 vmcs12->eoi_exit_bitmap0);
10054 vmcs_write64(EOI_EXIT_BITMAP1,
10055 vmcs12->eoi_exit_bitmap1);
10056 vmcs_write64(EOI_EXIT_BITMAP2,
10057 vmcs12->eoi_exit_bitmap2);
10058 vmcs_write64(EOI_EXIT_BITMAP3,
10059 vmcs12->eoi_exit_bitmap3);
10060 vmcs_write16(GUEST_INTR_STATUS,
10061 vmcs12->guest_intr_status);
10062 }
10063
10064 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
10065 }
10066
10067
10068 /*
10069 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10070 * Some constant fields are set here by vmx_set_constant_host_state().
10071 * Other fields are different per CPU, and will be set later when
10072 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10073 */
10074 vmx_set_constant_host_state(vmx);
10075
10076 /*
10077 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
10078 * entry, but only if the current (host) sp changed from the value
10079 * we wrote last (vmx->host_rsp). This cache is no longer relevant
10080 * if we switch vmcs, and rather than hold a separate cache per vmcs,
10081 * here we just force the write to happen on entry.
10082 */
10083 vmx->host_rsp = 0;
10084
10085 exec_control = vmx_exec_control(vmx); /* L0's desires */
10086 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
10087 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
10088 exec_control &= ~CPU_BASED_TPR_SHADOW;
10089 exec_control |= vmcs12->cpu_based_vm_exec_control;
10090
10091 if (exec_control & CPU_BASED_TPR_SHADOW) {
10092 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
10093 page_to_phys(vmx->nested.virtual_apic_page));
10094 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
10095 } else {
10096 #ifdef CONFIG_X86_64
10097 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
10098 CPU_BASED_CR8_STORE_EXITING;
10099 #endif
10100 }
10101
10102 if (cpu_has_vmx_msr_bitmap() &&
10103 exec_control & CPU_BASED_USE_MSR_BITMAPS &&
10104 nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
10105 ; /* MSR_BITMAP will be set by following vmx_set_efer. */
10106 else
10107 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
10108
10109 /*
10110 * Merging of IO bitmap not currently supported.
10111 * Rather, exit every time.
10112 */
10113 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
10114 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
10115
10116 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
10117
10118 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
10119 * bitwise-or of what L1 wants to trap for L2, and what we want to
10120 * trap. Note that CR0.TS also needs updating - we do this later.
10121 */
10122 update_exception_bitmap(vcpu);
10123 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
10124 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10125
10126 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
10127 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
10128 * bits are further modified by vmx_set_efer() below.
10129 */
10130 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
10131
10132 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
10133 * emulated by vmx_set_efer(), below.
10134 */
10135 vm_entry_controls_init(vmx,
10136 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
10137 ~VM_ENTRY_IA32E_MODE) |
10138 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
10139
10140 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
10141 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
10142 vcpu->arch.pat = vmcs12->guest_ia32_pat;
10143 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
10144 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
10145
10146
10147 set_cr4_guest_host_mask(vmx);
10148
10149 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
10150 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10151
10152 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10153 vmcs_write64(TSC_OFFSET,
10154 vcpu->arch.tsc_offset + vmcs12->tsc_offset);
10155 else
10156 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10157 if (kvm_has_tsc_control)
10158 decache_tsc_multiplier(vmx);
10159
10160 if (cpu_has_vmx_msr_bitmap())
10161 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
10162
10163 if (enable_vpid) {
10164 /*
10165 * There is no direct mapping between vpid02 and vpid12, the
10166 * vpid02 is per-vCPU for L0 and reused while the value of
10167 * vpid12 is changed w/ one invvpid during nested vmentry.
10168 * The vpid12 is allocated by L1 for L2, so it will not
10169 * influence global bitmap(for vpid01 and vpid02 allocation)
10170 * even if spawn a lot of nested vCPUs.
10171 */
10172 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10173 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10174 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10175 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10176 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10177 }
10178 } else {
10179 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10180 vmx_flush_tlb(vcpu);
10181 }
10182
10183 }
10184
10185 if (enable_pml) {
10186 /*
10187 * Conceptually we want to copy the PML address and index from
10188 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
10189 * since we always flush the log on each vmexit, this happens
10190 * to be equivalent to simply resetting the fields in vmcs02.
10191 */
10192 ASSERT(vmx->pml_pg);
10193 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
10194 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
10195 }
10196
10197 if (nested_cpu_has_ept(vmcs12)) {
10198 kvm_mmu_unload(vcpu);
10199 nested_ept_init_mmu_context(vcpu);
10200 } else if (nested_cpu_has2(vmcs12,
10201 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10202 vmx_flush_tlb_ept_only(vcpu);
10203 }
10204
10205 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
10206 vcpu->arch.efer = vmcs12->guest_ia32_efer;
10207 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10208 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10209 else
10210 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10211 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10212 vmx_set_efer(vcpu, vcpu->arch.efer);
10213
10214 /*
10215 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
10216 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
10217 * The CR0_READ_SHADOW is what L2 should have expected to read given
10218 * the specifications by L1; It's not enough to take
10219 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10220 * have more bits than L1 expected.
10221 */
10222 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10223 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10224
10225 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10226 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10227
10228 /* shadow page tables on either EPT or shadow page tables */
10229 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
10230 kvm_mmu_reset_context(vcpu);
10231
10232 if (!enable_ept)
10233 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10234
10235 /*
10236 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10237 */
10238 if (enable_ept) {
10239 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10240 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10241 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10242 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10243 }
10244
10245 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10246 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10247 }
10248
10249 /*
10250 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10251 * for running an L2 nested guest.
10252 */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)10253 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10254 {
10255 struct vmcs12 *vmcs12;
10256 struct vcpu_vmx *vmx = to_vmx(vcpu);
10257 int cpu;
10258 bool ia32e;
10259 u32 msr_entry_idx;
10260
10261 if (!nested_vmx_check_permission(vcpu) ||
10262 !nested_vmx_check_vmcs12(vcpu))
10263 return 1;
10264
10265 skip_emulated_instruction(vcpu);
10266 vmcs12 = get_vmcs12(vcpu);
10267
10268 if (enable_shadow_vmcs)
10269 copy_shadow_to_vmcs12(vmx);
10270
10271 /*
10272 * The nested entry process starts with enforcing various prerequisites
10273 * on vmcs12 as required by the Intel SDM, and act appropriately when
10274 * they fail: As the SDM explains, some conditions should cause the
10275 * instruction to fail, while others will cause the instruction to seem
10276 * to succeed, but return an EXIT_REASON_INVALID_STATE.
10277 * To speed up the normal (success) code path, we should avoid checking
10278 * for misconfigurations which will anyway be caught by the processor
10279 * when using the merged vmcs02.
10280 */
10281 if (vmcs12->launch_state == launch) {
10282 nested_vmx_failValid(vcpu,
10283 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10284 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10285 return 1;
10286 }
10287
10288 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10289 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
10290 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10291 return 1;
10292 }
10293
10294 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
10295 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10296 return 1;
10297 }
10298
10299 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
10300 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10301 return 1;
10302 }
10303
10304 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
10305 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10306 return 1;
10307 }
10308
10309 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
10310 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10311 return 1;
10312 }
10313
10314 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10315 vmx->nested.nested_vmx_true_procbased_ctls_low,
10316 vmx->nested.nested_vmx_procbased_ctls_high) ||
10317 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10318 vmx->nested.nested_vmx_secondary_ctls_low,
10319 vmx->nested.nested_vmx_secondary_ctls_high) ||
10320 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10321 vmx->nested.nested_vmx_pinbased_ctls_low,
10322 vmx->nested.nested_vmx_pinbased_ctls_high) ||
10323 !vmx_control_verify(vmcs12->vm_exit_controls,
10324 vmx->nested.nested_vmx_true_exit_ctls_low,
10325 vmx->nested.nested_vmx_exit_ctls_high) ||
10326 !vmx_control_verify(vmcs12->vm_entry_controls,
10327 vmx->nested.nested_vmx_true_entry_ctls_low,
10328 vmx->nested.nested_vmx_entry_ctls_high))
10329 {
10330 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10331 return 1;
10332 }
10333
10334 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
10335 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
10336 nested_vmx_failValid(vcpu,
10337 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
10338 return 1;
10339 }
10340
10341 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10342 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
10343 nested_vmx_entry_failure(vcpu, vmcs12,
10344 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10345 return 1;
10346 }
10347 if (vmcs12->vmcs_link_pointer != -1ull) {
10348 nested_vmx_entry_failure(vcpu, vmcs12,
10349 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
10350 return 1;
10351 }
10352
10353 /*
10354 * If the load IA32_EFER VM-entry control is 1, the following checks
10355 * are performed on the field for the IA32_EFER MSR:
10356 * - Bits reserved in the IA32_EFER MSR must be 0.
10357 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10358 * the IA-32e mode guest VM-exit control. It must also be identical
10359 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10360 * CR0.PG) is 1.
10361 */
10362 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
10363 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10364 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10365 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10366 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10367 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
10368 nested_vmx_entry_failure(vcpu, vmcs12,
10369 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10370 return 1;
10371 }
10372 }
10373
10374 /*
10375 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10376 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10377 * the values of the LMA and LME bits in the field must each be that of
10378 * the host address-space size VM-exit control.
10379 */
10380 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10381 ia32e = (vmcs12->vm_exit_controls &
10382 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10383 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10384 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10385 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
10386 nested_vmx_entry_failure(vcpu, vmcs12,
10387 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10388 return 1;
10389 }
10390 }
10391
10392 /*
10393 * We're finally done with prerequisite checking, and can start with
10394 * the nested entry.
10395 */
10396
10397 enter_guest_mode(vcpu);
10398
10399 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10400 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10401
10402 cpu = get_cpu();
10403 vmx->loaded_vmcs = &vmx->nested.vmcs02;
10404 vmx_vcpu_put(vcpu);
10405 vmx_vcpu_load(vcpu, cpu);
10406 vcpu->cpu = cpu;
10407 put_cpu();
10408
10409 vmx_segment_cache_clear(vmx);
10410
10411 prepare_vmcs02(vcpu, vmcs12);
10412
10413 msr_entry_idx = nested_vmx_load_msr(vcpu,
10414 vmcs12->vm_entry_msr_load_addr,
10415 vmcs12->vm_entry_msr_load_count);
10416 if (msr_entry_idx) {
10417 leave_guest_mode(vcpu);
10418 vmx_load_vmcs01(vcpu);
10419 nested_vmx_entry_failure(vcpu, vmcs12,
10420 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10421 return 1;
10422 }
10423
10424 vmcs12->launch_state = 1;
10425
10426 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10427 return kvm_vcpu_halt(vcpu);
10428
10429 vmx->nested.nested_run_pending = 1;
10430
10431 /*
10432 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10433 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10434 * returned as far as L1 is concerned. It will only return (and set
10435 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10436 */
10437 return 1;
10438 }
10439
10440 /*
10441 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10442 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10443 * This function returns the new value we should put in vmcs12.guest_cr0.
10444 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10445 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10446 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10447 * didn't trap the bit, because if L1 did, so would L0).
10448 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10449 * been modified by L2, and L1 knows it. So just leave the old value of
10450 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10451 * isn't relevant, because if L0 traps this bit it can set it to anything.
10452 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10453 * changed these bits, and therefore they need to be updated, but L0
10454 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10455 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10456 */
10457 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10458 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10459 {
10460 return
10461 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10462 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10463 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10464 vcpu->arch.cr0_guest_owned_bits));
10465 }
10466
10467 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10468 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10469 {
10470 return
10471 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10472 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10473 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10474 vcpu->arch.cr4_guest_owned_bits));
10475 }
10476
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10477 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10478 struct vmcs12 *vmcs12)
10479 {
10480 u32 idt_vectoring;
10481 unsigned int nr;
10482
10483 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10484 nr = vcpu->arch.exception.nr;
10485 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10486
10487 if (kvm_exception_is_soft(nr)) {
10488 vmcs12->vm_exit_instruction_len =
10489 vcpu->arch.event_exit_inst_len;
10490 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10491 } else
10492 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10493
10494 if (vcpu->arch.exception.has_error_code) {
10495 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10496 vmcs12->idt_vectoring_error_code =
10497 vcpu->arch.exception.error_code;
10498 }
10499
10500 vmcs12->idt_vectoring_info_field = idt_vectoring;
10501 } else if (vcpu->arch.nmi_injected) {
10502 vmcs12->idt_vectoring_info_field =
10503 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10504 } else if (vcpu->arch.interrupt.pending) {
10505 nr = vcpu->arch.interrupt.nr;
10506 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10507
10508 if (vcpu->arch.interrupt.soft) {
10509 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10510 vmcs12->vm_entry_instruction_len =
10511 vcpu->arch.event_exit_inst_len;
10512 } else
10513 idt_vectoring |= INTR_TYPE_EXT_INTR;
10514
10515 vmcs12->idt_vectoring_info_field = idt_vectoring;
10516 }
10517 }
10518
vmx_check_nested_events(struct kvm_vcpu * vcpu,bool external_intr)10519 static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10520 {
10521 struct vcpu_vmx *vmx = to_vmx(vcpu);
10522
10523 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10524 vmx->nested.preemption_timer_expired) {
10525 if (vmx->nested.nested_run_pending)
10526 return -EBUSY;
10527 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10528 return 0;
10529 }
10530
10531 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10532 if (vmx->nested.nested_run_pending ||
10533 vcpu->arch.interrupt.pending)
10534 return -EBUSY;
10535 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10536 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10537 INTR_INFO_VALID_MASK, 0);
10538 /*
10539 * The NMI-triggered VM exit counts as injection:
10540 * clear this one and block further NMIs.
10541 */
10542 vcpu->arch.nmi_pending = 0;
10543 vmx_set_nmi_mask(vcpu, true);
10544 return 0;
10545 }
10546
10547 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10548 nested_exit_on_intr(vcpu)) {
10549 if (vmx->nested.nested_run_pending)
10550 return -EBUSY;
10551 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10552 return 0;
10553 }
10554
10555 vmx_complete_nested_posted_interrupt(vcpu);
10556 return 0;
10557 }
10558
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)10559 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10560 {
10561 ktime_t remaining =
10562 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10563 u64 value;
10564
10565 if (ktime_to_ns(remaining) <= 0)
10566 return 0;
10567
10568 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10569 do_div(value, 1000000);
10570 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10571 }
10572
10573 /*
10574 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10575 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10576 * and this function updates it to reflect the changes to the guest state while
10577 * L2 was running (and perhaps made some exits which were handled directly by L0
10578 * without going back to L1), and to reflect the exit reason.
10579 * Note that we do not have to copy here all VMCS fields, just those that
10580 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10581 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10582 * which already writes to vmcs12 directly.
10583 */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason,u32 exit_intr_info,unsigned long exit_qualification)10584 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10585 u32 exit_reason, u32 exit_intr_info,
10586 unsigned long exit_qualification)
10587 {
10588 /* update guest state fields: */
10589 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10590 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10591
10592 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10593 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10594 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10595
10596 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10597 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10598 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10599 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10600 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10601 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10602 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10603 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10604 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10605 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10606 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10607 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10608 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10609 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10610 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10611 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10612 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10613 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10614 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10615 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10616 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10617 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10618 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10619 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10620 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10621 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10622 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10623 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10624 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10625 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10626 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10627 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10628 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10629 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10630 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10631 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10632
10633 vmcs12->guest_interruptibility_info =
10634 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10635 vmcs12->guest_pending_dbg_exceptions =
10636 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10637 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10638 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10639 else
10640 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10641
10642 if (nested_cpu_has_preemption_timer(vmcs12)) {
10643 if (vmcs12->vm_exit_controls &
10644 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10645 vmcs12->vmx_preemption_timer_value =
10646 vmx_get_preemption_timer_value(vcpu);
10647 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10648 }
10649
10650 /*
10651 * In some cases (usually, nested EPT), L2 is allowed to change its
10652 * own CR3 without exiting. If it has changed it, we must keep it.
10653 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10654 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10655 *
10656 * Additionally, restore L2's PDPTR to vmcs12.
10657 */
10658 if (enable_ept) {
10659 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10660 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10661 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10662 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10663 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10664 }
10665
10666 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
10667
10668 if (nested_cpu_has_vid(vmcs12))
10669 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10670
10671 vmcs12->vm_entry_controls =
10672 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10673 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10674
10675 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10676 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10677 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10678 }
10679
10680 /* TODO: These cannot have changed unless we have MSR bitmaps and
10681 * the relevant bit asks not to trap the change */
10682 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10683 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10684 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10685 vmcs12->guest_ia32_efer = vcpu->arch.efer;
10686 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10687 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10688 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10689 if (kvm_mpx_supported())
10690 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10691 if (nested_cpu_has_xsaves(vmcs12))
10692 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10693
10694 /* update exit information fields: */
10695
10696 vmcs12->vm_exit_reason = exit_reason;
10697 vmcs12->exit_qualification = exit_qualification;
10698
10699 vmcs12->vm_exit_intr_info = exit_intr_info;
10700 if ((vmcs12->vm_exit_intr_info &
10701 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10702 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10703 vmcs12->vm_exit_intr_error_code =
10704 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10705 vmcs12->idt_vectoring_info_field = 0;
10706 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10707 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10708
10709 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10710 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10711 * instead of reading the real value. */
10712 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10713
10714 /*
10715 * Transfer the event that L0 or L1 may wanted to inject into
10716 * L2 to IDT_VECTORING_INFO_FIELD.
10717 */
10718 vmcs12_save_pending_event(vcpu, vmcs12);
10719 }
10720
10721 /*
10722 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10723 * preserved above and would only end up incorrectly in L1.
10724 */
10725 vcpu->arch.nmi_injected = false;
10726 kvm_clear_exception_queue(vcpu);
10727 kvm_clear_interrupt_queue(vcpu);
10728 }
10729
10730 /*
10731 * A part of what we need to when the nested L2 guest exits and we want to
10732 * run its L1 parent, is to reset L1's guest state to the host state specified
10733 * in vmcs12.
10734 * This function is to be called not only on normal nested exit, but also on
10735 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10736 * Failures During or After Loading Guest State").
10737 * This function should be called when the active VMCS is L1's (vmcs01).
10738 */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)10739 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10740 struct vmcs12 *vmcs12)
10741 {
10742 struct kvm_segment seg;
10743
10744 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10745 vcpu->arch.efer = vmcs12->host_ia32_efer;
10746 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10747 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10748 else
10749 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10750 vmx_set_efer(vcpu, vcpu->arch.efer);
10751
10752 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10753 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10754 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10755 /*
10756 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10757 * actually changed, because it depends on the current state of
10758 * fpu_active (which may have changed).
10759 * Note that vmx_set_cr0 refers to efer set above.
10760 */
10761 vmx_set_cr0(vcpu, vmcs12->host_cr0);
10762 /*
10763 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10764 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10765 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10766 */
10767 update_exception_bitmap(vcpu);
10768 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10769 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10770
10771 /*
10772 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10773 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10774 */
10775 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10776 vmx_set_cr4(vcpu, vmcs12->host_cr4);
10777
10778 nested_ept_uninit_mmu_context(vcpu);
10779
10780 kvm_set_cr3(vcpu, vmcs12->host_cr3);
10781 kvm_mmu_reset_context(vcpu);
10782
10783 if (!enable_ept)
10784 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10785
10786 if (enable_vpid) {
10787 /*
10788 * Trivially support vpid by letting L2s share their parent
10789 * L1's vpid. TODO: move to a more elaborate solution, giving
10790 * each L2 its own vpid and exposing the vpid feature to L1.
10791 */
10792 vmx_flush_tlb(vcpu);
10793 }
10794
10795
10796 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10797 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10798 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10799 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10800 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10801 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
10802 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
10803
10804 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10805 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10806 vmcs_write64(GUEST_BNDCFGS, 0);
10807
10808 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10809 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10810 vcpu->arch.pat = vmcs12->host_ia32_pat;
10811 }
10812 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10813 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10814 vmcs12->host_ia32_perf_global_ctrl);
10815
10816 /* Set L1 segment info according to Intel SDM
10817 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10818 seg = (struct kvm_segment) {
10819 .base = 0,
10820 .limit = 0xFFFFFFFF,
10821 .selector = vmcs12->host_cs_selector,
10822 .type = 11,
10823 .present = 1,
10824 .s = 1,
10825 .g = 1
10826 };
10827 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10828 seg.l = 1;
10829 else
10830 seg.db = 1;
10831 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10832 seg = (struct kvm_segment) {
10833 .base = 0,
10834 .limit = 0xFFFFFFFF,
10835 .type = 3,
10836 .present = 1,
10837 .s = 1,
10838 .db = 1,
10839 .g = 1
10840 };
10841 seg.selector = vmcs12->host_ds_selector;
10842 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10843 seg.selector = vmcs12->host_es_selector;
10844 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10845 seg.selector = vmcs12->host_ss_selector;
10846 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10847 seg.selector = vmcs12->host_fs_selector;
10848 seg.base = vmcs12->host_fs_base;
10849 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10850 seg.selector = vmcs12->host_gs_selector;
10851 seg.base = vmcs12->host_gs_base;
10852 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10853 seg = (struct kvm_segment) {
10854 .base = vmcs12->host_tr_base,
10855 .limit = 0x67,
10856 .selector = vmcs12->host_tr_selector,
10857 .type = 11,
10858 .present = 1
10859 };
10860 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10861
10862 kvm_set_dr(vcpu, 7, 0x400);
10863 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10864
10865 if (cpu_has_vmx_msr_bitmap())
10866 vmx_update_msr_bitmap(vcpu);
10867
10868 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10869 vmcs12->vm_exit_msr_load_count))
10870 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10871 }
10872
10873 /*
10874 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10875 * and modify vmcs12 to make it see what it would expect to see there if
10876 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10877 */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 exit_reason,u32 exit_intr_info,unsigned long exit_qualification)10878 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10879 u32 exit_intr_info,
10880 unsigned long exit_qualification)
10881 {
10882 struct vcpu_vmx *vmx = to_vmx(vcpu);
10883 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10884
10885 /* trying to cancel vmlaunch/vmresume is a bug */
10886 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10887
10888 leave_guest_mode(vcpu);
10889 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10890 exit_qualification);
10891
10892 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10893 vmcs12->vm_exit_msr_store_count))
10894 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10895
10896 vmx_load_vmcs01(vcpu);
10897
10898 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10899 && nested_exit_intr_ack_set(vcpu)) {
10900 int irq = kvm_cpu_get_interrupt(vcpu);
10901 WARN_ON(irq < 0);
10902 vmcs12->vm_exit_intr_info = irq |
10903 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10904 }
10905
10906 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10907 vmcs12->exit_qualification,
10908 vmcs12->idt_vectoring_info_field,
10909 vmcs12->vm_exit_intr_info,
10910 vmcs12->vm_exit_intr_error_code,
10911 KVM_ISA_VMX);
10912
10913 vm_entry_controls_reset_shadow(vmx);
10914 vm_exit_controls_reset_shadow(vmx);
10915 vmx_segment_cache_clear(vmx);
10916
10917 load_vmcs12_host_state(vcpu, vmcs12);
10918
10919 /* Update any VMCS fields that might have changed while L2 ran */
10920 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
10921 if (vmx->hv_deadline_tsc == -1)
10922 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
10923 PIN_BASED_VMX_PREEMPTION_TIMER);
10924 else
10925 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
10926 PIN_BASED_VMX_PREEMPTION_TIMER);
10927 if (kvm_has_tsc_control)
10928 decache_tsc_multiplier(vmx);
10929
10930 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
10931 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
10932 vmx_set_virtual_x2apic_mode(vcpu,
10933 vcpu->arch.apic_base & X2APIC_ENABLE);
10934 } else if (!nested_cpu_has_ept(vmcs12) &&
10935 nested_cpu_has2(vmcs12,
10936 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
10937 vmx_flush_tlb_ept_only(vcpu);
10938 }
10939
10940 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10941 vmx->host_rsp = 0;
10942
10943 /* Unpin physical memory we referred to in vmcs02 */
10944 if (vmx->nested.apic_access_page) {
10945 nested_release_page(vmx->nested.apic_access_page);
10946 vmx->nested.apic_access_page = NULL;
10947 }
10948 if (vmx->nested.virtual_apic_page) {
10949 nested_release_page(vmx->nested.virtual_apic_page);
10950 vmx->nested.virtual_apic_page = NULL;
10951 }
10952 if (vmx->nested.pi_desc_page) {
10953 kunmap(vmx->nested.pi_desc_page);
10954 nested_release_page(vmx->nested.pi_desc_page);
10955 vmx->nested.pi_desc_page = NULL;
10956 vmx->nested.pi_desc = NULL;
10957 }
10958
10959 /*
10960 * We are now running in L2, mmu_notifier will force to reload the
10961 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10962 */
10963 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
10964
10965 /*
10966 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10967 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10968 * success or failure flag accordingly.
10969 */
10970 if (unlikely(vmx->fail)) {
10971 vmx->fail = 0;
10972 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10973 } else
10974 nested_vmx_succeed(vcpu);
10975 if (enable_shadow_vmcs)
10976 vmx->nested.sync_shadow_vmcs = true;
10977
10978 /* in case we halted in L2 */
10979 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10980 }
10981
10982 /*
10983 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10984 */
vmx_leave_nested(struct kvm_vcpu * vcpu)10985 static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10986 {
10987 if (is_guest_mode(vcpu)) {
10988 to_vmx(vcpu)->nested.nested_run_pending = 0;
10989 nested_vmx_vmexit(vcpu, -1, 0, 0);
10990 }
10991 free_nested(to_vmx(vcpu));
10992 }
10993
10994 /*
10995 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10996 * 23.7 "VM-entry failures during or after loading guest state" (this also
10997 * lists the acceptable exit-reason and exit-qualification parameters).
10998 * It should only be called before L2 actually succeeded to run, and when
10999 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
11000 */
nested_vmx_entry_failure(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 reason,unsigned long qualification)11001 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
11002 struct vmcs12 *vmcs12,
11003 u32 reason, unsigned long qualification)
11004 {
11005 load_vmcs12_host_state(vcpu, vmcs12);
11006 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
11007 vmcs12->exit_qualification = qualification;
11008 nested_vmx_succeed(vcpu);
11009 if (enable_shadow_vmcs)
11010 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
11011 }
11012
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)11013 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
11014 struct x86_instruction_info *info,
11015 enum x86_intercept_stage stage)
11016 {
11017 return X86EMUL_CONTINUE;
11018 }
11019
11020 #ifdef CONFIG_X86_64
11021 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)11022 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
11023 u64 divisor, u64 *result)
11024 {
11025 u64 low = a << shift, high = a >> (64 - shift);
11026
11027 /* To avoid the overflow on divq */
11028 if (high >= divisor)
11029 return 1;
11030
11031 /* Low hold the result, high hold rem which is discarded */
11032 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
11033 "rm" (divisor), "0" (low), "1" (high));
11034 *result = low;
11035
11036 return 0;
11037 }
11038
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc)11039 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
11040 {
11041 struct vcpu_vmx *vmx = to_vmx(vcpu);
11042 u64 tscl = rdtsc();
11043 u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
11044 u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
11045
11046 /* Convert to host delta tsc if tsc scaling is enabled */
11047 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
11048 u64_shl_div_u64(delta_tsc,
11049 kvm_tsc_scaling_ratio_frac_bits,
11050 vcpu->arch.tsc_scaling_ratio,
11051 &delta_tsc))
11052 return -ERANGE;
11053
11054 /*
11055 * If the delta tsc can't fit in the 32 bit after the multi shift,
11056 * we can't use the preemption timer.
11057 * It's possible that it fits on later vmentries, but checking
11058 * on every vmentry is costly so we just use an hrtimer.
11059 */
11060 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
11061 return -ERANGE;
11062
11063 vmx->hv_deadline_tsc = tscl + delta_tsc;
11064 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
11065 PIN_BASED_VMX_PREEMPTION_TIMER);
11066 return 0;
11067 }
11068
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)11069 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
11070 {
11071 struct vcpu_vmx *vmx = to_vmx(vcpu);
11072 vmx->hv_deadline_tsc = -1;
11073 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
11074 PIN_BASED_VMX_PREEMPTION_TIMER);
11075 }
11076 #endif
11077
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)11078 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
11079 {
11080 if (ple_gap)
11081 shrink_ple_window(vcpu);
11082 }
11083
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)11084 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
11085 struct kvm_memory_slot *slot)
11086 {
11087 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
11088 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
11089 }
11090
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)11091 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
11092 struct kvm_memory_slot *slot)
11093 {
11094 kvm_mmu_slot_set_dirty(kvm, slot);
11095 }
11096
vmx_flush_log_dirty(struct kvm * kvm)11097 static void vmx_flush_log_dirty(struct kvm *kvm)
11098 {
11099 kvm_flush_pml_buffers(kvm);
11100 }
11101
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)11102 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
11103 struct kvm_memory_slot *memslot,
11104 gfn_t offset, unsigned long mask)
11105 {
11106 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
11107 }
11108
__pi_post_block(struct kvm_vcpu * vcpu)11109 static void __pi_post_block(struct kvm_vcpu *vcpu)
11110 {
11111 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11112 struct pi_desc old, new;
11113 unsigned int dest;
11114
11115 do {
11116 old.control = new.control = pi_desc->control;
11117 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
11118 "Wakeup handler not enabled while the VCPU is blocked\n");
11119
11120 dest = cpu_physical_id(vcpu->cpu);
11121
11122 if (x2apic_enabled())
11123 new.ndst = dest;
11124 else
11125 new.ndst = (dest << 8) & 0xFF00;
11126
11127 /* set 'NV' to 'notification vector' */
11128 new.nv = POSTED_INTR_VECTOR;
11129 } while (cmpxchg64(&pi_desc->control, old.control,
11130 new.control) != old.control);
11131
11132 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
11133 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11134 list_del(&vcpu->blocked_vcpu_list);
11135 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11136 vcpu->pre_pcpu = -1;
11137 }
11138 }
11139
11140 /*
11141 * This routine does the following things for vCPU which is going
11142 * to be blocked if VT-d PI is enabled.
11143 * - Store the vCPU to the wakeup list, so when interrupts happen
11144 * we can find the right vCPU to wake up.
11145 * - Change the Posted-interrupt descriptor as below:
11146 * 'NDST' <-- vcpu->pre_pcpu
11147 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
11148 * - If 'ON' is set during this process, which means at least one
11149 * interrupt is posted for this vCPU, we cannot block it, in
11150 * this case, return 1, otherwise, return 0.
11151 *
11152 */
pi_pre_block(struct kvm_vcpu * vcpu)11153 static int pi_pre_block(struct kvm_vcpu *vcpu)
11154 {
11155 unsigned int dest;
11156 struct pi_desc old, new;
11157 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11158
11159 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11160 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11161 !kvm_vcpu_apicv_active(vcpu))
11162 return 0;
11163
11164 WARN_ON(irqs_disabled());
11165 local_irq_disable();
11166 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
11167 vcpu->pre_pcpu = vcpu->cpu;
11168 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11169 list_add_tail(&vcpu->blocked_vcpu_list,
11170 &per_cpu(blocked_vcpu_on_cpu,
11171 vcpu->pre_pcpu));
11172 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
11173 }
11174
11175 do {
11176 old.control = new.control = pi_desc->control;
11177
11178 WARN((pi_desc->sn == 1),
11179 "Warning: SN field of posted-interrupts "
11180 "is set before blocking\n");
11181
11182 /*
11183 * Since vCPU can be preempted during this process,
11184 * vcpu->cpu could be different with pre_pcpu, we
11185 * need to set pre_pcpu as the destination of wakeup
11186 * notification event, then we can find the right vCPU
11187 * to wakeup in wakeup handler if interrupts happen
11188 * when the vCPU is in blocked state.
11189 */
11190 dest = cpu_physical_id(vcpu->pre_pcpu);
11191
11192 if (x2apic_enabled())
11193 new.ndst = dest;
11194 else
11195 new.ndst = (dest << 8) & 0xFF00;
11196
11197 /* set 'NV' to 'wakeup vector' */
11198 new.nv = POSTED_INTR_WAKEUP_VECTOR;
11199 } while (cmpxchg64(&pi_desc->control, old.control,
11200 new.control) != old.control);
11201
11202 /* We should not block the vCPU if an interrupt is posted for it. */
11203 if (pi_test_on(pi_desc) == 1)
11204 __pi_post_block(vcpu);
11205
11206 local_irq_enable();
11207 return (vcpu->pre_pcpu == -1);
11208 }
11209
vmx_pre_block(struct kvm_vcpu * vcpu)11210 static int vmx_pre_block(struct kvm_vcpu *vcpu)
11211 {
11212 if (pi_pre_block(vcpu))
11213 return 1;
11214
11215 if (kvm_lapic_hv_timer_in_use(vcpu))
11216 kvm_lapic_switch_to_sw_timer(vcpu);
11217
11218 return 0;
11219 }
11220
pi_post_block(struct kvm_vcpu * vcpu)11221 static void pi_post_block(struct kvm_vcpu *vcpu)
11222 {
11223 if (vcpu->pre_pcpu == -1)
11224 return;
11225
11226 WARN_ON(irqs_disabled());
11227 local_irq_disable();
11228 __pi_post_block(vcpu);
11229 local_irq_enable();
11230 }
11231
vmx_post_block(struct kvm_vcpu * vcpu)11232 static void vmx_post_block(struct kvm_vcpu *vcpu)
11233 {
11234 if (kvm_x86_ops->set_hv_timer)
11235 kvm_lapic_switch_to_hv_timer(vcpu);
11236
11237 pi_post_block(vcpu);
11238 }
11239
11240 /*
11241 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11242 *
11243 * @kvm: kvm
11244 * @host_irq: host irq of the interrupt
11245 * @guest_irq: gsi of the interrupt
11246 * @set: set or unset PI
11247 * returns 0 on success, < 0 on failure
11248 */
vmx_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)11249 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11250 uint32_t guest_irq, bool set)
11251 {
11252 struct kvm_kernel_irq_routing_entry *e;
11253 struct kvm_irq_routing_table *irq_rt;
11254 struct kvm_lapic_irq irq;
11255 struct kvm_vcpu *vcpu;
11256 struct vcpu_data vcpu_info;
11257 int idx, ret = 0;
11258
11259 if (!kvm_arch_has_assigned_device(kvm) ||
11260 !irq_remapping_cap(IRQ_POSTING_CAP) ||
11261 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11262 return 0;
11263
11264 idx = srcu_read_lock(&kvm->irq_srcu);
11265 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11266 if (guest_irq >= irq_rt->nr_rt_entries ||
11267 hlist_empty(&irq_rt->map[guest_irq])) {
11268 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
11269 guest_irq, irq_rt->nr_rt_entries);
11270 goto out;
11271 }
11272
11273 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11274 if (e->type != KVM_IRQ_ROUTING_MSI)
11275 continue;
11276 /*
11277 * VT-d PI cannot support posting multicast/broadcast
11278 * interrupts to a vCPU, we still use interrupt remapping
11279 * for these kind of interrupts.
11280 *
11281 * For lowest-priority interrupts, we only support
11282 * those with single CPU as the destination, e.g. user
11283 * configures the interrupts via /proc/irq or uses
11284 * irqbalance to make the interrupts single-CPU.
11285 *
11286 * We will support full lowest-priority interrupt later.
11287 */
11288
11289 kvm_set_msi_irq(kvm, e, &irq);
11290 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11291 /*
11292 * Make sure the IRTE is in remapped mode if
11293 * we don't handle it in posted mode.
11294 */
11295 ret = irq_set_vcpu_affinity(host_irq, NULL);
11296 if (ret < 0) {
11297 printk(KERN_INFO
11298 "failed to back to remapped mode, irq: %u\n",
11299 host_irq);
11300 goto out;
11301 }
11302
11303 continue;
11304 }
11305
11306 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11307 vcpu_info.vector = irq.vector;
11308
11309 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
11310 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11311
11312 if (set)
11313 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11314 else
11315 ret = irq_set_vcpu_affinity(host_irq, NULL);
11316
11317 if (ret < 0) {
11318 printk(KERN_INFO "%s: failed to update PI IRTE\n",
11319 __func__);
11320 goto out;
11321 }
11322 }
11323
11324 ret = 0;
11325 out:
11326 srcu_read_unlock(&kvm->irq_srcu, idx);
11327 return ret;
11328 }
11329
vmx_setup_mce(struct kvm_vcpu * vcpu)11330 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11331 {
11332 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11333 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11334 FEATURE_CONTROL_LMCE;
11335 else
11336 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11337 ~FEATURE_CONTROL_LMCE;
11338 }
11339
11340 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
11341 .cpu_has_kvm_support = cpu_has_kvm_support,
11342 .disabled_by_bios = vmx_disabled_by_bios,
11343 .hardware_setup = hardware_setup,
11344 .hardware_unsetup = hardware_unsetup,
11345 .check_processor_compatibility = vmx_check_processor_compat,
11346 .hardware_enable = hardware_enable,
11347 .hardware_disable = hardware_disable,
11348 .cpu_has_accelerated_tpr = report_flexpriority,
11349 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
11350
11351 .vcpu_create = vmx_create_vcpu,
11352 .vcpu_free = vmx_free_vcpu,
11353 .vcpu_reset = vmx_vcpu_reset,
11354
11355 .prepare_guest_switch = vmx_save_host_state,
11356 .vcpu_load = vmx_vcpu_load,
11357 .vcpu_put = vmx_vcpu_put,
11358
11359 .update_bp_intercept = update_exception_bitmap,
11360 .get_msr = vmx_get_msr,
11361 .set_msr = vmx_set_msr,
11362 .get_segment_base = vmx_get_segment_base,
11363 .get_segment = vmx_get_segment,
11364 .set_segment = vmx_set_segment,
11365 .get_cpl = vmx_get_cpl,
11366 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11367 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11368 .decache_cr3 = vmx_decache_cr3,
11369 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11370 .set_cr0 = vmx_set_cr0,
11371 .set_cr3 = vmx_set_cr3,
11372 .set_cr4 = vmx_set_cr4,
11373 .set_efer = vmx_set_efer,
11374 .get_idt = vmx_get_idt,
11375 .set_idt = vmx_set_idt,
11376 .get_gdt = vmx_get_gdt,
11377 .set_gdt = vmx_set_gdt,
11378 .get_dr6 = vmx_get_dr6,
11379 .set_dr6 = vmx_set_dr6,
11380 .set_dr7 = vmx_set_dr7,
11381 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11382 .cache_reg = vmx_cache_reg,
11383 .get_rflags = vmx_get_rflags,
11384 .set_rflags = vmx_set_rflags,
11385
11386 .get_pkru = vmx_get_pkru,
11387
11388 .fpu_activate = vmx_fpu_activate,
11389 .fpu_deactivate = vmx_fpu_deactivate,
11390
11391 .tlb_flush = vmx_flush_tlb,
11392
11393 .run = vmx_vcpu_run,
11394 .handle_exit = vmx_handle_exit,
11395 .skip_emulated_instruction = skip_emulated_instruction,
11396 .set_interrupt_shadow = vmx_set_interrupt_shadow,
11397 .get_interrupt_shadow = vmx_get_interrupt_shadow,
11398 .patch_hypercall = vmx_patch_hypercall,
11399 .set_irq = vmx_inject_irq,
11400 .set_nmi = vmx_inject_nmi,
11401 .queue_exception = vmx_queue_exception,
11402 .cancel_injection = vmx_cancel_injection,
11403 .interrupt_allowed = vmx_interrupt_allowed,
11404 .nmi_allowed = vmx_nmi_allowed,
11405 .get_nmi_mask = vmx_get_nmi_mask,
11406 .set_nmi_mask = vmx_set_nmi_mask,
11407 .enable_nmi_window = enable_nmi_window,
11408 .enable_irq_window = enable_irq_window,
11409 .update_cr8_intercept = update_cr8_intercept,
11410 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11411 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11412 .get_enable_apicv = vmx_get_enable_apicv,
11413 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
11414 .load_eoi_exitmap = vmx_load_eoi_exitmap,
11415 .hwapic_irr_update = vmx_hwapic_irr_update,
11416 .hwapic_isr_update = vmx_hwapic_isr_update,
11417 .sync_pir_to_irr = vmx_sync_pir_to_irr,
11418 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11419
11420 .set_tss_addr = vmx_set_tss_addr,
11421 .get_tdp_level = get_ept_level,
11422 .get_mt_mask = vmx_get_mt_mask,
11423
11424 .get_exit_info = vmx_get_exit_info,
11425
11426 .get_lpage_level = vmx_get_lpage_level,
11427
11428 .cpuid_update = vmx_cpuid_update,
11429
11430 .rdtscp_supported = vmx_rdtscp_supported,
11431 .invpcid_supported = vmx_invpcid_supported,
11432
11433 .set_supported_cpuid = vmx_set_supported_cpuid,
11434
11435 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11436
11437 .write_tsc_offset = vmx_write_tsc_offset,
11438
11439 .set_tdp_cr3 = vmx_set_cr3,
11440
11441 .check_intercept = vmx_check_intercept,
11442 .handle_external_intr = vmx_handle_external_intr,
11443 .mpx_supported = vmx_mpx_supported,
11444 .xsaves_supported = vmx_xsaves_supported,
11445
11446 .check_nested_events = vmx_check_nested_events,
11447
11448 .sched_in = vmx_sched_in,
11449
11450 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11451 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11452 .flush_log_dirty = vmx_flush_log_dirty,
11453 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11454
11455 .pre_block = vmx_pre_block,
11456 .post_block = vmx_post_block,
11457
11458 .pmu_ops = &intel_pmu_ops,
11459
11460 .update_pi_irte = vmx_update_pi_irte,
11461
11462 #ifdef CONFIG_X86_64
11463 .set_hv_timer = vmx_set_hv_timer,
11464 .cancel_hv_timer = vmx_cancel_hv_timer,
11465 #endif
11466
11467 .setup_mce = vmx_setup_mce,
11468 };
11469
vmx_init(void)11470 static int __init vmx_init(void)
11471 {
11472 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11473 __alignof__(struct vcpu_vmx), THIS_MODULE);
11474 if (r)
11475 return r;
11476
11477 #ifdef CONFIG_KEXEC_CORE
11478 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11479 crash_vmclear_local_loaded_vmcss);
11480 #endif
11481
11482 return 0;
11483 }
11484
vmx_exit(void)11485 static void __exit vmx_exit(void)
11486 {
11487 #ifdef CONFIG_KEXEC_CORE
11488 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11489 synchronize_rcu();
11490 #endif
11491
11492 kvm_exit();
11493 }
11494
11495 module_init(vmx_init)
11496 module_exit(vmx_exit)
11497