1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/fence-array.h>
29 #include <drm/drmP.h>
30 #include <drm/amdgpu_drm.h>
31 #include "amdgpu.h"
32 #include "amdgpu_trace.h"
33
34 /*
35 * GPUVM
36 * GPUVM is similar to the legacy gart on older asics, however
37 * rather than there being a single global gart table
38 * for the entire GPU, there are multiple VM page tables active
39 * at any given time. The VM page tables can contain a mix
40 * vram pages and system memory pages and system memory pages
41 * can be mapped as snooped (cached system pages) or unsnooped
42 * (uncached system pages).
43 * Each VM has an ID associated with it and there is a page table
44 * associated with each VMID. When execting a command buffer,
45 * the kernel tells the the ring what VMID to use for that command
46 * buffer. VMIDs are allocated dynamically as commands are submitted.
47 * The userspace drivers maintain their own address space and the kernel
48 * sets up their pages tables accordingly when they submit their
49 * command buffers and a VMID is assigned.
50 * Cayman/Trinity support up to 8 active VMs at any given time;
51 * SI supports 16.
52 */
53
54 /* Local structure. Encapsulate some VM table update parameters to reduce
55 * the number of function parameters
56 */
57 struct amdgpu_pte_update_params {
58 /* amdgpu device we do this update for */
59 struct amdgpu_device *adev;
60 /* address where to copy page table entries from */
61 uint64_t src;
62 /* indirect buffer to fill with commands */
63 struct amdgpu_ib *ib;
64 /* Function which actually does the update */
65 void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
66 uint64_t addr, unsigned count, uint32_t incr,
67 uint32_t flags);
68 /* indicate update pt or its shadow */
69 bool shadow;
70 };
71
72 /**
73 * amdgpu_vm_num_pde - return the number of page directory entries
74 *
75 * @adev: amdgpu_device pointer
76 *
77 * Calculate the number of page directory entries.
78 */
amdgpu_vm_num_pdes(struct amdgpu_device * adev)79 static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev)
80 {
81 return adev->vm_manager.max_pfn >> amdgpu_vm_block_size;
82 }
83
84 /**
85 * amdgpu_vm_directory_size - returns the size of the page directory in bytes
86 *
87 * @adev: amdgpu_device pointer
88 *
89 * Calculate the size of the page directory in bytes.
90 */
amdgpu_vm_directory_size(struct amdgpu_device * adev)91 static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev)
92 {
93 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8);
94 }
95
96 /**
97 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
98 *
99 * @vm: vm providing the BOs
100 * @validated: head of validation list
101 * @entry: entry to add
102 *
103 * Add the page directory to the list of BOs to
104 * validate for command submission.
105 */
amdgpu_vm_get_pd_bo(struct amdgpu_vm * vm,struct list_head * validated,struct amdgpu_bo_list_entry * entry)106 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
107 struct list_head *validated,
108 struct amdgpu_bo_list_entry *entry)
109 {
110 entry->robj = vm->page_directory;
111 entry->priority = 0;
112 entry->tv.bo = &vm->page_directory->tbo;
113 entry->tv.shared = true;
114 entry->user_pages = NULL;
115 list_add(&entry->tv.head, validated);
116 }
117
118 /**
119 * amdgpu_vm_get_bos - add the vm BOs to a duplicates list
120 *
121 * @adev: amdgpu device pointer
122 * @vm: vm providing the BOs
123 * @duplicates: head of duplicates list
124 *
125 * Add the page directory to the BO duplicates list
126 * for command submission.
127 */
amdgpu_vm_get_pt_bos(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct list_head * duplicates)128 void amdgpu_vm_get_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
129 struct list_head *duplicates)
130 {
131 uint64_t num_evictions;
132 unsigned i;
133
134 /* We only need to validate the page tables
135 * if they aren't already valid.
136 */
137 num_evictions = atomic64_read(&adev->num_evictions);
138 if (num_evictions == vm->last_eviction_counter)
139 return;
140
141 /* add the vm page table to the list */
142 for (i = 0; i <= vm->max_pde_used; ++i) {
143 struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
144
145 if (!entry->robj)
146 continue;
147
148 list_add(&entry->tv.head, duplicates);
149 }
150
151 }
152
153 /**
154 * amdgpu_vm_move_pt_bos_in_lru - move the PT BOs to the LRU tail
155 *
156 * @adev: amdgpu device instance
157 * @vm: vm providing the BOs
158 *
159 * Move the PT BOs to the tail of the LRU.
160 */
amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device * adev,struct amdgpu_vm * vm)161 void amdgpu_vm_move_pt_bos_in_lru(struct amdgpu_device *adev,
162 struct amdgpu_vm *vm)
163 {
164 struct ttm_bo_global *glob = adev->mman.bdev.glob;
165 unsigned i;
166
167 spin_lock(&glob->lru_lock);
168 for (i = 0; i <= vm->max_pde_used; ++i) {
169 struct amdgpu_bo_list_entry *entry = &vm->page_tables[i].entry;
170
171 if (!entry->robj)
172 continue;
173
174 ttm_bo_move_to_lru_tail(&entry->robj->tbo);
175 }
176 spin_unlock(&glob->lru_lock);
177 }
178
amdgpu_vm_is_gpu_reset(struct amdgpu_device * adev,struct amdgpu_vm_id * id)179 static bool amdgpu_vm_is_gpu_reset(struct amdgpu_device *adev,
180 struct amdgpu_vm_id *id)
181 {
182 return id->current_gpu_reset_count !=
183 atomic_read(&adev->gpu_reset_counter) ? true : false;
184 }
185
186 /**
187 * amdgpu_vm_grab_id - allocate the next free VMID
188 *
189 * @vm: vm to allocate id for
190 * @ring: ring we want to submit job to
191 * @sync: sync object where we add dependencies
192 * @fence: fence protecting ID from reuse
193 *
194 * Allocate an id for the vm, adding fences to the sync obj as necessary.
195 */
amdgpu_vm_grab_id(struct amdgpu_vm * vm,struct amdgpu_ring * ring,struct amdgpu_sync * sync,struct fence * fence,struct amdgpu_job * job)196 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
197 struct amdgpu_sync *sync, struct fence *fence,
198 struct amdgpu_job *job)
199 {
200 struct amdgpu_device *adev = ring->adev;
201 uint64_t fence_context = adev->fence_context + ring->idx;
202 struct fence *updates = sync->last_vm_update;
203 struct amdgpu_vm_id *id, *idle;
204 struct fence **fences;
205 unsigned i;
206 int r = 0;
207
208 fences = kmalloc_array(sizeof(void *), adev->vm_manager.num_ids,
209 GFP_KERNEL);
210 if (!fences)
211 return -ENOMEM;
212
213 mutex_lock(&adev->vm_manager.lock);
214
215 /* Check if we have an idle VMID */
216 i = 0;
217 list_for_each_entry(idle, &adev->vm_manager.ids_lru, list) {
218 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
219 if (!fences[i])
220 break;
221 ++i;
222 }
223
224 /* If we can't find a idle VMID to use, wait till one becomes available */
225 if (&idle->list == &adev->vm_manager.ids_lru) {
226 u64 fence_context = adev->vm_manager.fence_context + ring->idx;
227 unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
228 struct fence_array *array;
229 unsigned j;
230
231 for (j = 0; j < i; ++j)
232 fence_get(fences[j]);
233
234 array = fence_array_create(i, fences, fence_context,
235 seqno, true);
236 if (!array) {
237 for (j = 0; j < i; ++j)
238 fence_put(fences[j]);
239 kfree(fences);
240 r = -ENOMEM;
241 goto error;
242 }
243
244
245 r = amdgpu_sync_fence(ring->adev, sync, &array->base);
246 fence_put(&array->base);
247 if (r)
248 goto error;
249
250 mutex_unlock(&adev->vm_manager.lock);
251 return 0;
252
253 }
254 kfree(fences);
255
256 job->vm_needs_flush = true;
257 /* Check if we can use a VMID already assigned to this VM */
258 i = ring->idx;
259 do {
260 struct fence *flushed;
261
262 id = vm->ids[i++];
263 if (i == AMDGPU_MAX_RINGS)
264 i = 0;
265
266 /* Check all the prerequisites to using this VMID */
267 if (!id)
268 continue;
269 if (amdgpu_vm_is_gpu_reset(adev, id))
270 continue;
271
272 if (atomic64_read(&id->owner) != vm->client_id)
273 continue;
274
275 if (job->vm_pd_addr != id->pd_gpu_addr)
276 continue;
277
278 if (!id->last_flush)
279 continue;
280
281 if (id->last_flush->context != fence_context &&
282 !fence_is_signaled(id->last_flush))
283 continue;
284
285 flushed = id->flushed_updates;
286 if (updates &&
287 (!flushed || fence_is_later(updates, flushed)))
288 continue;
289
290 /* Good we can use this VMID. Remember this submission as
291 * user of the VMID.
292 */
293 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
294 if (r)
295 goto error;
296
297 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
298 list_move_tail(&id->list, &adev->vm_manager.ids_lru);
299 vm->ids[ring->idx] = id;
300
301 job->vm_id = id - adev->vm_manager.ids;
302 job->vm_needs_flush = false;
303 trace_amdgpu_vm_grab_id(vm, ring->idx, job);
304
305 mutex_unlock(&adev->vm_manager.lock);
306 return 0;
307
308 } while (i != ring->idx);
309
310 /* Still no ID to use? Then use the idle one found earlier */
311 id = idle;
312
313 /* Remember this submission as user of the VMID */
314 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
315 if (r)
316 goto error;
317
318 fence_put(id->first);
319 id->first = fence_get(fence);
320
321 fence_put(id->last_flush);
322 id->last_flush = NULL;
323
324 fence_put(id->flushed_updates);
325 id->flushed_updates = fence_get(updates);
326
327 id->pd_gpu_addr = job->vm_pd_addr;
328 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
329 list_move_tail(&id->list, &adev->vm_manager.ids_lru);
330 atomic64_set(&id->owner, vm->client_id);
331 vm->ids[ring->idx] = id;
332
333 job->vm_id = id - adev->vm_manager.ids;
334 trace_amdgpu_vm_grab_id(vm, ring->idx, job);
335
336 error:
337 mutex_unlock(&adev->vm_manager.lock);
338 return r;
339 }
340
amdgpu_vm_ring_has_compute_vm_bug(struct amdgpu_ring * ring)341 static bool amdgpu_vm_ring_has_compute_vm_bug(struct amdgpu_ring *ring)
342 {
343 struct amdgpu_device *adev = ring->adev;
344 const struct amdgpu_ip_block_version *ip_block;
345
346 if (ring->type != AMDGPU_RING_TYPE_COMPUTE)
347 /* only compute rings */
348 return false;
349
350 ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
351 if (!ip_block)
352 return false;
353
354 if (ip_block->major <= 7) {
355 /* gfx7 has no workaround */
356 return true;
357 } else if (ip_block->major == 8) {
358 if (adev->gfx.mec_fw_version >= 673)
359 /* gfx8 is fixed in MEC firmware 673 */
360 return false;
361 else
362 return true;
363 }
364 return false;
365 }
366
367 /**
368 * amdgpu_vm_flush - hardware flush the vm
369 *
370 * @ring: ring to use for flush
371 * @vm_id: vmid number to use
372 * @pd_addr: address of the page directory
373 *
374 * Emit a VM flush when it is necessary.
375 */
amdgpu_vm_flush(struct amdgpu_ring * ring,struct amdgpu_job * job)376 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job)
377 {
378 struct amdgpu_device *adev = ring->adev;
379 struct amdgpu_vm_id *id = &adev->vm_manager.ids[job->vm_id];
380 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
381 id->gds_base != job->gds_base ||
382 id->gds_size != job->gds_size ||
383 id->gws_base != job->gws_base ||
384 id->gws_size != job->gws_size ||
385 id->oa_base != job->oa_base ||
386 id->oa_size != job->oa_size);
387 int r;
388
389 if (ring->funcs->emit_pipeline_sync && (
390 job->vm_needs_flush || gds_switch_needed ||
391 amdgpu_vm_ring_has_compute_vm_bug(ring)))
392 amdgpu_ring_emit_pipeline_sync(ring);
393
394 if (ring->funcs->emit_vm_flush && (job->vm_needs_flush ||
395 amdgpu_vm_is_gpu_reset(adev, id))) {
396 struct fence *fence;
397
398 trace_amdgpu_vm_flush(job->vm_pd_addr, ring->idx, job->vm_id);
399 amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr);
400
401 r = amdgpu_fence_emit(ring, &fence);
402 if (r)
403 return r;
404
405 mutex_lock(&adev->vm_manager.lock);
406 fence_put(id->last_flush);
407 id->last_flush = fence;
408 mutex_unlock(&adev->vm_manager.lock);
409 }
410
411 if (gds_switch_needed) {
412 id->gds_base = job->gds_base;
413 id->gds_size = job->gds_size;
414 id->gws_base = job->gws_base;
415 id->gws_size = job->gws_size;
416 id->oa_base = job->oa_base;
417 id->oa_size = job->oa_size;
418 amdgpu_ring_emit_gds_switch(ring, job->vm_id,
419 job->gds_base, job->gds_size,
420 job->gws_base, job->gws_size,
421 job->oa_base, job->oa_size);
422 }
423
424 return 0;
425 }
426
427 /**
428 * amdgpu_vm_reset_id - reset VMID to zero
429 *
430 * @adev: amdgpu device structure
431 * @vm_id: vmid number to use
432 *
433 * Reset saved GDW, GWS and OA to force switch on next flush.
434 */
amdgpu_vm_reset_id(struct amdgpu_device * adev,unsigned vm_id)435 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vm_id)
436 {
437 struct amdgpu_vm_id *id = &adev->vm_manager.ids[vm_id];
438
439 id->gds_base = 0;
440 id->gds_size = 0;
441 id->gws_base = 0;
442 id->gws_size = 0;
443 id->oa_base = 0;
444 id->oa_size = 0;
445 }
446
447 /**
448 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
449 *
450 * @vm: requested vm
451 * @bo: requested buffer object
452 *
453 * Find @bo inside the requested vm.
454 * Search inside the @bos vm list for the requested vm
455 * Returns the found bo_va or NULL if none is found
456 *
457 * Object has to be reserved!
458 */
amdgpu_vm_bo_find(struct amdgpu_vm * vm,struct amdgpu_bo * bo)459 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
460 struct amdgpu_bo *bo)
461 {
462 struct amdgpu_bo_va *bo_va;
463
464 list_for_each_entry(bo_va, &bo->va, bo_list) {
465 if (bo_va->vm == vm) {
466 return bo_va;
467 }
468 }
469 return NULL;
470 }
471
472 /**
473 * amdgpu_vm_do_set_ptes - helper to call the right asic function
474 *
475 * @params: see amdgpu_pte_update_params definition
476 * @pe: addr of the page entry
477 * @addr: dst addr to write into pe
478 * @count: number of page entries to update
479 * @incr: increase next addr by incr bytes
480 * @flags: hw access flags
481 *
482 * Traces the parameters and calls the right asic functions
483 * to setup the page table using the DMA.
484 */
amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params * params,uint64_t pe,uint64_t addr,unsigned count,uint32_t incr,uint32_t flags)485 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
486 uint64_t pe, uint64_t addr,
487 unsigned count, uint32_t incr,
488 uint32_t flags)
489 {
490 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
491
492 if (count < 3) {
493 amdgpu_vm_write_pte(params->adev, params->ib, pe,
494 addr | flags, count, incr);
495
496 } else {
497 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
498 count, incr, flags);
499 }
500 }
501
502 /**
503 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
504 *
505 * @params: see amdgpu_pte_update_params definition
506 * @pe: addr of the page entry
507 * @addr: dst addr to write into pe
508 * @count: number of page entries to update
509 * @incr: increase next addr by incr bytes
510 * @flags: hw access flags
511 *
512 * Traces the parameters and calls the DMA function to copy the PTEs.
513 */
amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params * params,uint64_t pe,uint64_t addr,unsigned count,uint32_t incr,uint32_t flags)514 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
515 uint64_t pe, uint64_t addr,
516 unsigned count, uint32_t incr,
517 uint32_t flags)
518 {
519 uint64_t src = (params->src + (addr >> 12) * 8);
520
521
522 trace_amdgpu_vm_copy_ptes(pe, src, count);
523
524 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
525 }
526
527 /**
528 * amdgpu_vm_clear_bo - initially clear the page dir/table
529 *
530 * @adev: amdgpu_device pointer
531 * @bo: bo to clear
532 *
533 * need to reserve bo first before calling it.
534 */
amdgpu_vm_clear_bo(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_bo * bo)535 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
536 struct amdgpu_vm *vm,
537 struct amdgpu_bo *bo)
538 {
539 struct amdgpu_ring *ring;
540 struct fence *fence = NULL;
541 struct amdgpu_job *job;
542 struct amdgpu_pte_update_params params;
543 unsigned entries;
544 uint64_t addr;
545 int r;
546
547 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
548
549 r = reservation_object_reserve_shared(bo->tbo.resv);
550 if (r)
551 return r;
552
553 r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false);
554 if (r)
555 goto error;
556
557 r = amdgpu_ttm_bind(&bo->tbo, &bo->tbo.mem);
558 if (r)
559 goto error;
560
561 addr = amdgpu_bo_gpu_offset(bo);
562 entries = amdgpu_bo_size(bo) / 8;
563
564 r = amdgpu_job_alloc_with_ib(adev, 64, &job);
565 if (r)
566 goto error;
567
568 memset(¶ms, 0, sizeof(params));
569 params.adev = adev;
570 params.ib = &job->ibs[0];
571 amdgpu_vm_do_set_ptes(¶ms, addr, 0, entries, 0, 0);
572 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
573
574 WARN_ON(job->ibs[0].length_dw > 64);
575 r = amdgpu_job_submit(job, ring, &vm->entity,
576 AMDGPU_FENCE_OWNER_VM, &fence);
577 if (r)
578 goto error_free;
579
580 amdgpu_bo_fence(bo, fence, true);
581 fence_put(fence);
582 return 0;
583
584 error_free:
585 amdgpu_job_free(job);
586
587 error:
588 return r;
589 }
590
591 /**
592 * amdgpu_vm_map_gart - Resolve gart mapping of addr
593 *
594 * @pages_addr: optional DMA address to use for lookup
595 * @addr: the unmapped addr
596 *
597 * Look up the physical address of the page that the pte resolves
598 * to and return the pointer for the page table entry.
599 */
amdgpu_vm_map_gart(const dma_addr_t * pages_addr,uint64_t addr)600 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
601 {
602 uint64_t result;
603
604 /* page table offset */
605 result = pages_addr[addr >> PAGE_SHIFT];
606
607 /* in case cpu page size != gpu page size*/
608 result |= addr & (~PAGE_MASK);
609
610 result &= 0xFFFFFFFFFFFFF000ULL;
611
612 return result;
613 }
614
amdgpu_vm_update_pd_or_shadow(struct amdgpu_device * adev,struct amdgpu_vm * vm,bool shadow)615 static int amdgpu_vm_update_pd_or_shadow(struct amdgpu_device *adev,
616 struct amdgpu_vm *vm,
617 bool shadow)
618 {
619 struct amdgpu_ring *ring;
620 struct amdgpu_bo *pd = shadow ? vm->page_directory->shadow :
621 vm->page_directory;
622 uint64_t pd_addr;
623 uint32_t incr = AMDGPU_VM_PTE_COUNT * 8;
624 uint64_t last_pde = ~0, last_pt = ~0;
625 unsigned count = 0, pt_idx, ndw;
626 struct amdgpu_job *job;
627 struct amdgpu_pte_update_params params;
628 struct fence *fence = NULL;
629
630 int r;
631
632 if (!pd)
633 return 0;
634
635 r = amdgpu_ttm_bind(&pd->tbo, &pd->tbo.mem);
636 if (r)
637 return r;
638
639 pd_addr = amdgpu_bo_gpu_offset(pd);
640 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
641
642 /* padding, etc. */
643 ndw = 64;
644
645 /* assume the worst case */
646 ndw += vm->max_pde_used * 6;
647
648 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
649 if (r)
650 return r;
651
652 memset(¶ms, 0, sizeof(params));
653 params.adev = adev;
654 params.ib = &job->ibs[0];
655
656 /* walk over the address space and update the page directory */
657 for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) {
658 struct amdgpu_bo *bo = vm->page_tables[pt_idx].entry.robj;
659 uint64_t pde, pt;
660
661 if (bo == NULL)
662 continue;
663
664 if (bo->shadow) {
665 struct amdgpu_bo *shadow = bo->shadow;
666
667 r = amdgpu_ttm_bind(&shadow->tbo, &shadow->tbo.mem);
668 if (r)
669 return r;
670 }
671
672 pt = amdgpu_bo_gpu_offset(bo);
673 if (!shadow) {
674 if (vm->page_tables[pt_idx].addr == pt)
675 continue;
676 vm->page_tables[pt_idx].addr = pt;
677 } else {
678 if (vm->page_tables[pt_idx].shadow_addr == pt)
679 continue;
680 vm->page_tables[pt_idx].shadow_addr = pt;
681 }
682
683 pde = pd_addr + pt_idx * 8;
684 if (((last_pde + 8 * count) != pde) ||
685 ((last_pt + incr * count) != pt) ||
686 (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
687
688 if (count) {
689 amdgpu_vm_do_set_ptes(¶ms, last_pde,
690 last_pt, count, incr,
691 AMDGPU_PTE_VALID);
692 }
693
694 count = 1;
695 last_pde = pde;
696 last_pt = pt;
697 } else {
698 ++count;
699 }
700 }
701
702 if (count)
703 amdgpu_vm_do_set_ptes(¶ms, last_pde, last_pt,
704 count, incr, AMDGPU_PTE_VALID);
705
706 if (params.ib->length_dw != 0) {
707 amdgpu_ring_pad_ib(ring, params.ib);
708 amdgpu_sync_resv(adev, &job->sync, pd->tbo.resv,
709 AMDGPU_FENCE_OWNER_VM);
710 WARN_ON(params.ib->length_dw > ndw);
711 r = amdgpu_job_submit(job, ring, &vm->entity,
712 AMDGPU_FENCE_OWNER_VM, &fence);
713 if (r)
714 goto error_free;
715
716 amdgpu_bo_fence(pd, fence, true);
717 fence_put(vm->page_directory_fence);
718 vm->page_directory_fence = fence_get(fence);
719 fence_put(fence);
720
721 } else {
722 amdgpu_job_free(job);
723 }
724
725 return 0;
726
727 error_free:
728 amdgpu_job_free(job);
729 return r;
730 }
731
732 /*
733 * amdgpu_vm_update_pdes - make sure that page directory is valid
734 *
735 * @adev: amdgpu_device pointer
736 * @vm: requested vm
737 * @start: start of GPU address range
738 * @end: end of GPU address range
739 *
740 * Allocates new page tables if necessary
741 * and updates the page directory.
742 * Returns 0 for success, error for failure.
743 */
amdgpu_vm_update_page_directory(struct amdgpu_device * adev,struct amdgpu_vm * vm)744 int amdgpu_vm_update_page_directory(struct amdgpu_device *adev,
745 struct amdgpu_vm *vm)
746 {
747 int r = 0;
748
749 r = amdgpu_vm_update_pd_or_shadow(adev, vm, true);
750 if (r)
751 return r;
752 return amdgpu_vm_update_pd_or_shadow(adev, vm, false);
753 }
754
755 /**
756 * amdgpu_vm_update_ptes - make sure that page tables are valid
757 *
758 * @params: see amdgpu_pte_update_params definition
759 * @vm: requested vm
760 * @start: start of GPU address range
761 * @end: end of GPU address range
762 * @dst: destination address to map to, the next dst inside the function
763 * @flags: mapping flags
764 *
765 * Update the page tables in the range @start - @end.
766 */
amdgpu_vm_update_ptes(struct amdgpu_pte_update_params * params,struct amdgpu_vm * vm,uint64_t start,uint64_t end,uint64_t dst,uint32_t flags)767 static void amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
768 struct amdgpu_vm *vm,
769 uint64_t start, uint64_t end,
770 uint64_t dst, uint32_t flags)
771 {
772 const uint64_t mask = AMDGPU_VM_PTE_COUNT - 1;
773
774 uint64_t cur_pe_start, cur_nptes, cur_dst;
775 uint64_t addr; /* next GPU address to be updated */
776 uint64_t pt_idx;
777 struct amdgpu_bo *pt;
778 unsigned nptes; /* next number of ptes to be updated */
779 uint64_t next_pe_start;
780
781 /* initialize the variables */
782 addr = start;
783 pt_idx = addr >> amdgpu_vm_block_size;
784 pt = vm->page_tables[pt_idx].entry.robj;
785 if (params->shadow) {
786 if (!pt->shadow)
787 return;
788 pt = vm->page_tables[pt_idx].entry.robj->shadow;
789 }
790 if ((addr & ~mask) == (end & ~mask))
791 nptes = end - addr;
792 else
793 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
794
795 cur_pe_start = amdgpu_bo_gpu_offset(pt);
796 cur_pe_start += (addr & mask) * 8;
797 cur_nptes = nptes;
798 cur_dst = dst;
799
800 /* for next ptb*/
801 addr += nptes;
802 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
803
804 /* walk over the address space and update the page tables */
805 while (addr < end) {
806 pt_idx = addr >> amdgpu_vm_block_size;
807 pt = vm->page_tables[pt_idx].entry.robj;
808 if (params->shadow) {
809 if (!pt->shadow)
810 return;
811 pt = vm->page_tables[pt_idx].entry.robj->shadow;
812 }
813
814 if ((addr & ~mask) == (end & ~mask))
815 nptes = end - addr;
816 else
817 nptes = AMDGPU_VM_PTE_COUNT - (addr & mask);
818
819 next_pe_start = amdgpu_bo_gpu_offset(pt);
820 next_pe_start += (addr & mask) * 8;
821
822 if ((cur_pe_start + 8 * cur_nptes) == next_pe_start &&
823 ((cur_nptes + nptes) <= AMDGPU_VM_MAX_UPDATE_SIZE)) {
824 /* The next ptb is consecutive to current ptb.
825 * Don't call the update function now.
826 * Will update two ptbs together in future.
827 */
828 cur_nptes += nptes;
829 } else {
830 params->func(params, cur_pe_start, cur_dst, cur_nptes,
831 AMDGPU_GPU_PAGE_SIZE, flags);
832
833 cur_pe_start = next_pe_start;
834 cur_nptes = nptes;
835 cur_dst = dst;
836 }
837
838 /* for next ptb*/
839 addr += nptes;
840 dst += nptes * AMDGPU_GPU_PAGE_SIZE;
841 }
842
843 params->func(params, cur_pe_start, cur_dst, cur_nptes,
844 AMDGPU_GPU_PAGE_SIZE, flags);
845 }
846
847 /*
848 * amdgpu_vm_frag_ptes - add fragment information to PTEs
849 *
850 * @params: see amdgpu_pte_update_params definition
851 * @vm: requested vm
852 * @start: first PTE to handle
853 * @end: last PTE to handle
854 * @dst: addr those PTEs should point to
855 * @flags: hw mapping flags
856 */
amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params * params,struct amdgpu_vm * vm,uint64_t start,uint64_t end,uint64_t dst,uint32_t flags)857 static void amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params *params,
858 struct amdgpu_vm *vm,
859 uint64_t start, uint64_t end,
860 uint64_t dst, uint32_t flags)
861 {
862 /**
863 * The MC L1 TLB supports variable sized pages, based on a fragment
864 * field in the PTE. When this field is set to a non-zero value, page
865 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
866 * flags are considered valid for all PTEs within the fragment range
867 * and corresponding mappings are assumed to be physically contiguous.
868 *
869 * The L1 TLB can store a single PTE for the whole fragment,
870 * significantly increasing the space available for translation
871 * caching. This leads to large improvements in throughput when the
872 * TLB is under pressure.
873 *
874 * The L2 TLB distributes small and large fragments into two
875 * asymmetric partitions. The large fragment cache is significantly
876 * larger. Thus, we try to use large fragments wherever possible.
877 * Userspace can support this by aligning virtual base address and
878 * allocation size to the fragment size.
879 */
880
881 /* SI and newer are optimized for 64KB */
882 uint64_t frag_flags = AMDGPU_PTE_FRAG(AMDGPU_LOG2_PAGES_PER_FRAG);
883 uint64_t frag_align = 1 << AMDGPU_LOG2_PAGES_PER_FRAG;
884
885 uint64_t frag_start = ALIGN(start, frag_align);
886 uint64_t frag_end = end & ~(frag_align - 1);
887
888 /* system pages are non continuously */
889 if (params->src || !(flags & AMDGPU_PTE_VALID) ||
890 (frag_start >= frag_end)) {
891
892 amdgpu_vm_update_ptes(params, vm, start, end, dst, flags);
893 return;
894 }
895
896 /* handle the 4K area at the beginning */
897 if (start != frag_start) {
898 amdgpu_vm_update_ptes(params, vm, start, frag_start,
899 dst, flags);
900 dst += (frag_start - start) * AMDGPU_GPU_PAGE_SIZE;
901 }
902
903 /* handle the area in the middle */
904 amdgpu_vm_update_ptes(params, vm, frag_start, frag_end, dst,
905 flags | frag_flags);
906
907 /* handle the 4K area at the end */
908 if (frag_end != end) {
909 dst += (frag_end - frag_start) * AMDGPU_GPU_PAGE_SIZE;
910 amdgpu_vm_update_ptes(params, vm, frag_end, end, dst, flags);
911 }
912 }
913
914 /**
915 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
916 *
917 * @adev: amdgpu_device pointer
918 * @exclusive: fence we need to sync to
919 * @src: address where to copy page table entries from
920 * @pages_addr: DMA addresses to use for mapping
921 * @vm: requested vm
922 * @start: start of mapped range
923 * @last: last mapped entry
924 * @flags: flags for the entries
925 * @addr: addr to set the area to
926 * @fence: optional resulting fence
927 *
928 * Fill in the page table entries between @start and @last.
929 * Returns 0 for success, -EINVAL for failure.
930 */
amdgpu_vm_bo_update_mapping(struct amdgpu_device * adev,struct fence * exclusive,uint64_t src,dma_addr_t * pages_addr,struct amdgpu_vm * vm,uint64_t start,uint64_t last,uint32_t flags,uint64_t addr,struct fence ** fence)931 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
932 struct fence *exclusive,
933 uint64_t src,
934 dma_addr_t *pages_addr,
935 struct amdgpu_vm *vm,
936 uint64_t start, uint64_t last,
937 uint32_t flags, uint64_t addr,
938 struct fence **fence)
939 {
940 struct amdgpu_ring *ring;
941 void *owner = AMDGPU_FENCE_OWNER_VM;
942 unsigned nptes, ncmds, ndw;
943 struct amdgpu_job *job;
944 struct amdgpu_pte_update_params params;
945 struct fence *f = NULL;
946 int r;
947
948 memset(¶ms, 0, sizeof(params));
949 params.adev = adev;
950 params.src = src;
951
952 ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
953
954 memset(¶ms, 0, sizeof(params));
955 params.adev = adev;
956 params.src = src;
957
958 /* sync to everything on unmapping */
959 if (!(flags & AMDGPU_PTE_VALID))
960 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
961
962 nptes = last - start + 1;
963
964 /*
965 * reserve space for one command every (1 << BLOCK_SIZE)
966 * entries or 2k dwords (whatever is smaller)
967 */
968 ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1;
969
970 /* padding, etc. */
971 ndw = 64;
972
973 if (src) {
974 /* only copy commands needed */
975 ndw += ncmds * 7;
976
977 params.func = amdgpu_vm_do_copy_ptes;
978
979 } else if (pages_addr) {
980 /* copy commands needed */
981 ndw += ncmds * 7;
982
983 /* and also PTEs */
984 ndw += nptes * 2;
985
986 params.func = amdgpu_vm_do_copy_ptes;
987
988 } else {
989 /* set page commands needed */
990 ndw += ncmds * 10;
991
992 /* two extra commands for begin/end of fragment */
993 ndw += 2 * 10;
994
995 params.func = amdgpu_vm_do_set_ptes;
996 }
997
998 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
999 if (r)
1000 return r;
1001
1002 params.ib = &job->ibs[0];
1003
1004 if (!src && pages_addr) {
1005 uint64_t *pte;
1006 unsigned i;
1007
1008 /* Put the PTEs at the end of the IB. */
1009 i = ndw - nptes * 2;
1010 pte= (uint64_t *)&(job->ibs->ptr[i]);
1011 params.src = job->ibs->gpu_addr + i * 4;
1012
1013 for (i = 0; i < nptes; ++i) {
1014 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1015 AMDGPU_GPU_PAGE_SIZE);
1016 pte[i] |= flags;
1017 }
1018 addr = 0;
1019 }
1020
1021 r = amdgpu_sync_fence(adev, &job->sync, exclusive);
1022 if (r)
1023 goto error_free;
1024
1025 r = amdgpu_sync_resv(adev, &job->sync, vm->page_directory->tbo.resv,
1026 owner);
1027 if (r)
1028 goto error_free;
1029
1030 r = reservation_object_reserve_shared(vm->page_directory->tbo.resv);
1031 if (r)
1032 goto error_free;
1033
1034 params.shadow = true;
1035 amdgpu_vm_frag_ptes(¶ms, vm, start, last + 1, addr, flags);
1036 params.shadow = false;
1037 amdgpu_vm_frag_ptes(¶ms, vm, start, last + 1, addr, flags);
1038
1039 amdgpu_ring_pad_ib(ring, params.ib);
1040 WARN_ON(params.ib->length_dw > ndw);
1041 r = amdgpu_job_submit(job, ring, &vm->entity,
1042 AMDGPU_FENCE_OWNER_VM, &f);
1043 if (r)
1044 goto error_free;
1045
1046 amdgpu_bo_fence(vm->page_directory, f, true);
1047 if (fence) {
1048 fence_put(*fence);
1049 *fence = fence_get(f);
1050 }
1051 fence_put(f);
1052 return 0;
1053
1054 error_free:
1055 amdgpu_job_free(job);
1056 return r;
1057 }
1058
1059 /**
1060 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1061 *
1062 * @adev: amdgpu_device pointer
1063 * @exclusive: fence we need to sync to
1064 * @gtt_flags: flags as they are used for GTT
1065 * @pages_addr: DMA addresses to use for mapping
1066 * @vm: requested vm
1067 * @mapping: mapped range and flags to use for the update
1068 * @addr: addr to set the area to
1069 * @flags: HW flags for the mapping
1070 * @fence: optional resulting fence
1071 *
1072 * Split the mapping into smaller chunks so that each update fits
1073 * into a SDMA IB.
1074 * Returns 0 for success, -EINVAL for failure.
1075 */
amdgpu_vm_bo_split_mapping(struct amdgpu_device * adev,struct fence * exclusive,uint32_t gtt_flags,dma_addr_t * pages_addr,struct amdgpu_vm * vm,struct amdgpu_bo_va_mapping * mapping,uint32_t flags,uint64_t addr,struct fence ** fence)1076 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1077 struct fence *exclusive,
1078 uint32_t gtt_flags,
1079 dma_addr_t *pages_addr,
1080 struct amdgpu_vm *vm,
1081 struct amdgpu_bo_va_mapping *mapping,
1082 uint32_t flags, uint64_t addr,
1083 struct fence **fence)
1084 {
1085 const uint64_t max_size = 64ULL * 1024ULL * 1024ULL / AMDGPU_GPU_PAGE_SIZE;
1086
1087 uint64_t src = 0, start = mapping->it.start;
1088 int r;
1089
1090 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1091 * but in case of something, we filter the flags in first place
1092 */
1093 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1094 flags &= ~AMDGPU_PTE_READABLE;
1095 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1096 flags &= ~AMDGPU_PTE_WRITEABLE;
1097
1098 trace_amdgpu_vm_bo_update(mapping);
1099
1100 if (pages_addr) {
1101 if (flags == gtt_flags)
1102 src = adev->gart.table_addr + (addr >> 12) * 8;
1103 addr = 0;
1104 }
1105 addr += mapping->offset;
1106
1107 if (!pages_addr || src)
1108 return amdgpu_vm_bo_update_mapping(adev, exclusive,
1109 src, pages_addr, vm,
1110 start, mapping->it.last,
1111 flags, addr, fence);
1112
1113 while (start != mapping->it.last + 1) {
1114 uint64_t last;
1115
1116 last = min((uint64_t)mapping->it.last, start + max_size - 1);
1117 r = amdgpu_vm_bo_update_mapping(adev, exclusive,
1118 src, pages_addr, vm,
1119 start, last, flags, addr,
1120 fence);
1121 if (r)
1122 return r;
1123
1124 start = last + 1;
1125 addr += max_size * AMDGPU_GPU_PAGE_SIZE;
1126 }
1127
1128 return 0;
1129 }
1130
1131 /**
1132 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1133 *
1134 * @adev: amdgpu_device pointer
1135 * @bo_va: requested BO and VM object
1136 * @clear: if true clear the entries
1137 *
1138 * Fill in the page table entries for @bo_va.
1139 * Returns 0 for success, -EINVAL for failure.
1140 */
amdgpu_vm_bo_update(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,bool clear)1141 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1142 struct amdgpu_bo_va *bo_va,
1143 bool clear)
1144 {
1145 struct amdgpu_vm *vm = bo_va->vm;
1146 struct amdgpu_bo_va_mapping *mapping;
1147 dma_addr_t *pages_addr = NULL;
1148 uint32_t gtt_flags, flags;
1149 struct ttm_mem_reg *mem;
1150 struct fence *exclusive;
1151 uint64_t addr;
1152 int r;
1153
1154 if (clear) {
1155 mem = NULL;
1156 addr = 0;
1157 exclusive = NULL;
1158 } else {
1159 struct ttm_dma_tt *ttm;
1160
1161 mem = &bo_va->bo->tbo.mem;
1162 addr = (u64)mem->start << PAGE_SHIFT;
1163 switch (mem->mem_type) {
1164 case TTM_PL_TT:
1165 ttm = container_of(bo_va->bo->tbo.ttm, struct
1166 ttm_dma_tt, ttm);
1167 pages_addr = ttm->dma_address;
1168 break;
1169
1170 case TTM_PL_VRAM:
1171 addr += adev->vm_manager.vram_base_offset;
1172 break;
1173
1174 default:
1175 break;
1176 }
1177
1178 exclusive = reservation_object_get_excl(bo_va->bo->tbo.resv);
1179 }
1180
1181 flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem);
1182 gtt_flags = (amdgpu_ttm_is_bound(bo_va->bo->tbo.ttm) &&
1183 adev == bo_va->bo->adev) ? flags : 0;
1184
1185 spin_lock(&vm->status_lock);
1186 if (!list_empty(&bo_va->vm_status))
1187 list_splice_init(&bo_va->valids, &bo_va->invalids);
1188 spin_unlock(&vm->status_lock);
1189
1190 list_for_each_entry(mapping, &bo_va->invalids, list) {
1191 r = amdgpu_vm_bo_split_mapping(adev, exclusive,
1192 gtt_flags, pages_addr, vm,
1193 mapping, flags, addr,
1194 &bo_va->last_pt_update);
1195 if (r)
1196 return r;
1197 }
1198
1199 if (trace_amdgpu_vm_bo_mapping_enabled()) {
1200 list_for_each_entry(mapping, &bo_va->valids, list)
1201 trace_amdgpu_vm_bo_mapping(mapping);
1202
1203 list_for_each_entry(mapping, &bo_va->invalids, list)
1204 trace_amdgpu_vm_bo_mapping(mapping);
1205 }
1206
1207 spin_lock(&vm->status_lock);
1208 list_splice_init(&bo_va->invalids, &bo_va->valids);
1209 list_del_init(&bo_va->vm_status);
1210 if (clear)
1211 list_add(&bo_va->vm_status, &vm->cleared);
1212 spin_unlock(&vm->status_lock);
1213
1214 return 0;
1215 }
1216
1217 /**
1218 * amdgpu_vm_clear_freed - clear freed BOs in the PT
1219 *
1220 * @adev: amdgpu_device pointer
1221 * @vm: requested vm
1222 *
1223 * Make sure all freed BOs are cleared in the PT.
1224 * Returns 0 for success.
1225 *
1226 * PTs have to be reserved and mutex must be locked!
1227 */
amdgpu_vm_clear_freed(struct amdgpu_device * adev,struct amdgpu_vm * vm)1228 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
1229 struct amdgpu_vm *vm)
1230 {
1231 struct amdgpu_bo_va_mapping *mapping;
1232 int r;
1233
1234 while (!list_empty(&vm->freed)) {
1235 mapping = list_first_entry(&vm->freed,
1236 struct amdgpu_bo_va_mapping, list);
1237 list_del(&mapping->list);
1238
1239 r = amdgpu_vm_bo_split_mapping(adev, NULL, 0, NULL, vm, mapping,
1240 0, 0, NULL);
1241 kfree(mapping);
1242 if (r)
1243 return r;
1244
1245 }
1246 return 0;
1247
1248 }
1249
1250 /**
1251 * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT
1252 *
1253 * @adev: amdgpu_device pointer
1254 * @vm: requested vm
1255 *
1256 * Make sure all invalidated BOs are cleared in the PT.
1257 * Returns 0 for success.
1258 *
1259 * PTs have to be reserved and mutex must be locked!
1260 */
amdgpu_vm_clear_invalids(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_sync * sync)1261 int amdgpu_vm_clear_invalids(struct amdgpu_device *adev,
1262 struct amdgpu_vm *vm, struct amdgpu_sync *sync)
1263 {
1264 struct amdgpu_bo_va *bo_va = NULL;
1265 int r = 0;
1266
1267 spin_lock(&vm->status_lock);
1268 while (!list_empty(&vm->invalidated)) {
1269 bo_va = list_first_entry(&vm->invalidated,
1270 struct amdgpu_bo_va, vm_status);
1271 spin_unlock(&vm->status_lock);
1272
1273 r = amdgpu_vm_bo_update(adev, bo_va, true);
1274 if (r)
1275 return r;
1276
1277 spin_lock(&vm->status_lock);
1278 }
1279 spin_unlock(&vm->status_lock);
1280
1281 if (bo_va)
1282 r = amdgpu_sync_fence(adev, sync, bo_va->last_pt_update);
1283
1284 return r;
1285 }
1286
1287 /**
1288 * amdgpu_vm_bo_add - add a bo to a specific vm
1289 *
1290 * @adev: amdgpu_device pointer
1291 * @vm: requested vm
1292 * @bo: amdgpu buffer object
1293 *
1294 * Add @bo into the requested vm.
1295 * Add @bo to the list of bos associated with the vm
1296 * Returns newly added bo_va or NULL for failure
1297 *
1298 * Object has to be reserved!
1299 */
amdgpu_vm_bo_add(struct amdgpu_device * adev,struct amdgpu_vm * vm,struct amdgpu_bo * bo)1300 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
1301 struct amdgpu_vm *vm,
1302 struct amdgpu_bo *bo)
1303 {
1304 struct amdgpu_bo_va *bo_va;
1305
1306 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
1307 if (bo_va == NULL) {
1308 return NULL;
1309 }
1310 bo_va->vm = vm;
1311 bo_va->bo = bo;
1312 bo_va->ref_count = 1;
1313 INIT_LIST_HEAD(&bo_va->bo_list);
1314 INIT_LIST_HEAD(&bo_va->valids);
1315 INIT_LIST_HEAD(&bo_va->invalids);
1316 INIT_LIST_HEAD(&bo_va->vm_status);
1317
1318 list_add_tail(&bo_va->bo_list, &bo->va);
1319
1320 return bo_va;
1321 }
1322
1323 /**
1324 * amdgpu_vm_bo_map - map bo inside a vm
1325 *
1326 * @adev: amdgpu_device pointer
1327 * @bo_va: bo_va to store the address
1328 * @saddr: where to map the BO
1329 * @offset: requested offset in the BO
1330 * @flags: attributes of pages (read/write/valid/etc.)
1331 *
1332 * Add a mapping of the BO at the specefied addr into the VM.
1333 * Returns 0 for success, error for failure.
1334 *
1335 * Object has to be reserved and unreserved outside!
1336 */
amdgpu_vm_bo_map(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,uint64_t saddr,uint64_t offset,uint64_t size,uint32_t flags)1337 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
1338 struct amdgpu_bo_va *bo_va,
1339 uint64_t saddr, uint64_t offset,
1340 uint64_t size, uint32_t flags)
1341 {
1342 struct amdgpu_bo_va_mapping *mapping;
1343 struct amdgpu_vm *vm = bo_va->vm;
1344 struct interval_tree_node *it;
1345 unsigned last_pfn, pt_idx;
1346 uint64_t eaddr;
1347 int r;
1348
1349 /* validate the parameters */
1350 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
1351 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
1352 return -EINVAL;
1353
1354 /* make sure object fit at this offset */
1355 eaddr = saddr + size - 1;
1356 if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo)))
1357 return -EINVAL;
1358
1359 last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
1360 if (last_pfn >= adev->vm_manager.max_pfn) {
1361 dev_err(adev->dev, "va above limit (0x%08X >= 0x%08X)\n",
1362 last_pfn, adev->vm_manager.max_pfn);
1363 return -EINVAL;
1364 }
1365
1366 saddr /= AMDGPU_GPU_PAGE_SIZE;
1367 eaddr /= AMDGPU_GPU_PAGE_SIZE;
1368
1369 it = interval_tree_iter_first(&vm->va, saddr, eaddr);
1370 if (it) {
1371 struct amdgpu_bo_va_mapping *tmp;
1372 tmp = container_of(it, struct amdgpu_bo_va_mapping, it);
1373 /* bo and tmp overlap, invalid addr */
1374 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
1375 "0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr,
1376 tmp->it.start, tmp->it.last + 1);
1377 r = -EINVAL;
1378 goto error;
1379 }
1380
1381 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
1382 if (!mapping) {
1383 r = -ENOMEM;
1384 goto error;
1385 }
1386
1387 INIT_LIST_HEAD(&mapping->list);
1388 mapping->it.start = saddr;
1389 mapping->it.last = eaddr;
1390 mapping->offset = offset;
1391 mapping->flags = flags;
1392
1393 list_add(&mapping->list, &bo_va->invalids);
1394 interval_tree_insert(&mapping->it, &vm->va);
1395
1396 /* Make sure the page tables are allocated */
1397 saddr >>= amdgpu_vm_block_size;
1398 eaddr >>= amdgpu_vm_block_size;
1399
1400 BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev));
1401
1402 if (eaddr > vm->max_pde_used)
1403 vm->max_pde_used = eaddr;
1404
1405 /* walk over the address space and allocate the page tables */
1406 for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) {
1407 struct reservation_object *resv = vm->page_directory->tbo.resv;
1408 struct amdgpu_bo_list_entry *entry;
1409 struct amdgpu_bo *pt;
1410
1411 entry = &vm->page_tables[pt_idx].entry;
1412 if (entry->robj)
1413 continue;
1414
1415 r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8,
1416 AMDGPU_GPU_PAGE_SIZE, true,
1417 AMDGPU_GEM_DOMAIN_VRAM,
1418 AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
1419 AMDGPU_GEM_CREATE_SHADOW,
1420 NULL, resv, &pt);
1421 if (r)
1422 goto error_free;
1423
1424 /* Keep a reference to the page table to avoid freeing
1425 * them up in the wrong order.
1426 */
1427 pt->parent = amdgpu_bo_ref(vm->page_directory);
1428
1429 r = amdgpu_vm_clear_bo(adev, vm, pt);
1430 if (r) {
1431 amdgpu_bo_unref(&pt->shadow);
1432 amdgpu_bo_unref(&pt);
1433 goto error_free;
1434 }
1435
1436 if (pt->shadow) {
1437 r = amdgpu_vm_clear_bo(adev, vm, pt->shadow);
1438 if (r) {
1439 amdgpu_bo_unref(&pt->shadow);
1440 amdgpu_bo_unref(&pt);
1441 goto error_free;
1442 }
1443 }
1444
1445 entry->robj = pt;
1446 entry->priority = 0;
1447 entry->tv.bo = &entry->robj->tbo;
1448 entry->tv.shared = true;
1449 entry->user_pages = NULL;
1450 vm->page_tables[pt_idx].addr = 0;
1451 }
1452
1453 return 0;
1454
1455 error_free:
1456 list_del(&mapping->list);
1457 interval_tree_remove(&mapping->it, &vm->va);
1458 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1459 kfree(mapping);
1460
1461 error:
1462 return r;
1463 }
1464
1465 /**
1466 * amdgpu_vm_bo_unmap - remove bo mapping from vm
1467 *
1468 * @adev: amdgpu_device pointer
1469 * @bo_va: bo_va to remove the address from
1470 * @saddr: where to the BO is mapped
1471 *
1472 * Remove a mapping of the BO at the specefied addr from the VM.
1473 * Returns 0 for success, error for failure.
1474 *
1475 * Object has to be reserved and unreserved outside!
1476 */
amdgpu_vm_bo_unmap(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va,uint64_t saddr)1477 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
1478 struct amdgpu_bo_va *bo_va,
1479 uint64_t saddr)
1480 {
1481 struct amdgpu_bo_va_mapping *mapping;
1482 struct amdgpu_vm *vm = bo_va->vm;
1483 bool valid = true;
1484
1485 saddr /= AMDGPU_GPU_PAGE_SIZE;
1486
1487 list_for_each_entry(mapping, &bo_va->valids, list) {
1488 if (mapping->it.start == saddr)
1489 break;
1490 }
1491
1492 if (&mapping->list == &bo_va->valids) {
1493 valid = false;
1494
1495 list_for_each_entry(mapping, &bo_va->invalids, list) {
1496 if (mapping->it.start == saddr)
1497 break;
1498 }
1499
1500 if (&mapping->list == &bo_va->invalids)
1501 return -ENOENT;
1502 }
1503
1504 list_del(&mapping->list);
1505 interval_tree_remove(&mapping->it, &vm->va);
1506 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1507
1508 if (valid)
1509 list_add(&mapping->list, &vm->freed);
1510 else
1511 kfree(mapping);
1512
1513 return 0;
1514 }
1515
1516 /**
1517 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
1518 *
1519 * @adev: amdgpu_device pointer
1520 * @bo_va: requested bo_va
1521 *
1522 * Remove @bo_va->bo from the requested vm.
1523 *
1524 * Object have to be reserved!
1525 */
amdgpu_vm_bo_rmv(struct amdgpu_device * adev,struct amdgpu_bo_va * bo_va)1526 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
1527 struct amdgpu_bo_va *bo_va)
1528 {
1529 struct amdgpu_bo_va_mapping *mapping, *next;
1530 struct amdgpu_vm *vm = bo_va->vm;
1531
1532 list_del(&bo_va->bo_list);
1533
1534 spin_lock(&vm->status_lock);
1535 list_del(&bo_va->vm_status);
1536 spin_unlock(&vm->status_lock);
1537
1538 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
1539 list_del(&mapping->list);
1540 interval_tree_remove(&mapping->it, &vm->va);
1541 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
1542 list_add(&mapping->list, &vm->freed);
1543 }
1544 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
1545 list_del(&mapping->list);
1546 interval_tree_remove(&mapping->it, &vm->va);
1547 kfree(mapping);
1548 }
1549
1550 fence_put(bo_va->last_pt_update);
1551 kfree(bo_va);
1552 }
1553
1554 /**
1555 * amdgpu_vm_bo_invalidate - mark the bo as invalid
1556 *
1557 * @adev: amdgpu_device pointer
1558 * @vm: requested vm
1559 * @bo: amdgpu buffer object
1560 *
1561 * Mark @bo as invalid.
1562 */
amdgpu_vm_bo_invalidate(struct amdgpu_device * adev,struct amdgpu_bo * bo)1563 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
1564 struct amdgpu_bo *bo)
1565 {
1566 struct amdgpu_bo_va *bo_va;
1567
1568 list_for_each_entry(bo_va, &bo->va, bo_list) {
1569 spin_lock(&bo_va->vm->status_lock);
1570 if (list_empty(&bo_va->vm_status))
1571 list_add(&bo_va->vm_status, &bo_va->vm->invalidated);
1572 spin_unlock(&bo_va->vm->status_lock);
1573 }
1574 }
1575
1576 /**
1577 * amdgpu_vm_init - initialize a vm instance
1578 *
1579 * @adev: amdgpu_device pointer
1580 * @vm: requested vm
1581 *
1582 * Init @vm fields.
1583 */
amdgpu_vm_init(struct amdgpu_device * adev,struct amdgpu_vm * vm)1584 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1585 {
1586 const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
1587 AMDGPU_VM_PTE_COUNT * 8);
1588 unsigned pd_size, pd_entries;
1589 unsigned ring_instance;
1590 struct amdgpu_ring *ring;
1591 struct amd_sched_rq *rq;
1592 int i, r;
1593
1594 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
1595 vm->ids[i] = NULL;
1596 vm->va = RB_ROOT;
1597 vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
1598 spin_lock_init(&vm->status_lock);
1599 INIT_LIST_HEAD(&vm->invalidated);
1600 INIT_LIST_HEAD(&vm->cleared);
1601 INIT_LIST_HEAD(&vm->freed);
1602
1603 pd_size = amdgpu_vm_directory_size(adev);
1604 pd_entries = amdgpu_vm_num_pdes(adev);
1605
1606 /* allocate page table array */
1607 vm->page_tables = drm_calloc_large(pd_entries, sizeof(struct amdgpu_vm_pt));
1608 if (vm->page_tables == NULL) {
1609 DRM_ERROR("Cannot allocate memory for page table array\n");
1610 return -ENOMEM;
1611 }
1612
1613 /* create scheduler entity for page table updates */
1614
1615 ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
1616 ring_instance %= adev->vm_manager.vm_pte_num_rings;
1617 ring = adev->vm_manager.vm_pte_rings[ring_instance];
1618 rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
1619 r = amd_sched_entity_init(&ring->sched, &vm->entity,
1620 rq, amdgpu_sched_jobs);
1621 if (r)
1622 goto err;
1623
1624 vm->page_directory_fence = NULL;
1625
1626 r = amdgpu_bo_create(adev, pd_size, align, true,
1627 AMDGPU_GEM_DOMAIN_VRAM,
1628 AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
1629 AMDGPU_GEM_CREATE_SHADOW,
1630 NULL, NULL, &vm->page_directory);
1631 if (r)
1632 goto error_free_sched_entity;
1633
1634 r = amdgpu_bo_reserve(vm->page_directory, false);
1635 if (r)
1636 goto error_free_page_directory;
1637
1638 r = amdgpu_vm_clear_bo(adev, vm, vm->page_directory);
1639 if (r)
1640 goto error_unreserve;
1641
1642 if (vm->page_directory->shadow) {
1643 r = amdgpu_vm_clear_bo(adev, vm, vm->page_directory->shadow);
1644 if (r)
1645 goto error_unreserve;
1646 }
1647
1648 vm->last_eviction_counter = atomic64_read(&adev->num_evictions);
1649 amdgpu_bo_unreserve(vm->page_directory);
1650
1651 return 0;
1652
1653 error_unreserve:
1654 amdgpu_bo_unreserve(vm->page_directory);
1655
1656 error_free_page_directory:
1657 amdgpu_bo_unref(&vm->page_directory->shadow);
1658 amdgpu_bo_unref(&vm->page_directory);
1659 vm->page_directory = NULL;
1660
1661 error_free_sched_entity:
1662 amd_sched_entity_fini(&ring->sched, &vm->entity);
1663
1664 err:
1665 drm_free_large(vm->page_tables);
1666
1667 return r;
1668 }
1669
1670 /**
1671 * amdgpu_vm_fini - tear down a vm instance
1672 *
1673 * @adev: amdgpu_device pointer
1674 * @vm: requested vm
1675 *
1676 * Tear down @vm.
1677 * Unbind the VM and remove all bos from the vm bo list
1678 */
amdgpu_vm_fini(struct amdgpu_device * adev,struct amdgpu_vm * vm)1679 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1680 {
1681 struct amdgpu_bo_va_mapping *mapping, *tmp;
1682 int i;
1683
1684 amd_sched_entity_fini(vm->entity.sched, &vm->entity);
1685
1686 if (!RB_EMPTY_ROOT(&vm->va)) {
1687 dev_err(adev->dev, "still active bo inside vm\n");
1688 }
1689 rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) {
1690 list_del(&mapping->list);
1691 interval_tree_remove(&mapping->it, &vm->va);
1692 kfree(mapping);
1693 }
1694 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
1695 list_del(&mapping->list);
1696 kfree(mapping);
1697 }
1698
1699 for (i = 0; i < amdgpu_vm_num_pdes(adev); i++) {
1700 struct amdgpu_bo *pt = vm->page_tables[i].entry.robj;
1701
1702 if (!pt)
1703 continue;
1704
1705 amdgpu_bo_unref(&pt->shadow);
1706 amdgpu_bo_unref(&pt);
1707 }
1708 drm_free_large(vm->page_tables);
1709
1710 amdgpu_bo_unref(&vm->page_directory->shadow);
1711 amdgpu_bo_unref(&vm->page_directory);
1712 fence_put(vm->page_directory_fence);
1713 }
1714
1715 /**
1716 * amdgpu_vm_manager_init - init the VM manager
1717 *
1718 * @adev: amdgpu_device pointer
1719 *
1720 * Initialize the VM manager structures
1721 */
amdgpu_vm_manager_init(struct amdgpu_device * adev)1722 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
1723 {
1724 unsigned i;
1725
1726 INIT_LIST_HEAD(&adev->vm_manager.ids_lru);
1727
1728 /* skip over VMID 0, since it is the system VM */
1729 for (i = 1; i < adev->vm_manager.num_ids; ++i) {
1730 amdgpu_vm_reset_id(adev, i);
1731 amdgpu_sync_create(&adev->vm_manager.ids[i].active);
1732 list_add_tail(&adev->vm_manager.ids[i].list,
1733 &adev->vm_manager.ids_lru);
1734 }
1735
1736 adev->vm_manager.fence_context = fence_context_alloc(AMDGPU_MAX_RINGS);
1737 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
1738 adev->vm_manager.seqno[i] = 0;
1739
1740 atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
1741 atomic64_set(&adev->vm_manager.client_counter, 0);
1742 }
1743
1744 /**
1745 * amdgpu_vm_manager_fini - cleanup VM manager
1746 *
1747 * @adev: amdgpu_device pointer
1748 *
1749 * Cleanup the VM manager and free resources.
1750 */
amdgpu_vm_manager_fini(struct amdgpu_device * adev)1751 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
1752 {
1753 unsigned i;
1754
1755 for (i = 0; i < AMDGPU_NUM_VM; ++i) {
1756 struct amdgpu_vm_id *id = &adev->vm_manager.ids[i];
1757
1758 fence_put(adev->vm_manager.ids[i].first);
1759 amdgpu_sync_free(&adev->vm_manager.ids[i].active);
1760 fence_put(id->flushed_updates);
1761 fence_put(id->last_flush);
1762 }
1763 }
1764