• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex	(while writing or truncating, not reading or faulting)
24  *   mm->mmap_sem
25  *     page->flags PG_locked (lock_page)
26  *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27  *         mapping->i_mmap_rwsem
28  *           anon_vma->rwsem
29  *             mm->page_table_lock or pte_lock
30  *               zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31  *               swap_lock (in swap_duplicate, swap_info_get)
32  *                 mmlist_lock (in mmput, drain_mmlist and others)
33  *                 mapping->private_lock (in __set_page_dirty_buffers)
34  *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35  *                     mapping->tree_lock (widely used)
36  *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37  *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38  *                   sb_lock (within inode_lock in fs/fs-writeback.c)
39  *                   mapping->tree_lock (widely used, in set_page_dirty,
40  *                             in arch-dependent flush_dcache_mmap_lock,
41  *                             within bdi.wb->list_lock in __sync_single_inode)
42  *
43  * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
44  *   ->tasklist_lock
45  *     pte map lock
46  */
47 
48 #include <linux/mm.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/slab.h>
53 #include <linux/init.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/rcupdate.h>
57 #include <linux/export.h>
58 #include <linux/memcontrol.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/backing-dev.h>
63 #include <linux/page_idle.h>
64 
65 #include <asm/tlbflush.h>
66 
67 #include <trace/events/tlb.h>
68 
69 #include "internal.h"
70 
71 static struct kmem_cache *anon_vma_cachep;
72 static struct kmem_cache *anon_vma_chain_cachep;
73 
anon_vma_alloc(void)74 static inline struct anon_vma *anon_vma_alloc(void)
75 {
76 	struct anon_vma *anon_vma;
77 
78 	anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
79 	if (anon_vma) {
80 		atomic_set(&anon_vma->refcount, 1);
81 		anon_vma->degree = 1;	/* Reference for first vma */
82 		anon_vma->parent = anon_vma;
83 		/*
84 		 * Initialise the anon_vma root to point to itself. If called
85 		 * from fork, the root will be reset to the parents anon_vma.
86 		 */
87 		anon_vma->root = anon_vma;
88 	}
89 
90 	return anon_vma;
91 }
92 
anon_vma_free(struct anon_vma * anon_vma)93 static inline void anon_vma_free(struct anon_vma *anon_vma)
94 {
95 	VM_BUG_ON(atomic_read(&anon_vma->refcount));
96 
97 	/*
98 	 * Synchronize against page_lock_anon_vma_read() such that
99 	 * we can safely hold the lock without the anon_vma getting
100 	 * freed.
101 	 *
102 	 * Relies on the full mb implied by the atomic_dec_and_test() from
103 	 * put_anon_vma() against the acquire barrier implied by
104 	 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
105 	 *
106 	 * page_lock_anon_vma_read()	VS	put_anon_vma()
107 	 *   down_read_trylock()		  atomic_dec_and_test()
108 	 *   LOCK				  MB
109 	 *   atomic_read()			  rwsem_is_locked()
110 	 *
111 	 * LOCK should suffice since the actual taking of the lock must
112 	 * happen _before_ what follows.
113 	 */
114 	might_sleep();
115 	if (rwsem_is_locked(&anon_vma->root->rwsem)) {
116 		anon_vma_lock_write(anon_vma);
117 		anon_vma_unlock_write(anon_vma);
118 	}
119 
120 	kmem_cache_free(anon_vma_cachep, anon_vma);
121 }
122 
anon_vma_chain_alloc(gfp_t gfp)123 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
124 {
125 	return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
126 }
127 
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)128 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
129 {
130 	kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
131 }
132 
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)133 static void anon_vma_chain_link(struct vm_area_struct *vma,
134 				struct anon_vma_chain *avc,
135 				struct anon_vma *anon_vma)
136 {
137 	avc->vma = vma;
138 	avc->anon_vma = anon_vma;
139 	list_add(&avc->same_vma, &vma->anon_vma_chain);
140 	anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
141 }
142 
143 /**
144  * anon_vma_prepare - attach an anon_vma to a memory region
145  * @vma: the memory region in question
146  *
147  * This makes sure the memory mapping described by 'vma' has
148  * an 'anon_vma' attached to it, so that we can associate the
149  * anonymous pages mapped into it with that anon_vma.
150  *
151  * The common case will be that we already have one, but if
152  * not we either need to find an adjacent mapping that we
153  * can re-use the anon_vma from (very common when the only
154  * reason for splitting a vma has been mprotect()), or we
155  * allocate a new one.
156  *
157  * Anon-vma allocations are very subtle, because we may have
158  * optimistically looked up an anon_vma in page_lock_anon_vma_read()
159  * and that may actually touch the spinlock even in the newly
160  * allocated vma (it depends on RCU to make sure that the
161  * anon_vma isn't actually destroyed).
162  *
163  * As a result, we need to do proper anon_vma locking even
164  * for the new allocation. At the same time, we do not want
165  * to do any locking for the common case of already having
166  * an anon_vma.
167  *
168  * This must be called with the mmap_sem held for reading.
169  */
anon_vma_prepare(struct vm_area_struct * vma)170 int anon_vma_prepare(struct vm_area_struct *vma)
171 {
172 	struct anon_vma *anon_vma = vma->anon_vma;
173 	struct anon_vma_chain *avc;
174 
175 	might_sleep();
176 	if (unlikely(!anon_vma)) {
177 		struct mm_struct *mm = vma->vm_mm;
178 		struct anon_vma *allocated;
179 
180 		avc = anon_vma_chain_alloc(GFP_KERNEL);
181 		if (!avc)
182 			goto out_enomem;
183 
184 		anon_vma = find_mergeable_anon_vma(vma);
185 		allocated = NULL;
186 		if (!anon_vma) {
187 			anon_vma = anon_vma_alloc();
188 			if (unlikely(!anon_vma))
189 				goto out_enomem_free_avc;
190 			allocated = anon_vma;
191 		}
192 
193 		anon_vma_lock_write(anon_vma);
194 		/* page_table_lock to protect against threads */
195 		spin_lock(&mm->page_table_lock);
196 		if (likely(!vma->anon_vma)) {
197 			vma->anon_vma = anon_vma;
198 			anon_vma_chain_link(vma, avc, anon_vma);
199 			/* vma reference or self-parent link for new root */
200 			anon_vma->degree++;
201 			allocated = NULL;
202 			avc = NULL;
203 		}
204 		spin_unlock(&mm->page_table_lock);
205 		anon_vma_unlock_write(anon_vma);
206 
207 		if (unlikely(allocated))
208 			put_anon_vma(allocated);
209 		if (unlikely(avc))
210 			anon_vma_chain_free(avc);
211 	}
212 	return 0;
213 
214  out_enomem_free_avc:
215 	anon_vma_chain_free(avc);
216  out_enomem:
217 	return -ENOMEM;
218 }
219 
220 /*
221  * This is a useful helper function for locking the anon_vma root as
222  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
223  * have the same vma.
224  *
225  * Such anon_vma's should have the same root, so you'd expect to see
226  * just a single mutex_lock for the whole traversal.
227  */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)228 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
229 {
230 	struct anon_vma *new_root = anon_vma->root;
231 	if (new_root != root) {
232 		if (WARN_ON_ONCE(root))
233 			up_write(&root->rwsem);
234 		root = new_root;
235 		down_write(&root->rwsem);
236 	}
237 	return root;
238 }
239 
unlock_anon_vma_root(struct anon_vma * root)240 static inline void unlock_anon_vma_root(struct anon_vma *root)
241 {
242 	if (root)
243 		up_write(&root->rwsem);
244 }
245 
246 /*
247  * Attach the anon_vmas from src to dst.
248  * Returns 0 on success, -ENOMEM on failure.
249  *
250  * If dst->anon_vma is NULL this function tries to find and reuse existing
251  * anon_vma which has no vmas and only one child anon_vma. This prevents
252  * degradation of anon_vma hierarchy to endless linear chain in case of
253  * constantly forking task. On the other hand, an anon_vma with more than one
254  * child isn't reused even if there was no alive vma, thus rmap walker has a
255  * good chance of avoiding scanning the whole hierarchy when it searches where
256  * page is mapped.
257  */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)258 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
259 {
260 	struct anon_vma_chain *avc, *pavc;
261 	struct anon_vma *root = NULL;
262 
263 	list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
264 		struct anon_vma *anon_vma;
265 
266 		avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
267 		if (unlikely(!avc)) {
268 			unlock_anon_vma_root(root);
269 			root = NULL;
270 			avc = anon_vma_chain_alloc(GFP_KERNEL);
271 			if (!avc)
272 				goto enomem_failure;
273 		}
274 		anon_vma = pavc->anon_vma;
275 		root = lock_anon_vma_root(root, anon_vma);
276 		anon_vma_chain_link(dst, avc, anon_vma);
277 
278 		/*
279 		 * Reuse existing anon_vma if its degree lower than two,
280 		 * that means it has no vma and only one anon_vma child.
281 		 *
282 		 * Do not chose parent anon_vma, otherwise first child
283 		 * will always reuse it. Root anon_vma is never reused:
284 		 * it has self-parent reference and at least one child.
285 		 */
286 		if (!dst->anon_vma && anon_vma != src->anon_vma &&
287 				anon_vma->degree < 2)
288 			dst->anon_vma = anon_vma;
289 	}
290 	if (dst->anon_vma)
291 		dst->anon_vma->degree++;
292 	unlock_anon_vma_root(root);
293 	return 0;
294 
295  enomem_failure:
296 	/*
297 	 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
298 	 * decremented in unlink_anon_vmas().
299 	 * We can safely do this because callers of anon_vma_clone() don't care
300 	 * about dst->anon_vma if anon_vma_clone() failed.
301 	 */
302 	dst->anon_vma = NULL;
303 	unlink_anon_vmas(dst);
304 	return -ENOMEM;
305 }
306 
307 /*
308  * Attach vma to its own anon_vma, as well as to the anon_vmas that
309  * the corresponding VMA in the parent process is attached to.
310  * Returns 0 on success, non-zero on failure.
311  */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)312 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
313 {
314 	struct anon_vma_chain *avc;
315 	struct anon_vma *anon_vma;
316 	int error;
317 
318 	/* Don't bother if the parent process has no anon_vma here. */
319 	if (!pvma->anon_vma)
320 		return 0;
321 
322 	/* Drop inherited anon_vma, we'll reuse existing or allocate new. */
323 	vma->anon_vma = NULL;
324 
325 	/*
326 	 * First, attach the new VMA to the parent VMA's anon_vmas,
327 	 * so rmap can find non-COWed pages in child processes.
328 	 */
329 	error = anon_vma_clone(vma, pvma);
330 	if (error)
331 		return error;
332 
333 	/* An existing anon_vma has been reused, all done then. */
334 	if (vma->anon_vma)
335 		return 0;
336 
337 	/* Then add our own anon_vma. */
338 	anon_vma = anon_vma_alloc();
339 	if (!anon_vma)
340 		goto out_error;
341 	avc = anon_vma_chain_alloc(GFP_KERNEL);
342 	if (!avc)
343 		goto out_error_free_anon_vma;
344 
345 	/*
346 	 * The root anon_vma's spinlock is the lock actually used when we
347 	 * lock any of the anon_vmas in this anon_vma tree.
348 	 */
349 	anon_vma->root = pvma->anon_vma->root;
350 	anon_vma->parent = pvma->anon_vma;
351 	/*
352 	 * With refcounts, an anon_vma can stay around longer than the
353 	 * process it belongs to. The root anon_vma needs to be pinned until
354 	 * this anon_vma is freed, because the lock lives in the root.
355 	 */
356 	get_anon_vma(anon_vma->root);
357 	/* Mark this anon_vma as the one where our new (COWed) pages go. */
358 	vma->anon_vma = anon_vma;
359 	anon_vma_lock_write(anon_vma);
360 	anon_vma_chain_link(vma, avc, anon_vma);
361 	anon_vma->parent->degree++;
362 	anon_vma_unlock_write(anon_vma);
363 
364 	return 0;
365 
366  out_error_free_anon_vma:
367 	put_anon_vma(anon_vma);
368  out_error:
369 	unlink_anon_vmas(vma);
370 	return -ENOMEM;
371 }
372 
unlink_anon_vmas(struct vm_area_struct * vma)373 void unlink_anon_vmas(struct vm_area_struct *vma)
374 {
375 	struct anon_vma_chain *avc, *next;
376 	struct anon_vma *root = NULL;
377 
378 	/*
379 	 * Unlink each anon_vma chained to the VMA.  This list is ordered
380 	 * from newest to oldest, ensuring the root anon_vma gets freed last.
381 	 */
382 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
383 		struct anon_vma *anon_vma = avc->anon_vma;
384 
385 		root = lock_anon_vma_root(root, anon_vma);
386 		anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
387 
388 		/*
389 		 * Leave empty anon_vmas on the list - we'll need
390 		 * to free them outside the lock.
391 		 */
392 		if (RB_EMPTY_ROOT(&anon_vma->rb_root)) {
393 			anon_vma->parent->degree--;
394 			continue;
395 		}
396 
397 		list_del(&avc->same_vma);
398 		anon_vma_chain_free(avc);
399 	}
400 	if (vma->anon_vma)
401 		vma->anon_vma->degree--;
402 	unlock_anon_vma_root(root);
403 
404 	/*
405 	 * Iterate the list once more, it now only contains empty and unlinked
406 	 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
407 	 * needing to write-acquire the anon_vma->root->rwsem.
408 	 */
409 	list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
410 		struct anon_vma *anon_vma = avc->anon_vma;
411 
412 		VM_WARN_ON(anon_vma->degree);
413 		put_anon_vma(anon_vma);
414 
415 		list_del(&avc->same_vma);
416 		anon_vma_chain_free(avc);
417 	}
418 }
419 
anon_vma_ctor(void * data)420 static void anon_vma_ctor(void *data)
421 {
422 	struct anon_vma *anon_vma = data;
423 
424 	init_rwsem(&anon_vma->rwsem);
425 	atomic_set(&anon_vma->refcount, 0);
426 	anon_vma->rb_root = RB_ROOT;
427 }
428 
anon_vma_init(void)429 void __init anon_vma_init(void)
430 {
431 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
432 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
433 			anon_vma_ctor);
434 	anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
435 			SLAB_PANIC|SLAB_ACCOUNT);
436 }
437 
438 /*
439  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
440  *
441  * Since there is no serialization what so ever against page_remove_rmap()
442  * the best this function can do is return a locked anon_vma that might
443  * have been relevant to this page.
444  *
445  * The page might have been remapped to a different anon_vma or the anon_vma
446  * returned may already be freed (and even reused).
447  *
448  * In case it was remapped to a different anon_vma, the new anon_vma will be a
449  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
450  * ensure that any anon_vma obtained from the page will still be valid for as
451  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
452  *
453  * All users of this function must be very careful when walking the anon_vma
454  * chain and verify that the page in question is indeed mapped in it
455  * [ something equivalent to page_mapped_in_vma() ].
456  *
457  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
458  * that the anon_vma pointer from page->mapping is valid if there is a
459  * mapcount, we can dereference the anon_vma after observing those.
460  */
page_get_anon_vma(struct page * page)461 struct anon_vma *page_get_anon_vma(struct page *page)
462 {
463 	struct anon_vma *anon_vma = NULL;
464 	unsigned long anon_mapping;
465 
466 	rcu_read_lock();
467 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
468 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
469 		goto out;
470 	if (!page_mapped(page))
471 		goto out;
472 
473 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
474 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475 		anon_vma = NULL;
476 		goto out;
477 	}
478 
479 	/*
480 	 * If this page is still mapped, then its anon_vma cannot have been
481 	 * freed.  But if it has been unmapped, we have no security against the
482 	 * anon_vma structure being freed and reused (for another anon_vma:
483 	 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
484 	 * above cannot corrupt).
485 	 */
486 	if (!page_mapped(page)) {
487 		rcu_read_unlock();
488 		put_anon_vma(anon_vma);
489 		return NULL;
490 	}
491 out:
492 	rcu_read_unlock();
493 
494 	return anon_vma;
495 }
496 
497 /*
498  * Similar to page_get_anon_vma() except it locks the anon_vma.
499  *
500  * Its a little more complex as it tries to keep the fast path to a single
501  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
502  * reference like with page_get_anon_vma() and then block on the mutex.
503  */
page_lock_anon_vma_read(struct page * page)504 struct anon_vma *page_lock_anon_vma_read(struct page *page)
505 {
506 	struct anon_vma *anon_vma = NULL;
507 	struct anon_vma *root_anon_vma;
508 	unsigned long anon_mapping;
509 
510 	rcu_read_lock();
511 	anon_mapping = (unsigned long)READ_ONCE(page->mapping);
512 	if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
513 		goto out;
514 	if (!page_mapped(page))
515 		goto out;
516 
517 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
518 	root_anon_vma = READ_ONCE(anon_vma->root);
519 	if (down_read_trylock(&root_anon_vma->rwsem)) {
520 		/*
521 		 * If the page is still mapped, then this anon_vma is still
522 		 * its anon_vma, and holding the mutex ensures that it will
523 		 * not go away, see anon_vma_free().
524 		 */
525 		if (!page_mapped(page)) {
526 			up_read(&root_anon_vma->rwsem);
527 			anon_vma = NULL;
528 		}
529 		goto out;
530 	}
531 
532 	/* trylock failed, we got to sleep */
533 	if (!atomic_inc_not_zero(&anon_vma->refcount)) {
534 		anon_vma = NULL;
535 		goto out;
536 	}
537 
538 	if (!page_mapped(page)) {
539 		rcu_read_unlock();
540 		put_anon_vma(anon_vma);
541 		return NULL;
542 	}
543 
544 	/* we pinned the anon_vma, its safe to sleep */
545 	rcu_read_unlock();
546 	anon_vma_lock_read(anon_vma);
547 
548 	if (atomic_dec_and_test(&anon_vma->refcount)) {
549 		/*
550 		 * Oops, we held the last refcount, release the lock
551 		 * and bail -- can't simply use put_anon_vma() because
552 		 * we'll deadlock on the anon_vma_lock_write() recursion.
553 		 */
554 		anon_vma_unlock_read(anon_vma);
555 		__put_anon_vma(anon_vma);
556 		anon_vma = NULL;
557 	}
558 
559 	return anon_vma;
560 
561 out:
562 	rcu_read_unlock();
563 	return anon_vma;
564 }
565 
page_unlock_anon_vma_read(struct anon_vma * anon_vma)566 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
567 {
568 	anon_vma_unlock_read(anon_vma);
569 }
570 
571 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
572 /*
573  * Flush TLB entries for recently unmapped pages from remote CPUs. It is
574  * important if a PTE was dirty when it was unmapped that it's flushed
575  * before any IO is initiated on the page to prevent lost writes. Similarly,
576  * it must be flushed before freeing to prevent data leakage.
577  */
try_to_unmap_flush(void)578 void try_to_unmap_flush(void)
579 {
580 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
581 	int cpu;
582 
583 	if (!tlb_ubc->flush_required)
584 		return;
585 
586 	cpu = get_cpu();
587 
588 	if (cpumask_test_cpu(cpu, &tlb_ubc->cpumask)) {
589 		count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
590 		local_flush_tlb();
591 		trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
592 	}
593 
594 	if (cpumask_any_but(&tlb_ubc->cpumask, cpu) < nr_cpu_ids)
595 		flush_tlb_others(&tlb_ubc->cpumask, NULL, 0, TLB_FLUSH_ALL);
596 	cpumask_clear(&tlb_ubc->cpumask);
597 	tlb_ubc->flush_required = false;
598 	tlb_ubc->writable = false;
599 	put_cpu();
600 }
601 
602 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)603 void try_to_unmap_flush_dirty(void)
604 {
605 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
606 
607 	if (tlb_ubc->writable)
608 		try_to_unmap_flush();
609 }
610 
set_tlb_ubc_flush_pending(struct mm_struct * mm,struct page * page,bool writable)611 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
612 		struct page *page, bool writable)
613 {
614 	struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
615 
616 	cpumask_or(&tlb_ubc->cpumask, &tlb_ubc->cpumask, mm_cpumask(mm));
617 	tlb_ubc->flush_required = true;
618 
619 	/*
620 	 * Ensure compiler does not re-order the setting of tlb_flush_batched
621 	 * before the PTE is cleared.
622 	 */
623 	barrier();
624 	mm->tlb_flush_batched = true;
625 
626 	/*
627 	 * If the PTE was dirty then it's best to assume it's writable. The
628 	 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
629 	 * before the page is queued for IO.
630 	 */
631 	if (writable)
632 		tlb_ubc->writable = true;
633 }
634 
635 /*
636  * Returns true if the TLB flush should be deferred to the end of a batch of
637  * unmap operations to reduce IPIs.
638  */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)639 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
640 {
641 	bool should_defer = false;
642 
643 	if (!(flags & TTU_BATCH_FLUSH))
644 		return false;
645 
646 	/* If remote CPUs need to be flushed then defer batch the flush */
647 	if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
648 		should_defer = true;
649 	put_cpu();
650 
651 	return should_defer;
652 }
653 
654 /*
655  * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
656  * releasing the PTL if TLB flushes are batched. It's possible for a parallel
657  * operation such as mprotect or munmap to race between reclaim unmapping
658  * the page and flushing the page. If this race occurs, it potentially allows
659  * access to data via a stale TLB entry. Tracking all mm's that have TLB
660  * batching in flight would be expensive during reclaim so instead track
661  * whether TLB batching occurred in the past and if so then do a flush here
662  * if required. This will cost one additional flush per reclaim cycle paid
663  * by the first operation at risk such as mprotect and mumap.
664  *
665  * This must be called under the PTL so that an access to tlb_flush_batched
666  * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
667  * via the PTL.
668  */
flush_tlb_batched_pending(struct mm_struct * mm)669 void flush_tlb_batched_pending(struct mm_struct *mm)
670 {
671 	if (mm->tlb_flush_batched) {
672 		flush_tlb_mm(mm);
673 
674 		/*
675 		 * Do not allow the compiler to re-order the clearing of
676 		 * tlb_flush_batched before the tlb is flushed.
677 		 */
678 		barrier();
679 		mm->tlb_flush_batched = false;
680 	}
681 }
682 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,struct page * page,bool writable)683 static void set_tlb_ubc_flush_pending(struct mm_struct *mm,
684 		struct page *page, bool writable)
685 {
686 }
687 
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)688 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
689 {
690 	return false;
691 }
692 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
693 
694 /*
695  * At what user virtual address is page expected in vma?
696  * Caller should check the page is actually part of the vma.
697  */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)698 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
699 {
700 	unsigned long address;
701 	if (PageAnon(page)) {
702 		struct anon_vma *page__anon_vma = page_anon_vma(page);
703 		/*
704 		 * Note: swapoff's unuse_vma() is more efficient with this
705 		 * check, and needs it to match anon_vma when KSM is active.
706 		 */
707 		if (!vma->anon_vma || !page__anon_vma ||
708 		    vma->anon_vma->root != page__anon_vma->root)
709 			return -EFAULT;
710 	} else if (page->mapping) {
711 		if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
712 			return -EFAULT;
713 	} else
714 		return -EFAULT;
715 	address = __vma_address(page, vma);
716 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
717 		return -EFAULT;
718 	return address;
719 }
720 
mm_find_pmd(struct mm_struct * mm,unsigned long address)721 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
722 {
723 	pgd_t *pgd;
724 	pud_t *pud;
725 	pmd_t *pmd = NULL;
726 	pmd_t pmde;
727 
728 	pgd = pgd_offset(mm, address);
729 	if (!pgd_present(*pgd))
730 		goto out;
731 
732 	pud = pud_offset(pgd, address);
733 	if (!pud_present(*pud))
734 		goto out;
735 
736 	pmd = pmd_offset(pud, address);
737 	/*
738 	 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
739 	 * without holding anon_vma lock for write.  So when looking for a
740 	 * genuine pmde (in which to find pte), test present and !THP together.
741 	 */
742 	pmde = *pmd;
743 	barrier();
744 	if (!pmd_present(pmde) || pmd_trans_huge(pmde))
745 		pmd = NULL;
746 out:
747 	return pmd;
748 }
749 
750 /*
751  * Check that @page is mapped at @address into @mm.
752  *
753  * If @sync is false, page_check_address may perform a racy check to avoid
754  * the page table lock when the pte is not present (helpful when reclaiming
755  * highly shared pages).
756  *
757  * On success returns with pte mapped and locked.
758  */
__page_check_address(struct page * page,struct mm_struct * mm,unsigned long address,spinlock_t ** ptlp,int sync)759 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
760 			  unsigned long address, spinlock_t **ptlp, int sync)
761 {
762 	pmd_t *pmd;
763 	pte_t *pte;
764 	spinlock_t *ptl;
765 
766 	if (unlikely(PageHuge(page))) {
767 		/* when pud is not present, pte will be NULL */
768 		pte = huge_pte_offset(mm, address);
769 		if (!pte)
770 			return NULL;
771 
772 		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
773 		goto check;
774 	}
775 
776 	pmd = mm_find_pmd(mm, address);
777 	if (!pmd)
778 		return NULL;
779 
780 	pte = pte_offset_map(pmd, address);
781 	/* Make a quick check before getting the lock */
782 	if (!sync && !pte_present(*pte)) {
783 		pte_unmap(pte);
784 		return NULL;
785 	}
786 
787 	ptl = pte_lockptr(mm, pmd);
788 check:
789 	spin_lock(ptl);
790 	if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
791 		*ptlp = ptl;
792 		return pte;
793 	}
794 	pte_unmap_unlock(pte, ptl);
795 	return NULL;
796 }
797 
798 /**
799  * page_mapped_in_vma - check whether a page is really mapped in a VMA
800  * @page: the page to test
801  * @vma: the VMA to test
802  *
803  * Returns 1 if the page is mapped into the page tables of the VMA, 0
804  * if the page is not mapped into the page tables of this VMA.  Only
805  * valid for normal file or anonymous VMAs.
806  */
page_mapped_in_vma(struct page * page,struct vm_area_struct * vma)807 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
808 {
809 	unsigned long address;
810 	pte_t *pte;
811 	spinlock_t *ptl;
812 
813 	address = __vma_address(page, vma);
814 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
815 		return 0;
816 	pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
817 	if (!pte)			/* the page is not in this mm */
818 		return 0;
819 	pte_unmap_unlock(pte, ptl);
820 
821 	return 1;
822 }
823 
824 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
825 /*
826  * Check that @page is mapped at @address into @mm. In contrast to
827  * page_check_address(), this function can handle transparent huge pages.
828  *
829  * On success returns true with pte mapped and locked. For PMD-mapped
830  * transparent huge pages *@ptep is set to NULL.
831  */
page_check_address_transhuge(struct page * page,struct mm_struct * mm,unsigned long address,pmd_t ** pmdp,pte_t ** ptep,spinlock_t ** ptlp)832 bool page_check_address_transhuge(struct page *page, struct mm_struct *mm,
833 				  unsigned long address, pmd_t **pmdp,
834 				  pte_t **ptep, spinlock_t **ptlp)
835 {
836 	pgd_t *pgd;
837 	pud_t *pud;
838 	pmd_t *pmd;
839 	pte_t *pte;
840 	spinlock_t *ptl;
841 
842 	if (unlikely(PageHuge(page))) {
843 		/* when pud is not present, pte will be NULL */
844 		pte = huge_pte_offset(mm, address);
845 		if (!pte)
846 			return false;
847 
848 		ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
849 		pmd = NULL;
850 		goto check_pte;
851 	}
852 
853 	pgd = pgd_offset(mm, address);
854 	if (!pgd_present(*pgd))
855 		return false;
856 	pud = pud_offset(pgd, address);
857 	if (!pud_present(*pud))
858 		return false;
859 	pmd = pmd_offset(pud, address);
860 
861 	if (pmd_trans_huge(*pmd)) {
862 		ptl = pmd_lock(mm, pmd);
863 		if (!pmd_present(*pmd))
864 			goto unlock_pmd;
865 		if (unlikely(!pmd_trans_huge(*pmd))) {
866 			spin_unlock(ptl);
867 			goto map_pte;
868 		}
869 
870 		if (pmd_page(*pmd) != page)
871 			goto unlock_pmd;
872 
873 		pte = NULL;
874 		goto found;
875 unlock_pmd:
876 		spin_unlock(ptl);
877 		return false;
878 	} else {
879 		pmd_t pmde = *pmd;
880 
881 		barrier();
882 		if (!pmd_present(pmde) || pmd_trans_huge(pmde))
883 			return false;
884 	}
885 map_pte:
886 	pte = pte_offset_map(pmd, address);
887 	if (!pte_present(*pte)) {
888 		pte_unmap(pte);
889 		return false;
890 	}
891 
892 	ptl = pte_lockptr(mm, pmd);
893 check_pte:
894 	spin_lock(ptl);
895 
896 	if (!pte_present(*pte)) {
897 		pte_unmap_unlock(pte, ptl);
898 		return false;
899 	}
900 
901 	/* THP can be referenced by any subpage */
902 	if (pte_pfn(*pte) - page_to_pfn(page) >= hpage_nr_pages(page)) {
903 		pte_unmap_unlock(pte, ptl);
904 		return false;
905 	}
906 found:
907 	*ptep = pte;
908 	*pmdp = pmd;
909 	*ptlp = ptl;
910 	return true;
911 }
912 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
913 
914 struct page_referenced_arg {
915 	int mapcount;
916 	int referenced;
917 	unsigned long vm_flags;
918 	struct mem_cgroup *memcg;
919 };
920 /*
921  * arg: page_referenced_arg will be passed
922  */
page_referenced_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)923 static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
924 			unsigned long address, void *arg)
925 {
926 	struct mm_struct *mm = vma->vm_mm;
927 	struct page_referenced_arg *pra = arg;
928 	pmd_t *pmd;
929 	pte_t *pte;
930 	spinlock_t *ptl;
931 	int referenced = 0;
932 
933 	if (!page_check_address_transhuge(page, mm, address, &pmd, &pte, &ptl))
934 		return SWAP_AGAIN;
935 
936 	if (vma->vm_flags & VM_LOCKED) {
937 		if (pte)
938 			pte_unmap(pte);
939 		spin_unlock(ptl);
940 		pra->vm_flags |= VM_LOCKED;
941 		return SWAP_FAIL; /* To break the loop */
942 	}
943 
944 	if (pte) {
945 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
946 			/*
947 			 * Don't treat a reference through a sequentially read
948 			 * mapping as such.  If the page has been used in
949 			 * another mapping, we will catch it; if this other
950 			 * mapping is already gone, the unmap path will have
951 			 * set PG_referenced or activated the page.
952 			 */
953 			if (likely(!(vma->vm_flags & VM_SEQ_READ)))
954 				referenced++;
955 		}
956 		pte_unmap(pte);
957 	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
958 		if (pmdp_clear_flush_young_notify(vma, address, pmd))
959 			referenced++;
960 	} else {
961 		/* unexpected pmd-mapped page? */
962 		WARN_ON_ONCE(1);
963 	}
964 	spin_unlock(ptl);
965 
966 	if (referenced)
967 		clear_page_idle(page);
968 	if (test_and_clear_page_young(page))
969 		referenced++;
970 
971 	if (referenced) {
972 		pra->referenced++;
973 		pra->vm_flags |= vma->vm_flags;
974 	}
975 
976 	pra->mapcount--;
977 	if (!pra->mapcount)
978 		return SWAP_SUCCESS; /* To break the loop */
979 
980 	return SWAP_AGAIN;
981 }
982 
invalid_page_referenced_vma(struct vm_area_struct * vma,void * arg)983 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
984 {
985 	struct page_referenced_arg *pra = arg;
986 	struct mem_cgroup *memcg = pra->memcg;
987 
988 	if (!mm_match_cgroup(vma->vm_mm, memcg))
989 		return true;
990 
991 	return false;
992 }
993 
994 /**
995  * page_referenced - test if the page was referenced
996  * @page: the page to test
997  * @is_locked: caller holds lock on the page
998  * @memcg: target memory cgroup
999  * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1000  *
1001  * Quick test_and_clear_referenced for all mappings to a page,
1002  * returns the number of ptes which referenced the page.
1003  */
page_referenced(struct page * page,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)1004 int page_referenced(struct page *page,
1005 		    int is_locked,
1006 		    struct mem_cgroup *memcg,
1007 		    unsigned long *vm_flags)
1008 {
1009 	int ret;
1010 	int we_locked = 0;
1011 	struct page_referenced_arg pra = {
1012 		.mapcount = total_mapcount(page),
1013 		.memcg = memcg,
1014 	};
1015 	struct rmap_walk_control rwc = {
1016 		.rmap_one = page_referenced_one,
1017 		.arg = (void *)&pra,
1018 		.anon_lock = page_lock_anon_vma_read,
1019 	};
1020 
1021 	*vm_flags = 0;
1022 	if (!page_mapped(page))
1023 		return 0;
1024 
1025 	if (!page_rmapping(page))
1026 		return 0;
1027 
1028 	if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
1029 		we_locked = trylock_page(page);
1030 		if (!we_locked)
1031 			return 1;
1032 	}
1033 
1034 	/*
1035 	 * If we are reclaiming on behalf of a cgroup, skip
1036 	 * counting on behalf of references from different
1037 	 * cgroups
1038 	 */
1039 	if (memcg) {
1040 		rwc.invalid_vma = invalid_page_referenced_vma;
1041 	}
1042 
1043 	ret = rmap_walk(page, &rwc);
1044 	*vm_flags = pra.vm_flags;
1045 
1046 	if (we_locked)
1047 		unlock_page(page);
1048 
1049 	return pra.referenced;
1050 }
1051 
page_mkclean_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)1052 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
1053 			    unsigned long address, void *arg)
1054 {
1055 	struct mm_struct *mm = vma->vm_mm;
1056 	pte_t *pte;
1057 	spinlock_t *ptl;
1058 	int ret = 0;
1059 	int *cleaned = arg;
1060 
1061 	pte = page_check_address(page, mm, address, &ptl, 1);
1062 	if (!pte)
1063 		goto out;
1064 
1065 	if (pte_dirty(*pte) || pte_write(*pte)) {
1066 		pte_t entry;
1067 
1068 		flush_cache_page(vma, address, pte_pfn(*pte));
1069 		entry = ptep_clear_flush(vma, address, pte);
1070 		entry = pte_wrprotect(entry);
1071 		entry = pte_mkclean(entry);
1072 		set_pte_at(mm, address, pte, entry);
1073 		ret = 1;
1074 	}
1075 
1076 	pte_unmap_unlock(pte, ptl);
1077 
1078 	if (ret) {
1079 		mmu_notifier_invalidate_page(mm, address);
1080 		(*cleaned)++;
1081 	}
1082 out:
1083 	return SWAP_AGAIN;
1084 }
1085 
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)1086 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1087 {
1088 	if (vma->vm_flags & VM_SHARED)
1089 		return false;
1090 
1091 	return true;
1092 }
1093 
page_mkclean(struct page * page)1094 int page_mkclean(struct page *page)
1095 {
1096 	int cleaned = 0;
1097 	struct address_space *mapping;
1098 	struct rmap_walk_control rwc = {
1099 		.arg = (void *)&cleaned,
1100 		.rmap_one = page_mkclean_one,
1101 		.invalid_vma = invalid_mkclean_vma,
1102 	};
1103 
1104 	BUG_ON(!PageLocked(page));
1105 
1106 	if (!page_mapped(page))
1107 		return 0;
1108 
1109 	mapping = page_mapping(page);
1110 	if (!mapping)
1111 		return 0;
1112 
1113 	rmap_walk(page, &rwc);
1114 
1115 	return cleaned;
1116 }
1117 EXPORT_SYMBOL_GPL(page_mkclean);
1118 
1119 /**
1120  * page_move_anon_rmap - move a page to our anon_vma
1121  * @page:	the page to move to our anon_vma
1122  * @vma:	the vma the page belongs to
1123  *
1124  * When a page belongs exclusively to one process after a COW event,
1125  * that page can be moved into the anon_vma that belongs to just that
1126  * process, so the rmap code will not search the parent or sibling
1127  * processes.
1128  */
page_move_anon_rmap(struct page * page,struct vm_area_struct * vma)1129 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1130 {
1131 	struct anon_vma *anon_vma = vma->anon_vma;
1132 
1133 	page = compound_head(page);
1134 
1135 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1136 	VM_BUG_ON_VMA(!anon_vma, vma);
1137 
1138 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1139 	/*
1140 	 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1141 	 * simultaneously, so a concurrent reader (eg page_referenced()'s
1142 	 * PageAnon()) will not see one without the other.
1143 	 */
1144 	WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1145 }
1146 
1147 /**
1148  * __page_set_anon_rmap - set up new anonymous rmap
1149  * @page:	Page to add to rmap
1150  * @vma:	VM area to add page to.
1151  * @address:	User virtual address of the mapping
1152  * @exclusive:	the page is exclusively owned by the current process
1153  */
__page_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1154 static void __page_set_anon_rmap(struct page *page,
1155 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1156 {
1157 	struct anon_vma *anon_vma = vma->anon_vma;
1158 
1159 	BUG_ON(!anon_vma);
1160 
1161 	if (PageAnon(page))
1162 		return;
1163 
1164 	/*
1165 	 * If the page isn't exclusively mapped into this vma,
1166 	 * we must use the _oldest_ possible anon_vma for the
1167 	 * page mapping!
1168 	 */
1169 	if (!exclusive)
1170 		anon_vma = anon_vma->root;
1171 
1172 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1173 	page->mapping = (struct address_space *) anon_vma;
1174 	page->index = linear_page_index(vma, address);
1175 }
1176 
1177 /**
1178  * __page_check_anon_rmap - sanity check anonymous rmap addition
1179  * @page:	the page to add the mapping to
1180  * @vma:	the vm area in which the mapping is added
1181  * @address:	the user virtual address mapped
1182  */
__page_check_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1183 static void __page_check_anon_rmap(struct page *page,
1184 	struct vm_area_struct *vma, unsigned long address)
1185 {
1186 #ifdef CONFIG_DEBUG_VM
1187 	/*
1188 	 * The page's anon-rmap details (mapping and index) are guaranteed to
1189 	 * be set up correctly at this point.
1190 	 *
1191 	 * We have exclusion against page_add_anon_rmap because the caller
1192 	 * always holds the page locked, except if called from page_dup_rmap,
1193 	 * in which case the page is already known to be setup.
1194 	 *
1195 	 * We have exclusion against page_add_new_anon_rmap because those pages
1196 	 * are initially only visible via the pagetables, and the pte is locked
1197 	 * over the call to page_add_new_anon_rmap.
1198 	 */
1199 	BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1200 	BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1201 #endif
1202 }
1203 
1204 /**
1205  * page_add_anon_rmap - add pte mapping to an anonymous page
1206  * @page:	the page to add the mapping to
1207  * @vma:	the vm area in which the mapping is added
1208  * @address:	the user virtual address mapped
1209  * @compound:	charge the page as compound or small page
1210  *
1211  * The caller needs to hold the pte lock, and the page must be locked in
1212  * the anon_vma case: to serialize mapping,index checking after setting,
1213  * and to ensure that PageAnon is not being upgraded racily to PageKsm
1214  * (but PageKsm is never downgraded to PageAnon).
1215  */
page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,bool compound)1216 void page_add_anon_rmap(struct page *page,
1217 	struct vm_area_struct *vma, unsigned long address, bool compound)
1218 {
1219 	do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1220 }
1221 
1222 /*
1223  * Special version of the above for do_swap_page, which often runs
1224  * into pages that are exclusively owned by the current process.
1225  * Everybody else should continue to use page_add_anon_rmap above.
1226  */
do_page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int flags)1227 void do_page_add_anon_rmap(struct page *page,
1228 	struct vm_area_struct *vma, unsigned long address, int flags)
1229 {
1230 	bool compound = flags & RMAP_COMPOUND;
1231 	bool first;
1232 
1233 	if (compound) {
1234 		atomic_t *mapcount;
1235 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1236 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1237 		mapcount = compound_mapcount_ptr(page);
1238 		first = atomic_inc_and_test(mapcount);
1239 	} else {
1240 		first = atomic_inc_and_test(&page->_mapcount);
1241 	}
1242 
1243 	if (first) {
1244 		int nr = compound ? hpage_nr_pages(page) : 1;
1245 		/*
1246 		 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1247 		 * these counters are not modified in interrupt context, and
1248 		 * pte lock(a spinlock) is held, which implies preemption
1249 		 * disabled.
1250 		 */
1251 		if (compound)
1252 			__inc_node_page_state(page, NR_ANON_THPS);
1253 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1254 	}
1255 	if (unlikely(PageKsm(page)))
1256 		return;
1257 
1258 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1259 
1260 	/* address might be in next vma when migration races vma_adjust */
1261 	if (first)
1262 		__page_set_anon_rmap(page, vma, address,
1263 				flags & RMAP_EXCLUSIVE);
1264 	else
1265 		__page_check_anon_rmap(page, vma, address);
1266 }
1267 
1268 /**
1269  * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1270  * @page:	the page to add the mapping to
1271  * @vma:	the vm area in which the mapping is added
1272  * @address:	the user virtual address mapped
1273  * @compound:	charge the page as compound or small page
1274  *
1275  * Same as page_add_anon_rmap but must only be called on *new* pages.
1276  * This means the inc-and-test can be bypassed.
1277  * Page does not have to be locked.
1278  */
page_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,bool compound)1279 void page_add_new_anon_rmap(struct page *page,
1280 	struct vm_area_struct *vma, unsigned long address, bool compound)
1281 {
1282 	int nr = compound ? hpage_nr_pages(page) : 1;
1283 
1284 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1285 	__SetPageSwapBacked(page);
1286 	if (compound) {
1287 		VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1288 		/* increment count (starts at -1) */
1289 		atomic_set(compound_mapcount_ptr(page), 0);
1290 		__inc_node_page_state(page, NR_ANON_THPS);
1291 	} else {
1292 		/* Anon THP always mapped first with PMD */
1293 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
1294 		/* increment count (starts at -1) */
1295 		atomic_set(&page->_mapcount, 0);
1296 	}
1297 	__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1298 	__page_set_anon_rmap(page, vma, address, 1);
1299 }
1300 
1301 /**
1302  * page_add_file_rmap - add pte mapping to a file page
1303  * @page: the page to add the mapping to
1304  *
1305  * The caller needs to hold the pte lock.
1306  */
page_add_file_rmap(struct page * page,bool compound)1307 void page_add_file_rmap(struct page *page, bool compound)
1308 {
1309 	int i, nr = 1;
1310 
1311 	VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1312 	lock_page_memcg(page);
1313 	if (compound && PageTransHuge(page)) {
1314 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1315 			if (atomic_inc_and_test(&page[i]._mapcount))
1316 				nr++;
1317 		}
1318 		if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1319 			goto out;
1320 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1321 		__inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1322 	} else {
1323 		if (PageTransCompound(page) && page_mapping(page)) {
1324 			VM_WARN_ON_ONCE(!PageLocked(page));
1325 
1326 			SetPageDoubleMap(compound_head(page));
1327 			if (PageMlocked(page))
1328 				clear_page_mlock(compound_head(page));
1329 		}
1330 		if (!atomic_inc_and_test(&page->_mapcount))
1331 			goto out;
1332 	}
1333 	__mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, nr);
1334 	mem_cgroup_update_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, nr);
1335 out:
1336 	unlock_page_memcg(page);
1337 }
1338 
page_remove_file_rmap(struct page * page,bool compound)1339 static void page_remove_file_rmap(struct page *page, bool compound)
1340 {
1341 	int i, nr = 1;
1342 
1343 	VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1344 	lock_page_memcg(page);
1345 
1346 	/* Hugepages are not counted in NR_FILE_MAPPED for now. */
1347 	if (unlikely(PageHuge(page))) {
1348 		/* hugetlb pages are always mapped with pmds */
1349 		atomic_dec(compound_mapcount_ptr(page));
1350 		goto out;
1351 	}
1352 
1353 	/* page still mapped by someone else? */
1354 	if (compound && PageTransHuge(page)) {
1355 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1356 			if (atomic_add_negative(-1, &page[i]._mapcount))
1357 				nr++;
1358 		}
1359 		if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1360 			goto out;
1361 		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1362 		__dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1363 	} else {
1364 		if (!atomic_add_negative(-1, &page->_mapcount))
1365 			goto out;
1366 	}
1367 
1368 	/*
1369 	 * We use the irq-unsafe __{inc|mod}_zone_page_state because
1370 	 * these counters are not modified in interrupt context, and
1371 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1372 	 */
1373 	__mod_node_page_state(page_pgdat(page), NR_FILE_MAPPED, -nr);
1374 	mem_cgroup_update_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED, -nr);
1375 
1376 	if (unlikely(PageMlocked(page)))
1377 		clear_page_mlock(page);
1378 out:
1379 	unlock_page_memcg(page);
1380 }
1381 
page_remove_anon_compound_rmap(struct page * page)1382 static void page_remove_anon_compound_rmap(struct page *page)
1383 {
1384 	int i, nr;
1385 
1386 	if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1387 		return;
1388 
1389 	/* Hugepages are not counted in NR_ANON_PAGES for now. */
1390 	if (unlikely(PageHuge(page)))
1391 		return;
1392 
1393 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1394 		return;
1395 
1396 	__dec_node_page_state(page, NR_ANON_THPS);
1397 
1398 	if (TestClearPageDoubleMap(page)) {
1399 		/*
1400 		 * Subpages can be mapped with PTEs too. Check how many of
1401 		 * themi are still mapped.
1402 		 */
1403 		for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1404 			if (atomic_add_negative(-1, &page[i]._mapcount))
1405 				nr++;
1406 		}
1407 	} else {
1408 		nr = HPAGE_PMD_NR;
1409 	}
1410 
1411 	if (unlikely(PageMlocked(page)))
1412 		clear_page_mlock(page);
1413 
1414 	if (nr) {
1415 		__mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1416 		deferred_split_huge_page(page);
1417 	}
1418 }
1419 
1420 /**
1421  * page_remove_rmap - take down pte mapping from a page
1422  * @page:	page to remove mapping from
1423  * @compound:	uncharge the page as compound or small page
1424  *
1425  * The caller needs to hold the pte lock.
1426  */
page_remove_rmap(struct page * page,bool compound)1427 void page_remove_rmap(struct page *page, bool compound)
1428 {
1429 	if (!PageAnon(page))
1430 		return page_remove_file_rmap(page, compound);
1431 
1432 	if (compound)
1433 		return page_remove_anon_compound_rmap(page);
1434 
1435 	/* page still mapped by someone else? */
1436 	if (!atomic_add_negative(-1, &page->_mapcount))
1437 		return;
1438 
1439 	/*
1440 	 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1441 	 * these counters are not modified in interrupt context, and
1442 	 * pte lock(a spinlock) is held, which implies preemption disabled.
1443 	 */
1444 	__dec_node_page_state(page, NR_ANON_MAPPED);
1445 
1446 	if (unlikely(PageMlocked(page)))
1447 		clear_page_mlock(page);
1448 
1449 	if (PageTransCompound(page))
1450 		deferred_split_huge_page(compound_head(page));
1451 
1452 	/*
1453 	 * It would be tidy to reset the PageAnon mapping here,
1454 	 * but that might overwrite a racing page_add_anon_rmap
1455 	 * which increments mapcount after us but sets mapping
1456 	 * before us: so leave the reset to free_hot_cold_page,
1457 	 * and remember that it's only reliable while mapped.
1458 	 * Leaving it set also helps swapoff to reinstate ptes
1459 	 * faster for those pages still in swapcache.
1460 	 */
1461 }
1462 
1463 struct rmap_private {
1464 	enum ttu_flags flags;
1465 	int lazyfreed;
1466 };
1467 
1468 /*
1469  * @arg: enum ttu_flags will be passed to this argument
1470  */
try_to_unmap_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)1471 static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1472 		     unsigned long address, void *arg)
1473 {
1474 	struct mm_struct *mm = vma->vm_mm;
1475 	pte_t *pte;
1476 	pte_t pteval;
1477 	spinlock_t *ptl;
1478 	int ret = SWAP_AGAIN;
1479 	struct rmap_private *rp = arg;
1480 	enum ttu_flags flags = rp->flags;
1481 
1482 	/* munlock has nothing to gain from examining un-locked vmas */
1483 	if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1484 		goto out;
1485 
1486 	if (flags & TTU_SPLIT_HUGE_PMD) {
1487 		split_huge_pmd_address(vma, address,
1488 				flags & TTU_MIGRATION, page);
1489 		/* check if we have anything to do after split */
1490 		if (page_mapcount(page) == 0)
1491 			goto out;
1492 	}
1493 
1494 	pte = page_check_address(page, mm, address, &ptl,
1495 				 PageTransCompound(page));
1496 	if (!pte)
1497 		goto out;
1498 
1499 	/*
1500 	 * If the page is mlock()d, we cannot swap it out.
1501 	 * If it's recently referenced (perhaps page_referenced
1502 	 * skipped over this mm) then we should reactivate it.
1503 	 */
1504 	if (!(flags & TTU_IGNORE_MLOCK)) {
1505 		if (vma->vm_flags & VM_LOCKED) {
1506 			/* PTE-mapped THP are never mlocked */
1507 			if (!PageTransCompound(page)) {
1508 				/*
1509 				 * Holding pte lock, we do *not* need
1510 				 * mmap_sem here
1511 				 */
1512 				mlock_vma_page(page);
1513 			}
1514 			ret = SWAP_MLOCK;
1515 			goto out_unmap;
1516 		}
1517 		if (flags & TTU_MUNLOCK)
1518 			goto out_unmap;
1519 	}
1520 	if (!(flags & TTU_IGNORE_ACCESS)) {
1521 		if (ptep_clear_flush_young_notify(vma, address, pte)) {
1522 			ret = SWAP_FAIL;
1523 			goto out_unmap;
1524 		}
1525   	}
1526 
1527 	/* Nuke the page table entry. */
1528 	flush_cache_page(vma, address, page_to_pfn(page));
1529 	if (should_defer_flush(mm, flags)) {
1530 		/*
1531 		 * We clear the PTE but do not flush so potentially a remote
1532 		 * CPU could still be writing to the page. If the entry was
1533 		 * previously clean then the architecture must guarantee that
1534 		 * a clear->dirty transition on a cached TLB entry is written
1535 		 * through and traps if the PTE is unmapped.
1536 		 */
1537 		pteval = ptep_get_and_clear(mm, address, pte);
1538 
1539 		set_tlb_ubc_flush_pending(mm, page, pte_dirty(pteval));
1540 	} else {
1541 		pteval = ptep_clear_flush(vma, address, pte);
1542 	}
1543 
1544 	/* Move the dirty bit to the physical page now the pte is gone. */
1545 	if (pte_dirty(pteval))
1546 		set_page_dirty(page);
1547 
1548 	/* Update high watermark before we lower rss */
1549 	update_hiwater_rss(mm);
1550 
1551 	if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1552 		if (PageHuge(page)) {
1553 			hugetlb_count_sub(1 << compound_order(page), mm);
1554 		} else {
1555 			dec_mm_counter(mm, mm_counter(page));
1556 		}
1557 		set_pte_at(mm, address, pte,
1558 			   swp_entry_to_pte(make_hwpoison_entry(page)));
1559 	} else if (pte_unused(pteval)) {
1560 		/*
1561 		 * The guest indicated that the page content is of no
1562 		 * interest anymore. Simply discard the pte, vmscan
1563 		 * will take care of the rest.
1564 		 */
1565 		dec_mm_counter(mm, mm_counter(page));
1566 	} else if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION)) {
1567 		swp_entry_t entry;
1568 		pte_t swp_pte;
1569 		/*
1570 		 * Store the pfn of the page in a special migration
1571 		 * pte. do_swap_page() will wait until the migration
1572 		 * pte is removed and then restart fault handling.
1573 		 */
1574 		entry = make_migration_entry(page, pte_write(pteval));
1575 		swp_pte = swp_entry_to_pte(entry);
1576 		if (pte_soft_dirty(pteval))
1577 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1578 		set_pte_at(mm, address, pte, swp_pte);
1579 	} else if (PageAnon(page)) {
1580 		swp_entry_t entry = { .val = page_private(page) };
1581 		pte_t swp_pte;
1582 		/*
1583 		 * Store the swap location in the pte.
1584 		 * See handle_pte_fault() ...
1585 		 */
1586 		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
1587 
1588 		if (!PageDirty(page) && (flags & TTU_LZFREE)) {
1589 			/* It's a freeable page by MADV_FREE */
1590 			dec_mm_counter(mm, MM_ANONPAGES);
1591 			rp->lazyfreed++;
1592 			goto discard;
1593 		}
1594 
1595 		if (swap_duplicate(entry) < 0) {
1596 			set_pte_at(mm, address, pte, pteval);
1597 			ret = SWAP_FAIL;
1598 			goto out_unmap;
1599 		}
1600 		if (list_empty(&mm->mmlist)) {
1601 			spin_lock(&mmlist_lock);
1602 			if (list_empty(&mm->mmlist))
1603 				list_add(&mm->mmlist, &init_mm.mmlist);
1604 			spin_unlock(&mmlist_lock);
1605 		}
1606 		dec_mm_counter(mm, MM_ANONPAGES);
1607 		inc_mm_counter(mm, MM_SWAPENTS);
1608 		swp_pte = swp_entry_to_pte(entry);
1609 		if (pte_soft_dirty(pteval))
1610 			swp_pte = pte_swp_mksoft_dirty(swp_pte);
1611 		set_pte_at(mm, address, pte, swp_pte);
1612 	} else
1613 		dec_mm_counter(mm, mm_counter_file(page));
1614 
1615 discard:
1616 	page_remove_rmap(page, PageHuge(page));
1617 	put_page(page);
1618 
1619 out_unmap:
1620 	pte_unmap_unlock(pte, ptl);
1621 	if (ret != SWAP_FAIL && ret != SWAP_MLOCK && !(flags & TTU_MUNLOCK))
1622 		mmu_notifier_invalidate_page(mm, address);
1623 out:
1624 	return ret;
1625 }
1626 
is_vma_temporary_stack(struct vm_area_struct * vma)1627 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1628 {
1629 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1630 
1631 	if (!maybe_stack)
1632 		return false;
1633 
1634 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1635 						VM_STACK_INCOMPLETE_SETUP)
1636 		return true;
1637 
1638 	return false;
1639 }
1640 
invalid_migration_vma(struct vm_area_struct * vma,void * arg)1641 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1642 {
1643 	return is_vma_temporary_stack(vma);
1644 }
1645 
page_mapcount_is_zero(struct page * page)1646 static int page_mapcount_is_zero(struct page *page)
1647 {
1648 	return !page_mapcount(page);
1649 }
1650 
1651 /**
1652  * try_to_unmap - try to remove all page table mappings to a page
1653  * @page: the page to get unmapped
1654  * @flags: action and flags
1655  *
1656  * Tries to remove all the page table entries which are mapping this
1657  * page, used in the pageout path.  Caller must hold the page lock.
1658  * Return values are:
1659  *
1660  * SWAP_SUCCESS	- we succeeded in removing all mappings
1661  * SWAP_AGAIN	- we missed a mapping, try again later
1662  * SWAP_FAIL	- the page is unswappable
1663  * SWAP_MLOCK	- page is mlocked.
1664  */
try_to_unmap(struct page * page,enum ttu_flags flags)1665 int try_to_unmap(struct page *page, enum ttu_flags flags)
1666 {
1667 	int ret;
1668 	struct rmap_private rp = {
1669 		.flags = flags,
1670 		.lazyfreed = 0,
1671 	};
1672 
1673 	struct rmap_walk_control rwc = {
1674 		.rmap_one = try_to_unmap_one,
1675 		.arg = &rp,
1676 		.done = page_mapcount_is_zero,
1677 		.anon_lock = page_lock_anon_vma_read,
1678 	};
1679 
1680 	/*
1681 	 * During exec, a temporary VMA is setup and later moved.
1682 	 * The VMA is moved under the anon_vma lock but not the
1683 	 * page tables leading to a race where migration cannot
1684 	 * find the migration ptes. Rather than increasing the
1685 	 * locking requirements of exec(), migration skips
1686 	 * temporary VMAs until after exec() completes.
1687 	 */
1688 	if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
1689 		rwc.invalid_vma = invalid_migration_vma;
1690 
1691 	if (flags & TTU_RMAP_LOCKED)
1692 		ret = rmap_walk_locked(page, &rwc);
1693 	else
1694 		ret = rmap_walk(page, &rwc);
1695 
1696 	if (ret != SWAP_MLOCK && !page_mapcount(page)) {
1697 		ret = SWAP_SUCCESS;
1698 		if (rp.lazyfreed && !PageDirty(page))
1699 			ret = SWAP_LZFREE;
1700 	}
1701 	return ret;
1702 }
1703 
page_not_mapped(struct page * page)1704 static int page_not_mapped(struct page *page)
1705 {
1706 	return !page_mapped(page);
1707 };
1708 
1709 /**
1710  * try_to_munlock - try to munlock a page
1711  * @page: the page to be munlocked
1712  *
1713  * Called from munlock code.  Checks all of the VMAs mapping the page
1714  * to make sure nobody else has this page mlocked. The page will be
1715  * returned with PG_mlocked cleared if no other vmas have it mlocked.
1716  *
1717  * Return values are:
1718  *
1719  * SWAP_AGAIN	- no vma is holding page mlocked, or,
1720  * SWAP_AGAIN	- page mapped in mlocked vma -- couldn't acquire mmap sem
1721  * SWAP_FAIL	- page cannot be located at present
1722  * SWAP_MLOCK	- page is now mlocked.
1723  */
try_to_munlock(struct page * page)1724 int try_to_munlock(struct page *page)
1725 {
1726 	int ret;
1727 	struct rmap_private rp = {
1728 		.flags = TTU_MUNLOCK,
1729 		.lazyfreed = 0,
1730 	};
1731 
1732 	struct rmap_walk_control rwc = {
1733 		.rmap_one = try_to_unmap_one,
1734 		.arg = &rp,
1735 		.done = page_not_mapped,
1736 		.anon_lock = page_lock_anon_vma_read,
1737 
1738 	};
1739 
1740 	VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1741 
1742 	ret = rmap_walk(page, &rwc);
1743 	return ret;
1744 }
1745 
__put_anon_vma(struct anon_vma * anon_vma)1746 void __put_anon_vma(struct anon_vma *anon_vma)
1747 {
1748 	struct anon_vma *root = anon_vma->root;
1749 
1750 	anon_vma_free(anon_vma);
1751 	if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1752 		anon_vma_free(root);
1753 }
1754 
rmap_walk_anon_lock(struct page * page,struct rmap_walk_control * rwc)1755 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1756 					struct rmap_walk_control *rwc)
1757 {
1758 	struct anon_vma *anon_vma;
1759 
1760 	if (rwc->anon_lock)
1761 		return rwc->anon_lock(page);
1762 
1763 	/*
1764 	 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1765 	 * because that depends on page_mapped(); but not all its usages
1766 	 * are holding mmap_sem. Users without mmap_sem are required to
1767 	 * take a reference count to prevent the anon_vma disappearing
1768 	 */
1769 	anon_vma = page_anon_vma(page);
1770 	if (!anon_vma)
1771 		return NULL;
1772 
1773 	anon_vma_lock_read(anon_vma);
1774 	return anon_vma;
1775 }
1776 
1777 /*
1778  * rmap_walk_anon - do something to anonymous page using the object-based
1779  * rmap method
1780  * @page: the page to be handled
1781  * @rwc: control variable according to each walk type
1782  *
1783  * Find all the mappings of a page using the mapping pointer and the vma chains
1784  * contained in the anon_vma struct it points to.
1785  *
1786  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1787  * where the page was found will be held for write.  So, we won't recheck
1788  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1789  * LOCKED.
1790  */
rmap_walk_anon(struct page * page,struct rmap_walk_control * rwc,bool locked)1791 static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1792 		bool locked)
1793 {
1794 	struct anon_vma *anon_vma;
1795 	pgoff_t pgoff;
1796 	struct anon_vma_chain *avc;
1797 	int ret = SWAP_AGAIN;
1798 
1799 	if (locked) {
1800 		anon_vma = page_anon_vma(page);
1801 		/* anon_vma disappear under us? */
1802 		VM_BUG_ON_PAGE(!anon_vma, page);
1803 	} else {
1804 		anon_vma = rmap_walk_anon_lock(page, rwc);
1805 	}
1806 	if (!anon_vma)
1807 		return ret;
1808 
1809 	pgoff = page_to_pgoff(page);
1810 	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1811 		struct vm_area_struct *vma = avc->vma;
1812 		unsigned long address = vma_address(page, vma);
1813 
1814 		cond_resched();
1815 
1816 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1817 			continue;
1818 
1819 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1820 		if (ret != SWAP_AGAIN)
1821 			break;
1822 		if (rwc->done && rwc->done(page))
1823 			break;
1824 	}
1825 
1826 	if (!locked)
1827 		anon_vma_unlock_read(anon_vma);
1828 	return ret;
1829 }
1830 
1831 /*
1832  * rmap_walk_file - do something to file page using the object-based rmap method
1833  * @page: the page to be handled
1834  * @rwc: control variable according to each walk type
1835  *
1836  * Find all the mappings of a page using the mapping pointer and the vma chains
1837  * contained in the address_space struct it points to.
1838  *
1839  * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1840  * where the page was found will be held for write.  So, we won't recheck
1841  * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1842  * LOCKED.
1843  */
rmap_walk_file(struct page * page,struct rmap_walk_control * rwc,bool locked)1844 static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1845 		bool locked)
1846 {
1847 	struct address_space *mapping = page_mapping(page);
1848 	pgoff_t pgoff;
1849 	struct vm_area_struct *vma;
1850 	int ret = SWAP_AGAIN;
1851 
1852 	/*
1853 	 * The page lock not only makes sure that page->mapping cannot
1854 	 * suddenly be NULLified by truncation, it makes sure that the
1855 	 * structure at mapping cannot be freed and reused yet,
1856 	 * so we can safely take mapping->i_mmap_rwsem.
1857 	 */
1858 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1859 
1860 	if (!mapping)
1861 		return ret;
1862 
1863 	pgoff = page_to_pgoff(page);
1864 	if (!locked)
1865 		i_mmap_lock_read(mapping);
1866 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1867 		unsigned long address = vma_address(page, vma);
1868 
1869 		cond_resched();
1870 
1871 		if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1872 			continue;
1873 
1874 		ret = rwc->rmap_one(page, vma, address, rwc->arg);
1875 		if (ret != SWAP_AGAIN)
1876 			goto done;
1877 		if (rwc->done && rwc->done(page))
1878 			goto done;
1879 	}
1880 
1881 done:
1882 	if (!locked)
1883 		i_mmap_unlock_read(mapping);
1884 	return ret;
1885 }
1886 
rmap_walk(struct page * page,struct rmap_walk_control * rwc)1887 int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1888 {
1889 	if (unlikely(PageKsm(page)))
1890 		return rmap_walk_ksm(page, rwc);
1891 	else if (PageAnon(page))
1892 		return rmap_walk_anon(page, rwc, false);
1893 	else
1894 		return rmap_walk_file(page, rwc, false);
1895 }
1896 
1897 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct page * page,struct rmap_walk_control * rwc)1898 int rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1899 {
1900 	/* no ksm support for now */
1901 	VM_BUG_ON_PAGE(PageKsm(page), page);
1902 	if (PageAnon(page))
1903 		return rmap_walk_anon(page, rwc, true);
1904 	else
1905 		return rmap_walk_file(page, rwc, true);
1906 }
1907 
1908 #ifdef CONFIG_HUGETLB_PAGE
1909 /*
1910  * The following three functions are for anonymous (private mapped) hugepages.
1911  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1912  * and no lru code, because we handle hugepages differently from common pages.
1913  */
__hugepage_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1914 static void __hugepage_set_anon_rmap(struct page *page,
1915 	struct vm_area_struct *vma, unsigned long address, int exclusive)
1916 {
1917 	struct anon_vma *anon_vma = vma->anon_vma;
1918 
1919 	BUG_ON(!anon_vma);
1920 
1921 	if (PageAnon(page))
1922 		return;
1923 	if (!exclusive)
1924 		anon_vma = anon_vma->root;
1925 
1926 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1927 	page->mapping = (struct address_space *) anon_vma;
1928 	page->index = linear_page_index(vma, address);
1929 }
1930 
hugepage_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1931 void hugepage_add_anon_rmap(struct page *page,
1932 			    struct vm_area_struct *vma, unsigned long address)
1933 {
1934 	struct anon_vma *anon_vma = vma->anon_vma;
1935 	int first;
1936 
1937 	BUG_ON(!PageLocked(page));
1938 	BUG_ON(!anon_vma);
1939 	/* address might be in next vma when migration races vma_adjust */
1940 	first = atomic_inc_and_test(compound_mapcount_ptr(page));
1941 	if (first)
1942 		__hugepage_set_anon_rmap(page, vma, address, 0);
1943 }
1944 
hugepage_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1945 void hugepage_add_new_anon_rmap(struct page *page,
1946 			struct vm_area_struct *vma, unsigned long address)
1947 {
1948 	BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1949 	atomic_set(compound_mapcount_ptr(page), 0);
1950 	__hugepage_set_anon_rmap(page, vma, address, 1);
1951 }
1952 #endif /* CONFIG_HUGETLB_PAGE */
1953