• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2004-2013 Synopsys, Inc. (www.synopsys.com)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * Driver for the ARC EMAC 10100 (hardware revision 5)
9  *
10  * Contributors:
11  *		Amit Bhor
12  *		Sameer Dhavale
13  *		Vineet Gupta
14  */
15 
16 #include <linux/crc32.h>
17 #include <linux/etherdevice.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/module.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_mdio.h>
24 #include <linux/of_net.h>
25 #include <linux/of_platform.h>
26 
27 #include "emac.h"
28 
29 /**
30  * arc_emac_tx_avail - Return the number of available slots in the tx ring.
31  * @priv: Pointer to ARC EMAC private data structure.
32  *
33  * returns: the number of slots available for transmission in tx the ring.
34  */
arc_emac_tx_avail(struct arc_emac_priv * priv)35 static inline int arc_emac_tx_avail(struct arc_emac_priv *priv)
36 {
37 	return (priv->txbd_dirty + TX_BD_NUM - priv->txbd_curr - 1) % TX_BD_NUM;
38 }
39 
40 /**
41  * arc_emac_adjust_link - Adjust the PHY link duplex.
42  * @ndev:	Pointer to the net_device structure.
43  *
44  * This function is called to change the duplex setting after auto negotiation
45  * is done by the PHY.
46  */
arc_emac_adjust_link(struct net_device * ndev)47 static void arc_emac_adjust_link(struct net_device *ndev)
48 {
49 	struct arc_emac_priv *priv = netdev_priv(ndev);
50 	struct phy_device *phy_dev = ndev->phydev;
51 	unsigned int reg, state_changed = 0;
52 
53 	if (priv->link != phy_dev->link) {
54 		priv->link = phy_dev->link;
55 		state_changed = 1;
56 	}
57 
58 	if (priv->speed != phy_dev->speed) {
59 		priv->speed = phy_dev->speed;
60 		state_changed = 1;
61 		if (priv->set_mac_speed)
62 			priv->set_mac_speed(priv, priv->speed);
63 	}
64 
65 	if (priv->duplex != phy_dev->duplex) {
66 		reg = arc_reg_get(priv, R_CTRL);
67 
68 		if (phy_dev->duplex == DUPLEX_FULL)
69 			reg |= ENFL_MASK;
70 		else
71 			reg &= ~ENFL_MASK;
72 
73 		arc_reg_set(priv, R_CTRL, reg);
74 		priv->duplex = phy_dev->duplex;
75 		state_changed = 1;
76 	}
77 
78 	if (state_changed)
79 		phy_print_status(phy_dev);
80 }
81 
82 /**
83  * arc_emac_get_drvinfo - Get EMAC driver information.
84  * @ndev:	Pointer to net_device structure.
85  * @info:	Pointer to ethtool_drvinfo structure.
86  *
87  * This implements ethtool command for getting the driver information.
88  * Issue "ethtool -i ethX" under linux prompt to execute this function.
89  */
arc_emac_get_drvinfo(struct net_device * ndev,struct ethtool_drvinfo * info)90 static void arc_emac_get_drvinfo(struct net_device *ndev,
91 				 struct ethtool_drvinfo *info)
92 {
93 	struct arc_emac_priv *priv = netdev_priv(ndev);
94 
95 	strlcpy(info->driver, priv->drv_name, sizeof(info->driver));
96 	strlcpy(info->version, priv->drv_version, sizeof(info->version));
97 }
98 
99 static const struct ethtool_ops arc_emac_ethtool_ops = {
100 	.get_drvinfo	= arc_emac_get_drvinfo,
101 	.get_link	= ethtool_op_get_link,
102 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
103 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
104 };
105 
106 #define FIRST_OR_LAST_MASK	(FIRST_MASK | LAST_MASK)
107 
108 /**
109  * arc_emac_tx_clean - clears processed by EMAC Tx BDs.
110  * @ndev:	Pointer to the network device.
111  */
arc_emac_tx_clean(struct net_device * ndev)112 static void arc_emac_tx_clean(struct net_device *ndev)
113 {
114 	struct arc_emac_priv *priv = netdev_priv(ndev);
115 	struct net_device_stats *stats = &ndev->stats;
116 	unsigned int i;
117 
118 	for (i = 0; i < TX_BD_NUM; i++) {
119 		unsigned int *txbd_dirty = &priv->txbd_dirty;
120 		struct arc_emac_bd *txbd = &priv->txbd[*txbd_dirty];
121 		struct buffer_state *tx_buff = &priv->tx_buff[*txbd_dirty];
122 		struct sk_buff *skb = tx_buff->skb;
123 		unsigned int info = le32_to_cpu(txbd->info);
124 
125 		if ((info & FOR_EMAC) || !txbd->data || !skb)
126 			break;
127 
128 		if (unlikely(info & (DROP | DEFR | LTCL | UFLO))) {
129 			stats->tx_errors++;
130 			stats->tx_dropped++;
131 
132 			if (info & DEFR)
133 				stats->tx_carrier_errors++;
134 
135 			if (info & LTCL)
136 				stats->collisions++;
137 
138 			if (info & UFLO)
139 				stats->tx_fifo_errors++;
140 		} else if (likely(info & FIRST_OR_LAST_MASK)) {
141 			stats->tx_packets++;
142 			stats->tx_bytes += skb->len;
143 		}
144 
145 		dma_unmap_single(&ndev->dev, dma_unmap_addr(tx_buff, addr),
146 				 dma_unmap_len(tx_buff, len), DMA_TO_DEVICE);
147 
148 		/* return the sk_buff to system */
149 		dev_kfree_skb_irq(skb);
150 
151 		txbd->data = 0;
152 		txbd->info = 0;
153 		tx_buff->skb = NULL;
154 
155 		*txbd_dirty = (*txbd_dirty + 1) % TX_BD_NUM;
156 	}
157 
158 	/* Ensure that txbd_dirty is visible to tx() before checking
159 	 * for queue stopped.
160 	 */
161 	smp_mb();
162 
163 	if (netif_queue_stopped(ndev) && arc_emac_tx_avail(priv))
164 		netif_wake_queue(ndev);
165 }
166 
167 /**
168  * arc_emac_rx - processing of Rx packets.
169  * @ndev:	Pointer to the network device.
170  * @budget:	How many BDs to process on 1 call.
171  *
172  * returns:	Number of processed BDs
173  *
174  * Iterate through Rx BDs and deliver received packages to upper layer.
175  */
arc_emac_rx(struct net_device * ndev,int budget)176 static int arc_emac_rx(struct net_device *ndev, int budget)
177 {
178 	struct arc_emac_priv *priv = netdev_priv(ndev);
179 	unsigned int work_done;
180 
181 	for (work_done = 0; work_done < budget; work_done++) {
182 		unsigned int *last_rx_bd = &priv->last_rx_bd;
183 		struct net_device_stats *stats = &ndev->stats;
184 		struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
185 		struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
186 		unsigned int pktlen, info = le32_to_cpu(rxbd->info);
187 		struct sk_buff *skb;
188 		dma_addr_t addr;
189 
190 		if (unlikely((info & OWN_MASK) == FOR_EMAC))
191 			break;
192 
193 		/* Make a note that we saw a packet at this BD.
194 		 * So next time, driver starts from this + 1
195 		 */
196 		*last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
197 
198 		if (unlikely((info & FIRST_OR_LAST_MASK) !=
199 			     FIRST_OR_LAST_MASK)) {
200 			/* We pre-allocate buffers of MTU size so incoming
201 			 * packets won't be split/chained.
202 			 */
203 			if (net_ratelimit())
204 				netdev_err(ndev, "incomplete packet received\n");
205 
206 			/* Return ownership to EMAC */
207 			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
208 			stats->rx_errors++;
209 			stats->rx_length_errors++;
210 			continue;
211 		}
212 
213 		/* Prepare the BD for next cycle. netif_receive_skb()
214 		 * only if new skb was allocated and mapped to avoid holes
215 		 * in the RX fifo.
216 		 */
217 		skb = netdev_alloc_skb_ip_align(ndev, EMAC_BUFFER_SIZE);
218 		if (unlikely(!skb)) {
219 			if (net_ratelimit())
220 				netdev_err(ndev, "cannot allocate skb\n");
221 			/* Return ownership to EMAC */
222 			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
223 			stats->rx_errors++;
224 			stats->rx_dropped++;
225 			continue;
226 		}
227 
228 		addr = dma_map_single(&ndev->dev, (void *)skb->data,
229 				      EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
230 		if (dma_mapping_error(&ndev->dev, addr)) {
231 			if (net_ratelimit())
232 				netdev_err(ndev, "cannot map dma buffer\n");
233 			dev_kfree_skb(skb);
234 			/* Return ownership to EMAC */
235 			rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
236 			stats->rx_errors++;
237 			stats->rx_dropped++;
238 			continue;
239 		}
240 
241 		/* unmap previosly mapped skb */
242 		dma_unmap_single(&ndev->dev, dma_unmap_addr(rx_buff, addr),
243 				 dma_unmap_len(rx_buff, len), DMA_FROM_DEVICE);
244 
245 		pktlen = info & LEN_MASK;
246 		stats->rx_packets++;
247 		stats->rx_bytes += pktlen;
248 		skb_put(rx_buff->skb, pktlen);
249 		rx_buff->skb->dev = ndev;
250 		rx_buff->skb->protocol = eth_type_trans(rx_buff->skb, ndev);
251 
252 		netif_receive_skb(rx_buff->skb);
253 
254 		rx_buff->skb = skb;
255 		dma_unmap_addr_set(rx_buff, addr, addr);
256 		dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
257 
258 		rxbd->data = cpu_to_le32(addr);
259 
260 		/* Make sure pointer to data buffer is set */
261 		wmb();
262 
263 		/* Return ownership to EMAC */
264 		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
265 	}
266 
267 	return work_done;
268 }
269 
270 /**
271  * arc_emac_poll - NAPI poll handler.
272  * @napi:	Pointer to napi_struct structure.
273  * @budget:	How many BDs to process on 1 call.
274  *
275  * returns:	Number of processed BDs
276  */
arc_emac_poll(struct napi_struct * napi,int budget)277 static int arc_emac_poll(struct napi_struct *napi, int budget)
278 {
279 	struct net_device *ndev = napi->dev;
280 	struct arc_emac_priv *priv = netdev_priv(ndev);
281 	unsigned int work_done;
282 
283 	arc_emac_tx_clean(ndev);
284 
285 	work_done = arc_emac_rx(ndev, budget);
286 	if (work_done < budget) {
287 		napi_complete(napi);
288 		arc_reg_or(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
289 	}
290 
291 	return work_done;
292 }
293 
294 /**
295  * arc_emac_intr - Global interrupt handler for EMAC.
296  * @irq:		irq number.
297  * @dev_instance:	device instance.
298  *
299  * returns: IRQ_HANDLED for all cases.
300  *
301  * ARC EMAC has only 1 interrupt line, and depending on bits raised in
302  * STATUS register we may tell what is a reason for interrupt to fire.
303  */
arc_emac_intr(int irq,void * dev_instance)304 static irqreturn_t arc_emac_intr(int irq, void *dev_instance)
305 {
306 	struct net_device *ndev = dev_instance;
307 	struct arc_emac_priv *priv = netdev_priv(ndev);
308 	struct net_device_stats *stats = &ndev->stats;
309 	unsigned int status;
310 
311 	status = arc_reg_get(priv, R_STATUS);
312 	status &= ~MDIO_MASK;
313 
314 	/* Reset all flags except "MDIO complete" */
315 	arc_reg_set(priv, R_STATUS, status);
316 
317 	if (status & (RXINT_MASK | TXINT_MASK)) {
318 		if (likely(napi_schedule_prep(&priv->napi))) {
319 			arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK);
320 			__napi_schedule(&priv->napi);
321 		}
322 	}
323 
324 	if (status & ERR_MASK) {
325 		/* MSER/RXCR/RXFR/RXFL interrupt fires on corresponding
326 		 * 8-bit error counter overrun.
327 		 */
328 
329 		if (status & MSER_MASK) {
330 			stats->rx_missed_errors += 0x100;
331 			stats->rx_errors += 0x100;
332 		}
333 
334 		if (status & RXCR_MASK) {
335 			stats->rx_crc_errors += 0x100;
336 			stats->rx_errors += 0x100;
337 		}
338 
339 		if (status & RXFR_MASK) {
340 			stats->rx_frame_errors += 0x100;
341 			stats->rx_errors += 0x100;
342 		}
343 
344 		if (status & RXFL_MASK) {
345 			stats->rx_over_errors += 0x100;
346 			stats->rx_errors += 0x100;
347 		}
348 	}
349 
350 	return IRQ_HANDLED;
351 }
352 
353 #ifdef CONFIG_NET_POLL_CONTROLLER
arc_emac_poll_controller(struct net_device * dev)354 static void arc_emac_poll_controller(struct net_device *dev)
355 {
356 	disable_irq(dev->irq);
357 	arc_emac_intr(dev->irq, dev);
358 	enable_irq(dev->irq);
359 }
360 #endif
361 
362 /**
363  * arc_emac_open - Open the network device.
364  * @ndev:	Pointer to the network device.
365  *
366  * returns: 0, on success or non-zero error value on failure.
367  *
368  * This function sets the MAC address, requests and enables an IRQ
369  * for the EMAC device and starts the Tx queue.
370  * It also connects to the phy device.
371  */
arc_emac_open(struct net_device * ndev)372 static int arc_emac_open(struct net_device *ndev)
373 {
374 	struct arc_emac_priv *priv = netdev_priv(ndev);
375 	struct phy_device *phy_dev = ndev->phydev;
376 	int i;
377 
378 	phy_dev->autoneg = AUTONEG_ENABLE;
379 	phy_dev->speed = 0;
380 	phy_dev->duplex = 0;
381 	phy_dev->advertising &= phy_dev->supported;
382 
383 	priv->last_rx_bd = 0;
384 
385 	/* Allocate and set buffers for Rx BD's */
386 	for (i = 0; i < RX_BD_NUM; i++) {
387 		dma_addr_t addr;
388 		unsigned int *last_rx_bd = &priv->last_rx_bd;
389 		struct arc_emac_bd *rxbd = &priv->rxbd[*last_rx_bd];
390 		struct buffer_state *rx_buff = &priv->rx_buff[*last_rx_bd];
391 
392 		rx_buff->skb = netdev_alloc_skb_ip_align(ndev,
393 							 EMAC_BUFFER_SIZE);
394 		if (unlikely(!rx_buff->skb))
395 			return -ENOMEM;
396 
397 		addr = dma_map_single(&ndev->dev, (void *)rx_buff->skb->data,
398 				      EMAC_BUFFER_SIZE, DMA_FROM_DEVICE);
399 		if (dma_mapping_error(&ndev->dev, addr)) {
400 			netdev_err(ndev, "cannot dma map\n");
401 			dev_kfree_skb(rx_buff->skb);
402 			return -ENOMEM;
403 		}
404 		dma_unmap_addr_set(rx_buff, addr, addr);
405 		dma_unmap_len_set(rx_buff, len, EMAC_BUFFER_SIZE);
406 
407 		rxbd->data = cpu_to_le32(addr);
408 
409 		/* Make sure pointer to data buffer is set */
410 		wmb();
411 
412 		/* Return ownership to EMAC */
413 		rxbd->info = cpu_to_le32(FOR_EMAC | EMAC_BUFFER_SIZE);
414 
415 		*last_rx_bd = (*last_rx_bd + 1) % RX_BD_NUM;
416 	}
417 
418 	priv->txbd_curr = 0;
419 	priv->txbd_dirty = 0;
420 
421 	/* Clean Tx BD's */
422 	memset(priv->txbd, 0, TX_RING_SZ);
423 
424 	/* Initialize logical address filter */
425 	arc_reg_set(priv, R_LAFL, 0);
426 	arc_reg_set(priv, R_LAFH, 0);
427 
428 	/* Set BD ring pointers for device side */
429 	arc_reg_set(priv, R_RX_RING, (unsigned int)priv->rxbd_dma);
430 	arc_reg_set(priv, R_TX_RING, (unsigned int)priv->txbd_dma);
431 
432 	/* Enable interrupts */
433 	arc_reg_set(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
434 
435 	/* Set CONTROL */
436 	arc_reg_set(priv, R_CTRL,
437 		    (RX_BD_NUM << 24) |	/* RX BD table length */
438 		    (TX_BD_NUM << 16) |	/* TX BD table length */
439 		    TXRN_MASK | RXRN_MASK);
440 
441 	napi_enable(&priv->napi);
442 
443 	/* Enable EMAC */
444 	arc_reg_or(priv, R_CTRL, EN_MASK);
445 
446 	phy_start_aneg(ndev->phydev);
447 
448 	netif_start_queue(ndev);
449 
450 	return 0;
451 }
452 
453 /**
454  * arc_emac_set_rx_mode - Change the receive filtering mode.
455  * @ndev:	Pointer to the network device.
456  *
457  * This function enables/disables promiscuous or all-multicast mode
458  * and updates the multicast filtering list of the network device.
459  */
arc_emac_set_rx_mode(struct net_device * ndev)460 static void arc_emac_set_rx_mode(struct net_device *ndev)
461 {
462 	struct arc_emac_priv *priv = netdev_priv(ndev);
463 
464 	if (ndev->flags & IFF_PROMISC) {
465 		arc_reg_or(priv, R_CTRL, PROM_MASK);
466 	} else {
467 		arc_reg_clr(priv, R_CTRL, PROM_MASK);
468 
469 		if (ndev->flags & IFF_ALLMULTI) {
470 			arc_reg_set(priv, R_LAFL, ~0);
471 			arc_reg_set(priv, R_LAFH, ~0);
472 		} else if (ndev->flags & IFF_MULTICAST) {
473 			struct netdev_hw_addr *ha;
474 			unsigned int filter[2] = { 0, 0 };
475 			int bit;
476 
477 			netdev_for_each_mc_addr(ha, ndev) {
478 				bit = ether_crc_le(ETH_ALEN, ha->addr) >> 26;
479 				filter[bit >> 5] |= 1 << (bit & 31);
480 			}
481 
482 			arc_reg_set(priv, R_LAFL, filter[0]);
483 			arc_reg_set(priv, R_LAFH, filter[1]);
484 		} else {
485 			arc_reg_set(priv, R_LAFL, 0);
486 			arc_reg_set(priv, R_LAFH, 0);
487 		}
488 	}
489 }
490 
491 /**
492  * arc_free_tx_queue - free skb from tx queue
493  * @ndev:	Pointer to the network device.
494  *
495  * This function must be called while EMAC disable
496  */
arc_free_tx_queue(struct net_device * ndev)497 static void arc_free_tx_queue(struct net_device *ndev)
498 {
499 	struct arc_emac_priv *priv = netdev_priv(ndev);
500 	unsigned int i;
501 
502 	for (i = 0; i < TX_BD_NUM; i++) {
503 		struct arc_emac_bd *txbd = &priv->txbd[i];
504 		struct buffer_state *tx_buff = &priv->tx_buff[i];
505 
506 		if (tx_buff->skb) {
507 			dma_unmap_single(&ndev->dev,
508 					 dma_unmap_addr(tx_buff, addr),
509 					 dma_unmap_len(tx_buff, len),
510 					 DMA_TO_DEVICE);
511 
512 			/* return the sk_buff to system */
513 			dev_kfree_skb_irq(tx_buff->skb);
514 		}
515 
516 		txbd->info = 0;
517 		txbd->data = 0;
518 		tx_buff->skb = NULL;
519 	}
520 }
521 
522 /**
523  * arc_free_rx_queue - free skb from rx queue
524  * @ndev:	Pointer to the network device.
525  *
526  * This function must be called while EMAC disable
527  */
arc_free_rx_queue(struct net_device * ndev)528 static void arc_free_rx_queue(struct net_device *ndev)
529 {
530 	struct arc_emac_priv *priv = netdev_priv(ndev);
531 	unsigned int i;
532 
533 	for (i = 0; i < RX_BD_NUM; i++) {
534 		struct arc_emac_bd *rxbd = &priv->rxbd[i];
535 		struct buffer_state *rx_buff = &priv->rx_buff[i];
536 
537 		if (rx_buff->skb) {
538 			dma_unmap_single(&ndev->dev,
539 					 dma_unmap_addr(rx_buff, addr),
540 					 dma_unmap_len(rx_buff, len),
541 					 DMA_FROM_DEVICE);
542 
543 			/* return the sk_buff to system */
544 			dev_kfree_skb_irq(rx_buff->skb);
545 		}
546 
547 		rxbd->info = 0;
548 		rxbd->data = 0;
549 		rx_buff->skb = NULL;
550 	}
551 }
552 
553 /**
554  * arc_emac_stop - Close the network device.
555  * @ndev:	Pointer to the network device.
556  *
557  * This function stops the Tx queue, disables interrupts and frees the IRQ for
558  * the EMAC device.
559  * It also disconnects the PHY device associated with the EMAC device.
560  */
arc_emac_stop(struct net_device * ndev)561 static int arc_emac_stop(struct net_device *ndev)
562 {
563 	struct arc_emac_priv *priv = netdev_priv(ndev);
564 
565 	napi_disable(&priv->napi);
566 	netif_stop_queue(ndev);
567 
568 	/* Disable interrupts */
569 	arc_reg_clr(priv, R_ENABLE, RXINT_MASK | TXINT_MASK | ERR_MASK);
570 
571 	/* Disable EMAC */
572 	arc_reg_clr(priv, R_CTRL, EN_MASK);
573 
574 	/* Return the sk_buff to system */
575 	arc_free_tx_queue(ndev);
576 	arc_free_rx_queue(ndev);
577 
578 	return 0;
579 }
580 
581 /**
582  * arc_emac_stats - Get system network statistics.
583  * @ndev:	Pointer to net_device structure.
584  *
585  * Returns the address of the device statistics structure.
586  * Statistics are updated in interrupt handler.
587  */
arc_emac_stats(struct net_device * ndev)588 static struct net_device_stats *arc_emac_stats(struct net_device *ndev)
589 {
590 	struct arc_emac_priv *priv = netdev_priv(ndev);
591 	struct net_device_stats *stats = &ndev->stats;
592 	unsigned long miss, rxerr;
593 	u8 rxcrc, rxfram, rxoflow;
594 
595 	rxerr = arc_reg_get(priv, R_RXERR);
596 	miss = arc_reg_get(priv, R_MISS);
597 
598 	rxcrc = rxerr;
599 	rxfram = rxerr >> 8;
600 	rxoflow = rxerr >> 16;
601 
602 	stats->rx_errors += miss;
603 	stats->rx_errors += rxcrc + rxfram + rxoflow;
604 
605 	stats->rx_over_errors += rxoflow;
606 	stats->rx_frame_errors += rxfram;
607 	stats->rx_crc_errors += rxcrc;
608 	stats->rx_missed_errors += miss;
609 
610 	return stats;
611 }
612 
613 /**
614  * arc_emac_tx - Starts the data transmission.
615  * @skb:	sk_buff pointer that contains data to be Transmitted.
616  * @ndev:	Pointer to net_device structure.
617  *
618  * returns: NETDEV_TX_OK, on success
619  *		NETDEV_TX_BUSY, if any of the descriptors are not free.
620  *
621  * This function is invoked from upper layers to initiate transmission.
622  */
arc_emac_tx(struct sk_buff * skb,struct net_device * ndev)623 static int arc_emac_tx(struct sk_buff *skb, struct net_device *ndev)
624 {
625 	struct arc_emac_priv *priv = netdev_priv(ndev);
626 	unsigned int len, *txbd_curr = &priv->txbd_curr;
627 	struct net_device_stats *stats = &ndev->stats;
628 	__le32 *info = &priv->txbd[*txbd_curr].info;
629 	dma_addr_t addr;
630 
631 	if (skb_padto(skb, ETH_ZLEN))
632 		return NETDEV_TX_OK;
633 
634 	len = max_t(unsigned int, ETH_ZLEN, skb->len);
635 
636 	if (unlikely(!arc_emac_tx_avail(priv))) {
637 		netif_stop_queue(ndev);
638 		netdev_err(ndev, "BUG! Tx Ring full when queue awake!\n");
639 		return NETDEV_TX_BUSY;
640 	}
641 
642 	addr = dma_map_single(&ndev->dev, (void *)skb->data, len,
643 			      DMA_TO_DEVICE);
644 
645 	if (unlikely(dma_mapping_error(&ndev->dev, addr))) {
646 		stats->tx_dropped++;
647 		stats->tx_errors++;
648 		dev_kfree_skb(skb);
649 		return NETDEV_TX_OK;
650 	}
651 	dma_unmap_addr_set(&priv->tx_buff[*txbd_curr], addr, addr);
652 	dma_unmap_len_set(&priv->tx_buff[*txbd_curr], len, len);
653 
654 	priv->txbd[*txbd_curr].data = cpu_to_le32(addr);
655 
656 	/* Make sure pointer to data buffer is set */
657 	wmb();
658 
659 	skb_tx_timestamp(skb);
660 
661 	*info = cpu_to_le32(FOR_EMAC | FIRST_OR_LAST_MASK | len);
662 
663 	/* Make sure info word is set */
664 	wmb();
665 
666 	priv->tx_buff[*txbd_curr].skb = skb;
667 
668 	/* Increment index to point to the next BD */
669 	*txbd_curr = (*txbd_curr + 1) % TX_BD_NUM;
670 
671 	/* Ensure that tx_clean() sees the new txbd_curr before
672 	 * checking the queue status. This prevents an unneeded wake
673 	 * of the queue in tx_clean().
674 	 */
675 	smp_mb();
676 
677 	if (!arc_emac_tx_avail(priv)) {
678 		netif_stop_queue(ndev);
679 		/* Refresh tx_dirty */
680 		smp_mb();
681 		if (arc_emac_tx_avail(priv))
682 			netif_start_queue(ndev);
683 	}
684 
685 	arc_reg_set(priv, R_STATUS, TXPL_MASK);
686 
687 	return NETDEV_TX_OK;
688 }
689 
arc_emac_set_address_internal(struct net_device * ndev)690 static void arc_emac_set_address_internal(struct net_device *ndev)
691 {
692 	struct arc_emac_priv *priv = netdev_priv(ndev);
693 	unsigned int addr_low, addr_hi;
694 
695 	addr_low = le32_to_cpu(*(__le32 *)&ndev->dev_addr[0]);
696 	addr_hi = le16_to_cpu(*(__le16 *)&ndev->dev_addr[4]);
697 
698 	arc_reg_set(priv, R_ADDRL, addr_low);
699 	arc_reg_set(priv, R_ADDRH, addr_hi);
700 }
701 
702 /**
703  * arc_emac_set_address - Set the MAC address for this device.
704  * @ndev:	Pointer to net_device structure.
705  * @p:		6 byte Address to be written as MAC address.
706  *
707  * This function copies the HW address from the sockaddr structure to the
708  * net_device structure and updates the address in HW.
709  *
710  * returns:	-EBUSY if the net device is busy or 0 if the address is set
711  *		successfully.
712  */
arc_emac_set_address(struct net_device * ndev,void * p)713 static int arc_emac_set_address(struct net_device *ndev, void *p)
714 {
715 	struct sockaddr *addr = p;
716 
717 	if (netif_running(ndev))
718 		return -EBUSY;
719 
720 	if (!is_valid_ether_addr(addr->sa_data))
721 		return -EADDRNOTAVAIL;
722 
723 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
724 
725 	arc_emac_set_address_internal(ndev);
726 
727 	return 0;
728 }
729 
730 static const struct net_device_ops arc_emac_netdev_ops = {
731 	.ndo_open		= arc_emac_open,
732 	.ndo_stop		= arc_emac_stop,
733 	.ndo_start_xmit		= arc_emac_tx,
734 	.ndo_set_mac_address	= arc_emac_set_address,
735 	.ndo_get_stats		= arc_emac_stats,
736 	.ndo_set_rx_mode	= arc_emac_set_rx_mode,
737 #ifdef CONFIG_NET_POLL_CONTROLLER
738 	.ndo_poll_controller	= arc_emac_poll_controller,
739 #endif
740 };
741 
arc_emac_probe(struct net_device * ndev,int interface)742 int arc_emac_probe(struct net_device *ndev, int interface)
743 {
744 	struct device *dev = ndev->dev.parent;
745 	struct resource res_regs;
746 	struct device_node *phy_node;
747 	struct phy_device *phydev = NULL;
748 	struct arc_emac_priv *priv;
749 	const char *mac_addr;
750 	unsigned int id, clock_frequency, irq;
751 	int err;
752 
753 	/* Get PHY from device tree */
754 	phy_node = of_parse_phandle(dev->of_node, "phy", 0);
755 	if (!phy_node) {
756 		dev_err(dev, "failed to retrieve phy description from device tree\n");
757 		return -ENODEV;
758 	}
759 
760 	/* Get EMAC registers base address from device tree */
761 	err = of_address_to_resource(dev->of_node, 0, &res_regs);
762 	if (err) {
763 		dev_err(dev, "failed to retrieve registers base from device tree\n");
764 		err = -ENODEV;
765 		goto out_put_node;
766 	}
767 
768 	/* Get IRQ from device tree */
769 	irq = irq_of_parse_and_map(dev->of_node, 0);
770 	if (!irq) {
771 		dev_err(dev, "failed to retrieve <irq> value from device tree\n");
772 		err = -ENODEV;
773 		goto out_put_node;
774 	}
775 
776 	ndev->netdev_ops = &arc_emac_netdev_ops;
777 	ndev->ethtool_ops = &arc_emac_ethtool_ops;
778 	ndev->watchdog_timeo = TX_TIMEOUT;
779 
780 	priv = netdev_priv(ndev);
781 	priv->dev = dev;
782 
783 	priv->regs = devm_ioremap_resource(dev, &res_regs);
784 	if (IS_ERR(priv->regs)) {
785 		err = PTR_ERR(priv->regs);
786 		goto out_put_node;
787 	}
788 
789 	dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs);
790 
791 	if (priv->clk) {
792 		err = clk_prepare_enable(priv->clk);
793 		if (err) {
794 			dev_err(dev, "failed to enable clock\n");
795 			goto out_put_node;
796 		}
797 
798 		clock_frequency = clk_get_rate(priv->clk);
799 	} else {
800 		/* Get CPU clock frequency from device tree */
801 		if (of_property_read_u32(dev->of_node, "clock-frequency",
802 					 &clock_frequency)) {
803 			dev_err(dev, "failed to retrieve <clock-frequency> from device tree\n");
804 			err = -EINVAL;
805 			goto out_put_node;
806 		}
807 	}
808 
809 	id = arc_reg_get(priv, R_ID);
810 
811 	/* Check for EMAC revision 5 or 7, magic number */
812 	if (!(id == 0x0005fd02 || id == 0x0007fd02)) {
813 		dev_err(dev, "ARC EMAC not detected, id=0x%x\n", id);
814 		err = -ENODEV;
815 		goto out_clken;
816 	}
817 	dev_info(dev, "ARC EMAC detected with id: 0x%x\n", id);
818 
819 	/* Set poll rate so that it polls every 1 ms */
820 	arc_reg_set(priv, R_POLLRATE, clock_frequency / 1000000);
821 
822 	ndev->irq = irq;
823 	dev_info(dev, "IRQ is %d\n", ndev->irq);
824 
825 	/* Register interrupt handler for device */
826 	err = devm_request_irq(dev, ndev->irq, arc_emac_intr, 0,
827 			       ndev->name, ndev);
828 	if (err) {
829 		dev_err(dev, "could not allocate IRQ\n");
830 		goto out_clken;
831 	}
832 
833 	/* Get MAC address from device tree */
834 	mac_addr = of_get_mac_address(dev->of_node);
835 
836 	if (mac_addr)
837 		memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
838 	else
839 		eth_hw_addr_random(ndev);
840 
841 	arc_emac_set_address_internal(ndev);
842 	dev_info(dev, "MAC address is now %pM\n", ndev->dev_addr);
843 
844 	/* Do 1 allocation instead of 2 separate ones for Rx and Tx BD rings */
845 	priv->rxbd = dmam_alloc_coherent(dev, RX_RING_SZ + TX_RING_SZ,
846 					 &priv->rxbd_dma, GFP_KERNEL);
847 
848 	if (!priv->rxbd) {
849 		dev_err(dev, "failed to allocate data buffers\n");
850 		err = -ENOMEM;
851 		goto out_clken;
852 	}
853 
854 	priv->txbd = priv->rxbd + RX_BD_NUM;
855 
856 	priv->txbd_dma = priv->rxbd_dma + RX_RING_SZ;
857 	dev_dbg(dev, "EMAC Device addr: Rx Ring [0x%x], Tx Ring[%x]\n",
858 		(unsigned int)priv->rxbd_dma, (unsigned int)priv->txbd_dma);
859 
860 	err = arc_mdio_probe(priv);
861 	if (err) {
862 		dev_err(dev, "failed to probe MII bus\n");
863 		goto out_clken;
864 	}
865 
866 	phydev = of_phy_connect(ndev, phy_node, arc_emac_adjust_link, 0,
867 				interface);
868 	if (!phydev) {
869 		dev_err(dev, "of_phy_connect() failed\n");
870 		err = -ENODEV;
871 		goto out_mdio;
872 	}
873 
874 	dev_info(dev, "connected to %s phy with id 0x%x\n",
875 		 phydev->drv->name, phydev->phy_id);
876 
877 	netif_napi_add(ndev, &priv->napi, arc_emac_poll, ARC_EMAC_NAPI_WEIGHT);
878 
879 	err = register_netdev(ndev);
880 	if (err) {
881 		dev_err(dev, "failed to register network device\n");
882 		goto out_netif_api;
883 	}
884 
885 	of_node_put(phy_node);
886 	return 0;
887 
888 out_netif_api:
889 	netif_napi_del(&priv->napi);
890 	phy_disconnect(phydev);
891 out_mdio:
892 	arc_mdio_remove(priv);
893 out_clken:
894 	if (priv->clk)
895 		clk_disable_unprepare(priv->clk);
896 out_put_node:
897 	of_node_put(phy_node);
898 
899 	return err;
900 }
901 EXPORT_SYMBOL_GPL(arc_emac_probe);
902 
arc_emac_remove(struct net_device * ndev)903 int arc_emac_remove(struct net_device *ndev)
904 {
905 	struct arc_emac_priv *priv = netdev_priv(ndev);
906 
907 	phy_disconnect(ndev->phydev);
908 	arc_mdio_remove(priv);
909 	unregister_netdev(ndev);
910 	netif_napi_del(&priv->napi);
911 
912 	if (!IS_ERR(priv->clk))
913 		clk_disable_unprepare(priv->clk);
914 
915 	return 0;
916 }
917 EXPORT_SYMBOL_GPL(arc_emac_remove);
918 
919 MODULE_AUTHOR("Alexey Brodkin <abrodkin@synopsys.com>");
920 MODULE_DESCRIPTION("ARC EMAC driver");
921 MODULE_LICENSE("GPL");
922