• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  libata-core.c - helper library for ATA
3  *
4  *  Maintained by:  Tejun Heo <tj@kernel.org>
5  *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6  *		    on emails.
7  *
8  *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
9  *  Copyright 2003-2004 Jeff Garzik
10  *
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2, or (at your option)
15  *  any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  *  You should have received a copy of the GNU General Public License
23  *  along with this program; see the file COPYING.  If not, write to
24  *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  *
27  *  libata documentation is available via 'make {ps|pdf}docs',
28  *  as Documentation/DocBook/libata.*
29  *
30  *  Hardware documentation available from http://www.t13.org/ and
31  *  http://www.sata-io.org/
32  *
33  *  Standards documents from:
34  *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
35  *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
36  *	http://www.sata-io.org (SATA)
37  *	http://www.compactflash.org (CF)
38  *	http://www.qic.org (QIC157 - Tape and DSC)
39  *	http://www.ce-ata.org (CE-ATA: not supported)
40  *
41  */
42 
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/time.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/scatterlist.h>
59 #include <linux/io.h>
60 #include <linux/async.h>
61 #include <linux/log2.h>
62 #include <linux/slab.h>
63 #include <linux/glob.h>
64 #include <scsi/scsi.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_host.h>
67 #include <linux/libata.h>
68 #include <asm/byteorder.h>
69 #include <asm/unaligned.h>
70 #include <linux/cdrom.h>
71 #include <linux/ratelimit.h>
72 #include <linux/leds.h>
73 #include <linux/pm_runtime.h>
74 #include <linux/platform_device.h>
75 
76 #define CREATE_TRACE_POINTS
77 #include <trace/events/libata.h>
78 
79 #include "libata.h"
80 #include "libata-transport.h"
81 
82 /* debounce timing parameters in msecs { interval, duration, timeout } */
83 const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
84 const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
85 const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
86 
87 const struct ata_port_operations ata_base_port_ops = {
88 	.prereset		= ata_std_prereset,
89 	.postreset		= ata_std_postreset,
90 	.error_handler		= ata_std_error_handler,
91 	.sched_eh		= ata_std_sched_eh,
92 	.end_eh			= ata_std_end_eh,
93 };
94 
95 const struct ata_port_operations sata_port_ops = {
96 	.inherits		= &ata_base_port_ops,
97 
98 	.qc_defer		= ata_std_qc_defer,
99 	.hardreset		= sata_std_hardreset,
100 };
101 
102 static unsigned int ata_dev_init_params(struct ata_device *dev,
103 					u16 heads, u16 sectors);
104 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105 static void ata_dev_xfermask(struct ata_device *dev);
106 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
107 
108 atomic_t ata_print_id = ATOMIC_INIT(0);
109 
110 struct ata_force_param {
111 	const char	*name;
112 	unsigned int	cbl;
113 	int		spd_limit;
114 	unsigned long	xfer_mask;
115 	unsigned int	horkage_on;
116 	unsigned int	horkage_off;
117 	unsigned int	lflags;
118 };
119 
120 struct ata_force_ent {
121 	int			port;
122 	int			device;
123 	struct ata_force_param	param;
124 };
125 
126 static struct ata_force_ent *ata_force_tbl;
127 static int ata_force_tbl_size;
128 
129 static char ata_force_param_buf[PAGE_SIZE] __initdata;
130 /* param_buf is thrown away after initialization, disallow read */
131 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
132 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
133 
134 static int atapi_enabled = 1;
135 module_param(atapi_enabled, int, 0444);
136 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
137 
138 static int atapi_dmadir = 0;
139 module_param(atapi_dmadir, int, 0444);
140 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
141 
142 int atapi_passthru16 = 1;
143 module_param(atapi_passthru16, int, 0444);
144 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
145 
146 int libata_fua = 0;
147 module_param_named(fua, libata_fua, int, 0444);
148 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
149 
150 static int ata_ignore_hpa;
151 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153 
154 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155 module_param_named(dma, libata_dma_mask, int, 0444);
156 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157 
158 static int ata_probe_timeout;
159 module_param(ata_probe_timeout, int, 0444);
160 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161 
162 int libata_noacpi = 0;
163 module_param_named(noacpi, libata_noacpi, int, 0444);
164 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
165 
166 int libata_allow_tpm = 0;
167 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
168 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
169 
170 static int atapi_an;
171 module_param(atapi_an, int, 0444);
172 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173 
174 MODULE_AUTHOR("Jeff Garzik");
175 MODULE_DESCRIPTION("Library module for ATA devices");
176 MODULE_LICENSE("GPL");
177 MODULE_VERSION(DRV_VERSION);
178 
179 
ata_sstatus_online(u32 sstatus)180 static bool ata_sstatus_online(u32 sstatus)
181 {
182 	return (sstatus & 0xf) == 0x3;
183 }
184 
185 /**
186  *	ata_link_next - link iteration helper
187  *	@link: the previous link, NULL to start
188  *	@ap: ATA port containing links to iterate
189  *	@mode: iteration mode, one of ATA_LITER_*
190  *
191  *	LOCKING:
192  *	Host lock or EH context.
193  *
194  *	RETURNS:
195  *	Pointer to the next link.
196  */
ata_link_next(struct ata_link * link,struct ata_port * ap,enum ata_link_iter_mode mode)197 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 			       enum ata_link_iter_mode mode)
199 {
200 	BUG_ON(mode != ATA_LITER_EDGE &&
201 	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202 
203 	/* NULL link indicates start of iteration */
204 	if (!link)
205 		switch (mode) {
206 		case ATA_LITER_EDGE:
207 		case ATA_LITER_PMP_FIRST:
208 			if (sata_pmp_attached(ap))
209 				return ap->pmp_link;
210 			/* fall through */
211 		case ATA_LITER_HOST_FIRST:
212 			return &ap->link;
213 		}
214 
215 	/* we just iterated over the host link, what's next? */
216 	if (link == &ap->link)
217 		switch (mode) {
218 		case ATA_LITER_HOST_FIRST:
219 			if (sata_pmp_attached(ap))
220 				return ap->pmp_link;
221 			/* fall through */
222 		case ATA_LITER_PMP_FIRST:
223 			if (unlikely(ap->slave_link))
224 				return ap->slave_link;
225 			/* fall through */
226 		case ATA_LITER_EDGE:
227 			return NULL;
228 		}
229 
230 	/* slave_link excludes PMP */
231 	if (unlikely(link == ap->slave_link))
232 		return NULL;
233 
234 	/* we were over a PMP link */
235 	if (++link < ap->pmp_link + ap->nr_pmp_links)
236 		return link;
237 
238 	if (mode == ATA_LITER_PMP_FIRST)
239 		return &ap->link;
240 
241 	return NULL;
242 }
243 
244 /**
245  *	ata_dev_next - device iteration helper
246  *	@dev: the previous device, NULL to start
247  *	@link: ATA link containing devices to iterate
248  *	@mode: iteration mode, one of ATA_DITER_*
249  *
250  *	LOCKING:
251  *	Host lock or EH context.
252  *
253  *	RETURNS:
254  *	Pointer to the next device.
255  */
ata_dev_next(struct ata_device * dev,struct ata_link * link,enum ata_dev_iter_mode mode)256 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 				enum ata_dev_iter_mode mode)
258 {
259 	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261 
262 	/* NULL dev indicates start of iteration */
263 	if (!dev)
264 		switch (mode) {
265 		case ATA_DITER_ENABLED:
266 		case ATA_DITER_ALL:
267 			dev = link->device;
268 			goto check;
269 		case ATA_DITER_ENABLED_REVERSE:
270 		case ATA_DITER_ALL_REVERSE:
271 			dev = link->device + ata_link_max_devices(link) - 1;
272 			goto check;
273 		}
274 
275  next:
276 	/* move to the next one */
277 	switch (mode) {
278 	case ATA_DITER_ENABLED:
279 	case ATA_DITER_ALL:
280 		if (++dev < link->device + ata_link_max_devices(link))
281 			goto check;
282 		return NULL;
283 	case ATA_DITER_ENABLED_REVERSE:
284 	case ATA_DITER_ALL_REVERSE:
285 		if (--dev >= link->device)
286 			goto check;
287 		return NULL;
288 	}
289 
290  check:
291 	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 	    !ata_dev_enabled(dev))
293 		goto next;
294 	return dev;
295 }
296 
297 /**
298  *	ata_dev_phys_link - find physical link for a device
299  *	@dev: ATA device to look up physical link for
300  *
301  *	Look up physical link which @dev is attached to.  Note that
302  *	this is different from @dev->link only when @dev is on slave
303  *	link.  For all other cases, it's the same as @dev->link.
304  *
305  *	LOCKING:
306  *	Don't care.
307  *
308  *	RETURNS:
309  *	Pointer to the found physical link.
310  */
ata_dev_phys_link(struct ata_device * dev)311 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312 {
313 	struct ata_port *ap = dev->link->ap;
314 
315 	if (!ap->slave_link)
316 		return dev->link;
317 	if (!dev->devno)
318 		return &ap->link;
319 	return ap->slave_link;
320 }
321 
322 /**
323  *	ata_force_cbl - force cable type according to libata.force
324  *	@ap: ATA port of interest
325  *
326  *	Force cable type according to libata.force and whine about it.
327  *	The last entry which has matching port number is used, so it
328  *	can be specified as part of device force parameters.  For
329  *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330  *	same effect.
331  *
332  *	LOCKING:
333  *	EH context.
334  */
ata_force_cbl(struct ata_port * ap)335 void ata_force_cbl(struct ata_port *ap)
336 {
337 	int i;
338 
339 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 		const struct ata_force_ent *fe = &ata_force_tbl[i];
341 
342 		if (fe->port != -1 && fe->port != ap->print_id)
343 			continue;
344 
345 		if (fe->param.cbl == ATA_CBL_NONE)
346 			continue;
347 
348 		ap->cbl = fe->param.cbl;
349 		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
350 		return;
351 	}
352 }
353 
354 /**
355  *	ata_force_link_limits - force link limits according to libata.force
356  *	@link: ATA link of interest
357  *
358  *	Force link flags and SATA spd limit according to libata.force
359  *	and whine about it.  When only the port part is specified
360  *	(e.g. 1:), the limit applies to all links connected to both
361  *	the host link and all fan-out ports connected via PMP.  If the
362  *	device part is specified as 0 (e.g. 1.00:), it specifies the
363  *	first fan-out link not the host link.  Device number 15 always
364  *	points to the host link whether PMP is attached or not.  If the
365  *	controller has slave link, device number 16 points to it.
366  *
367  *	LOCKING:
368  *	EH context.
369  */
ata_force_link_limits(struct ata_link * link)370 static void ata_force_link_limits(struct ata_link *link)
371 {
372 	bool did_spd = false;
373 	int linkno = link->pmp;
374 	int i;
375 
376 	if (ata_is_host_link(link))
377 		linkno += 15;
378 
379 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 		const struct ata_force_ent *fe = &ata_force_tbl[i];
381 
382 		if (fe->port != -1 && fe->port != link->ap->print_id)
383 			continue;
384 
385 		if (fe->device != -1 && fe->device != linkno)
386 			continue;
387 
388 		/* only honor the first spd limit */
389 		if (!did_spd && fe->param.spd_limit) {
390 			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
391 			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
392 					fe->param.name);
393 			did_spd = true;
394 		}
395 
396 		/* let lflags stack */
397 		if (fe->param.lflags) {
398 			link->flags |= fe->param.lflags;
399 			ata_link_notice(link,
400 					"FORCE: link flag 0x%x forced -> 0x%x\n",
401 					fe->param.lflags, link->flags);
402 		}
403 	}
404 }
405 
406 /**
407  *	ata_force_xfermask - force xfermask according to libata.force
408  *	@dev: ATA device of interest
409  *
410  *	Force xfer_mask according to libata.force and whine about it.
411  *	For consistency with link selection, device number 15 selects
412  *	the first device connected to the host link.
413  *
414  *	LOCKING:
415  *	EH context.
416  */
ata_force_xfermask(struct ata_device * dev)417 static void ata_force_xfermask(struct ata_device *dev)
418 {
419 	int devno = dev->link->pmp + dev->devno;
420 	int alt_devno = devno;
421 	int i;
422 
423 	/* allow n.15/16 for devices attached to host port */
424 	if (ata_is_host_link(dev->link))
425 		alt_devno += 15;
426 
427 	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 		const struct ata_force_ent *fe = &ata_force_tbl[i];
429 		unsigned long pio_mask, mwdma_mask, udma_mask;
430 
431 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 			continue;
433 
434 		if (fe->device != -1 && fe->device != devno &&
435 		    fe->device != alt_devno)
436 			continue;
437 
438 		if (!fe->param.xfer_mask)
439 			continue;
440 
441 		ata_unpack_xfermask(fe->param.xfer_mask,
442 				    &pio_mask, &mwdma_mask, &udma_mask);
443 		if (udma_mask)
444 			dev->udma_mask = udma_mask;
445 		else if (mwdma_mask) {
446 			dev->udma_mask = 0;
447 			dev->mwdma_mask = mwdma_mask;
448 		} else {
449 			dev->udma_mask = 0;
450 			dev->mwdma_mask = 0;
451 			dev->pio_mask = pio_mask;
452 		}
453 
454 		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 			       fe->param.name);
456 		return;
457 	}
458 }
459 
460 /**
461  *	ata_force_horkage - force horkage according to libata.force
462  *	@dev: ATA device of interest
463  *
464  *	Force horkage according to libata.force and whine about it.
465  *	For consistency with link selection, device number 15 selects
466  *	the first device connected to the host link.
467  *
468  *	LOCKING:
469  *	EH context.
470  */
ata_force_horkage(struct ata_device * dev)471 static void ata_force_horkage(struct ata_device *dev)
472 {
473 	int devno = dev->link->pmp + dev->devno;
474 	int alt_devno = devno;
475 	int i;
476 
477 	/* allow n.15/16 for devices attached to host port */
478 	if (ata_is_host_link(dev->link))
479 		alt_devno += 15;
480 
481 	for (i = 0; i < ata_force_tbl_size; i++) {
482 		const struct ata_force_ent *fe = &ata_force_tbl[i];
483 
484 		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 			continue;
486 
487 		if (fe->device != -1 && fe->device != devno &&
488 		    fe->device != alt_devno)
489 			continue;
490 
491 		if (!(~dev->horkage & fe->param.horkage_on) &&
492 		    !(dev->horkage & fe->param.horkage_off))
493 			continue;
494 
495 		dev->horkage |= fe->param.horkage_on;
496 		dev->horkage &= ~fe->param.horkage_off;
497 
498 		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 			       fe->param.name);
500 	}
501 }
502 
503 /**
504  *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505  *	@opcode: SCSI opcode
506  *
507  *	Determine ATAPI command type from @opcode.
508  *
509  *	LOCKING:
510  *	None.
511  *
512  *	RETURNS:
513  *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514  */
atapi_cmd_type(u8 opcode)515 int atapi_cmd_type(u8 opcode)
516 {
517 	switch (opcode) {
518 	case GPCMD_READ_10:
519 	case GPCMD_READ_12:
520 		return ATAPI_READ;
521 
522 	case GPCMD_WRITE_10:
523 	case GPCMD_WRITE_12:
524 	case GPCMD_WRITE_AND_VERIFY_10:
525 		return ATAPI_WRITE;
526 
527 	case GPCMD_READ_CD:
528 	case GPCMD_READ_CD_MSF:
529 		return ATAPI_READ_CD;
530 
531 	case ATA_16:
532 	case ATA_12:
533 		if (atapi_passthru16)
534 			return ATAPI_PASS_THRU;
535 		/* fall thru */
536 	default:
537 		return ATAPI_MISC;
538 	}
539 }
540 
541 /**
542  *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543  *	@tf: Taskfile to convert
544  *	@pmp: Port multiplier port
545  *	@is_cmd: This FIS is for command
546  *	@fis: Buffer into which data will output
547  *
548  *	Converts a standard ATA taskfile to a Serial ATA
549  *	FIS structure (Register - Host to Device).
550  *
551  *	LOCKING:
552  *	Inherited from caller.
553  */
ata_tf_to_fis(const struct ata_taskfile * tf,u8 pmp,int is_cmd,u8 * fis)554 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
555 {
556 	fis[0] = 0x27;			/* Register - Host to Device FIS */
557 	fis[1] = pmp & 0xf;		/* Port multiplier number*/
558 	if (is_cmd)
559 		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
560 
561 	fis[2] = tf->command;
562 	fis[3] = tf->feature;
563 
564 	fis[4] = tf->lbal;
565 	fis[5] = tf->lbam;
566 	fis[6] = tf->lbah;
567 	fis[7] = tf->device;
568 
569 	fis[8] = tf->hob_lbal;
570 	fis[9] = tf->hob_lbam;
571 	fis[10] = tf->hob_lbah;
572 	fis[11] = tf->hob_feature;
573 
574 	fis[12] = tf->nsect;
575 	fis[13] = tf->hob_nsect;
576 	fis[14] = 0;
577 	fis[15] = tf->ctl;
578 
579 	fis[16] = tf->auxiliary & 0xff;
580 	fis[17] = (tf->auxiliary >> 8) & 0xff;
581 	fis[18] = (tf->auxiliary >> 16) & 0xff;
582 	fis[19] = (tf->auxiliary >> 24) & 0xff;
583 }
584 
585 /**
586  *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587  *	@fis: Buffer from which data will be input
588  *	@tf: Taskfile to output
589  *
590  *	Converts a serial ATA FIS structure to a standard ATA taskfile.
591  *
592  *	LOCKING:
593  *	Inherited from caller.
594  */
595 
ata_tf_from_fis(const u8 * fis,struct ata_taskfile * tf)596 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
597 {
598 	tf->command	= fis[2];	/* status */
599 	tf->feature	= fis[3];	/* error */
600 
601 	tf->lbal	= fis[4];
602 	tf->lbam	= fis[5];
603 	tf->lbah	= fis[6];
604 	tf->device	= fis[7];
605 
606 	tf->hob_lbal	= fis[8];
607 	tf->hob_lbam	= fis[9];
608 	tf->hob_lbah	= fis[10];
609 
610 	tf->nsect	= fis[12];
611 	tf->hob_nsect	= fis[13];
612 }
613 
614 static const u8 ata_rw_cmds[] = {
615 	/* pio multi */
616 	ATA_CMD_READ_MULTI,
617 	ATA_CMD_WRITE_MULTI,
618 	ATA_CMD_READ_MULTI_EXT,
619 	ATA_CMD_WRITE_MULTI_EXT,
620 	0,
621 	0,
622 	0,
623 	ATA_CMD_WRITE_MULTI_FUA_EXT,
624 	/* pio */
625 	ATA_CMD_PIO_READ,
626 	ATA_CMD_PIO_WRITE,
627 	ATA_CMD_PIO_READ_EXT,
628 	ATA_CMD_PIO_WRITE_EXT,
629 	0,
630 	0,
631 	0,
632 	0,
633 	/* dma */
634 	ATA_CMD_READ,
635 	ATA_CMD_WRITE,
636 	ATA_CMD_READ_EXT,
637 	ATA_CMD_WRITE_EXT,
638 	0,
639 	0,
640 	0,
641 	ATA_CMD_WRITE_FUA_EXT
642 };
643 
644 /**
645  *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
646  *	@tf: command to examine and configure
647  *	@dev: device tf belongs to
648  *
649  *	Examine the device configuration and tf->flags to calculate
650  *	the proper read/write commands and protocol to use.
651  *
652  *	LOCKING:
653  *	caller.
654  */
ata_rwcmd_protocol(struct ata_taskfile * tf,struct ata_device * dev)655 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
656 {
657 	u8 cmd;
658 
659 	int index, fua, lba48, write;
660 
661 	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
662 	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
664 
665 	if (dev->flags & ATA_DFLAG_PIO) {
666 		tf->protocol = ATA_PROT_PIO;
667 		index = dev->multi_count ? 0 : 8;
668 	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
669 		/* Unable to use DMA due to host limitation */
670 		tf->protocol = ATA_PROT_PIO;
671 		index = dev->multi_count ? 0 : 8;
672 	} else {
673 		tf->protocol = ATA_PROT_DMA;
674 		index = 16;
675 	}
676 
677 	cmd = ata_rw_cmds[index + fua + lba48 + write];
678 	if (cmd) {
679 		tf->command = cmd;
680 		return 0;
681 	}
682 	return -1;
683 }
684 
685 /**
686  *	ata_tf_read_block - Read block address from ATA taskfile
687  *	@tf: ATA taskfile of interest
688  *	@dev: ATA device @tf belongs to
689  *
690  *	LOCKING:
691  *	None.
692  *
693  *	Read block address from @tf.  This function can handle all
694  *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
695  *	flags select the address format to use.
696  *
697  *	RETURNS:
698  *	Block address read from @tf.
699  */
ata_tf_read_block(const struct ata_taskfile * tf,struct ata_device * dev)700 u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
701 {
702 	u64 block = 0;
703 
704 	if (tf->flags & ATA_TFLAG_LBA) {
705 		if (tf->flags & ATA_TFLAG_LBA48) {
706 			block |= (u64)tf->hob_lbah << 40;
707 			block |= (u64)tf->hob_lbam << 32;
708 			block |= (u64)tf->hob_lbal << 24;
709 		} else
710 			block |= (tf->device & 0xf) << 24;
711 
712 		block |= tf->lbah << 16;
713 		block |= tf->lbam << 8;
714 		block |= tf->lbal;
715 	} else {
716 		u32 cyl, head, sect;
717 
718 		cyl = tf->lbam | (tf->lbah << 8);
719 		head = tf->device & 0xf;
720 		sect = tf->lbal;
721 
722 		if (!sect) {
723 			ata_dev_warn(dev,
724 				     "device reported invalid CHS sector 0\n");
725 			return U64_MAX;
726 		}
727 
728 		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
729 	}
730 
731 	return block;
732 }
733 
734 /**
735  *	ata_build_rw_tf - Build ATA taskfile for given read/write request
736  *	@tf: Target ATA taskfile
737  *	@dev: ATA device @tf belongs to
738  *	@block: Block address
739  *	@n_block: Number of blocks
740  *	@tf_flags: RW/FUA etc...
741  *	@tag: tag
742  *
743  *	LOCKING:
744  *	None.
745  *
746  *	Build ATA taskfile @tf for read/write request described by
747  *	@block, @n_block, @tf_flags and @tag on @dev.
748  *
749  *	RETURNS:
750  *
751  *	0 on success, -ERANGE if the request is too large for @dev,
752  *	-EINVAL if the request is invalid.
753  */
ata_build_rw_tf(struct ata_taskfile * tf,struct ata_device * dev,u64 block,u32 n_block,unsigned int tf_flags,unsigned int tag)754 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
755 		    u64 block, u32 n_block, unsigned int tf_flags,
756 		    unsigned int tag)
757 {
758 	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
759 	tf->flags |= tf_flags;
760 
761 	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
762 		/* yay, NCQ */
763 		if (!lba_48_ok(block, n_block))
764 			return -ERANGE;
765 
766 		tf->protocol = ATA_PROT_NCQ;
767 		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
768 
769 		if (tf->flags & ATA_TFLAG_WRITE)
770 			tf->command = ATA_CMD_FPDMA_WRITE;
771 		else
772 			tf->command = ATA_CMD_FPDMA_READ;
773 
774 		tf->nsect = tag << 3;
775 		tf->hob_feature = (n_block >> 8) & 0xff;
776 		tf->feature = n_block & 0xff;
777 
778 		tf->hob_lbah = (block >> 40) & 0xff;
779 		tf->hob_lbam = (block >> 32) & 0xff;
780 		tf->hob_lbal = (block >> 24) & 0xff;
781 		tf->lbah = (block >> 16) & 0xff;
782 		tf->lbam = (block >> 8) & 0xff;
783 		tf->lbal = block & 0xff;
784 
785 		tf->device = ATA_LBA;
786 		if (tf->flags & ATA_TFLAG_FUA)
787 			tf->device |= 1 << 7;
788 	} else if (dev->flags & ATA_DFLAG_LBA) {
789 		tf->flags |= ATA_TFLAG_LBA;
790 
791 		if (lba_28_ok(block, n_block)) {
792 			/* use LBA28 */
793 			tf->device |= (block >> 24) & 0xf;
794 		} else if (lba_48_ok(block, n_block)) {
795 			if (!(dev->flags & ATA_DFLAG_LBA48))
796 				return -ERANGE;
797 
798 			/* use LBA48 */
799 			tf->flags |= ATA_TFLAG_LBA48;
800 
801 			tf->hob_nsect = (n_block >> 8) & 0xff;
802 
803 			tf->hob_lbah = (block >> 40) & 0xff;
804 			tf->hob_lbam = (block >> 32) & 0xff;
805 			tf->hob_lbal = (block >> 24) & 0xff;
806 		} else
807 			/* request too large even for LBA48 */
808 			return -ERANGE;
809 
810 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
811 			return -EINVAL;
812 
813 		tf->nsect = n_block & 0xff;
814 
815 		tf->lbah = (block >> 16) & 0xff;
816 		tf->lbam = (block >> 8) & 0xff;
817 		tf->lbal = block & 0xff;
818 
819 		tf->device |= ATA_LBA;
820 	} else {
821 		/* CHS */
822 		u32 sect, head, cyl, track;
823 
824 		/* The request -may- be too large for CHS addressing. */
825 		if (!lba_28_ok(block, n_block))
826 			return -ERANGE;
827 
828 		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
829 			return -EINVAL;
830 
831 		/* Convert LBA to CHS */
832 		track = (u32)block / dev->sectors;
833 		cyl   = track / dev->heads;
834 		head  = track % dev->heads;
835 		sect  = (u32)block % dev->sectors + 1;
836 
837 		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
838 			(u32)block, track, cyl, head, sect);
839 
840 		/* Check whether the converted CHS can fit.
841 		   Cylinder: 0-65535
842 		   Head: 0-15
843 		   Sector: 1-255*/
844 		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
845 			return -ERANGE;
846 
847 		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
848 		tf->lbal = sect;
849 		tf->lbam = cyl;
850 		tf->lbah = cyl >> 8;
851 		tf->device |= head;
852 	}
853 
854 	return 0;
855 }
856 
857 /**
858  *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
859  *	@pio_mask: pio_mask
860  *	@mwdma_mask: mwdma_mask
861  *	@udma_mask: udma_mask
862  *
863  *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
864  *	unsigned int xfer_mask.
865  *
866  *	LOCKING:
867  *	None.
868  *
869  *	RETURNS:
870  *	Packed xfer_mask.
871  */
ata_pack_xfermask(unsigned long pio_mask,unsigned long mwdma_mask,unsigned long udma_mask)872 unsigned long ata_pack_xfermask(unsigned long pio_mask,
873 				unsigned long mwdma_mask,
874 				unsigned long udma_mask)
875 {
876 	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
877 		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
878 		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
879 }
880 
881 /**
882  *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
883  *	@xfer_mask: xfer_mask to unpack
884  *	@pio_mask: resulting pio_mask
885  *	@mwdma_mask: resulting mwdma_mask
886  *	@udma_mask: resulting udma_mask
887  *
888  *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
889  *	Any NULL destination masks will be ignored.
890  */
ata_unpack_xfermask(unsigned long xfer_mask,unsigned long * pio_mask,unsigned long * mwdma_mask,unsigned long * udma_mask)891 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
892 			 unsigned long *mwdma_mask, unsigned long *udma_mask)
893 {
894 	if (pio_mask)
895 		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
896 	if (mwdma_mask)
897 		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
898 	if (udma_mask)
899 		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
900 }
901 
902 static const struct ata_xfer_ent {
903 	int shift, bits;
904 	u8 base;
905 } ata_xfer_tbl[] = {
906 	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
907 	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
908 	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
909 	{ -1, },
910 };
911 
912 /**
913  *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
914  *	@xfer_mask: xfer_mask of interest
915  *
916  *	Return matching XFER_* value for @xfer_mask.  Only the highest
917  *	bit of @xfer_mask is considered.
918  *
919  *	LOCKING:
920  *	None.
921  *
922  *	RETURNS:
923  *	Matching XFER_* value, 0xff if no match found.
924  */
ata_xfer_mask2mode(unsigned long xfer_mask)925 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
926 {
927 	int highbit = fls(xfer_mask) - 1;
928 	const struct ata_xfer_ent *ent;
929 
930 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
931 		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
932 			return ent->base + highbit - ent->shift;
933 	return 0xff;
934 }
935 
936 /**
937  *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
938  *	@xfer_mode: XFER_* of interest
939  *
940  *	Return matching xfer_mask for @xfer_mode.
941  *
942  *	LOCKING:
943  *	None.
944  *
945  *	RETURNS:
946  *	Matching xfer_mask, 0 if no match found.
947  */
ata_xfer_mode2mask(u8 xfer_mode)948 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
949 {
950 	const struct ata_xfer_ent *ent;
951 
952 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
953 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
954 			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
955 				& ~((1 << ent->shift) - 1);
956 	return 0;
957 }
958 
959 /**
960  *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
961  *	@xfer_mode: XFER_* of interest
962  *
963  *	Return matching xfer_shift for @xfer_mode.
964  *
965  *	LOCKING:
966  *	None.
967  *
968  *	RETURNS:
969  *	Matching xfer_shift, -1 if no match found.
970  */
ata_xfer_mode2shift(unsigned long xfer_mode)971 int ata_xfer_mode2shift(unsigned long xfer_mode)
972 {
973 	const struct ata_xfer_ent *ent;
974 
975 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
976 		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
977 			return ent->shift;
978 	return -1;
979 }
980 
981 /**
982  *	ata_mode_string - convert xfer_mask to string
983  *	@xfer_mask: mask of bits supported; only highest bit counts.
984  *
985  *	Determine string which represents the highest speed
986  *	(highest bit in @modemask).
987  *
988  *	LOCKING:
989  *	None.
990  *
991  *	RETURNS:
992  *	Constant C string representing highest speed listed in
993  *	@mode_mask, or the constant C string "<n/a>".
994  */
ata_mode_string(unsigned long xfer_mask)995 const char *ata_mode_string(unsigned long xfer_mask)
996 {
997 	static const char * const xfer_mode_str[] = {
998 		"PIO0",
999 		"PIO1",
1000 		"PIO2",
1001 		"PIO3",
1002 		"PIO4",
1003 		"PIO5",
1004 		"PIO6",
1005 		"MWDMA0",
1006 		"MWDMA1",
1007 		"MWDMA2",
1008 		"MWDMA3",
1009 		"MWDMA4",
1010 		"UDMA/16",
1011 		"UDMA/25",
1012 		"UDMA/33",
1013 		"UDMA/44",
1014 		"UDMA/66",
1015 		"UDMA/100",
1016 		"UDMA/133",
1017 		"UDMA7",
1018 	};
1019 	int highbit;
1020 
1021 	highbit = fls(xfer_mask) - 1;
1022 	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1023 		return xfer_mode_str[highbit];
1024 	return "<n/a>";
1025 }
1026 
sata_spd_string(unsigned int spd)1027 const char *sata_spd_string(unsigned int spd)
1028 {
1029 	static const char * const spd_str[] = {
1030 		"1.5 Gbps",
1031 		"3.0 Gbps",
1032 		"6.0 Gbps",
1033 	};
1034 
1035 	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1036 		return "<unknown>";
1037 	return spd_str[spd - 1];
1038 }
1039 
1040 /**
1041  *	ata_dev_classify - determine device type based on ATA-spec signature
1042  *	@tf: ATA taskfile register set for device to be identified
1043  *
1044  *	Determine from taskfile register contents whether a device is
1045  *	ATA or ATAPI, as per "Signature and persistence" section
1046  *	of ATA/PI spec (volume 1, sect 5.14).
1047  *
1048  *	LOCKING:
1049  *	None.
1050  *
1051  *	RETURNS:
1052  *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1053  *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1054  */
ata_dev_classify(const struct ata_taskfile * tf)1055 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1056 {
1057 	/* Apple's open source Darwin code hints that some devices only
1058 	 * put a proper signature into the LBA mid/high registers,
1059 	 * So, we only check those.  It's sufficient for uniqueness.
1060 	 *
1061 	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1062 	 * signatures for ATA and ATAPI devices attached on SerialATA,
1063 	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1064 	 * spec has never mentioned about using different signatures
1065 	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1066 	 * Multiplier specification began to use 0x69/0x96 to identify
1067 	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1068 	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1069 	 * 0x69/0x96 shortly and described them as reserved for
1070 	 * SerialATA.
1071 	 *
1072 	 * We follow the current spec and consider that 0x69/0x96
1073 	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1074 	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1075 	 * SEMB signature.  This is worked around in
1076 	 * ata_dev_read_id().
1077 	 */
1078 	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1079 		DPRINTK("found ATA device by sig\n");
1080 		return ATA_DEV_ATA;
1081 	}
1082 
1083 	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1084 		DPRINTK("found ATAPI device by sig\n");
1085 		return ATA_DEV_ATAPI;
1086 	}
1087 
1088 	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1089 		DPRINTK("found PMP device by sig\n");
1090 		return ATA_DEV_PMP;
1091 	}
1092 
1093 	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1094 		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1095 		return ATA_DEV_SEMB;
1096 	}
1097 
1098 	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1099 		DPRINTK("found ZAC device by sig\n");
1100 		return ATA_DEV_ZAC;
1101 	}
1102 
1103 	DPRINTK("unknown device\n");
1104 	return ATA_DEV_UNKNOWN;
1105 }
1106 
1107 /**
1108  *	ata_id_string - Convert IDENTIFY DEVICE page into string
1109  *	@id: IDENTIFY DEVICE results we will examine
1110  *	@s: string into which data is output
1111  *	@ofs: offset into identify device page
1112  *	@len: length of string to return. must be an even number.
1113  *
1114  *	The strings in the IDENTIFY DEVICE page are broken up into
1115  *	16-bit chunks.  Run through the string, and output each
1116  *	8-bit chunk linearly, regardless of platform.
1117  *
1118  *	LOCKING:
1119  *	caller.
1120  */
1121 
ata_id_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1122 void ata_id_string(const u16 *id, unsigned char *s,
1123 		   unsigned int ofs, unsigned int len)
1124 {
1125 	unsigned int c;
1126 
1127 	BUG_ON(len & 1);
1128 
1129 	while (len > 0) {
1130 		c = id[ofs] >> 8;
1131 		*s = c;
1132 		s++;
1133 
1134 		c = id[ofs] & 0xff;
1135 		*s = c;
1136 		s++;
1137 
1138 		ofs++;
1139 		len -= 2;
1140 	}
1141 }
1142 
1143 /**
1144  *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1145  *	@id: IDENTIFY DEVICE results we will examine
1146  *	@s: string into which data is output
1147  *	@ofs: offset into identify device page
1148  *	@len: length of string to return. must be an odd number.
1149  *
1150  *	This function is identical to ata_id_string except that it
1151  *	trims trailing spaces and terminates the resulting string with
1152  *	null.  @len must be actual maximum length (even number) + 1.
1153  *
1154  *	LOCKING:
1155  *	caller.
1156  */
ata_id_c_string(const u16 * id,unsigned char * s,unsigned int ofs,unsigned int len)1157 void ata_id_c_string(const u16 *id, unsigned char *s,
1158 		     unsigned int ofs, unsigned int len)
1159 {
1160 	unsigned char *p;
1161 
1162 	ata_id_string(id, s, ofs, len - 1);
1163 
1164 	p = s + strnlen(s, len - 1);
1165 	while (p > s && p[-1] == ' ')
1166 		p--;
1167 	*p = '\0';
1168 }
1169 
ata_id_n_sectors(const u16 * id)1170 static u64 ata_id_n_sectors(const u16 *id)
1171 {
1172 	if (ata_id_has_lba(id)) {
1173 		if (ata_id_has_lba48(id))
1174 			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1175 		else
1176 			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1177 	} else {
1178 		if (ata_id_current_chs_valid(id))
1179 			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1180 			       id[ATA_ID_CUR_SECTORS];
1181 		else
1182 			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1183 			       id[ATA_ID_SECTORS];
1184 	}
1185 }
1186 
ata_tf_to_lba48(const struct ata_taskfile * tf)1187 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1188 {
1189 	u64 sectors = 0;
1190 
1191 	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1192 	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1193 	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1194 	sectors |= (tf->lbah & 0xff) << 16;
1195 	sectors |= (tf->lbam & 0xff) << 8;
1196 	sectors |= (tf->lbal & 0xff);
1197 
1198 	return sectors;
1199 }
1200 
ata_tf_to_lba(const struct ata_taskfile * tf)1201 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1202 {
1203 	u64 sectors = 0;
1204 
1205 	sectors |= (tf->device & 0x0f) << 24;
1206 	sectors |= (tf->lbah & 0xff) << 16;
1207 	sectors |= (tf->lbam & 0xff) << 8;
1208 	sectors |= (tf->lbal & 0xff);
1209 
1210 	return sectors;
1211 }
1212 
1213 /**
1214  *	ata_read_native_max_address - Read native max address
1215  *	@dev: target device
1216  *	@max_sectors: out parameter for the result native max address
1217  *
1218  *	Perform an LBA48 or LBA28 native size query upon the device in
1219  *	question.
1220  *
1221  *	RETURNS:
1222  *	0 on success, -EACCES if command is aborted by the drive.
1223  *	-EIO on other errors.
1224  */
ata_read_native_max_address(struct ata_device * dev,u64 * max_sectors)1225 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1226 {
1227 	unsigned int err_mask;
1228 	struct ata_taskfile tf;
1229 	int lba48 = ata_id_has_lba48(dev->id);
1230 
1231 	ata_tf_init(dev, &tf);
1232 
1233 	/* always clear all address registers */
1234 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1235 
1236 	if (lba48) {
1237 		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1238 		tf.flags |= ATA_TFLAG_LBA48;
1239 	} else
1240 		tf.command = ATA_CMD_READ_NATIVE_MAX;
1241 
1242 	tf.protocol = ATA_PROT_NODATA;
1243 	tf.device |= ATA_LBA;
1244 
1245 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1246 	if (err_mask) {
1247 		ata_dev_warn(dev,
1248 			     "failed to read native max address (err_mask=0x%x)\n",
1249 			     err_mask);
1250 		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1251 			return -EACCES;
1252 		return -EIO;
1253 	}
1254 
1255 	if (lba48)
1256 		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1257 	else
1258 		*max_sectors = ata_tf_to_lba(&tf) + 1;
1259 	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1260 		(*max_sectors)--;
1261 	return 0;
1262 }
1263 
1264 /**
1265  *	ata_set_max_sectors - Set max sectors
1266  *	@dev: target device
1267  *	@new_sectors: new max sectors value to set for the device
1268  *
1269  *	Set max sectors of @dev to @new_sectors.
1270  *
1271  *	RETURNS:
1272  *	0 on success, -EACCES if command is aborted or denied (due to
1273  *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1274  *	errors.
1275  */
ata_set_max_sectors(struct ata_device * dev,u64 new_sectors)1276 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1277 {
1278 	unsigned int err_mask;
1279 	struct ata_taskfile tf;
1280 	int lba48 = ata_id_has_lba48(dev->id);
1281 
1282 	new_sectors--;
1283 
1284 	ata_tf_init(dev, &tf);
1285 
1286 	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1287 
1288 	if (lba48) {
1289 		tf.command = ATA_CMD_SET_MAX_EXT;
1290 		tf.flags |= ATA_TFLAG_LBA48;
1291 
1292 		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1293 		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1294 		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1295 	} else {
1296 		tf.command = ATA_CMD_SET_MAX;
1297 
1298 		tf.device |= (new_sectors >> 24) & 0xf;
1299 	}
1300 
1301 	tf.protocol = ATA_PROT_NODATA;
1302 	tf.device |= ATA_LBA;
1303 
1304 	tf.lbal = (new_sectors >> 0) & 0xff;
1305 	tf.lbam = (new_sectors >> 8) & 0xff;
1306 	tf.lbah = (new_sectors >> 16) & 0xff;
1307 
1308 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1309 	if (err_mask) {
1310 		ata_dev_warn(dev,
1311 			     "failed to set max address (err_mask=0x%x)\n",
1312 			     err_mask);
1313 		if (err_mask == AC_ERR_DEV &&
1314 		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1315 			return -EACCES;
1316 		return -EIO;
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 /**
1323  *	ata_hpa_resize		-	Resize a device with an HPA set
1324  *	@dev: Device to resize
1325  *
1326  *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1327  *	it if required to the full size of the media. The caller must check
1328  *	the drive has the HPA feature set enabled.
1329  *
1330  *	RETURNS:
1331  *	0 on success, -errno on failure.
1332  */
ata_hpa_resize(struct ata_device * dev)1333 static int ata_hpa_resize(struct ata_device *dev)
1334 {
1335 	struct ata_eh_context *ehc = &dev->link->eh_context;
1336 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1337 	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1338 	u64 sectors = ata_id_n_sectors(dev->id);
1339 	u64 native_sectors;
1340 	int rc;
1341 
1342 	/* do we need to do it? */
1343 	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1344 	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1345 	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1346 		return 0;
1347 
1348 	/* read native max address */
1349 	rc = ata_read_native_max_address(dev, &native_sectors);
1350 	if (rc) {
1351 		/* If device aborted the command or HPA isn't going to
1352 		 * be unlocked, skip HPA resizing.
1353 		 */
1354 		if (rc == -EACCES || !unlock_hpa) {
1355 			ata_dev_warn(dev,
1356 				     "HPA support seems broken, skipping HPA handling\n");
1357 			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1358 
1359 			/* we can continue if device aborted the command */
1360 			if (rc == -EACCES)
1361 				rc = 0;
1362 		}
1363 
1364 		return rc;
1365 	}
1366 	dev->n_native_sectors = native_sectors;
1367 
1368 	/* nothing to do? */
1369 	if (native_sectors <= sectors || !unlock_hpa) {
1370 		if (!print_info || native_sectors == sectors)
1371 			return 0;
1372 
1373 		if (native_sectors > sectors)
1374 			ata_dev_info(dev,
1375 				"HPA detected: current %llu, native %llu\n",
1376 				(unsigned long long)sectors,
1377 				(unsigned long long)native_sectors);
1378 		else if (native_sectors < sectors)
1379 			ata_dev_warn(dev,
1380 				"native sectors (%llu) is smaller than sectors (%llu)\n",
1381 				(unsigned long long)native_sectors,
1382 				(unsigned long long)sectors);
1383 		return 0;
1384 	}
1385 
1386 	/* let's unlock HPA */
1387 	rc = ata_set_max_sectors(dev, native_sectors);
1388 	if (rc == -EACCES) {
1389 		/* if device aborted the command, skip HPA resizing */
1390 		ata_dev_warn(dev,
1391 			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1392 			     (unsigned long long)sectors,
1393 			     (unsigned long long)native_sectors);
1394 		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1395 		return 0;
1396 	} else if (rc)
1397 		return rc;
1398 
1399 	/* re-read IDENTIFY data */
1400 	rc = ata_dev_reread_id(dev, 0);
1401 	if (rc) {
1402 		ata_dev_err(dev,
1403 			    "failed to re-read IDENTIFY data after HPA resizing\n");
1404 		return rc;
1405 	}
1406 
1407 	if (print_info) {
1408 		u64 new_sectors = ata_id_n_sectors(dev->id);
1409 		ata_dev_info(dev,
1410 			"HPA unlocked: %llu -> %llu, native %llu\n",
1411 			(unsigned long long)sectors,
1412 			(unsigned long long)new_sectors,
1413 			(unsigned long long)native_sectors);
1414 	}
1415 
1416 	return 0;
1417 }
1418 
1419 /**
1420  *	ata_dump_id - IDENTIFY DEVICE info debugging output
1421  *	@id: IDENTIFY DEVICE page to dump
1422  *
1423  *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1424  *	page.
1425  *
1426  *	LOCKING:
1427  *	caller.
1428  */
1429 
ata_dump_id(const u16 * id)1430 static inline void ata_dump_id(const u16 *id)
1431 {
1432 	DPRINTK("49==0x%04x  "
1433 		"53==0x%04x  "
1434 		"63==0x%04x  "
1435 		"64==0x%04x  "
1436 		"75==0x%04x  \n",
1437 		id[49],
1438 		id[53],
1439 		id[63],
1440 		id[64],
1441 		id[75]);
1442 	DPRINTK("80==0x%04x  "
1443 		"81==0x%04x  "
1444 		"82==0x%04x  "
1445 		"83==0x%04x  "
1446 		"84==0x%04x  \n",
1447 		id[80],
1448 		id[81],
1449 		id[82],
1450 		id[83],
1451 		id[84]);
1452 	DPRINTK("88==0x%04x  "
1453 		"93==0x%04x\n",
1454 		id[88],
1455 		id[93]);
1456 }
1457 
1458 /**
1459  *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1460  *	@id: IDENTIFY data to compute xfer mask from
1461  *
1462  *	Compute the xfermask for this device. This is not as trivial
1463  *	as it seems if we must consider early devices correctly.
1464  *
1465  *	FIXME: pre IDE drive timing (do we care ?).
1466  *
1467  *	LOCKING:
1468  *	None.
1469  *
1470  *	RETURNS:
1471  *	Computed xfermask
1472  */
ata_id_xfermask(const u16 * id)1473 unsigned long ata_id_xfermask(const u16 *id)
1474 {
1475 	unsigned long pio_mask, mwdma_mask, udma_mask;
1476 
1477 	/* Usual case. Word 53 indicates word 64 is valid */
1478 	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1479 		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1480 		pio_mask <<= 3;
1481 		pio_mask |= 0x7;
1482 	} else {
1483 		/* If word 64 isn't valid then Word 51 high byte holds
1484 		 * the PIO timing number for the maximum. Turn it into
1485 		 * a mask.
1486 		 */
1487 		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1488 		if (mode < 5)	/* Valid PIO range */
1489 			pio_mask = (2 << mode) - 1;
1490 		else
1491 			pio_mask = 1;
1492 
1493 		/* But wait.. there's more. Design your standards by
1494 		 * committee and you too can get a free iordy field to
1495 		 * process. However its the speeds not the modes that
1496 		 * are supported... Note drivers using the timing API
1497 		 * will get this right anyway
1498 		 */
1499 	}
1500 
1501 	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1502 
1503 	if (ata_id_is_cfa(id)) {
1504 		/*
1505 		 *	Process compact flash extended modes
1506 		 */
1507 		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1508 		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1509 
1510 		if (pio)
1511 			pio_mask |= (1 << 5);
1512 		if (pio > 1)
1513 			pio_mask |= (1 << 6);
1514 		if (dma)
1515 			mwdma_mask |= (1 << 3);
1516 		if (dma > 1)
1517 			mwdma_mask |= (1 << 4);
1518 	}
1519 
1520 	udma_mask = 0;
1521 	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1522 		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1523 
1524 	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1525 }
1526 
ata_qc_complete_internal(struct ata_queued_cmd * qc)1527 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1528 {
1529 	struct completion *waiting = qc->private_data;
1530 
1531 	complete(waiting);
1532 }
1533 
1534 /**
1535  *	ata_exec_internal_sg - execute libata internal command
1536  *	@dev: Device to which the command is sent
1537  *	@tf: Taskfile registers for the command and the result
1538  *	@cdb: CDB for packet command
1539  *	@dma_dir: Data transfer direction of the command
1540  *	@sgl: sg list for the data buffer of the command
1541  *	@n_elem: Number of sg entries
1542  *	@timeout: Timeout in msecs (0 for default)
1543  *
1544  *	Executes libata internal command with timeout.  @tf contains
1545  *	command on entry and result on return.  Timeout and error
1546  *	conditions are reported via return value.  No recovery action
1547  *	is taken after a command times out.  It's caller's duty to
1548  *	clean up after timeout.
1549  *
1550  *	LOCKING:
1551  *	None.  Should be called with kernel context, might sleep.
1552  *
1553  *	RETURNS:
1554  *	Zero on success, AC_ERR_* mask on failure
1555  */
ata_exec_internal_sg(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,struct scatterlist * sgl,unsigned int n_elem,unsigned long timeout)1556 unsigned ata_exec_internal_sg(struct ata_device *dev,
1557 			      struct ata_taskfile *tf, const u8 *cdb,
1558 			      int dma_dir, struct scatterlist *sgl,
1559 			      unsigned int n_elem, unsigned long timeout)
1560 {
1561 	struct ata_link *link = dev->link;
1562 	struct ata_port *ap = link->ap;
1563 	u8 command = tf->command;
1564 	int auto_timeout = 0;
1565 	struct ata_queued_cmd *qc;
1566 	unsigned int tag, preempted_tag;
1567 	u32 preempted_sactive, preempted_qc_active;
1568 	int preempted_nr_active_links;
1569 	DECLARE_COMPLETION_ONSTACK(wait);
1570 	unsigned long flags;
1571 	unsigned int err_mask;
1572 	int rc;
1573 
1574 	spin_lock_irqsave(ap->lock, flags);
1575 
1576 	/* no internal command while frozen */
1577 	if (ap->pflags & ATA_PFLAG_FROZEN) {
1578 		spin_unlock_irqrestore(ap->lock, flags);
1579 		return AC_ERR_SYSTEM;
1580 	}
1581 
1582 	/* initialize internal qc */
1583 
1584 	/* XXX: Tag 0 is used for drivers with legacy EH as some
1585 	 * drivers choke if any other tag is given.  This breaks
1586 	 * ata_tag_internal() test for those drivers.  Don't use new
1587 	 * EH stuff without converting to it.
1588 	 */
1589 	if (ap->ops->error_handler)
1590 		tag = ATA_TAG_INTERNAL;
1591 	else
1592 		tag = 0;
1593 
1594 	qc = __ata_qc_from_tag(ap, tag);
1595 
1596 	qc->tag = tag;
1597 	qc->scsicmd = NULL;
1598 	qc->ap = ap;
1599 	qc->dev = dev;
1600 	ata_qc_reinit(qc);
1601 
1602 	preempted_tag = link->active_tag;
1603 	preempted_sactive = link->sactive;
1604 	preempted_qc_active = ap->qc_active;
1605 	preempted_nr_active_links = ap->nr_active_links;
1606 	link->active_tag = ATA_TAG_POISON;
1607 	link->sactive = 0;
1608 	ap->qc_active = 0;
1609 	ap->nr_active_links = 0;
1610 
1611 	/* prepare & issue qc */
1612 	qc->tf = *tf;
1613 	if (cdb)
1614 		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1615 
1616 	/* some SATA bridges need us to indicate data xfer direction */
1617 	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1618 	    dma_dir == DMA_FROM_DEVICE)
1619 		qc->tf.feature |= ATAPI_DMADIR;
1620 
1621 	qc->flags |= ATA_QCFLAG_RESULT_TF;
1622 	qc->dma_dir = dma_dir;
1623 	if (dma_dir != DMA_NONE) {
1624 		unsigned int i, buflen = 0;
1625 		struct scatterlist *sg;
1626 
1627 		for_each_sg(sgl, sg, n_elem, i)
1628 			buflen += sg->length;
1629 
1630 		ata_sg_init(qc, sgl, n_elem);
1631 		qc->nbytes = buflen;
1632 	}
1633 
1634 	qc->private_data = &wait;
1635 	qc->complete_fn = ata_qc_complete_internal;
1636 
1637 	ata_qc_issue(qc);
1638 
1639 	spin_unlock_irqrestore(ap->lock, flags);
1640 
1641 	if (!timeout) {
1642 		if (ata_probe_timeout)
1643 			timeout = ata_probe_timeout * 1000;
1644 		else {
1645 			timeout = ata_internal_cmd_timeout(dev, command);
1646 			auto_timeout = 1;
1647 		}
1648 	}
1649 
1650 	if (ap->ops->error_handler)
1651 		ata_eh_release(ap);
1652 
1653 	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1654 
1655 	if (ap->ops->error_handler)
1656 		ata_eh_acquire(ap);
1657 
1658 	ata_sff_flush_pio_task(ap);
1659 
1660 	if (!rc) {
1661 		spin_lock_irqsave(ap->lock, flags);
1662 
1663 		/* We're racing with irq here.  If we lose, the
1664 		 * following test prevents us from completing the qc
1665 		 * twice.  If we win, the port is frozen and will be
1666 		 * cleaned up by ->post_internal_cmd().
1667 		 */
1668 		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1669 			qc->err_mask |= AC_ERR_TIMEOUT;
1670 
1671 			if (ap->ops->error_handler)
1672 				ata_port_freeze(ap);
1673 			else
1674 				ata_qc_complete(qc);
1675 
1676 			if (ata_msg_warn(ap))
1677 				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1678 					     command);
1679 		}
1680 
1681 		spin_unlock_irqrestore(ap->lock, flags);
1682 	}
1683 
1684 	/* do post_internal_cmd */
1685 	if (ap->ops->post_internal_cmd)
1686 		ap->ops->post_internal_cmd(qc);
1687 
1688 	/* perform minimal error analysis */
1689 	if (qc->flags & ATA_QCFLAG_FAILED) {
1690 		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1691 			qc->err_mask |= AC_ERR_DEV;
1692 
1693 		if (!qc->err_mask)
1694 			qc->err_mask |= AC_ERR_OTHER;
1695 
1696 		if (qc->err_mask & ~AC_ERR_OTHER)
1697 			qc->err_mask &= ~AC_ERR_OTHER;
1698 	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1699 		qc->result_tf.command |= ATA_SENSE;
1700 	}
1701 
1702 	/* finish up */
1703 	spin_lock_irqsave(ap->lock, flags);
1704 
1705 	*tf = qc->result_tf;
1706 	err_mask = qc->err_mask;
1707 
1708 	ata_qc_free(qc);
1709 	link->active_tag = preempted_tag;
1710 	link->sactive = preempted_sactive;
1711 	ap->qc_active = preempted_qc_active;
1712 	ap->nr_active_links = preempted_nr_active_links;
1713 
1714 	spin_unlock_irqrestore(ap->lock, flags);
1715 
1716 	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1717 		ata_internal_cmd_timed_out(dev, command);
1718 
1719 	return err_mask;
1720 }
1721 
1722 /**
1723  *	ata_exec_internal - execute libata internal command
1724  *	@dev: Device to which the command is sent
1725  *	@tf: Taskfile registers for the command and the result
1726  *	@cdb: CDB for packet command
1727  *	@dma_dir: Data transfer direction of the command
1728  *	@buf: Data buffer of the command
1729  *	@buflen: Length of data buffer
1730  *	@timeout: Timeout in msecs (0 for default)
1731  *
1732  *	Wrapper around ata_exec_internal_sg() which takes simple
1733  *	buffer instead of sg list.
1734  *
1735  *	LOCKING:
1736  *	None.  Should be called with kernel context, might sleep.
1737  *
1738  *	RETURNS:
1739  *	Zero on success, AC_ERR_* mask on failure
1740  */
ata_exec_internal(struct ata_device * dev,struct ata_taskfile * tf,const u8 * cdb,int dma_dir,void * buf,unsigned int buflen,unsigned long timeout)1741 unsigned ata_exec_internal(struct ata_device *dev,
1742 			   struct ata_taskfile *tf, const u8 *cdb,
1743 			   int dma_dir, void *buf, unsigned int buflen,
1744 			   unsigned long timeout)
1745 {
1746 	struct scatterlist *psg = NULL, sg;
1747 	unsigned int n_elem = 0;
1748 
1749 	if (dma_dir != DMA_NONE) {
1750 		WARN_ON(!buf);
1751 		sg_init_one(&sg, buf, buflen);
1752 		psg = &sg;
1753 		n_elem++;
1754 	}
1755 
1756 	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1757 				    timeout);
1758 }
1759 
1760 /**
1761  *	ata_pio_need_iordy	-	check if iordy needed
1762  *	@adev: ATA device
1763  *
1764  *	Check if the current speed of the device requires IORDY. Used
1765  *	by various controllers for chip configuration.
1766  */
ata_pio_need_iordy(const struct ata_device * adev)1767 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1768 {
1769 	/* Don't set IORDY if we're preparing for reset.  IORDY may
1770 	 * lead to controller lock up on certain controllers if the
1771 	 * port is not occupied.  See bko#11703 for details.
1772 	 */
1773 	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1774 		return 0;
1775 	/* Controller doesn't support IORDY.  Probably a pointless
1776 	 * check as the caller should know this.
1777 	 */
1778 	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1779 		return 0;
1780 	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1781 	if (ata_id_is_cfa(adev->id)
1782 	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1783 		return 0;
1784 	/* PIO3 and higher it is mandatory */
1785 	if (adev->pio_mode > XFER_PIO_2)
1786 		return 1;
1787 	/* We turn it on when possible */
1788 	if (ata_id_has_iordy(adev->id))
1789 		return 1;
1790 	return 0;
1791 }
1792 
1793 /**
1794  *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1795  *	@adev: ATA device
1796  *
1797  *	Compute the highest mode possible if we are not using iordy. Return
1798  *	-1 if no iordy mode is available.
1799  */
ata_pio_mask_no_iordy(const struct ata_device * adev)1800 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1801 {
1802 	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1803 	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1804 		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1805 		/* Is the speed faster than the drive allows non IORDY ? */
1806 		if (pio) {
1807 			/* This is cycle times not frequency - watch the logic! */
1808 			if (pio > 240)	/* PIO2 is 240nS per cycle */
1809 				return 3 << ATA_SHIFT_PIO;
1810 			return 7 << ATA_SHIFT_PIO;
1811 		}
1812 	}
1813 	return 3 << ATA_SHIFT_PIO;
1814 }
1815 
1816 /**
1817  *	ata_do_dev_read_id		-	default ID read method
1818  *	@dev: device
1819  *	@tf: proposed taskfile
1820  *	@id: data buffer
1821  *
1822  *	Issue the identify taskfile and hand back the buffer containing
1823  *	identify data. For some RAID controllers and for pre ATA devices
1824  *	this function is wrapped or replaced by the driver
1825  */
ata_do_dev_read_id(struct ata_device * dev,struct ata_taskfile * tf,u16 * id)1826 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1827 					struct ata_taskfile *tf, u16 *id)
1828 {
1829 	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1830 				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1831 }
1832 
1833 /**
1834  *	ata_dev_read_id - Read ID data from the specified device
1835  *	@dev: target device
1836  *	@p_class: pointer to class of the target device (may be changed)
1837  *	@flags: ATA_READID_* flags
1838  *	@id: buffer to read IDENTIFY data into
1839  *
1840  *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1841  *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1842  *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1843  *	for pre-ATA4 drives.
1844  *
1845  *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1846  *	now we abort if we hit that case.
1847  *
1848  *	LOCKING:
1849  *	Kernel thread context (may sleep)
1850  *
1851  *	RETURNS:
1852  *	0 on success, -errno otherwise.
1853  */
ata_dev_read_id(struct ata_device * dev,unsigned int * p_class,unsigned int flags,u16 * id)1854 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1855 		    unsigned int flags, u16 *id)
1856 {
1857 	struct ata_port *ap = dev->link->ap;
1858 	unsigned int class = *p_class;
1859 	struct ata_taskfile tf;
1860 	unsigned int err_mask = 0;
1861 	const char *reason;
1862 	bool is_semb = class == ATA_DEV_SEMB;
1863 	int may_fallback = 1, tried_spinup = 0;
1864 	int rc;
1865 
1866 	if (ata_msg_ctl(ap))
1867 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1868 
1869 retry:
1870 	ata_tf_init(dev, &tf);
1871 
1872 	switch (class) {
1873 	case ATA_DEV_SEMB:
1874 		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1875 	case ATA_DEV_ATA:
1876 	case ATA_DEV_ZAC:
1877 		tf.command = ATA_CMD_ID_ATA;
1878 		break;
1879 	case ATA_DEV_ATAPI:
1880 		tf.command = ATA_CMD_ID_ATAPI;
1881 		break;
1882 	default:
1883 		rc = -ENODEV;
1884 		reason = "unsupported class";
1885 		goto err_out;
1886 	}
1887 
1888 	tf.protocol = ATA_PROT_PIO;
1889 
1890 	/* Some devices choke if TF registers contain garbage.  Make
1891 	 * sure those are properly initialized.
1892 	 */
1893 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1894 
1895 	/* Device presence detection is unreliable on some
1896 	 * controllers.  Always poll IDENTIFY if available.
1897 	 */
1898 	tf.flags |= ATA_TFLAG_POLLING;
1899 
1900 	if (ap->ops->read_id)
1901 		err_mask = ap->ops->read_id(dev, &tf, id);
1902 	else
1903 		err_mask = ata_do_dev_read_id(dev, &tf, id);
1904 
1905 	if (err_mask) {
1906 		if (err_mask & AC_ERR_NODEV_HINT) {
1907 			ata_dev_dbg(dev, "NODEV after polling detection\n");
1908 			return -ENOENT;
1909 		}
1910 
1911 		if (is_semb) {
1912 			ata_dev_info(dev,
1913 		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1914 			/* SEMB is not supported yet */
1915 			*p_class = ATA_DEV_SEMB_UNSUP;
1916 			return 0;
1917 		}
1918 
1919 		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1920 			/* Device or controller might have reported
1921 			 * the wrong device class.  Give a shot at the
1922 			 * other IDENTIFY if the current one is
1923 			 * aborted by the device.
1924 			 */
1925 			if (may_fallback) {
1926 				may_fallback = 0;
1927 
1928 				if (class == ATA_DEV_ATA)
1929 					class = ATA_DEV_ATAPI;
1930 				else
1931 					class = ATA_DEV_ATA;
1932 				goto retry;
1933 			}
1934 
1935 			/* Control reaches here iff the device aborted
1936 			 * both flavors of IDENTIFYs which happens
1937 			 * sometimes with phantom devices.
1938 			 */
1939 			ata_dev_dbg(dev,
1940 				    "both IDENTIFYs aborted, assuming NODEV\n");
1941 			return -ENOENT;
1942 		}
1943 
1944 		rc = -EIO;
1945 		reason = "I/O error";
1946 		goto err_out;
1947 	}
1948 
1949 	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1950 		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1951 			    "class=%d may_fallback=%d tried_spinup=%d\n",
1952 			    class, may_fallback, tried_spinup);
1953 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1954 			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1955 	}
1956 
1957 	/* Falling back doesn't make sense if ID data was read
1958 	 * successfully at least once.
1959 	 */
1960 	may_fallback = 0;
1961 
1962 	swap_buf_le16(id, ATA_ID_WORDS);
1963 
1964 	/* sanity check */
1965 	rc = -EINVAL;
1966 	reason = "device reports invalid type";
1967 
1968 	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1969 		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1970 			goto err_out;
1971 		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1972 							ata_id_is_ata(id)) {
1973 			ata_dev_dbg(dev,
1974 				"host indicates ignore ATA devices, ignored\n");
1975 			return -ENOENT;
1976 		}
1977 	} else {
1978 		if (ata_id_is_ata(id))
1979 			goto err_out;
1980 	}
1981 
1982 	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1983 		tried_spinup = 1;
1984 		/*
1985 		 * Drive powered-up in standby mode, and requires a specific
1986 		 * SET_FEATURES spin-up subcommand before it will accept
1987 		 * anything other than the original IDENTIFY command.
1988 		 */
1989 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1990 		if (err_mask && id[2] != 0x738c) {
1991 			rc = -EIO;
1992 			reason = "SPINUP failed";
1993 			goto err_out;
1994 		}
1995 		/*
1996 		 * If the drive initially returned incomplete IDENTIFY info,
1997 		 * we now must reissue the IDENTIFY command.
1998 		 */
1999 		if (id[2] == 0x37c8)
2000 			goto retry;
2001 	}
2002 
2003 	if ((flags & ATA_READID_POSTRESET) &&
2004 	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2005 		/*
2006 		 * The exact sequence expected by certain pre-ATA4 drives is:
2007 		 * SRST RESET
2008 		 * IDENTIFY (optional in early ATA)
2009 		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2010 		 * anything else..
2011 		 * Some drives were very specific about that exact sequence.
2012 		 *
2013 		 * Note that ATA4 says lba is mandatory so the second check
2014 		 * should never trigger.
2015 		 */
2016 		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2017 			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2018 			if (err_mask) {
2019 				rc = -EIO;
2020 				reason = "INIT_DEV_PARAMS failed";
2021 				goto err_out;
2022 			}
2023 
2024 			/* current CHS translation info (id[53-58]) might be
2025 			 * changed. reread the identify device info.
2026 			 */
2027 			flags &= ~ATA_READID_POSTRESET;
2028 			goto retry;
2029 		}
2030 	}
2031 
2032 	*p_class = class;
2033 
2034 	return 0;
2035 
2036  err_out:
2037 	if (ata_msg_warn(ap))
2038 		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2039 			     reason, err_mask);
2040 	return rc;
2041 }
2042 
ata_do_link_spd_horkage(struct ata_device * dev)2043 static int ata_do_link_spd_horkage(struct ata_device *dev)
2044 {
2045 	struct ata_link *plink = ata_dev_phys_link(dev);
2046 	u32 target, target_limit;
2047 
2048 	if (!sata_scr_valid(plink))
2049 		return 0;
2050 
2051 	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2052 		target = 1;
2053 	else
2054 		return 0;
2055 
2056 	target_limit = (1 << target) - 1;
2057 
2058 	/* if already on stricter limit, no need to push further */
2059 	if (plink->sata_spd_limit <= target_limit)
2060 		return 0;
2061 
2062 	plink->sata_spd_limit = target_limit;
2063 
2064 	/* Request another EH round by returning -EAGAIN if link is
2065 	 * going faster than the target speed.  Forward progress is
2066 	 * guaranteed by setting sata_spd_limit to target_limit above.
2067 	 */
2068 	if (plink->sata_spd > target) {
2069 		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2070 			     sata_spd_string(target));
2071 		return -EAGAIN;
2072 	}
2073 	return 0;
2074 }
2075 
ata_dev_knobble(struct ata_device * dev)2076 static inline u8 ata_dev_knobble(struct ata_device *dev)
2077 {
2078 	struct ata_port *ap = dev->link->ap;
2079 
2080 	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2081 		return 0;
2082 
2083 	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2084 }
2085 
ata_dev_config_ncq_send_recv(struct ata_device * dev)2086 static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2087 {
2088 	struct ata_port *ap = dev->link->ap;
2089 	unsigned int err_mask;
2090 	int log_index = ATA_LOG_NCQ_SEND_RECV * 2;
2091 	u16 log_pages;
2092 
2093 	err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2094 				     0, ap->sector_buf, 1);
2095 	if (err_mask) {
2096 		ata_dev_dbg(dev,
2097 			    "failed to get Log Directory Emask 0x%x\n",
2098 			    err_mask);
2099 		return;
2100 	}
2101 	log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2102 	if (!log_pages) {
2103 		ata_dev_warn(dev,
2104 			     "NCQ Send/Recv Log not supported\n");
2105 		return;
2106 	}
2107 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2108 				     0, ap->sector_buf, 1);
2109 	if (err_mask) {
2110 		ata_dev_dbg(dev,
2111 			    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2112 			    err_mask);
2113 	} else {
2114 		u8 *cmds = dev->ncq_send_recv_cmds;
2115 
2116 		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2117 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2118 
2119 		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2120 			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2121 			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2122 				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2123 		}
2124 	}
2125 }
2126 
ata_dev_config_ncq_non_data(struct ata_device * dev)2127 static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2128 {
2129 	struct ata_port *ap = dev->link->ap;
2130 	unsigned int err_mask;
2131 	int log_index = ATA_LOG_NCQ_NON_DATA * 2;
2132 	u16 log_pages;
2133 
2134 	err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2135 				     0, ap->sector_buf, 1);
2136 	if (err_mask) {
2137 		ata_dev_dbg(dev,
2138 			    "failed to get Log Directory Emask 0x%x\n",
2139 			    err_mask);
2140 		return;
2141 	}
2142 	log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2143 	if (!log_pages) {
2144 		ata_dev_warn(dev,
2145 			     "NCQ Send/Recv Log not supported\n");
2146 		return;
2147 	}
2148 	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2149 				     0, ap->sector_buf, 1);
2150 	if (err_mask) {
2151 		ata_dev_dbg(dev,
2152 			    "failed to get NCQ Non-Data Log Emask 0x%x\n",
2153 			    err_mask);
2154 	} else {
2155 		u8 *cmds = dev->ncq_non_data_cmds;
2156 
2157 		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2158 	}
2159 }
2160 
ata_dev_config_ncq(struct ata_device * dev,char * desc,size_t desc_sz)2161 static int ata_dev_config_ncq(struct ata_device *dev,
2162 			       char *desc, size_t desc_sz)
2163 {
2164 	struct ata_port *ap = dev->link->ap;
2165 	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2166 	unsigned int err_mask;
2167 	char *aa_desc = "";
2168 
2169 	if (!ata_id_has_ncq(dev->id)) {
2170 		desc[0] = '\0';
2171 		return 0;
2172 	}
2173 	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2174 		snprintf(desc, desc_sz, "NCQ (not used)");
2175 		return 0;
2176 	}
2177 	if (ap->flags & ATA_FLAG_NCQ) {
2178 		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2179 		dev->flags |= ATA_DFLAG_NCQ;
2180 	}
2181 
2182 	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2183 		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2184 		ata_id_has_fpdma_aa(dev->id)) {
2185 		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2186 			SATA_FPDMA_AA);
2187 		if (err_mask) {
2188 			ata_dev_err(dev,
2189 				    "failed to enable AA (error_mask=0x%x)\n",
2190 				    err_mask);
2191 			if (err_mask != AC_ERR_DEV) {
2192 				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2193 				return -EIO;
2194 			}
2195 		} else
2196 			aa_desc = ", AA";
2197 	}
2198 
2199 	if (hdepth >= ddepth)
2200 		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2201 	else
2202 		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2203 			ddepth, aa_desc);
2204 
2205 	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2206 		if (ata_id_has_ncq_send_and_recv(dev->id))
2207 			ata_dev_config_ncq_send_recv(dev);
2208 		if (ata_id_has_ncq_non_data(dev->id))
2209 			ata_dev_config_ncq_non_data(dev);
2210 	}
2211 
2212 	return 0;
2213 }
2214 
ata_dev_config_sense_reporting(struct ata_device * dev)2215 static void ata_dev_config_sense_reporting(struct ata_device *dev)
2216 {
2217 	unsigned int err_mask;
2218 
2219 	if (!ata_id_has_sense_reporting(dev->id))
2220 		return;
2221 
2222 	if (ata_id_sense_reporting_enabled(dev->id))
2223 		return;
2224 
2225 	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2226 	if (err_mask) {
2227 		ata_dev_dbg(dev,
2228 			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2229 			    err_mask);
2230 	}
2231 }
2232 
ata_dev_config_zac(struct ata_device * dev)2233 static void ata_dev_config_zac(struct ata_device *dev)
2234 {
2235 	struct ata_port *ap = dev->link->ap;
2236 	unsigned int err_mask;
2237 	u8 *identify_buf = ap->sector_buf;
2238 	int log_index = ATA_LOG_SATA_ID_DEV_DATA * 2, i, found = 0;
2239 	u16 log_pages;
2240 
2241 	dev->zac_zones_optimal_open = U32_MAX;
2242 	dev->zac_zones_optimal_nonseq = U32_MAX;
2243 	dev->zac_zones_max_open = U32_MAX;
2244 
2245 	/*
2246 	 * Always set the 'ZAC' flag for Host-managed devices.
2247 	 */
2248 	if (dev->class == ATA_DEV_ZAC)
2249 		dev->flags |= ATA_DFLAG_ZAC;
2250 	else if (ata_id_zoned_cap(dev->id) == 0x01)
2251 		/*
2252 		 * Check for host-aware devices.
2253 		 */
2254 		dev->flags |= ATA_DFLAG_ZAC;
2255 
2256 	if (!(dev->flags & ATA_DFLAG_ZAC))
2257 		return;
2258 
2259 	/*
2260 	 * Read Log Directory to figure out if IDENTIFY DEVICE log
2261 	 * is supported.
2262 	 */
2263 	err_mask = ata_read_log_page(dev, ATA_LOG_DIRECTORY,
2264 				     0, ap->sector_buf, 1);
2265 	if (err_mask) {
2266 		ata_dev_info(dev,
2267 			     "failed to get Log Directory Emask 0x%x\n",
2268 			     err_mask);
2269 		return;
2270 	}
2271 	log_pages = get_unaligned_le16(&ap->sector_buf[log_index]);
2272 	if (log_pages == 0) {
2273 		ata_dev_warn(dev,
2274 			     "ATA Identify Device Log not supported\n");
2275 		return;
2276 	}
2277 	/*
2278 	 * Read IDENTIFY DEVICE data log, page 0, to figure out
2279 	 * if page 9 is supported.
2280 	 */
2281 	err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA, 0,
2282 				     identify_buf, 1);
2283 	if (err_mask) {
2284 		ata_dev_info(dev,
2285 			     "failed to get Device Identify Log Emask 0x%x\n",
2286 			     err_mask);
2287 		return;
2288 	}
2289 	log_pages = identify_buf[8];
2290 	for (i = 0; i < log_pages; i++) {
2291 		if (identify_buf[9 + i] == ATA_LOG_ZONED_INFORMATION) {
2292 			found++;
2293 			break;
2294 		}
2295 	}
2296 	if (!found) {
2297 		ata_dev_warn(dev,
2298 			     "ATA Zoned Information Log not supported\n");
2299 		return;
2300 	}
2301 
2302 	/*
2303 	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2304 	 */
2305 	err_mask = ata_read_log_page(dev, ATA_LOG_SATA_ID_DEV_DATA,
2306 				     ATA_LOG_ZONED_INFORMATION,
2307 				     identify_buf, 1);
2308 	if (!err_mask) {
2309 		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2310 
2311 		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2312 		if ((zoned_cap >> 63))
2313 			dev->zac_zoned_cap = (zoned_cap & 1);
2314 		opt_open = get_unaligned_le64(&identify_buf[24]);
2315 		if ((opt_open >> 63))
2316 			dev->zac_zones_optimal_open = (u32)opt_open;
2317 		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2318 		if ((opt_nonseq >> 63))
2319 			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2320 		max_open = get_unaligned_le64(&identify_buf[40]);
2321 		if ((max_open >> 63))
2322 			dev->zac_zones_max_open = (u32)max_open;
2323 	}
2324 }
2325 
2326 /**
2327  *	ata_dev_configure - Configure the specified ATA/ATAPI device
2328  *	@dev: Target device to configure
2329  *
2330  *	Configure @dev according to @dev->id.  Generic and low-level
2331  *	driver specific fixups are also applied.
2332  *
2333  *	LOCKING:
2334  *	Kernel thread context (may sleep)
2335  *
2336  *	RETURNS:
2337  *	0 on success, -errno otherwise
2338  */
ata_dev_configure(struct ata_device * dev)2339 int ata_dev_configure(struct ata_device *dev)
2340 {
2341 	struct ata_port *ap = dev->link->ap;
2342 	struct ata_eh_context *ehc = &dev->link->eh_context;
2343 	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2344 	const u16 *id = dev->id;
2345 	unsigned long xfer_mask;
2346 	unsigned int err_mask;
2347 	char revbuf[7];		/* XYZ-99\0 */
2348 	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2349 	char modelbuf[ATA_ID_PROD_LEN+1];
2350 	int rc;
2351 
2352 	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2353 		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2354 		return 0;
2355 	}
2356 
2357 	if (ata_msg_probe(ap))
2358 		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2359 
2360 	/* set horkage */
2361 	dev->horkage |= ata_dev_blacklisted(dev);
2362 	ata_force_horkage(dev);
2363 
2364 	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2365 		ata_dev_info(dev, "unsupported device, disabling\n");
2366 		ata_dev_disable(dev);
2367 		return 0;
2368 	}
2369 
2370 	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2371 	    dev->class == ATA_DEV_ATAPI) {
2372 		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2373 			     atapi_enabled ? "not supported with this driver"
2374 			     : "disabled");
2375 		ata_dev_disable(dev);
2376 		return 0;
2377 	}
2378 
2379 	rc = ata_do_link_spd_horkage(dev);
2380 	if (rc)
2381 		return rc;
2382 
2383 	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2384 	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2385 	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2386 		dev->horkage |= ATA_HORKAGE_NOLPM;
2387 
2388 	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2389 		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2390 		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2391 	}
2392 
2393 	/* let ACPI work its magic */
2394 	rc = ata_acpi_on_devcfg(dev);
2395 	if (rc)
2396 		return rc;
2397 
2398 	/* massage HPA, do it early as it might change IDENTIFY data */
2399 	rc = ata_hpa_resize(dev);
2400 	if (rc)
2401 		return rc;
2402 
2403 	/* print device capabilities */
2404 	if (ata_msg_probe(ap))
2405 		ata_dev_dbg(dev,
2406 			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2407 			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2408 			    __func__,
2409 			    id[49], id[82], id[83], id[84],
2410 			    id[85], id[86], id[87], id[88]);
2411 
2412 	/* initialize to-be-configured parameters */
2413 	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2414 	dev->max_sectors = 0;
2415 	dev->cdb_len = 0;
2416 	dev->n_sectors = 0;
2417 	dev->cylinders = 0;
2418 	dev->heads = 0;
2419 	dev->sectors = 0;
2420 	dev->multi_count = 0;
2421 
2422 	/*
2423 	 * common ATA, ATAPI feature tests
2424 	 */
2425 
2426 	/* find max transfer mode; for printk only */
2427 	xfer_mask = ata_id_xfermask(id);
2428 
2429 	if (ata_msg_probe(ap))
2430 		ata_dump_id(id);
2431 
2432 	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2433 	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2434 			sizeof(fwrevbuf));
2435 
2436 	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2437 			sizeof(modelbuf));
2438 
2439 	/* ATA-specific feature tests */
2440 	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2441 		if (ata_id_is_cfa(id)) {
2442 			/* CPRM may make this media unusable */
2443 			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2444 				ata_dev_warn(dev,
2445 	"supports DRM functions and may not be fully accessible\n");
2446 			snprintf(revbuf, 7, "CFA");
2447 		} else {
2448 			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2449 			/* Warn the user if the device has TPM extensions */
2450 			if (ata_id_has_tpm(id))
2451 				ata_dev_warn(dev,
2452 	"supports DRM functions and may not be fully accessible\n");
2453 		}
2454 
2455 		dev->n_sectors = ata_id_n_sectors(id);
2456 
2457 		/* get current R/W Multiple count setting */
2458 		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2459 			unsigned int max = dev->id[47] & 0xff;
2460 			unsigned int cnt = dev->id[59] & 0xff;
2461 			/* only recognize/allow powers of two here */
2462 			if (is_power_of_2(max) && is_power_of_2(cnt))
2463 				if (cnt <= max)
2464 					dev->multi_count = cnt;
2465 		}
2466 
2467 		if (ata_id_has_lba(id)) {
2468 			const char *lba_desc;
2469 			char ncq_desc[24];
2470 
2471 			lba_desc = "LBA";
2472 			dev->flags |= ATA_DFLAG_LBA;
2473 			if (ata_id_has_lba48(id)) {
2474 				dev->flags |= ATA_DFLAG_LBA48;
2475 				lba_desc = "LBA48";
2476 
2477 				if (dev->n_sectors >= (1UL << 28) &&
2478 				    ata_id_has_flush_ext(id))
2479 					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2480 			}
2481 
2482 			/* config NCQ */
2483 			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2484 			if (rc)
2485 				return rc;
2486 
2487 			/* print device info to dmesg */
2488 			if (ata_msg_drv(ap) && print_info) {
2489 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2490 					     revbuf, modelbuf, fwrevbuf,
2491 					     ata_mode_string(xfer_mask));
2492 				ata_dev_info(dev,
2493 					     "%llu sectors, multi %u: %s %s\n",
2494 					(unsigned long long)dev->n_sectors,
2495 					dev->multi_count, lba_desc, ncq_desc);
2496 			}
2497 		} else {
2498 			/* CHS */
2499 
2500 			/* Default translation */
2501 			dev->cylinders	= id[1];
2502 			dev->heads	= id[3];
2503 			dev->sectors	= id[6];
2504 
2505 			if (ata_id_current_chs_valid(id)) {
2506 				/* Current CHS translation is valid. */
2507 				dev->cylinders = id[54];
2508 				dev->heads     = id[55];
2509 				dev->sectors   = id[56];
2510 			}
2511 
2512 			/* print device info to dmesg */
2513 			if (ata_msg_drv(ap) && print_info) {
2514 				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2515 					     revbuf,	modelbuf, fwrevbuf,
2516 					     ata_mode_string(xfer_mask));
2517 				ata_dev_info(dev,
2518 					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2519 					     (unsigned long long)dev->n_sectors,
2520 					     dev->multi_count, dev->cylinders,
2521 					     dev->heads, dev->sectors);
2522 			}
2523 		}
2524 
2525 		/* Check and mark DevSlp capability. Get DevSlp timing variables
2526 		 * from SATA Settings page of Identify Device Data Log.
2527 		 */
2528 		if (ata_id_has_devslp(dev->id)) {
2529 			u8 *sata_setting = ap->sector_buf;
2530 			int i, j;
2531 
2532 			dev->flags |= ATA_DFLAG_DEVSLP;
2533 			err_mask = ata_read_log_page(dev,
2534 						     ATA_LOG_SATA_ID_DEV_DATA,
2535 						     ATA_LOG_SATA_SETTINGS,
2536 						     sata_setting,
2537 						     1);
2538 			if (err_mask)
2539 				ata_dev_dbg(dev,
2540 					    "failed to get Identify Device Data, Emask 0x%x\n",
2541 					    err_mask);
2542 			else
2543 				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2544 					j = ATA_LOG_DEVSLP_OFFSET + i;
2545 					dev->devslp_timing[i] = sata_setting[j];
2546 				}
2547 		}
2548 		ata_dev_config_sense_reporting(dev);
2549 		ata_dev_config_zac(dev);
2550 		dev->cdb_len = 16;
2551 	}
2552 
2553 	/* ATAPI-specific feature tests */
2554 	else if (dev->class == ATA_DEV_ATAPI) {
2555 		const char *cdb_intr_string = "";
2556 		const char *atapi_an_string = "";
2557 		const char *dma_dir_string = "";
2558 		u32 sntf;
2559 
2560 		rc = atapi_cdb_len(id);
2561 		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2562 			if (ata_msg_warn(ap))
2563 				ata_dev_warn(dev, "unsupported CDB len\n");
2564 			rc = -EINVAL;
2565 			goto err_out_nosup;
2566 		}
2567 		dev->cdb_len = (unsigned int) rc;
2568 
2569 		/* Enable ATAPI AN if both the host and device have
2570 		 * the support.  If PMP is attached, SNTF is required
2571 		 * to enable ATAPI AN to discern between PHY status
2572 		 * changed notifications and ATAPI ANs.
2573 		 */
2574 		if (atapi_an &&
2575 		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2576 		    (!sata_pmp_attached(ap) ||
2577 		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2578 			/* issue SET feature command to turn this on */
2579 			err_mask = ata_dev_set_feature(dev,
2580 					SETFEATURES_SATA_ENABLE, SATA_AN);
2581 			if (err_mask)
2582 				ata_dev_err(dev,
2583 					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2584 					    err_mask);
2585 			else {
2586 				dev->flags |= ATA_DFLAG_AN;
2587 				atapi_an_string = ", ATAPI AN";
2588 			}
2589 		}
2590 
2591 		if (ata_id_cdb_intr(dev->id)) {
2592 			dev->flags |= ATA_DFLAG_CDB_INTR;
2593 			cdb_intr_string = ", CDB intr";
2594 		}
2595 
2596 		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2597 			dev->flags |= ATA_DFLAG_DMADIR;
2598 			dma_dir_string = ", DMADIR";
2599 		}
2600 
2601 		if (ata_id_has_da(dev->id)) {
2602 			dev->flags |= ATA_DFLAG_DA;
2603 			zpodd_init(dev);
2604 		}
2605 
2606 		/* print device info to dmesg */
2607 		if (ata_msg_drv(ap) && print_info)
2608 			ata_dev_info(dev,
2609 				     "ATAPI: %s, %s, max %s%s%s%s\n",
2610 				     modelbuf, fwrevbuf,
2611 				     ata_mode_string(xfer_mask),
2612 				     cdb_intr_string, atapi_an_string,
2613 				     dma_dir_string);
2614 	}
2615 
2616 	/* determine max_sectors */
2617 	dev->max_sectors = ATA_MAX_SECTORS;
2618 	if (dev->flags & ATA_DFLAG_LBA48)
2619 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2620 
2621 	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2622 	   200 sectors */
2623 	if (ata_dev_knobble(dev)) {
2624 		if (ata_msg_drv(ap) && print_info)
2625 			ata_dev_info(dev, "applying bridge limits\n");
2626 		dev->udma_mask &= ATA_UDMA5;
2627 		dev->max_sectors = ATA_MAX_SECTORS;
2628 	}
2629 
2630 	if ((dev->class == ATA_DEV_ATAPI) &&
2631 	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2632 		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2633 		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2634 	}
2635 
2636 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2637 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2638 					 dev->max_sectors);
2639 
2640 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2641 		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2642 					 dev->max_sectors);
2643 
2644 	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2645 		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2646 
2647 	if (ap->ops->dev_config)
2648 		ap->ops->dev_config(dev);
2649 
2650 	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2651 		/* Let the user know. We don't want to disallow opens for
2652 		   rescue purposes, or in case the vendor is just a blithering
2653 		   idiot. Do this after the dev_config call as some controllers
2654 		   with buggy firmware may want to avoid reporting false device
2655 		   bugs */
2656 
2657 		if (print_info) {
2658 			ata_dev_warn(dev,
2659 "Drive reports diagnostics failure. This may indicate a drive\n");
2660 			ata_dev_warn(dev,
2661 "fault or invalid emulation. Contact drive vendor for information.\n");
2662 		}
2663 	}
2664 
2665 	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2666 		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2667 		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2668 	}
2669 
2670 	return 0;
2671 
2672 err_out_nosup:
2673 	if (ata_msg_probe(ap))
2674 		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2675 	return rc;
2676 }
2677 
2678 /**
2679  *	ata_cable_40wire	-	return 40 wire cable type
2680  *	@ap: port
2681  *
2682  *	Helper method for drivers which want to hardwire 40 wire cable
2683  *	detection.
2684  */
2685 
ata_cable_40wire(struct ata_port * ap)2686 int ata_cable_40wire(struct ata_port *ap)
2687 {
2688 	return ATA_CBL_PATA40;
2689 }
2690 
2691 /**
2692  *	ata_cable_80wire	-	return 80 wire cable type
2693  *	@ap: port
2694  *
2695  *	Helper method for drivers which want to hardwire 80 wire cable
2696  *	detection.
2697  */
2698 
ata_cable_80wire(struct ata_port * ap)2699 int ata_cable_80wire(struct ata_port *ap)
2700 {
2701 	return ATA_CBL_PATA80;
2702 }
2703 
2704 /**
2705  *	ata_cable_unknown	-	return unknown PATA cable.
2706  *	@ap: port
2707  *
2708  *	Helper method for drivers which have no PATA cable detection.
2709  */
2710 
ata_cable_unknown(struct ata_port * ap)2711 int ata_cable_unknown(struct ata_port *ap)
2712 {
2713 	return ATA_CBL_PATA_UNK;
2714 }
2715 
2716 /**
2717  *	ata_cable_ignore	-	return ignored PATA cable.
2718  *	@ap: port
2719  *
2720  *	Helper method for drivers which don't use cable type to limit
2721  *	transfer mode.
2722  */
ata_cable_ignore(struct ata_port * ap)2723 int ata_cable_ignore(struct ata_port *ap)
2724 {
2725 	return ATA_CBL_PATA_IGN;
2726 }
2727 
2728 /**
2729  *	ata_cable_sata	-	return SATA cable type
2730  *	@ap: port
2731  *
2732  *	Helper method for drivers which have SATA cables
2733  */
2734 
ata_cable_sata(struct ata_port * ap)2735 int ata_cable_sata(struct ata_port *ap)
2736 {
2737 	return ATA_CBL_SATA;
2738 }
2739 
2740 /**
2741  *	ata_bus_probe - Reset and probe ATA bus
2742  *	@ap: Bus to probe
2743  *
2744  *	Master ATA bus probing function.  Initiates a hardware-dependent
2745  *	bus reset, then attempts to identify any devices found on
2746  *	the bus.
2747  *
2748  *	LOCKING:
2749  *	PCI/etc. bus probe sem.
2750  *
2751  *	RETURNS:
2752  *	Zero on success, negative errno otherwise.
2753  */
2754 
ata_bus_probe(struct ata_port * ap)2755 int ata_bus_probe(struct ata_port *ap)
2756 {
2757 	unsigned int classes[ATA_MAX_DEVICES];
2758 	int tries[ATA_MAX_DEVICES];
2759 	int rc;
2760 	struct ata_device *dev;
2761 
2762 	ata_for_each_dev(dev, &ap->link, ALL)
2763 		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2764 
2765  retry:
2766 	ata_for_each_dev(dev, &ap->link, ALL) {
2767 		/* If we issue an SRST then an ATA drive (not ATAPI)
2768 		 * may change configuration and be in PIO0 timing. If
2769 		 * we do a hard reset (or are coming from power on)
2770 		 * this is true for ATA or ATAPI. Until we've set a
2771 		 * suitable controller mode we should not touch the
2772 		 * bus as we may be talking too fast.
2773 		 */
2774 		dev->pio_mode = XFER_PIO_0;
2775 		dev->dma_mode = 0xff;
2776 
2777 		/* If the controller has a pio mode setup function
2778 		 * then use it to set the chipset to rights. Don't
2779 		 * touch the DMA setup as that will be dealt with when
2780 		 * configuring devices.
2781 		 */
2782 		if (ap->ops->set_piomode)
2783 			ap->ops->set_piomode(ap, dev);
2784 	}
2785 
2786 	/* reset and determine device classes */
2787 	ap->ops->phy_reset(ap);
2788 
2789 	ata_for_each_dev(dev, &ap->link, ALL) {
2790 		if (dev->class != ATA_DEV_UNKNOWN)
2791 			classes[dev->devno] = dev->class;
2792 		else
2793 			classes[dev->devno] = ATA_DEV_NONE;
2794 
2795 		dev->class = ATA_DEV_UNKNOWN;
2796 	}
2797 
2798 	/* read IDENTIFY page and configure devices. We have to do the identify
2799 	   specific sequence bass-ackwards so that PDIAG- is released by
2800 	   the slave device */
2801 
2802 	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2803 		if (tries[dev->devno])
2804 			dev->class = classes[dev->devno];
2805 
2806 		if (!ata_dev_enabled(dev))
2807 			continue;
2808 
2809 		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2810 				     dev->id);
2811 		if (rc)
2812 			goto fail;
2813 	}
2814 
2815 	/* Now ask for the cable type as PDIAG- should have been released */
2816 	if (ap->ops->cable_detect)
2817 		ap->cbl = ap->ops->cable_detect(ap);
2818 
2819 	/* We may have SATA bridge glue hiding here irrespective of
2820 	 * the reported cable types and sensed types.  When SATA
2821 	 * drives indicate we have a bridge, we don't know which end
2822 	 * of the link the bridge is which is a problem.
2823 	 */
2824 	ata_for_each_dev(dev, &ap->link, ENABLED)
2825 		if (ata_id_is_sata(dev->id))
2826 			ap->cbl = ATA_CBL_SATA;
2827 
2828 	/* After the identify sequence we can now set up the devices. We do
2829 	   this in the normal order so that the user doesn't get confused */
2830 
2831 	ata_for_each_dev(dev, &ap->link, ENABLED) {
2832 		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2833 		rc = ata_dev_configure(dev);
2834 		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2835 		if (rc)
2836 			goto fail;
2837 	}
2838 
2839 	/* configure transfer mode */
2840 	rc = ata_set_mode(&ap->link, &dev);
2841 	if (rc)
2842 		goto fail;
2843 
2844 	ata_for_each_dev(dev, &ap->link, ENABLED)
2845 		return 0;
2846 
2847 	return -ENODEV;
2848 
2849  fail:
2850 	tries[dev->devno]--;
2851 
2852 	switch (rc) {
2853 	case -EINVAL:
2854 		/* eeek, something went very wrong, give up */
2855 		tries[dev->devno] = 0;
2856 		break;
2857 
2858 	case -ENODEV:
2859 		/* give it just one more chance */
2860 		tries[dev->devno] = min(tries[dev->devno], 1);
2861 	case -EIO:
2862 		if (tries[dev->devno] == 1) {
2863 			/* This is the last chance, better to slow
2864 			 * down than lose it.
2865 			 */
2866 			sata_down_spd_limit(&ap->link, 0);
2867 			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2868 		}
2869 	}
2870 
2871 	if (!tries[dev->devno])
2872 		ata_dev_disable(dev);
2873 
2874 	goto retry;
2875 }
2876 
2877 /**
2878  *	sata_print_link_status - Print SATA link status
2879  *	@link: SATA link to printk link status about
2880  *
2881  *	This function prints link speed and status of a SATA link.
2882  *
2883  *	LOCKING:
2884  *	None.
2885  */
sata_print_link_status(struct ata_link * link)2886 static void sata_print_link_status(struct ata_link *link)
2887 {
2888 	u32 sstatus, scontrol, tmp;
2889 
2890 	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2891 		return;
2892 	sata_scr_read(link, SCR_CONTROL, &scontrol);
2893 
2894 	if (ata_phys_link_online(link)) {
2895 		tmp = (sstatus >> 4) & 0xf;
2896 		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2897 			      sata_spd_string(tmp), sstatus, scontrol);
2898 	} else {
2899 		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2900 			      sstatus, scontrol);
2901 	}
2902 }
2903 
2904 /**
2905  *	ata_dev_pair		-	return other device on cable
2906  *	@adev: device
2907  *
2908  *	Obtain the other device on the same cable, or if none is
2909  *	present NULL is returned
2910  */
2911 
ata_dev_pair(struct ata_device * adev)2912 struct ata_device *ata_dev_pair(struct ata_device *adev)
2913 {
2914 	struct ata_link *link = adev->link;
2915 	struct ata_device *pair = &link->device[1 - adev->devno];
2916 	if (!ata_dev_enabled(pair))
2917 		return NULL;
2918 	return pair;
2919 }
2920 
2921 /**
2922  *	sata_down_spd_limit - adjust SATA spd limit downward
2923  *	@link: Link to adjust SATA spd limit for
2924  *	@spd_limit: Additional limit
2925  *
2926  *	Adjust SATA spd limit of @link downward.  Note that this
2927  *	function only adjusts the limit.  The change must be applied
2928  *	using sata_set_spd().
2929  *
2930  *	If @spd_limit is non-zero, the speed is limited to equal to or
2931  *	lower than @spd_limit if such speed is supported.  If
2932  *	@spd_limit is slower than any supported speed, only the lowest
2933  *	supported speed is allowed.
2934  *
2935  *	LOCKING:
2936  *	Inherited from caller.
2937  *
2938  *	RETURNS:
2939  *	0 on success, negative errno on failure
2940  */
sata_down_spd_limit(struct ata_link * link,u32 spd_limit)2941 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2942 {
2943 	u32 sstatus, spd, mask;
2944 	int rc, bit;
2945 
2946 	if (!sata_scr_valid(link))
2947 		return -EOPNOTSUPP;
2948 
2949 	/* If SCR can be read, use it to determine the current SPD.
2950 	 * If not, use cached value in link->sata_spd.
2951 	 */
2952 	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2953 	if (rc == 0 && ata_sstatus_online(sstatus))
2954 		spd = (sstatus >> 4) & 0xf;
2955 	else
2956 		spd = link->sata_spd;
2957 
2958 	mask = link->sata_spd_limit;
2959 	if (mask <= 1)
2960 		return -EINVAL;
2961 
2962 	/* unconditionally mask off the highest bit */
2963 	bit = fls(mask) - 1;
2964 	mask &= ~(1 << bit);
2965 
2966 	/* Mask off all speeds higher than or equal to the current
2967 	 * one.  Force 1.5Gbps if current SPD is not available.
2968 	 */
2969 	if (spd > 1)
2970 		mask &= (1 << (spd - 1)) - 1;
2971 	else
2972 		mask &= 1;
2973 
2974 	/* were we already at the bottom? */
2975 	if (!mask)
2976 		return -EINVAL;
2977 
2978 	if (spd_limit) {
2979 		if (mask & ((1 << spd_limit) - 1))
2980 			mask &= (1 << spd_limit) - 1;
2981 		else {
2982 			bit = ffs(mask) - 1;
2983 			mask = 1 << bit;
2984 		}
2985 	}
2986 
2987 	link->sata_spd_limit = mask;
2988 
2989 	ata_link_warn(link, "limiting SATA link speed to %s\n",
2990 		      sata_spd_string(fls(mask)));
2991 
2992 	return 0;
2993 }
2994 
__sata_set_spd_needed(struct ata_link * link,u32 * scontrol)2995 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2996 {
2997 	struct ata_link *host_link = &link->ap->link;
2998 	u32 limit, target, spd;
2999 
3000 	limit = link->sata_spd_limit;
3001 
3002 	/* Don't configure downstream link faster than upstream link.
3003 	 * It doesn't speed up anything and some PMPs choke on such
3004 	 * configuration.
3005 	 */
3006 	if (!ata_is_host_link(link) && host_link->sata_spd)
3007 		limit &= (1 << host_link->sata_spd) - 1;
3008 
3009 	if (limit == UINT_MAX)
3010 		target = 0;
3011 	else
3012 		target = fls(limit);
3013 
3014 	spd = (*scontrol >> 4) & 0xf;
3015 	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3016 
3017 	return spd != target;
3018 }
3019 
3020 /**
3021  *	sata_set_spd_needed - is SATA spd configuration needed
3022  *	@link: Link in question
3023  *
3024  *	Test whether the spd limit in SControl matches
3025  *	@link->sata_spd_limit.  This function is used to determine
3026  *	whether hardreset is necessary to apply SATA spd
3027  *	configuration.
3028  *
3029  *	LOCKING:
3030  *	Inherited from caller.
3031  *
3032  *	RETURNS:
3033  *	1 if SATA spd configuration is needed, 0 otherwise.
3034  */
sata_set_spd_needed(struct ata_link * link)3035 static int sata_set_spd_needed(struct ata_link *link)
3036 {
3037 	u32 scontrol;
3038 
3039 	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3040 		return 1;
3041 
3042 	return __sata_set_spd_needed(link, &scontrol);
3043 }
3044 
3045 /**
3046  *	sata_set_spd - set SATA spd according to spd limit
3047  *	@link: Link to set SATA spd for
3048  *
3049  *	Set SATA spd of @link according to sata_spd_limit.
3050  *
3051  *	LOCKING:
3052  *	Inherited from caller.
3053  *
3054  *	RETURNS:
3055  *	0 if spd doesn't need to be changed, 1 if spd has been
3056  *	changed.  Negative errno if SCR registers are inaccessible.
3057  */
sata_set_spd(struct ata_link * link)3058 int sata_set_spd(struct ata_link *link)
3059 {
3060 	u32 scontrol;
3061 	int rc;
3062 
3063 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3064 		return rc;
3065 
3066 	if (!__sata_set_spd_needed(link, &scontrol))
3067 		return 0;
3068 
3069 	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3070 		return rc;
3071 
3072 	return 1;
3073 }
3074 
3075 /*
3076  * This mode timing computation functionality is ported over from
3077  * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3078  */
3079 /*
3080  * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3081  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3082  * for UDMA6, which is currently supported only by Maxtor drives.
3083  *
3084  * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3085  */
3086 
3087 static const struct ata_timing ata_timing[] = {
3088 /*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
3089 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
3090 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
3091 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
3092 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
3093 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
3094 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
3095 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
3096 
3097 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
3098 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
3099 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
3100 
3101 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
3102 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
3103 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
3104 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
3105 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
3106 
3107 /*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
3108 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
3109 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
3110 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
3111 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
3112 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
3113 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
3114 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
3115 
3116 	{ 0xFF }
3117 };
3118 
3119 #define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
3120 #define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
3121 
ata_timing_quantize(const struct ata_timing * t,struct ata_timing * q,int T,int UT)3122 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3123 {
3124 	q->setup	= EZ(t->setup      * 1000,  T);
3125 	q->act8b	= EZ(t->act8b      * 1000,  T);
3126 	q->rec8b	= EZ(t->rec8b      * 1000,  T);
3127 	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
3128 	q->active	= EZ(t->active     * 1000,  T);
3129 	q->recover	= EZ(t->recover    * 1000,  T);
3130 	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
3131 	q->cycle	= EZ(t->cycle      * 1000,  T);
3132 	q->udma		= EZ(t->udma       * 1000, UT);
3133 }
3134 
ata_timing_merge(const struct ata_timing * a,const struct ata_timing * b,struct ata_timing * m,unsigned int what)3135 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3136 		      struct ata_timing *m, unsigned int what)
3137 {
3138 	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
3139 	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
3140 	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
3141 	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
3142 	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
3143 	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3144 	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3145 	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
3146 	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
3147 }
3148 
ata_timing_find_mode(u8 xfer_mode)3149 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3150 {
3151 	const struct ata_timing *t = ata_timing;
3152 
3153 	while (xfer_mode > t->mode)
3154 		t++;
3155 
3156 	if (xfer_mode == t->mode)
3157 		return t;
3158 
3159 	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3160 			__func__, xfer_mode);
3161 
3162 	return NULL;
3163 }
3164 
ata_timing_compute(struct ata_device * adev,unsigned short speed,struct ata_timing * t,int T,int UT)3165 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3166 		       struct ata_timing *t, int T, int UT)
3167 {
3168 	const u16 *id = adev->id;
3169 	const struct ata_timing *s;
3170 	struct ata_timing p;
3171 
3172 	/*
3173 	 * Find the mode.
3174 	 */
3175 
3176 	if (!(s = ata_timing_find_mode(speed)))
3177 		return -EINVAL;
3178 
3179 	memcpy(t, s, sizeof(*s));
3180 
3181 	/*
3182 	 * If the drive is an EIDE drive, it can tell us it needs extended
3183 	 * PIO/MW_DMA cycle timing.
3184 	 */
3185 
3186 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3187 		memset(&p, 0, sizeof(p));
3188 
3189 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3190 			if (speed <= XFER_PIO_2)
3191 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3192 			else if ((speed <= XFER_PIO_4) ||
3193 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3194 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3195 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3196 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3197 
3198 		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3199 	}
3200 
3201 	/*
3202 	 * Convert the timing to bus clock counts.
3203 	 */
3204 
3205 	ata_timing_quantize(t, t, T, UT);
3206 
3207 	/*
3208 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3209 	 * S.M.A.R.T * and some other commands. We have to ensure that the
3210 	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3211 	 */
3212 
3213 	if (speed > XFER_PIO_6) {
3214 		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3215 		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3216 	}
3217 
3218 	/*
3219 	 * Lengthen active & recovery time so that cycle time is correct.
3220 	 */
3221 
3222 	if (t->act8b + t->rec8b < t->cyc8b) {
3223 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3224 		t->rec8b = t->cyc8b - t->act8b;
3225 	}
3226 
3227 	if (t->active + t->recover < t->cycle) {
3228 		t->active += (t->cycle - (t->active + t->recover)) / 2;
3229 		t->recover = t->cycle - t->active;
3230 	}
3231 
3232 	/* In a few cases quantisation may produce enough errors to
3233 	   leave t->cycle too low for the sum of active and recovery
3234 	   if so we must correct this */
3235 	if (t->active + t->recover > t->cycle)
3236 		t->cycle = t->active + t->recover;
3237 
3238 	return 0;
3239 }
3240 
3241 /**
3242  *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3243  *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3244  *	@cycle: cycle duration in ns
3245  *
3246  *	Return matching xfer mode for @cycle.  The returned mode is of
3247  *	the transfer type specified by @xfer_shift.  If @cycle is too
3248  *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3249  *	than the fastest known mode, the fasted mode is returned.
3250  *
3251  *	LOCKING:
3252  *	None.
3253  *
3254  *	RETURNS:
3255  *	Matching xfer_mode, 0xff if no match found.
3256  */
ata_timing_cycle2mode(unsigned int xfer_shift,int cycle)3257 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3258 {
3259 	u8 base_mode = 0xff, last_mode = 0xff;
3260 	const struct ata_xfer_ent *ent;
3261 	const struct ata_timing *t;
3262 
3263 	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3264 		if (ent->shift == xfer_shift)
3265 			base_mode = ent->base;
3266 
3267 	for (t = ata_timing_find_mode(base_mode);
3268 	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3269 		unsigned short this_cycle;
3270 
3271 		switch (xfer_shift) {
3272 		case ATA_SHIFT_PIO:
3273 		case ATA_SHIFT_MWDMA:
3274 			this_cycle = t->cycle;
3275 			break;
3276 		case ATA_SHIFT_UDMA:
3277 			this_cycle = t->udma;
3278 			break;
3279 		default:
3280 			return 0xff;
3281 		}
3282 
3283 		if (cycle > this_cycle)
3284 			break;
3285 
3286 		last_mode = t->mode;
3287 	}
3288 
3289 	return last_mode;
3290 }
3291 
3292 /**
3293  *	ata_down_xfermask_limit - adjust dev xfer masks downward
3294  *	@dev: Device to adjust xfer masks
3295  *	@sel: ATA_DNXFER_* selector
3296  *
3297  *	Adjust xfer masks of @dev downward.  Note that this function
3298  *	does not apply the change.  Invoking ata_set_mode() afterwards
3299  *	will apply the limit.
3300  *
3301  *	LOCKING:
3302  *	Inherited from caller.
3303  *
3304  *	RETURNS:
3305  *	0 on success, negative errno on failure
3306  */
ata_down_xfermask_limit(struct ata_device * dev,unsigned int sel)3307 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3308 {
3309 	char buf[32];
3310 	unsigned long orig_mask, xfer_mask;
3311 	unsigned long pio_mask, mwdma_mask, udma_mask;
3312 	int quiet, highbit;
3313 
3314 	quiet = !!(sel & ATA_DNXFER_QUIET);
3315 	sel &= ~ATA_DNXFER_QUIET;
3316 
3317 	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3318 						  dev->mwdma_mask,
3319 						  dev->udma_mask);
3320 	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3321 
3322 	switch (sel) {
3323 	case ATA_DNXFER_PIO:
3324 		highbit = fls(pio_mask) - 1;
3325 		pio_mask &= ~(1 << highbit);
3326 		break;
3327 
3328 	case ATA_DNXFER_DMA:
3329 		if (udma_mask) {
3330 			highbit = fls(udma_mask) - 1;
3331 			udma_mask &= ~(1 << highbit);
3332 			if (!udma_mask)
3333 				return -ENOENT;
3334 		} else if (mwdma_mask) {
3335 			highbit = fls(mwdma_mask) - 1;
3336 			mwdma_mask &= ~(1 << highbit);
3337 			if (!mwdma_mask)
3338 				return -ENOENT;
3339 		}
3340 		break;
3341 
3342 	case ATA_DNXFER_40C:
3343 		udma_mask &= ATA_UDMA_MASK_40C;
3344 		break;
3345 
3346 	case ATA_DNXFER_FORCE_PIO0:
3347 		pio_mask &= 1;
3348 	case ATA_DNXFER_FORCE_PIO:
3349 		mwdma_mask = 0;
3350 		udma_mask = 0;
3351 		break;
3352 
3353 	default:
3354 		BUG();
3355 	}
3356 
3357 	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3358 
3359 	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3360 		return -ENOENT;
3361 
3362 	if (!quiet) {
3363 		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3364 			snprintf(buf, sizeof(buf), "%s:%s",
3365 				 ata_mode_string(xfer_mask),
3366 				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3367 		else
3368 			snprintf(buf, sizeof(buf), "%s",
3369 				 ata_mode_string(xfer_mask));
3370 
3371 		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3372 	}
3373 
3374 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3375 			    &dev->udma_mask);
3376 
3377 	return 0;
3378 }
3379 
ata_dev_set_mode(struct ata_device * dev)3380 static int ata_dev_set_mode(struct ata_device *dev)
3381 {
3382 	struct ata_port *ap = dev->link->ap;
3383 	struct ata_eh_context *ehc = &dev->link->eh_context;
3384 	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3385 	const char *dev_err_whine = "";
3386 	int ign_dev_err = 0;
3387 	unsigned int err_mask = 0;
3388 	int rc;
3389 
3390 	dev->flags &= ~ATA_DFLAG_PIO;
3391 	if (dev->xfer_shift == ATA_SHIFT_PIO)
3392 		dev->flags |= ATA_DFLAG_PIO;
3393 
3394 	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3395 		dev_err_whine = " (SET_XFERMODE skipped)";
3396 	else {
3397 		if (nosetxfer)
3398 			ata_dev_warn(dev,
3399 				     "NOSETXFER but PATA detected - can't "
3400 				     "skip SETXFER, might malfunction\n");
3401 		err_mask = ata_dev_set_xfermode(dev);
3402 	}
3403 
3404 	if (err_mask & ~AC_ERR_DEV)
3405 		goto fail;
3406 
3407 	/* revalidate */
3408 	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3409 	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3410 	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3411 	if (rc)
3412 		return rc;
3413 
3414 	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3415 		/* Old CFA may refuse this command, which is just fine */
3416 		if (ata_id_is_cfa(dev->id))
3417 			ign_dev_err = 1;
3418 		/* Catch several broken garbage emulations plus some pre
3419 		   ATA devices */
3420 		if (ata_id_major_version(dev->id) == 0 &&
3421 					dev->pio_mode <= XFER_PIO_2)
3422 			ign_dev_err = 1;
3423 		/* Some very old devices and some bad newer ones fail
3424 		   any kind of SET_XFERMODE request but support PIO0-2
3425 		   timings and no IORDY */
3426 		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3427 			ign_dev_err = 1;
3428 	}
3429 	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3430 	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3431 	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3432 	    dev->dma_mode == XFER_MW_DMA_0 &&
3433 	    (dev->id[63] >> 8) & 1)
3434 		ign_dev_err = 1;
3435 
3436 	/* if the device is actually configured correctly, ignore dev err */
3437 	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3438 		ign_dev_err = 1;
3439 
3440 	if (err_mask & AC_ERR_DEV) {
3441 		if (!ign_dev_err)
3442 			goto fail;
3443 		else
3444 			dev_err_whine = " (device error ignored)";
3445 	}
3446 
3447 	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3448 		dev->xfer_shift, (int)dev->xfer_mode);
3449 
3450 	ata_dev_info(dev, "configured for %s%s\n",
3451 		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3452 		     dev_err_whine);
3453 
3454 	return 0;
3455 
3456  fail:
3457 	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3458 	return -EIO;
3459 }
3460 
3461 /**
3462  *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3463  *	@link: link on which timings will be programmed
3464  *	@r_failed_dev: out parameter for failed device
3465  *
3466  *	Standard implementation of the function used to tune and set
3467  *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3468  *	ata_dev_set_mode() fails, pointer to the failing device is
3469  *	returned in @r_failed_dev.
3470  *
3471  *	LOCKING:
3472  *	PCI/etc. bus probe sem.
3473  *
3474  *	RETURNS:
3475  *	0 on success, negative errno otherwise
3476  */
3477 
ata_do_set_mode(struct ata_link * link,struct ata_device ** r_failed_dev)3478 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3479 {
3480 	struct ata_port *ap = link->ap;
3481 	struct ata_device *dev;
3482 	int rc = 0, used_dma = 0, found = 0;
3483 
3484 	/* step 1: calculate xfer_mask */
3485 	ata_for_each_dev(dev, link, ENABLED) {
3486 		unsigned long pio_mask, dma_mask;
3487 		unsigned int mode_mask;
3488 
3489 		mode_mask = ATA_DMA_MASK_ATA;
3490 		if (dev->class == ATA_DEV_ATAPI)
3491 			mode_mask = ATA_DMA_MASK_ATAPI;
3492 		else if (ata_id_is_cfa(dev->id))
3493 			mode_mask = ATA_DMA_MASK_CFA;
3494 
3495 		ata_dev_xfermask(dev);
3496 		ata_force_xfermask(dev);
3497 
3498 		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3499 
3500 		if (libata_dma_mask & mode_mask)
3501 			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3502 						     dev->udma_mask);
3503 		else
3504 			dma_mask = 0;
3505 
3506 		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3507 		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3508 
3509 		found = 1;
3510 		if (ata_dma_enabled(dev))
3511 			used_dma = 1;
3512 	}
3513 	if (!found)
3514 		goto out;
3515 
3516 	/* step 2: always set host PIO timings */
3517 	ata_for_each_dev(dev, link, ENABLED) {
3518 		if (dev->pio_mode == 0xff) {
3519 			ata_dev_warn(dev, "no PIO support\n");
3520 			rc = -EINVAL;
3521 			goto out;
3522 		}
3523 
3524 		dev->xfer_mode = dev->pio_mode;
3525 		dev->xfer_shift = ATA_SHIFT_PIO;
3526 		if (ap->ops->set_piomode)
3527 			ap->ops->set_piomode(ap, dev);
3528 	}
3529 
3530 	/* step 3: set host DMA timings */
3531 	ata_for_each_dev(dev, link, ENABLED) {
3532 		if (!ata_dma_enabled(dev))
3533 			continue;
3534 
3535 		dev->xfer_mode = dev->dma_mode;
3536 		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3537 		if (ap->ops->set_dmamode)
3538 			ap->ops->set_dmamode(ap, dev);
3539 	}
3540 
3541 	/* step 4: update devices' xfer mode */
3542 	ata_for_each_dev(dev, link, ENABLED) {
3543 		rc = ata_dev_set_mode(dev);
3544 		if (rc)
3545 			goto out;
3546 	}
3547 
3548 	/* Record simplex status. If we selected DMA then the other
3549 	 * host channels are not permitted to do so.
3550 	 */
3551 	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3552 		ap->host->simplex_claimed = ap;
3553 
3554  out:
3555 	if (rc)
3556 		*r_failed_dev = dev;
3557 	return rc;
3558 }
3559 
3560 /**
3561  *	ata_wait_ready - wait for link to become ready
3562  *	@link: link to be waited on
3563  *	@deadline: deadline jiffies for the operation
3564  *	@check_ready: callback to check link readiness
3565  *
3566  *	Wait for @link to become ready.  @check_ready should return
3567  *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3568  *	link doesn't seem to be occupied, other errno for other error
3569  *	conditions.
3570  *
3571  *	Transient -ENODEV conditions are allowed for
3572  *	ATA_TMOUT_FF_WAIT.
3573  *
3574  *	LOCKING:
3575  *	EH context.
3576  *
3577  *	RETURNS:
3578  *	0 if @link is ready before @deadline; otherwise, -errno.
3579  */
ata_wait_ready(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3580 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3581 		   int (*check_ready)(struct ata_link *link))
3582 {
3583 	unsigned long start = jiffies;
3584 	unsigned long nodev_deadline;
3585 	int warned = 0;
3586 
3587 	/* choose which 0xff timeout to use, read comment in libata.h */
3588 	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3589 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3590 	else
3591 		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3592 
3593 	/* Slave readiness can't be tested separately from master.  On
3594 	 * M/S emulation configuration, this function should be called
3595 	 * only on the master and it will handle both master and slave.
3596 	 */
3597 	WARN_ON(link == link->ap->slave_link);
3598 
3599 	if (time_after(nodev_deadline, deadline))
3600 		nodev_deadline = deadline;
3601 
3602 	while (1) {
3603 		unsigned long now = jiffies;
3604 		int ready, tmp;
3605 
3606 		ready = tmp = check_ready(link);
3607 		if (ready > 0)
3608 			return 0;
3609 
3610 		/*
3611 		 * -ENODEV could be transient.  Ignore -ENODEV if link
3612 		 * is online.  Also, some SATA devices take a long
3613 		 * time to clear 0xff after reset.  Wait for
3614 		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3615 		 * offline.
3616 		 *
3617 		 * Note that some PATA controllers (pata_ali) explode
3618 		 * if status register is read more than once when
3619 		 * there's no device attached.
3620 		 */
3621 		if (ready == -ENODEV) {
3622 			if (ata_link_online(link))
3623 				ready = 0;
3624 			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3625 				 !ata_link_offline(link) &&
3626 				 time_before(now, nodev_deadline))
3627 				ready = 0;
3628 		}
3629 
3630 		if (ready)
3631 			return ready;
3632 		if (time_after(now, deadline))
3633 			return -EBUSY;
3634 
3635 		if (!warned && time_after(now, start + 5 * HZ) &&
3636 		    (deadline - now > 3 * HZ)) {
3637 			ata_link_warn(link,
3638 				"link is slow to respond, please be patient "
3639 				"(ready=%d)\n", tmp);
3640 			warned = 1;
3641 		}
3642 
3643 		ata_msleep(link->ap, 50);
3644 	}
3645 }
3646 
3647 /**
3648  *	ata_wait_after_reset - wait for link to become ready after reset
3649  *	@link: link to be waited on
3650  *	@deadline: deadline jiffies for the operation
3651  *	@check_ready: callback to check link readiness
3652  *
3653  *	Wait for @link to become ready after reset.
3654  *
3655  *	LOCKING:
3656  *	EH context.
3657  *
3658  *	RETURNS:
3659  *	0 if @link is ready before @deadline; otherwise, -errno.
3660  */
ata_wait_after_reset(struct ata_link * link,unsigned long deadline,int (* check_ready)(struct ata_link * link))3661 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3662 				int (*check_ready)(struct ata_link *link))
3663 {
3664 	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3665 
3666 	return ata_wait_ready(link, deadline, check_ready);
3667 }
3668 
3669 /**
3670  *	sata_link_debounce - debounce SATA phy status
3671  *	@link: ATA link to debounce SATA phy status for
3672  *	@params: timing parameters { interval, duration, timeout } in msec
3673  *	@deadline: deadline jiffies for the operation
3674  *
3675  *	Make sure SStatus of @link reaches stable state, determined by
3676  *	holding the same value where DET is not 1 for @duration polled
3677  *	every @interval, before @timeout.  Timeout constraints the
3678  *	beginning of the stable state.  Because DET gets stuck at 1 on
3679  *	some controllers after hot unplugging, this functions waits
3680  *	until timeout then returns 0 if DET is stable at 1.
3681  *
3682  *	@timeout is further limited by @deadline.  The sooner of the
3683  *	two is used.
3684  *
3685  *	LOCKING:
3686  *	Kernel thread context (may sleep)
3687  *
3688  *	RETURNS:
3689  *	0 on success, -errno on failure.
3690  */
sata_link_debounce(struct ata_link * link,const unsigned long * params,unsigned long deadline)3691 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3692 		       unsigned long deadline)
3693 {
3694 	unsigned long interval = params[0];
3695 	unsigned long duration = params[1];
3696 	unsigned long last_jiffies, t;
3697 	u32 last, cur;
3698 	int rc;
3699 
3700 	t = ata_deadline(jiffies, params[2]);
3701 	if (time_before(t, deadline))
3702 		deadline = t;
3703 
3704 	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3705 		return rc;
3706 	cur &= 0xf;
3707 
3708 	last = cur;
3709 	last_jiffies = jiffies;
3710 
3711 	while (1) {
3712 		ata_msleep(link->ap, interval);
3713 		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3714 			return rc;
3715 		cur &= 0xf;
3716 
3717 		/* DET stable? */
3718 		if (cur == last) {
3719 			if (cur == 1 && time_before(jiffies, deadline))
3720 				continue;
3721 			if (time_after(jiffies,
3722 				       ata_deadline(last_jiffies, duration)))
3723 				return 0;
3724 			continue;
3725 		}
3726 
3727 		/* unstable, start over */
3728 		last = cur;
3729 		last_jiffies = jiffies;
3730 
3731 		/* Check deadline.  If debouncing failed, return
3732 		 * -EPIPE to tell upper layer to lower link speed.
3733 		 */
3734 		if (time_after(jiffies, deadline))
3735 			return -EPIPE;
3736 	}
3737 }
3738 
3739 /**
3740  *	sata_link_resume - resume SATA link
3741  *	@link: ATA link to resume SATA
3742  *	@params: timing parameters { interval, duration, timeout } in msec
3743  *	@deadline: deadline jiffies for the operation
3744  *
3745  *	Resume SATA phy @link and debounce it.
3746  *
3747  *	LOCKING:
3748  *	Kernel thread context (may sleep)
3749  *
3750  *	RETURNS:
3751  *	0 on success, -errno on failure.
3752  */
sata_link_resume(struct ata_link * link,const unsigned long * params,unsigned long deadline)3753 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3754 		     unsigned long deadline)
3755 {
3756 	int tries = ATA_LINK_RESUME_TRIES;
3757 	u32 scontrol, serror;
3758 	int rc;
3759 
3760 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3761 		return rc;
3762 
3763 	/*
3764 	 * Writes to SControl sometimes get ignored under certain
3765 	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3766 	 * cleared.
3767 	 */
3768 	do {
3769 		scontrol = (scontrol & 0x0f0) | 0x300;
3770 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3771 			return rc;
3772 		/*
3773 		 * Some PHYs react badly if SStatus is pounded
3774 		 * immediately after resuming.  Delay 200ms before
3775 		 * debouncing.
3776 		 */
3777 		if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3778 			ata_msleep(link->ap, 200);
3779 
3780 		/* is SControl restored correctly? */
3781 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3782 			return rc;
3783 	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3784 
3785 	if ((scontrol & 0xf0f) != 0x300) {
3786 		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3787 			     scontrol);
3788 		return 0;
3789 	}
3790 
3791 	if (tries < ATA_LINK_RESUME_TRIES)
3792 		ata_link_warn(link, "link resume succeeded after %d retries\n",
3793 			      ATA_LINK_RESUME_TRIES - tries);
3794 
3795 	if ((rc = sata_link_debounce(link, params, deadline)))
3796 		return rc;
3797 
3798 	/* clear SError, some PHYs require this even for SRST to work */
3799 	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3800 		rc = sata_scr_write(link, SCR_ERROR, serror);
3801 
3802 	return rc != -EINVAL ? rc : 0;
3803 }
3804 
3805 /**
3806  *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3807  *	@link: ATA link to manipulate SControl for
3808  *	@policy: LPM policy to configure
3809  *	@spm_wakeup: initiate LPM transition to active state
3810  *
3811  *	Manipulate the IPM field of the SControl register of @link
3812  *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3813  *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3814  *	the link.  This function also clears PHYRDY_CHG before
3815  *	returning.
3816  *
3817  *	LOCKING:
3818  *	EH context.
3819  *
3820  *	RETURNS:
3821  *	0 on success, -errno otherwise.
3822  */
sata_link_scr_lpm(struct ata_link * link,enum ata_lpm_policy policy,bool spm_wakeup)3823 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3824 		      bool spm_wakeup)
3825 {
3826 	struct ata_eh_context *ehc = &link->eh_context;
3827 	bool woken_up = false;
3828 	u32 scontrol;
3829 	int rc;
3830 
3831 	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3832 	if (rc)
3833 		return rc;
3834 
3835 	switch (policy) {
3836 	case ATA_LPM_MAX_POWER:
3837 		/* disable all LPM transitions */
3838 		scontrol |= (0x7 << 8);
3839 		/* initiate transition to active state */
3840 		if (spm_wakeup) {
3841 			scontrol |= (0x4 << 12);
3842 			woken_up = true;
3843 		}
3844 		break;
3845 	case ATA_LPM_MED_POWER:
3846 		/* allow LPM to PARTIAL */
3847 		scontrol &= ~(0x1 << 8);
3848 		scontrol |= (0x6 << 8);
3849 		break;
3850 	case ATA_LPM_MIN_POWER:
3851 		if (ata_link_nr_enabled(link) > 0)
3852 			/* no restrictions on LPM transitions */
3853 			scontrol &= ~(0x7 << 8);
3854 		else {
3855 			/* empty port, power off */
3856 			scontrol &= ~0xf;
3857 			scontrol |= (0x1 << 2);
3858 		}
3859 		break;
3860 	default:
3861 		WARN_ON(1);
3862 	}
3863 
3864 	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3865 	if (rc)
3866 		return rc;
3867 
3868 	/* give the link time to transit out of LPM state */
3869 	if (woken_up)
3870 		msleep(10);
3871 
3872 	/* clear PHYRDY_CHG from SError */
3873 	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3874 	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3875 }
3876 
3877 /**
3878  *	ata_std_prereset - prepare for reset
3879  *	@link: ATA link to be reset
3880  *	@deadline: deadline jiffies for the operation
3881  *
3882  *	@link is about to be reset.  Initialize it.  Failure from
3883  *	prereset makes libata abort whole reset sequence and give up
3884  *	that port, so prereset should be best-effort.  It does its
3885  *	best to prepare for reset sequence but if things go wrong, it
3886  *	should just whine, not fail.
3887  *
3888  *	LOCKING:
3889  *	Kernel thread context (may sleep)
3890  *
3891  *	RETURNS:
3892  *	0 on success, -errno otherwise.
3893  */
ata_std_prereset(struct ata_link * link,unsigned long deadline)3894 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3895 {
3896 	struct ata_port *ap = link->ap;
3897 	struct ata_eh_context *ehc = &link->eh_context;
3898 	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3899 	int rc;
3900 
3901 	/* if we're about to do hardreset, nothing more to do */
3902 	if (ehc->i.action & ATA_EH_HARDRESET)
3903 		return 0;
3904 
3905 	/* if SATA, resume link */
3906 	if (ap->flags & ATA_FLAG_SATA) {
3907 		rc = sata_link_resume(link, timing, deadline);
3908 		/* whine about phy resume failure but proceed */
3909 		if (rc && rc != -EOPNOTSUPP)
3910 			ata_link_warn(link,
3911 				      "failed to resume link for reset (errno=%d)\n",
3912 				      rc);
3913 	}
3914 
3915 	/* no point in trying softreset on offline link */
3916 	if (ata_phys_link_offline(link))
3917 		ehc->i.action &= ~ATA_EH_SOFTRESET;
3918 
3919 	return 0;
3920 }
3921 
3922 /**
3923  *	sata_link_hardreset - reset link via SATA phy reset
3924  *	@link: link to reset
3925  *	@timing: timing parameters { interval, duration, timeout } in msec
3926  *	@deadline: deadline jiffies for the operation
3927  *	@online: optional out parameter indicating link onlineness
3928  *	@check_ready: optional callback to check link readiness
3929  *
3930  *	SATA phy-reset @link using DET bits of SControl register.
3931  *	After hardreset, link readiness is waited upon using
3932  *	ata_wait_ready() if @check_ready is specified.  LLDs are
3933  *	allowed to not specify @check_ready and wait itself after this
3934  *	function returns.  Device classification is LLD's
3935  *	responsibility.
3936  *
3937  *	*@online is set to one iff reset succeeded and @link is online
3938  *	after reset.
3939  *
3940  *	LOCKING:
3941  *	Kernel thread context (may sleep)
3942  *
3943  *	RETURNS:
3944  *	0 on success, -errno otherwise.
3945  */
sata_link_hardreset(struct ata_link * link,const unsigned long * timing,unsigned long deadline,bool * online,int (* check_ready)(struct ata_link *))3946 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3947 			unsigned long deadline,
3948 			bool *online, int (*check_ready)(struct ata_link *))
3949 {
3950 	u32 scontrol;
3951 	int rc;
3952 
3953 	DPRINTK("ENTER\n");
3954 
3955 	if (online)
3956 		*online = false;
3957 
3958 	if (sata_set_spd_needed(link)) {
3959 		/* SATA spec says nothing about how to reconfigure
3960 		 * spd.  To be on the safe side, turn off phy during
3961 		 * reconfiguration.  This works for at least ICH7 AHCI
3962 		 * and Sil3124.
3963 		 */
3964 		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3965 			goto out;
3966 
3967 		scontrol = (scontrol & 0x0f0) | 0x304;
3968 
3969 		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3970 			goto out;
3971 
3972 		sata_set_spd(link);
3973 	}
3974 
3975 	/* issue phy wake/reset */
3976 	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3977 		goto out;
3978 
3979 	scontrol = (scontrol & 0x0f0) | 0x301;
3980 
3981 	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3982 		goto out;
3983 
3984 	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3985 	 * 10.4.2 says at least 1 ms.
3986 	 */
3987 	ata_msleep(link->ap, 1);
3988 
3989 	/* bring link back */
3990 	rc = sata_link_resume(link, timing, deadline);
3991 	if (rc)
3992 		goto out;
3993 	/* if link is offline nothing more to do */
3994 	if (ata_phys_link_offline(link))
3995 		goto out;
3996 
3997 	/* Link is online.  From this point, -ENODEV too is an error. */
3998 	if (online)
3999 		*online = true;
4000 
4001 	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4002 		/* If PMP is supported, we have to do follow-up SRST.
4003 		 * Some PMPs don't send D2H Reg FIS after hardreset if
4004 		 * the first port is empty.  Wait only for
4005 		 * ATA_TMOUT_PMP_SRST_WAIT.
4006 		 */
4007 		if (check_ready) {
4008 			unsigned long pmp_deadline;
4009 
4010 			pmp_deadline = ata_deadline(jiffies,
4011 						    ATA_TMOUT_PMP_SRST_WAIT);
4012 			if (time_after(pmp_deadline, deadline))
4013 				pmp_deadline = deadline;
4014 			ata_wait_ready(link, pmp_deadline, check_ready);
4015 		}
4016 		rc = -EAGAIN;
4017 		goto out;
4018 	}
4019 
4020 	rc = 0;
4021 	if (check_ready)
4022 		rc = ata_wait_ready(link, deadline, check_ready);
4023  out:
4024 	if (rc && rc != -EAGAIN) {
4025 		/* online is set iff link is online && reset succeeded */
4026 		if (online)
4027 			*online = false;
4028 		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4029 	}
4030 	DPRINTK("EXIT, rc=%d\n", rc);
4031 	return rc;
4032 }
4033 
4034 /**
4035  *	sata_std_hardreset - COMRESET w/o waiting or classification
4036  *	@link: link to reset
4037  *	@class: resulting class of attached device
4038  *	@deadline: deadline jiffies for the operation
4039  *
4040  *	Standard SATA COMRESET w/o waiting or classification.
4041  *
4042  *	LOCKING:
4043  *	Kernel thread context (may sleep)
4044  *
4045  *	RETURNS:
4046  *	0 if link offline, -EAGAIN if link online, -errno on errors.
4047  */
sata_std_hardreset(struct ata_link * link,unsigned int * class,unsigned long deadline)4048 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4049 		       unsigned long deadline)
4050 {
4051 	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4052 	bool online;
4053 	int rc;
4054 
4055 	/* do hardreset */
4056 	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4057 	return online ? -EAGAIN : rc;
4058 }
4059 
4060 /**
4061  *	ata_std_postreset - standard postreset callback
4062  *	@link: the target ata_link
4063  *	@classes: classes of attached devices
4064  *
4065  *	This function is invoked after a successful reset.  Note that
4066  *	the device might have been reset more than once using
4067  *	different reset methods before postreset is invoked.
4068  *
4069  *	LOCKING:
4070  *	Kernel thread context (may sleep)
4071  */
ata_std_postreset(struct ata_link * link,unsigned int * classes)4072 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4073 {
4074 	u32 serror;
4075 
4076 	DPRINTK("ENTER\n");
4077 
4078 	/* reset complete, clear SError */
4079 	if (!sata_scr_read(link, SCR_ERROR, &serror))
4080 		sata_scr_write(link, SCR_ERROR, serror);
4081 
4082 	/* print link status */
4083 	sata_print_link_status(link);
4084 
4085 	DPRINTK("EXIT\n");
4086 }
4087 
4088 /**
4089  *	ata_dev_same_device - Determine whether new ID matches configured device
4090  *	@dev: device to compare against
4091  *	@new_class: class of the new device
4092  *	@new_id: IDENTIFY page of the new device
4093  *
4094  *	Compare @new_class and @new_id against @dev and determine
4095  *	whether @dev is the device indicated by @new_class and
4096  *	@new_id.
4097  *
4098  *	LOCKING:
4099  *	None.
4100  *
4101  *	RETURNS:
4102  *	1 if @dev matches @new_class and @new_id, 0 otherwise.
4103  */
ata_dev_same_device(struct ata_device * dev,unsigned int new_class,const u16 * new_id)4104 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4105 			       const u16 *new_id)
4106 {
4107 	const u16 *old_id = dev->id;
4108 	unsigned char model[2][ATA_ID_PROD_LEN + 1];
4109 	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4110 
4111 	if (dev->class != new_class) {
4112 		ata_dev_info(dev, "class mismatch %d != %d\n",
4113 			     dev->class, new_class);
4114 		return 0;
4115 	}
4116 
4117 	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4118 	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4119 	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4120 	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4121 
4122 	if (strcmp(model[0], model[1])) {
4123 		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4124 			     model[0], model[1]);
4125 		return 0;
4126 	}
4127 
4128 	if (strcmp(serial[0], serial[1])) {
4129 		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4130 			     serial[0], serial[1]);
4131 		return 0;
4132 	}
4133 
4134 	return 1;
4135 }
4136 
4137 /**
4138  *	ata_dev_reread_id - Re-read IDENTIFY data
4139  *	@dev: target ATA device
4140  *	@readid_flags: read ID flags
4141  *
4142  *	Re-read IDENTIFY page and make sure @dev is still attached to
4143  *	the port.
4144  *
4145  *	LOCKING:
4146  *	Kernel thread context (may sleep)
4147  *
4148  *	RETURNS:
4149  *	0 on success, negative errno otherwise
4150  */
ata_dev_reread_id(struct ata_device * dev,unsigned int readid_flags)4151 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4152 {
4153 	unsigned int class = dev->class;
4154 	u16 *id = (void *)dev->link->ap->sector_buf;
4155 	int rc;
4156 
4157 	/* read ID data */
4158 	rc = ata_dev_read_id(dev, &class, readid_flags, id);
4159 	if (rc)
4160 		return rc;
4161 
4162 	/* is the device still there? */
4163 	if (!ata_dev_same_device(dev, class, id))
4164 		return -ENODEV;
4165 
4166 	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4167 	return 0;
4168 }
4169 
4170 /**
4171  *	ata_dev_revalidate - Revalidate ATA device
4172  *	@dev: device to revalidate
4173  *	@new_class: new class code
4174  *	@readid_flags: read ID flags
4175  *
4176  *	Re-read IDENTIFY page, make sure @dev is still attached to the
4177  *	port and reconfigure it according to the new IDENTIFY page.
4178  *
4179  *	LOCKING:
4180  *	Kernel thread context (may sleep)
4181  *
4182  *	RETURNS:
4183  *	0 on success, negative errno otherwise
4184  */
ata_dev_revalidate(struct ata_device * dev,unsigned int new_class,unsigned int readid_flags)4185 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4186 		       unsigned int readid_flags)
4187 {
4188 	u64 n_sectors = dev->n_sectors;
4189 	u64 n_native_sectors = dev->n_native_sectors;
4190 	int rc;
4191 
4192 	if (!ata_dev_enabled(dev))
4193 		return -ENODEV;
4194 
4195 	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4196 	if (ata_class_enabled(new_class) &&
4197 	    new_class != ATA_DEV_ATA &&
4198 	    new_class != ATA_DEV_ATAPI &&
4199 	    new_class != ATA_DEV_ZAC &&
4200 	    new_class != ATA_DEV_SEMB) {
4201 		ata_dev_info(dev, "class mismatch %u != %u\n",
4202 			     dev->class, new_class);
4203 		rc = -ENODEV;
4204 		goto fail;
4205 	}
4206 
4207 	/* re-read ID */
4208 	rc = ata_dev_reread_id(dev, readid_flags);
4209 	if (rc)
4210 		goto fail;
4211 
4212 	/* configure device according to the new ID */
4213 	rc = ata_dev_configure(dev);
4214 	if (rc)
4215 		goto fail;
4216 
4217 	/* verify n_sectors hasn't changed */
4218 	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4219 	    dev->n_sectors == n_sectors)
4220 		return 0;
4221 
4222 	/* n_sectors has changed */
4223 	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4224 		     (unsigned long long)n_sectors,
4225 		     (unsigned long long)dev->n_sectors);
4226 
4227 	/*
4228 	 * Something could have caused HPA to be unlocked
4229 	 * involuntarily.  If n_native_sectors hasn't changed and the
4230 	 * new size matches it, keep the device.
4231 	 */
4232 	if (dev->n_native_sectors == n_native_sectors &&
4233 	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4234 		ata_dev_warn(dev,
4235 			     "new n_sectors matches native, probably "
4236 			     "late HPA unlock, n_sectors updated\n");
4237 		/* use the larger n_sectors */
4238 		return 0;
4239 	}
4240 
4241 	/*
4242 	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4243 	 * unlocking HPA in those cases.
4244 	 *
4245 	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4246 	 */
4247 	if (dev->n_native_sectors == n_native_sectors &&
4248 	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4249 	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4250 		ata_dev_warn(dev,
4251 			     "old n_sectors matches native, probably "
4252 			     "late HPA lock, will try to unlock HPA\n");
4253 		/* try unlocking HPA */
4254 		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4255 		rc = -EIO;
4256 	} else
4257 		rc = -ENODEV;
4258 
4259 	/* restore original n_[native_]sectors and fail */
4260 	dev->n_native_sectors = n_native_sectors;
4261 	dev->n_sectors = n_sectors;
4262  fail:
4263 	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4264 	return rc;
4265 }
4266 
4267 struct ata_blacklist_entry {
4268 	const char *model_num;
4269 	const char *model_rev;
4270 	unsigned long horkage;
4271 };
4272 
4273 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4274 	/* Devices with DMA related problems under Linux */
4275 	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4276 	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4277 	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4278 	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4279 	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4280 	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4281 	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4282 	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4283 	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4284 	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4285 	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4286 	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4287 	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4288 	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4289 	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4290 	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4291 	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4292 	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4293 	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4294 	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4295 	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4296 	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4297 	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4298 	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4299 	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4300 	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4301 	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4302 	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4303 	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4304 	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
4305 	/* Odd clown on sil3726/4726 PMPs */
4306 	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4307 
4308 	/* Weird ATAPI devices */
4309 	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4310 	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4311 	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4312 	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4313 
4314 	/*
4315 	 * Causes silent data corruption with higher max sects.
4316 	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4317 	 */
4318 	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
4319 
4320 	/*
4321 	 * These devices time out with higher max sects.
4322 	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4323 	 */
4324 	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4325 	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
4326 
4327 	/* Devices we expect to fail diagnostics */
4328 
4329 	/* Devices where NCQ should be avoided */
4330 	/* NCQ is slow */
4331 	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4332 	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4333 	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4334 	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4335 	/* NCQ is broken */
4336 	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4337 	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4338 	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4339 	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4340 	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4341 
4342 	/* Seagate NCQ + FLUSH CACHE firmware bug */
4343 	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4344 						ATA_HORKAGE_FIRMWARE_WARN },
4345 
4346 	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4347 						ATA_HORKAGE_FIRMWARE_WARN },
4348 
4349 	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4350 						ATA_HORKAGE_FIRMWARE_WARN },
4351 
4352 	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4353 						ATA_HORKAGE_FIRMWARE_WARN },
4354 
4355 	/* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4356 	{ "ST1000LM024 HN-M101MBB", "2AR10001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4357 	{ "ST1000LM024 HN-M101MBB", "2BA30001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4358 	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
4359 
4360 	/* Blacklist entries taken from Silicon Image 3124/3132
4361 	   Windows driver .inf file - also several Linux problem reports */
4362 	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4363 	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4364 	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4365 
4366 	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4367 	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4368 
4369 	/* devices which puke on READ_NATIVE_MAX */
4370 	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4371 	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4372 	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4373 	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4374 
4375 	/* this one allows HPA unlocking but fails IOs on the area */
4376 	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4377 
4378 	/* Devices which report 1 sector over size HPA */
4379 	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4380 	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4381 	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4382 
4383 	/* Devices which get the IVB wrong */
4384 	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4385 	/* Maybe we should just blacklist TSSTcorp... */
4386 	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4387 
4388 	/* Devices that do not need bridging limits applied */
4389 	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4390 	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4391 
4392 	/* Devices which aren't very happy with higher link speeds */
4393 	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4394 	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4395 
4396 	/*
4397 	 * Devices which choke on SETXFER.  Applies only if both the
4398 	 * device and controller are SATA.
4399 	 */
4400 	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4401 	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4402 	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4403 	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4404 	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4405 
4406 	/* Crucial BX100 SSD 500GB has broken LPM support */
4407 	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
4408 
4409 	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4410 	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4411 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4412 						ATA_HORKAGE_NOLPM, },
4413 	/* 512GB MX100 with newer firmware has only LPM issues */
4414 	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
4415 						ATA_HORKAGE_NOLPM, },
4416 
4417 	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4418 	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4419 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4420 						ATA_HORKAGE_NOLPM, },
4421 	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4422 						ATA_HORKAGE_ZERO_AFTER_TRIM |
4423 						ATA_HORKAGE_NOLPM, },
4424 
4425 	/* devices that don't properly handle queued TRIM commands */
4426 	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4427 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4428 	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4429 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4430 	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4431 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4432 	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4433 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4434 	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4435 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4436 	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4437 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4438 	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4439 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4440 	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4441 						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4442 
4443 	/* devices that don't properly handle TRIM commands */
4444 	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
4445 
4446 	/*
4447 	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4448 	 * (Return Zero After Trim) flags in the ATA Command Set are
4449 	 * unreliable in the sense that they only define what happens if
4450 	 * the device successfully executed the DSM TRIM command. TRIM
4451 	 * is only advisory, however, and the device is free to silently
4452 	 * ignore all or parts of the request.
4453 	 *
4454 	 * Whitelist drives that are known to reliably return zeroes
4455 	 * after TRIM.
4456 	 */
4457 
4458 	/*
4459 	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4460 	 * that model before whitelisting all other intel SSDs.
4461 	 */
4462 	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4463 
4464 	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4465 	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4466 	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4467 	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4468 	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4469 	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4470 	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4471 
4472 	/*
4473 	 * Some WD SATA-I drives spin up and down erratically when the link
4474 	 * is put into the slumber mode.  We don't have full list of the
4475 	 * affected devices.  Disable LPM if the device matches one of the
4476 	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4477 	 * lost too.
4478 	 *
4479 	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4480 	 */
4481 	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4482 	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4483 	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4484 	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4485 	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4486 	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4487 	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4488 
4489 	/* End Marker */
4490 	{ }
4491 };
4492 
ata_dev_blacklisted(const struct ata_device * dev)4493 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4494 {
4495 	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4496 	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4497 	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4498 
4499 	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4500 	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4501 
4502 	while (ad->model_num) {
4503 		if (glob_match(ad->model_num, model_num)) {
4504 			if (ad->model_rev == NULL)
4505 				return ad->horkage;
4506 			if (glob_match(ad->model_rev, model_rev))
4507 				return ad->horkage;
4508 		}
4509 		ad++;
4510 	}
4511 	return 0;
4512 }
4513 
ata_dma_blacklisted(const struct ata_device * dev)4514 static int ata_dma_blacklisted(const struct ata_device *dev)
4515 {
4516 	/* We don't support polling DMA.
4517 	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4518 	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4519 	 */
4520 	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4521 	    (dev->flags & ATA_DFLAG_CDB_INTR))
4522 		return 1;
4523 	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4524 }
4525 
4526 /**
4527  *	ata_is_40wire		-	check drive side detection
4528  *	@dev: device
4529  *
4530  *	Perform drive side detection decoding, allowing for device vendors
4531  *	who can't follow the documentation.
4532  */
4533 
ata_is_40wire(struct ata_device * dev)4534 static int ata_is_40wire(struct ata_device *dev)
4535 {
4536 	if (dev->horkage & ATA_HORKAGE_IVB)
4537 		return ata_drive_40wire_relaxed(dev->id);
4538 	return ata_drive_40wire(dev->id);
4539 }
4540 
4541 /**
4542  *	cable_is_40wire		-	40/80/SATA decider
4543  *	@ap: port to consider
4544  *
4545  *	This function encapsulates the policy for speed management
4546  *	in one place. At the moment we don't cache the result but
4547  *	there is a good case for setting ap->cbl to the result when
4548  *	we are called with unknown cables (and figuring out if it
4549  *	impacts hotplug at all).
4550  *
4551  *	Return 1 if the cable appears to be 40 wire.
4552  */
4553 
cable_is_40wire(struct ata_port * ap)4554 static int cable_is_40wire(struct ata_port *ap)
4555 {
4556 	struct ata_link *link;
4557 	struct ata_device *dev;
4558 
4559 	/* If the controller thinks we are 40 wire, we are. */
4560 	if (ap->cbl == ATA_CBL_PATA40)
4561 		return 1;
4562 
4563 	/* If the controller thinks we are 80 wire, we are. */
4564 	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4565 		return 0;
4566 
4567 	/* If the system is known to be 40 wire short cable (eg
4568 	 * laptop), then we allow 80 wire modes even if the drive
4569 	 * isn't sure.
4570 	 */
4571 	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4572 		return 0;
4573 
4574 	/* If the controller doesn't know, we scan.
4575 	 *
4576 	 * Note: We look for all 40 wire detects at this point.  Any
4577 	 *       80 wire detect is taken to be 80 wire cable because
4578 	 * - in many setups only the one drive (slave if present) will
4579 	 *   give a valid detect
4580 	 * - if you have a non detect capable drive you don't want it
4581 	 *   to colour the choice
4582 	 */
4583 	ata_for_each_link(link, ap, EDGE) {
4584 		ata_for_each_dev(dev, link, ENABLED) {
4585 			if (!ata_is_40wire(dev))
4586 				return 0;
4587 		}
4588 	}
4589 	return 1;
4590 }
4591 
4592 /**
4593  *	ata_dev_xfermask - Compute supported xfermask of the given device
4594  *	@dev: Device to compute xfermask for
4595  *
4596  *	Compute supported xfermask of @dev and store it in
4597  *	dev->*_mask.  This function is responsible for applying all
4598  *	known limits including host controller limits, device
4599  *	blacklist, etc...
4600  *
4601  *	LOCKING:
4602  *	None.
4603  */
ata_dev_xfermask(struct ata_device * dev)4604 static void ata_dev_xfermask(struct ata_device *dev)
4605 {
4606 	struct ata_link *link = dev->link;
4607 	struct ata_port *ap = link->ap;
4608 	struct ata_host *host = ap->host;
4609 	unsigned long xfer_mask;
4610 
4611 	/* controller modes available */
4612 	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4613 				      ap->mwdma_mask, ap->udma_mask);
4614 
4615 	/* drive modes available */
4616 	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4617 				       dev->mwdma_mask, dev->udma_mask);
4618 	xfer_mask &= ata_id_xfermask(dev->id);
4619 
4620 	/*
4621 	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4622 	 *	cable
4623 	 */
4624 	if (ata_dev_pair(dev)) {
4625 		/* No PIO5 or PIO6 */
4626 		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4627 		/* No MWDMA3 or MWDMA 4 */
4628 		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4629 	}
4630 
4631 	if (ata_dma_blacklisted(dev)) {
4632 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4633 		ata_dev_warn(dev,
4634 			     "device is on DMA blacklist, disabling DMA\n");
4635 	}
4636 
4637 	if ((host->flags & ATA_HOST_SIMPLEX) &&
4638 	    host->simplex_claimed && host->simplex_claimed != ap) {
4639 		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4640 		ata_dev_warn(dev,
4641 			     "simplex DMA is claimed by other device, disabling DMA\n");
4642 	}
4643 
4644 	if (ap->flags & ATA_FLAG_NO_IORDY)
4645 		xfer_mask &= ata_pio_mask_no_iordy(dev);
4646 
4647 	if (ap->ops->mode_filter)
4648 		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4649 
4650 	/* Apply cable rule here.  Don't apply it early because when
4651 	 * we handle hot plug the cable type can itself change.
4652 	 * Check this last so that we know if the transfer rate was
4653 	 * solely limited by the cable.
4654 	 * Unknown or 80 wire cables reported host side are checked
4655 	 * drive side as well. Cases where we know a 40wire cable
4656 	 * is used safely for 80 are not checked here.
4657 	 */
4658 	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4659 		/* UDMA/44 or higher would be available */
4660 		if (cable_is_40wire(ap)) {
4661 			ata_dev_warn(dev,
4662 				     "limited to UDMA/33 due to 40-wire cable\n");
4663 			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4664 		}
4665 
4666 	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4667 			    &dev->mwdma_mask, &dev->udma_mask);
4668 }
4669 
4670 /**
4671  *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4672  *	@dev: Device to which command will be sent
4673  *
4674  *	Issue SET FEATURES - XFER MODE command to device @dev
4675  *	on port @ap.
4676  *
4677  *	LOCKING:
4678  *	PCI/etc. bus probe sem.
4679  *
4680  *	RETURNS:
4681  *	0 on success, AC_ERR_* mask otherwise.
4682  */
4683 
ata_dev_set_xfermode(struct ata_device * dev)4684 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4685 {
4686 	struct ata_taskfile tf;
4687 	unsigned int err_mask;
4688 
4689 	/* set up set-features taskfile */
4690 	DPRINTK("set features - xfer mode\n");
4691 
4692 	/* Some controllers and ATAPI devices show flaky interrupt
4693 	 * behavior after setting xfer mode.  Use polling instead.
4694 	 */
4695 	ata_tf_init(dev, &tf);
4696 	tf.command = ATA_CMD_SET_FEATURES;
4697 	tf.feature = SETFEATURES_XFER;
4698 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4699 	tf.protocol = ATA_PROT_NODATA;
4700 	/* If we are using IORDY we must send the mode setting command */
4701 	if (ata_pio_need_iordy(dev))
4702 		tf.nsect = dev->xfer_mode;
4703 	/* If the device has IORDY and the controller does not - turn it off */
4704  	else if (ata_id_has_iordy(dev->id))
4705 		tf.nsect = 0x01;
4706 	else /* In the ancient relic department - skip all of this */
4707 		return 0;
4708 
4709 	/* On some disks, this command causes spin-up, so we need longer timeout */
4710 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4711 
4712 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4713 	return err_mask;
4714 }
4715 
4716 /**
4717  *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4718  *	@dev: Device to which command will be sent
4719  *	@enable: Whether to enable or disable the feature
4720  *	@feature: The sector count represents the feature to set
4721  *
4722  *	Issue SET FEATURES - SATA FEATURES command to device @dev
4723  *	on port @ap with sector count
4724  *
4725  *	LOCKING:
4726  *	PCI/etc. bus probe sem.
4727  *
4728  *	RETURNS:
4729  *	0 on success, AC_ERR_* mask otherwise.
4730  */
ata_dev_set_feature(struct ata_device * dev,u8 enable,u8 feature)4731 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4732 {
4733 	struct ata_taskfile tf;
4734 	unsigned int err_mask;
4735 	unsigned long timeout = 0;
4736 
4737 	/* set up set-features taskfile */
4738 	DPRINTK("set features - SATA features\n");
4739 
4740 	ata_tf_init(dev, &tf);
4741 	tf.command = ATA_CMD_SET_FEATURES;
4742 	tf.feature = enable;
4743 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4744 	tf.protocol = ATA_PROT_NODATA;
4745 	tf.nsect = feature;
4746 
4747 	if (enable == SETFEATURES_SPINUP)
4748 		timeout = ata_probe_timeout ?
4749 			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4750 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4751 
4752 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4753 	return err_mask;
4754 }
4755 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4756 
4757 /**
4758  *	ata_dev_init_params - Issue INIT DEV PARAMS command
4759  *	@dev: Device to which command will be sent
4760  *	@heads: Number of heads (taskfile parameter)
4761  *	@sectors: Number of sectors (taskfile parameter)
4762  *
4763  *	LOCKING:
4764  *	Kernel thread context (may sleep)
4765  *
4766  *	RETURNS:
4767  *	0 on success, AC_ERR_* mask otherwise.
4768  */
ata_dev_init_params(struct ata_device * dev,u16 heads,u16 sectors)4769 static unsigned int ata_dev_init_params(struct ata_device *dev,
4770 					u16 heads, u16 sectors)
4771 {
4772 	struct ata_taskfile tf;
4773 	unsigned int err_mask;
4774 
4775 	/* Number of sectors per track 1-255. Number of heads 1-16 */
4776 	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4777 		return AC_ERR_INVALID;
4778 
4779 	/* set up init dev params taskfile */
4780 	DPRINTK("init dev params \n");
4781 
4782 	ata_tf_init(dev, &tf);
4783 	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4784 	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4785 	tf.protocol = ATA_PROT_NODATA;
4786 	tf.nsect = sectors;
4787 	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4788 
4789 	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4790 	/* A clean abort indicates an original or just out of spec drive
4791 	   and we should continue as we issue the setup based on the
4792 	   drive reported working geometry */
4793 	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4794 		err_mask = 0;
4795 
4796 	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4797 	return err_mask;
4798 }
4799 
4800 /**
4801  *	ata_sg_clean - Unmap DMA memory associated with command
4802  *	@qc: Command containing DMA memory to be released
4803  *
4804  *	Unmap all mapped DMA memory associated with this command.
4805  *
4806  *	LOCKING:
4807  *	spin_lock_irqsave(host lock)
4808  */
ata_sg_clean(struct ata_queued_cmd * qc)4809 void ata_sg_clean(struct ata_queued_cmd *qc)
4810 {
4811 	struct ata_port *ap = qc->ap;
4812 	struct scatterlist *sg = qc->sg;
4813 	int dir = qc->dma_dir;
4814 
4815 	WARN_ON_ONCE(sg == NULL);
4816 
4817 	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4818 
4819 	if (qc->n_elem)
4820 		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4821 
4822 	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4823 	qc->sg = NULL;
4824 }
4825 
4826 /**
4827  *	atapi_check_dma - Check whether ATAPI DMA can be supported
4828  *	@qc: Metadata associated with taskfile to check
4829  *
4830  *	Allow low-level driver to filter ATA PACKET commands, returning
4831  *	a status indicating whether or not it is OK to use DMA for the
4832  *	supplied PACKET command.
4833  *
4834  *	LOCKING:
4835  *	spin_lock_irqsave(host lock)
4836  *
4837  *	RETURNS: 0 when ATAPI DMA can be used
4838  *               nonzero otherwise
4839  */
atapi_check_dma(struct ata_queued_cmd * qc)4840 int atapi_check_dma(struct ata_queued_cmd *qc)
4841 {
4842 	struct ata_port *ap = qc->ap;
4843 
4844 	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4845 	 * few ATAPI devices choke on such DMA requests.
4846 	 */
4847 	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4848 	    unlikely(qc->nbytes & 15))
4849 		return 1;
4850 
4851 	if (ap->ops->check_atapi_dma)
4852 		return ap->ops->check_atapi_dma(qc);
4853 
4854 	return 0;
4855 }
4856 
4857 /**
4858  *	ata_std_qc_defer - Check whether a qc needs to be deferred
4859  *	@qc: ATA command in question
4860  *
4861  *	Non-NCQ commands cannot run with any other command, NCQ or
4862  *	not.  As upper layer only knows the queue depth, we are
4863  *	responsible for maintaining exclusion.  This function checks
4864  *	whether a new command @qc can be issued.
4865  *
4866  *	LOCKING:
4867  *	spin_lock_irqsave(host lock)
4868  *
4869  *	RETURNS:
4870  *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4871  */
ata_std_qc_defer(struct ata_queued_cmd * qc)4872 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4873 {
4874 	struct ata_link *link = qc->dev->link;
4875 
4876 	if (ata_is_ncq(qc->tf.protocol)) {
4877 		if (!ata_tag_valid(link->active_tag))
4878 			return 0;
4879 	} else {
4880 		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4881 			return 0;
4882 	}
4883 
4884 	return ATA_DEFER_LINK;
4885 }
4886 
ata_noop_qc_prep(struct ata_queued_cmd * qc)4887 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4888 
4889 /**
4890  *	ata_sg_init - Associate command with scatter-gather table.
4891  *	@qc: Command to be associated
4892  *	@sg: Scatter-gather table.
4893  *	@n_elem: Number of elements in s/g table.
4894  *
4895  *	Initialize the data-related elements of queued_cmd @qc
4896  *	to point to a scatter-gather table @sg, containing @n_elem
4897  *	elements.
4898  *
4899  *	LOCKING:
4900  *	spin_lock_irqsave(host lock)
4901  */
ata_sg_init(struct ata_queued_cmd * qc,struct scatterlist * sg,unsigned int n_elem)4902 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4903 		 unsigned int n_elem)
4904 {
4905 	qc->sg = sg;
4906 	qc->n_elem = n_elem;
4907 	qc->cursg = qc->sg;
4908 }
4909 
4910 /**
4911  *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4912  *	@qc: Command with scatter-gather table to be mapped.
4913  *
4914  *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4915  *
4916  *	LOCKING:
4917  *	spin_lock_irqsave(host lock)
4918  *
4919  *	RETURNS:
4920  *	Zero on success, negative on error.
4921  *
4922  */
ata_sg_setup(struct ata_queued_cmd * qc)4923 static int ata_sg_setup(struct ata_queued_cmd *qc)
4924 {
4925 	struct ata_port *ap = qc->ap;
4926 	unsigned int n_elem;
4927 
4928 	VPRINTK("ENTER, ata%u\n", ap->print_id);
4929 
4930 	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4931 	if (n_elem < 1)
4932 		return -1;
4933 
4934 	DPRINTK("%d sg elements mapped\n", n_elem);
4935 	qc->orig_n_elem = qc->n_elem;
4936 	qc->n_elem = n_elem;
4937 	qc->flags |= ATA_QCFLAG_DMAMAP;
4938 
4939 	return 0;
4940 }
4941 
4942 /**
4943  *	swap_buf_le16 - swap halves of 16-bit words in place
4944  *	@buf:  Buffer to swap
4945  *	@buf_words:  Number of 16-bit words in buffer.
4946  *
4947  *	Swap halves of 16-bit words if needed to convert from
4948  *	little-endian byte order to native cpu byte order, or
4949  *	vice-versa.
4950  *
4951  *	LOCKING:
4952  *	Inherited from caller.
4953  */
swap_buf_le16(u16 * buf,unsigned int buf_words)4954 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4955 {
4956 #ifdef __BIG_ENDIAN
4957 	unsigned int i;
4958 
4959 	for (i = 0; i < buf_words; i++)
4960 		buf[i] = le16_to_cpu(buf[i]);
4961 #endif /* __BIG_ENDIAN */
4962 }
4963 
4964 /**
4965  *	ata_qc_new_init - Request an available ATA command, and initialize it
4966  *	@dev: Device from whom we request an available command structure
4967  *	@tag: tag
4968  *
4969  *	LOCKING:
4970  *	None.
4971  */
4972 
ata_qc_new_init(struct ata_device * dev,int tag)4973 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4974 {
4975 	struct ata_port *ap = dev->link->ap;
4976 	struct ata_queued_cmd *qc;
4977 
4978 	/* no command while frozen */
4979 	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4980 		return NULL;
4981 
4982 	/* libsas case */
4983 	if (ap->flags & ATA_FLAG_SAS_HOST) {
4984 		tag = ata_sas_allocate_tag(ap);
4985 		if (tag < 0)
4986 			return NULL;
4987 	}
4988 
4989 	qc = __ata_qc_from_tag(ap, tag);
4990 	qc->tag = tag;
4991 	qc->scsicmd = NULL;
4992 	qc->ap = ap;
4993 	qc->dev = dev;
4994 
4995 	ata_qc_reinit(qc);
4996 
4997 	return qc;
4998 }
4999 
5000 /**
5001  *	ata_qc_free - free unused ata_queued_cmd
5002  *	@qc: Command to complete
5003  *
5004  *	Designed to free unused ata_queued_cmd object
5005  *	in case something prevents using it.
5006  *
5007  *	LOCKING:
5008  *	spin_lock_irqsave(host lock)
5009  */
ata_qc_free(struct ata_queued_cmd * qc)5010 void ata_qc_free(struct ata_queued_cmd *qc)
5011 {
5012 	struct ata_port *ap;
5013 	unsigned int tag;
5014 
5015 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5016 	ap = qc->ap;
5017 
5018 	qc->flags = 0;
5019 	tag = qc->tag;
5020 	if (likely(ata_tag_valid(tag))) {
5021 		qc->tag = ATA_TAG_POISON;
5022 		if (ap->flags & ATA_FLAG_SAS_HOST)
5023 			ata_sas_free_tag(tag, ap);
5024 	}
5025 }
5026 
__ata_qc_complete(struct ata_queued_cmd * qc)5027 void __ata_qc_complete(struct ata_queued_cmd *qc)
5028 {
5029 	struct ata_port *ap;
5030 	struct ata_link *link;
5031 
5032 	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5033 	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5034 	ap = qc->ap;
5035 	link = qc->dev->link;
5036 
5037 	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5038 		ata_sg_clean(qc);
5039 
5040 	/* command should be marked inactive atomically with qc completion */
5041 	if (ata_is_ncq(qc->tf.protocol)) {
5042 		link->sactive &= ~(1 << qc->tag);
5043 		if (!link->sactive)
5044 			ap->nr_active_links--;
5045 	} else {
5046 		link->active_tag = ATA_TAG_POISON;
5047 		ap->nr_active_links--;
5048 	}
5049 
5050 	/* clear exclusive status */
5051 	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5052 		     ap->excl_link == link))
5053 		ap->excl_link = NULL;
5054 
5055 	/* atapi: mark qc as inactive to prevent the interrupt handler
5056 	 * from completing the command twice later, before the error handler
5057 	 * is called. (when rc != 0 and atapi request sense is needed)
5058 	 */
5059 	qc->flags &= ~ATA_QCFLAG_ACTIVE;
5060 	ap->qc_active &= ~(1 << qc->tag);
5061 
5062 	/* call completion callback */
5063 	qc->complete_fn(qc);
5064 }
5065 
fill_result_tf(struct ata_queued_cmd * qc)5066 static void fill_result_tf(struct ata_queued_cmd *qc)
5067 {
5068 	struct ata_port *ap = qc->ap;
5069 
5070 	qc->result_tf.flags = qc->tf.flags;
5071 	ap->ops->qc_fill_rtf(qc);
5072 }
5073 
ata_verify_xfer(struct ata_queued_cmd * qc)5074 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5075 {
5076 	struct ata_device *dev = qc->dev;
5077 
5078 	if (!ata_is_data(qc->tf.protocol))
5079 		return;
5080 
5081 	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5082 		return;
5083 
5084 	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5085 }
5086 
5087 /**
5088  *	ata_qc_complete - Complete an active ATA command
5089  *	@qc: Command to complete
5090  *
5091  *	Indicate to the mid and upper layers that an ATA command has
5092  *	completed, with either an ok or not-ok status.
5093  *
5094  *	Refrain from calling this function multiple times when
5095  *	successfully completing multiple NCQ commands.
5096  *	ata_qc_complete_multiple() should be used instead, which will
5097  *	properly update IRQ expect state.
5098  *
5099  *	LOCKING:
5100  *	spin_lock_irqsave(host lock)
5101  */
ata_qc_complete(struct ata_queued_cmd * qc)5102 void ata_qc_complete(struct ata_queued_cmd *qc)
5103 {
5104 	struct ata_port *ap = qc->ap;
5105 
5106 	/* Trigger the LED (if available) */
5107 	ledtrig_disk_activity();
5108 
5109 	/* XXX: New EH and old EH use different mechanisms to
5110 	 * synchronize EH with regular execution path.
5111 	 *
5112 	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5113 	 * Normal execution path is responsible for not accessing a
5114 	 * failed qc.  libata core enforces the rule by returning NULL
5115 	 * from ata_qc_from_tag() for failed qcs.
5116 	 *
5117 	 * Old EH depends on ata_qc_complete() nullifying completion
5118 	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
5119 	 * not synchronize with interrupt handler.  Only PIO task is
5120 	 * taken care of.
5121 	 */
5122 	if (ap->ops->error_handler) {
5123 		struct ata_device *dev = qc->dev;
5124 		struct ata_eh_info *ehi = &dev->link->eh_info;
5125 
5126 		if (unlikely(qc->err_mask))
5127 			qc->flags |= ATA_QCFLAG_FAILED;
5128 
5129 		/*
5130 		 * Finish internal commands without any further processing
5131 		 * and always with the result TF filled.
5132 		 */
5133 		if (unlikely(ata_tag_internal(qc->tag))) {
5134 			fill_result_tf(qc);
5135 			trace_ata_qc_complete_internal(qc);
5136 			__ata_qc_complete(qc);
5137 			return;
5138 		}
5139 
5140 		/*
5141 		 * Non-internal qc has failed.  Fill the result TF and
5142 		 * summon EH.
5143 		 */
5144 		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5145 			fill_result_tf(qc);
5146 			trace_ata_qc_complete_failed(qc);
5147 			ata_qc_schedule_eh(qc);
5148 			return;
5149 		}
5150 
5151 		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5152 
5153 		/* read result TF if requested */
5154 		if (qc->flags & ATA_QCFLAG_RESULT_TF)
5155 			fill_result_tf(qc);
5156 
5157 		trace_ata_qc_complete_done(qc);
5158 		/* Some commands need post-processing after successful
5159 		 * completion.
5160 		 */
5161 		switch (qc->tf.command) {
5162 		case ATA_CMD_SET_FEATURES:
5163 			if (qc->tf.feature != SETFEATURES_WC_ON &&
5164 			    qc->tf.feature != SETFEATURES_WC_OFF &&
5165 			    qc->tf.feature != SETFEATURES_RA_ON &&
5166 			    qc->tf.feature != SETFEATURES_RA_OFF)
5167 				break;
5168 			/* fall through */
5169 		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5170 		case ATA_CMD_SET_MULTI: /* multi_count changed */
5171 			/* revalidate device */
5172 			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5173 			ata_port_schedule_eh(ap);
5174 			break;
5175 
5176 		case ATA_CMD_SLEEP:
5177 			dev->flags |= ATA_DFLAG_SLEEPING;
5178 			break;
5179 		}
5180 
5181 		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5182 			ata_verify_xfer(qc);
5183 
5184 		__ata_qc_complete(qc);
5185 	} else {
5186 		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5187 			return;
5188 
5189 		/* read result TF if failed or requested */
5190 		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5191 			fill_result_tf(qc);
5192 
5193 		__ata_qc_complete(qc);
5194 	}
5195 }
5196 
5197 /**
5198  *	ata_qc_complete_multiple - Complete multiple qcs successfully
5199  *	@ap: port in question
5200  *	@qc_active: new qc_active mask
5201  *
5202  *	Complete in-flight commands.  This functions is meant to be
5203  *	called from low-level driver's interrupt routine to complete
5204  *	requests normally.  ap->qc_active and @qc_active is compared
5205  *	and commands are completed accordingly.
5206  *
5207  *	Always use this function when completing multiple NCQ commands
5208  *	from IRQ handlers instead of calling ata_qc_complete()
5209  *	multiple times to keep IRQ expect status properly in sync.
5210  *
5211  *	LOCKING:
5212  *	spin_lock_irqsave(host lock)
5213  *
5214  *	RETURNS:
5215  *	Number of completed commands on success, -errno otherwise.
5216  */
ata_qc_complete_multiple(struct ata_port * ap,u32 qc_active)5217 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5218 {
5219 	int nr_done = 0;
5220 	u32 done_mask;
5221 
5222 	done_mask = ap->qc_active ^ qc_active;
5223 
5224 	if (unlikely(done_mask & qc_active)) {
5225 		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5226 			     ap->qc_active, qc_active);
5227 		return -EINVAL;
5228 	}
5229 
5230 	while (done_mask) {
5231 		struct ata_queued_cmd *qc;
5232 		unsigned int tag = __ffs(done_mask);
5233 
5234 		qc = ata_qc_from_tag(ap, tag);
5235 		if (qc) {
5236 			ata_qc_complete(qc);
5237 			nr_done++;
5238 		}
5239 		done_mask &= ~(1 << tag);
5240 	}
5241 
5242 	return nr_done;
5243 }
5244 
5245 /**
5246  *	ata_qc_issue - issue taskfile to device
5247  *	@qc: command to issue to device
5248  *
5249  *	Prepare an ATA command to submission to device.
5250  *	This includes mapping the data into a DMA-able
5251  *	area, filling in the S/G table, and finally
5252  *	writing the taskfile to hardware, starting the command.
5253  *
5254  *	LOCKING:
5255  *	spin_lock_irqsave(host lock)
5256  */
ata_qc_issue(struct ata_queued_cmd * qc)5257 void ata_qc_issue(struct ata_queued_cmd *qc)
5258 {
5259 	struct ata_port *ap = qc->ap;
5260 	struct ata_link *link = qc->dev->link;
5261 	u8 prot = qc->tf.protocol;
5262 
5263 	/* Make sure only one non-NCQ command is outstanding.  The
5264 	 * check is skipped for old EH because it reuses active qc to
5265 	 * request ATAPI sense.
5266 	 */
5267 	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5268 
5269 	if (ata_is_ncq(prot)) {
5270 		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5271 
5272 		if (!link->sactive)
5273 			ap->nr_active_links++;
5274 		link->sactive |= 1 << qc->tag;
5275 	} else {
5276 		WARN_ON_ONCE(link->sactive);
5277 
5278 		ap->nr_active_links++;
5279 		link->active_tag = qc->tag;
5280 	}
5281 
5282 	qc->flags |= ATA_QCFLAG_ACTIVE;
5283 	ap->qc_active |= 1 << qc->tag;
5284 
5285 	/*
5286 	 * We guarantee to LLDs that they will have at least one
5287 	 * non-zero sg if the command is a data command.
5288 	 */
5289 	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5290 		goto sys_err;
5291 
5292 	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5293 				 (ap->flags & ATA_FLAG_PIO_DMA)))
5294 		if (ata_sg_setup(qc))
5295 			goto sys_err;
5296 
5297 	/* if device is sleeping, schedule reset and abort the link */
5298 	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5299 		link->eh_info.action |= ATA_EH_RESET;
5300 		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5301 		ata_link_abort(link);
5302 		return;
5303 	}
5304 
5305 	ap->ops->qc_prep(qc);
5306 	trace_ata_qc_issue(qc);
5307 	qc->err_mask |= ap->ops->qc_issue(qc);
5308 	if (unlikely(qc->err_mask))
5309 		goto err;
5310 	return;
5311 
5312 sys_err:
5313 	qc->err_mask |= AC_ERR_SYSTEM;
5314 err:
5315 	ata_qc_complete(qc);
5316 }
5317 
5318 /**
5319  *	sata_scr_valid - test whether SCRs are accessible
5320  *	@link: ATA link to test SCR accessibility for
5321  *
5322  *	Test whether SCRs are accessible for @link.
5323  *
5324  *	LOCKING:
5325  *	None.
5326  *
5327  *	RETURNS:
5328  *	1 if SCRs are accessible, 0 otherwise.
5329  */
sata_scr_valid(struct ata_link * link)5330 int sata_scr_valid(struct ata_link *link)
5331 {
5332 	struct ata_port *ap = link->ap;
5333 
5334 	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5335 }
5336 
5337 /**
5338  *	sata_scr_read - read SCR register of the specified port
5339  *	@link: ATA link to read SCR for
5340  *	@reg: SCR to read
5341  *	@val: Place to store read value
5342  *
5343  *	Read SCR register @reg of @link into *@val.  This function is
5344  *	guaranteed to succeed if @link is ap->link, the cable type of
5345  *	the port is SATA and the port implements ->scr_read.
5346  *
5347  *	LOCKING:
5348  *	None if @link is ap->link.  Kernel thread context otherwise.
5349  *
5350  *	RETURNS:
5351  *	0 on success, negative errno on failure.
5352  */
sata_scr_read(struct ata_link * link,int reg,u32 * val)5353 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5354 {
5355 	if (ata_is_host_link(link)) {
5356 		if (sata_scr_valid(link))
5357 			return link->ap->ops->scr_read(link, reg, val);
5358 		return -EOPNOTSUPP;
5359 	}
5360 
5361 	return sata_pmp_scr_read(link, reg, val);
5362 }
5363 
5364 /**
5365  *	sata_scr_write - write SCR register of the specified port
5366  *	@link: ATA link to write SCR for
5367  *	@reg: SCR to write
5368  *	@val: value to write
5369  *
5370  *	Write @val to SCR register @reg of @link.  This function is
5371  *	guaranteed to succeed if @link is ap->link, the cable type of
5372  *	the port is SATA and the port implements ->scr_read.
5373  *
5374  *	LOCKING:
5375  *	None if @link is ap->link.  Kernel thread context otherwise.
5376  *
5377  *	RETURNS:
5378  *	0 on success, negative errno on failure.
5379  */
sata_scr_write(struct ata_link * link,int reg,u32 val)5380 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5381 {
5382 	if (ata_is_host_link(link)) {
5383 		if (sata_scr_valid(link))
5384 			return link->ap->ops->scr_write(link, reg, val);
5385 		return -EOPNOTSUPP;
5386 	}
5387 
5388 	return sata_pmp_scr_write(link, reg, val);
5389 }
5390 
5391 /**
5392  *	sata_scr_write_flush - write SCR register of the specified port and flush
5393  *	@link: ATA link to write SCR for
5394  *	@reg: SCR to write
5395  *	@val: value to write
5396  *
5397  *	This function is identical to sata_scr_write() except that this
5398  *	function performs flush after writing to the register.
5399  *
5400  *	LOCKING:
5401  *	None if @link is ap->link.  Kernel thread context otherwise.
5402  *
5403  *	RETURNS:
5404  *	0 on success, negative errno on failure.
5405  */
sata_scr_write_flush(struct ata_link * link,int reg,u32 val)5406 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5407 {
5408 	if (ata_is_host_link(link)) {
5409 		int rc;
5410 
5411 		if (sata_scr_valid(link)) {
5412 			rc = link->ap->ops->scr_write(link, reg, val);
5413 			if (rc == 0)
5414 				rc = link->ap->ops->scr_read(link, reg, &val);
5415 			return rc;
5416 		}
5417 		return -EOPNOTSUPP;
5418 	}
5419 
5420 	return sata_pmp_scr_write(link, reg, val);
5421 }
5422 
5423 /**
5424  *	ata_phys_link_online - test whether the given link is online
5425  *	@link: ATA link to test
5426  *
5427  *	Test whether @link is online.  Note that this function returns
5428  *	0 if online status of @link cannot be obtained, so
5429  *	ata_link_online(link) != !ata_link_offline(link).
5430  *
5431  *	LOCKING:
5432  *	None.
5433  *
5434  *	RETURNS:
5435  *	True if the port online status is available and online.
5436  */
ata_phys_link_online(struct ata_link * link)5437 bool ata_phys_link_online(struct ata_link *link)
5438 {
5439 	u32 sstatus;
5440 
5441 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5442 	    ata_sstatus_online(sstatus))
5443 		return true;
5444 	return false;
5445 }
5446 
5447 /**
5448  *	ata_phys_link_offline - test whether the given link is offline
5449  *	@link: ATA link to test
5450  *
5451  *	Test whether @link is offline.  Note that this function
5452  *	returns 0 if offline status of @link cannot be obtained, so
5453  *	ata_link_online(link) != !ata_link_offline(link).
5454  *
5455  *	LOCKING:
5456  *	None.
5457  *
5458  *	RETURNS:
5459  *	True if the port offline status is available and offline.
5460  */
ata_phys_link_offline(struct ata_link * link)5461 bool ata_phys_link_offline(struct ata_link *link)
5462 {
5463 	u32 sstatus;
5464 
5465 	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5466 	    !ata_sstatus_online(sstatus))
5467 		return true;
5468 	return false;
5469 }
5470 
5471 /**
5472  *	ata_link_online - test whether the given link is online
5473  *	@link: ATA link to test
5474  *
5475  *	Test whether @link is online.  This is identical to
5476  *	ata_phys_link_online() when there's no slave link.  When
5477  *	there's a slave link, this function should only be called on
5478  *	the master link and will return true if any of M/S links is
5479  *	online.
5480  *
5481  *	LOCKING:
5482  *	None.
5483  *
5484  *	RETURNS:
5485  *	True if the port online status is available and online.
5486  */
ata_link_online(struct ata_link * link)5487 bool ata_link_online(struct ata_link *link)
5488 {
5489 	struct ata_link *slave = link->ap->slave_link;
5490 
5491 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5492 
5493 	return ata_phys_link_online(link) ||
5494 		(slave && ata_phys_link_online(slave));
5495 }
5496 
5497 /**
5498  *	ata_link_offline - test whether the given link is offline
5499  *	@link: ATA link to test
5500  *
5501  *	Test whether @link is offline.  This is identical to
5502  *	ata_phys_link_offline() when there's no slave link.  When
5503  *	there's a slave link, this function should only be called on
5504  *	the master link and will return true if both M/S links are
5505  *	offline.
5506  *
5507  *	LOCKING:
5508  *	None.
5509  *
5510  *	RETURNS:
5511  *	True if the port offline status is available and offline.
5512  */
ata_link_offline(struct ata_link * link)5513 bool ata_link_offline(struct ata_link *link)
5514 {
5515 	struct ata_link *slave = link->ap->slave_link;
5516 
5517 	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5518 
5519 	return ata_phys_link_offline(link) &&
5520 		(!slave || ata_phys_link_offline(slave));
5521 }
5522 
5523 #ifdef CONFIG_PM
ata_port_request_pm(struct ata_port * ap,pm_message_t mesg,unsigned int action,unsigned int ehi_flags,bool async)5524 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5525 				unsigned int action, unsigned int ehi_flags,
5526 				bool async)
5527 {
5528 	struct ata_link *link;
5529 	unsigned long flags;
5530 
5531 	/* Previous resume operation might still be in
5532 	 * progress.  Wait for PM_PENDING to clear.
5533 	 */
5534 	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5535 		ata_port_wait_eh(ap);
5536 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5537 	}
5538 
5539 	/* request PM ops to EH */
5540 	spin_lock_irqsave(ap->lock, flags);
5541 
5542 	ap->pm_mesg = mesg;
5543 	ap->pflags |= ATA_PFLAG_PM_PENDING;
5544 	ata_for_each_link(link, ap, HOST_FIRST) {
5545 		link->eh_info.action |= action;
5546 		link->eh_info.flags |= ehi_flags;
5547 	}
5548 
5549 	ata_port_schedule_eh(ap);
5550 
5551 	spin_unlock_irqrestore(ap->lock, flags);
5552 
5553 	if (!async) {
5554 		ata_port_wait_eh(ap);
5555 		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5556 	}
5557 }
5558 
5559 /*
5560  * On some hardware, device fails to respond after spun down for suspend.  As
5561  * the device won't be used before being resumed, we don't need to touch the
5562  * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5563  *
5564  * http://thread.gmane.org/gmane.linux.ide/46764
5565  */
5566 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5567 						 | ATA_EHI_NO_AUTOPSY
5568 						 | ATA_EHI_NO_RECOVERY;
5569 
ata_port_suspend(struct ata_port * ap,pm_message_t mesg)5570 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5571 {
5572 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5573 }
5574 
ata_port_suspend_async(struct ata_port * ap,pm_message_t mesg)5575 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5576 {
5577 	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5578 }
5579 
ata_port_pm_suspend(struct device * dev)5580 static int ata_port_pm_suspend(struct device *dev)
5581 {
5582 	struct ata_port *ap = to_ata_port(dev);
5583 
5584 	if (pm_runtime_suspended(dev))
5585 		return 0;
5586 
5587 	ata_port_suspend(ap, PMSG_SUSPEND);
5588 	return 0;
5589 }
5590 
ata_port_pm_freeze(struct device * dev)5591 static int ata_port_pm_freeze(struct device *dev)
5592 {
5593 	struct ata_port *ap = to_ata_port(dev);
5594 
5595 	if (pm_runtime_suspended(dev))
5596 		return 0;
5597 
5598 	ata_port_suspend(ap, PMSG_FREEZE);
5599 	return 0;
5600 }
5601 
ata_port_pm_poweroff(struct device * dev)5602 static int ata_port_pm_poweroff(struct device *dev)
5603 {
5604 	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5605 	return 0;
5606 }
5607 
5608 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5609 						| ATA_EHI_QUIET;
5610 
ata_port_resume(struct ata_port * ap,pm_message_t mesg)5611 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5612 {
5613 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5614 }
5615 
ata_port_resume_async(struct ata_port * ap,pm_message_t mesg)5616 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5617 {
5618 	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5619 }
5620 
ata_port_pm_resume(struct device * dev)5621 static int ata_port_pm_resume(struct device *dev)
5622 {
5623 	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5624 	pm_runtime_disable(dev);
5625 	pm_runtime_set_active(dev);
5626 	pm_runtime_enable(dev);
5627 	return 0;
5628 }
5629 
5630 /*
5631  * For ODDs, the upper layer will poll for media change every few seconds,
5632  * which will make it enter and leave suspend state every few seconds. And
5633  * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5634  * is very little and the ODD may malfunction after constantly being reset.
5635  * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5636  * ODD is attached to the port.
5637  */
ata_port_runtime_idle(struct device * dev)5638 static int ata_port_runtime_idle(struct device *dev)
5639 {
5640 	struct ata_port *ap = to_ata_port(dev);
5641 	struct ata_link *link;
5642 	struct ata_device *adev;
5643 
5644 	ata_for_each_link(link, ap, HOST_FIRST) {
5645 		ata_for_each_dev(adev, link, ENABLED)
5646 			if (adev->class == ATA_DEV_ATAPI &&
5647 			    !zpodd_dev_enabled(adev))
5648 				return -EBUSY;
5649 	}
5650 
5651 	return 0;
5652 }
5653 
ata_port_runtime_suspend(struct device * dev)5654 static int ata_port_runtime_suspend(struct device *dev)
5655 {
5656 	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5657 	return 0;
5658 }
5659 
ata_port_runtime_resume(struct device * dev)5660 static int ata_port_runtime_resume(struct device *dev)
5661 {
5662 	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5663 	return 0;
5664 }
5665 
5666 static const struct dev_pm_ops ata_port_pm_ops = {
5667 	.suspend = ata_port_pm_suspend,
5668 	.resume = ata_port_pm_resume,
5669 	.freeze = ata_port_pm_freeze,
5670 	.thaw = ata_port_pm_resume,
5671 	.poweroff = ata_port_pm_poweroff,
5672 	.restore = ata_port_pm_resume,
5673 
5674 	.runtime_suspend = ata_port_runtime_suspend,
5675 	.runtime_resume = ata_port_runtime_resume,
5676 	.runtime_idle = ata_port_runtime_idle,
5677 };
5678 
5679 /* sas ports don't participate in pm runtime management of ata_ports,
5680  * and need to resume ata devices at the domain level, not the per-port
5681  * level. sas suspend/resume is async to allow parallel port recovery
5682  * since sas has multiple ata_port instances per Scsi_Host.
5683  */
ata_sas_port_suspend(struct ata_port * ap)5684 void ata_sas_port_suspend(struct ata_port *ap)
5685 {
5686 	ata_port_suspend_async(ap, PMSG_SUSPEND);
5687 }
5688 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5689 
ata_sas_port_resume(struct ata_port * ap)5690 void ata_sas_port_resume(struct ata_port *ap)
5691 {
5692 	ata_port_resume_async(ap, PMSG_RESUME);
5693 }
5694 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5695 
5696 /**
5697  *	ata_host_suspend - suspend host
5698  *	@host: host to suspend
5699  *	@mesg: PM message
5700  *
5701  *	Suspend @host.  Actual operation is performed by port suspend.
5702  */
ata_host_suspend(struct ata_host * host,pm_message_t mesg)5703 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5704 {
5705 	host->dev->power.power_state = mesg;
5706 	return 0;
5707 }
5708 
5709 /**
5710  *	ata_host_resume - resume host
5711  *	@host: host to resume
5712  *
5713  *	Resume @host.  Actual operation is performed by port resume.
5714  */
ata_host_resume(struct ata_host * host)5715 void ata_host_resume(struct ata_host *host)
5716 {
5717 	host->dev->power.power_state = PMSG_ON;
5718 }
5719 #endif
5720 
5721 struct device_type ata_port_type = {
5722 	.name = "ata_port",
5723 #ifdef CONFIG_PM
5724 	.pm = &ata_port_pm_ops,
5725 #endif
5726 };
5727 
5728 /**
5729  *	ata_dev_init - Initialize an ata_device structure
5730  *	@dev: Device structure to initialize
5731  *
5732  *	Initialize @dev in preparation for probing.
5733  *
5734  *	LOCKING:
5735  *	Inherited from caller.
5736  */
ata_dev_init(struct ata_device * dev)5737 void ata_dev_init(struct ata_device *dev)
5738 {
5739 	struct ata_link *link = ata_dev_phys_link(dev);
5740 	struct ata_port *ap = link->ap;
5741 	unsigned long flags;
5742 
5743 	/* SATA spd limit is bound to the attached device, reset together */
5744 	link->sata_spd_limit = link->hw_sata_spd_limit;
5745 	link->sata_spd = 0;
5746 
5747 	/* High bits of dev->flags are used to record warm plug
5748 	 * requests which occur asynchronously.  Synchronize using
5749 	 * host lock.
5750 	 */
5751 	spin_lock_irqsave(ap->lock, flags);
5752 	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5753 	dev->horkage = 0;
5754 	spin_unlock_irqrestore(ap->lock, flags);
5755 
5756 	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5757 	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5758 	dev->pio_mask = UINT_MAX;
5759 	dev->mwdma_mask = UINT_MAX;
5760 	dev->udma_mask = UINT_MAX;
5761 }
5762 
5763 /**
5764  *	ata_link_init - Initialize an ata_link structure
5765  *	@ap: ATA port link is attached to
5766  *	@link: Link structure to initialize
5767  *	@pmp: Port multiplier port number
5768  *
5769  *	Initialize @link.
5770  *
5771  *	LOCKING:
5772  *	Kernel thread context (may sleep)
5773  */
ata_link_init(struct ata_port * ap,struct ata_link * link,int pmp)5774 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5775 {
5776 	int i;
5777 
5778 	/* clear everything except for devices */
5779 	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5780 	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5781 
5782 	link->ap = ap;
5783 	link->pmp = pmp;
5784 	link->active_tag = ATA_TAG_POISON;
5785 	link->hw_sata_spd_limit = UINT_MAX;
5786 
5787 	/* can't use iterator, ap isn't initialized yet */
5788 	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5789 		struct ata_device *dev = &link->device[i];
5790 
5791 		dev->link = link;
5792 		dev->devno = dev - link->device;
5793 #ifdef CONFIG_ATA_ACPI
5794 		dev->gtf_filter = ata_acpi_gtf_filter;
5795 #endif
5796 		ata_dev_init(dev);
5797 	}
5798 }
5799 
5800 /**
5801  *	sata_link_init_spd - Initialize link->sata_spd_limit
5802  *	@link: Link to configure sata_spd_limit for
5803  *
5804  *	Initialize @link->[hw_]sata_spd_limit to the currently
5805  *	configured value.
5806  *
5807  *	LOCKING:
5808  *	Kernel thread context (may sleep).
5809  *
5810  *	RETURNS:
5811  *	0 on success, -errno on failure.
5812  */
sata_link_init_spd(struct ata_link * link)5813 int sata_link_init_spd(struct ata_link *link)
5814 {
5815 	u8 spd;
5816 	int rc;
5817 
5818 	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5819 	if (rc)
5820 		return rc;
5821 
5822 	spd = (link->saved_scontrol >> 4) & 0xf;
5823 	if (spd)
5824 		link->hw_sata_spd_limit &= (1 << spd) - 1;
5825 
5826 	ata_force_link_limits(link);
5827 
5828 	link->sata_spd_limit = link->hw_sata_spd_limit;
5829 
5830 	return 0;
5831 }
5832 
5833 /**
5834  *	ata_port_alloc - allocate and initialize basic ATA port resources
5835  *	@host: ATA host this allocated port belongs to
5836  *
5837  *	Allocate and initialize basic ATA port resources.
5838  *
5839  *	RETURNS:
5840  *	Allocate ATA port on success, NULL on failure.
5841  *
5842  *	LOCKING:
5843  *	Inherited from calling layer (may sleep).
5844  */
ata_port_alloc(struct ata_host * host)5845 struct ata_port *ata_port_alloc(struct ata_host *host)
5846 {
5847 	struct ata_port *ap;
5848 
5849 	DPRINTK("ENTER\n");
5850 
5851 	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5852 	if (!ap)
5853 		return NULL;
5854 
5855 	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5856 	ap->lock = &host->lock;
5857 	ap->print_id = -1;
5858 	ap->local_port_no = -1;
5859 	ap->host = host;
5860 	ap->dev = host->dev;
5861 
5862 #if defined(ATA_VERBOSE_DEBUG)
5863 	/* turn on all debugging levels */
5864 	ap->msg_enable = 0x00FF;
5865 #elif defined(ATA_DEBUG)
5866 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5867 #else
5868 	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5869 #endif
5870 
5871 	mutex_init(&ap->scsi_scan_mutex);
5872 	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5873 	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5874 	INIT_LIST_HEAD(&ap->eh_done_q);
5875 	init_waitqueue_head(&ap->eh_wait_q);
5876 	init_completion(&ap->park_req_pending);
5877 	init_timer_deferrable(&ap->fastdrain_timer);
5878 	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5879 	ap->fastdrain_timer.data = (unsigned long)ap;
5880 
5881 	ap->cbl = ATA_CBL_NONE;
5882 
5883 	ata_link_init(ap, &ap->link, 0);
5884 
5885 #ifdef ATA_IRQ_TRAP
5886 	ap->stats.unhandled_irq = 1;
5887 	ap->stats.idle_irq = 1;
5888 #endif
5889 	ata_sff_port_init(ap);
5890 
5891 	return ap;
5892 }
5893 
ata_host_release(struct device * gendev,void * res)5894 static void ata_host_release(struct device *gendev, void *res)
5895 {
5896 	struct ata_host *host = dev_get_drvdata(gendev);
5897 	int i;
5898 
5899 	for (i = 0; i < host->n_ports; i++) {
5900 		struct ata_port *ap = host->ports[i];
5901 
5902 		if (!ap)
5903 			continue;
5904 
5905 		if (ap->scsi_host)
5906 			scsi_host_put(ap->scsi_host);
5907 
5908 		kfree(ap->pmp_link);
5909 		kfree(ap->slave_link);
5910 		kfree(ap);
5911 		host->ports[i] = NULL;
5912 	}
5913 
5914 	dev_set_drvdata(gendev, NULL);
5915 }
5916 
5917 /**
5918  *	ata_host_alloc - allocate and init basic ATA host resources
5919  *	@dev: generic device this host is associated with
5920  *	@max_ports: maximum number of ATA ports associated with this host
5921  *
5922  *	Allocate and initialize basic ATA host resources.  LLD calls
5923  *	this function to allocate a host, initializes it fully and
5924  *	attaches it using ata_host_register().
5925  *
5926  *	@max_ports ports are allocated and host->n_ports is
5927  *	initialized to @max_ports.  The caller is allowed to decrease
5928  *	host->n_ports before calling ata_host_register().  The unused
5929  *	ports will be automatically freed on registration.
5930  *
5931  *	RETURNS:
5932  *	Allocate ATA host on success, NULL on failure.
5933  *
5934  *	LOCKING:
5935  *	Inherited from calling layer (may sleep).
5936  */
ata_host_alloc(struct device * dev,int max_ports)5937 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5938 {
5939 	struct ata_host *host;
5940 	size_t sz;
5941 	int i;
5942 
5943 	DPRINTK("ENTER\n");
5944 
5945 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5946 		return NULL;
5947 
5948 	/* alloc a container for our list of ATA ports (buses) */
5949 	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5950 	/* alloc a container for our list of ATA ports (buses) */
5951 	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5952 	if (!host)
5953 		goto err_out;
5954 
5955 	devres_add(dev, host);
5956 	dev_set_drvdata(dev, host);
5957 
5958 	spin_lock_init(&host->lock);
5959 	mutex_init(&host->eh_mutex);
5960 	host->dev = dev;
5961 	host->n_ports = max_ports;
5962 
5963 	/* allocate ports bound to this host */
5964 	for (i = 0; i < max_ports; i++) {
5965 		struct ata_port *ap;
5966 
5967 		ap = ata_port_alloc(host);
5968 		if (!ap)
5969 			goto err_out;
5970 
5971 		ap->port_no = i;
5972 		host->ports[i] = ap;
5973 	}
5974 
5975 	devres_remove_group(dev, NULL);
5976 	return host;
5977 
5978  err_out:
5979 	devres_release_group(dev, NULL);
5980 	return NULL;
5981 }
5982 
5983 /**
5984  *	ata_host_alloc_pinfo - alloc host and init with port_info array
5985  *	@dev: generic device this host is associated with
5986  *	@ppi: array of ATA port_info to initialize host with
5987  *	@n_ports: number of ATA ports attached to this host
5988  *
5989  *	Allocate ATA host and initialize with info from @ppi.  If NULL
5990  *	terminated, @ppi may contain fewer entries than @n_ports.  The
5991  *	last entry will be used for the remaining ports.
5992  *
5993  *	RETURNS:
5994  *	Allocate ATA host on success, NULL on failure.
5995  *
5996  *	LOCKING:
5997  *	Inherited from calling layer (may sleep).
5998  */
ata_host_alloc_pinfo(struct device * dev,const struct ata_port_info * const * ppi,int n_ports)5999 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6000 				      const struct ata_port_info * const * ppi,
6001 				      int n_ports)
6002 {
6003 	const struct ata_port_info *pi;
6004 	struct ata_host *host;
6005 	int i, j;
6006 
6007 	host = ata_host_alloc(dev, n_ports);
6008 	if (!host)
6009 		return NULL;
6010 
6011 	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6012 		struct ata_port *ap = host->ports[i];
6013 
6014 		if (ppi[j])
6015 			pi = ppi[j++];
6016 
6017 		ap->pio_mask = pi->pio_mask;
6018 		ap->mwdma_mask = pi->mwdma_mask;
6019 		ap->udma_mask = pi->udma_mask;
6020 		ap->flags |= pi->flags;
6021 		ap->link.flags |= pi->link_flags;
6022 		ap->ops = pi->port_ops;
6023 
6024 		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6025 			host->ops = pi->port_ops;
6026 	}
6027 
6028 	return host;
6029 }
6030 
6031 /**
6032  *	ata_slave_link_init - initialize slave link
6033  *	@ap: port to initialize slave link for
6034  *
6035  *	Create and initialize slave link for @ap.  This enables slave
6036  *	link handling on the port.
6037  *
6038  *	In libata, a port contains links and a link contains devices.
6039  *	There is single host link but if a PMP is attached to it,
6040  *	there can be multiple fan-out links.  On SATA, there's usually
6041  *	a single device connected to a link but PATA and SATA
6042  *	controllers emulating TF based interface can have two - master
6043  *	and slave.
6044  *
6045  *	However, there are a few controllers which don't fit into this
6046  *	abstraction too well - SATA controllers which emulate TF
6047  *	interface with both master and slave devices but also have
6048  *	separate SCR register sets for each device.  These controllers
6049  *	need separate links for physical link handling
6050  *	(e.g. onlineness, link speed) but should be treated like a
6051  *	traditional M/S controller for everything else (e.g. command
6052  *	issue, softreset).
6053  *
6054  *	slave_link is libata's way of handling this class of
6055  *	controllers without impacting core layer too much.  For
6056  *	anything other than physical link handling, the default host
6057  *	link is used for both master and slave.  For physical link
6058  *	handling, separate @ap->slave_link is used.  All dirty details
6059  *	are implemented inside libata core layer.  From LLD's POV, the
6060  *	only difference is that prereset, hardreset and postreset are
6061  *	called once more for the slave link, so the reset sequence
6062  *	looks like the following.
6063  *
6064  *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6065  *	softreset(M) -> postreset(M) -> postreset(S)
6066  *
6067  *	Note that softreset is called only for the master.  Softreset
6068  *	resets both M/S by definition, so SRST on master should handle
6069  *	both (the standard method will work just fine).
6070  *
6071  *	LOCKING:
6072  *	Should be called before host is registered.
6073  *
6074  *	RETURNS:
6075  *	0 on success, -errno on failure.
6076  */
ata_slave_link_init(struct ata_port * ap)6077 int ata_slave_link_init(struct ata_port *ap)
6078 {
6079 	struct ata_link *link;
6080 
6081 	WARN_ON(ap->slave_link);
6082 	WARN_ON(ap->flags & ATA_FLAG_PMP);
6083 
6084 	link = kzalloc(sizeof(*link), GFP_KERNEL);
6085 	if (!link)
6086 		return -ENOMEM;
6087 
6088 	ata_link_init(ap, link, 1);
6089 	ap->slave_link = link;
6090 	return 0;
6091 }
6092 
ata_host_stop(struct device * gendev,void * res)6093 static void ata_host_stop(struct device *gendev, void *res)
6094 {
6095 	struct ata_host *host = dev_get_drvdata(gendev);
6096 	int i;
6097 
6098 	WARN_ON(!(host->flags & ATA_HOST_STARTED));
6099 
6100 	for (i = 0; i < host->n_ports; i++) {
6101 		struct ata_port *ap = host->ports[i];
6102 
6103 		if (ap->ops->port_stop)
6104 			ap->ops->port_stop(ap);
6105 	}
6106 
6107 	if (host->ops->host_stop)
6108 		host->ops->host_stop(host);
6109 }
6110 
6111 /**
6112  *	ata_finalize_port_ops - finalize ata_port_operations
6113  *	@ops: ata_port_operations to finalize
6114  *
6115  *	An ata_port_operations can inherit from another ops and that
6116  *	ops can again inherit from another.  This can go on as many
6117  *	times as necessary as long as there is no loop in the
6118  *	inheritance chain.
6119  *
6120  *	Ops tables are finalized when the host is started.  NULL or
6121  *	unspecified entries are inherited from the closet ancestor
6122  *	which has the method and the entry is populated with it.
6123  *	After finalization, the ops table directly points to all the
6124  *	methods and ->inherits is no longer necessary and cleared.
6125  *
6126  *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6127  *
6128  *	LOCKING:
6129  *	None.
6130  */
ata_finalize_port_ops(struct ata_port_operations * ops)6131 static void ata_finalize_port_ops(struct ata_port_operations *ops)
6132 {
6133 	static DEFINE_SPINLOCK(lock);
6134 	const struct ata_port_operations *cur;
6135 	void **begin = (void **)ops;
6136 	void **end = (void **)&ops->inherits;
6137 	void **pp;
6138 
6139 	if (!ops || !ops->inherits)
6140 		return;
6141 
6142 	spin_lock(&lock);
6143 
6144 	for (cur = ops->inherits; cur; cur = cur->inherits) {
6145 		void **inherit = (void **)cur;
6146 
6147 		for (pp = begin; pp < end; pp++, inherit++)
6148 			if (!*pp)
6149 				*pp = *inherit;
6150 	}
6151 
6152 	for (pp = begin; pp < end; pp++)
6153 		if (IS_ERR(*pp))
6154 			*pp = NULL;
6155 
6156 	ops->inherits = NULL;
6157 
6158 	spin_unlock(&lock);
6159 }
6160 
6161 /**
6162  *	ata_host_start - start and freeze ports of an ATA host
6163  *	@host: ATA host to start ports for
6164  *
6165  *	Start and then freeze ports of @host.  Started status is
6166  *	recorded in host->flags, so this function can be called
6167  *	multiple times.  Ports are guaranteed to get started only
6168  *	once.  If host->ops isn't initialized yet, its set to the
6169  *	first non-dummy port ops.
6170  *
6171  *	LOCKING:
6172  *	Inherited from calling layer (may sleep).
6173  *
6174  *	RETURNS:
6175  *	0 if all ports are started successfully, -errno otherwise.
6176  */
ata_host_start(struct ata_host * host)6177 int ata_host_start(struct ata_host *host)
6178 {
6179 	int have_stop = 0;
6180 	void *start_dr = NULL;
6181 	int i, rc;
6182 
6183 	if (host->flags & ATA_HOST_STARTED)
6184 		return 0;
6185 
6186 	ata_finalize_port_ops(host->ops);
6187 
6188 	for (i = 0; i < host->n_ports; i++) {
6189 		struct ata_port *ap = host->ports[i];
6190 
6191 		ata_finalize_port_ops(ap->ops);
6192 
6193 		if (!host->ops && !ata_port_is_dummy(ap))
6194 			host->ops = ap->ops;
6195 
6196 		if (ap->ops->port_stop)
6197 			have_stop = 1;
6198 	}
6199 
6200 	if (host->ops->host_stop)
6201 		have_stop = 1;
6202 
6203 	if (have_stop) {
6204 		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6205 		if (!start_dr)
6206 			return -ENOMEM;
6207 	}
6208 
6209 	for (i = 0; i < host->n_ports; i++) {
6210 		struct ata_port *ap = host->ports[i];
6211 
6212 		if (ap->ops->port_start) {
6213 			rc = ap->ops->port_start(ap);
6214 			if (rc) {
6215 				if (rc != -ENODEV)
6216 					dev_err(host->dev,
6217 						"failed to start port %d (errno=%d)\n",
6218 						i, rc);
6219 				goto err_out;
6220 			}
6221 		}
6222 		ata_eh_freeze_port(ap);
6223 	}
6224 
6225 	if (start_dr)
6226 		devres_add(host->dev, start_dr);
6227 	host->flags |= ATA_HOST_STARTED;
6228 	return 0;
6229 
6230  err_out:
6231 	while (--i >= 0) {
6232 		struct ata_port *ap = host->ports[i];
6233 
6234 		if (ap->ops->port_stop)
6235 			ap->ops->port_stop(ap);
6236 	}
6237 	devres_free(start_dr);
6238 	return rc;
6239 }
6240 
6241 /**
6242  *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6243  *	@host:	host to initialize
6244  *	@dev:	device host is attached to
6245  *	@ops:	port_ops
6246  *
6247  */
ata_host_init(struct ata_host * host,struct device * dev,struct ata_port_operations * ops)6248 void ata_host_init(struct ata_host *host, struct device *dev,
6249 		   struct ata_port_operations *ops)
6250 {
6251 	spin_lock_init(&host->lock);
6252 	mutex_init(&host->eh_mutex);
6253 	host->n_tags = ATA_MAX_QUEUE - 1;
6254 	host->dev = dev;
6255 	host->ops = ops;
6256 }
6257 
__ata_port_probe(struct ata_port * ap)6258 void __ata_port_probe(struct ata_port *ap)
6259 {
6260 	struct ata_eh_info *ehi = &ap->link.eh_info;
6261 	unsigned long flags;
6262 
6263 	/* kick EH for boot probing */
6264 	spin_lock_irqsave(ap->lock, flags);
6265 
6266 	ehi->probe_mask |= ATA_ALL_DEVICES;
6267 	ehi->action |= ATA_EH_RESET;
6268 	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6269 
6270 	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6271 	ap->pflags |= ATA_PFLAG_LOADING;
6272 	ata_port_schedule_eh(ap);
6273 
6274 	spin_unlock_irqrestore(ap->lock, flags);
6275 }
6276 
ata_port_probe(struct ata_port * ap)6277 int ata_port_probe(struct ata_port *ap)
6278 {
6279 	int rc = 0;
6280 
6281 	if (ap->ops->error_handler) {
6282 		__ata_port_probe(ap);
6283 		ata_port_wait_eh(ap);
6284 	} else {
6285 		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6286 		rc = ata_bus_probe(ap);
6287 		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6288 	}
6289 	return rc;
6290 }
6291 
6292 
async_port_probe(void * data,async_cookie_t cookie)6293 static void async_port_probe(void *data, async_cookie_t cookie)
6294 {
6295 	struct ata_port *ap = data;
6296 
6297 	/*
6298 	 * If we're not allowed to scan this host in parallel,
6299 	 * we need to wait until all previous scans have completed
6300 	 * before going further.
6301 	 * Jeff Garzik says this is only within a controller, so we
6302 	 * don't need to wait for port 0, only for later ports.
6303 	 */
6304 	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6305 		async_synchronize_cookie(cookie);
6306 
6307 	(void)ata_port_probe(ap);
6308 
6309 	/* in order to keep device order, we need to synchronize at this point */
6310 	async_synchronize_cookie(cookie);
6311 
6312 	ata_scsi_scan_host(ap, 1);
6313 }
6314 
6315 /**
6316  *	ata_host_register - register initialized ATA host
6317  *	@host: ATA host to register
6318  *	@sht: template for SCSI host
6319  *
6320  *	Register initialized ATA host.  @host is allocated using
6321  *	ata_host_alloc() and fully initialized by LLD.  This function
6322  *	starts ports, registers @host with ATA and SCSI layers and
6323  *	probe registered devices.
6324  *
6325  *	LOCKING:
6326  *	Inherited from calling layer (may sleep).
6327  *
6328  *	RETURNS:
6329  *	0 on success, -errno otherwise.
6330  */
ata_host_register(struct ata_host * host,struct scsi_host_template * sht)6331 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6332 {
6333 	int i, rc;
6334 
6335 	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6336 
6337 	/* host must have been started */
6338 	if (!(host->flags & ATA_HOST_STARTED)) {
6339 		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6340 		WARN_ON(1);
6341 		return -EINVAL;
6342 	}
6343 
6344 	/* Blow away unused ports.  This happens when LLD can't
6345 	 * determine the exact number of ports to allocate at
6346 	 * allocation time.
6347 	 */
6348 	for (i = host->n_ports; host->ports[i]; i++)
6349 		kfree(host->ports[i]);
6350 
6351 	/* give ports names and add SCSI hosts */
6352 	for (i = 0; i < host->n_ports; i++) {
6353 		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6354 		host->ports[i]->local_port_no = i + 1;
6355 	}
6356 
6357 	/* Create associated sysfs transport objects  */
6358 	for (i = 0; i < host->n_ports; i++) {
6359 		rc = ata_tport_add(host->dev,host->ports[i]);
6360 		if (rc) {
6361 			goto err_tadd;
6362 		}
6363 	}
6364 
6365 	rc = ata_scsi_add_hosts(host, sht);
6366 	if (rc)
6367 		goto err_tadd;
6368 
6369 	/* set cable, sata_spd_limit and report */
6370 	for (i = 0; i < host->n_ports; i++) {
6371 		struct ata_port *ap = host->ports[i];
6372 		unsigned long xfer_mask;
6373 
6374 		/* set SATA cable type if still unset */
6375 		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6376 			ap->cbl = ATA_CBL_SATA;
6377 
6378 		/* init sata_spd_limit to the current value */
6379 		sata_link_init_spd(&ap->link);
6380 		if (ap->slave_link)
6381 			sata_link_init_spd(ap->slave_link);
6382 
6383 		/* print per-port info to dmesg */
6384 		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6385 					      ap->udma_mask);
6386 
6387 		if (!ata_port_is_dummy(ap)) {
6388 			ata_port_info(ap, "%cATA max %s %s\n",
6389 				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6390 				      ata_mode_string(xfer_mask),
6391 				      ap->link.eh_info.desc);
6392 			ata_ehi_clear_desc(&ap->link.eh_info);
6393 		} else
6394 			ata_port_info(ap, "DUMMY\n");
6395 	}
6396 
6397 	/* perform each probe asynchronously */
6398 	for (i = 0; i < host->n_ports; i++) {
6399 		struct ata_port *ap = host->ports[i];
6400 		async_schedule(async_port_probe, ap);
6401 	}
6402 
6403 	return 0;
6404 
6405  err_tadd:
6406 	while (--i >= 0) {
6407 		ata_tport_delete(host->ports[i]);
6408 	}
6409 	return rc;
6410 
6411 }
6412 
6413 /**
6414  *	ata_host_activate - start host, request IRQ and register it
6415  *	@host: target ATA host
6416  *	@irq: IRQ to request
6417  *	@irq_handler: irq_handler used when requesting IRQ
6418  *	@irq_flags: irq_flags used when requesting IRQ
6419  *	@sht: scsi_host_template to use when registering the host
6420  *
6421  *	After allocating an ATA host and initializing it, most libata
6422  *	LLDs perform three steps to activate the host - start host,
6423  *	request IRQ and register it.  This helper takes necessary
6424  *	arguments and performs the three steps in one go.
6425  *
6426  *	An invalid IRQ skips the IRQ registration and expects the host to
6427  *	have set polling mode on the port. In this case, @irq_handler
6428  *	should be NULL.
6429  *
6430  *	LOCKING:
6431  *	Inherited from calling layer (may sleep).
6432  *
6433  *	RETURNS:
6434  *	0 on success, -errno otherwise.
6435  */
ata_host_activate(struct ata_host * host,int irq,irq_handler_t irq_handler,unsigned long irq_flags,struct scsi_host_template * sht)6436 int ata_host_activate(struct ata_host *host, int irq,
6437 		      irq_handler_t irq_handler, unsigned long irq_flags,
6438 		      struct scsi_host_template *sht)
6439 {
6440 	int i, rc;
6441 	char *irq_desc;
6442 
6443 	rc = ata_host_start(host);
6444 	if (rc)
6445 		return rc;
6446 
6447 	/* Special case for polling mode */
6448 	if (!irq) {
6449 		WARN_ON(irq_handler);
6450 		return ata_host_register(host, sht);
6451 	}
6452 
6453 	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6454 				  dev_driver_string(host->dev),
6455 				  dev_name(host->dev));
6456 	if (!irq_desc)
6457 		return -ENOMEM;
6458 
6459 	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6460 			      irq_desc, host);
6461 	if (rc)
6462 		return rc;
6463 
6464 	for (i = 0; i < host->n_ports; i++)
6465 		ata_port_desc(host->ports[i], "irq %d", irq);
6466 
6467 	rc = ata_host_register(host, sht);
6468 	/* if failed, just free the IRQ and leave ports alone */
6469 	if (rc)
6470 		devm_free_irq(host->dev, irq, host);
6471 
6472 	return rc;
6473 }
6474 
6475 /**
6476  *	ata_port_detach - Detach ATA port in preparation of device removal
6477  *	@ap: ATA port to be detached
6478  *
6479  *	Detach all ATA devices and the associated SCSI devices of @ap;
6480  *	then, remove the associated SCSI host.  @ap is guaranteed to
6481  *	be quiescent on return from this function.
6482  *
6483  *	LOCKING:
6484  *	Kernel thread context (may sleep).
6485  */
ata_port_detach(struct ata_port * ap)6486 static void ata_port_detach(struct ata_port *ap)
6487 {
6488 	unsigned long flags;
6489 	struct ata_link *link;
6490 	struct ata_device *dev;
6491 
6492 	if (!ap->ops->error_handler)
6493 		goto skip_eh;
6494 
6495 	/* tell EH we're leaving & flush EH */
6496 	spin_lock_irqsave(ap->lock, flags);
6497 	ap->pflags |= ATA_PFLAG_UNLOADING;
6498 	ata_port_schedule_eh(ap);
6499 	spin_unlock_irqrestore(ap->lock, flags);
6500 
6501 	/* wait till EH commits suicide */
6502 	ata_port_wait_eh(ap);
6503 
6504 	/* it better be dead now */
6505 	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6506 
6507 	cancel_delayed_work_sync(&ap->hotplug_task);
6508 
6509  skip_eh:
6510 	/* clean up zpodd on port removal */
6511 	ata_for_each_link(link, ap, HOST_FIRST) {
6512 		ata_for_each_dev(dev, link, ALL) {
6513 			if (zpodd_dev_enabled(dev))
6514 				zpodd_exit(dev);
6515 		}
6516 	}
6517 	if (ap->pmp_link) {
6518 		int i;
6519 		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6520 			ata_tlink_delete(&ap->pmp_link[i]);
6521 	}
6522 	/* remove the associated SCSI host */
6523 	scsi_remove_host(ap->scsi_host);
6524 	ata_tport_delete(ap);
6525 }
6526 
6527 /**
6528  *	ata_host_detach - Detach all ports of an ATA host
6529  *	@host: Host to detach
6530  *
6531  *	Detach all ports of @host.
6532  *
6533  *	LOCKING:
6534  *	Kernel thread context (may sleep).
6535  */
ata_host_detach(struct ata_host * host)6536 void ata_host_detach(struct ata_host *host)
6537 {
6538 	int i;
6539 
6540 	for (i = 0; i < host->n_ports; i++)
6541 		ata_port_detach(host->ports[i]);
6542 
6543 	/* the host is dead now, dissociate ACPI */
6544 	ata_acpi_dissociate(host);
6545 }
6546 
6547 #ifdef CONFIG_PCI
6548 
6549 /**
6550  *	ata_pci_remove_one - PCI layer callback for device removal
6551  *	@pdev: PCI device that was removed
6552  *
6553  *	PCI layer indicates to libata via this hook that hot-unplug or
6554  *	module unload event has occurred.  Detach all ports.  Resource
6555  *	release is handled via devres.
6556  *
6557  *	LOCKING:
6558  *	Inherited from PCI layer (may sleep).
6559  */
ata_pci_remove_one(struct pci_dev * pdev)6560 void ata_pci_remove_one(struct pci_dev *pdev)
6561 {
6562 	struct ata_host *host = pci_get_drvdata(pdev);
6563 
6564 	ata_host_detach(host);
6565 }
6566 
6567 /* move to PCI subsystem */
pci_test_config_bits(struct pci_dev * pdev,const struct pci_bits * bits)6568 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6569 {
6570 	unsigned long tmp = 0;
6571 
6572 	switch (bits->width) {
6573 	case 1: {
6574 		u8 tmp8 = 0;
6575 		pci_read_config_byte(pdev, bits->reg, &tmp8);
6576 		tmp = tmp8;
6577 		break;
6578 	}
6579 	case 2: {
6580 		u16 tmp16 = 0;
6581 		pci_read_config_word(pdev, bits->reg, &tmp16);
6582 		tmp = tmp16;
6583 		break;
6584 	}
6585 	case 4: {
6586 		u32 tmp32 = 0;
6587 		pci_read_config_dword(pdev, bits->reg, &tmp32);
6588 		tmp = tmp32;
6589 		break;
6590 	}
6591 
6592 	default:
6593 		return -EINVAL;
6594 	}
6595 
6596 	tmp &= bits->mask;
6597 
6598 	return (tmp == bits->val) ? 1 : 0;
6599 }
6600 
6601 #ifdef CONFIG_PM
ata_pci_device_do_suspend(struct pci_dev * pdev,pm_message_t mesg)6602 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6603 {
6604 	pci_save_state(pdev);
6605 	pci_disable_device(pdev);
6606 
6607 	if (mesg.event & PM_EVENT_SLEEP)
6608 		pci_set_power_state(pdev, PCI_D3hot);
6609 }
6610 
ata_pci_device_do_resume(struct pci_dev * pdev)6611 int ata_pci_device_do_resume(struct pci_dev *pdev)
6612 {
6613 	int rc;
6614 
6615 	pci_set_power_state(pdev, PCI_D0);
6616 	pci_restore_state(pdev);
6617 
6618 	rc = pcim_enable_device(pdev);
6619 	if (rc) {
6620 		dev_err(&pdev->dev,
6621 			"failed to enable device after resume (%d)\n", rc);
6622 		return rc;
6623 	}
6624 
6625 	pci_set_master(pdev);
6626 	return 0;
6627 }
6628 
ata_pci_device_suspend(struct pci_dev * pdev,pm_message_t mesg)6629 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6630 {
6631 	struct ata_host *host = pci_get_drvdata(pdev);
6632 	int rc = 0;
6633 
6634 	rc = ata_host_suspend(host, mesg);
6635 	if (rc)
6636 		return rc;
6637 
6638 	ata_pci_device_do_suspend(pdev, mesg);
6639 
6640 	return 0;
6641 }
6642 
ata_pci_device_resume(struct pci_dev * pdev)6643 int ata_pci_device_resume(struct pci_dev *pdev)
6644 {
6645 	struct ata_host *host = pci_get_drvdata(pdev);
6646 	int rc;
6647 
6648 	rc = ata_pci_device_do_resume(pdev);
6649 	if (rc == 0)
6650 		ata_host_resume(host);
6651 	return rc;
6652 }
6653 #endif /* CONFIG_PM */
6654 
6655 #endif /* CONFIG_PCI */
6656 
6657 /**
6658  *	ata_platform_remove_one - Platform layer callback for device removal
6659  *	@pdev: Platform device that was removed
6660  *
6661  *	Platform layer indicates to libata via this hook that hot-unplug or
6662  *	module unload event has occurred.  Detach all ports.  Resource
6663  *	release is handled via devres.
6664  *
6665  *	LOCKING:
6666  *	Inherited from platform layer (may sleep).
6667  */
ata_platform_remove_one(struct platform_device * pdev)6668 int ata_platform_remove_one(struct platform_device *pdev)
6669 {
6670 	struct ata_host *host = platform_get_drvdata(pdev);
6671 
6672 	ata_host_detach(host);
6673 
6674 	return 0;
6675 }
6676 
ata_parse_force_one(char ** cur,struct ata_force_ent * force_ent,const char ** reason)6677 static int __init ata_parse_force_one(char **cur,
6678 				      struct ata_force_ent *force_ent,
6679 				      const char **reason)
6680 {
6681 	static const struct ata_force_param force_tbl[] __initconst = {
6682 		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6683 		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6684 		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6685 		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6686 		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6687 		{ "sata",	.cbl		= ATA_CBL_SATA },
6688 		{ "1.5Gbps",	.spd_limit	= 1 },
6689 		{ "3.0Gbps",	.spd_limit	= 2 },
6690 		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6691 		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6692 		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6693 		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6694 		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6695 		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6696 		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6697 		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6698 		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6699 		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6700 		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6701 		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6702 		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6703 		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6704 		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6705 		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6706 		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6707 		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6708 		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6709 		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6710 		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6711 		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6712 		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6713 		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6714 		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6715 		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6716 		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6717 		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6718 		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6719 		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6720 		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6721 		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6722 		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6723 		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6724 		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6725 		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6726 		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6727 		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6728 		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6729 		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6730 		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6731 		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6732 		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6733 		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6734 		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6735 	};
6736 	char *start = *cur, *p = *cur;
6737 	char *id, *val, *endp;
6738 	const struct ata_force_param *match_fp = NULL;
6739 	int nr_matches = 0, i;
6740 
6741 	/* find where this param ends and update *cur */
6742 	while (*p != '\0' && *p != ',')
6743 		p++;
6744 
6745 	if (*p == '\0')
6746 		*cur = p;
6747 	else
6748 		*cur = p + 1;
6749 
6750 	*p = '\0';
6751 
6752 	/* parse */
6753 	p = strchr(start, ':');
6754 	if (!p) {
6755 		val = strstrip(start);
6756 		goto parse_val;
6757 	}
6758 	*p = '\0';
6759 
6760 	id = strstrip(start);
6761 	val = strstrip(p + 1);
6762 
6763 	/* parse id */
6764 	p = strchr(id, '.');
6765 	if (p) {
6766 		*p++ = '\0';
6767 		force_ent->device = simple_strtoul(p, &endp, 10);
6768 		if (p == endp || *endp != '\0') {
6769 			*reason = "invalid device";
6770 			return -EINVAL;
6771 		}
6772 	}
6773 
6774 	force_ent->port = simple_strtoul(id, &endp, 10);
6775 	if (p == endp || *endp != '\0') {
6776 		*reason = "invalid port/link";
6777 		return -EINVAL;
6778 	}
6779 
6780  parse_val:
6781 	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6782 	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6783 		const struct ata_force_param *fp = &force_tbl[i];
6784 
6785 		if (strncasecmp(val, fp->name, strlen(val)))
6786 			continue;
6787 
6788 		nr_matches++;
6789 		match_fp = fp;
6790 
6791 		if (strcasecmp(val, fp->name) == 0) {
6792 			nr_matches = 1;
6793 			break;
6794 		}
6795 	}
6796 
6797 	if (!nr_matches) {
6798 		*reason = "unknown value";
6799 		return -EINVAL;
6800 	}
6801 	if (nr_matches > 1) {
6802 		*reason = "ambigious value";
6803 		return -EINVAL;
6804 	}
6805 
6806 	force_ent->param = *match_fp;
6807 
6808 	return 0;
6809 }
6810 
ata_parse_force_param(void)6811 static void __init ata_parse_force_param(void)
6812 {
6813 	int idx = 0, size = 1;
6814 	int last_port = -1, last_device = -1;
6815 	char *p, *cur, *next;
6816 
6817 	/* calculate maximum number of params and allocate force_tbl */
6818 	for (p = ata_force_param_buf; *p; p++)
6819 		if (*p == ',')
6820 			size++;
6821 
6822 	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6823 	if (!ata_force_tbl) {
6824 		printk(KERN_WARNING "ata: failed to extend force table, "
6825 		       "libata.force ignored\n");
6826 		return;
6827 	}
6828 
6829 	/* parse and populate the table */
6830 	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6831 		const char *reason = "";
6832 		struct ata_force_ent te = { .port = -1, .device = -1 };
6833 
6834 		next = cur;
6835 		if (ata_parse_force_one(&next, &te, &reason)) {
6836 			printk(KERN_WARNING "ata: failed to parse force "
6837 			       "parameter \"%s\" (%s)\n",
6838 			       cur, reason);
6839 			continue;
6840 		}
6841 
6842 		if (te.port == -1) {
6843 			te.port = last_port;
6844 			te.device = last_device;
6845 		}
6846 
6847 		ata_force_tbl[idx++] = te;
6848 
6849 		last_port = te.port;
6850 		last_device = te.device;
6851 	}
6852 
6853 	ata_force_tbl_size = idx;
6854 }
6855 
ata_init(void)6856 static int __init ata_init(void)
6857 {
6858 	int rc;
6859 
6860 	ata_parse_force_param();
6861 
6862 	rc = ata_sff_init();
6863 	if (rc) {
6864 		kfree(ata_force_tbl);
6865 		return rc;
6866 	}
6867 
6868 	libata_transport_init();
6869 	ata_scsi_transport_template = ata_attach_transport();
6870 	if (!ata_scsi_transport_template) {
6871 		ata_sff_exit();
6872 		rc = -ENOMEM;
6873 		goto err_out;
6874 	}
6875 
6876 	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6877 	return 0;
6878 
6879 err_out:
6880 	return rc;
6881 }
6882 
ata_exit(void)6883 static void __exit ata_exit(void)
6884 {
6885 	ata_release_transport(ata_scsi_transport_template);
6886 	libata_transport_exit();
6887 	ata_sff_exit();
6888 	kfree(ata_force_tbl);
6889 }
6890 
6891 subsys_initcall(ata_init);
6892 module_exit(ata_exit);
6893 
6894 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6895 
ata_ratelimit(void)6896 int ata_ratelimit(void)
6897 {
6898 	return __ratelimit(&ratelimit);
6899 }
6900 
6901 /**
6902  *	ata_msleep - ATA EH owner aware msleep
6903  *	@ap: ATA port to attribute the sleep to
6904  *	@msecs: duration to sleep in milliseconds
6905  *
6906  *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6907  *	ownership is released before going to sleep and reacquired
6908  *	after the sleep is complete.  IOW, other ports sharing the
6909  *	@ap->host will be allowed to own the EH while this task is
6910  *	sleeping.
6911  *
6912  *	LOCKING:
6913  *	Might sleep.
6914  */
ata_msleep(struct ata_port * ap,unsigned int msecs)6915 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6916 {
6917 	bool owns_eh = ap && ap->host->eh_owner == current;
6918 
6919 	if (owns_eh)
6920 		ata_eh_release(ap);
6921 
6922 	if (msecs < 20) {
6923 		unsigned long usecs = msecs * USEC_PER_MSEC;
6924 		usleep_range(usecs, usecs + 50);
6925 	} else {
6926 		msleep(msecs);
6927 	}
6928 
6929 	if (owns_eh)
6930 		ata_eh_acquire(ap);
6931 }
6932 
6933 /**
6934  *	ata_wait_register - wait until register value changes
6935  *	@ap: ATA port to wait register for, can be NULL
6936  *	@reg: IO-mapped register
6937  *	@mask: Mask to apply to read register value
6938  *	@val: Wait condition
6939  *	@interval: polling interval in milliseconds
6940  *	@timeout: timeout in milliseconds
6941  *
6942  *	Waiting for some bits of register to change is a common
6943  *	operation for ATA controllers.  This function reads 32bit LE
6944  *	IO-mapped register @reg and tests for the following condition.
6945  *
6946  *	(*@reg & mask) != val
6947  *
6948  *	If the condition is met, it returns; otherwise, the process is
6949  *	repeated after @interval_msec until timeout.
6950  *
6951  *	LOCKING:
6952  *	Kernel thread context (may sleep)
6953  *
6954  *	RETURNS:
6955  *	The final register value.
6956  */
ata_wait_register(struct ata_port * ap,void __iomem * reg,u32 mask,u32 val,unsigned long interval,unsigned long timeout)6957 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6958 		      unsigned long interval, unsigned long timeout)
6959 {
6960 	unsigned long deadline;
6961 	u32 tmp;
6962 
6963 	tmp = ioread32(reg);
6964 
6965 	/* Calculate timeout _after_ the first read to make sure
6966 	 * preceding writes reach the controller before starting to
6967 	 * eat away the timeout.
6968 	 */
6969 	deadline = ata_deadline(jiffies, timeout);
6970 
6971 	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6972 		ata_msleep(ap, interval);
6973 		tmp = ioread32(reg);
6974 	}
6975 
6976 	return tmp;
6977 }
6978 
6979 /**
6980  *	sata_lpm_ignore_phy_events - test if PHY event should be ignored
6981  *	@link: Link receiving the event
6982  *
6983  *	Test whether the received PHY event has to be ignored or not.
6984  *
6985  *	LOCKING:
6986  *	None:
6987  *
6988  *	RETURNS:
6989  *	True if the event has to be ignored.
6990  */
sata_lpm_ignore_phy_events(struct ata_link * link)6991 bool sata_lpm_ignore_phy_events(struct ata_link *link)
6992 {
6993 	unsigned long lpm_timeout = link->last_lpm_change +
6994 				    msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
6995 
6996 	/* if LPM is enabled, PHYRDY doesn't mean anything */
6997 	if (link->lpm_policy > ATA_LPM_MAX_POWER)
6998 		return true;
6999 
7000 	/* ignore the first PHY event after the LPM policy changed
7001 	 * as it is might be spurious
7002 	 */
7003 	if ((link->flags & ATA_LFLAG_CHANGED) &&
7004 	    time_before(jiffies, lpm_timeout))
7005 		return true;
7006 
7007 	return false;
7008 }
7009 EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7010 
7011 /*
7012  * Dummy port_ops
7013  */
ata_dummy_qc_issue(struct ata_queued_cmd * qc)7014 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7015 {
7016 	return AC_ERR_SYSTEM;
7017 }
7018 
ata_dummy_error_handler(struct ata_port * ap)7019 static void ata_dummy_error_handler(struct ata_port *ap)
7020 {
7021 	/* truly dummy */
7022 }
7023 
7024 struct ata_port_operations ata_dummy_port_ops = {
7025 	.qc_prep		= ata_noop_qc_prep,
7026 	.qc_issue		= ata_dummy_qc_issue,
7027 	.error_handler		= ata_dummy_error_handler,
7028 	.sched_eh		= ata_std_sched_eh,
7029 	.end_eh			= ata_std_end_eh,
7030 };
7031 
7032 const struct ata_port_info ata_dummy_port_info = {
7033 	.port_ops		= &ata_dummy_port_ops,
7034 };
7035 
7036 /*
7037  * Utility print functions
7038  */
ata_port_printk(const struct ata_port * ap,const char * level,const char * fmt,...)7039 void ata_port_printk(const struct ata_port *ap, const char *level,
7040 		     const char *fmt, ...)
7041 {
7042 	struct va_format vaf;
7043 	va_list args;
7044 
7045 	va_start(args, fmt);
7046 
7047 	vaf.fmt = fmt;
7048 	vaf.va = &args;
7049 
7050 	printk("%sata%u: %pV", level, ap->print_id, &vaf);
7051 
7052 	va_end(args);
7053 }
7054 EXPORT_SYMBOL(ata_port_printk);
7055 
ata_link_printk(const struct ata_link * link,const char * level,const char * fmt,...)7056 void ata_link_printk(const struct ata_link *link, const char *level,
7057 		     const char *fmt, ...)
7058 {
7059 	struct va_format vaf;
7060 	va_list args;
7061 
7062 	va_start(args, fmt);
7063 
7064 	vaf.fmt = fmt;
7065 	vaf.va = &args;
7066 
7067 	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7068 		printk("%sata%u.%02u: %pV",
7069 		       level, link->ap->print_id, link->pmp, &vaf);
7070 	else
7071 		printk("%sata%u: %pV",
7072 		       level, link->ap->print_id, &vaf);
7073 
7074 	va_end(args);
7075 }
7076 EXPORT_SYMBOL(ata_link_printk);
7077 
ata_dev_printk(const struct ata_device * dev,const char * level,const char * fmt,...)7078 void ata_dev_printk(const struct ata_device *dev, const char *level,
7079 		    const char *fmt, ...)
7080 {
7081 	struct va_format vaf;
7082 	va_list args;
7083 
7084 	va_start(args, fmt);
7085 
7086 	vaf.fmt = fmt;
7087 	vaf.va = &args;
7088 
7089 	printk("%sata%u.%02u: %pV",
7090 	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7091 	       &vaf);
7092 
7093 	va_end(args);
7094 }
7095 EXPORT_SYMBOL(ata_dev_printk);
7096 
ata_print_version(const struct device * dev,const char * version)7097 void ata_print_version(const struct device *dev, const char *version)
7098 {
7099 	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7100 }
7101 EXPORT_SYMBOL(ata_print_version);
7102 
7103 /*
7104  * libata is essentially a library of internal helper functions for
7105  * low-level ATA host controller drivers.  As such, the API/ABI is
7106  * likely to change as new drivers are added and updated.
7107  * Do not depend on ABI/API stability.
7108  */
7109 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7110 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7111 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7112 EXPORT_SYMBOL_GPL(ata_base_port_ops);
7113 EXPORT_SYMBOL_GPL(sata_port_ops);
7114 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7115 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7116 EXPORT_SYMBOL_GPL(ata_link_next);
7117 EXPORT_SYMBOL_GPL(ata_dev_next);
7118 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7119 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7120 EXPORT_SYMBOL_GPL(ata_host_init);
7121 EXPORT_SYMBOL_GPL(ata_host_alloc);
7122 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7123 EXPORT_SYMBOL_GPL(ata_slave_link_init);
7124 EXPORT_SYMBOL_GPL(ata_host_start);
7125 EXPORT_SYMBOL_GPL(ata_host_register);
7126 EXPORT_SYMBOL_GPL(ata_host_activate);
7127 EXPORT_SYMBOL_GPL(ata_host_detach);
7128 EXPORT_SYMBOL_GPL(ata_sg_init);
7129 EXPORT_SYMBOL_GPL(ata_qc_complete);
7130 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7131 EXPORT_SYMBOL_GPL(atapi_cmd_type);
7132 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7133 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7134 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7135 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7136 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7137 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7138 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7139 EXPORT_SYMBOL_GPL(ata_mode_string);
7140 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7141 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7142 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7143 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7144 EXPORT_SYMBOL_GPL(ata_dev_disable);
7145 EXPORT_SYMBOL_GPL(sata_set_spd);
7146 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7147 EXPORT_SYMBOL_GPL(sata_link_debounce);
7148 EXPORT_SYMBOL_GPL(sata_link_resume);
7149 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7150 EXPORT_SYMBOL_GPL(ata_std_prereset);
7151 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7152 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7153 EXPORT_SYMBOL_GPL(ata_std_postreset);
7154 EXPORT_SYMBOL_GPL(ata_dev_classify);
7155 EXPORT_SYMBOL_GPL(ata_dev_pair);
7156 EXPORT_SYMBOL_GPL(ata_ratelimit);
7157 EXPORT_SYMBOL_GPL(ata_msleep);
7158 EXPORT_SYMBOL_GPL(ata_wait_register);
7159 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7160 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7161 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7162 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7163 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7164 EXPORT_SYMBOL_GPL(sata_scr_valid);
7165 EXPORT_SYMBOL_GPL(sata_scr_read);
7166 EXPORT_SYMBOL_GPL(sata_scr_write);
7167 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7168 EXPORT_SYMBOL_GPL(ata_link_online);
7169 EXPORT_SYMBOL_GPL(ata_link_offline);
7170 #ifdef CONFIG_PM
7171 EXPORT_SYMBOL_GPL(ata_host_suspend);
7172 EXPORT_SYMBOL_GPL(ata_host_resume);
7173 #endif /* CONFIG_PM */
7174 EXPORT_SYMBOL_GPL(ata_id_string);
7175 EXPORT_SYMBOL_GPL(ata_id_c_string);
7176 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7177 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7178 
7179 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7180 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7181 EXPORT_SYMBOL_GPL(ata_timing_compute);
7182 EXPORT_SYMBOL_GPL(ata_timing_merge);
7183 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7184 
7185 #ifdef CONFIG_PCI
7186 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7187 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7188 #ifdef CONFIG_PM
7189 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7190 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7191 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7192 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7193 #endif /* CONFIG_PM */
7194 #endif /* CONFIG_PCI */
7195 
7196 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7197 
7198 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7199 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7200 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7201 EXPORT_SYMBOL_GPL(ata_port_desc);
7202 #ifdef CONFIG_PCI
7203 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7204 #endif /* CONFIG_PCI */
7205 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7206 EXPORT_SYMBOL_GPL(ata_link_abort);
7207 EXPORT_SYMBOL_GPL(ata_port_abort);
7208 EXPORT_SYMBOL_GPL(ata_port_freeze);
7209 EXPORT_SYMBOL_GPL(sata_async_notification);
7210 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7211 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7212 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7213 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7214 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7215 EXPORT_SYMBOL_GPL(ata_do_eh);
7216 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7217 
7218 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7219 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7220 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7221 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7222 EXPORT_SYMBOL_GPL(ata_cable_sata);
7223