• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 
26 #include "ppatomctrl.h"
27 #include "atombios.h"
28 #include "cgs_common.h"
29 #include "pp_debug.h"
30 #include "ppevvmath.h"
31 
32 #define MEM_ID_MASK           0xff000000
33 #define MEM_ID_SHIFT          24
34 #define CLOCK_RANGE_MASK      0x00ffffff
35 #define CLOCK_RANGE_SHIFT     0
36 #define LOW_NIBBLE_MASK       0xf
37 #define DATA_EQU_PREV         0
38 #define DATA_FROM_TABLE       4
39 
40 union voltage_object_info {
41 	struct _ATOM_VOLTAGE_OBJECT_INFO v1;
42 	struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
43 	struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
44 };
45 
atomctrl_retrieve_ac_timing(uint8_t index,ATOM_INIT_REG_BLOCK * reg_block,pp_atomctrl_mc_reg_table * table)46 static int atomctrl_retrieve_ac_timing(
47 		uint8_t index,
48 		ATOM_INIT_REG_BLOCK *reg_block,
49 		pp_atomctrl_mc_reg_table *table)
50 {
51 	uint32_t i, j;
52 	uint8_t tmem_id;
53 	ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
54 		((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
55 
56 	uint8_t num_ranges = 0;
57 
58 	while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
59 			num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
60 		tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
61 
62 		if (index == tmem_id) {
63 			table->mc_reg_table_entry[num_ranges].mclk_max =
64 				(uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
65 						CLOCK_RANGE_SHIFT);
66 
67 			for (i = 0, j = 1; i < table->last; i++) {
68 				if ((table->mc_reg_address[i].uc_pre_reg_data &
69 							LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
70 					table->mc_reg_table_entry[num_ranges].mc_data[i] =
71 						(uint32_t)*((uint32_t *)reg_data + j);
72 					j++;
73 				} else if ((table->mc_reg_address[i].uc_pre_reg_data &
74 							LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
75 					table->mc_reg_table_entry[num_ranges].mc_data[i] =
76 						table->mc_reg_table_entry[num_ranges].mc_data[i-1];
77 				}
78 			}
79 			num_ranges++;
80 		}
81 
82 		reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
83 			((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
84 	}
85 
86 	PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
87 			"Invalid VramInfo table.", return -1);
88 	table->num_entries = num_ranges;
89 
90 	return 0;
91 }
92 
93 /**
94  * Get memory clock AC timing registers index from VBIOS table
95  * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
96  * @param    reg_block the address ATOM_INIT_REG_BLOCK
97  * @param    table the address of MCRegTable
98  * @return   0
99  */
atomctrl_set_mc_reg_address_table(ATOM_INIT_REG_BLOCK * reg_block,pp_atomctrl_mc_reg_table * table)100 static int atomctrl_set_mc_reg_address_table(
101 		ATOM_INIT_REG_BLOCK *reg_block,
102 		pp_atomctrl_mc_reg_table *table)
103 {
104 	uint8_t i = 0;
105 	uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
106 			/ sizeof(ATOM_INIT_REG_INDEX_FORMAT));
107 	ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
108 
109 	num_entries--;        /* subtract 1 data end mark entry */
110 
111 	PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
112 			"Invalid VramInfo table.", return -1);
113 
114 	/* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
115 	while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
116 			(i < num_entries)) {
117 		table->mc_reg_address[i].s1 =
118 			(uint16_t)(le16_to_cpu(format->usRegIndex));
119 		table->mc_reg_address[i].uc_pre_reg_data =
120 			format->ucPreRegDataLength;
121 
122 		i++;
123 		format = (ATOM_INIT_REG_INDEX_FORMAT *)
124 			((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
125 	}
126 
127 	table->last = i;
128 	return 0;
129 }
130 
131 
atomctrl_initialize_mc_reg_table(struct pp_hwmgr * hwmgr,uint8_t module_index,pp_atomctrl_mc_reg_table * table)132 int atomctrl_initialize_mc_reg_table(
133 		struct pp_hwmgr *hwmgr,
134 		uint8_t module_index,
135 		pp_atomctrl_mc_reg_table *table)
136 {
137 	ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
138 	ATOM_INIT_REG_BLOCK *reg_block;
139 	int result = 0;
140 	u8 frev, crev;
141 	u16 size;
142 
143 	vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
144 		cgs_atom_get_data_table(hwmgr->device,
145 				GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
146 
147 	if (module_index >= vram_info->ucNumOfVRAMModule) {
148 		printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
149 		result = -1;
150 	} else if (vram_info->sHeader.ucTableFormatRevision < 2) {
151 		printk(KERN_ERR "[ powerplay ] Invalid VramInfo table.");
152 		result = -1;
153 	}
154 
155 	if (0 == result) {
156 		reg_block = (ATOM_INIT_REG_BLOCK *)
157 			((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
158 		result = atomctrl_set_mc_reg_address_table(reg_block, table);
159 	}
160 
161 	if (0 == result) {
162 		result = atomctrl_retrieve_ac_timing(module_index,
163 					reg_block, table);
164 	}
165 
166 	return result;
167 }
168 
169 /**
170  * Set DRAM timings based on engine clock and memory clock.
171  */
atomctrl_set_engine_dram_timings_rv770(struct pp_hwmgr * hwmgr,uint32_t engine_clock,uint32_t memory_clock)172 int atomctrl_set_engine_dram_timings_rv770(
173 		struct pp_hwmgr *hwmgr,
174 		uint32_t engine_clock,
175 		uint32_t memory_clock)
176 {
177 	SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
178 
179 	/* They are both in 10KHz Units. */
180 	engine_clock_parameters.ulTargetEngineClock =
181 		cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
182 			    ((COMPUTE_ENGINE_PLL_PARAM << 24)));
183 
184 	/* in 10 khz units.*/
185 	engine_clock_parameters.sReserved.ulClock =
186 		cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
187 	return cgs_atom_exec_cmd_table(hwmgr->device,
188 			GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
189 			&engine_clock_parameters);
190 }
191 
192 /**
193  * Private Function to get the PowerPlay Table Address.
194  * WARNING: The tabled returned by this function is in
195  * dynamically allocated memory.
196  * The caller has to release if by calling kfree.
197  */
get_voltage_info_table(void * device)198 static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
199 {
200 	int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
201 	u8 frev, crev;
202 	u16 size;
203 	union voltage_object_info *voltage_info;
204 
205 	voltage_info = (union voltage_object_info *)
206 		cgs_atom_get_data_table(device, index,
207 			&size, &frev, &crev);
208 
209 	if (voltage_info != NULL)
210 		return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
211 	else
212 		return NULL;
213 }
214 
atomctrl_lookup_voltage_type_v3(const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,uint8_t voltage_type,uint8_t voltage_mode)215 static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
216 		const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
217 		uint8_t voltage_type, uint8_t voltage_mode)
218 {
219 	unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
220 	unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
221 	uint8_t *start = (uint8_t *)voltage_object_info_table;
222 
223 	while (offset < size) {
224 		const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
225 			(const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
226 
227 		if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
228 			voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
229 			return voltage_object;
230 
231 		offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
232 	}
233 
234 	return NULL;
235 }
236 
237 /** atomctrl_get_memory_pll_dividers_si().
238  *
239  * @param hwmgr                 input parameter: pointer to HwMgr
240  * @param clock_value             input parameter: memory clock
241  * @param dividers                 output parameter: memory PLL dividers
242  * @param strobe_mode            input parameter: 1 for strobe mode,  0 for performance mode
243  */
atomctrl_get_memory_pll_dividers_si(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_memory_clock_param * mpll_param,bool strobe_mode)244 int atomctrl_get_memory_pll_dividers_si(
245 		struct pp_hwmgr *hwmgr,
246 		uint32_t clock_value,
247 		pp_atomctrl_memory_clock_param *mpll_param,
248 		bool strobe_mode)
249 {
250 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
251 	int result;
252 
253 	mpll_parameters.ulClock = cpu_to_le32(clock_value);
254 	mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
255 
256 	result = cgs_atom_exec_cmd_table
257 		(hwmgr->device,
258 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
259 		 &mpll_parameters);
260 
261 	if (0 == result) {
262 		mpll_param->mpll_fb_divider.clk_frac =
263 			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
264 		mpll_param->mpll_fb_divider.cl_kf =
265 			le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
266 		mpll_param->mpll_post_divider =
267 			(uint32_t)mpll_parameters.ucPostDiv;
268 		mpll_param->vco_mode =
269 			(uint32_t)(mpll_parameters.ucPllCntlFlag &
270 					MPLL_CNTL_FLAG_VCO_MODE_MASK);
271 		mpll_param->yclk_sel =
272 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
273 						MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
274 		mpll_param->qdr =
275 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
276 						MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
277 		mpll_param->half_rate =
278 			(uint32_t)((mpll_parameters.ucPllCntlFlag &
279 						MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
280 		mpll_param->dll_speed =
281 			(uint32_t)(mpll_parameters.ucDllSpeed);
282 		mpll_param->bw_ctrl =
283 			(uint32_t)(mpll_parameters.ucBWCntl);
284 	}
285 
286 	return result;
287 }
288 
289 /** atomctrl_get_memory_pll_dividers_vi().
290  *
291  * @param hwmgr                 input parameter: pointer to HwMgr
292  * @param clock_value             input parameter: memory clock
293  * @param dividers               output parameter: memory PLL dividers
294  */
atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_memory_clock_param * mpll_param)295 int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
296 		uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
297 {
298 	COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
299 	int result;
300 
301 	mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
302 
303 	result = cgs_atom_exec_cmd_table(hwmgr->device,
304 			GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
305 			&mpll_parameters);
306 
307 	if (!result)
308 		mpll_param->mpll_post_divider =
309 				(uint32_t)mpll_parameters.ulClock.ucPostDiv;
310 
311 	return result;
312 }
313 
atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_clock_dividers_kong * dividers)314 int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
315 					  uint32_t clock_value,
316 					  pp_atomctrl_clock_dividers_kong *dividers)
317 {
318 	COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
319 	int result;
320 
321 	pll_parameters.ulClock = cpu_to_le32(clock_value);
322 
323 	result = cgs_atom_exec_cmd_table
324 		(hwmgr->device,
325 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
326 		 &pll_parameters);
327 
328 	if (0 == result) {
329 		dividers->pll_post_divider = pll_parameters.ucPostDiv;
330 		dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
331 	}
332 
333 	return result;
334 }
335 
atomctrl_get_engine_pll_dividers_vi(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_clock_dividers_vi * dividers)336 int atomctrl_get_engine_pll_dividers_vi(
337 		struct pp_hwmgr *hwmgr,
338 		uint32_t clock_value,
339 		pp_atomctrl_clock_dividers_vi *dividers)
340 {
341 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
342 	int result;
343 
344 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
345 	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
346 
347 	result = cgs_atom_exec_cmd_table
348 		(hwmgr->device,
349 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
350 		 &pll_patameters);
351 
352 	if (0 == result) {
353 		dividers->pll_post_divider =
354 			pll_patameters.ulClock.ucPostDiv;
355 		dividers->real_clock =
356 			le32_to_cpu(pll_patameters.ulClock.ulClock);
357 
358 		dividers->ul_fb_div.ul_fb_div_frac =
359 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
360 		dividers->ul_fb_div.ul_fb_div =
361 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
362 
363 		dividers->uc_pll_ref_div =
364 			pll_patameters.ucPllRefDiv;
365 		dividers->uc_pll_post_div =
366 			pll_patameters.ucPllPostDiv;
367 		dividers->uc_pll_cntl_flag =
368 			pll_patameters.ucPllCntlFlag;
369 	}
370 
371 	return result;
372 }
373 
atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_clock_dividers_ai * dividers)374 int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
375 		uint32_t clock_value,
376 		pp_atomctrl_clock_dividers_ai *dividers)
377 {
378 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
379 	int result;
380 
381 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
382 	pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
383 
384 	result = cgs_atom_exec_cmd_table
385 		(hwmgr->device,
386 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
387 		 &pll_patameters);
388 
389 	if (0 == result) {
390 		dividers->usSclk_fcw_frac     = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
391 		dividers->usSclk_fcw_int      = le16_to_cpu(pll_patameters.usSclk_fcw_int);
392 		dividers->ucSclkPostDiv       = pll_patameters.ucSclkPostDiv;
393 		dividers->ucSclkVcoMode       = pll_patameters.ucSclkVcoMode;
394 		dividers->ucSclkPllRange      = pll_patameters.ucSclkPllRange;
395 		dividers->ucSscEnable         = pll_patameters.ucSscEnable;
396 		dividers->usSsc_fcw1_frac     = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
397 		dividers->usSsc_fcw1_int      = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
398 		dividers->usPcc_fcw_int       = le16_to_cpu(pll_patameters.usPcc_fcw_int);
399 		dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
400 		dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
401 	}
402 	return result;
403 }
404 
atomctrl_get_dfs_pll_dividers_vi(struct pp_hwmgr * hwmgr,uint32_t clock_value,pp_atomctrl_clock_dividers_vi * dividers)405 int atomctrl_get_dfs_pll_dividers_vi(
406 		struct pp_hwmgr *hwmgr,
407 		uint32_t clock_value,
408 		pp_atomctrl_clock_dividers_vi *dividers)
409 {
410 	COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
411 	int result;
412 
413 	pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
414 	pll_patameters.ulClock.ucPostDiv =
415 		COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
416 
417 	result = cgs_atom_exec_cmd_table
418 		(hwmgr->device,
419 		 GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
420 		 &pll_patameters);
421 
422 	if (0 == result) {
423 		dividers->pll_post_divider =
424 			pll_patameters.ulClock.ucPostDiv;
425 		dividers->real_clock =
426 			le32_to_cpu(pll_patameters.ulClock.ulClock);
427 
428 		dividers->ul_fb_div.ul_fb_div_frac =
429 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
430 		dividers->ul_fb_div.ul_fb_div =
431 			le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
432 
433 		dividers->uc_pll_ref_div =
434 			pll_patameters.ucPllRefDiv;
435 		dividers->uc_pll_post_div =
436 			pll_patameters.ucPllPostDiv;
437 		dividers->uc_pll_cntl_flag =
438 			pll_patameters.ucPllCntlFlag;
439 	}
440 
441 	return result;
442 }
443 
444 /**
445  * Get the reference clock in 10KHz
446  */
atomctrl_get_reference_clock(struct pp_hwmgr * hwmgr)447 uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
448 {
449 	ATOM_FIRMWARE_INFO *fw_info;
450 	u8 frev, crev;
451 	u16 size;
452 	uint32_t clock;
453 
454 	fw_info = (ATOM_FIRMWARE_INFO *)
455 		cgs_atom_get_data_table(hwmgr->device,
456 			GetIndexIntoMasterTable(DATA, FirmwareInfo),
457 			&size, &frev, &crev);
458 
459 	if (fw_info == NULL)
460 		clock = 2700;
461 	else
462 		clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
463 
464 	return clock;
465 }
466 
467 /**
468  * Returns true if the given voltage type is controlled by GPIO pins.
469  * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
470  * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
471  * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
472  */
atomctrl_is_voltage_controled_by_gpio_v3(struct pp_hwmgr * hwmgr,uint8_t voltage_type,uint8_t voltage_mode)473 bool atomctrl_is_voltage_controled_by_gpio_v3(
474 		struct pp_hwmgr *hwmgr,
475 		uint8_t voltage_type,
476 		uint8_t voltage_mode)
477 {
478 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
479 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
480 	bool ret;
481 
482 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
483 			"Could not find Voltage Table in BIOS.", return false;);
484 
485 	ret = (NULL != atomctrl_lookup_voltage_type_v3
486 			(voltage_info, voltage_type, voltage_mode)) ? true : false;
487 
488 	return ret;
489 }
490 
atomctrl_get_voltage_table_v3(struct pp_hwmgr * hwmgr,uint8_t voltage_type,uint8_t voltage_mode,pp_atomctrl_voltage_table * voltage_table)491 int atomctrl_get_voltage_table_v3(
492 		struct pp_hwmgr *hwmgr,
493 		uint8_t voltage_type,
494 		uint8_t voltage_mode,
495 		pp_atomctrl_voltage_table *voltage_table)
496 {
497 	ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
498 		(ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
499 	const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
500 	unsigned int i;
501 
502 	PP_ASSERT_WITH_CODE((NULL != voltage_info),
503 			"Could not find Voltage Table in BIOS.", return -1;);
504 
505 	voltage_object = atomctrl_lookup_voltage_type_v3
506 		(voltage_info, voltage_type, voltage_mode);
507 
508 	if (voltage_object == NULL)
509 		return -1;
510 
511 	PP_ASSERT_WITH_CODE(
512 			(voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
513 			PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
514 			"Too many voltage entries!",
515 			return -1;
516 			);
517 
518 	for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
519 		voltage_table->entries[i].value =
520 			le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
521 		voltage_table->entries[i].smio_low =
522 			le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
523 	}
524 
525 	voltage_table->mask_low    =
526 		le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
527 	voltage_table->count      =
528 		voltage_object->asGpioVoltageObj.ucGpioEntryNum;
529 	voltage_table->phase_delay =
530 		voltage_object->asGpioVoltageObj.ucPhaseDelay;
531 
532 	return 0;
533 }
534 
atomctrl_lookup_gpio_pin(ATOM_GPIO_PIN_LUT * gpio_lookup_table,const uint32_t pinId,pp_atomctrl_gpio_pin_assignment * gpio_pin_assignment)535 static bool atomctrl_lookup_gpio_pin(
536 		ATOM_GPIO_PIN_LUT * gpio_lookup_table,
537 		const uint32_t pinId,
538 		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
539 {
540 	unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
541 	unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
542 	uint8_t *start = (uint8_t *)gpio_lookup_table;
543 
544 	while (offset < size) {
545 		const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
546 			(const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
547 
548 		if (pinId == pin_assignment->ucGPIO_ID) {
549 			gpio_pin_assignment->uc_gpio_pin_bit_shift =
550 				pin_assignment->ucGpioPinBitShift;
551 			gpio_pin_assignment->us_gpio_pin_aindex =
552 				le16_to_cpu(pin_assignment->usGpioPin_AIndex);
553 			return true;
554 		}
555 
556 		offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
557 	}
558 
559 	return false;
560 }
561 
562 /**
563  * Private Function to get the PowerPlay Table Address.
564  * WARNING: The tabled returned by this function is in
565  * dynamically allocated memory.
566  * The caller has to release if by calling kfree.
567  */
get_gpio_lookup_table(void * device)568 static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
569 {
570 	u8 frev, crev;
571 	u16 size;
572 	void *table_address;
573 
574 	table_address = (ATOM_GPIO_PIN_LUT *)
575 		cgs_atom_get_data_table(device,
576 				GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
577 				&size, &frev, &crev);
578 
579 	PP_ASSERT_WITH_CODE((NULL != table_address),
580 			"Error retrieving BIOS Table Address!", return NULL;);
581 
582 	return (ATOM_GPIO_PIN_LUT *)table_address;
583 }
584 
585 /**
586  * Returns 1 if the given pin id find in lookup table.
587  */
atomctrl_get_pp_assign_pin(struct pp_hwmgr * hwmgr,const uint32_t pinId,pp_atomctrl_gpio_pin_assignment * gpio_pin_assignment)588 bool atomctrl_get_pp_assign_pin(
589 		struct pp_hwmgr *hwmgr,
590 		const uint32_t pinId,
591 		pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
592 {
593 	bool bRet = false;
594 	ATOM_GPIO_PIN_LUT *gpio_lookup_table =
595 		get_gpio_lookup_table(hwmgr->device);
596 
597 	PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
598 			"Could not find GPIO lookup Table in BIOS.", return false);
599 
600 	bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
601 		gpio_pin_assignment);
602 
603 	return bRet;
604 }
605 
atomctrl_calculate_voltage_evv_on_sclk(struct pp_hwmgr * hwmgr,uint8_t voltage_type,uint32_t sclk,uint16_t virtual_voltage_Id,uint16_t * voltage,uint16_t dpm_level,bool debug)606 int atomctrl_calculate_voltage_evv_on_sclk(
607 		struct pp_hwmgr *hwmgr,
608 		uint8_t voltage_type,
609 		uint32_t sclk,
610 		uint16_t virtual_voltage_Id,
611 		uint16_t *voltage,
612 		uint16_t dpm_level,
613 		bool debug)
614 {
615 	ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
616 
617 	EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
618 	EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
619 	EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
620 	EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
621 	EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
622 	EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
623 	EFUSE_INPUT_PARAMETER sInput_FuseValues;
624 	READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
625 
626 	uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
627 	fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
628 	fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
629 	fInt fLkg_FT, repeat;
630 	fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
631 	fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
632 	fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
633 	fInt fSclk_margin, fSclk, fEVV_V;
634 	fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
635 	uint32_t ul_FT_Lkg_V0NORM;
636 	fInt fLn_MaxDivMin, fMin, fAverage, fRange;
637 	fInt fRoots[2];
638 	fInt fStepSize = GetScaledFraction(625, 100000);
639 
640 	int result;
641 
642 	getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
643 			cgs_atom_get_data_table(hwmgr->device,
644 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
645 					NULL, NULL, NULL);
646 
647 	if (!getASICProfilingInfo)
648 		return -1;
649 
650 	if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
651 	    (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
652 	     getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
653 		return -1;
654 
655 	/*-----------------------------------------------------------
656 	 *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
657 	 *-----------------------------------------------------------
658 	 */
659 	fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
660 
661 	switch (dpm_level) {
662 	case 1:
663 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm1));
664 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
665 		break;
666 	case 2:
667 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm2));
668 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
669 		break;
670 	case 3:
671 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm3));
672 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
673 		break;
674 	case 4:
675 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm4));
676 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
677 		break;
678 	case 5:
679 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm5));
680 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
681 		break;
682 	case 6:
683 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm6));
684 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
685 		break;
686 	case 7:
687 		fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm7));
688 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
689 		break;
690 	default:
691 		printk(KERN_ERR "DPM Level not supported\n");
692 		fPowerDPMx = Convert_ULONG_ToFraction(1);
693 		fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
694 	}
695 
696 	/*-------------------------
697 	 * DECODING FUSE VALUES
698 	 * ------------------------
699 	 */
700 	/*Decode RO_Fused*/
701 	sRO_fuse = getASICProfilingInfo->sRoFuse;
702 
703 	sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
704 	sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
705 	sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
706 
707 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
708 
709 	result = cgs_atom_exec_cmd_table(hwmgr->device,
710 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
711 			&sOutput_FuseValues);
712 
713 	if (result)
714 		return result;
715 
716 	/* Finally, the actual fuse value */
717 	ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
718 	fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
719 	fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
720 	fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
721 
722 	sCACm_fuse = getASICProfilingInfo->sCACm;
723 
724 	sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
725 	sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
726 	sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
727 
728 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
729 
730 	result = cgs_atom_exec_cmd_table(hwmgr->device,
731 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
732 			&sOutput_FuseValues);
733 
734 	if (result)
735 		return result;
736 
737 	ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
738 	fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
739 	fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
740 
741 	fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
742 
743 	sCACb_fuse = getASICProfilingInfo->sCACb;
744 
745 	sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
746 	sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
747 	sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
748 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
749 
750 	result = cgs_atom_exec_cmd_table(hwmgr->device,
751 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
752 			&sOutput_FuseValues);
753 
754 	if (result)
755 		return result;
756 
757 	ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
758 	fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
759 	fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
760 
761 	fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
762 
763 	sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
764 
765 	sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
766 	sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
767 	sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
768 
769 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
770 
771 	result = cgs_atom_exec_cmd_table(hwmgr->device,
772 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
773 			&sOutput_FuseValues);
774 
775 	if (result)
776 		return result;
777 
778 	ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
779 	fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
780 	fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
781 
782 	fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
783 			fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
784 
785 	sKv_m_fuse = getASICProfilingInfo->sKv_m;
786 
787 	sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
788 	sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
789 	sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
790 
791 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
792 
793 	result = cgs_atom_exec_cmd_table(hwmgr->device,
794 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
795 			&sOutput_FuseValues);
796 	if (result)
797 		return result;
798 
799 	ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
800 	fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
801 	fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
802 	fRange = fMultiply(fRange, ConvertToFraction(-1));
803 
804 	fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
805 			fAverage, fRange, sKv_m_fuse.ucEfuseLength);
806 
807 	sKv_b_fuse = getASICProfilingInfo->sKv_b;
808 
809 	sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
810 	sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
811 	sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
812 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
813 
814 	result = cgs_atom_exec_cmd_table(hwmgr->device,
815 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
816 			&sOutput_FuseValues);
817 
818 	if (result)
819 		return result;
820 
821 	ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
822 	fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
823 	fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
824 
825 	fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
826 			fAverage, fRange, sKv_b_fuse.ucEfuseLength);
827 
828 	/* Decoding the Leakage - No special struct container */
829 	/*
830 	 * usLkgEuseIndex=56
831 	 * ucLkgEfuseBitLSB=6
832 	 * ucLkgEfuseLength=10
833 	 * ulLkgEncodeLn_MaxDivMin=69077
834 	 * ulLkgEncodeMax=1000000
835 	 * ulLkgEncodeMin=1000
836 	 * ulEfuseLogisticAlpha=13
837 	 */
838 
839 	sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
840 	sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
841 	sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
842 
843 	sOutput_FuseValues.sEfuse = sInput_FuseValues;
844 
845 	result = cgs_atom_exec_cmd_table(hwmgr->device,
846 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
847 			&sOutput_FuseValues);
848 
849 	if (result)
850 		return result;
851 
852 	ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
853 	fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
854 	fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
855 
856 	fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
857 			fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
858 	fLkg_FT = fFT_Lkg_V0NORM;
859 
860 	/*-------------------------------------------
861 	 * PART 2 - Grabbing all required values
862 	 *-------------------------------------------
863 	 */
864 	fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
865 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
866 	fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
867 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
868 	fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
869 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
870 	fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
871 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
872 	fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
873 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
874 	fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
875 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
876 	fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
877 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
878 	fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
879 			ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
880 
881 	fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
882 	fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
883 	fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
884 
885 	fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
886 
887 	fMargin_FMAX_mean = GetScaledFraction(
888 		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
889 	fMargin_Plat_mean = GetScaledFraction(
890 		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
891 	fMargin_FMAX_sigma = GetScaledFraction(
892 		le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
893 	fMargin_Plat_sigma = GetScaledFraction(
894 		le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
895 
896 	fMargin_DC_sigma = GetScaledFraction(
897 		le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
898 	fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
899 
900 	fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
901 	fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
902 	fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
903 	fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
904 	fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
905 
906 	fSclk = GetScaledFraction(sclk, 100);
907 
908 	fV_max = fDivide(GetScaledFraction(
909 				 le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
910 	fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
911 	fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
912 	fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
913 	fV_FT = fDivide(GetScaledFraction(
914 				le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
915 	fV_min = fDivide(GetScaledFraction(
916 				 le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
917 
918 	/*-----------------------
919 	 * PART 3
920 	 *-----------------------
921 	 */
922 
923 	fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
924 	fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
925 	fC_Term = fAdd(fMargin_RO_c,
926 			fAdd(fMultiply(fSM_A0, fLkg_FT),
927 			fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
928 			fAdd(fMultiply(fSM_A3, fSclk),
929 			fSubtract(fSM_A7, fRO_fused)))));
930 
931 	fVDDC_base = fSubtract(fRO_fused,
932 			fSubtract(fMargin_RO_c,
933 					fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
934 	fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
935 
936 	repeat = fSubtract(fVDDC_base,
937 			fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
938 
939 	fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
940 			fGetSquare(repeat)),
941 			fAdd(fMultiply(fMargin_RO_b, repeat),
942 			fMargin_RO_c));
943 
944 	fDC_SCLK = fSubtract(fRO_fused,
945 			fSubtract(fRO_DC_margin,
946 			fSubtract(fSM_A3,
947 			fMultiply(fSM_A2, repeat))));
948 	fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
949 
950 	fSigma_DC = fSubtract(fSclk, fDC_SCLK);
951 
952 	fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
953 	fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
954 	fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
955 	fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
956 
957 	fSquared_Sigma_DC = fGetSquare(fSigma_DC);
958 	fSquared_Sigma_CR = fGetSquare(fSigma_CR);
959 	fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
960 
961 	fSclk_margin = fAdd(fMicro_FMAX,
962 			fAdd(fMicro_CR,
963 			fAdd(fMargin_fixed,
964 			fSqrt(fAdd(fSquared_Sigma_FMAX,
965 			fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
966 	/*
967 	 fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
968 	 fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
969 	 fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
970 	 */
971 
972 	fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
973 	fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
974 	fC_Term = fAdd(fRO_DC_margin,
975 			fAdd(fMultiply(fSM_A0, fLkg_FT),
976 			fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
977 			fAdd(fSclk, fSclk_margin)),
978 			fAdd(fMultiply(fSM_A3,
979 			fAdd(fSclk, fSclk_margin)),
980 			fSubtract(fSM_A7, fRO_fused)))));
981 
982 	SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
983 
984 	if (GreaterThan(fRoots[0], fRoots[1]))
985 		fEVV_V = fRoots[1];
986 	else
987 		fEVV_V = fRoots[0];
988 
989 	if (GreaterThan(fV_min, fEVV_V))
990 		fEVV_V = fV_min;
991 	else if (GreaterThan(fEVV_V, fV_max))
992 		fEVV_V = fSubtract(fV_max, fStepSize);
993 
994 	fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
995 
996 	/*-----------------
997 	 * PART 4
998 	 *-----------------
999 	 */
1000 
1001 	fV_x = fV_min;
1002 
1003 	while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
1004 		fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
1005 				fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
1006 				fGetSquare(fV_x)), fDerateTDP);
1007 
1008 		fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
1009 				fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
1010 				fT_prod), fKv_b_fused), fV_x)), fV_x)));
1011 		fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
1012 				fKt_Beta_fused, fT_prod)));
1013 		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1014 				fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
1015 		fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1016 				fKt_Beta_fused, fT_FT)));
1017 
1018 		fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
1019 
1020 		fTDP_Current = fDivide(fTDP_Power, fV_x);
1021 
1022 		fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
1023 				ConvertToFraction(10)));
1024 
1025 		fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
1026 
1027 		if (GreaterThan(fV_max, fV_NL) &&
1028 			(GreaterThan(fV_NL, fEVV_V) ||
1029 			Equal(fV_NL, fEVV_V))) {
1030 			fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1031 
1032 			*voltage = (uint16_t)fV_NL.partial.real;
1033 			break;
1034 		} else
1035 			fV_x = fAdd(fV_x, fStepSize);
1036 	}
1037 
1038 	return result;
1039 }
1040 
1041 /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
1042  * @param hwmgr	input: pointer to hwManager
1043  * @param voltage_type            input: type of EVV voltage VDDC or VDDGFX
1044  * @param sclk                        input: in 10Khz unit. DPM state SCLK frequency
1045  *		which is define in PPTable SCLK/VDDC dependence
1046  *				table associated with this virtual_voltage_Id
1047  * @param virtual_voltage_Id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1048  * @param voltage		       output: real voltage level in unit of mv
1049  */
atomctrl_get_voltage_evv_on_sclk(struct pp_hwmgr * hwmgr,uint8_t voltage_type,uint32_t sclk,uint16_t virtual_voltage_Id,uint16_t * voltage)1050 int atomctrl_get_voltage_evv_on_sclk(
1051 		struct pp_hwmgr *hwmgr,
1052 		uint8_t voltage_type,
1053 		uint32_t sclk, uint16_t virtual_voltage_Id,
1054 		uint16_t *voltage)
1055 {
1056 	int result;
1057 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1058 
1059 	get_voltage_info_param_space.ucVoltageType   =
1060 		voltage_type;
1061 	get_voltage_info_param_space.ucVoltageMode   =
1062 		ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1063 	get_voltage_info_param_space.usVoltageLevel  =
1064 		cpu_to_le16(virtual_voltage_Id);
1065 	get_voltage_info_param_space.ulSCLKFreq      =
1066 		cpu_to_le32(sclk);
1067 
1068 	result = cgs_atom_exec_cmd_table(hwmgr->device,
1069 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1070 			&get_voltage_info_param_space);
1071 
1072 	if (0 != result)
1073 		return result;
1074 
1075 	*voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1076 				(&get_voltage_info_param_space))->usVoltageLevel);
1077 
1078 	return result;
1079 }
1080 
1081 /**
1082  * atomctrl_get_voltage_evv gets voltage via call to ATOM COMMAND table.
1083  * @param hwmgr	input: pointer to hwManager
1084  * @param virtual_voltage_id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1085  * @param voltage		       output: real voltage level in unit of mv
1086  */
atomctrl_get_voltage_evv(struct pp_hwmgr * hwmgr,uint16_t virtual_voltage_id,uint16_t * voltage)1087 int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
1088 			     uint16_t virtual_voltage_id,
1089 			     uint16_t *voltage)
1090 {
1091 	int result;
1092 	int entry_id;
1093 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1094 
1095 	/* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
1096 	for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
1097 		if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
1098 			/* found */
1099 			break;
1100 		}
1101 	}
1102 
1103 	PP_ASSERT_WITH_CODE(entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count,
1104 	        "Can't find requested voltage id in vddc_dependency_on_sclk table!",
1105 	        return -EINVAL;
1106 	);
1107 
1108 	get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
1109 	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1110 	get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
1111 	get_voltage_info_param_space.ulSCLKFreq =
1112 		cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
1113 
1114 	result = cgs_atom_exec_cmd_table(hwmgr->device,
1115 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1116 			&get_voltage_info_param_space);
1117 
1118 	if (0 != result)
1119 		return result;
1120 
1121 	*voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1122 				(&get_voltage_info_param_space))->usVoltageLevel);
1123 
1124 	return result;
1125 }
1126 
1127 /**
1128  * Get the mpll reference clock in 10KHz
1129  */
atomctrl_get_mpll_reference_clock(struct pp_hwmgr * hwmgr)1130 uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1131 {
1132 	ATOM_COMMON_TABLE_HEADER *fw_info;
1133 	uint32_t clock;
1134 	u8 frev, crev;
1135 	u16 size;
1136 
1137 	fw_info = (ATOM_COMMON_TABLE_HEADER *)
1138 		cgs_atom_get_data_table(hwmgr->device,
1139 				GetIndexIntoMasterTable(DATA, FirmwareInfo),
1140 				&size, &frev, &crev);
1141 
1142 	if (fw_info == NULL)
1143 		clock = 2700;
1144 	else {
1145 		if ((fw_info->ucTableFormatRevision == 2) &&
1146 			(le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1147 			ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1148 				(ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1149 			clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1150 		} else {
1151 			ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1152 				(ATOM_FIRMWARE_INFO *)fw_info;
1153 			clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1154 		}
1155 	}
1156 
1157 	return clock;
1158 }
1159 
1160 /**
1161  * Get the asic internal spread spectrum table
1162  */
asic_internal_ss_get_ss_table(void * device)1163 static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1164 {
1165 	ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1166 	u8 frev, crev;
1167 	u16 size;
1168 
1169 	table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1170 		cgs_atom_get_data_table(device,
1171 			GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1172 			&size, &frev, &crev);
1173 
1174 	return table;
1175 }
1176 
1177 /**
1178  * Get the asic internal spread spectrum assignment
1179  */
asic_internal_ss_get_ss_asignment(struct pp_hwmgr * hwmgr,const uint8_t clockSource,const uint32_t clockSpeed,pp_atomctrl_internal_ss_info * ssEntry)1180 static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1181 		const uint8_t clockSource,
1182 		const uint32_t clockSpeed,
1183 		pp_atomctrl_internal_ss_info *ssEntry)
1184 {
1185 	ATOM_ASIC_INTERNAL_SS_INFO *table;
1186 	ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1187 	int entry_found = 0;
1188 
1189 	memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1190 
1191 	table = asic_internal_ss_get_ss_table(hwmgr->device);
1192 
1193 	if (NULL == table)
1194 		return -1;
1195 
1196 	ssInfo = &table->asSpreadSpectrum[0];
1197 
1198 	while (((uint8_t *)ssInfo - (uint8_t *)table) <
1199 		le16_to_cpu(table->sHeader.usStructureSize)) {
1200 		if ((clockSource == ssInfo->ucClockIndication) &&
1201 			((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1202 			entry_found = 1;
1203 			break;
1204 		}
1205 
1206 		ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1207 				sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1208 	}
1209 
1210 	if (entry_found) {
1211 		ssEntry->speed_spectrum_percentage =
1212 			le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
1213 		ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
1214 
1215 		if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1216 			(GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1217 			(GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1218 			ssEntry->speed_spectrum_rate /= 100;
1219 		}
1220 
1221 		switch (ssInfo->ucSpreadSpectrumMode) {
1222 		case 0:
1223 			ssEntry->speed_spectrum_mode =
1224 				pp_atomctrl_spread_spectrum_mode_down;
1225 			break;
1226 		case 1:
1227 			ssEntry->speed_spectrum_mode =
1228 				pp_atomctrl_spread_spectrum_mode_center;
1229 			break;
1230 		default:
1231 			ssEntry->speed_spectrum_mode =
1232 				pp_atomctrl_spread_spectrum_mode_down;
1233 			break;
1234 		}
1235 	}
1236 
1237 	return entry_found ? 0 : 1;
1238 }
1239 
1240 /**
1241  * Get the memory clock spread spectrum info
1242  */
atomctrl_get_memory_clock_spread_spectrum(struct pp_hwmgr * hwmgr,const uint32_t memory_clock,pp_atomctrl_internal_ss_info * ssInfo)1243 int atomctrl_get_memory_clock_spread_spectrum(
1244 		struct pp_hwmgr *hwmgr,
1245 		const uint32_t memory_clock,
1246 		pp_atomctrl_internal_ss_info *ssInfo)
1247 {
1248 	return asic_internal_ss_get_ss_asignment(hwmgr,
1249 			ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1250 }
1251 /**
1252  * Get the engine clock spread spectrum info
1253  */
atomctrl_get_engine_clock_spread_spectrum(struct pp_hwmgr * hwmgr,const uint32_t engine_clock,pp_atomctrl_internal_ss_info * ssInfo)1254 int atomctrl_get_engine_clock_spread_spectrum(
1255 		struct pp_hwmgr *hwmgr,
1256 		const uint32_t engine_clock,
1257 		pp_atomctrl_internal_ss_info *ssInfo)
1258 {
1259 	return asic_internal_ss_get_ss_asignment(hwmgr,
1260 			ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1261 }
1262 
atomctrl_read_efuse(void * device,uint16_t start_index,uint16_t end_index,uint32_t mask,uint32_t * efuse)1263 int atomctrl_read_efuse(void *device, uint16_t start_index,
1264 		uint16_t end_index, uint32_t mask, uint32_t *efuse)
1265 {
1266 	int result;
1267 	READ_EFUSE_VALUE_PARAMETER efuse_param;
1268 
1269 	efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
1270 	efuse_param.sEfuse.ucBitShift = (uint8_t)
1271 			(start_index - ((start_index / 32) * 32));
1272 	efuse_param.sEfuse.ucBitLength  = (uint8_t)
1273 			((end_index - start_index) + 1);
1274 
1275 	result = cgs_atom_exec_cmd_table(device,
1276 			GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1277 			&efuse_param);
1278 	if (!result)
1279 		*efuse = le32_to_cpu(efuse_param.ulEfuseValue) & mask;
1280 
1281 	return result;
1282 }
1283 
atomctrl_set_ac_timing_ai(struct pp_hwmgr * hwmgr,uint32_t memory_clock,uint8_t level)1284 int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
1285 			      uint8_t level)
1286 {
1287 	DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
1288 	int result;
1289 
1290 	memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
1291 		memory_clock & SET_CLOCK_FREQ_MASK;
1292 	memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
1293 		ADJUST_MC_SETTING_PARAM;
1294 	memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
1295 
1296 	result = cgs_atom_exec_cmd_table
1297 		(hwmgr->device,
1298 		 GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
1299 		 &memory_clock_parameters);
1300 
1301 	return result;
1302 }
1303 
atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr * hwmgr,uint8_t voltage_type,uint32_t sclk,uint16_t virtual_voltage_Id,uint32_t * voltage)1304 int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1305 				uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
1306 {
1307 
1308 	int result;
1309 	GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
1310 
1311 	get_voltage_info_param_space.ucVoltageType = voltage_type;
1312 	get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1313 	get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
1314 	get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
1315 
1316 	result = cgs_atom_exec_cmd_table(hwmgr->device,
1317 			GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1318 			&get_voltage_info_param_space);
1319 
1320 	if (0 != result)
1321 		return result;
1322 
1323 	*voltage = le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)
1324 				(&get_voltage_info_param_space))->ulVoltageLevel);
1325 
1326 	return result;
1327 }
1328 
atomctrl_get_smc_sclk_range_table(struct pp_hwmgr * hwmgr,struct pp_atom_ctrl_sclk_range_table * table)1329 int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
1330 {
1331 
1332 	int i;
1333 	u8 frev, crev;
1334 	u16 size;
1335 
1336 	ATOM_SMU_INFO_V2_1 *psmu_info =
1337 		(ATOM_SMU_INFO_V2_1 *)cgs_atom_get_data_table(hwmgr->device,
1338 			GetIndexIntoMasterTable(DATA, SMU_Info),
1339 			&size, &frev, &crev);
1340 
1341 
1342 	for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
1343 		table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
1344 		table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
1345 		table->entry[i].usFcw_pcc =
1346 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
1347 		table->entry[i].usFcw_trans_upper =
1348 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
1349 		table->entry[i].usRcw_trans_lower =
1350 			le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
1351 	}
1352 
1353 	return 0;
1354 }
1355 
atomctrl_get_avfs_information(struct pp_hwmgr * hwmgr,struct pp_atom_ctrl__avfs_parameters * param)1356 int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
1357 				  struct pp_atom_ctrl__avfs_parameters *param)
1358 {
1359 	ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
1360 
1361 	if (param == NULL)
1362 		return -EINVAL;
1363 
1364 	profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
1365 			cgs_atom_get_data_table(hwmgr->device,
1366 					GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1367 					NULL, NULL, NULL);
1368 	if (!profile)
1369 		return -1;
1370 
1371 	param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
1372 	param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
1373 	param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
1374 	param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
1375 	param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
1376 	param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
1377 	param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
1378 	param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
1379 	param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
1380 	param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
1381 	param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
1382 	param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
1383 	param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1384 	param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1385 	param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1386 	param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
1387 	param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
1388 	param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
1389 	param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
1390 	param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
1391 	param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
1392 	param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
1393 	param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1394 	param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
1395 	param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
1396 
1397 	return 0;
1398 }
1399