• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * FPU data structures:
3  */
4 #ifndef _ASM_X86_FPU_H
5 #define _ASM_X86_FPU_H
6 
7 /*
8  * The legacy x87 FPU state format, as saved by FSAVE and
9  * restored by the FRSTOR instructions:
10  */
11 struct fregs_state {
12 	u32			cwd;	/* FPU Control Word		*/
13 	u32			swd;	/* FPU Status Word		*/
14 	u32			twd;	/* FPU Tag Word			*/
15 	u32			fip;	/* FPU IP Offset		*/
16 	u32			fcs;	/* FPU IP Selector		*/
17 	u32			foo;	/* FPU Operand Pointer Offset	*/
18 	u32			fos;	/* FPU Operand Pointer Selector	*/
19 
20 	/* 8*10 bytes for each FP-reg = 80 bytes:			*/
21 	u32			st_space[20];
22 
23 	/* Software status information [not touched by FSAVE]:		*/
24 	u32			status;
25 };
26 
27 /*
28  * The legacy fx SSE/MMX FPU state format, as saved by FXSAVE and
29  * restored by the FXRSTOR instructions. It's similar to the FSAVE
30  * format, but differs in some areas, plus has extensions at
31  * the end for the XMM registers.
32  */
33 struct fxregs_state {
34 	u16			cwd; /* Control Word			*/
35 	u16			swd; /* Status Word			*/
36 	u16			twd; /* Tag Word			*/
37 	u16			fop; /* Last Instruction Opcode		*/
38 	union {
39 		struct {
40 			u64	rip; /* Instruction Pointer		*/
41 			u64	rdp; /* Data Pointer			*/
42 		};
43 		struct {
44 			u32	fip; /* FPU IP Offset			*/
45 			u32	fcs; /* FPU IP Selector			*/
46 			u32	foo; /* FPU Operand Offset		*/
47 			u32	fos; /* FPU Operand Selector		*/
48 		};
49 	};
50 	u32			mxcsr;		/* MXCSR Register State */
51 	u32			mxcsr_mask;	/* MXCSR Mask		*/
52 
53 	/* 8*16 bytes for each FP-reg = 128 bytes:			*/
54 	u32			st_space[32];
55 
56 	/* 16*16 bytes for each XMM-reg = 256 bytes:			*/
57 	u32			xmm_space[64];
58 
59 	u32			padding[12];
60 
61 	union {
62 		u32		padding1[12];
63 		u32		sw_reserved[12];
64 	};
65 
66 } __attribute__((aligned(16)));
67 
68 /* Default value for fxregs_state.mxcsr: */
69 #define MXCSR_DEFAULT		0x1f80
70 
71 /*
72  * Software based FPU emulation state. This is arbitrary really,
73  * it matches the x87 format to make it easier to understand:
74  */
75 struct swregs_state {
76 	u32			cwd;
77 	u32			swd;
78 	u32			twd;
79 	u32			fip;
80 	u32			fcs;
81 	u32			foo;
82 	u32			fos;
83 	/* 8*10 bytes for each FP-reg = 80 bytes: */
84 	u32			st_space[20];
85 	u8			ftop;
86 	u8			changed;
87 	u8			lookahead;
88 	u8			no_update;
89 	u8			rm;
90 	u8			alimit;
91 	struct math_emu_info	*info;
92 	u32			entry_eip;
93 };
94 
95 /*
96  * List of XSAVE features Linux knows about:
97  */
98 enum xfeature {
99 	XFEATURE_FP,
100 	XFEATURE_SSE,
101 	/*
102 	 * Values above here are "legacy states".
103 	 * Those below are "extended states".
104 	 */
105 	XFEATURE_YMM,
106 	XFEATURE_BNDREGS,
107 	XFEATURE_BNDCSR,
108 	XFEATURE_OPMASK,
109 	XFEATURE_ZMM_Hi256,
110 	XFEATURE_Hi16_ZMM,
111 	XFEATURE_PT_UNIMPLEMENTED_SO_FAR,
112 	XFEATURE_PKRU,
113 
114 	XFEATURE_MAX,
115 };
116 
117 #define XFEATURE_MASK_FP		(1 << XFEATURE_FP)
118 #define XFEATURE_MASK_SSE		(1 << XFEATURE_SSE)
119 #define XFEATURE_MASK_YMM		(1 << XFEATURE_YMM)
120 #define XFEATURE_MASK_BNDREGS		(1 << XFEATURE_BNDREGS)
121 #define XFEATURE_MASK_BNDCSR		(1 << XFEATURE_BNDCSR)
122 #define XFEATURE_MASK_OPMASK		(1 << XFEATURE_OPMASK)
123 #define XFEATURE_MASK_ZMM_Hi256		(1 << XFEATURE_ZMM_Hi256)
124 #define XFEATURE_MASK_Hi16_ZMM		(1 << XFEATURE_Hi16_ZMM)
125 #define XFEATURE_MASK_PT		(1 << XFEATURE_PT_UNIMPLEMENTED_SO_FAR)
126 #define XFEATURE_MASK_PKRU		(1 << XFEATURE_PKRU)
127 
128 #define XFEATURE_MASK_FPSSE		(XFEATURE_MASK_FP | XFEATURE_MASK_SSE)
129 #define XFEATURE_MASK_AVX512		(XFEATURE_MASK_OPMASK \
130 					 | XFEATURE_MASK_ZMM_Hi256 \
131 					 | XFEATURE_MASK_Hi16_ZMM)
132 
133 #define FIRST_EXTENDED_XFEATURE	XFEATURE_YMM
134 
135 struct reg_128_bit {
136 	u8      regbytes[128/8];
137 };
138 struct reg_256_bit {
139 	u8	regbytes[256/8];
140 };
141 struct reg_512_bit {
142 	u8	regbytes[512/8];
143 };
144 
145 /*
146  * State component 2:
147  *
148  * There are 16x 256-bit AVX registers named YMM0-YMM15.
149  * The low 128 bits are aliased to the 16 SSE registers (XMM0-XMM15)
150  * and are stored in 'struct fxregs_state::xmm_space[]' in the
151  * "legacy" area.
152  *
153  * The high 128 bits are stored here.
154  */
155 struct ymmh_struct {
156 	struct reg_128_bit              hi_ymm[16];
157 } __packed;
158 
159 /* Intel MPX support: */
160 
161 struct mpx_bndreg {
162 	u64				lower_bound;
163 	u64				upper_bound;
164 } __packed;
165 /*
166  * State component 3 is used for the 4 128-bit bounds registers
167  */
168 struct mpx_bndreg_state {
169 	struct mpx_bndreg		bndreg[4];
170 } __packed;
171 
172 /*
173  * State component 4 is used for the 64-bit user-mode MPX
174  * configuration register BNDCFGU and the 64-bit MPX status
175  * register BNDSTATUS.  We call the pair "BNDCSR".
176  */
177 struct mpx_bndcsr {
178 	u64				bndcfgu;
179 	u64				bndstatus;
180 } __packed;
181 
182 /*
183  * The BNDCSR state is padded out to be 64-bytes in size.
184  */
185 struct mpx_bndcsr_state {
186 	union {
187 		struct mpx_bndcsr		bndcsr;
188 		u8				pad_to_64_bytes[64];
189 	};
190 } __packed;
191 
192 /* AVX-512 Components: */
193 
194 /*
195  * State component 5 is used for the 8 64-bit opmask registers
196  * k0-k7 (opmask state).
197  */
198 struct avx_512_opmask_state {
199 	u64				opmask_reg[8];
200 } __packed;
201 
202 /*
203  * State component 6 is used for the upper 256 bits of the
204  * registers ZMM0-ZMM15. These 16 256-bit values are denoted
205  * ZMM0_H-ZMM15_H (ZMM_Hi256 state).
206  */
207 struct avx_512_zmm_uppers_state {
208 	struct reg_256_bit		zmm_upper[16];
209 } __packed;
210 
211 /*
212  * State component 7 is used for the 16 512-bit registers
213  * ZMM16-ZMM31 (Hi16_ZMM state).
214  */
215 struct avx_512_hi16_state {
216 	struct reg_512_bit		hi16_zmm[16];
217 } __packed;
218 
219 /*
220  * State component 9: 32-bit PKRU register.  The state is
221  * 8 bytes long but only 4 bytes is used currently.
222  */
223 struct pkru_state {
224 	u32				pkru;
225 	u32				pad;
226 } __packed;
227 
228 struct xstate_header {
229 	u64				xfeatures;
230 	u64				xcomp_bv;
231 	u64				reserved[6];
232 } __attribute__((packed));
233 
234 /*
235  * xstate_header.xcomp_bv[63] indicates that the extended_state_area
236  * is in compacted format.
237  */
238 #define XCOMP_BV_COMPACTED_FORMAT ((u64)1 << 63)
239 
240 /*
241  * This is our most modern FPU state format, as saved by the XSAVE
242  * and restored by the XRSTOR instructions.
243  *
244  * It consists of a legacy fxregs portion, an xstate header and
245  * subsequent areas as defined by the xstate header.  Not all CPUs
246  * support all the extensions, so the size of the extended area
247  * can vary quite a bit between CPUs.
248  */
249 struct xregs_state {
250 	struct fxregs_state		i387;
251 	struct xstate_header		header;
252 	u8				extended_state_area[0];
253 } __attribute__ ((packed, aligned (64)));
254 
255 /*
256  * This is a union of all the possible FPU state formats
257  * put together, so that we can pick the right one runtime.
258  *
259  * The size of the structure is determined by the largest
260  * member - which is the xsave area.  The padding is there
261  * to ensure that statically-allocated task_structs (just
262  * the init_task today) have enough space.
263  */
264 union fpregs_state {
265 	struct fregs_state		fsave;
266 	struct fxregs_state		fxsave;
267 	struct swregs_state		soft;
268 	struct xregs_state		xsave;
269 	u8 __padding[PAGE_SIZE];
270 };
271 
272 /*
273  * Highest level per task FPU state data structure that
274  * contains the FPU register state plus various FPU
275  * state fields:
276  */
277 struct fpu {
278 	/*
279 	 * @last_cpu:
280 	 *
281 	 * Records the last CPU on which this context was loaded into
282 	 * FPU registers. (In the lazy-restore case we might be
283 	 * able to reuse FPU registers across multiple context switches
284 	 * this way, if no intermediate task used the FPU.)
285 	 *
286 	 * A value of -1 is used to indicate that the FPU state in context
287 	 * memory is newer than the FPU state in registers, and that the
288 	 * FPU state should be reloaded next time the task is run.
289 	 */
290 	unsigned int			last_cpu;
291 
292 	/*
293 	 * @fpstate_active:
294 	 *
295 	 * This flag indicates whether this context is active: if the task
296 	 * is not running then we can restore from this context, if the task
297 	 * is running then we should save into this context.
298 	 */
299 	unsigned char			fpstate_active;
300 
301 	/*
302 	 * @fpregs_active:
303 	 *
304 	 * This flag determines whether a given context is actively
305 	 * loaded into the FPU's registers and that those registers
306 	 * represent the task's current FPU state.
307 	 *
308 	 * Note the interaction with fpstate_active:
309 	 *
310 	 *   # task does not use the FPU:
311 	 *   fpstate_active == 0
312 	 *
313 	 *   # task uses the FPU and regs are active:
314 	 *   fpstate_active == 1 && fpregs_active == 1
315 	 *
316 	 *   # the regs are inactive but still match fpstate:
317 	 *   fpstate_active == 1 && fpregs_active == 0 && fpregs_owner == fpu
318 	 *
319 	 * The third state is what we use for the lazy restore optimization
320 	 * on lazy-switching CPUs.
321 	 */
322 	unsigned char			fpregs_active;
323 
324 	/*
325 	 * @counter:
326 	 *
327 	 * This counter contains the number of consecutive context switches
328 	 * during which the FPU stays used. If this is over a threshold, the
329 	 * lazy FPU restore logic becomes eager, to save the trap overhead.
330 	 * This is an unsigned char so that after 256 iterations the counter
331 	 * wraps and the context switch behavior turns lazy again; this is to
332 	 * deal with bursty apps that only use the FPU for a short time:
333 	 */
334 	unsigned char			counter;
335 	/*
336 	 * @state:
337 	 *
338 	 * In-memory copy of all FPU registers that we save/restore
339 	 * over context switches. If the task is using the FPU then
340 	 * the registers in the FPU are more recent than this state
341 	 * copy. If the task context-switches away then they get
342 	 * saved here and represent the FPU state.
343 	 *
344 	 * After context switches there may be a (short) time period
345 	 * during which the in-FPU hardware registers are unchanged
346 	 * and still perfectly match this state, if the tasks
347 	 * scheduled afterwards are not using the FPU.
348 	 *
349 	 * This is the 'lazy restore' window of optimization, which
350 	 * we track though 'fpu_fpregs_owner_ctx' and 'fpu->last_cpu'.
351 	 *
352 	 * We detect whether a subsequent task uses the FPU via setting
353 	 * CR0::TS to 1, which causes any FPU use to raise a #NM fault.
354 	 *
355 	 * During this window, if the task gets scheduled again, we
356 	 * might be able to skip having to do a restore from this
357 	 * memory buffer to the hardware registers - at the cost of
358 	 * incurring the overhead of #NM fault traps.
359 	 *
360 	 * Note that on modern CPUs that support the XSAVEOPT (or other
361 	 * optimized XSAVE instructions), we don't use #NM traps anymore,
362 	 * as the hardware can track whether FPU registers need saving
363 	 * or not. On such CPUs we activate the non-lazy ('eagerfpu')
364 	 * logic, which unconditionally saves/restores all FPU state
365 	 * across context switches. (if FPU state exists.)
366 	 */
367 	union fpregs_state		state;
368 	/*
369 	 * WARNING: 'state' is dynamically-sized.  Do not put
370 	 * anything after it here.
371 	 */
372 };
373 
374 #endif /* _ASM_X86_FPU_H */
375