1 /* bnx2x_sriov.c: QLogic Everest network driver.
2 *
3 * Copyright 2009-2013 Broadcom Corporation
4 * Copyright 2014 QLogic Corporation
5 * All rights reserved
6 *
7 * Unless you and QLogic execute a separate written software license
8 * agreement governing use of this software, this software is licensed to you
9 * under the terms of the GNU General Public License version 2, available
10 * at http://www.gnu.org/licenses/old-licenses/gpl-2.0.html (the "GPL").
11 *
12 * Notwithstanding the above, under no circumstances may you combine this
13 * software in any way with any other QLogic software provided under a
14 * license other than the GPL, without QLogic's express prior written
15 * consent.
16 *
17 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
18 * Written by: Shmulik Ravid
19 * Ariel Elior <ariel.elior@qlogic.com>
20 *
21 */
22 #include "bnx2x.h"
23 #include "bnx2x_init.h"
24 #include "bnx2x_cmn.h"
25 #include "bnx2x_sp.h"
26 #include <linux/crc32.h>
27 #include <linux/if_vlan.h>
28
29 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
30 struct bnx2x_virtf **vf,
31 struct pf_vf_bulletin_content **bulletin,
32 bool test_queue);
33
34 /* General service functions */
storm_memset_vf_to_pf(struct bnx2x * bp,u16 abs_fid,u16 pf_id)35 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
36 u16 pf_id)
37 {
38 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
39 pf_id);
40 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
41 pf_id);
42 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
43 pf_id);
44 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
45 pf_id);
46 }
47
storm_memset_func_en(struct bnx2x * bp,u16 abs_fid,u8 enable)48 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
49 u8 enable)
50 {
51 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
52 enable);
53 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
54 enable);
55 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
56 enable);
57 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
58 enable);
59 }
60
bnx2x_vf_idx_by_abs_fid(struct bnx2x * bp,u16 abs_vfid)61 int bnx2x_vf_idx_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
62 {
63 int idx;
64
65 for_each_vf(bp, idx)
66 if (bnx2x_vf(bp, idx, abs_vfid) == abs_vfid)
67 break;
68 return idx;
69 }
70
71 static
bnx2x_vf_by_abs_fid(struct bnx2x * bp,u16 abs_vfid)72 struct bnx2x_virtf *bnx2x_vf_by_abs_fid(struct bnx2x *bp, u16 abs_vfid)
73 {
74 u16 idx = (u16)bnx2x_vf_idx_by_abs_fid(bp, abs_vfid);
75 return (idx < BNX2X_NR_VIRTFN(bp)) ? BP_VF(bp, idx) : NULL;
76 }
77
bnx2x_vf_igu_ack_sb(struct bnx2x * bp,struct bnx2x_virtf * vf,u8 igu_sb_id,u8 segment,u16 index,u8 op,u8 update)78 static void bnx2x_vf_igu_ack_sb(struct bnx2x *bp, struct bnx2x_virtf *vf,
79 u8 igu_sb_id, u8 segment, u16 index, u8 op,
80 u8 update)
81 {
82 /* acking a VF sb through the PF - use the GRC */
83 u32 ctl;
84 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
85 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
86 u32 func_encode = vf->abs_vfid;
87 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + igu_sb_id;
88 struct igu_regular cmd_data = {0};
89
90 cmd_data.sb_id_and_flags =
91 ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
92 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
93 (update << IGU_REGULAR_BUPDATE_SHIFT) |
94 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
95
96 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
97 func_encode << IGU_CTRL_REG_FID_SHIFT |
98 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
99
100 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
101 cmd_data.sb_id_and_flags, igu_addr_data);
102 REG_WR(bp, igu_addr_data, cmd_data.sb_id_and_flags);
103 mmiowb();
104 barrier();
105
106 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
107 ctl, igu_addr_ctl);
108 REG_WR(bp, igu_addr_ctl, ctl);
109 mmiowb();
110 barrier();
111 }
112
bnx2x_validate_vf_sp_objs(struct bnx2x * bp,struct bnx2x_virtf * vf,bool print_err)113 static bool bnx2x_validate_vf_sp_objs(struct bnx2x *bp,
114 struct bnx2x_virtf *vf,
115 bool print_err)
116 {
117 if (!bnx2x_leading_vfq(vf, sp_initialized)) {
118 if (print_err)
119 BNX2X_ERR("Slowpath objects not yet initialized!\n");
120 else
121 DP(BNX2X_MSG_IOV, "Slowpath objects not yet initialized!\n");
122 return false;
123 }
124 return true;
125 }
126
127 /* VFOP operations states */
bnx2x_vfop_qctor_dump_tx(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_queue_init_params * init_params,struct bnx2x_queue_setup_params * setup_params,u16 q_idx,u16 sb_idx)128 void bnx2x_vfop_qctor_dump_tx(struct bnx2x *bp, struct bnx2x_virtf *vf,
129 struct bnx2x_queue_init_params *init_params,
130 struct bnx2x_queue_setup_params *setup_params,
131 u16 q_idx, u16 sb_idx)
132 {
133 DP(BNX2X_MSG_IOV,
134 "VF[%d] Q_SETUP: txq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, flags=0x%lx, traffic-type=%d",
135 vf->abs_vfid,
136 q_idx,
137 sb_idx,
138 init_params->tx.sb_cq_index,
139 init_params->tx.hc_rate,
140 setup_params->flags,
141 setup_params->txq_params.traffic_type);
142 }
143
bnx2x_vfop_qctor_dump_rx(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_queue_init_params * init_params,struct bnx2x_queue_setup_params * setup_params,u16 q_idx,u16 sb_idx)144 void bnx2x_vfop_qctor_dump_rx(struct bnx2x *bp, struct bnx2x_virtf *vf,
145 struct bnx2x_queue_init_params *init_params,
146 struct bnx2x_queue_setup_params *setup_params,
147 u16 q_idx, u16 sb_idx)
148 {
149 struct bnx2x_rxq_setup_params *rxq_params = &setup_params->rxq_params;
150
151 DP(BNX2X_MSG_IOV, "VF[%d] Q_SETUP: rxq[%d]-- vfsb=%d, sb-index=%d, hc-rate=%d, mtu=%d, buf-size=%d\n"
152 "sge-size=%d, max_sge_pkt=%d, tpa-agg-size=%d, flags=0x%lx, drop-flags=0x%x, cache-log=%d\n",
153 vf->abs_vfid,
154 q_idx,
155 sb_idx,
156 init_params->rx.sb_cq_index,
157 init_params->rx.hc_rate,
158 setup_params->gen_params.mtu,
159 rxq_params->buf_sz,
160 rxq_params->sge_buf_sz,
161 rxq_params->max_sges_pkt,
162 rxq_params->tpa_agg_sz,
163 setup_params->flags,
164 rxq_params->drop_flags,
165 rxq_params->cache_line_log);
166 }
167
bnx2x_vfop_qctor_prep(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_queue * q,struct bnx2x_vf_queue_construct_params * p,unsigned long q_type)168 void bnx2x_vfop_qctor_prep(struct bnx2x *bp,
169 struct bnx2x_virtf *vf,
170 struct bnx2x_vf_queue *q,
171 struct bnx2x_vf_queue_construct_params *p,
172 unsigned long q_type)
173 {
174 struct bnx2x_queue_init_params *init_p = &p->qstate.params.init;
175 struct bnx2x_queue_setup_params *setup_p = &p->prep_qsetup;
176
177 /* INIT */
178
179 /* Enable host coalescing in the transition to INIT state */
180 if (test_bit(BNX2X_Q_FLG_HC, &init_p->rx.flags))
181 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->rx.flags);
182
183 if (test_bit(BNX2X_Q_FLG_HC, &init_p->tx.flags))
184 __set_bit(BNX2X_Q_FLG_HC_EN, &init_p->tx.flags);
185
186 /* FW SB ID */
187 init_p->rx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
188 init_p->tx.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
189
190 /* context */
191 init_p->cxts[0] = q->cxt;
192
193 /* SETUP */
194
195 /* Setup-op general parameters */
196 setup_p->gen_params.spcl_id = vf->sp_cl_id;
197 setup_p->gen_params.stat_id = vfq_stat_id(vf, q);
198 setup_p->gen_params.fp_hsi = vf->fp_hsi;
199
200 /* Setup-op flags:
201 * collect statistics, zero statistics, local-switching, security,
202 * OV for Flex10, RSS and MCAST for leading
203 */
204 if (test_bit(BNX2X_Q_FLG_STATS, &setup_p->flags))
205 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &setup_p->flags);
206
207 /* for VFs, enable tx switching, bd coherency, and mac address
208 * anti-spoofing
209 */
210 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &setup_p->flags);
211 __set_bit(BNX2X_Q_FLG_TX_SEC, &setup_p->flags);
212 __set_bit(BNX2X_Q_FLG_ANTI_SPOOF, &setup_p->flags);
213
214 /* Setup-op rx parameters */
215 if (test_bit(BNX2X_Q_TYPE_HAS_RX, &q_type)) {
216 struct bnx2x_rxq_setup_params *rxq_p = &setup_p->rxq_params;
217
218 rxq_p->cl_qzone_id = vfq_qzone_id(vf, q);
219 rxq_p->fw_sb_id = vf_igu_sb(vf, q->sb_idx);
220 rxq_p->rss_engine_id = FW_VF_HANDLE(vf->abs_vfid);
221
222 if (test_bit(BNX2X_Q_FLG_TPA, &setup_p->flags))
223 rxq_p->max_tpa_queues = BNX2X_VF_MAX_TPA_AGG_QUEUES;
224 }
225
226 /* Setup-op tx parameters */
227 if (test_bit(BNX2X_Q_TYPE_HAS_TX, &q_type)) {
228 setup_p->txq_params.tss_leading_cl_id = vf->leading_rss;
229 setup_p->txq_params.fw_sb_id = vf_igu_sb(vf, q->sb_idx);
230 }
231 }
232
bnx2x_vf_queue_create(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_queue_construct_params * qctor)233 static int bnx2x_vf_queue_create(struct bnx2x *bp,
234 struct bnx2x_virtf *vf, int qid,
235 struct bnx2x_vf_queue_construct_params *qctor)
236 {
237 struct bnx2x_queue_state_params *q_params;
238 int rc = 0;
239
240 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
241
242 /* Prepare ramrod information */
243 q_params = &qctor->qstate;
244 q_params->q_obj = &bnx2x_vfq(vf, qid, sp_obj);
245 set_bit(RAMROD_COMP_WAIT, &q_params->ramrod_flags);
246
247 if (bnx2x_get_q_logical_state(bp, q_params->q_obj) ==
248 BNX2X_Q_LOGICAL_STATE_ACTIVE) {
249 DP(BNX2X_MSG_IOV, "queue was already up. Aborting gracefully\n");
250 goto out;
251 }
252
253 /* Run Queue 'construction' ramrods */
254 q_params->cmd = BNX2X_Q_CMD_INIT;
255 rc = bnx2x_queue_state_change(bp, q_params);
256 if (rc)
257 goto out;
258
259 memcpy(&q_params->params.setup, &qctor->prep_qsetup,
260 sizeof(struct bnx2x_queue_setup_params));
261 q_params->cmd = BNX2X_Q_CMD_SETUP;
262 rc = bnx2x_queue_state_change(bp, q_params);
263 if (rc)
264 goto out;
265
266 /* enable interrupts */
267 bnx2x_vf_igu_ack_sb(bp, vf, vf_igu_sb(vf, bnx2x_vfq(vf, qid, sb_idx)),
268 USTORM_ID, 0, IGU_INT_ENABLE, 0);
269 out:
270 return rc;
271 }
272
bnx2x_vf_queue_destroy(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)273 static int bnx2x_vf_queue_destroy(struct bnx2x *bp, struct bnx2x_virtf *vf,
274 int qid)
275 {
276 enum bnx2x_queue_cmd cmds[] = {BNX2X_Q_CMD_HALT,
277 BNX2X_Q_CMD_TERMINATE,
278 BNX2X_Q_CMD_CFC_DEL};
279 struct bnx2x_queue_state_params q_params;
280 int rc, i;
281
282 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
283
284 /* Prepare ramrod information */
285 memset(&q_params, 0, sizeof(struct bnx2x_queue_state_params));
286 q_params.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
287 set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
288
289 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) ==
290 BNX2X_Q_LOGICAL_STATE_STOPPED) {
291 DP(BNX2X_MSG_IOV, "queue was already stopped. Aborting gracefully\n");
292 goto out;
293 }
294
295 /* Run Queue 'destruction' ramrods */
296 for (i = 0; i < ARRAY_SIZE(cmds); i++) {
297 q_params.cmd = cmds[i];
298 rc = bnx2x_queue_state_change(bp, &q_params);
299 if (rc) {
300 BNX2X_ERR("Failed to run Queue command %d\n", cmds[i]);
301 return rc;
302 }
303 }
304 out:
305 /* Clean Context */
306 if (bnx2x_vfq(vf, qid, cxt)) {
307 bnx2x_vfq(vf, qid, cxt)->ustorm_ag_context.cdu_usage = 0;
308 bnx2x_vfq(vf, qid, cxt)->xstorm_ag_context.cdu_reserved = 0;
309 }
310
311 return 0;
312 }
313
314 static void
bnx2x_vf_set_igu_info(struct bnx2x * bp,u8 igu_sb_id,u8 abs_vfid)315 bnx2x_vf_set_igu_info(struct bnx2x *bp, u8 igu_sb_id, u8 abs_vfid)
316 {
317 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
318 if (vf) {
319 /* the first igu entry belonging to VFs of this PF */
320 if (!BP_VFDB(bp)->first_vf_igu_entry)
321 BP_VFDB(bp)->first_vf_igu_entry = igu_sb_id;
322
323 /* the first igu entry belonging to this VF */
324 if (!vf_sb_count(vf))
325 vf->igu_base_id = igu_sb_id;
326
327 ++vf_sb_count(vf);
328 ++vf->sb_count;
329 }
330 BP_VFDB(bp)->vf_sbs_pool++;
331 }
332
bnx2x_vf_vlan_credit(struct bnx2x * bp,struct bnx2x_vlan_mac_obj * obj,atomic_t * counter)333 static inline void bnx2x_vf_vlan_credit(struct bnx2x *bp,
334 struct bnx2x_vlan_mac_obj *obj,
335 atomic_t *counter)
336 {
337 struct list_head *pos;
338 int read_lock;
339 int cnt = 0;
340
341 read_lock = bnx2x_vlan_mac_h_read_lock(bp, obj);
342 if (read_lock)
343 DP(BNX2X_MSG_SP, "Failed to take vlan mac read head; continuing anyway\n");
344
345 list_for_each(pos, &obj->head)
346 cnt++;
347
348 if (!read_lock)
349 bnx2x_vlan_mac_h_read_unlock(bp, obj);
350
351 atomic_set(counter, cnt);
352 }
353
bnx2x_vf_vlan_mac_clear(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,bool drv_only,int type)354 static int bnx2x_vf_vlan_mac_clear(struct bnx2x *bp, struct bnx2x_virtf *vf,
355 int qid, bool drv_only, int type)
356 {
357 struct bnx2x_vlan_mac_ramrod_params ramrod;
358 int rc;
359
360 DP(BNX2X_MSG_IOV, "vf[%d] - deleting all %s\n", vf->abs_vfid,
361 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
362 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
363
364 /* Prepare ramrod params */
365 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
366 if (type == BNX2X_VF_FILTER_VLAN_MAC) {
367 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
368 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
369 } else if (type == BNX2X_VF_FILTER_MAC) {
370 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
371 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
372 } else {
373 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
374 }
375 ramrod.user_req.cmd = BNX2X_VLAN_MAC_DEL;
376
377 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
378 if (drv_only)
379 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
380 else
381 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
382
383 /* Start deleting */
384 rc = ramrod.vlan_mac_obj->delete_all(bp,
385 ramrod.vlan_mac_obj,
386 &ramrod.user_req.vlan_mac_flags,
387 &ramrod.ramrod_flags);
388 if (rc) {
389 BNX2X_ERR("Failed to delete all %s\n",
390 (type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MACs" :
391 (type == BNX2X_VF_FILTER_MAC) ? "MACs" : "VLANs");
392 return rc;
393 }
394
395 return 0;
396 }
397
bnx2x_vf_mac_vlan_config(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_mac_vlan_filter * filter,bool drv_only)398 static int bnx2x_vf_mac_vlan_config(struct bnx2x *bp,
399 struct bnx2x_virtf *vf, int qid,
400 struct bnx2x_vf_mac_vlan_filter *filter,
401 bool drv_only)
402 {
403 struct bnx2x_vlan_mac_ramrod_params ramrod;
404 int rc;
405
406 DP(BNX2X_MSG_IOV, "vf[%d] - %s a %s filter\n",
407 vf->abs_vfid, filter->add ? "Adding" : "Deleting",
408 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ? "VLAN-MAC" :
409 (filter->type == BNX2X_VF_FILTER_MAC) ? "MAC" : "VLAN");
410
411 /* Prepare ramrod params */
412 memset(&ramrod, 0, sizeof(struct bnx2x_vlan_mac_ramrod_params));
413 if (filter->type == BNX2X_VF_FILTER_VLAN_MAC) {
414 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_mac_obj);
415 ramrod.user_req.u.vlan.vlan = filter->vid;
416 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
417 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
418 } else if (filter->type == BNX2X_VF_FILTER_VLAN) {
419 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, vlan_obj);
420 ramrod.user_req.u.vlan.vlan = filter->vid;
421 } else {
422 set_bit(BNX2X_ETH_MAC, &ramrod.user_req.vlan_mac_flags);
423 ramrod.vlan_mac_obj = &bnx2x_vfq(vf, qid, mac_obj);
424 memcpy(&ramrod.user_req.u.mac.mac, filter->mac, ETH_ALEN);
425 }
426 ramrod.user_req.cmd = filter->add ? BNX2X_VLAN_MAC_ADD :
427 BNX2X_VLAN_MAC_DEL;
428
429 set_bit(RAMROD_EXEC, &ramrod.ramrod_flags);
430 if (drv_only)
431 set_bit(RAMROD_DRV_CLR_ONLY, &ramrod.ramrod_flags);
432 else
433 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
434
435 /* Add/Remove the filter */
436 rc = bnx2x_config_vlan_mac(bp, &ramrod);
437 if (rc == -EEXIST)
438 return 0;
439 if (rc) {
440 BNX2X_ERR("Failed to %s %s\n",
441 filter->add ? "add" : "delete",
442 (filter->type == BNX2X_VF_FILTER_VLAN_MAC) ?
443 "VLAN-MAC" :
444 (filter->type == BNX2X_VF_FILTER_MAC) ?
445 "MAC" : "VLAN");
446 return rc;
447 }
448
449 filter->applied = true;
450
451 return 0;
452 }
453
bnx2x_vf_mac_vlan_config_list(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_mac_vlan_filters * filters,int qid,bool drv_only)454 int bnx2x_vf_mac_vlan_config_list(struct bnx2x *bp, struct bnx2x_virtf *vf,
455 struct bnx2x_vf_mac_vlan_filters *filters,
456 int qid, bool drv_only)
457 {
458 int rc = 0, i;
459
460 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
461
462 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
463 return -EINVAL;
464
465 /* Prepare ramrod params */
466 for (i = 0; i < filters->count; i++) {
467 rc = bnx2x_vf_mac_vlan_config(bp, vf, qid,
468 &filters->filters[i], drv_only);
469 if (rc)
470 break;
471 }
472
473 /* Rollback if needed */
474 if (i != filters->count) {
475 BNX2X_ERR("Managed only %d/%d filters - rolling back\n",
476 i, filters->count + 1);
477 while (--i >= 0) {
478 if (!filters->filters[i].applied)
479 continue;
480 filters->filters[i].add = !filters->filters[i].add;
481 bnx2x_vf_mac_vlan_config(bp, vf, qid,
482 &filters->filters[i],
483 drv_only);
484 }
485 }
486
487 /* It's our responsibility to free the filters */
488 kfree(filters);
489
490 return rc;
491 }
492
bnx2x_vf_queue_setup(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,struct bnx2x_vf_queue_construct_params * qctor)493 int bnx2x_vf_queue_setup(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid,
494 struct bnx2x_vf_queue_construct_params *qctor)
495 {
496 int rc;
497
498 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
499
500 rc = bnx2x_vf_queue_create(bp, vf, qid, qctor);
501 if (rc)
502 goto op_err;
503
504 /* Schedule the configuration of any pending vlan filters */
505 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_HYPERVISOR_VLAN,
506 BNX2X_MSG_IOV);
507 return 0;
508 op_err:
509 BNX2X_ERR("QSETUP[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
510 return rc;
511 }
512
bnx2x_vf_queue_flr(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)513 static int bnx2x_vf_queue_flr(struct bnx2x *bp, struct bnx2x_virtf *vf,
514 int qid)
515 {
516 int rc;
517
518 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
519
520 /* If needed, clean the filtering data base */
521 if ((qid == LEADING_IDX) &&
522 bnx2x_validate_vf_sp_objs(bp, vf, false)) {
523 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
524 BNX2X_VF_FILTER_VLAN_MAC);
525 if (rc)
526 goto op_err;
527 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
528 BNX2X_VF_FILTER_VLAN);
529 if (rc)
530 goto op_err;
531 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid, true,
532 BNX2X_VF_FILTER_MAC);
533 if (rc)
534 goto op_err;
535 }
536
537 /* Terminate queue */
538 if (bnx2x_vfq(vf, qid, sp_obj).state != BNX2X_Q_STATE_RESET) {
539 struct bnx2x_queue_state_params qstate;
540
541 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
542 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
543 qstate.q_obj->state = BNX2X_Q_STATE_STOPPED;
544 qstate.cmd = BNX2X_Q_CMD_TERMINATE;
545 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
546 rc = bnx2x_queue_state_change(bp, &qstate);
547 if (rc)
548 goto op_err;
549 }
550
551 return 0;
552 op_err:
553 BNX2X_ERR("vf[%d:%d] error: rc %d\n", vf->abs_vfid, qid, rc);
554 return rc;
555 }
556
bnx2x_vf_mcast(struct bnx2x * bp,struct bnx2x_virtf * vf,bnx2x_mac_addr_t * mcasts,int mc_num,bool drv_only)557 int bnx2x_vf_mcast(struct bnx2x *bp, struct bnx2x_virtf *vf,
558 bnx2x_mac_addr_t *mcasts, int mc_num, bool drv_only)
559 {
560 struct bnx2x_mcast_list_elem *mc = NULL;
561 struct bnx2x_mcast_ramrod_params mcast;
562 int rc, i;
563
564 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
565
566 /* Prepare Multicast command */
567 memset(&mcast, 0, sizeof(struct bnx2x_mcast_ramrod_params));
568 mcast.mcast_obj = &vf->mcast_obj;
569 if (drv_only)
570 set_bit(RAMROD_DRV_CLR_ONLY, &mcast.ramrod_flags);
571 else
572 set_bit(RAMROD_COMP_WAIT, &mcast.ramrod_flags);
573 if (mc_num) {
574 mc = kzalloc(mc_num * sizeof(struct bnx2x_mcast_list_elem),
575 GFP_KERNEL);
576 if (!mc) {
577 BNX2X_ERR("Cannot Configure multicasts due to lack of memory\n");
578 return -ENOMEM;
579 }
580 }
581
582 if (mc_num) {
583 INIT_LIST_HEAD(&mcast.mcast_list);
584 for (i = 0; i < mc_num; i++) {
585 mc[i].mac = mcasts[i];
586 list_add_tail(&mc[i].link,
587 &mcast.mcast_list);
588 }
589
590 /* add new mcasts */
591 mcast.mcast_list_len = mc_num;
592 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_SET);
593 if (rc)
594 BNX2X_ERR("Faled to set multicasts\n");
595 } else {
596 /* clear existing mcasts */
597 rc = bnx2x_config_mcast(bp, &mcast, BNX2X_MCAST_CMD_DEL);
598 if (rc)
599 BNX2X_ERR("Failed to remove multicasts\n");
600 }
601
602 kfree(mc);
603
604 return rc;
605 }
606
bnx2x_vf_prep_rx_mode(struct bnx2x * bp,u8 qid,struct bnx2x_rx_mode_ramrod_params * ramrod,struct bnx2x_virtf * vf,unsigned long accept_flags)607 static void bnx2x_vf_prep_rx_mode(struct bnx2x *bp, u8 qid,
608 struct bnx2x_rx_mode_ramrod_params *ramrod,
609 struct bnx2x_virtf *vf,
610 unsigned long accept_flags)
611 {
612 struct bnx2x_vf_queue *vfq = vfq_get(vf, qid);
613
614 memset(ramrod, 0, sizeof(*ramrod));
615 ramrod->cid = vfq->cid;
616 ramrod->cl_id = vfq_cl_id(vf, vfq);
617 ramrod->rx_mode_obj = &bp->rx_mode_obj;
618 ramrod->func_id = FW_VF_HANDLE(vf->abs_vfid);
619 ramrod->rx_accept_flags = accept_flags;
620 ramrod->tx_accept_flags = accept_flags;
621 ramrod->pstate = &vf->filter_state;
622 ramrod->state = BNX2X_FILTER_RX_MODE_PENDING;
623
624 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
625 set_bit(RAMROD_RX, &ramrod->ramrod_flags);
626 set_bit(RAMROD_TX, &ramrod->ramrod_flags);
627
628 ramrod->rdata = bnx2x_vf_sp(bp, vf, rx_mode_rdata.e2);
629 ramrod->rdata_mapping = bnx2x_vf_sp_map(bp, vf, rx_mode_rdata.e2);
630 }
631
bnx2x_vf_rxmode(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid,unsigned long accept_flags)632 int bnx2x_vf_rxmode(struct bnx2x *bp, struct bnx2x_virtf *vf,
633 int qid, unsigned long accept_flags)
634 {
635 struct bnx2x_rx_mode_ramrod_params ramrod;
636
637 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
638
639 bnx2x_vf_prep_rx_mode(bp, qid, &ramrod, vf, accept_flags);
640 set_bit(RAMROD_COMP_WAIT, &ramrod.ramrod_flags);
641 vfq_get(vf, qid)->accept_flags = ramrod.rx_accept_flags;
642 return bnx2x_config_rx_mode(bp, &ramrod);
643 }
644
bnx2x_vf_queue_teardown(struct bnx2x * bp,struct bnx2x_virtf * vf,int qid)645 int bnx2x_vf_queue_teardown(struct bnx2x *bp, struct bnx2x_virtf *vf, int qid)
646 {
647 int rc;
648
649 DP(BNX2X_MSG_IOV, "vf[%d:%d]\n", vf->abs_vfid, qid);
650
651 /* Remove all classification configuration for leading queue */
652 if (qid == LEADING_IDX) {
653 rc = bnx2x_vf_rxmode(bp, vf, qid, 0);
654 if (rc)
655 goto op_err;
656
657 /* Remove filtering if feasible */
658 if (bnx2x_validate_vf_sp_objs(bp, vf, true)) {
659 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
660 false,
661 BNX2X_VF_FILTER_VLAN_MAC);
662 if (rc)
663 goto op_err;
664 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
665 false,
666 BNX2X_VF_FILTER_VLAN);
667 if (rc)
668 goto op_err;
669 rc = bnx2x_vf_vlan_mac_clear(bp, vf, qid,
670 false,
671 BNX2X_VF_FILTER_MAC);
672 if (rc)
673 goto op_err;
674 rc = bnx2x_vf_mcast(bp, vf, NULL, 0, false);
675 if (rc)
676 goto op_err;
677 }
678 }
679
680 /* Destroy queue */
681 rc = bnx2x_vf_queue_destroy(bp, vf, qid);
682 if (rc)
683 goto op_err;
684 return rc;
685 op_err:
686 BNX2X_ERR("vf[%d:%d] error: rc %d\n",
687 vf->abs_vfid, qid, rc);
688 return rc;
689 }
690
691 /* VF enable primitives
692 * when pretend is required the caller is responsible
693 * for calling pretend prior to calling these routines
694 */
695
696 /* internal vf enable - until vf is enabled internally all transactions
697 * are blocked. This routine should always be called last with pretend.
698 */
bnx2x_vf_enable_internal(struct bnx2x * bp,u8 enable)699 static void bnx2x_vf_enable_internal(struct bnx2x *bp, u8 enable)
700 {
701 REG_WR(bp, PGLUE_B_REG_INTERNAL_VFID_ENABLE, enable ? 1 : 0);
702 }
703
704 /* clears vf error in all semi blocks */
bnx2x_vf_semi_clear_err(struct bnx2x * bp,u8 abs_vfid)705 static void bnx2x_vf_semi_clear_err(struct bnx2x *bp, u8 abs_vfid)
706 {
707 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, abs_vfid);
708 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, abs_vfid);
709 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, abs_vfid);
710 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, abs_vfid);
711 }
712
bnx2x_vf_pglue_clear_err(struct bnx2x * bp,u8 abs_vfid)713 static void bnx2x_vf_pglue_clear_err(struct bnx2x *bp, u8 abs_vfid)
714 {
715 u32 was_err_group = (2 * BP_PATH(bp) + abs_vfid) >> 5;
716 u32 was_err_reg = 0;
717
718 switch (was_err_group) {
719 case 0:
720 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR;
721 break;
722 case 1:
723 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_63_32_CLR;
724 break;
725 case 2:
726 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_95_64_CLR;
727 break;
728 case 3:
729 was_err_reg = PGLUE_B_REG_WAS_ERROR_VF_127_96_CLR;
730 break;
731 }
732 REG_WR(bp, was_err_reg, 1 << (abs_vfid & 0x1f));
733 }
734
bnx2x_vf_igu_reset(struct bnx2x * bp,struct bnx2x_virtf * vf)735 static void bnx2x_vf_igu_reset(struct bnx2x *bp, struct bnx2x_virtf *vf)
736 {
737 int i;
738 u32 val;
739
740 /* Set VF masks and configuration - pretend */
741 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
742
743 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
744 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
745 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
746 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
747 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
748 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
749
750 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
751 val |= (IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_MSI_MSIX_EN);
752 val &= ~IGU_VF_CONF_PARENT_MASK;
753 val |= (BP_ABS_FUNC(bp) >> 1) << IGU_VF_CONF_PARENT_SHIFT;
754 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
755
756 DP(BNX2X_MSG_IOV,
757 "value in IGU_REG_VF_CONFIGURATION of vf %d after write is 0x%08x\n",
758 vf->abs_vfid, val);
759
760 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
761
762 /* iterate over all queues, clear sb consumer */
763 for (i = 0; i < vf_sb_count(vf); i++) {
764 u8 igu_sb_id = vf_igu_sb(vf, i);
765
766 /* zero prod memory */
767 REG_WR(bp, IGU_REG_PROD_CONS_MEMORY + igu_sb_id * 4, 0);
768
769 /* clear sb state machine */
770 bnx2x_igu_clear_sb_gen(bp, vf->abs_vfid, igu_sb_id,
771 false /* VF */);
772
773 /* disable + update */
774 bnx2x_vf_igu_ack_sb(bp, vf, igu_sb_id, USTORM_ID, 0,
775 IGU_INT_DISABLE, 1);
776 }
777 }
778
bnx2x_vf_enable_access(struct bnx2x * bp,u8 abs_vfid)779 void bnx2x_vf_enable_access(struct bnx2x *bp, u8 abs_vfid)
780 {
781 /* set the VF-PF association in the FW */
782 storm_memset_vf_to_pf(bp, FW_VF_HANDLE(abs_vfid), BP_FUNC(bp));
783 storm_memset_func_en(bp, FW_VF_HANDLE(abs_vfid), 1);
784
785 /* clear vf errors*/
786 bnx2x_vf_semi_clear_err(bp, abs_vfid);
787 bnx2x_vf_pglue_clear_err(bp, abs_vfid);
788
789 /* internal vf-enable - pretend */
790 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, abs_vfid));
791 DP(BNX2X_MSG_IOV, "enabling internal access for vf %x\n", abs_vfid);
792 bnx2x_vf_enable_internal(bp, true);
793 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
794 }
795
bnx2x_vf_enable_traffic(struct bnx2x * bp,struct bnx2x_virtf * vf)796 static void bnx2x_vf_enable_traffic(struct bnx2x *bp, struct bnx2x_virtf *vf)
797 {
798 /* Reset vf in IGU interrupts are still disabled */
799 bnx2x_vf_igu_reset(bp, vf);
800
801 /* pretend to enable the vf with the PBF */
802 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
803 REG_WR(bp, PBF_REG_DISABLE_VF, 0);
804 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
805 }
806
bnx2x_vf_is_pcie_pending(struct bnx2x * bp,u8 abs_vfid)807 static u8 bnx2x_vf_is_pcie_pending(struct bnx2x *bp, u8 abs_vfid)
808 {
809 struct pci_dev *dev;
810 struct bnx2x_virtf *vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
811
812 if (!vf)
813 return false;
814
815 dev = pci_get_bus_and_slot(vf->bus, vf->devfn);
816 if (dev)
817 return bnx2x_is_pcie_pending(dev);
818 return false;
819 }
820
bnx2x_vf_flr_clnup_epilog(struct bnx2x * bp,u8 abs_vfid)821 int bnx2x_vf_flr_clnup_epilog(struct bnx2x *bp, u8 abs_vfid)
822 {
823 /* Verify no pending pci transactions */
824 if (bnx2x_vf_is_pcie_pending(bp, abs_vfid))
825 BNX2X_ERR("PCIE Transactions still pending\n");
826
827 return 0;
828 }
829
830 /* must be called after the number of PF queues and the number of VFs are
831 * both known
832 */
833 static void
bnx2x_iov_static_resc(struct bnx2x * bp,struct bnx2x_virtf * vf)834 bnx2x_iov_static_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
835 {
836 struct vf_pf_resc_request *resc = &vf->alloc_resc;
837
838 /* will be set only during VF-ACQUIRE */
839 resc->num_rxqs = 0;
840 resc->num_txqs = 0;
841
842 resc->num_mac_filters = VF_MAC_CREDIT_CNT;
843 resc->num_vlan_filters = VF_VLAN_CREDIT_CNT;
844
845 /* no real limitation */
846 resc->num_mc_filters = 0;
847
848 /* num_sbs already set */
849 resc->num_sbs = vf->sb_count;
850 }
851
852 /* FLR routines: */
bnx2x_vf_free_resc(struct bnx2x * bp,struct bnx2x_virtf * vf)853 static void bnx2x_vf_free_resc(struct bnx2x *bp, struct bnx2x_virtf *vf)
854 {
855 /* reset the state variables */
856 bnx2x_iov_static_resc(bp, vf);
857 vf->state = VF_FREE;
858 }
859
bnx2x_vf_flr_clnup_hw(struct bnx2x * bp,struct bnx2x_virtf * vf)860 static void bnx2x_vf_flr_clnup_hw(struct bnx2x *bp, struct bnx2x_virtf *vf)
861 {
862 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
863
864 /* DQ usage counter */
865 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
866 bnx2x_flr_clnup_poll_hw_counter(bp, DORQ_REG_VF_USAGE_CNT,
867 "DQ VF usage counter timed out",
868 poll_cnt);
869 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
870
871 /* FW cleanup command - poll for the results */
872 if (bnx2x_send_final_clnup(bp, (u8)FW_VF_HANDLE(vf->abs_vfid),
873 poll_cnt))
874 BNX2X_ERR("VF[%d] Final cleanup timed-out\n", vf->abs_vfid);
875
876 /* verify TX hw is flushed */
877 bnx2x_tx_hw_flushed(bp, poll_cnt);
878 }
879
bnx2x_vf_flr(struct bnx2x * bp,struct bnx2x_virtf * vf)880 static void bnx2x_vf_flr(struct bnx2x *bp, struct bnx2x_virtf *vf)
881 {
882 int rc, i;
883
884 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
885
886 /* the cleanup operations are valid if and only if the VF
887 * was first acquired.
888 */
889 for (i = 0; i < vf_rxq_count(vf); i++) {
890 rc = bnx2x_vf_queue_flr(bp, vf, i);
891 if (rc)
892 goto out;
893 }
894
895 /* remove multicasts */
896 bnx2x_vf_mcast(bp, vf, NULL, 0, true);
897
898 /* dispatch final cleanup and wait for HW queues to flush */
899 bnx2x_vf_flr_clnup_hw(bp, vf);
900
901 /* release VF resources */
902 bnx2x_vf_free_resc(bp, vf);
903
904 /* re-open the mailbox */
905 bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
906 return;
907 out:
908 BNX2X_ERR("vf[%d:%d] failed flr: rc %d\n",
909 vf->abs_vfid, i, rc);
910 }
911
bnx2x_vf_flr_clnup(struct bnx2x * bp)912 static void bnx2x_vf_flr_clnup(struct bnx2x *bp)
913 {
914 struct bnx2x_virtf *vf;
915 int i;
916
917 for (i = 0; i < BNX2X_NR_VIRTFN(bp); i++) {
918 /* VF should be RESET & in FLR cleanup states */
919 if (bnx2x_vf(bp, i, state) != VF_RESET ||
920 !bnx2x_vf(bp, i, flr_clnup_stage))
921 continue;
922
923 DP(BNX2X_MSG_IOV, "next vf to cleanup: %d. Num of vfs: %d\n",
924 i, BNX2X_NR_VIRTFN(bp));
925
926 vf = BP_VF(bp, i);
927
928 /* lock the vf pf channel */
929 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
930
931 /* invoke the VF FLR SM */
932 bnx2x_vf_flr(bp, vf);
933
934 /* mark the VF to be ACKED and continue */
935 vf->flr_clnup_stage = false;
936 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_FLR);
937 }
938
939 /* Acknowledge the handled VFs.
940 * we are acknowledge all the vfs which an flr was requested for, even
941 * if amongst them there are such that we never opened, since the mcp
942 * will interrupt us immediately again if we only ack some of the bits,
943 * resulting in an endless loop. This can happen for example in KVM
944 * where an 'all ones' flr request is sometimes given by hyper visor
945 */
946 DP(BNX2X_MSG_MCP, "DRV_STATUS_VF_DISABLED ACK for vfs 0x%x 0x%x\n",
947 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
948 for (i = 0; i < FLRD_VFS_DWORDS; i++)
949 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i],
950 bp->vfdb->flrd_vfs[i]);
951
952 bnx2x_fw_command(bp, DRV_MSG_CODE_VF_DISABLED_DONE, 0);
953
954 /* clear the acked bits - better yet if the MCP implemented
955 * write to clear semantics
956 */
957 for (i = 0; i < FLRD_VFS_DWORDS; i++)
958 SHMEM2_WR(bp, drv_ack_vf_disabled[BP_FW_MB_IDX(bp)][i], 0);
959 }
960
bnx2x_vf_handle_flr_event(struct bnx2x * bp)961 void bnx2x_vf_handle_flr_event(struct bnx2x *bp)
962 {
963 int i;
964
965 /* Read FLR'd VFs */
966 for (i = 0; i < FLRD_VFS_DWORDS; i++)
967 bp->vfdb->flrd_vfs[i] = SHMEM2_RD(bp, mcp_vf_disabled[i]);
968
969 DP(BNX2X_MSG_MCP,
970 "DRV_STATUS_VF_DISABLED received for vfs 0x%x 0x%x\n",
971 bp->vfdb->flrd_vfs[0], bp->vfdb->flrd_vfs[1]);
972
973 for_each_vf(bp, i) {
974 struct bnx2x_virtf *vf = BP_VF(bp, i);
975 u32 reset = 0;
976
977 if (vf->abs_vfid < 32)
978 reset = bp->vfdb->flrd_vfs[0] & (1 << vf->abs_vfid);
979 else
980 reset = bp->vfdb->flrd_vfs[1] &
981 (1 << (vf->abs_vfid - 32));
982
983 if (reset) {
984 /* set as reset and ready for cleanup */
985 vf->state = VF_RESET;
986 vf->flr_clnup_stage = true;
987
988 DP(BNX2X_MSG_IOV,
989 "Initiating Final cleanup for VF %d\n",
990 vf->abs_vfid);
991 }
992 }
993
994 /* do the FLR cleanup for all marked VFs*/
995 bnx2x_vf_flr_clnup(bp);
996 }
997
998 /* IOV global initialization routines */
bnx2x_iov_init_dq(struct bnx2x * bp)999 void bnx2x_iov_init_dq(struct bnx2x *bp)
1000 {
1001 if (!IS_SRIOV(bp))
1002 return;
1003
1004 /* Set the DQ such that the CID reflect the abs_vfid */
1005 REG_WR(bp, DORQ_REG_VF_NORM_VF_BASE, 0);
1006 REG_WR(bp, DORQ_REG_MAX_RVFID_SIZE, ilog2(BNX2X_MAX_NUM_OF_VFS));
1007
1008 /* Set VFs starting CID. If its > 0 the preceding CIDs are belong to
1009 * the PF L2 queues
1010 */
1011 REG_WR(bp, DORQ_REG_VF_NORM_CID_BASE, BNX2X_FIRST_VF_CID);
1012
1013 /* The VF window size is the log2 of the max number of CIDs per VF */
1014 REG_WR(bp, DORQ_REG_VF_NORM_CID_WND_SIZE, BNX2X_VF_CID_WND);
1015
1016 /* The VF doorbell size 0 - *B, 4 - 128B. We set it here to match
1017 * the Pf doorbell size although the 2 are independent.
1018 */
1019 REG_WR(bp, DORQ_REG_VF_NORM_CID_OFST, 3);
1020
1021 /* No security checks for now -
1022 * configure single rule (out of 16) mask = 0x1, value = 0x0,
1023 * CID range 0 - 0x1ffff
1024 */
1025 REG_WR(bp, DORQ_REG_VF_TYPE_MASK_0, 1);
1026 REG_WR(bp, DORQ_REG_VF_TYPE_VALUE_0, 0);
1027 REG_WR(bp, DORQ_REG_VF_TYPE_MIN_MCID_0, 0);
1028 REG_WR(bp, DORQ_REG_VF_TYPE_MAX_MCID_0, 0x1ffff);
1029
1030 /* set the VF doorbell threshold. This threshold represents the amount
1031 * of doorbells allowed in the main DORQ fifo for a specific VF.
1032 */
1033 REG_WR(bp, DORQ_REG_VF_USAGE_CT_LIMIT, 64);
1034 }
1035
bnx2x_iov_init_dmae(struct bnx2x * bp)1036 void bnx2x_iov_init_dmae(struct bnx2x *bp)
1037 {
1038 if (pci_find_ext_capability(bp->pdev, PCI_EXT_CAP_ID_SRIOV))
1039 REG_WR(bp, DMAE_REG_BACKWARD_COMP_EN, 0);
1040 }
1041
bnx2x_vf_bus(struct bnx2x * bp,int vfid)1042 static int bnx2x_vf_bus(struct bnx2x *bp, int vfid)
1043 {
1044 struct pci_dev *dev = bp->pdev;
1045 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1046
1047 return dev->bus->number + ((dev->devfn + iov->offset +
1048 iov->stride * vfid) >> 8);
1049 }
1050
bnx2x_vf_devfn(struct bnx2x * bp,int vfid)1051 static int bnx2x_vf_devfn(struct bnx2x *bp, int vfid)
1052 {
1053 struct pci_dev *dev = bp->pdev;
1054 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1055
1056 return (dev->devfn + iov->offset + iov->stride * vfid) & 0xff;
1057 }
1058
bnx2x_vf_set_bars(struct bnx2x * bp,struct bnx2x_virtf * vf)1059 static void bnx2x_vf_set_bars(struct bnx2x *bp, struct bnx2x_virtf *vf)
1060 {
1061 int i, n;
1062 struct pci_dev *dev = bp->pdev;
1063 struct bnx2x_sriov *iov = &bp->vfdb->sriov;
1064
1065 for (i = 0, n = 0; i < PCI_SRIOV_NUM_BARS; i += 2, n++) {
1066 u64 start = pci_resource_start(dev, PCI_IOV_RESOURCES + i);
1067 u32 size = pci_resource_len(dev, PCI_IOV_RESOURCES + i);
1068
1069 size /= iov->total;
1070 vf->bars[n].bar = start + size * vf->abs_vfid;
1071 vf->bars[n].size = size;
1072 }
1073 }
1074
bnx2x_ari_enabled(struct pci_dev * dev)1075 static int bnx2x_ari_enabled(struct pci_dev *dev)
1076 {
1077 return dev->bus->self && dev->bus->self->ari_enabled;
1078 }
1079
1080 static int
bnx2x_get_vf_igu_cam_info(struct bnx2x * bp)1081 bnx2x_get_vf_igu_cam_info(struct bnx2x *bp)
1082 {
1083 int sb_id;
1084 u32 val;
1085 u8 fid, current_pf = 0;
1086
1087 /* IGU in normal mode - read CAM */
1088 for (sb_id = 0; sb_id < IGU_REG_MAPPING_MEMORY_SIZE; sb_id++) {
1089 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + sb_id * 4);
1090 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
1091 continue;
1092 fid = GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID);
1093 if (fid & IGU_FID_ENCODE_IS_PF)
1094 current_pf = fid & IGU_FID_PF_NUM_MASK;
1095 else if (current_pf == BP_FUNC(bp))
1096 bnx2x_vf_set_igu_info(bp, sb_id,
1097 (fid & IGU_FID_VF_NUM_MASK));
1098 DP(BNX2X_MSG_IOV, "%s[%d], igu_sb_id=%d, msix=%d\n",
1099 ((fid & IGU_FID_ENCODE_IS_PF) ? "PF" : "VF"),
1100 ((fid & IGU_FID_ENCODE_IS_PF) ? (fid & IGU_FID_PF_NUM_MASK) :
1101 (fid & IGU_FID_VF_NUM_MASK)), sb_id,
1102 GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR));
1103 }
1104 DP(BNX2X_MSG_IOV, "vf_sbs_pool is %d\n", BP_VFDB(bp)->vf_sbs_pool);
1105 return BP_VFDB(bp)->vf_sbs_pool;
1106 }
1107
__bnx2x_iov_free_vfdb(struct bnx2x * bp)1108 static void __bnx2x_iov_free_vfdb(struct bnx2x *bp)
1109 {
1110 if (bp->vfdb) {
1111 kfree(bp->vfdb->vfqs);
1112 kfree(bp->vfdb->vfs);
1113 kfree(bp->vfdb);
1114 }
1115 bp->vfdb = NULL;
1116 }
1117
bnx2x_sriov_pci_cfg_info(struct bnx2x * bp,struct bnx2x_sriov * iov)1118 static int bnx2x_sriov_pci_cfg_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1119 {
1120 int pos;
1121 struct pci_dev *dev = bp->pdev;
1122
1123 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV);
1124 if (!pos) {
1125 BNX2X_ERR("failed to find SRIOV capability in device\n");
1126 return -ENODEV;
1127 }
1128
1129 iov->pos = pos;
1130 DP(BNX2X_MSG_IOV, "sriov ext pos %d\n", pos);
1131 pci_read_config_word(dev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
1132 pci_read_config_word(dev, pos + PCI_SRIOV_TOTAL_VF, &iov->total);
1133 pci_read_config_word(dev, pos + PCI_SRIOV_INITIAL_VF, &iov->initial);
1134 pci_read_config_word(dev, pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
1135 pci_read_config_word(dev, pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
1136 pci_read_config_dword(dev, pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
1137 pci_read_config_dword(dev, pos + PCI_SRIOV_CAP, &iov->cap);
1138 pci_read_config_byte(dev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
1139
1140 return 0;
1141 }
1142
bnx2x_sriov_info(struct bnx2x * bp,struct bnx2x_sriov * iov)1143 static int bnx2x_sriov_info(struct bnx2x *bp, struct bnx2x_sriov *iov)
1144 {
1145 u32 val;
1146
1147 /* read the SRIOV capability structure
1148 * The fields can be read via configuration read or
1149 * directly from the device (starting at offset PCICFG_OFFSET)
1150 */
1151 if (bnx2x_sriov_pci_cfg_info(bp, iov))
1152 return -ENODEV;
1153
1154 /* get the number of SRIOV bars */
1155 iov->nres = 0;
1156
1157 /* read the first_vfid */
1158 val = REG_RD(bp, PCICFG_OFFSET + GRC_CONFIG_REG_PF_INIT_VF);
1159 iov->first_vf_in_pf = ((val & GRC_CR_PF_INIT_VF_PF_FIRST_VF_NUM_MASK)
1160 * 8) - (BNX2X_MAX_NUM_OF_VFS * BP_PATH(bp));
1161
1162 DP(BNX2X_MSG_IOV,
1163 "IOV info[%d]: first vf %d, nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
1164 BP_FUNC(bp),
1165 iov->first_vf_in_pf, iov->nres, iov->cap, iov->ctrl, iov->total,
1166 iov->initial, iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
1167
1168 return 0;
1169 }
1170
1171 /* must be called after PF bars are mapped */
bnx2x_iov_init_one(struct bnx2x * bp,int int_mode_param,int num_vfs_param)1172 int bnx2x_iov_init_one(struct bnx2x *bp, int int_mode_param,
1173 int num_vfs_param)
1174 {
1175 int err, i;
1176 struct bnx2x_sriov *iov;
1177 struct pci_dev *dev = bp->pdev;
1178
1179 bp->vfdb = NULL;
1180
1181 /* verify is pf */
1182 if (IS_VF(bp))
1183 return 0;
1184
1185 /* verify sriov capability is present in configuration space */
1186 if (!pci_find_ext_capability(dev, PCI_EXT_CAP_ID_SRIOV))
1187 return 0;
1188
1189 /* verify chip revision */
1190 if (CHIP_IS_E1x(bp))
1191 return 0;
1192
1193 /* check if SRIOV support is turned off */
1194 if (!num_vfs_param)
1195 return 0;
1196
1197 /* SRIOV assumes that num of PF CIDs < BNX2X_FIRST_VF_CID */
1198 if (BNX2X_L2_MAX_CID(bp) >= BNX2X_FIRST_VF_CID) {
1199 BNX2X_ERR("PF cids %d are overspilling into vf space (starts at %d). Abort SRIOV\n",
1200 BNX2X_L2_MAX_CID(bp), BNX2X_FIRST_VF_CID);
1201 return 0;
1202 }
1203
1204 /* SRIOV can be enabled only with MSIX */
1205 if (int_mode_param == BNX2X_INT_MODE_MSI ||
1206 int_mode_param == BNX2X_INT_MODE_INTX) {
1207 BNX2X_ERR("Forced MSI/INTx mode is incompatible with SRIOV\n");
1208 return 0;
1209 }
1210
1211 err = -EIO;
1212 /* verify ari is enabled */
1213 if (!bnx2x_ari_enabled(bp->pdev)) {
1214 BNX2X_ERR("ARI not supported (check pci bridge ARI forwarding), SRIOV can not be enabled\n");
1215 return 0;
1216 }
1217
1218 /* verify igu is in normal mode */
1219 if (CHIP_INT_MODE_IS_BC(bp)) {
1220 BNX2X_ERR("IGU not normal mode, SRIOV can not be enabled\n");
1221 return 0;
1222 }
1223
1224 /* allocate the vfs database */
1225 bp->vfdb = kzalloc(sizeof(*(bp->vfdb)), GFP_KERNEL);
1226 if (!bp->vfdb) {
1227 BNX2X_ERR("failed to allocate vf database\n");
1228 err = -ENOMEM;
1229 goto failed;
1230 }
1231
1232 /* get the sriov info - Linux already collected all the pertinent
1233 * information, however the sriov structure is for the private use
1234 * of the pci module. Also we want this information regardless
1235 * of the hyper-visor.
1236 */
1237 iov = &(bp->vfdb->sriov);
1238 err = bnx2x_sriov_info(bp, iov);
1239 if (err)
1240 goto failed;
1241
1242 /* SR-IOV capability was enabled but there are no VFs*/
1243 if (iov->total == 0)
1244 goto failed;
1245
1246 iov->nr_virtfn = min_t(u16, iov->total, num_vfs_param);
1247
1248 DP(BNX2X_MSG_IOV, "num_vfs_param was %d, nr_virtfn was %d\n",
1249 num_vfs_param, iov->nr_virtfn);
1250
1251 /* allocate the vf array */
1252 bp->vfdb->vfs = kzalloc(sizeof(struct bnx2x_virtf) *
1253 BNX2X_NR_VIRTFN(bp), GFP_KERNEL);
1254 if (!bp->vfdb->vfs) {
1255 BNX2X_ERR("failed to allocate vf array\n");
1256 err = -ENOMEM;
1257 goto failed;
1258 }
1259
1260 /* Initial VF init - index and abs_vfid - nr_virtfn must be set */
1261 for_each_vf(bp, i) {
1262 bnx2x_vf(bp, i, index) = i;
1263 bnx2x_vf(bp, i, abs_vfid) = iov->first_vf_in_pf + i;
1264 bnx2x_vf(bp, i, state) = VF_FREE;
1265 mutex_init(&bnx2x_vf(bp, i, op_mutex));
1266 bnx2x_vf(bp, i, op_current) = CHANNEL_TLV_NONE;
1267 }
1268
1269 /* re-read the IGU CAM for VFs - index and abs_vfid must be set */
1270 if (!bnx2x_get_vf_igu_cam_info(bp)) {
1271 BNX2X_ERR("No entries in IGU CAM for vfs\n");
1272 err = -EINVAL;
1273 goto failed;
1274 }
1275
1276 /* allocate the queue arrays for all VFs */
1277 bp->vfdb->vfqs = kzalloc(
1278 BNX2X_MAX_NUM_VF_QUEUES * sizeof(struct bnx2x_vf_queue),
1279 GFP_KERNEL);
1280
1281 if (!bp->vfdb->vfqs) {
1282 BNX2X_ERR("failed to allocate vf queue array\n");
1283 err = -ENOMEM;
1284 goto failed;
1285 }
1286
1287 /* Prepare the VFs event synchronization mechanism */
1288 mutex_init(&bp->vfdb->event_mutex);
1289
1290 mutex_init(&bp->vfdb->bulletin_mutex);
1291
1292 if (SHMEM2_HAS(bp, sriov_switch_mode))
1293 SHMEM2_WR(bp, sriov_switch_mode, SRIOV_SWITCH_MODE_VEB);
1294
1295 return 0;
1296 failed:
1297 DP(BNX2X_MSG_IOV, "Failed err=%d\n", err);
1298 __bnx2x_iov_free_vfdb(bp);
1299 return err;
1300 }
1301
bnx2x_iov_remove_one(struct bnx2x * bp)1302 void bnx2x_iov_remove_one(struct bnx2x *bp)
1303 {
1304 int vf_idx;
1305
1306 /* if SRIOV is not enabled there's nothing to do */
1307 if (!IS_SRIOV(bp))
1308 return;
1309
1310 bnx2x_disable_sriov(bp);
1311
1312 /* disable access to all VFs */
1313 for (vf_idx = 0; vf_idx < bp->vfdb->sriov.total; vf_idx++) {
1314 bnx2x_pretend_func(bp,
1315 HW_VF_HANDLE(bp,
1316 bp->vfdb->sriov.first_vf_in_pf +
1317 vf_idx));
1318 DP(BNX2X_MSG_IOV, "disabling internal access for vf %d\n",
1319 bp->vfdb->sriov.first_vf_in_pf + vf_idx);
1320 bnx2x_vf_enable_internal(bp, 0);
1321 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1322 }
1323
1324 /* free vf database */
1325 __bnx2x_iov_free_vfdb(bp);
1326 }
1327
bnx2x_iov_free_mem(struct bnx2x * bp)1328 void bnx2x_iov_free_mem(struct bnx2x *bp)
1329 {
1330 int i;
1331
1332 if (!IS_SRIOV(bp))
1333 return;
1334
1335 /* free vfs hw contexts */
1336 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1337 struct hw_dma *cxt = &bp->vfdb->context[i];
1338 BNX2X_PCI_FREE(cxt->addr, cxt->mapping, cxt->size);
1339 }
1340
1341 BNX2X_PCI_FREE(BP_VFDB(bp)->sp_dma.addr,
1342 BP_VFDB(bp)->sp_dma.mapping,
1343 BP_VFDB(bp)->sp_dma.size);
1344
1345 BNX2X_PCI_FREE(BP_VF_MBX_DMA(bp)->addr,
1346 BP_VF_MBX_DMA(bp)->mapping,
1347 BP_VF_MBX_DMA(bp)->size);
1348
1349 BNX2X_PCI_FREE(BP_VF_BULLETIN_DMA(bp)->addr,
1350 BP_VF_BULLETIN_DMA(bp)->mapping,
1351 BP_VF_BULLETIN_DMA(bp)->size);
1352 }
1353
bnx2x_iov_alloc_mem(struct bnx2x * bp)1354 int bnx2x_iov_alloc_mem(struct bnx2x *bp)
1355 {
1356 size_t tot_size;
1357 int i, rc = 0;
1358
1359 if (!IS_SRIOV(bp))
1360 return rc;
1361
1362 /* allocate vfs hw contexts */
1363 tot_size = (BP_VFDB(bp)->sriov.first_vf_in_pf + BNX2X_NR_VIRTFN(bp)) *
1364 BNX2X_CIDS_PER_VF * sizeof(union cdu_context);
1365
1366 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1367 struct hw_dma *cxt = BP_VF_CXT_PAGE(bp, i);
1368 cxt->size = min_t(size_t, tot_size, CDU_ILT_PAGE_SZ);
1369
1370 if (cxt->size) {
1371 cxt->addr = BNX2X_PCI_ALLOC(&cxt->mapping, cxt->size);
1372 if (!cxt->addr)
1373 goto alloc_mem_err;
1374 } else {
1375 cxt->addr = NULL;
1376 cxt->mapping = 0;
1377 }
1378 tot_size -= cxt->size;
1379 }
1380
1381 /* allocate vfs ramrods dma memory - client_init and set_mac */
1382 tot_size = BNX2X_NR_VIRTFN(bp) * sizeof(struct bnx2x_vf_sp);
1383 BP_VFDB(bp)->sp_dma.addr = BNX2X_PCI_ALLOC(&BP_VFDB(bp)->sp_dma.mapping,
1384 tot_size);
1385 if (!BP_VFDB(bp)->sp_dma.addr)
1386 goto alloc_mem_err;
1387 BP_VFDB(bp)->sp_dma.size = tot_size;
1388
1389 /* allocate mailboxes */
1390 tot_size = BNX2X_NR_VIRTFN(bp) * MBX_MSG_ALIGNED_SIZE;
1391 BP_VF_MBX_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_MBX_DMA(bp)->mapping,
1392 tot_size);
1393 if (!BP_VF_MBX_DMA(bp)->addr)
1394 goto alloc_mem_err;
1395
1396 BP_VF_MBX_DMA(bp)->size = tot_size;
1397
1398 /* allocate local bulletin boards */
1399 tot_size = BNX2X_NR_VIRTFN(bp) * BULLETIN_CONTENT_SIZE;
1400 BP_VF_BULLETIN_DMA(bp)->addr = BNX2X_PCI_ALLOC(&BP_VF_BULLETIN_DMA(bp)->mapping,
1401 tot_size);
1402 if (!BP_VF_BULLETIN_DMA(bp)->addr)
1403 goto alloc_mem_err;
1404
1405 BP_VF_BULLETIN_DMA(bp)->size = tot_size;
1406
1407 return 0;
1408
1409 alloc_mem_err:
1410 return -ENOMEM;
1411 }
1412
bnx2x_vfq_init(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_vf_queue * q)1413 static void bnx2x_vfq_init(struct bnx2x *bp, struct bnx2x_virtf *vf,
1414 struct bnx2x_vf_queue *q)
1415 {
1416 u8 cl_id = vfq_cl_id(vf, q);
1417 u8 func_id = FW_VF_HANDLE(vf->abs_vfid);
1418 unsigned long q_type = 0;
1419
1420 set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1421 set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1422
1423 /* Queue State object */
1424 bnx2x_init_queue_obj(bp, &q->sp_obj,
1425 cl_id, &q->cid, 1, func_id,
1426 bnx2x_vf_sp(bp, vf, q_data),
1427 bnx2x_vf_sp_map(bp, vf, q_data),
1428 q_type);
1429
1430 /* sp indication is set only when vlan/mac/etc. are initialized */
1431 q->sp_initialized = false;
1432
1433 DP(BNX2X_MSG_IOV,
1434 "initialized vf %d's queue object. func id set to %d. cid set to 0x%x\n",
1435 vf->abs_vfid, q->sp_obj.func_id, q->cid);
1436 }
1437
bnx2x_max_speed_cap(struct bnx2x * bp)1438 static int bnx2x_max_speed_cap(struct bnx2x *bp)
1439 {
1440 u32 supported = bp->port.supported[bnx2x_get_link_cfg_idx(bp)];
1441
1442 if (supported &
1443 (SUPPORTED_20000baseMLD2_Full | SUPPORTED_20000baseKR2_Full))
1444 return 20000;
1445
1446 return 10000; /* assume lowest supported speed is 10G */
1447 }
1448
bnx2x_iov_link_update_vf(struct bnx2x * bp,int idx)1449 int bnx2x_iov_link_update_vf(struct bnx2x *bp, int idx)
1450 {
1451 struct bnx2x_link_report_data *state = &bp->last_reported_link;
1452 struct pf_vf_bulletin_content *bulletin;
1453 struct bnx2x_virtf *vf;
1454 bool update = true;
1455 int rc = 0;
1456
1457 /* sanity and init */
1458 rc = bnx2x_vf_op_prep(bp, idx, &vf, &bulletin, false);
1459 if (rc)
1460 return rc;
1461
1462 mutex_lock(&bp->vfdb->bulletin_mutex);
1463
1464 if (vf->link_cfg == IFLA_VF_LINK_STATE_AUTO) {
1465 bulletin->valid_bitmap |= 1 << LINK_VALID;
1466
1467 bulletin->link_speed = state->line_speed;
1468 bulletin->link_flags = 0;
1469 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1470 &state->link_report_flags))
1471 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1472 if (test_bit(BNX2X_LINK_REPORT_FD,
1473 &state->link_report_flags))
1474 bulletin->link_flags |= VFPF_LINK_REPORT_FULL_DUPLEX;
1475 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1476 &state->link_report_flags))
1477 bulletin->link_flags |= VFPF_LINK_REPORT_RX_FC_ON;
1478 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1479 &state->link_report_flags))
1480 bulletin->link_flags |= VFPF_LINK_REPORT_TX_FC_ON;
1481 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_DISABLE &&
1482 !(bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1483 bulletin->valid_bitmap |= 1 << LINK_VALID;
1484 bulletin->link_flags |= VFPF_LINK_REPORT_LINK_DOWN;
1485 } else if (vf->link_cfg == IFLA_VF_LINK_STATE_ENABLE &&
1486 (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)) {
1487 bulletin->valid_bitmap |= 1 << LINK_VALID;
1488 bulletin->link_speed = bnx2x_max_speed_cap(bp);
1489 bulletin->link_flags &= ~VFPF_LINK_REPORT_LINK_DOWN;
1490 } else {
1491 update = false;
1492 }
1493
1494 if (update) {
1495 DP(NETIF_MSG_LINK | BNX2X_MSG_IOV,
1496 "vf %d mode %u speed %d flags %x\n", idx,
1497 vf->link_cfg, bulletin->link_speed, bulletin->link_flags);
1498
1499 /* Post update on VF's bulletin board */
1500 rc = bnx2x_post_vf_bulletin(bp, idx);
1501 if (rc) {
1502 BNX2X_ERR("failed to update VF[%d] bulletin\n", idx);
1503 goto out;
1504 }
1505 }
1506
1507 out:
1508 mutex_unlock(&bp->vfdb->bulletin_mutex);
1509 return rc;
1510 }
1511
bnx2x_set_vf_link_state(struct net_device * dev,int idx,int link_state)1512 int bnx2x_set_vf_link_state(struct net_device *dev, int idx, int link_state)
1513 {
1514 struct bnx2x *bp = netdev_priv(dev);
1515 struct bnx2x_virtf *vf = BP_VF(bp, idx);
1516
1517 if (!vf)
1518 return -EINVAL;
1519
1520 if (vf->link_cfg == link_state)
1521 return 0; /* nothing todo */
1522
1523 vf->link_cfg = link_state;
1524
1525 return bnx2x_iov_link_update_vf(bp, idx);
1526 }
1527
bnx2x_iov_link_update(struct bnx2x * bp)1528 void bnx2x_iov_link_update(struct bnx2x *bp)
1529 {
1530 int vfid;
1531
1532 if (!IS_SRIOV(bp))
1533 return;
1534
1535 for_each_vf(bp, vfid)
1536 bnx2x_iov_link_update_vf(bp, vfid);
1537 }
1538
1539 /* called by bnx2x_nic_load */
bnx2x_iov_nic_init(struct bnx2x * bp)1540 int bnx2x_iov_nic_init(struct bnx2x *bp)
1541 {
1542 int vfid;
1543
1544 if (!IS_SRIOV(bp)) {
1545 DP(BNX2X_MSG_IOV, "vfdb was not allocated\n");
1546 return 0;
1547 }
1548
1549 DP(BNX2X_MSG_IOV, "num of vfs: %d\n", (bp)->vfdb->sriov.nr_virtfn);
1550
1551 /* let FLR complete ... */
1552 msleep(100);
1553
1554 /* initialize vf database */
1555 for_each_vf(bp, vfid) {
1556 struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1557
1558 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vfid) *
1559 BNX2X_CIDS_PER_VF;
1560
1561 union cdu_context *base_cxt = (union cdu_context *)
1562 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
1563 (base_vf_cid & (ILT_PAGE_CIDS-1));
1564
1565 DP(BNX2X_MSG_IOV,
1566 "VF[%d] Max IGU SBs: %d, base vf cid 0x%x, base cid 0x%x, base cxt %p\n",
1567 vf->abs_vfid, vf_sb_count(vf), base_vf_cid,
1568 BNX2X_FIRST_VF_CID + base_vf_cid, base_cxt);
1569
1570 /* init statically provisioned resources */
1571 bnx2x_iov_static_resc(bp, vf);
1572
1573 /* queues are initialized during VF-ACQUIRE */
1574 vf->filter_state = 0;
1575 vf->sp_cl_id = bnx2x_fp(bp, 0, cl_id);
1576
1577 bnx2x_init_credit_pool(&vf->vf_vlans_pool, 0,
1578 vf_vlan_rules_cnt(vf));
1579 bnx2x_init_credit_pool(&vf->vf_macs_pool, 0,
1580 vf_mac_rules_cnt(vf));
1581
1582 /* init mcast object - This object will be re-initialized
1583 * during VF-ACQUIRE with the proper cl_id and cid.
1584 * It needs to be initialized here so that it can be safely
1585 * handled by a subsequent FLR flow.
1586 */
1587 bnx2x_init_mcast_obj(bp, &vf->mcast_obj, 0xFF,
1588 0xFF, 0xFF, 0xFF,
1589 bnx2x_vf_sp(bp, vf, mcast_rdata),
1590 bnx2x_vf_sp_map(bp, vf, mcast_rdata),
1591 BNX2X_FILTER_MCAST_PENDING,
1592 &vf->filter_state,
1593 BNX2X_OBJ_TYPE_RX_TX);
1594
1595 /* set the mailbox message addresses */
1596 BP_VF_MBX(bp, vfid)->msg = (struct bnx2x_vf_mbx_msg *)
1597 (((u8 *)BP_VF_MBX_DMA(bp)->addr) + vfid *
1598 MBX_MSG_ALIGNED_SIZE);
1599
1600 BP_VF_MBX(bp, vfid)->msg_mapping = BP_VF_MBX_DMA(bp)->mapping +
1601 vfid * MBX_MSG_ALIGNED_SIZE;
1602
1603 /* Enable vf mailbox */
1604 bnx2x_vf_enable_mbx(bp, vf->abs_vfid);
1605 }
1606
1607 /* Final VF init */
1608 for_each_vf(bp, vfid) {
1609 struct bnx2x_virtf *vf = BP_VF(bp, vfid);
1610
1611 /* fill in the BDF and bars */
1612 vf->bus = bnx2x_vf_bus(bp, vfid);
1613 vf->devfn = bnx2x_vf_devfn(bp, vfid);
1614 bnx2x_vf_set_bars(bp, vf);
1615
1616 DP(BNX2X_MSG_IOV,
1617 "VF info[%d]: bus 0x%x, devfn 0x%x, bar0 [0x%x, %d], bar1 [0x%x, %d], bar2 [0x%x, %d]\n",
1618 vf->abs_vfid, vf->bus, vf->devfn,
1619 (unsigned)vf->bars[0].bar, vf->bars[0].size,
1620 (unsigned)vf->bars[1].bar, vf->bars[1].size,
1621 (unsigned)vf->bars[2].bar, vf->bars[2].size);
1622 }
1623
1624 return 0;
1625 }
1626
1627 /* called by bnx2x_chip_cleanup */
bnx2x_iov_chip_cleanup(struct bnx2x * bp)1628 int bnx2x_iov_chip_cleanup(struct bnx2x *bp)
1629 {
1630 int i;
1631
1632 if (!IS_SRIOV(bp))
1633 return 0;
1634
1635 /* release all the VFs */
1636 for_each_vf(bp, i)
1637 bnx2x_vf_release(bp, BP_VF(bp, i));
1638
1639 return 0;
1640 }
1641
1642 /* called by bnx2x_init_hw_func, returns the next ilt line */
bnx2x_iov_init_ilt(struct bnx2x * bp,u16 line)1643 int bnx2x_iov_init_ilt(struct bnx2x *bp, u16 line)
1644 {
1645 int i;
1646 struct bnx2x_ilt *ilt = BP_ILT(bp);
1647
1648 if (!IS_SRIOV(bp))
1649 return line;
1650
1651 /* set vfs ilt lines */
1652 for (i = 0; i < BNX2X_VF_CIDS/ILT_PAGE_CIDS; i++) {
1653 struct hw_dma *hw_cxt = BP_VF_CXT_PAGE(bp, i);
1654
1655 ilt->lines[line+i].page = hw_cxt->addr;
1656 ilt->lines[line+i].page_mapping = hw_cxt->mapping;
1657 ilt->lines[line+i].size = hw_cxt->size; /* doesn't matter */
1658 }
1659 return line + i;
1660 }
1661
bnx2x_iov_is_vf_cid(struct bnx2x * bp,u16 cid)1662 static u8 bnx2x_iov_is_vf_cid(struct bnx2x *bp, u16 cid)
1663 {
1664 return ((cid >= BNX2X_FIRST_VF_CID) &&
1665 ((cid - BNX2X_FIRST_VF_CID) < BNX2X_VF_CIDS));
1666 }
1667
1668 static
bnx2x_vf_handle_classification_eqe(struct bnx2x * bp,struct bnx2x_vf_queue * vfq,union event_ring_elem * elem)1669 void bnx2x_vf_handle_classification_eqe(struct bnx2x *bp,
1670 struct bnx2x_vf_queue *vfq,
1671 union event_ring_elem *elem)
1672 {
1673 unsigned long ramrod_flags = 0;
1674 int rc = 0;
1675 u32 echo = le32_to_cpu(elem->message.data.eth_event.echo);
1676
1677 /* Always push next commands out, don't wait here */
1678 set_bit(RAMROD_CONT, &ramrod_flags);
1679
1680 switch (echo >> BNX2X_SWCID_SHIFT) {
1681 case BNX2X_FILTER_MAC_PENDING:
1682 rc = vfq->mac_obj.complete(bp, &vfq->mac_obj, elem,
1683 &ramrod_flags);
1684 break;
1685 case BNX2X_FILTER_VLAN_PENDING:
1686 rc = vfq->vlan_obj.complete(bp, &vfq->vlan_obj, elem,
1687 &ramrod_flags);
1688 break;
1689 default:
1690 BNX2X_ERR("Unsupported classification command: 0x%x\n", echo);
1691 return;
1692 }
1693 if (rc < 0)
1694 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
1695 else if (rc > 0)
1696 DP(BNX2X_MSG_IOV, "Scheduled next pending commands...\n");
1697 }
1698
1699 static
bnx2x_vf_handle_mcast_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1700 void bnx2x_vf_handle_mcast_eqe(struct bnx2x *bp,
1701 struct bnx2x_virtf *vf)
1702 {
1703 struct bnx2x_mcast_ramrod_params rparam = {NULL};
1704 int rc;
1705
1706 rparam.mcast_obj = &vf->mcast_obj;
1707 vf->mcast_obj.raw.clear_pending(&vf->mcast_obj.raw);
1708
1709 /* If there are pending mcast commands - send them */
1710 if (vf->mcast_obj.check_pending(&vf->mcast_obj)) {
1711 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1712 if (rc < 0)
1713 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
1714 rc);
1715 }
1716 }
1717
1718 static
bnx2x_vf_handle_filters_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1719 void bnx2x_vf_handle_filters_eqe(struct bnx2x *bp,
1720 struct bnx2x_virtf *vf)
1721 {
1722 smp_mb__before_atomic();
1723 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &vf->filter_state);
1724 smp_mb__after_atomic();
1725 }
1726
bnx2x_vf_handle_rss_update_eqe(struct bnx2x * bp,struct bnx2x_virtf * vf)1727 static void bnx2x_vf_handle_rss_update_eqe(struct bnx2x *bp,
1728 struct bnx2x_virtf *vf)
1729 {
1730 vf->rss_conf_obj.raw.clear_pending(&vf->rss_conf_obj.raw);
1731 }
1732
bnx2x_iov_eq_sp_event(struct bnx2x * bp,union event_ring_elem * elem)1733 int bnx2x_iov_eq_sp_event(struct bnx2x *bp, union event_ring_elem *elem)
1734 {
1735 struct bnx2x_virtf *vf;
1736 int qidx = 0, abs_vfid;
1737 u8 opcode;
1738 u16 cid = 0xffff;
1739
1740 if (!IS_SRIOV(bp))
1741 return 1;
1742
1743 /* first get the cid - the only events we handle here are cfc-delete
1744 * and set-mac completion
1745 */
1746 opcode = elem->message.opcode;
1747
1748 switch (opcode) {
1749 case EVENT_RING_OPCODE_CFC_DEL:
1750 cid = SW_CID(elem->message.data.cfc_del_event.cid);
1751 DP(BNX2X_MSG_IOV, "checking cfc-del comp cid=%d\n", cid);
1752 break;
1753 case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1754 case EVENT_RING_OPCODE_MULTICAST_RULES:
1755 case EVENT_RING_OPCODE_FILTERS_RULES:
1756 case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1757 cid = SW_CID(elem->message.data.eth_event.echo);
1758 DP(BNX2X_MSG_IOV, "checking filtering comp cid=%d\n", cid);
1759 break;
1760 case EVENT_RING_OPCODE_VF_FLR:
1761 abs_vfid = elem->message.data.vf_flr_event.vf_id;
1762 DP(BNX2X_MSG_IOV, "Got VF FLR notification abs_vfid=%d\n",
1763 abs_vfid);
1764 goto get_vf;
1765 case EVENT_RING_OPCODE_MALICIOUS_VF:
1766 abs_vfid = elem->message.data.malicious_vf_event.vf_id;
1767 BNX2X_ERR("Got VF MALICIOUS notification abs_vfid=%d err_id=0x%x\n",
1768 abs_vfid,
1769 elem->message.data.malicious_vf_event.err_id);
1770 goto get_vf;
1771 default:
1772 return 1;
1773 }
1774
1775 /* check if the cid is the VF range */
1776 if (!bnx2x_iov_is_vf_cid(bp, cid)) {
1777 DP(BNX2X_MSG_IOV, "cid is outside vf range: %d\n", cid);
1778 return 1;
1779 }
1780
1781 /* extract vf and rxq index from vf_cid - relies on the following:
1782 * 1. vfid on cid reflects the true abs_vfid
1783 * 2. The max number of VFs (per path) is 64
1784 */
1785 qidx = cid & ((1 << BNX2X_VF_CID_WND)-1);
1786 abs_vfid = (cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1787 get_vf:
1788 vf = bnx2x_vf_by_abs_fid(bp, abs_vfid);
1789
1790 if (!vf) {
1791 BNX2X_ERR("EQ completion for unknown VF, cid %d, abs_vfid %d\n",
1792 cid, abs_vfid);
1793 return 0;
1794 }
1795
1796 switch (opcode) {
1797 case EVENT_RING_OPCODE_CFC_DEL:
1798 DP(BNX2X_MSG_IOV, "got VF [%d:%d] cfc delete ramrod\n",
1799 vf->abs_vfid, qidx);
1800 vfq_get(vf, qidx)->sp_obj.complete_cmd(bp,
1801 &vfq_get(vf,
1802 qidx)->sp_obj,
1803 BNX2X_Q_CMD_CFC_DEL);
1804 break;
1805 case EVENT_RING_OPCODE_CLASSIFICATION_RULES:
1806 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mac/vlan ramrod\n",
1807 vf->abs_vfid, qidx);
1808 bnx2x_vf_handle_classification_eqe(bp, vfq_get(vf, qidx), elem);
1809 break;
1810 case EVENT_RING_OPCODE_MULTICAST_RULES:
1811 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set mcast ramrod\n",
1812 vf->abs_vfid, qidx);
1813 bnx2x_vf_handle_mcast_eqe(bp, vf);
1814 break;
1815 case EVENT_RING_OPCODE_FILTERS_RULES:
1816 DP(BNX2X_MSG_IOV, "got VF [%d:%d] set rx-mode ramrod\n",
1817 vf->abs_vfid, qidx);
1818 bnx2x_vf_handle_filters_eqe(bp, vf);
1819 break;
1820 case EVENT_RING_OPCODE_RSS_UPDATE_RULES:
1821 DP(BNX2X_MSG_IOV, "got VF [%d:%d] RSS update ramrod\n",
1822 vf->abs_vfid, qidx);
1823 bnx2x_vf_handle_rss_update_eqe(bp, vf);
1824 case EVENT_RING_OPCODE_VF_FLR:
1825 case EVENT_RING_OPCODE_MALICIOUS_VF:
1826 /* Do nothing for now */
1827 return 0;
1828 }
1829
1830 return 0;
1831 }
1832
bnx2x_vf_by_cid(struct bnx2x * bp,int vf_cid)1833 static struct bnx2x_virtf *bnx2x_vf_by_cid(struct bnx2x *bp, int vf_cid)
1834 {
1835 /* extract the vf from vf_cid - relies on the following:
1836 * 1. vfid on cid reflects the true abs_vfid
1837 * 2. The max number of VFs (per path) is 64
1838 */
1839 int abs_vfid = (vf_cid >> BNX2X_VF_CID_WND) & (BNX2X_MAX_NUM_OF_VFS-1);
1840 return bnx2x_vf_by_abs_fid(bp, abs_vfid);
1841 }
1842
bnx2x_iov_set_queue_sp_obj(struct bnx2x * bp,int vf_cid,struct bnx2x_queue_sp_obj ** q_obj)1843 void bnx2x_iov_set_queue_sp_obj(struct bnx2x *bp, int vf_cid,
1844 struct bnx2x_queue_sp_obj **q_obj)
1845 {
1846 struct bnx2x_virtf *vf;
1847
1848 if (!IS_SRIOV(bp))
1849 return;
1850
1851 vf = bnx2x_vf_by_cid(bp, vf_cid);
1852
1853 if (vf) {
1854 /* extract queue index from vf_cid - relies on the following:
1855 * 1. vfid on cid reflects the true abs_vfid
1856 * 2. The max number of VFs (per path) is 64
1857 */
1858 int q_index = vf_cid & ((1 << BNX2X_VF_CID_WND)-1);
1859 *q_obj = &bnx2x_vfq(vf, q_index, sp_obj);
1860 } else {
1861 BNX2X_ERR("No vf matching cid %d\n", vf_cid);
1862 }
1863 }
1864
bnx2x_iov_adjust_stats_req(struct bnx2x * bp)1865 void bnx2x_iov_adjust_stats_req(struct bnx2x *bp)
1866 {
1867 int i;
1868 int first_queue_query_index, num_queues_req;
1869 dma_addr_t cur_data_offset;
1870 struct stats_query_entry *cur_query_entry;
1871 u8 stats_count = 0;
1872 bool is_fcoe = false;
1873
1874 if (!IS_SRIOV(bp))
1875 return;
1876
1877 if (!NO_FCOE(bp))
1878 is_fcoe = true;
1879
1880 /* fcoe adds one global request and one queue request */
1881 num_queues_req = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe;
1882 first_queue_query_index = BNX2X_FIRST_QUEUE_QUERY_IDX -
1883 (is_fcoe ? 0 : 1);
1884
1885 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1886 "BNX2X_NUM_ETH_QUEUES %d, is_fcoe %d, first_queue_query_index %d => determined the last non virtual statistics query index is %d. Will add queries on top of that\n",
1887 BNX2X_NUM_ETH_QUEUES(bp), is_fcoe, first_queue_query_index,
1888 first_queue_query_index + num_queues_req);
1889
1890 cur_data_offset = bp->fw_stats_data_mapping +
1891 offsetof(struct bnx2x_fw_stats_data, queue_stats) +
1892 num_queues_req * sizeof(struct per_queue_stats);
1893
1894 cur_query_entry = &bp->fw_stats_req->
1895 query[first_queue_query_index + num_queues_req];
1896
1897 for_each_vf(bp, i) {
1898 int j;
1899 struct bnx2x_virtf *vf = BP_VF(bp, i);
1900
1901 if (vf->state != VF_ENABLED) {
1902 DP_AND((BNX2X_MSG_IOV | BNX2X_MSG_STATS),
1903 "vf %d not enabled so no stats for it\n",
1904 vf->abs_vfid);
1905 continue;
1906 }
1907
1908 DP(BNX2X_MSG_IOV, "add addresses for vf %d\n", vf->abs_vfid);
1909 for_each_vfq(vf, j) {
1910 struct bnx2x_vf_queue *rxq = vfq_get(vf, j);
1911
1912 dma_addr_t q_stats_addr =
1913 vf->fw_stat_map + j * vf->stats_stride;
1914
1915 /* collect stats fro active queues only */
1916 if (bnx2x_get_q_logical_state(bp, &rxq->sp_obj) ==
1917 BNX2X_Q_LOGICAL_STATE_STOPPED)
1918 continue;
1919
1920 /* create stats query entry for this queue */
1921 cur_query_entry->kind = STATS_TYPE_QUEUE;
1922 cur_query_entry->index = vfq_stat_id(vf, rxq);
1923 cur_query_entry->funcID =
1924 cpu_to_le16(FW_VF_HANDLE(vf->abs_vfid));
1925 cur_query_entry->address.hi =
1926 cpu_to_le32(U64_HI(q_stats_addr));
1927 cur_query_entry->address.lo =
1928 cpu_to_le32(U64_LO(q_stats_addr));
1929 DP(BNX2X_MSG_IOV,
1930 "added address %x %x for vf %d queue %d client %d\n",
1931 cur_query_entry->address.hi,
1932 cur_query_entry->address.lo, cur_query_entry->funcID,
1933 j, cur_query_entry->index);
1934 cur_query_entry++;
1935 cur_data_offset += sizeof(struct per_queue_stats);
1936 stats_count++;
1937
1938 /* all stats are coalesced to the leading queue */
1939 if (vf->cfg_flags & VF_CFG_STATS_COALESCE)
1940 break;
1941 }
1942 }
1943 bp->fw_stats_req->hdr.cmd_num = bp->fw_stats_num + stats_count;
1944 }
1945
1946 /* VF API helpers */
bnx2x_vf_qtbl_set_q(struct bnx2x * bp,u8 abs_vfid,u8 qid,u8 enable)1947 static void bnx2x_vf_qtbl_set_q(struct bnx2x *bp, u8 abs_vfid, u8 qid,
1948 u8 enable)
1949 {
1950 u32 reg = PXP_REG_HST_ZONE_PERMISSION_TABLE + qid * 4;
1951 u32 val = enable ? (abs_vfid | (1 << 6)) : 0;
1952
1953 REG_WR(bp, reg, val);
1954 }
1955
bnx2x_vf_clr_qtbl(struct bnx2x * bp,struct bnx2x_virtf * vf)1956 static void bnx2x_vf_clr_qtbl(struct bnx2x *bp, struct bnx2x_virtf *vf)
1957 {
1958 int i;
1959
1960 for_each_vfq(vf, i)
1961 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
1962 vfq_qzone_id(vf, vfq_get(vf, i)), false);
1963 }
1964
bnx2x_vf_igu_disable(struct bnx2x * bp,struct bnx2x_virtf * vf)1965 static void bnx2x_vf_igu_disable(struct bnx2x *bp, struct bnx2x_virtf *vf)
1966 {
1967 u32 val;
1968
1969 /* clear the VF configuration - pretend */
1970 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf->abs_vfid));
1971 val = REG_RD(bp, IGU_REG_VF_CONFIGURATION);
1972 val &= ~(IGU_VF_CONF_MSI_MSIX_EN | IGU_VF_CONF_SINGLE_ISR_EN |
1973 IGU_VF_CONF_FUNC_EN | IGU_VF_CONF_PARENT_MASK);
1974 REG_WR(bp, IGU_REG_VF_CONFIGURATION, val);
1975 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
1976 }
1977
bnx2x_vf_max_queue_cnt(struct bnx2x * bp,struct bnx2x_virtf * vf)1978 u8 bnx2x_vf_max_queue_cnt(struct bnx2x *bp, struct bnx2x_virtf *vf)
1979 {
1980 return min_t(u8, min_t(u8, vf_sb_count(vf), BNX2X_CIDS_PER_VF),
1981 BNX2X_VF_MAX_QUEUES);
1982 }
1983
1984 static
bnx2x_vf_chk_avail_resc(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vf_pf_resc_request * req_resc)1985 int bnx2x_vf_chk_avail_resc(struct bnx2x *bp, struct bnx2x_virtf *vf,
1986 struct vf_pf_resc_request *req_resc)
1987 {
1988 u8 rxq_cnt = vf_rxq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1989 u8 txq_cnt = vf_txq_count(vf) ? : bnx2x_vf_max_queue_cnt(bp, vf);
1990
1991 return ((req_resc->num_rxqs <= rxq_cnt) &&
1992 (req_resc->num_txqs <= txq_cnt) &&
1993 (req_resc->num_sbs <= vf_sb_count(vf)) &&
1994 (req_resc->num_mac_filters <= vf_mac_rules_cnt(vf)) &&
1995 (req_resc->num_vlan_filters <= vf_vlan_rules_cnt(vf)));
1996 }
1997
1998 /* CORE VF API */
bnx2x_vf_acquire(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vf_pf_resc_request * resc)1999 int bnx2x_vf_acquire(struct bnx2x *bp, struct bnx2x_virtf *vf,
2000 struct vf_pf_resc_request *resc)
2001 {
2002 int base_vf_cid = (BP_VFDB(bp)->sriov.first_vf_in_pf + vf->index) *
2003 BNX2X_CIDS_PER_VF;
2004
2005 union cdu_context *base_cxt = (union cdu_context *)
2006 BP_VF_CXT_PAGE(bp, base_vf_cid/ILT_PAGE_CIDS)->addr +
2007 (base_vf_cid & (ILT_PAGE_CIDS-1));
2008 int i;
2009
2010 /* if state is 'acquired' the VF was not released or FLR'd, in
2011 * this case the returned resources match the acquired already
2012 * acquired resources. Verify that the requested numbers do
2013 * not exceed the already acquired numbers.
2014 */
2015 if (vf->state == VF_ACQUIRED) {
2016 DP(BNX2X_MSG_IOV, "VF[%d] Trying to re-acquire resources (VF was not released or FLR'd)\n",
2017 vf->abs_vfid);
2018
2019 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2020 BNX2X_ERR("VF[%d] When re-acquiring resources, requested numbers must be <= then previously acquired numbers\n",
2021 vf->abs_vfid);
2022 return -EINVAL;
2023 }
2024 return 0;
2025 }
2026
2027 /* Otherwise vf state must be 'free' or 'reset' */
2028 if (vf->state != VF_FREE && vf->state != VF_RESET) {
2029 BNX2X_ERR("VF[%d] Can not acquire a VF with state %d\n",
2030 vf->abs_vfid, vf->state);
2031 return -EINVAL;
2032 }
2033
2034 /* static allocation:
2035 * the global maximum number are fixed per VF. Fail the request if
2036 * requested number exceed these globals
2037 */
2038 if (!bnx2x_vf_chk_avail_resc(bp, vf, resc)) {
2039 DP(BNX2X_MSG_IOV,
2040 "cannot fulfill vf resource request. Placing maximal available values in response\n");
2041 /* set the max resource in the vf */
2042 return -ENOMEM;
2043 }
2044
2045 /* Set resources counters - 0 request means max available */
2046 vf_sb_count(vf) = resc->num_sbs;
2047 vf_rxq_count(vf) = resc->num_rxqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2048 vf_txq_count(vf) = resc->num_txqs ? : bnx2x_vf_max_queue_cnt(bp, vf);
2049
2050 DP(BNX2X_MSG_IOV,
2051 "Fulfilling vf request: sb count %d, tx_count %d, rx_count %d, mac_rules_count %d, vlan_rules_count %d\n",
2052 vf_sb_count(vf), vf_rxq_count(vf),
2053 vf_txq_count(vf), vf_mac_rules_cnt(vf),
2054 vf_vlan_rules_cnt(vf));
2055
2056 /* Initialize the queues */
2057 if (!vf->vfqs) {
2058 DP(BNX2X_MSG_IOV, "vf->vfqs was not allocated\n");
2059 return -EINVAL;
2060 }
2061
2062 for_each_vfq(vf, i) {
2063 struct bnx2x_vf_queue *q = vfq_get(vf, i);
2064
2065 if (!q) {
2066 BNX2X_ERR("q number %d was not allocated\n", i);
2067 return -EINVAL;
2068 }
2069
2070 q->index = i;
2071 q->cxt = &((base_cxt + i)->eth);
2072 q->cid = BNX2X_FIRST_VF_CID + base_vf_cid + i;
2073
2074 DP(BNX2X_MSG_IOV, "VFQ[%d:%d]: index %d, cid 0x%x, cxt %p\n",
2075 vf->abs_vfid, i, q->index, q->cid, q->cxt);
2076
2077 /* init SP objects */
2078 bnx2x_vfq_init(bp, vf, q);
2079 }
2080 vf->state = VF_ACQUIRED;
2081 return 0;
2082 }
2083
bnx2x_vf_init(struct bnx2x * bp,struct bnx2x_virtf * vf,dma_addr_t * sb_map)2084 int bnx2x_vf_init(struct bnx2x *bp, struct bnx2x_virtf *vf, dma_addr_t *sb_map)
2085 {
2086 struct bnx2x_func_init_params func_init = {0};
2087 int i;
2088
2089 /* the sb resources are initialized at this point, do the
2090 * FW/HW initializations
2091 */
2092 for_each_vf_sb(vf, i)
2093 bnx2x_init_sb(bp, (dma_addr_t)sb_map[i], vf->abs_vfid, true,
2094 vf_igu_sb(vf, i), vf_igu_sb(vf, i));
2095
2096 /* Sanity checks */
2097 if (vf->state != VF_ACQUIRED) {
2098 DP(BNX2X_MSG_IOV, "VF[%d] is not in VF_ACQUIRED, but %d\n",
2099 vf->abs_vfid, vf->state);
2100 return -EINVAL;
2101 }
2102
2103 /* let FLR complete ... */
2104 msleep(100);
2105
2106 /* FLR cleanup epilogue */
2107 if (bnx2x_vf_flr_clnup_epilog(bp, vf->abs_vfid))
2108 return -EBUSY;
2109
2110 /* reset IGU VF statistics: MSIX */
2111 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT + vf->abs_vfid * 4 , 0);
2112
2113 /* function setup */
2114 func_init.pf_id = BP_FUNC(bp);
2115 func_init.func_id = FW_VF_HANDLE(vf->abs_vfid);
2116 bnx2x_func_init(bp, &func_init);
2117
2118 /* Enable the vf */
2119 bnx2x_vf_enable_access(bp, vf->abs_vfid);
2120 bnx2x_vf_enable_traffic(bp, vf);
2121
2122 /* queue protection table */
2123 for_each_vfq(vf, i)
2124 bnx2x_vf_qtbl_set_q(bp, vf->abs_vfid,
2125 vfq_qzone_id(vf, vfq_get(vf, i)), true);
2126
2127 vf->state = VF_ENABLED;
2128
2129 /* update vf bulletin board */
2130 bnx2x_post_vf_bulletin(bp, vf->index);
2131
2132 return 0;
2133 }
2134
2135 struct set_vf_state_cookie {
2136 struct bnx2x_virtf *vf;
2137 u8 state;
2138 };
2139
bnx2x_set_vf_state(void * cookie)2140 static void bnx2x_set_vf_state(void *cookie)
2141 {
2142 struct set_vf_state_cookie *p = (struct set_vf_state_cookie *)cookie;
2143
2144 p->vf->state = p->state;
2145 }
2146
bnx2x_vf_close(struct bnx2x * bp,struct bnx2x_virtf * vf)2147 int bnx2x_vf_close(struct bnx2x *bp, struct bnx2x_virtf *vf)
2148 {
2149 int rc = 0, i;
2150
2151 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2152
2153 /* Close all queues */
2154 for (i = 0; i < vf_rxq_count(vf); i++) {
2155 rc = bnx2x_vf_queue_teardown(bp, vf, i);
2156 if (rc)
2157 goto op_err;
2158 }
2159
2160 /* disable the interrupts */
2161 DP(BNX2X_MSG_IOV, "disabling igu\n");
2162 bnx2x_vf_igu_disable(bp, vf);
2163
2164 /* disable the VF */
2165 DP(BNX2X_MSG_IOV, "clearing qtbl\n");
2166 bnx2x_vf_clr_qtbl(bp, vf);
2167
2168 /* need to make sure there are no outstanding stats ramrods which may
2169 * cause the device to access the VF's stats buffer which it will free
2170 * as soon as we return from the close flow.
2171 */
2172 {
2173 struct set_vf_state_cookie cookie;
2174
2175 cookie.vf = vf;
2176 cookie.state = VF_ACQUIRED;
2177 rc = bnx2x_stats_safe_exec(bp, bnx2x_set_vf_state, &cookie);
2178 if (rc)
2179 goto op_err;
2180 }
2181
2182 DP(BNX2X_MSG_IOV, "set state to acquired\n");
2183
2184 return 0;
2185 op_err:
2186 BNX2X_ERR("vf[%d] CLOSE error: rc %d\n", vf->abs_vfid, rc);
2187 return rc;
2188 }
2189
2190 /* VF release can be called either: 1. The VF was acquired but
2191 * not enabled 2. the vf was enabled or in the process of being
2192 * enabled
2193 */
bnx2x_vf_free(struct bnx2x * bp,struct bnx2x_virtf * vf)2194 int bnx2x_vf_free(struct bnx2x *bp, struct bnx2x_virtf *vf)
2195 {
2196 int rc;
2197
2198 DP(BNX2X_MSG_IOV, "VF[%d] STATE: %s\n", vf->abs_vfid,
2199 vf->state == VF_FREE ? "Free" :
2200 vf->state == VF_ACQUIRED ? "Acquired" :
2201 vf->state == VF_ENABLED ? "Enabled" :
2202 vf->state == VF_RESET ? "Reset" :
2203 "Unknown");
2204
2205 switch (vf->state) {
2206 case VF_ENABLED:
2207 rc = bnx2x_vf_close(bp, vf);
2208 if (rc)
2209 goto op_err;
2210 /* Fallthrough to release resources */
2211 case VF_ACQUIRED:
2212 DP(BNX2X_MSG_IOV, "about to free resources\n");
2213 bnx2x_vf_free_resc(bp, vf);
2214 break;
2215
2216 case VF_FREE:
2217 case VF_RESET:
2218 default:
2219 break;
2220 }
2221 return 0;
2222 op_err:
2223 BNX2X_ERR("VF[%d] RELEASE error: rc %d\n", vf->abs_vfid, rc);
2224 return rc;
2225 }
2226
bnx2x_vf_rss_update(struct bnx2x * bp,struct bnx2x_virtf * vf,struct bnx2x_config_rss_params * rss)2227 int bnx2x_vf_rss_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2228 struct bnx2x_config_rss_params *rss)
2229 {
2230 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2231 set_bit(RAMROD_COMP_WAIT, &rss->ramrod_flags);
2232 return bnx2x_config_rss(bp, rss);
2233 }
2234
bnx2x_vf_tpa_update(struct bnx2x * bp,struct bnx2x_virtf * vf,struct vfpf_tpa_tlv * tlv,struct bnx2x_queue_update_tpa_params * params)2235 int bnx2x_vf_tpa_update(struct bnx2x *bp, struct bnx2x_virtf *vf,
2236 struct vfpf_tpa_tlv *tlv,
2237 struct bnx2x_queue_update_tpa_params *params)
2238 {
2239 aligned_u64 *sge_addr = tlv->tpa_client_info.sge_addr;
2240 struct bnx2x_queue_state_params qstate;
2241 int qid, rc = 0;
2242
2243 DP(BNX2X_MSG_IOV, "vf[%d]\n", vf->abs_vfid);
2244
2245 /* Set ramrod params */
2246 memset(&qstate, 0, sizeof(struct bnx2x_queue_state_params));
2247 memcpy(&qstate.params.update_tpa, params,
2248 sizeof(struct bnx2x_queue_update_tpa_params));
2249 qstate.cmd = BNX2X_Q_CMD_UPDATE_TPA;
2250 set_bit(RAMROD_COMP_WAIT, &qstate.ramrod_flags);
2251
2252 for (qid = 0; qid < vf_rxq_count(vf); qid++) {
2253 qstate.q_obj = &bnx2x_vfq(vf, qid, sp_obj);
2254 qstate.params.update_tpa.sge_map = sge_addr[qid];
2255 DP(BNX2X_MSG_IOV, "sge_addr[%d:%d] %08x:%08x\n",
2256 vf->abs_vfid, qid, U64_HI(sge_addr[qid]),
2257 U64_LO(sge_addr[qid]));
2258 rc = bnx2x_queue_state_change(bp, &qstate);
2259 if (rc) {
2260 BNX2X_ERR("Failed to configure sge_addr %08x:%08x for [%d:%d]\n",
2261 U64_HI(sge_addr[qid]), U64_LO(sge_addr[qid]),
2262 vf->abs_vfid, qid);
2263 return rc;
2264 }
2265 }
2266
2267 return rc;
2268 }
2269
2270 /* VF release ~ VF close + VF release-resources
2271 * Release is the ultimate SW shutdown and is called whenever an
2272 * irrecoverable error is encountered.
2273 */
bnx2x_vf_release(struct bnx2x * bp,struct bnx2x_virtf * vf)2274 int bnx2x_vf_release(struct bnx2x *bp, struct bnx2x_virtf *vf)
2275 {
2276 int rc;
2277
2278 DP(BNX2X_MSG_IOV, "PF releasing vf %d\n", vf->abs_vfid);
2279 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2280
2281 rc = bnx2x_vf_free(bp, vf);
2282 if (rc)
2283 WARN(rc,
2284 "VF[%d] Failed to allocate resources for release op- rc=%d\n",
2285 vf->abs_vfid, rc);
2286 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_RELEASE_VF);
2287 return rc;
2288 }
2289
bnx2x_lock_vf_pf_channel(struct bnx2x * bp,struct bnx2x_virtf * vf,enum channel_tlvs tlv)2290 void bnx2x_lock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2291 enum channel_tlvs tlv)
2292 {
2293 /* we don't lock the channel for unsupported tlvs */
2294 if (!bnx2x_tlv_supported(tlv)) {
2295 BNX2X_ERR("attempting to lock with unsupported tlv. Aborting\n");
2296 return;
2297 }
2298
2299 /* lock the channel */
2300 mutex_lock(&vf->op_mutex);
2301
2302 /* record the locking op */
2303 vf->op_current = tlv;
2304
2305 /* log the lock */
2306 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel locked by %d\n",
2307 vf->abs_vfid, tlv);
2308 }
2309
bnx2x_unlock_vf_pf_channel(struct bnx2x * bp,struct bnx2x_virtf * vf,enum channel_tlvs expected_tlv)2310 void bnx2x_unlock_vf_pf_channel(struct bnx2x *bp, struct bnx2x_virtf *vf,
2311 enum channel_tlvs expected_tlv)
2312 {
2313 enum channel_tlvs current_tlv;
2314
2315 if (!vf) {
2316 BNX2X_ERR("VF was %p\n", vf);
2317 return;
2318 }
2319
2320 current_tlv = vf->op_current;
2321
2322 /* we don't unlock the channel for unsupported tlvs */
2323 if (!bnx2x_tlv_supported(expected_tlv))
2324 return;
2325
2326 WARN(expected_tlv != vf->op_current,
2327 "lock mismatch: expected %d found %d", expected_tlv,
2328 vf->op_current);
2329
2330 /* record the locking op */
2331 vf->op_current = CHANNEL_TLV_NONE;
2332
2333 /* lock the channel */
2334 mutex_unlock(&vf->op_mutex);
2335
2336 /* log the unlock */
2337 DP(BNX2X_MSG_IOV, "VF[%d]: vf pf channel unlocked by %d\n",
2338 vf->abs_vfid, current_tlv);
2339 }
2340
bnx2x_set_pf_tx_switching(struct bnx2x * bp,bool enable)2341 static int bnx2x_set_pf_tx_switching(struct bnx2x *bp, bool enable)
2342 {
2343 struct bnx2x_queue_state_params q_params;
2344 u32 prev_flags;
2345 int i, rc;
2346
2347 /* Verify changes are needed and record current Tx switching state */
2348 prev_flags = bp->flags;
2349 if (enable)
2350 bp->flags |= TX_SWITCHING;
2351 else
2352 bp->flags &= ~TX_SWITCHING;
2353 if (prev_flags == bp->flags)
2354 return 0;
2355
2356 /* Verify state enables the sending of queue ramrods */
2357 if ((bp->state != BNX2X_STATE_OPEN) ||
2358 (bnx2x_get_q_logical_state(bp,
2359 &bnx2x_sp_obj(bp, &bp->fp[0]).q_obj) !=
2360 BNX2X_Q_LOGICAL_STATE_ACTIVE))
2361 return 0;
2362
2363 /* send q. update ramrod to configure Tx switching */
2364 memset(&q_params, 0, sizeof(q_params));
2365 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2366 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2367 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING_CHNG,
2368 &q_params.params.update.update_flags);
2369 if (enable)
2370 __set_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2371 &q_params.params.update.update_flags);
2372 else
2373 __clear_bit(BNX2X_Q_UPDATE_TX_SWITCHING,
2374 &q_params.params.update.update_flags);
2375
2376 /* send the ramrod on all the queues of the PF */
2377 for_each_eth_queue(bp, i) {
2378 struct bnx2x_fastpath *fp = &bp->fp[i];
2379
2380 /* Set the appropriate Queue object */
2381 q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
2382
2383 /* Update the Queue state */
2384 rc = bnx2x_queue_state_change(bp, &q_params);
2385 if (rc) {
2386 BNX2X_ERR("Failed to configure Tx switching\n");
2387 return rc;
2388 }
2389 }
2390
2391 DP(BNX2X_MSG_IOV, "%s Tx Switching\n", enable ? "Enabled" : "Disabled");
2392 return 0;
2393 }
2394
bnx2x_sriov_configure(struct pci_dev * dev,int num_vfs_param)2395 int bnx2x_sriov_configure(struct pci_dev *dev, int num_vfs_param)
2396 {
2397 struct bnx2x *bp = netdev_priv(pci_get_drvdata(dev));
2398
2399 if (!IS_SRIOV(bp)) {
2400 BNX2X_ERR("failed to configure SR-IOV since vfdb was not allocated. Check dmesg for errors in probe stage\n");
2401 return -EINVAL;
2402 }
2403
2404 DP(BNX2X_MSG_IOV, "bnx2x_sriov_configure called with %d, BNX2X_NR_VIRTFN(bp) was %d\n",
2405 num_vfs_param, BNX2X_NR_VIRTFN(bp));
2406
2407 /* HW channel is only operational when PF is up */
2408 if (bp->state != BNX2X_STATE_OPEN) {
2409 BNX2X_ERR("VF num configuration via sysfs not supported while PF is down\n");
2410 return -EINVAL;
2411 }
2412
2413 /* we are always bound by the total_vfs in the configuration space */
2414 if (num_vfs_param > BNX2X_NR_VIRTFN(bp)) {
2415 BNX2X_ERR("truncating requested number of VFs (%d) down to maximum allowed (%d)\n",
2416 num_vfs_param, BNX2X_NR_VIRTFN(bp));
2417 num_vfs_param = BNX2X_NR_VIRTFN(bp);
2418 }
2419
2420 bp->requested_nr_virtfn = num_vfs_param;
2421 if (num_vfs_param == 0) {
2422 bnx2x_set_pf_tx_switching(bp, false);
2423 bnx2x_disable_sriov(bp);
2424 return 0;
2425 } else {
2426 return bnx2x_enable_sriov(bp);
2427 }
2428 }
2429
2430 #define IGU_ENTRY_SIZE 4
2431
bnx2x_enable_sriov(struct bnx2x * bp)2432 int bnx2x_enable_sriov(struct bnx2x *bp)
2433 {
2434 int rc = 0, req_vfs = bp->requested_nr_virtfn;
2435 int vf_idx, sb_idx, vfq_idx, qcount, first_vf;
2436 u32 igu_entry, address;
2437 u16 num_vf_queues;
2438
2439 if (req_vfs == 0)
2440 return 0;
2441
2442 first_vf = bp->vfdb->sriov.first_vf_in_pf;
2443
2444 /* statically distribute vf sb pool between VFs */
2445 num_vf_queues = min_t(u16, BNX2X_VF_MAX_QUEUES,
2446 BP_VFDB(bp)->vf_sbs_pool / req_vfs);
2447
2448 /* zero previous values learned from igu cam */
2449 for (vf_idx = 0; vf_idx < req_vfs; vf_idx++) {
2450 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2451
2452 vf->sb_count = 0;
2453 vf_sb_count(BP_VF(bp, vf_idx)) = 0;
2454 }
2455 bp->vfdb->vf_sbs_pool = 0;
2456
2457 /* prepare IGU cam */
2458 sb_idx = BP_VFDB(bp)->first_vf_igu_entry;
2459 address = IGU_REG_MAPPING_MEMORY + sb_idx * IGU_ENTRY_SIZE;
2460 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2461 for (vfq_idx = 0; vfq_idx < num_vf_queues; vfq_idx++) {
2462 igu_entry = vf_idx << IGU_REG_MAPPING_MEMORY_FID_SHIFT |
2463 vfq_idx << IGU_REG_MAPPING_MEMORY_VECTOR_SHIFT |
2464 IGU_REG_MAPPING_MEMORY_VALID;
2465 DP(BNX2X_MSG_IOV, "assigning sb %d to vf %d\n",
2466 sb_idx, vf_idx);
2467 REG_WR(bp, address, igu_entry);
2468 sb_idx++;
2469 address += IGU_ENTRY_SIZE;
2470 }
2471 }
2472
2473 /* Reinitialize vf database according to igu cam */
2474 bnx2x_get_vf_igu_cam_info(bp);
2475
2476 DP(BNX2X_MSG_IOV, "vf_sbs_pool %d, num_vf_queues %d\n",
2477 BP_VFDB(bp)->vf_sbs_pool, num_vf_queues);
2478
2479 qcount = 0;
2480 for_each_vf(bp, vf_idx) {
2481 struct bnx2x_virtf *vf = BP_VF(bp, vf_idx);
2482
2483 /* set local queue arrays */
2484 vf->vfqs = &bp->vfdb->vfqs[qcount];
2485 qcount += vf_sb_count(vf);
2486 bnx2x_iov_static_resc(bp, vf);
2487 }
2488
2489 /* prepare msix vectors in VF configuration space - the value in the
2490 * PCI configuration space should be the index of the last entry,
2491 * namely one less than the actual size of the table
2492 */
2493 for (vf_idx = first_vf; vf_idx < first_vf + req_vfs; vf_idx++) {
2494 bnx2x_pretend_func(bp, HW_VF_HANDLE(bp, vf_idx));
2495 REG_WR(bp, PCICFG_OFFSET + GRC_CONFIG_REG_VF_MSIX_CONTROL,
2496 num_vf_queues - 1);
2497 DP(BNX2X_MSG_IOV, "set msix vec num in VF %d cfg space to %d\n",
2498 vf_idx, num_vf_queues - 1);
2499 }
2500 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
2501
2502 /* enable sriov. This will probe all the VFs, and consequentially cause
2503 * the "acquire" messages to appear on the VF PF channel.
2504 */
2505 DP(BNX2X_MSG_IOV, "about to call enable sriov\n");
2506 bnx2x_disable_sriov(bp);
2507
2508 rc = bnx2x_set_pf_tx_switching(bp, true);
2509 if (rc)
2510 return rc;
2511
2512 rc = pci_enable_sriov(bp->pdev, req_vfs);
2513 if (rc) {
2514 BNX2X_ERR("pci_enable_sriov failed with %d\n", rc);
2515 return rc;
2516 }
2517 DP(BNX2X_MSG_IOV, "sriov enabled (%d vfs)\n", req_vfs);
2518 return req_vfs;
2519 }
2520
bnx2x_pf_set_vfs_vlan(struct bnx2x * bp)2521 void bnx2x_pf_set_vfs_vlan(struct bnx2x *bp)
2522 {
2523 int vfidx;
2524 struct pf_vf_bulletin_content *bulletin;
2525
2526 DP(BNX2X_MSG_IOV, "configuring vlan for VFs from sp-task\n");
2527 for_each_vf(bp, vfidx) {
2528 bulletin = BP_VF_BULLETIN(bp, vfidx);
2529 if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2530 bnx2x_set_vf_vlan(bp->dev, vfidx, bulletin->vlan, 0,
2531 htons(ETH_P_8021Q));
2532 }
2533 }
2534
bnx2x_disable_sriov(struct bnx2x * bp)2535 void bnx2x_disable_sriov(struct bnx2x *bp)
2536 {
2537 if (pci_vfs_assigned(bp->pdev)) {
2538 DP(BNX2X_MSG_IOV,
2539 "Unloading driver while VFs are assigned - VFs will not be deallocated\n");
2540 return;
2541 }
2542
2543 pci_disable_sriov(bp->pdev);
2544 }
2545
bnx2x_vf_op_prep(struct bnx2x * bp,int vfidx,struct bnx2x_virtf ** vf,struct pf_vf_bulletin_content ** bulletin,bool test_queue)2546 static int bnx2x_vf_op_prep(struct bnx2x *bp, int vfidx,
2547 struct bnx2x_virtf **vf,
2548 struct pf_vf_bulletin_content **bulletin,
2549 bool test_queue)
2550 {
2551 if (bp->state != BNX2X_STATE_OPEN) {
2552 BNX2X_ERR("PF is down - can't utilize iov-related functionality\n");
2553 return -EINVAL;
2554 }
2555
2556 if (!IS_SRIOV(bp)) {
2557 BNX2X_ERR("sriov is disabled - can't utilize iov-related functionality\n");
2558 return -EINVAL;
2559 }
2560
2561 if (vfidx >= BNX2X_NR_VIRTFN(bp)) {
2562 BNX2X_ERR("VF is uninitialized - can't utilize iov-related functionality. vfidx was %d BNX2X_NR_VIRTFN was %d\n",
2563 vfidx, BNX2X_NR_VIRTFN(bp));
2564 return -EINVAL;
2565 }
2566
2567 /* init members */
2568 *vf = BP_VF(bp, vfidx);
2569 *bulletin = BP_VF_BULLETIN(bp, vfidx);
2570
2571 if (!*vf) {
2572 BNX2X_ERR("Unable to get VF structure for vfidx %d\n", vfidx);
2573 return -EINVAL;
2574 }
2575
2576 if (test_queue && !(*vf)->vfqs) {
2577 BNX2X_ERR("vfqs struct is null. Was this invoked before dynamically enabling SR-IOV? vfidx was %d\n",
2578 vfidx);
2579 return -EINVAL;
2580 }
2581
2582 if (!*bulletin) {
2583 BNX2X_ERR("Bulletin Board struct is null for vfidx %d\n",
2584 vfidx);
2585 return -EINVAL;
2586 }
2587
2588 return 0;
2589 }
2590
bnx2x_get_vf_config(struct net_device * dev,int vfidx,struct ifla_vf_info * ivi)2591 int bnx2x_get_vf_config(struct net_device *dev, int vfidx,
2592 struct ifla_vf_info *ivi)
2593 {
2594 struct bnx2x *bp = netdev_priv(dev);
2595 struct bnx2x_virtf *vf = NULL;
2596 struct pf_vf_bulletin_content *bulletin = NULL;
2597 struct bnx2x_vlan_mac_obj *mac_obj;
2598 struct bnx2x_vlan_mac_obj *vlan_obj;
2599 int rc;
2600
2601 /* sanity and init */
2602 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2603 if (rc)
2604 return rc;
2605
2606 mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2607 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2608 if (!mac_obj || !vlan_obj) {
2609 BNX2X_ERR("VF partially initialized\n");
2610 return -EINVAL;
2611 }
2612
2613 ivi->vf = vfidx;
2614 ivi->qos = 0;
2615 ivi->max_tx_rate = 10000; /* always 10G. TBA take from link struct */
2616 ivi->min_tx_rate = 0;
2617 ivi->spoofchk = 1; /*always enabled */
2618 if (vf->state == VF_ENABLED) {
2619 /* mac and vlan are in vlan_mac objects */
2620 if (bnx2x_validate_vf_sp_objs(bp, vf, false)) {
2621 mac_obj->get_n_elements(bp, mac_obj, 1, (u8 *)&ivi->mac,
2622 0, ETH_ALEN);
2623 vlan_obj->get_n_elements(bp, vlan_obj, 1,
2624 (u8 *)&ivi->vlan, 0,
2625 VLAN_HLEN);
2626 }
2627 } else {
2628 mutex_lock(&bp->vfdb->bulletin_mutex);
2629 /* mac */
2630 if (bulletin->valid_bitmap & (1 << MAC_ADDR_VALID))
2631 /* mac configured by ndo so its in bulletin board */
2632 memcpy(&ivi->mac, bulletin->mac, ETH_ALEN);
2633 else
2634 /* function has not been loaded yet. Show mac as 0s */
2635 eth_zero_addr(ivi->mac);
2636
2637 /* vlan */
2638 if (bulletin->valid_bitmap & (1 << VLAN_VALID))
2639 /* vlan configured by ndo so its in bulletin board */
2640 memcpy(&ivi->vlan, &bulletin->vlan, VLAN_HLEN);
2641 else
2642 /* function has not been loaded yet. Show vlans as 0s */
2643 memset(&ivi->vlan, 0, VLAN_HLEN);
2644
2645 mutex_unlock(&bp->vfdb->bulletin_mutex);
2646 }
2647
2648 return 0;
2649 }
2650
2651 /* New mac for VF. Consider these cases:
2652 * 1. VF hasn't been acquired yet - save the mac in local bulletin board and
2653 * supply at acquire.
2654 * 2. VF has already been acquired but has not yet initialized - store in local
2655 * bulletin board. mac will be posted on VF bulletin board after VF init. VF
2656 * will configure this mac when it is ready.
2657 * 3. VF has already initialized but has not yet setup a queue - post the new
2658 * mac on VF's bulletin board right now. VF will configure this mac when it
2659 * is ready.
2660 * 4. VF has already set a queue - delete any macs already configured for this
2661 * queue and manually config the new mac.
2662 * In any event, once this function has been called refuse any attempts by the
2663 * VF to configure any mac for itself except for this mac. In case of a race
2664 * where the VF fails to see the new post on its bulletin board before sending a
2665 * mac configuration request, the PF will simply fail the request and VF can try
2666 * again after consulting its bulletin board.
2667 */
bnx2x_set_vf_mac(struct net_device * dev,int vfidx,u8 * mac)2668 int bnx2x_set_vf_mac(struct net_device *dev, int vfidx, u8 *mac)
2669 {
2670 struct bnx2x *bp = netdev_priv(dev);
2671 int rc, q_logical_state;
2672 struct bnx2x_virtf *vf = NULL;
2673 struct pf_vf_bulletin_content *bulletin = NULL;
2674
2675 if (!is_valid_ether_addr(mac)) {
2676 BNX2X_ERR("mac address invalid\n");
2677 return -EINVAL;
2678 }
2679
2680 /* sanity and init */
2681 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2682 if (rc)
2683 return rc;
2684
2685 mutex_lock(&bp->vfdb->bulletin_mutex);
2686
2687 /* update PF's copy of the VF's bulletin. Will no longer accept mac
2688 * configuration requests from vf unless match this mac
2689 */
2690 bulletin->valid_bitmap |= 1 << MAC_ADDR_VALID;
2691 memcpy(bulletin->mac, mac, ETH_ALEN);
2692
2693 /* Post update on VF's bulletin board */
2694 rc = bnx2x_post_vf_bulletin(bp, vfidx);
2695
2696 /* release lock before checking return code */
2697 mutex_unlock(&bp->vfdb->bulletin_mutex);
2698
2699 if (rc) {
2700 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2701 return rc;
2702 }
2703
2704 q_logical_state =
2705 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj));
2706 if (vf->state == VF_ENABLED &&
2707 q_logical_state == BNX2X_Q_LOGICAL_STATE_ACTIVE) {
2708 /* configure the mac in device on this vf's queue */
2709 unsigned long ramrod_flags = 0;
2710 struct bnx2x_vlan_mac_obj *mac_obj;
2711
2712 /* User should be able to see failure reason in system logs */
2713 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2714 return -EINVAL;
2715
2716 /* must lock vfpf channel to protect against vf flows */
2717 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2718
2719 /* remove existing eth macs */
2720 mac_obj = &bnx2x_leading_vfq(vf, mac_obj);
2721 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_ETH_MAC, true);
2722 if (rc) {
2723 BNX2X_ERR("failed to delete eth macs\n");
2724 rc = -EINVAL;
2725 goto out;
2726 }
2727
2728 /* remove existing uc list macs */
2729 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, true);
2730 if (rc) {
2731 BNX2X_ERR("failed to delete uc_list macs\n");
2732 rc = -EINVAL;
2733 goto out;
2734 }
2735
2736 /* configure the new mac to device */
2737 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2738 bnx2x_set_mac_one(bp, (u8 *)&bulletin->mac, mac_obj, true,
2739 BNX2X_ETH_MAC, &ramrod_flags);
2740
2741 out:
2742 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_MAC);
2743 }
2744
2745 return rc;
2746 }
2747
bnx2x_set_vf_vlan_acceptance(struct bnx2x * bp,struct bnx2x_virtf * vf,bool accept)2748 static void bnx2x_set_vf_vlan_acceptance(struct bnx2x *bp,
2749 struct bnx2x_virtf *vf, bool accept)
2750 {
2751 struct bnx2x_rx_mode_ramrod_params rx_ramrod;
2752 unsigned long accept_flags;
2753
2754 /* need to remove/add the VF's accept_any_vlan bit */
2755 accept_flags = bnx2x_leading_vfq(vf, accept_flags);
2756 if (accept)
2757 set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2758 else
2759 clear_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
2760
2761 bnx2x_vf_prep_rx_mode(bp, LEADING_IDX, &rx_ramrod, vf,
2762 accept_flags);
2763 bnx2x_leading_vfq(vf, accept_flags) = accept_flags;
2764 bnx2x_config_rx_mode(bp, &rx_ramrod);
2765 }
2766
bnx2x_set_vf_vlan_filter(struct bnx2x * bp,struct bnx2x_virtf * vf,u16 vlan,bool add)2767 static int bnx2x_set_vf_vlan_filter(struct bnx2x *bp, struct bnx2x_virtf *vf,
2768 u16 vlan, bool add)
2769 {
2770 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
2771 unsigned long ramrod_flags = 0;
2772 int rc = 0;
2773
2774 /* configure the new vlan to device */
2775 memset(&ramrod_param, 0, sizeof(ramrod_param));
2776 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2777 ramrod_param.vlan_mac_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2778 ramrod_param.ramrod_flags = ramrod_flags;
2779 ramrod_param.user_req.u.vlan.vlan = vlan;
2780 ramrod_param.user_req.cmd = add ? BNX2X_VLAN_MAC_ADD
2781 : BNX2X_VLAN_MAC_DEL;
2782 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
2783 if (rc) {
2784 BNX2X_ERR("failed to configure vlan\n");
2785 return -EINVAL;
2786 }
2787
2788 return 0;
2789 }
2790
bnx2x_set_vf_vlan(struct net_device * dev,int vfidx,u16 vlan,u8 qos,__be16 vlan_proto)2791 int bnx2x_set_vf_vlan(struct net_device *dev, int vfidx, u16 vlan, u8 qos,
2792 __be16 vlan_proto)
2793 {
2794 struct pf_vf_bulletin_content *bulletin = NULL;
2795 struct bnx2x *bp = netdev_priv(dev);
2796 struct bnx2x_vlan_mac_obj *vlan_obj;
2797 unsigned long vlan_mac_flags = 0;
2798 unsigned long ramrod_flags = 0;
2799 struct bnx2x_virtf *vf = NULL;
2800 int i, rc;
2801
2802 if (vlan > 4095) {
2803 BNX2X_ERR("illegal vlan value %d\n", vlan);
2804 return -EINVAL;
2805 }
2806
2807 if (vlan_proto != htons(ETH_P_8021Q))
2808 return -EPROTONOSUPPORT;
2809
2810 DP(BNX2X_MSG_IOV, "configuring VF %d with VLAN %d qos %d\n",
2811 vfidx, vlan, 0);
2812
2813 /* sanity and init */
2814 rc = bnx2x_vf_op_prep(bp, vfidx, &vf, &bulletin, true);
2815 if (rc)
2816 return rc;
2817
2818 /* update PF's copy of the VF's bulletin. No point in posting the vlan
2819 * to the VF since it doesn't have anything to do with it. But it useful
2820 * to store it here in case the VF is not up yet and we can only
2821 * configure the vlan later when it does. Treat vlan id 0 as remove the
2822 * Host tag.
2823 */
2824 mutex_lock(&bp->vfdb->bulletin_mutex);
2825
2826 if (vlan > 0)
2827 bulletin->valid_bitmap |= 1 << VLAN_VALID;
2828 else
2829 bulletin->valid_bitmap &= ~(1 << VLAN_VALID);
2830 bulletin->vlan = vlan;
2831
2832 /* Post update on VF's bulletin board */
2833 rc = bnx2x_post_vf_bulletin(bp, vfidx);
2834 if (rc)
2835 BNX2X_ERR("failed to update VF[%d] bulletin\n", vfidx);
2836 mutex_unlock(&bp->vfdb->bulletin_mutex);
2837
2838 /* is vf initialized and queue set up? */
2839 if (vf->state != VF_ENABLED ||
2840 bnx2x_get_q_logical_state(bp, &bnx2x_leading_vfq(vf, sp_obj)) !=
2841 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2842 return rc;
2843
2844 /* User should be able to see error in system logs */
2845 if (!bnx2x_validate_vf_sp_objs(bp, vf, true))
2846 return -EINVAL;
2847
2848 /* must lock vfpf channel to protect against vf flows */
2849 bnx2x_lock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2850
2851 /* remove existing vlans */
2852 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2853 vlan_obj = &bnx2x_leading_vfq(vf, vlan_obj);
2854 rc = vlan_obj->delete_all(bp, vlan_obj, &vlan_mac_flags,
2855 &ramrod_flags);
2856 if (rc) {
2857 BNX2X_ERR("failed to delete vlans\n");
2858 rc = -EINVAL;
2859 goto out;
2860 }
2861
2862 /* clear accept_any_vlan when HV forces vlan, otherwise
2863 * according to VF capabilities
2864 */
2865 if (vlan || !(vf->cfg_flags & VF_CFG_VLAN_FILTER))
2866 bnx2x_set_vf_vlan_acceptance(bp, vf, !vlan);
2867
2868 rc = bnx2x_set_vf_vlan_filter(bp, vf, vlan, true);
2869 if (rc)
2870 goto out;
2871
2872 /* send queue update ramrods to configure default vlan and
2873 * silent vlan removal
2874 */
2875 for_each_vfq(vf, i) {
2876 struct bnx2x_queue_state_params q_params = {NULL};
2877 struct bnx2x_queue_update_params *update_params;
2878
2879 q_params.q_obj = &bnx2x_vfq(vf, i, sp_obj);
2880
2881 /* validate the Q is UP */
2882 if (bnx2x_get_q_logical_state(bp, q_params.q_obj) !=
2883 BNX2X_Q_LOGICAL_STATE_ACTIVE)
2884 continue;
2885
2886 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
2887 q_params.cmd = BNX2X_Q_CMD_UPDATE;
2888 update_params = &q_params.params.update;
2889 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN_CHNG,
2890 &update_params->update_flags);
2891 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
2892 &update_params->update_flags);
2893 if (vlan == 0) {
2894 /* if vlan is 0 then we want to leave the VF traffic
2895 * untagged, and leave the incoming traffic untouched
2896 * (i.e. do not remove any vlan tags).
2897 */
2898 __clear_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2899 &update_params->update_flags);
2900 __clear_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2901 &update_params->update_flags);
2902 } else {
2903 /* configure default vlan to vf queue and set silent
2904 * vlan removal (the vf remains unaware of this vlan).
2905 */
2906 __set_bit(BNX2X_Q_UPDATE_DEF_VLAN_EN,
2907 &update_params->update_flags);
2908 __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
2909 &update_params->update_flags);
2910 update_params->def_vlan = vlan;
2911 update_params->silent_removal_value =
2912 vlan & VLAN_VID_MASK;
2913 update_params->silent_removal_mask = VLAN_VID_MASK;
2914 }
2915
2916 /* Update the Queue state */
2917 rc = bnx2x_queue_state_change(bp, &q_params);
2918 if (rc) {
2919 BNX2X_ERR("Failed to configure default VLAN queue %d\n",
2920 i);
2921 goto out;
2922 }
2923 }
2924 out:
2925 bnx2x_unlock_vf_pf_channel(bp, vf, CHANNEL_TLV_PF_SET_VLAN);
2926
2927 if (rc)
2928 DP(BNX2X_MSG_IOV,
2929 "updated VF[%d] vlan configuration (vlan = %d)\n",
2930 vfidx, vlan);
2931
2932 return rc;
2933 }
2934
2935 /* crc is the first field in the bulletin board. Compute the crc over the
2936 * entire bulletin board excluding the crc field itself. Use the length field
2937 * as the Bulletin Board was posted by a PF with possibly a different version
2938 * from the vf which will sample it. Therefore, the length is computed by the
2939 * PF and then used blindly by the VF.
2940 */
bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content * bulletin)2941 u32 bnx2x_crc_vf_bulletin(struct pf_vf_bulletin_content *bulletin)
2942 {
2943 return crc32(BULLETIN_CRC_SEED,
2944 ((u8 *)bulletin) + sizeof(bulletin->crc),
2945 bulletin->length - sizeof(bulletin->crc));
2946 }
2947
2948 /* Check for new posts on the bulletin board */
bnx2x_sample_bulletin(struct bnx2x * bp)2949 enum sample_bulletin_result bnx2x_sample_bulletin(struct bnx2x *bp)
2950 {
2951 struct pf_vf_bulletin_content *bulletin;
2952 int attempts;
2953
2954 /* sampling structure in mid post may result with corrupted data
2955 * validate crc to ensure coherency.
2956 */
2957 for (attempts = 0; attempts < BULLETIN_ATTEMPTS; attempts++) {
2958 u32 crc;
2959
2960 /* sample the bulletin board */
2961 memcpy(&bp->shadow_bulletin, bp->pf2vf_bulletin,
2962 sizeof(union pf_vf_bulletin));
2963
2964 crc = bnx2x_crc_vf_bulletin(&bp->shadow_bulletin.content);
2965
2966 if (bp->shadow_bulletin.content.crc == crc)
2967 break;
2968
2969 BNX2X_ERR("bad crc on bulletin board. Contained %x computed %x\n",
2970 bp->shadow_bulletin.content.crc, crc);
2971 }
2972
2973 if (attempts >= BULLETIN_ATTEMPTS) {
2974 BNX2X_ERR("pf to vf bulletin board crc was wrong %d consecutive times. Aborting\n",
2975 attempts);
2976 return PFVF_BULLETIN_CRC_ERR;
2977 }
2978 bulletin = &bp->shadow_bulletin.content;
2979
2980 /* bulletin board hasn't changed since last sample */
2981 if (bp->old_bulletin.version == bulletin->version)
2982 return PFVF_BULLETIN_UNCHANGED;
2983
2984 /* the mac address in bulletin board is valid and is new */
2985 if (bulletin->valid_bitmap & 1 << MAC_ADDR_VALID &&
2986 !ether_addr_equal(bulletin->mac, bp->old_bulletin.mac)) {
2987 /* update new mac to net device */
2988 memcpy(bp->dev->dev_addr, bulletin->mac, ETH_ALEN);
2989 }
2990
2991 if (bulletin->valid_bitmap & (1 << LINK_VALID)) {
2992 DP(BNX2X_MSG_IOV, "link update speed %d flags %x\n",
2993 bulletin->link_speed, bulletin->link_flags);
2994
2995 bp->vf_link_vars.line_speed = bulletin->link_speed;
2996 bp->vf_link_vars.link_report_flags = 0;
2997 /* Link is down */
2998 if (bulletin->link_flags & VFPF_LINK_REPORT_LINK_DOWN)
2999 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
3000 &bp->vf_link_vars.link_report_flags);
3001 /* Full DUPLEX */
3002 if (bulletin->link_flags & VFPF_LINK_REPORT_FULL_DUPLEX)
3003 __set_bit(BNX2X_LINK_REPORT_FD,
3004 &bp->vf_link_vars.link_report_flags);
3005 /* Rx Flow Control is ON */
3006 if (bulletin->link_flags & VFPF_LINK_REPORT_RX_FC_ON)
3007 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
3008 &bp->vf_link_vars.link_report_flags);
3009 /* Tx Flow Control is ON */
3010 if (bulletin->link_flags & VFPF_LINK_REPORT_TX_FC_ON)
3011 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
3012 &bp->vf_link_vars.link_report_flags);
3013 __bnx2x_link_report(bp);
3014 }
3015
3016 /* copy new bulletin board to bp */
3017 memcpy(&bp->old_bulletin, bulletin,
3018 sizeof(struct pf_vf_bulletin_content));
3019
3020 return PFVF_BULLETIN_UPDATED;
3021 }
3022
bnx2x_timer_sriov(struct bnx2x * bp)3023 void bnx2x_timer_sriov(struct bnx2x *bp)
3024 {
3025 bnx2x_sample_bulletin(bp);
3026
3027 /* if channel is down we need to self destruct */
3028 if (bp->old_bulletin.valid_bitmap & 1 << CHANNEL_DOWN)
3029 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
3030 BNX2X_MSG_IOV);
3031 }
3032
bnx2x_vf_doorbells(struct bnx2x * bp)3033 void __iomem *bnx2x_vf_doorbells(struct bnx2x *bp)
3034 {
3035 /* vf doorbells are embedded within the regview */
3036 return bp->regview + PXP_VF_ADDR_DB_START;
3037 }
3038
bnx2x_vf_pci_dealloc(struct bnx2x * bp)3039 void bnx2x_vf_pci_dealloc(struct bnx2x *bp)
3040 {
3041 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->vf2pf_mbox_mapping,
3042 sizeof(struct bnx2x_vf_mbx_msg));
3043 BNX2X_PCI_FREE(bp->vf2pf_mbox, bp->pf2vf_bulletin_mapping,
3044 sizeof(union pf_vf_bulletin));
3045 }
3046
bnx2x_vf_pci_alloc(struct bnx2x * bp)3047 int bnx2x_vf_pci_alloc(struct bnx2x *bp)
3048 {
3049 mutex_init(&bp->vf2pf_mutex);
3050
3051 /* allocate vf2pf mailbox for vf to pf channel */
3052 bp->vf2pf_mbox = BNX2X_PCI_ALLOC(&bp->vf2pf_mbox_mapping,
3053 sizeof(struct bnx2x_vf_mbx_msg));
3054 if (!bp->vf2pf_mbox)
3055 goto alloc_mem_err;
3056
3057 /* allocate pf 2 vf bulletin board */
3058 bp->pf2vf_bulletin = BNX2X_PCI_ALLOC(&bp->pf2vf_bulletin_mapping,
3059 sizeof(union pf_vf_bulletin));
3060 if (!bp->pf2vf_bulletin)
3061 goto alloc_mem_err;
3062
3063 bnx2x_vf_bulletin_finalize(&bp->pf2vf_bulletin->content, true);
3064
3065 return 0;
3066
3067 alloc_mem_err:
3068 bnx2x_vf_pci_dealloc(bp);
3069 return -ENOMEM;
3070 }
3071
bnx2x_iov_channel_down(struct bnx2x * bp)3072 void bnx2x_iov_channel_down(struct bnx2x *bp)
3073 {
3074 int vf_idx;
3075 struct pf_vf_bulletin_content *bulletin;
3076
3077 if (!IS_SRIOV(bp))
3078 return;
3079
3080 for_each_vf(bp, vf_idx) {
3081 /* locate this VFs bulletin board and update the channel down
3082 * bit
3083 */
3084 bulletin = BP_VF_BULLETIN(bp, vf_idx);
3085 bulletin->valid_bitmap |= 1 << CHANNEL_DOWN;
3086
3087 /* update vf bulletin board */
3088 bnx2x_post_vf_bulletin(bp, vf_idx);
3089 }
3090 }
3091
bnx2x_iov_task(struct work_struct * work)3092 void bnx2x_iov_task(struct work_struct *work)
3093 {
3094 struct bnx2x *bp = container_of(work, struct bnx2x, iov_task.work);
3095
3096 if (!netif_running(bp->dev))
3097 return;
3098
3099 if (test_and_clear_bit(BNX2X_IOV_HANDLE_FLR,
3100 &bp->iov_task_state))
3101 bnx2x_vf_handle_flr_event(bp);
3102
3103 if (test_and_clear_bit(BNX2X_IOV_HANDLE_VF_MSG,
3104 &bp->iov_task_state))
3105 bnx2x_vf_mbx(bp);
3106 }
3107
bnx2x_schedule_iov_task(struct bnx2x * bp,enum bnx2x_iov_flag flag)3108 void bnx2x_schedule_iov_task(struct bnx2x *bp, enum bnx2x_iov_flag flag)
3109 {
3110 smp_mb__before_atomic();
3111 set_bit(flag, &bp->iov_task_state);
3112 smp_mb__after_atomic();
3113 DP(BNX2X_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
3114 queue_delayed_work(bnx2x_iov_wq, &bp->iov_task, 0);
3115 }
3116