1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/bpf.h>
17 #include <linux/bpf_verifier.h>
18 #include <linux/filter.h>
19 #include <net/netlink.h>
20 #include <linux/file.h>
21 #include <linux/vmalloc.h>
22
23 /* bpf_check() is a static code analyzer that walks eBPF program
24 * instruction by instruction and updates register/stack state.
25 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
26 *
27 * The first pass is depth-first-search to check that the program is a DAG.
28 * It rejects the following programs:
29 * - larger than BPF_MAXINSNS insns
30 * - if loop is present (detected via back-edge)
31 * - unreachable insns exist (shouldn't be a forest. program = one function)
32 * - out of bounds or malformed jumps
33 * The second pass is all possible path descent from the 1st insn.
34 * Since it's analyzing all pathes through the program, the length of the
35 * analysis is limited to 32k insn, which may be hit even if total number of
36 * insn is less then 4K, but there are too many branches that change stack/regs.
37 * Number of 'branches to be analyzed' is limited to 1k
38 *
39 * On entry to each instruction, each register has a type, and the instruction
40 * changes the types of the registers depending on instruction semantics.
41 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
42 * copied to R1.
43 *
44 * All registers are 64-bit.
45 * R0 - return register
46 * R1-R5 argument passing registers
47 * R6-R9 callee saved registers
48 * R10 - frame pointer read-only
49 *
50 * At the start of BPF program the register R1 contains a pointer to bpf_context
51 * and has type PTR_TO_CTX.
52 *
53 * Verifier tracks arithmetic operations on pointers in case:
54 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
55 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
56 * 1st insn copies R10 (which has FRAME_PTR) type into R1
57 * and 2nd arithmetic instruction is pattern matched to recognize
58 * that it wants to construct a pointer to some element within stack.
59 * So after 2nd insn, the register R1 has type PTR_TO_STACK
60 * (and -20 constant is saved for further stack bounds checking).
61 * Meaning that this reg is a pointer to stack plus known immediate constant.
62 *
63 * Most of the time the registers have UNKNOWN_VALUE type, which
64 * means the register has some value, but it's not a valid pointer.
65 * (like pointer plus pointer becomes UNKNOWN_VALUE type)
66 *
67 * When verifier sees load or store instructions the type of base register
68 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, FRAME_PTR. These are three pointer
69 * types recognized by check_mem_access() function.
70 *
71 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
72 * and the range of [ptr, ptr + map's value_size) is accessible.
73 *
74 * registers used to pass values to function calls are checked against
75 * function argument constraints.
76 *
77 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
78 * It means that the register type passed to this function must be
79 * PTR_TO_STACK and it will be used inside the function as
80 * 'pointer to map element key'
81 *
82 * For example the argument constraints for bpf_map_lookup_elem():
83 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
84 * .arg1_type = ARG_CONST_MAP_PTR,
85 * .arg2_type = ARG_PTR_TO_MAP_KEY,
86 *
87 * ret_type says that this function returns 'pointer to map elem value or null'
88 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
89 * 2nd argument should be a pointer to stack, which will be used inside
90 * the helper function as a pointer to map element key.
91 *
92 * On the kernel side the helper function looks like:
93 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
94 * {
95 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
96 * void *key = (void *) (unsigned long) r2;
97 * void *value;
98 *
99 * here kernel can access 'key' and 'map' pointers safely, knowing that
100 * [key, key + map->key_size) bytes are valid and were initialized on
101 * the stack of eBPF program.
102 * }
103 *
104 * Corresponding eBPF program may look like:
105 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
106 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
107 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
108 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
109 * here verifier looks at prototype of map_lookup_elem() and sees:
110 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
111 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
112 *
113 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
114 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
115 * and were initialized prior to this call.
116 * If it's ok, then verifier allows this BPF_CALL insn and looks at
117 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
118 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
119 * returns ether pointer to map value or NULL.
120 *
121 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
122 * insn, the register holding that pointer in the true branch changes state to
123 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
124 * branch. See check_cond_jmp_op().
125 *
126 * After the call R0 is set to return type of the function and registers R1-R5
127 * are set to NOT_INIT to indicate that they are no longer readable.
128 */
129
130 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
131 struct bpf_verifier_stack_elem {
132 /* verifer state is 'st'
133 * before processing instruction 'insn_idx'
134 * and after processing instruction 'prev_insn_idx'
135 */
136 struct bpf_verifier_state st;
137 int insn_idx;
138 int prev_insn_idx;
139 struct bpf_verifier_stack_elem *next;
140 };
141
142 #define BPF_COMPLEXITY_LIMIT_INSNS 98304
143 #define BPF_COMPLEXITY_LIMIT_STACK 1024
144
145 struct bpf_call_arg_meta {
146 struct bpf_map *map_ptr;
147 bool raw_mode;
148 bool pkt_access;
149 int regno;
150 int access_size;
151 };
152
153 /* verbose verifier prints what it's seeing
154 * bpf_check() is called under lock, so no race to access these global vars
155 */
156 static u32 log_level, log_size, log_len;
157 static char *log_buf;
158
159 static DEFINE_MUTEX(bpf_verifier_lock);
160
161 /* log_level controls verbosity level of eBPF verifier.
162 * verbose() is used to dump the verification trace to the log, so the user
163 * can figure out what's wrong with the program
164 */
verbose(const char * fmt,...)165 static __printf(1, 2) void verbose(const char *fmt, ...)
166 {
167 va_list args;
168
169 if (log_level == 0 || log_len >= log_size - 1)
170 return;
171
172 va_start(args, fmt);
173 log_len += vscnprintf(log_buf + log_len, log_size - log_len, fmt, args);
174 va_end(args);
175 }
176
177 /* string representation of 'enum bpf_reg_type' */
178 static const char * const reg_type_str[] = {
179 [NOT_INIT] = "?",
180 [UNKNOWN_VALUE] = "inv",
181 [PTR_TO_CTX] = "ctx",
182 [CONST_PTR_TO_MAP] = "map_ptr",
183 [PTR_TO_MAP_VALUE] = "map_value",
184 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
185 [PTR_TO_MAP_VALUE_ADJ] = "map_value_adj",
186 [FRAME_PTR] = "fp",
187 [PTR_TO_STACK] = "fp",
188 [CONST_IMM] = "imm",
189 [PTR_TO_PACKET] = "pkt",
190 [PTR_TO_PACKET_END] = "pkt_end",
191 };
192
print_verifier_state(struct bpf_verifier_state * state)193 static void print_verifier_state(struct bpf_verifier_state *state)
194 {
195 struct bpf_reg_state *reg;
196 enum bpf_reg_type t;
197 int i;
198
199 for (i = 0; i < MAX_BPF_REG; i++) {
200 reg = &state->regs[i];
201 t = reg->type;
202 if (t == NOT_INIT)
203 continue;
204 verbose(" R%d=%s", i, reg_type_str[t]);
205 if (t == CONST_IMM || t == PTR_TO_STACK)
206 verbose("%lld", reg->imm);
207 else if (t == PTR_TO_PACKET)
208 verbose("(id=%d,off=%d,r=%d)",
209 reg->id, reg->off, reg->range);
210 else if (t == UNKNOWN_VALUE && reg->imm)
211 verbose("%lld", reg->imm);
212 else if (t == CONST_PTR_TO_MAP || t == PTR_TO_MAP_VALUE ||
213 t == PTR_TO_MAP_VALUE_OR_NULL ||
214 t == PTR_TO_MAP_VALUE_ADJ)
215 verbose("(ks=%d,vs=%d,id=%u)",
216 reg->map_ptr->key_size,
217 reg->map_ptr->value_size,
218 reg->id);
219 if (reg->min_value != BPF_REGISTER_MIN_RANGE)
220 verbose(",min_value=%lld",
221 (long long)reg->min_value);
222 if (reg->max_value != BPF_REGISTER_MAX_RANGE)
223 verbose(",max_value=%llu",
224 (unsigned long long)reg->max_value);
225 }
226 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
227 if (state->stack_slot_type[i] == STACK_SPILL)
228 verbose(" fp%d=%s", -MAX_BPF_STACK + i,
229 reg_type_str[state->spilled_regs[i / BPF_REG_SIZE].type]);
230 }
231 verbose("\n");
232 }
233
234 static const char *const bpf_class_string[] = {
235 [BPF_LD] = "ld",
236 [BPF_LDX] = "ldx",
237 [BPF_ST] = "st",
238 [BPF_STX] = "stx",
239 [BPF_ALU] = "alu",
240 [BPF_JMP] = "jmp",
241 [BPF_RET] = "BUG",
242 [BPF_ALU64] = "alu64",
243 };
244
245 static const char *const bpf_alu_string[16] = {
246 [BPF_ADD >> 4] = "+=",
247 [BPF_SUB >> 4] = "-=",
248 [BPF_MUL >> 4] = "*=",
249 [BPF_DIV >> 4] = "/=",
250 [BPF_OR >> 4] = "|=",
251 [BPF_AND >> 4] = "&=",
252 [BPF_LSH >> 4] = "<<=",
253 [BPF_RSH >> 4] = ">>=",
254 [BPF_NEG >> 4] = "neg",
255 [BPF_MOD >> 4] = "%=",
256 [BPF_XOR >> 4] = "^=",
257 [BPF_MOV >> 4] = "=",
258 [BPF_ARSH >> 4] = "s>>=",
259 [BPF_END >> 4] = "endian",
260 };
261
262 static const char *const bpf_ldst_string[] = {
263 [BPF_W >> 3] = "u32",
264 [BPF_H >> 3] = "u16",
265 [BPF_B >> 3] = "u8",
266 [BPF_DW >> 3] = "u64",
267 };
268
269 static const char *const bpf_jmp_string[16] = {
270 [BPF_JA >> 4] = "jmp",
271 [BPF_JEQ >> 4] = "==",
272 [BPF_JGT >> 4] = ">",
273 [BPF_JGE >> 4] = ">=",
274 [BPF_JSET >> 4] = "&",
275 [BPF_JNE >> 4] = "!=",
276 [BPF_JSGT >> 4] = "s>",
277 [BPF_JSGE >> 4] = "s>=",
278 [BPF_CALL >> 4] = "call",
279 [BPF_EXIT >> 4] = "exit",
280 };
281
print_bpf_insn(const struct bpf_verifier_env * env,const struct bpf_insn * insn)282 static void print_bpf_insn(const struct bpf_verifier_env *env,
283 const struct bpf_insn *insn)
284 {
285 u8 class = BPF_CLASS(insn->code);
286
287 if (class == BPF_ALU || class == BPF_ALU64) {
288 if (BPF_SRC(insn->code) == BPF_X)
289 verbose("(%02x) %sr%d %s %sr%d\n",
290 insn->code, class == BPF_ALU ? "(u32) " : "",
291 insn->dst_reg,
292 bpf_alu_string[BPF_OP(insn->code) >> 4],
293 class == BPF_ALU ? "(u32) " : "",
294 insn->src_reg);
295 else
296 verbose("(%02x) %sr%d %s %s%d\n",
297 insn->code, class == BPF_ALU ? "(u32) " : "",
298 insn->dst_reg,
299 bpf_alu_string[BPF_OP(insn->code) >> 4],
300 class == BPF_ALU ? "(u32) " : "",
301 insn->imm);
302 } else if (class == BPF_STX) {
303 if (BPF_MODE(insn->code) == BPF_MEM)
304 verbose("(%02x) *(%s *)(r%d %+d) = r%d\n",
305 insn->code,
306 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
307 insn->dst_reg,
308 insn->off, insn->src_reg);
309 else if (BPF_MODE(insn->code) == BPF_XADD)
310 verbose("(%02x) lock *(%s *)(r%d %+d) += r%d\n",
311 insn->code,
312 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
313 insn->dst_reg, insn->off,
314 insn->src_reg);
315 else
316 verbose("BUG_%02x\n", insn->code);
317 } else if (class == BPF_ST) {
318 if (BPF_MODE(insn->code) != BPF_MEM) {
319 verbose("BUG_st_%02x\n", insn->code);
320 return;
321 }
322 verbose("(%02x) *(%s *)(r%d %+d) = %d\n",
323 insn->code,
324 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
325 insn->dst_reg,
326 insn->off, insn->imm);
327 } else if (class == BPF_LDX) {
328 if (BPF_MODE(insn->code) != BPF_MEM) {
329 verbose("BUG_ldx_%02x\n", insn->code);
330 return;
331 }
332 verbose("(%02x) r%d = *(%s *)(r%d %+d)\n",
333 insn->code, insn->dst_reg,
334 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
335 insn->src_reg, insn->off);
336 } else if (class == BPF_LD) {
337 if (BPF_MODE(insn->code) == BPF_ABS) {
338 verbose("(%02x) r0 = *(%s *)skb[%d]\n",
339 insn->code,
340 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
341 insn->imm);
342 } else if (BPF_MODE(insn->code) == BPF_IND) {
343 verbose("(%02x) r0 = *(%s *)skb[r%d + %d]\n",
344 insn->code,
345 bpf_ldst_string[BPF_SIZE(insn->code) >> 3],
346 insn->src_reg, insn->imm);
347 } else if (BPF_MODE(insn->code) == BPF_IMM &&
348 BPF_SIZE(insn->code) == BPF_DW) {
349 /* At this point, we already made sure that the second
350 * part of the ldimm64 insn is accessible.
351 */
352 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
353 bool map_ptr = insn->src_reg == BPF_PSEUDO_MAP_FD;
354
355 if (map_ptr && !env->allow_ptr_leaks)
356 imm = 0;
357
358 verbose("(%02x) r%d = 0x%llx\n", insn->code,
359 insn->dst_reg, (unsigned long long)imm);
360 } else {
361 verbose("BUG_ld_%02x\n", insn->code);
362 return;
363 }
364 } else if (class == BPF_JMP) {
365 u8 opcode = BPF_OP(insn->code);
366
367 if (opcode == BPF_CALL) {
368 verbose("(%02x) call %d\n", insn->code, insn->imm);
369 } else if (insn->code == (BPF_JMP | BPF_JA)) {
370 verbose("(%02x) goto pc%+d\n",
371 insn->code, insn->off);
372 } else if (insn->code == (BPF_JMP | BPF_EXIT)) {
373 verbose("(%02x) exit\n", insn->code);
374 } else if (BPF_SRC(insn->code) == BPF_X) {
375 verbose("(%02x) if r%d %s r%d goto pc%+d\n",
376 insn->code, insn->dst_reg,
377 bpf_jmp_string[BPF_OP(insn->code) >> 4],
378 insn->src_reg, insn->off);
379 } else {
380 verbose("(%02x) if r%d %s 0x%x goto pc%+d\n",
381 insn->code, insn->dst_reg,
382 bpf_jmp_string[BPF_OP(insn->code) >> 4],
383 insn->imm, insn->off);
384 }
385 } else {
386 verbose("(%02x) %s\n", insn->code, bpf_class_string[class]);
387 }
388 }
389
pop_stack(struct bpf_verifier_env * env,int * prev_insn_idx)390 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx)
391 {
392 struct bpf_verifier_stack_elem *elem;
393 int insn_idx;
394
395 if (env->head == NULL)
396 return -1;
397
398 memcpy(&env->cur_state, &env->head->st, sizeof(env->cur_state));
399 insn_idx = env->head->insn_idx;
400 if (prev_insn_idx)
401 *prev_insn_idx = env->head->prev_insn_idx;
402 elem = env->head->next;
403 kfree(env->head);
404 env->head = elem;
405 env->stack_size--;
406 return insn_idx;
407 }
408
push_stack(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx)409 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
410 int insn_idx, int prev_insn_idx)
411 {
412 struct bpf_verifier_stack_elem *elem;
413
414 elem = kmalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
415 if (!elem)
416 goto err;
417
418 memcpy(&elem->st, &env->cur_state, sizeof(env->cur_state));
419 elem->insn_idx = insn_idx;
420 elem->prev_insn_idx = prev_insn_idx;
421 elem->next = env->head;
422 env->head = elem;
423 env->stack_size++;
424 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
425 verbose("BPF program is too complex\n");
426 goto err;
427 }
428 return &elem->st;
429 err:
430 /* pop all elements and return */
431 while (pop_stack(env, NULL) >= 0);
432 return NULL;
433 }
434
435 #define CALLER_SAVED_REGS 6
436 static const int caller_saved[CALLER_SAVED_REGS] = {
437 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
438 };
439
init_reg_state(struct bpf_reg_state * regs)440 static void init_reg_state(struct bpf_reg_state *regs)
441 {
442 int i;
443
444 for (i = 0; i < MAX_BPF_REG; i++) {
445 regs[i].type = NOT_INIT;
446 regs[i].imm = 0;
447 regs[i].min_value = BPF_REGISTER_MIN_RANGE;
448 regs[i].max_value = BPF_REGISTER_MAX_RANGE;
449 }
450
451 /* frame pointer */
452 regs[BPF_REG_FP].type = FRAME_PTR;
453
454 /* 1st arg to a function */
455 regs[BPF_REG_1].type = PTR_TO_CTX;
456 }
457
__mark_reg_unknown_value(struct bpf_reg_state * regs,u32 regno)458 static void __mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
459 {
460 regs[regno].type = UNKNOWN_VALUE;
461 regs[regno].id = 0;
462 regs[regno].imm = 0;
463 }
464
mark_reg_unknown_value(struct bpf_reg_state * regs,u32 regno)465 static void mark_reg_unknown_value(struct bpf_reg_state *regs, u32 regno)
466 {
467 BUG_ON(regno >= MAX_BPF_REG);
468 __mark_reg_unknown_value(regs, regno);
469 }
470
reset_reg_range_values(struct bpf_reg_state * regs,u32 regno)471 static void reset_reg_range_values(struct bpf_reg_state *regs, u32 regno)
472 {
473 regs[regno].min_value = BPF_REGISTER_MIN_RANGE;
474 regs[regno].max_value = BPF_REGISTER_MAX_RANGE;
475 }
476
477 enum reg_arg_type {
478 SRC_OP, /* register is used as source operand */
479 DST_OP, /* register is used as destination operand */
480 DST_OP_NO_MARK /* same as above, check only, don't mark */
481 };
482
check_reg_arg(struct bpf_reg_state * regs,u32 regno,enum reg_arg_type t)483 static int check_reg_arg(struct bpf_reg_state *regs, u32 regno,
484 enum reg_arg_type t)
485 {
486 if (regno >= MAX_BPF_REG) {
487 verbose("R%d is invalid\n", regno);
488 return -EINVAL;
489 }
490
491 if (t == SRC_OP) {
492 /* check whether register used as source operand can be read */
493 if (regs[regno].type == NOT_INIT) {
494 verbose("R%d !read_ok\n", regno);
495 return -EACCES;
496 }
497 } else {
498 /* check whether register used as dest operand can be written to */
499 if (regno == BPF_REG_FP) {
500 verbose("frame pointer is read only\n");
501 return -EACCES;
502 }
503 if (t == DST_OP)
504 mark_reg_unknown_value(regs, regno);
505 }
506 return 0;
507 }
508
bpf_size_to_bytes(int bpf_size)509 static int bpf_size_to_bytes(int bpf_size)
510 {
511 if (bpf_size == BPF_W)
512 return 4;
513 else if (bpf_size == BPF_H)
514 return 2;
515 else if (bpf_size == BPF_B)
516 return 1;
517 else if (bpf_size == BPF_DW)
518 return 8;
519 else
520 return -EINVAL;
521 }
522
is_spillable_regtype(enum bpf_reg_type type)523 static bool is_spillable_regtype(enum bpf_reg_type type)
524 {
525 switch (type) {
526 case PTR_TO_MAP_VALUE:
527 case PTR_TO_MAP_VALUE_OR_NULL:
528 case PTR_TO_STACK:
529 case PTR_TO_CTX:
530 case PTR_TO_PACKET:
531 case PTR_TO_PACKET_END:
532 case FRAME_PTR:
533 case CONST_PTR_TO_MAP:
534 return true;
535 default:
536 return false;
537 }
538 }
539
540 /* check_stack_read/write functions track spill/fill of registers,
541 * stack boundary and alignment are checked in check_mem_access()
542 */
check_stack_write(struct bpf_verifier_state * state,int off,int size,int value_regno)543 static int check_stack_write(struct bpf_verifier_state *state, int off,
544 int size, int value_regno)
545 {
546 int i;
547 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
548 * so it's aligned access and [off, off + size) are within stack limits
549 */
550
551 if (value_regno >= 0 &&
552 is_spillable_regtype(state->regs[value_regno].type)) {
553
554 /* register containing pointer is being spilled into stack */
555 if (size != BPF_REG_SIZE) {
556 verbose("invalid size of register spill\n");
557 return -EACCES;
558 }
559
560 /* save register state */
561 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
562 state->regs[value_regno];
563
564 for (i = 0; i < BPF_REG_SIZE; i++)
565 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_SPILL;
566 } else {
567 /* regular write of data into stack */
568 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE] =
569 (struct bpf_reg_state) {};
570
571 for (i = 0; i < size; i++)
572 state->stack_slot_type[MAX_BPF_STACK + off + i] = STACK_MISC;
573 }
574 return 0;
575 }
576
check_stack_read(struct bpf_verifier_state * state,int off,int size,int value_regno)577 static int check_stack_read(struct bpf_verifier_state *state, int off, int size,
578 int value_regno)
579 {
580 u8 *slot_type;
581 int i;
582
583 slot_type = &state->stack_slot_type[MAX_BPF_STACK + off];
584
585 if (slot_type[0] == STACK_SPILL) {
586 if (size != BPF_REG_SIZE) {
587 verbose("invalid size of register spill\n");
588 return -EACCES;
589 }
590 for (i = 1; i < BPF_REG_SIZE; i++) {
591 if (slot_type[i] != STACK_SPILL) {
592 verbose("corrupted spill memory\n");
593 return -EACCES;
594 }
595 }
596
597 if (value_regno >= 0)
598 /* restore register state from stack */
599 state->regs[value_regno] =
600 state->spilled_regs[(MAX_BPF_STACK + off) / BPF_REG_SIZE];
601 return 0;
602 } else {
603 for (i = 0; i < size; i++) {
604 if (slot_type[i] != STACK_MISC) {
605 verbose("invalid read from stack off %d+%d size %d\n",
606 off, i, size);
607 return -EACCES;
608 }
609 }
610 if (value_regno >= 0)
611 /* have read misc data from the stack */
612 mark_reg_unknown_value(state->regs, value_regno);
613 return 0;
614 }
615 }
616
617 /* check read/write into map element returned by bpf_map_lookup_elem() */
check_map_access(struct bpf_verifier_env * env,u32 regno,int off,int size)618 static int check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
619 int size)
620 {
621 struct bpf_map *map = env->cur_state.regs[regno].map_ptr;
622
623 if (off < 0 || off + size > map->value_size) {
624 verbose("invalid access to map value, value_size=%d off=%d size=%d\n",
625 map->value_size, off, size);
626 return -EACCES;
627 }
628 return 0;
629 }
630
631 #define MAX_PACKET_OFF 0xffff
632
may_access_direct_pkt_data(struct bpf_verifier_env * env,const struct bpf_call_arg_meta * meta)633 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
634 const struct bpf_call_arg_meta *meta)
635 {
636 switch (env->prog->type) {
637 case BPF_PROG_TYPE_SCHED_CLS:
638 case BPF_PROG_TYPE_SCHED_ACT:
639 case BPF_PROG_TYPE_XDP:
640 if (meta)
641 return meta->pkt_access;
642
643 env->seen_direct_write = true;
644 return true;
645 default:
646 return false;
647 }
648 }
649
check_packet_access(struct bpf_verifier_env * env,u32 regno,int off,int size)650 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
651 int size)
652 {
653 struct bpf_reg_state *regs = env->cur_state.regs;
654 struct bpf_reg_state *reg = ®s[regno];
655
656 off += reg->off;
657 if (off < 0 || size <= 0 || off + size > reg->range) {
658 verbose("invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
659 off, size, regno, reg->id, reg->off, reg->range);
660 return -EACCES;
661 }
662 return 0;
663 }
664
665 /* check access to 'struct bpf_context' fields */
check_ctx_access(struct bpf_verifier_env * env,int off,int size,enum bpf_access_type t,enum bpf_reg_type * reg_type)666 static int check_ctx_access(struct bpf_verifier_env *env, int off, int size,
667 enum bpf_access_type t, enum bpf_reg_type *reg_type)
668 {
669 /* for analyzer ctx accesses are already validated and converted */
670 if (env->analyzer_ops)
671 return 0;
672
673 if (env->prog->aux->ops->is_valid_access &&
674 env->prog->aux->ops->is_valid_access(off, size, t, reg_type)) {
675 /* remember the offset of last byte accessed in ctx */
676 if (env->prog->aux->max_ctx_offset < off + size)
677 env->prog->aux->max_ctx_offset = off + size;
678 return 0;
679 }
680
681 verbose("invalid bpf_context access off=%d size=%d\n", off, size);
682 return -EACCES;
683 }
684
__is_pointer_value(bool allow_ptr_leaks,const struct bpf_reg_state * reg)685 static bool __is_pointer_value(bool allow_ptr_leaks,
686 const struct bpf_reg_state *reg)
687 {
688 if (allow_ptr_leaks)
689 return false;
690
691 switch (reg->type) {
692 case UNKNOWN_VALUE:
693 case CONST_IMM:
694 return false;
695 default:
696 return true;
697 }
698 }
699
is_pointer_value(struct bpf_verifier_env * env,int regno)700 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
701 {
702 return __is_pointer_value(env->allow_ptr_leaks, &env->cur_state.regs[regno]);
703 }
704
is_ctx_reg(struct bpf_verifier_env * env,int regno)705 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
706 {
707 const struct bpf_reg_state *reg = &env->cur_state.regs[regno];
708
709 return reg->type == PTR_TO_CTX;
710 }
711
check_ptr_alignment(struct bpf_verifier_env * env,struct bpf_reg_state * reg,int off,int size)712 static int check_ptr_alignment(struct bpf_verifier_env *env,
713 struct bpf_reg_state *reg, int off, int size)
714 {
715 if (reg->type != PTR_TO_PACKET && reg->type != PTR_TO_MAP_VALUE_ADJ) {
716 if (off % size != 0) {
717 verbose("misaligned access off %d size %d\n",
718 off, size);
719 return -EACCES;
720 } else {
721 return 0;
722 }
723 }
724
725 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
726 /* misaligned access to packet is ok on x86,arm,arm64 */
727 return 0;
728
729 if (reg->id && size != 1) {
730 verbose("Unknown packet alignment. Only byte-sized access allowed\n");
731 return -EACCES;
732 }
733
734 /* skb->data is NET_IP_ALIGN-ed */
735 if (reg->type == PTR_TO_PACKET &&
736 (NET_IP_ALIGN + reg->off + off) % size != 0) {
737 verbose("misaligned packet access off %d+%d+%d size %d\n",
738 NET_IP_ALIGN, reg->off, off, size);
739 return -EACCES;
740 }
741 return 0;
742 }
743
744 /* check whether memory at (regno + off) is accessible for t = (read | write)
745 * if t==write, value_regno is a register which value is stored into memory
746 * if t==read, value_regno is a register which will receive the value from memory
747 * if t==write && value_regno==-1, some unknown value is stored into memory
748 * if t==read && value_regno==-1, don't care what we read from memory
749 */
check_mem_access(struct bpf_verifier_env * env,u32 regno,int off,int bpf_size,enum bpf_access_type t,int value_regno)750 static int check_mem_access(struct bpf_verifier_env *env, u32 regno, int off,
751 int bpf_size, enum bpf_access_type t,
752 int value_regno)
753 {
754 struct bpf_verifier_state *state = &env->cur_state;
755 struct bpf_reg_state *reg = &state->regs[regno];
756 int size, err = 0;
757
758 if (reg->type == PTR_TO_STACK)
759 off += reg->imm;
760
761 size = bpf_size_to_bytes(bpf_size);
762 if (size < 0)
763 return size;
764
765 err = check_ptr_alignment(env, reg, off, size);
766 if (err)
767 return err;
768
769 if (reg->type == PTR_TO_MAP_VALUE ||
770 reg->type == PTR_TO_MAP_VALUE_ADJ) {
771 if (t == BPF_WRITE && value_regno >= 0 &&
772 is_pointer_value(env, value_regno)) {
773 verbose("R%d leaks addr into map\n", value_regno);
774 return -EACCES;
775 }
776
777 /* If we adjusted the register to this map value at all then we
778 * need to change off and size to min_value and max_value
779 * respectively to make sure our theoretical access will be
780 * safe.
781 */
782 if (reg->type == PTR_TO_MAP_VALUE_ADJ) {
783 if (log_level)
784 print_verifier_state(state);
785 env->varlen_map_value_access = true;
786 /* The minimum value is only important with signed
787 * comparisons where we can't assume the floor of a
788 * value is 0. If we are using signed variables for our
789 * index'es we need to make sure that whatever we use
790 * will have a set floor within our range.
791 */
792 if (reg->min_value < 0) {
793 verbose("R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
794 regno);
795 return -EACCES;
796 }
797 err = check_map_access(env, regno, reg->min_value + off,
798 size);
799 if (err) {
800 verbose("R%d min value is outside of the array range\n",
801 regno);
802 return err;
803 }
804
805 /* If we haven't set a max value then we need to bail
806 * since we can't be sure we won't do bad things.
807 */
808 if (reg->max_value == BPF_REGISTER_MAX_RANGE) {
809 verbose("R%d unbounded memory access, make sure to bounds check any array access into a map\n",
810 regno);
811 return -EACCES;
812 }
813 off += reg->max_value;
814 }
815 err = check_map_access(env, regno, off, size);
816 if (!err && t == BPF_READ && value_regno >= 0)
817 mark_reg_unknown_value(state->regs, value_regno);
818
819 } else if (reg->type == PTR_TO_CTX) {
820 enum bpf_reg_type reg_type = UNKNOWN_VALUE;
821
822 if (t == BPF_WRITE && value_regno >= 0 &&
823 is_pointer_value(env, value_regno)) {
824 verbose("R%d leaks addr into ctx\n", value_regno);
825 return -EACCES;
826 }
827 err = check_ctx_access(env, off, size, t, ®_type);
828 if (!err && t == BPF_READ && value_regno >= 0) {
829 mark_reg_unknown_value(state->regs, value_regno);
830 /* note that reg.[id|off|range] == 0 */
831 state->regs[value_regno].type = reg_type;
832 }
833
834 } else if (reg->type == FRAME_PTR || reg->type == PTR_TO_STACK) {
835 if (off >= 0 || off < -MAX_BPF_STACK) {
836 verbose("invalid stack off=%d size=%d\n", off, size);
837 return -EACCES;
838 }
839 if (t == BPF_WRITE) {
840 if (!env->allow_ptr_leaks &&
841 state->stack_slot_type[MAX_BPF_STACK + off] == STACK_SPILL &&
842 size != BPF_REG_SIZE) {
843 verbose("attempt to corrupt spilled pointer on stack\n");
844 return -EACCES;
845 }
846 err = check_stack_write(state, off, size, value_regno);
847 } else {
848 err = check_stack_read(state, off, size, value_regno);
849 }
850 } else if (state->regs[regno].type == PTR_TO_PACKET) {
851 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL)) {
852 verbose("cannot write into packet\n");
853 return -EACCES;
854 }
855 if (t == BPF_WRITE && value_regno >= 0 &&
856 is_pointer_value(env, value_regno)) {
857 verbose("R%d leaks addr into packet\n", value_regno);
858 return -EACCES;
859 }
860 err = check_packet_access(env, regno, off, size);
861 if (!err && t == BPF_READ && value_regno >= 0)
862 mark_reg_unknown_value(state->regs, value_regno);
863 } else {
864 verbose("R%d invalid mem access '%s'\n",
865 regno, reg_type_str[reg->type]);
866 return -EACCES;
867 }
868
869 if (!err && size <= 2 && value_regno >= 0 && env->allow_ptr_leaks &&
870 state->regs[value_regno].type == UNKNOWN_VALUE) {
871 /* 1 or 2 byte load zero-extends, determine the number of
872 * zero upper bits. Not doing it fo 4 byte load, since
873 * such values cannot be added to ptr_to_packet anyway.
874 */
875 state->regs[value_regno].imm = 64 - size * 8;
876 }
877 return err;
878 }
879
check_xadd(struct bpf_verifier_env * env,struct bpf_insn * insn)880 static int check_xadd(struct bpf_verifier_env *env, struct bpf_insn *insn)
881 {
882 struct bpf_reg_state *regs = env->cur_state.regs;
883 int err;
884
885 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
886 insn->imm != 0) {
887 verbose("BPF_XADD uses reserved fields\n");
888 return -EINVAL;
889 }
890
891 /* check src1 operand */
892 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
893 if (err)
894 return err;
895
896 /* check src2 operand */
897 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
898 if (err)
899 return err;
900
901 if (is_pointer_value(env, insn->src_reg)) {
902 verbose("R%d leaks addr into mem\n", insn->src_reg);
903 return -EACCES;
904 }
905
906 if (is_ctx_reg(env, insn->dst_reg)) {
907 verbose("BPF_XADD stores into R%d context is not allowed\n",
908 insn->dst_reg);
909 return -EACCES;
910 }
911
912 /* check whether atomic_add can read the memory */
913 err = check_mem_access(env, insn->dst_reg, insn->off,
914 BPF_SIZE(insn->code), BPF_READ, -1);
915 if (err)
916 return err;
917
918 /* check whether atomic_add can write into the same memory */
919 return check_mem_access(env, insn->dst_reg, insn->off,
920 BPF_SIZE(insn->code), BPF_WRITE, -1);
921 }
922
923 /* when register 'regno' is passed into function that will read 'access_size'
924 * bytes from that pointer, make sure that it's within stack boundary
925 * and all elements of stack are initialized
926 */
check_stack_boundary(struct bpf_verifier_env * env,int regno,int access_size,bool zero_size_allowed,struct bpf_call_arg_meta * meta)927 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
928 int access_size, bool zero_size_allowed,
929 struct bpf_call_arg_meta *meta)
930 {
931 struct bpf_verifier_state *state = &env->cur_state;
932 struct bpf_reg_state *regs = state->regs;
933 int off, i;
934
935 if (regs[regno].type != PTR_TO_STACK) {
936 if (zero_size_allowed && access_size == 0 &&
937 regs[regno].type == CONST_IMM &&
938 regs[regno].imm == 0)
939 return 0;
940
941 verbose("R%d type=%s expected=%s\n", regno,
942 reg_type_str[regs[regno].type],
943 reg_type_str[PTR_TO_STACK]);
944 return -EACCES;
945 }
946
947 off = regs[regno].imm;
948 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
949 access_size <= 0) {
950 verbose("invalid stack type R%d off=%d access_size=%d\n",
951 regno, off, access_size);
952 return -EACCES;
953 }
954
955 if (meta && meta->raw_mode) {
956 meta->access_size = access_size;
957 meta->regno = regno;
958 return 0;
959 }
960
961 for (i = 0; i < access_size; i++) {
962 if (state->stack_slot_type[MAX_BPF_STACK + off + i] != STACK_MISC) {
963 verbose("invalid indirect read from stack off %d+%d size %d\n",
964 off, i, access_size);
965 return -EACCES;
966 }
967 }
968 return 0;
969 }
970
check_func_arg(struct bpf_verifier_env * env,u32 regno,enum bpf_arg_type arg_type,struct bpf_call_arg_meta * meta)971 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
972 enum bpf_arg_type arg_type,
973 struct bpf_call_arg_meta *meta)
974 {
975 struct bpf_reg_state *regs = env->cur_state.regs, *reg = ®s[regno];
976 enum bpf_reg_type expected_type, type = reg->type;
977 int err = 0;
978
979 if (arg_type == ARG_DONTCARE)
980 return 0;
981
982 if (type == NOT_INIT) {
983 verbose("R%d !read_ok\n", regno);
984 return -EACCES;
985 }
986
987 if (arg_type == ARG_ANYTHING) {
988 if (is_pointer_value(env, regno)) {
989 verbose("R%d leaks addr into helper function\n", regno);
990 return -EACCES;
991 }
992 return 0;
993 }
994
995 if (type == PTR_TO_PACKET && !may_access_direct_pkt_data(env, meta)) {
996 verbose("helper access to the packet is not allowed\n");
997 return -EACCES;
998 }
999
1000 if (arg_type == ARG_PTR_TO_MAP_KEY ||
1001 arg_type == ARG_PTR_TO_MAP_VALUE) {
1002 expected_type = PTR_TO_STACK;
1003 if (type != PTR_TO_PACKET && type != expected_type)
1004 goto err_type;
1005 } else if (arg_type == ARG_CONST_STACK_SIZE ||
1006 arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
1007 expected_type = CONST_IMM;
1008 if (type != expected_type)
1009 goto err_type;
1010 } else if (arg_type == ARG_CONST_MAP_PTR) {
1011 expected_type = CONST_PTR_TO_MAP;
1012 if (type != expected_type)
1013 goto err_type;
1014 } else if (arg_type == ARG_PTR_TO_CTX) {
1015 expected_type = PTR_TO_CTX;
1016 if (type != expected_type)
1017 goto err_type;
1018 } else if (arg_type == ARG_PTR_TO_STACK ||
1019 arg_type == ARG_PTR_TO_RAW_STACK) {
1020 expected_type = PTR_TO_STACK;
1021 /* One exception here. In case function allows for NULL to be
1022 * passed in as argument, it's a CONST_IMM type. Final test
1023 * happens during stack boundary checking.
1024 */
1025 if (type == CONST_IMM && reg->imm == 0)
1026 /* final test in check_stack_boundary() */;
1027 else if (type != PTR_TO_PACKET && type != expected_type)
1028 goto err_type;
1029 meta->raw_mode = arg_type == ARG_PTR_TO_RAW_STACK;
1030 } else {
1031 verbose("unsupported arg_type %d\n", arg_type);
1032 return -EFAULT;
1033 }
1034
1035 if (arg_type == ARG_CONST_MAP_PTR) {
1036 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
1037 meta->map_ptr = reg->map_ptr;
1038 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1039 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1040 * check that [key, key + map->key_size) are within
1041 * stack limits and initialized
1042 */
1043 if (!meta->map_ptr) {
1044 /* in function declaration map_ptr must come before
1045 * map_key, so that it's verified and known before
1046 * we have to check map_key here. Otherwise it means
1047 * that kernel subsystem misconfigured verifier
1048 */
1049 verbose("invalid map_ptr to access map->key\n");
1050 return -EACCES;
1051 }
1052 if (type == PTR_TO_PACKET)
1053 err = check_packet_access(env, regno, 0,
1054 meta->map_ptr->key_size);
1055 else
1056 err = check_stack_boundary(env, regno,
1057 meta->map_ptr->key_size,
1058 false, NULL);
1059 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1060 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1061 * check [value, value + map->value_size) validity
1062 */
1063 if (!meta->map_ptr) {
1064 /* kernel subsystem misconfigured verifier */
1065 verbose("invalid map_ptr to access map->value\n");
1066 return -EACCES;
1067 }
1068 if (type == PTR_TO_PACKET)
1069 err = check_packet_access(env, regno, 0,
1070 meta->map_ptr->value_size);
1071 else
1072 err = check_stack_boundary(env, regno,
1073 meta->map_ptr->value_size,
1074 false, NULL);
1075 } else if (arg_type == ARG_CONST_STACK_SIZE ||
1076 arg_type == ARG_CONST_STACK_SIZE_OR_ZERO) {
1077 bool zero_size_allowed = (arg_type == ARG_CONST_STACK_SIZE_OR_ZERO);
1078
1079 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1080 * from stack pointer 'buf'. Check it
1081 * note: regno == len, regno - 1 == buf
1082 */
1083 if (regno == 0) {
1084 /* kernel subsystem misconfigured verifier */
1085 verbose("ARG_CONST_STACK_SIZE cannot be first argument\n");
1086 return -EACCES;
1087 }
1088 if (regs[regno - 1].type == PTR_TO_PACKET)
1089 err = check_packet_access(env, regno - 1, 0, reg->imm);
1090 else
1091 err = check_stack_boundary(env, regno - 1, reg->imm,
1092 zero_size_allowed, meta);
1093 }
1094
1095 return err;
1096 err_type:
1097 verbose("R%d type=%s expected=%s\n", regno,
1098 reg_type_str[type], reg_type_str[expected_type]);
1099 return -EACCES;
1100 }
1101
check_map_func_compatibility(struct bpf_map * map,int func_id)1102 static int check_map_func_compatibility(struct bpf_map *map, int func_id)
1103 {
1104 if (!map)
1105 return 0;
1106
1107 /* We need a two way check, first is from map perspective ... */
1108 switch (map->map_type) {
1109 case BPF_MAP_TYPE_PROG_ARRAY:
1110 if (func_id != BPF_FUNC_tail_call)
1111 goto error;
1112 break;
1113 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1114 if (func_id != BPF_FUNC_perf_event_read &&
1115 func_id != BPF_FUNC_perf_event_output)
1116 goto error;
1117 break;
1118 case BPF_MAP_TYPE_STACK_TRACE:
1119 if (func_id != BPF_FUNC_get_stackid)
1120 goto error;
1121 break;
1122 case BPF_MAP_TYPE_CGROUP_ARRAY:
1123 if (func_id != BPF_FUNC_skb_under_cgroup &&
1124 func_id != BPF_FUNC_current_task_under_cgroup)
1125 goto error;
1126 break;
1127 default:
1128 break;
1129 }
1130
1131 /* ... and second from the function itself. */
1132 switch (func_id) {
1133 case BPF_FUNC_tail_call:
1134 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1135 goto error;
1136 break;
1137 case BPF_FUNC_perf_event_read:
1138 case BPF_FUNC_perf_event_output:
1139 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1140 goto error;
1141 break;
1142 case BPF_FUNC_get_stackid:
1143 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1144 goto error;
1145 break;
1146 case BPF_FUNC_current_task_under_cgroup:
1147 case BPF_FUNC_skb_under_cgroup:
1148 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1149 goto error;
1150 break;
1151 default:
1152 break;
1153 }
1154
1155 return 0;
1156 error:
1157 verbose("cannot pass map_type %d into func %d\n",
1158 map->map_type, func_id);
1159 return -EINVAL;
1160 }
1161
check_raw_mode(const struct bpf_func_proto * fn)1162 static int check_raw_mode(const struct bpf_func_proto *fn)
1163 {
1164 int count = 0;
1165
1166 if (fn->arg1_type == ARG_PTR_TO_RAW_STACK)
1167 count++;
1168 if (fn->arg2_type == ARG_PTR_TO_RAW_STACK)
1169 count++;
1170 if (fn->arg3_type == ARG_PTR_TO_RAW_STACK)
1171 count++;
1172 if (fn->arg4_type == ARG_PTR_TO_RAW_STACK)
1173 count++;
1174 if (fn->arg5_type == ARG_PTR_TO_RAW_STACK)
1175 count++;
1176
1177 return count > 1 ? -EINVAL : 0;
1178 }
1179
clear_all_pkt_pointers(struct bpf_verifier_env * env)1180 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
1181 {
1182 struct bpf_verifier_state *state = &env->cur_state;
1183 struct bpf_reg_state *regs = state->regs, *reg;
1184 int i;
1185
1186 for (i = 0; i < MAX_BPF_REG; i++)
1187 if (regs[i].type == PTR_TO_PACKET ||
1188 regs[i].type == PTR_TO_PACKET_END)
1189 mark_reg_unknown_value(regs, i);
1190
1191 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
1192 if (state->stack_slot_type[i] != STACK_SPILL)
1193 continue;
1194 reg = &state->spilled_regs[i / BPF_REG_SIZE];
1195 if (reg->type != PTR_TO_PACKET &&
1196 reg->type != PTR_TO_PACKET_END)
1197 continue;
1198 reg->type = UNKNOWN_VALUE;
1199 reg->imm = 0;
1200 }
1201 }
1202
check_call(struct bpf_verifier_env * env,int func_id,int insn_idx)1203 static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
1204 {
1205 struct bpf_verifier_state *state = &env->cur_state;
1206 const struct bpf_func_proto *fn = NULL;
1207 struct bpf_reg_state *regs = state->regs;
1208 struct bpf_reg_state *reg;
1209 struct bpf_call_arg_meta meta;
1210 bool changes_data;
1211 int i, err;
1212
1213 /* find function prototype */
1214 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
1215 verbose("invalid func %d\n", func_id);
1216 return -EINVAL;
1217 }
1218
1219 if (env->prog->aux->ops->get_func_proto)
1220 fn = env->prog->aux->ops->get_func_proto(func_id);
1221
1222 if (!fn) {
1223 verbose("unknown func %d\n", func_id);
1224 return -EINVAL;
1225 }
1226
1227 /* eBPF programs must be GPL compatible to use GPL-ed functions */
1228 if (!env->prog->gpl_compatible && fn->gpl_only) {
1229 verbose("cannot call GPL only function from proprietary program\n");
1230 return -EINVAL;
1231 }
1232
1233 changes_data = bpf_helper_changes_skb_data(fn->func);
1234
1235 memset(&meta, 0, sizeof(meta));
1236 meta.pkt_access = fn->pkt_access;
1237
1238 /* We only support one arg being in raw mode at the moment, which
1239 * is sufficient for the helper functions we have right now.
1240 */
1241 err = check_raw_mode(fn);
1242 if (err) {
1243 verbose("kernel subsystem misconfigured func %d\n", func_id);
1244 return err;
1245 }
1246
1247 /* check args */
1248 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
1249 if (err)
1250 return err;
1251 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
1252 if (err)
1253 return err;
1254 if (func_id == BPF_FUNC_tail_call) {
1255 if (meta.map_ptr == NULL) {
1256 verbose("verifier bug\n");
1257 return -EINVAL;
1258 }
1259 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
1260 }
1261 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
1262 if (err)
1263 return err;
1264 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
1265 if (err)
1266 return err;
1267 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
1268 if (err)
1269 return err;
1270
1271 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1272 * is inferred from register state.
1273 */
1274 for (i = 0; i < meta.access_size; i++) {
1275 err = check_mem_access(env, meta.regno, i, BPF_B, BPF_WRITE, -1);
1276 if (err)
1277 return err;
1278 }
1279
1280 /* reset caller saved regs */
1281 for (i = 0; i < CALLER_SAVED_REGS; i++) {
1282 reg = regs + caller_saved[i];
1283 reg->type = NOT_INIT;
1284 reg->imm = 0;
1285 }
1286
1287 /* update return register */
1288 if (fn->ret_type == RET_INTEGER) {
1289 regs[BPF_REG_0].type = UNKNOWN_VALUE;
1290 } else if (fn->ret_type == RET_VOID) {
1291 regs[BPF_REG_0].type = NOT_INIT;
1292 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
1293 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
1294 regs[BPF_REG_0].max_value = regs[BPF_REG_0].min_value = 0;
1295 /* remember map_ptr, so that check_map_access()
1296 * can check 'value_size' boundary of memory access
1297 * to map element returned from bpf_map_lookup_elem()
1298 */
1299 if (meta.map_ptr == NULL) {
1300 verbose("kernel subsystem misconfigured verifier\n");
1301 return -EINVAL;
1302 }
1303 regs[BPF_REG_0].map_ptr = meta.map_ptr;
1304 regs[BPF_REG_0].id = ++env->id_gen;
1305 } else {
1306 verbose("unknown return type %d of func %d\n",
1307 fn->ret_type, func_id);
1308 return -EINVAL;
1309 }
1310
1311 err = check_map_func_compatibility(meta.map_ptr, func_id);
1312 if (err)
1313 return err;
1314
1315 if (changes_data)
1316 clear_all_pkt_pointers(env);
1317 return 0;
1318 }
1319
check_packet_ptr_add(struct bpf_verifier_env * env,struct bpf_insn * insn)1320 static int check_packet_ptr_add(struct bpf_verifier_env *env,
1321 struct bpf_insn *insn)
1322 {
1323 struct bpf_reg_state *regs = env->cur_state.regs;
1324 struct bpf_reg_state *dst_reg = ®s[insn->dst_reg];
1325 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
1326 struct bpf_reg_state tmp_reg;
1327 s32 imm;
1328
1329 if (BPF_SRC(insn->code) == BPF_K) {
1330 /* pkt_ptr += imm */
1331 imm = insn->imm;
1332
1333 add_imm:
1334 if (imm <= 0) {
1335 verbose("addition of negative constant to packet pointer is not allowed\n");
1336 return -EACCES;
1337 }
1338 if (imm >= MAX_PACKET_OFF ||
1339 imm + dst_reg->off >= MAX_PACKET_OFF) {
1340 verbose("constant %d is too large to add to packet pointer\n",
1341 imm);
1342 return -EACCES;
1343 }
1344 /* a constant was added to pkt_ptr.
1345 * Remember it while keeping the same 'id'
1346 */
1347 dst_reg->off += imm;
1348 } else {
1349 if (src_reg->type == PTR_TO_PACKET) {
1350 /* R6=pkt(id=0,off=0,r=62) R7=imm22; r7 += r6 */
1351 tmp_reg = *dst_reg; /* save r7 state */
1352 *dst_reg = *src_reg; /* copy pkt_ptr state r6 into r7 */
1353 src_reg = &tmp_reg; /* pretend it's src_reg state */
1354 /* if the checks below reject it, the copy won't matter,
1355 * since we're rejecting the whole program. If all ok,
1356 * then imm22 state will be added to r7
1357 * and r7 will be pkt(id=0,off=22,r=62) while
1358 * r6 will stay as pkt(id=0,off=0,r=62)
1359 */
1360 }
1361
1362 if (src_reg->type == CONST_IMM) {
1363 /* pkt_ptr += reg where reg is known constant */
1364 imm = src_reg->imm;
1365 goto add_imm;
1366 }
1367 /* disallow pkt_ptr += reg
1368 * if reg is not uknown_value with guaranteed zero upper bits
1369 * otherwise pkt_ptr may overflow and addition will become
1370 * subtraction which is not allowed
1371 */
1372 if (src_reg->type != UNKNOWN_VALUE) {
1373 verbose("cannot add '%s' to ptr_to_packet\n",
1374 reg_type_str[src_reg->type]);
1375 return -EACCES;
1376 }
1377 if (src_reg->imm < 48) {
1378 verbose("cannot add integer value with %lld upper zero bits to ptr_to_packet\n",
1379 src_reg->imm);
1380 return -EACCES;
1381 }
1382 /* dst_reg stays as pkt_ptr type and since some positive
1383 * integer value was added to the pointer, increment its 'id'
1384 */
1385 dst_reg->id = ++env->id_gen;
1386
1387 /* something was added to pkt_ptr, set range and off to zero */
1388 dst_reg->off = 0;
1389 dst_reg->range = 0;
1390 }
1391 return 0;
1392 }
1393
evaluate_reg_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)1394 static int evaluate_reg_alu(struct bpf_verifier_env *env, struct bpf_insn *insn)
1395 {
1396 struct bpf_reg_state *regs = env->cur_state.regs;
1397 struct bpf_reg_state *dst_reg = ®s[insn->dst_reg];
1398 u8 opcode = BPF_OP(insn->code);
1399 s64 imm_log2;
1400
1401 /* for type == UNKNOWN_VALUE:
1402 * imm > 0 -> number of zero upper bits
1403 * imm == 0 -> don't track which is the same as all bits can be non-zero
1404 */
1405
1406 if (BPF_SRC(insn->code) == BPF_X) {
1407 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
1408
1409 if (src_reg->type == UNKNOWN_VALUE && src_reg->imm > 0 &&
1410 dst_reg->imm && opcode == BPF_ADD) {
1411 /* dreg += sreg
1412 * where both have zero upper bits. Adding them
1413 * can only result making one more bit non-zero
1414 * in the larger value.
1415 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1416 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1417 */
1418 dst_reg->imm = min(dst_reg->imm, src_reg->imm);
1419 dst_reg->imm--;
1420 return 0;
1421 }
1422 if (src_reg->type == CONST_IMM && src_reg->imm > 0 &&
1423 dst_reg->imm && opcode == BPF_ADD) {
1424 /* dreg += sreg
1425 * where dreg has zero upper bits and sreg is const.
1426 * Adding them can only result making one more bit
1427 * non-zero in the larger value.
1428 */
1429 imm_log2 = __ilog2_u64((long long)src_reg->imm);
1430 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1431 dst_reg->imm--;
1432 return 0;
1433 }
1434 /* all other cases non supported yet, just mark dst_reg */
1435 dst_reg->imm = 0;
1436 return 0;
1437 }
1438
1439 /* sign extend 32-bit imm into 64-bit to make sure that
1440 * negative values occupy bit 63. Note ilog2() would have
1441 * been incorrect, since sizeof(insn->imm) == 4
1442 */
1443 imm_log2 = __ilog2_u64((long long)insn->imm);
1444
1445 if (dst_reg->imm && opcode == BPF_LSH) {
1446 /* reg <<= imm
1447 * if reg was a result of 2 byte load, then its imm == 48
1448 * which means that upper 48 bits are zero and shifting this reg
1449 * left by 4 would mean that upper 44 bits are still zero
1450 */
1451 dst_reg->imm -= insn->imm;
1452 } else if (dst_reg->imm && opcode == BPF_MUL) {
1453 /* reg *= imm
1454 * if multiplying by 14 subtract 4
1455 * This is conservative calculation of upper zero bits.
1456 * It's not trying to special case insn->imm == 1 or 0 cases
1457 */
1458 dst_reg->imm -= imm_log2 + 1;
1459 } else if (opcode == BPF_AND) {
1460 /* reg &= imm */
1461 dst_reg->imm = 63 - imm_log2;
1462 } else if (dst_reg->imm && opcode == BPF_ADD) {
1463 /* reg += imm */
1464 dst_reg->imm = min(dst_reg->imm, 63 - imm_log2);
1465 dst_reg->imm--;
1466 } else if (opcode == BPF_RSH) {
1467 /* reg >>= imm
1468 * which means that after right shift, upper bits will be zero
1469 * note that verifier already checked that
1470 * 0 <= imm < 64 for shift insn
1471 */
1472 dst_reg->imm += insn->imm;
1473 if (unlikely(dst_reg->imm > 64))
1474 /* some dumb code did:
1475 * r2 = *(u32 *)mem;
1476 * r2 >>= 32;
1477 * and all bits are zero now */
1478 dst_reg->imm = 64;
1479 } else {
1480 /* all other alu ops, means that we don't know what will
1481 * happen to the value, mark it with unknown number of zero bits
1482 */
1483 dst_reg->imm = 0;
1484 }
1485
1486 if (dst_reg->imm < 0) {
1487 /* all 64 bits of the register can contain non-zero bits
1488 * and such value cannot be added to ptr_to_packet, since it
1489 * may overflow, mark it as unknown to avoid further eval
1490 */
1491 dst_reg->imm = 0;
1492 }
1493 return 0;
1494 }
1495
evaluate_reg_imm_alu_unknown(struct bpf_verifier_env * env,struct bpf_insn * insn)1496 static int evaluate_reg_imm_alu_unknown(struct bpf_verifier_env *env,
1497 struct bpf_insn *insn)
1498 {
1499 struct bpf_reg_state *regs = env->cur_state.regs;
1500 struct bpf_reg_state *dst_reg = ®s[insn->dst_reg];
1501 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
1502 u8 opcode = BPF_OP(insn->code);
1503 s64 imm_log2 = __ilog2_u64((long long)dst_reg->imm);
1504
1505 /* BPF_X code with src_reg->type UNKNOWN_VALUE here. */
1506 if (src_reg->imm > 0 && dst_reg->imm) {
1507 switch (opcode) {
1508 case BPF_ADD:
1509 /* dreg += sreg
1510 * where both have zero upper bits. Adding them
1511 * can only result making one more bit non-zero
1512 * in the larger value.
1513 * Ex. 0xffff (imm=48) + 1 (imm=63) = 0x10000 (imm=47)
1514 * 0xffff (imm=48) + 0xffff = 0x1fffe (imm=47)
1515 */
1516 dst_reg->imm = min(src_reg->imm, 63 - imm_log2);
1517 dst_reg->imm--;
1518 break;
1519 case BPF_AND:
1520 /* dreg &= sreg
1521 * AND can not extend zero bits only shrink
1522 * Ex. 0x00..00ffffff
1523 * & 0x0f..ffffffff
1524 * ----------------
1525 * 0x00..00ffffff
1526 */
1527 dst_reg->imm = max(src_reg->imm, 63 - imm_log2);
1528 break;
1529 case BPF_OR:
1530 /* dreg |= sreg
1531 * OR can only extend zero bits
1532 * Ex. 0x00..00ffffff
1533 * | 0x0f..ffffffff
1534 * ----------------
1535 * 0x0f..00ffffff
1536 */
1537 dst_reg->imm = min(src_reg->imm, 63 - imm_log2);
1538 break;
1539 case BPF_SUB:
1540 case BPF_MUL:
1541 case BPF_RSH:
1542 case BPF_LSH:
1543 /* These may be flushed out later */
1544 default:
1545 mark_reg_unknown_value(regs, insn->dst_reg);
1546 }
1547 } else {
1548 mark_reg_unknown_value(regs, insn->dst_reg);
1549 }
1550
1551 dst_reg->type = UNKNOWN_VALUE;
1552 return 0;
1553 }
1554
evaluate_reg_imm_alu(struct bpf_verifier_env * env,struct bpf_insn * insn)1555 static int evaluate_reg_imm_alu(struct bpf_verifier_env *env,
1556 struct bpf_insn *insn)
1557 {
1558 struct bpf_reg_state *regs = env->cur_state.regs;
1559 struct bpf_reg_state *dst_reg = ®s[insn->dst_reg];
1560 struct bpf_reg_state *src_reg = ®s[insn->src_reg];
1561 u8 opcode = BPF_OP(insn->code);
1562
1563 if (BPF_SRC(insn->code) == BPF_X && src_reg->type == UNKNOWN_VALUE)
1564 return evaluate_reg_imm_alu_unknown(env, insn);
1565
1566 /* dst_reg->type == CONST_IMM here, simulate execution of 'add' insn.
1567 * Don't care about overflow or negative values, just add them
1568 */
1569 if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_K)
1570 dst_reg->imm += insn->imm;
1571 else if (opcode == BPF_ADD && BPF_SRC(insn->code) == BPF_X &&
1572 src_reg->type == CONST_IMM)
1573 dst_reg->imm += src_reg->imm;
1574 else
1575 mark_reg_unknown_value(regs, insn->dst_reg);
1576 return 0;
1577 }
1578
check_reg_overflow(struct bpf_reg_state * reg)1579 static void check_reg_overflow(struct bpf_reg_state *reg)
1580 {
1581 if (reg->max_value > BPF_REGISTER_MAX_RANGE)
1582 reg->max_value = BPF_REGISTER_MAX_RANGE;
1583 if (reg->min_value < BPF_REGISTER_MIN_RANGE ||
1584 reg->min_value > BPF_REGISTER_MAX_RANGE)
1585 reg->min_value = BPF_REGISTER_MIN_RANGE;
1586 }
1587
adjust_reg_min_max_vals(struct bpf_verifier_env * env,struct bpf_insn * insn)1588 static void adjust_reg_min_max_vals(struct bpf_verifier_env *env,
1589 struct bpf_insn *insn)
1590 {
1591 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1592 s64 min_val = BPF_REGISTER_MIN_RANGE;
1593 u64 max_val = BPF_REGISTER_MAX_RANGE;
1594 bool min_set = false, max_set = false;
1595 u8 opcode = BPF_OP(insn->code);
1596
1597 dst_reg = ®s[insn->dst_reg];
1598 if (BPF_SRC(insn->code) == BPF_X) {
1599 check_reg_overflow(®s[insn->src_reg]);
1600 min_val = regs[insn->src_reg].min_value;
1601 max_val = regs[insn->src_reg].max_value;
1602
1603 /* If the source register is a random pointer then the
1604 * min_value/max_value values represent the range of the known
1605 * accesses into that value, not the actual min/max value of the
1606 * register itself. In this case we have to reset the reg range
1607 * values so we know it is not safe to look at.
1608 */
1609 if (regs[insn->src_reg].type != CONST_IMM &&
1610 regs[insn->src_reg].type != UNKNOWN_VALUE) {
1611 min_val = BPF_REGISTER_MIN_RANGE;
1612 max_val = BPF_REGISTER_MAX_RANGE;
1613 }
1614 } else if (insn->imm < BPF_REGISTER_MAX_RANGE &&
1615 (s64)insn->imm > BPF_REGISTER_MIN_RANGE) {
1616 min_val = max_val = insn->imm;
1617 min_set = max_set = true;
1618 }
1619
1620 /* We don't know anything about what was done to this register, mark it
1621 * as unknown. Also, if both derived bounds came from signed/unsigned
1622 * mixed compares and one side is unbounded, we cannot really do anything
1623 * with them as boundaries cannot be trusted. Thus, arithmetic of two
1624 * regs of such kind will get invalidated bounds on the dst side.
1625 */
1626 if ((min_val == BPF_REGISTER_MIN_RANGE &&
1627 max_val == BPF_REGISTER_MAX_RANGE) ||
1628 (BPF_SRC(insn->code) == BPF_X &&
1629 ((min_val != BPF_REGISTER_MIN_RANGE &&
1630 max_val == BPF_REGISTER_MAX_RANGE) ||
1631 (min_val == BPF_REGISTER_MIN_RANGE &&
1632 max_val != BPF_REGISTER_MAX_RANGE) ||
1633 (dst_reg->min_value != BPF_REGISTER_MIN_RANGE &&
1634 dst_reg->max_value == BPF_REGISTER_MAX_RANGE) ||
1635 (dst_reg->min_value == BPF_REGISTER_MIN_RANGE &&
1636 dst_reg->max_value != BPF_REGISTER_MAX_RANGE)) &&
1637 regs[insn->dst_reg].value_from_signed !=
1638 regs[insn->src_reg].value_from_signed)) {
1639 reset_reg_range_values(regs, insn->dst_reg);
1640 return;
1641 }
1642
1643 /* If one of our values was at the end of our ranges then we can't just
1644 * do our normal operations to the register, we need to set the values
1645 * to the min/max since they are undefined.
1646 */
1647 if (opcode != BPF_SUB) {
1648 if (min_val == BPF_REGISTER_MIN_RANGE)
1649 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1650 if (max_val == BPF_REGISTER_MAX_RANGE)
1651 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1652 }
1653
1654 switch (opcode) {
1655 case BPF_ADD:
1656 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1657 dst_reg->min_value += min_val;
1658 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1659 dst_reg->max_value += max_val;
1660 break;
1661 case BPF_SUB:
1662 /* If one of our values was at the end of our ranges, then the
1663 * _opposite_ value in the dst_reg goes to the end of our range.
1664 */
1665 if (min_val == BPF_REGISTER_MIN_RANGE)
1666 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1667 if (max_val == BPF_REGISTER_MAX_RANGE)
1668 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1669 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1670 dst_reg->min_value -= max_val;
1671 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1672 dst_reg->max_value -= min_val;
1673 break;
1674 case BPF_MUL:
1675 if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1676 dst_reg->min_value *= min_val;
1677 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1678 dst_reg->max_value *= max_val;
1679 break;
1680 case BPF_AND:
1681 /* Disallow AND'ing of negative numbers, ain't nobody got time
1682 * for that. Otherwise the minimum is 0 and the max is the max
1683 * value we could AND against.
1684 */
1685 if (min_val < 0)
1686 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1687 else
1688 dst_reg->min_value = 0;
1689 dst_reg->max_value = max_val;
1690 break;
1691 case BPF_LSH:
1692 /* Gotta have special overflow logic here, if we're shifting
1693 * more than MAX_RANGE then just assume we have an invalid
1694 * range.
1695 */
1696 if (min_val > ilog2(BPF_REGISTER_MAX_RANGE))
1697 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1698 else if (dst_reg->min_value != BPF_REGISTER_MIN_RANGE)
1699 dst_reg->min_value <<= min_val;
1700
1701 if (max_val > ilog2(BPF_REGISTER_MAX_RANGE))
1702 dst_reg->max_value = BPF_REGISTER_MAX_RANGE;
1703 else if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1704 dst_reg->max_value <<= max_val;
1705 break;
1706 case BPF_RSH:
1707 /* RSH by a negative number is undefined, and the BPF_RSH is an
1708 * unsigned shift, so make the appropriate casts.
1709 */
1710 if (min_val < 0 || dst_reg->min_value < 0)
1711 dst_reg->min_value = BPF_REGISTER_MIN_RANGE;
1712 else
1713 dst_reg->min_value =
1714 (u64)(dst_reg->min_value) >> min_val;
1715 if (dst_reg->max_value != BPF_REGISTER_MAX_RANGE)
1716 dst_reg->max_value >>= max_val;
1717 break;
1718 default:
1719 reset_reg_range_values(regs, insn->dst_reg);
1720 break;
1721 }
1722
1723 check_reg_overflow(dst_reg);
1724 }
1725
1726 /* check validity of 32-bit and 64-bit arithmetic operations */
check_alu_op(struct bpf_verifier_env * env,struct bpf_insn * insn)1727 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
1728 {
1729 struct bpf_reg_state *regs = env->cur_state.regs, *dst_reg;
1730 u8 opcode = BPF_OP(insn->code);
1731 int err;
1732
1733 if (opcode == BPF_END || opcode == BPF_NEG) {
1734 if (opcode == BPF_NEG) {
1735 if (BPF_SRC(insn->code) != 0 ||
1736 insn->src_reg != BPF_REG_0 ||
1737 insn->off != 0 || insn->imm != 0) {
1738 verbose("BPF_NEG uses reserved fields\n");
1739 return -EINVAL;
1740 }
1741 } else {
1742 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
1743 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
1744 BPF_CLASS(insn->code) == BPF_ALU64) {
1745 verbose("BPF_END uses reserved fields\n");
1746 return -EINVAL;
1747 }
1748 }
1749
1750 /* check src operand */
1751 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1752 if (err)
1753 return err;
1754
1755 if (is_pointer_value(env, insn->dst_reg)) {
1756 verbose("R%d pointer arithmetic prohibited\n",
1757 insn->dst_reg);
1758 return -EACCES;
1759 }
1760
1761 /* check dest operand */
1762 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1763 if (err)
1764 return err;
1765
1766 } else if (opcode == BPF_MOV) {
1767
1768 if (BPF_SRC(insn->code) == BPF_X) {
1769 if (insn->imm != 0 || insn->off != 0) {
1770 verbose("BPF_MOV uses reserved fields\n");
1771 return -EINVAL;
1772 }
1773
1774 /* check src operand */
1775 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1776 if (err)
1777 return err;
1778 } else {
1779 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1780 verbose("BPF_MOV uses reserved fields\n");
1781 return -EINVAL;
1782 }
1783 }
1784
1785 /* check dest operand */
1786 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
1787 if (err)
1788 return err;
1789
1790 /* we are setting our register to something new, we need to
1791 * reset its range values.
1792 */
1793 reset_reg_range_values(regs, insn->dst_reg);
1794
1795 if (BPF_SRC(insn->code) == BPF_X) {
1796 if (BPF_CLASS(insn->code) == BPF_ALU64) {
1797 /* case: R1 = R2
1798 * copy register state to dest reg
1799 */
1800 regs[insn->dst_reg] = regs[insn->src_reg];
1801 } else {
1802 if (is_pointer_value(env, insn->src_reg)) {
1803 verbose("R%d partial copy of pointer\n",
1804 insn->src_reg);
1805 return -EACCES;
1806 }
1807 mark_reg_unknown_value(regs, insn->dst_reg);
1808 }
1809 } else {
1810 /* case: R = imm
1811 * remember the value we stored into this reg
1812 */
1813 u64 imm;
1814
1815 if (BPF_CLASS(insn->code) == BPF_ALU64)
1816 imm = insn->imm;
1817 else
1818 imm = (u32)insn->imm;
1819
1820 regs[insn->dst_reg].type = CONST_IMM;
1821 regs[insn->dst_reg].imm = imm;
1822 regs[insn->dst_reg].max_value = imm;
1823 regs[insn->dst_reg].min_value = imm;
1824 }
1825
1826 } else if (opcode > BPF_END) {
1827 verbose("invalid BPF_ALU opcode %x\n", opcode);
1828 return -EINVAL;
1829
1830 } else { /* all other ALU ops: and, sub, xor, add, ... */
1831
1832 if (BPF_SRC(insn->code) == BPF_X) {
1833 if (insn->imm != 0 || insn->off != 0) {
1834 verbose("BPF_ALU uses reserved fields\n");
1835 return -EINVAL;
1836 }
1837 /* check src1 operand */
1838 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
1839 if (err)
1840 return err;
1841 } else {
1842 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
1843 verbose("BPF_ALU uses reserved fields\n");
1844 return -EINVAL;
1845 }
1846 }
1847
1848 /* check src2 operand */
1849 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
1850 if (err)
1851 return err;
1852
1853 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
1854 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
1855 verbose("div by zero\n");
1856 return -EINVAL;
1857 }
1858
1859 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
1860 verbose("BPF_ARSH not supported for 32 bit ALU\n");
1861 return -EINVAL;
1862 }
1863
1864 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
1865 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
1866 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
1867
1868 if (insn->imm < 0 || insn->imm >= size) {
1869 verbose("invalid shift %d\n", insn->imm);
1870 return -EINVAL;
1871 }
1872 }
1873
1874 /* check dest operand */
1875 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
1876 if (err)
1877 return err;
1878
1879 dst_reg = ®s[insn->dst_reg];
1880
1881 /* first we want to adjust our ranges. */
1882 adjust_reg_min_max_vals(env, insn);
1883
1884 /* pattern match 'bpf_add Rx, imm' instruction */
1885 if (opcode == BPF_ADD && BPF_CLASS(insn->code) == BPF_ALU64 &&
1886 dst_reg->type == FRAME_PTR && BPF_SRC(insn->code) == BPF_K) {
1887 dst_reg->type = PTR_TO_STACK;
1888 dst_reg->imm = insn->imm;
1889 return 0;
1890 } else if (opcode == BPF_ADD &&
1891 BPF_CLASS(insn->code) == BPF_ALU64 &&
1892 dst_reg->type == PTR_TO_STACK &&
1893 ((BPF_SRC(insn->code) == BPF_X &&
1894 regs[insn->src_reg].type == CONST_IMM) ||
1895 BPF_SRC(insn->code) == BPF_K)) {
1896 if (BPF_SRC(insn->code) == BPF_X) {
1897 /* check in case the register contains a big
1898 * 64-bit value
1899 */
1900 if (regs[insn->src_reg].imm < -MAX_BPF_STACK ||
1901 regs[insn->src_reg].imm > MAX_BPF_STACK) {
1902 verbose("R%d value too big in R%d pointer arithmetic\n",
1903 insn->src_reg, insn->dst_reg);
1904 return -EACCES;
1905 }
1906 dst_reg->imm += regs[insn->src_reg].imm;
1907 } else {
1908 /* safe against overflow: addition of 32-bit
1909 * numbers in 64-bit representation
1910 */
1911 dst_reg->imm += insn->imm;
1912 }
1913 if (dst_reg->imm > 0 || dst_reg->imm < -MAX_BPF_STACK) {
1914 verbose("R%d out-of-bounds pointer arithmetic\n",
1915 insn->dst_reg);
1916 return -EACCES;
1917 }
1918 return 0;
1919 } else if (opcode == BPF_ADD &&
1920 BPF_CLASS(insn->code) == BPF_ALU64 &&
1921 (dst_reg->type == PTR_TO_PACKET ||
1922 (BPF_SRC(insn->code) == BPF_X &&
1923 regs[insn->src_reg].type == PTR_TO_PACKET))) {
1924 /* ptr_to_packet += K|X */
1925 return check_packet_ptr_add(env, insn);
1926 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1927 dst_reg->type == UNKNOWN_VALUE &&
1928 env->allow_ptr_leaks) {
1929 /* unknown += K|X */
1930 return evaluate_reg_alu(env, insn);
1931 } else if (BPF_CLASS(insn->code) == BPF_ALU64 &&
1932 dst_reg->type == CONST_IMM &&
1933 env->allow_ptr_leaks) {
1934 /* reg_imm += K|X */
1935 return evaluate_reg_imm_alu(env, insn);
1936 } else if (is_pointer_value(env, insn->dst_reg)) {
1937 verbose("R%d pointer arithmetic prohibited\n",
1938 insn->dst_reg);
1939 return -EACCES;
1940 } else if (BPF_SRC(insn->code) == BPF_X &&
1941 is_pointer_value(env, insn->src_reg)) {
1942 verbose("R%d pointer arithmetic prohibited\n",
1943 insn->src_reg);
1944 return -EACCES;
1945 }
1946
1947 /* If we did pointer math on a map value then just set it to our
1948 * PTR_TO_MAP_VALUE_ADJ type so we can deal with any stores or
1949 * loads to this register appropriately, otherwise just mark the
1950 * register as unknown.
1951 */
1952 if (env->allow_ptr_leaks &&
1953 BPF_CLASS(insn->code) == BPF_ALU64 && opcode == BPF_ADD &&
1954 (dst_reg->type == PTR_TO_MAP_VALUE ||
1955 dst_reg->type == PTR_TO_MAP_VALUE_ADJ))
1956 dst_reg->type = PTR_TO_MAP_VALUE_ADJ;
1957 else
1958 mark_reg_unknown_value(regs, insn->dst_reg);
1959 }
1960
1961 return 0;
1962 }
1963
find_good_pkt_pointers(struct bpf_verifier_state * state,struct bpf_reg_state * dst_reg)1964 static void find_good_pkt_pointers(struct bpf_verifier_state *state,
1965 struct bpf_reg_state *dst_reg)
1966 {
1967 struct bpf_reg_state *regs = state->regs, *reg;
1968 int i;
1969
1970 /* LLVM can generate two kind of checks:
1971 *
1972 * Type 1:
1973 *
1974 * r2 = r3;
1975 * r2 += 8;
1976 * if (r2 > pkt_end) goto <handle exception>
1977 * <access okay>
1978 *
1979 * Where:
1980 * r2 == dst_reg, pkt_end == src_reg
1981 * r2=pkt(id=n,off=8,r=0)
1982 * r3=pkt(id=n,off=0,r=0)
1983 *
1984 * Type 2:
1985 *
1986 * r2 = r3;
1987 * r2 += 8;
1988 * if (pkt_end >= r2) goto <access okay>
1989 * <handle exception>
1990 *
1991 * Where:
1992 * pkt_end == dst_reg, r2 == src_reg
1993 * r2=pkt(id=n,off=8,r=0)
1994 * r3=pkt(id=n,off=0,r=0)
1995 *
1996 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
1997 * so that range of bytes [r3, r3 + 8) is safe to access.
1998 */
1999
2000 for (i = 0; i < MAX_BPF_REG; i++)
2001 if (regs[i].type == PTR_TO_PACKET && regs[i].id == dst_reg->id)
2002 /* keep the maximum range already checked */
2003 regs[i].range = max(regs[i].range, dst_reg->off);
2004
2005 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2006 if (state->stack_slot_type[i] != STACK_SPILL)
2007 continue;
2008 reg = &state->spilled_regs[i / BPF_REG_SIZE];
2009 if (reg->type == PTR_TO_PACKET && reg->id == dst_reg->id)
2010 reg->range = max(reg->range, dst_reg->off);
2011 }
2012 }
2013
2014 /* Adjusts the register min/max values in the case that the dst_reg is the
2015 * variable register that we are working on, and src_reg is a constant or we're
2016 * simply doing a BPF_K check.
2017 */
reg_set_min_max(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u8 opcode)2018 static void reg_set_min_max(struct bpf_reg_state *true_reg,
2019 struct bpf_reg_state *false_reg, u64 val,
2020 u8 opcode)
2021 {
2022 bool value_from_signed = true;
2023 bool is_range = true;
2024
2025 switch (opcode) {
2026 case BPF_JEQ:
2027 /* If this is false then we know nothing Jon Snow, but if it is
2028 * true then we know for sure.
2029 */
2030 true_reg->max_value = true_reg->min_value = val;
2031 is_range = false;
2032 break;
2033 case BPF_JNE:
2034 /* If this is true we know nothing Jon Snow, but if it is false
2035 * we know the value for sure;
2036 */
2037 false_reg->max_value = false_reg->min_value = val;
2038 is_range = false;
2039 break;
2040 case BPF_JGT:
2041 value_from_signed = false;
2042 /* fallthrough */
2043 case BPF_JSGT:
2044 if (true_reg->value_from_signed != value_from_signed)
2045 reset_reg_range_values(true_reg, 0);
2046 if (false_reg->value_from_signed != value_from_signed)
2047 reset_reg_range_values(false_reg, 0);
2048 if (opcode == BPF_JGT) {
2049 /* Unsigned comparison, the minimum value is 0. */
2050 false_reg->min_value = 0;
2051 }
2052 /* If this is false then we know the maximum val is val,
2053 * otherwise we know the min val is val+1.
2054 */
2055 false_reg->max_value = val;
2056 false_reg->value_from_signed = value_from_signed;
2057 true_reg->min_value = val + 1;
2058 true_reg->value_from_signed = value_from_signed;
2059 break;
2060 case BPF_JGE:
2061 value_from_signed = false;
2062 /* fallthrough */
2063 case BPF_JSGE:
2064 if (true_reg->value_from_signed != value_from_signed)
2065 reset_reg_range_values(true_reg, 0);
2066 if (false_reg->value_from_signed != value_from_signed)
2067 reset_reg_range_values(false_reg, 0);
2068 if (opcode == BPF_JGE) {
2069 /* Unsigned comparison, the minimum value is 0. */
2070 false_reg->min_value = 0;
2071 }
2072 /* If this is false then we know the maximum value is val - 1,
2073 * otherwise we know the mimimum value is val.
2074 */
2075 false_reg->max_value = val - 1;
2076 false_reg->value_from_signed = value_from_signed;
2077 true_reg->min_value = val;
2078 true_reg->value_from_signed = value_from_signed;
2079 break;
2080 default:
2081 break;
2082 }
2083
2084 check_reg_overflow(false_reg);
2085 check_reg_overflow(true_reg);
2086 if (is_range) {
2087 if (__is_pointer_value(false, false_reg))
2088 reset_reg_range_values(false_reg, 0);
2089 if (__is_pointer_value(false, true_reg))
2090 reset_reg_range_values(true_reg, 0);
2091 }
2092 }
2093
2094 /* Same as above, but for the case that dst_reg is a CONST_IMM reg and src_reg
2095 * is the variable reg.
2096 */
reg_set_min_max_inv(struct bpf_reg_state * true_reg,struct bpf_reg_state * false_reg,u64 val,u8 opcode)2097 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2098 struct bpf_reg_state *false_reg, u64 val,
2099 u8 opcode)
2100 {
2101 bool value_from_signed = true;
2102 bool is_range = true;
2103
2104 switch (opcode) {
2105 case BPF_JEQ:
2106 /* If this is false then we know nothing Jon Snow, but if it is
2107 * true then we know for sure.
2108 */
2109 true_reg->max_value = true_reg->min_value = val;
2110 is_range = false;
2111 break;
2112 case BPF_JNE:
2113 /* If this is true we know nothing Jon Snow, but if it is false
2114 * we know the value for sure;
2115 */
2116 false_reg->max_value = false_reg->min_value = val;
2117 is_range = false;
2118 break;
2119 case BPF_JGT:
2120 value_from_signed = false;
2121 /* fallthrough */
2122 case BPF_JSGT:
2123 if (true_reg->value_from_signed != value_from_signed)
2124 reset_reg_range_values(true_reg, 0);
2125 if (false_reg->value_from_signed != value_from_signed)
2126 reset_reg_range_values(false_reg, 0);
2127 if (opcode == BPF_JGT) {
2128 /* Unsigned comparison, the minimum value is 0. */
2129 true_reg->min_value = 0;
2130 }
2131 /*
2132 * If this is false, then the val is <= the register, if it is
2133 * true the register <= to the val.
2134 */
2135 false_reg->min_value = val;
2136 false_reg->value_from_signed = value_from_signed;
2137 true_reg->max_value = val - 1;
2138 true_reg->value_from_signed = value_from_signed;
2139 break;
2140 case BPF_JGE:
2141 value_from_signed = false;
2142 /* fallthrough */
2143 case BPF_JSGE:
2144 if (true_reg->value_from_signed != value_from_signed)
2145 reset_reg_range_values(true_reg, 0);
2146 if (false_reg->value_from_signed != value_from_signed)
2147 reset_reg_range_values(false_reg, 0);
2148 if (opcode == BPF_JGE) {
2149 /* Unsigned comparison, the minimum value is 0. */
2150 true_reg->min_value = 0;
2151 }
2152 /* If this is false then constant < register, if it is true then
2153 * the register < constant.
2154 */
2155 false_reg->min_value = val + 1;
2156 false_reg->value_from_signed = value_from_signed;
2157 true_reg->max_value = val;
2158 true_reg->value_from_signed = value_from_signed;
2159 break;
2160 default:
2161 break;
2162 }
2163
2164 check_reg_overflow(false_reg);
2165 check_reg_overflow(true_reg);
2166 if (is_range) {
2167 if (__is_pointer_value(false, false_reg))
2168 reset_reg_range_values(false_reg, 0);
2169 if (__is_pointer_value(false, true_reg))
2170 reset_reg_range_values(true_reg, 0);
2171 }
2172 }
2173
mark_map_reg(struct bpf_reg_state * regs,u32 regno,u32 id,enum bpf_reg_type type)2174 static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
2175 enum bpf_reg_type type)
2176 {
2177 struct bpf_reg_state *reg = ®s[regno];
2178
2179 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
2180 reg->type = type;
2181 /* We don't need id from this point onwards anymore, thus we
2182 * should better reset it, so that state pruning has chances
2183 * to take effect.
2184 */
2185 reg->id = 0;
2186 if (type == UNKNOWN_VALUE)
2187 __mark_reg_unknown_value(regs, regno);
2188 }
2189 }
2190
2191 /* The logic is similar to find_good_pkt_pointers(), both could eventually
2192 * be folded together at some point.
2193 */
mark_map_regs(struct bpf_verifier_state * state,u32 regno,enum bpf_reg_type type)2194 static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
2195 enum bpf_reg_type type)
2196 {
2197 struct bpf_reg_state *regs = state->regs;
2198 u32 id = regs[regno].id;
2199 int i;
2200
2201 for (i = 0; i < MAX_BPF_REG; i++)
2202 mark_map_reg(regs, i, id, type);
2203
2204 for (i = 0; i < MAX_BPF_STACK; i += BPF_REG_SIZE) {
2205 if (state->stack_slot_type[i] != STACK_SPILL)
2206 continue;
2207 mark_map_reg(state->spilled_regs, i / BPF_REG_SIZE, id, type);
2208 }
2209 }
2210
check_cond_jmp_op(struct bpf_verifier_env * env,struct bpf_insn * insn,int * insn_idx)2211 static int check_cond_jmp_op(struct bpf_verifier_env *env,
2212 struct bpf_insn *insn, int *insn_idx)
2213 {
2214 struct bpf_verifier_state *other_branch, *this_branch = &env->cur_state;
2215 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
2216 u8 opcode = BPF_OP(insn->code);
2217 int err;
2218
2219 if (opcode > BPF_EXIT) {
2220 verbose("invalid BPF_JMP opcode %x\n", opcode);
2221 return -EINVAL;
2222 }
2223
2224 if (BPF_SRC(insn->code) == BPF_X) {
2225 if (insn->imm != 0) {
2226 verbose("BPF_JMP uses reserved fields\n");
2227 return -EINVAL;
2228 }
2229
2230 /* check src1 operand */
2231 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2232 if (err)
2233 return err;
2234
2235 if (is_pointer_value(env, insn->src_reg)) {
2236 verbose("R%d pointer comparison prohibited\n",
2237 insn->src_reg);
2238 return -EACCES;
2239 }
2240 } else {
2241 if (insn->src_reg != BPF_REG_0) {
2242 verbose("BPF_JMP uses reserved fields\n");
2243 return -EINVAL;
2244 }
2245 }
2246
2247 /* check src2 operand */
2248 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2249 if (err)
2250 return err;
2251
2252 dst_reg = ®s[insn->dst_reg];
2253
2254 /* detect if R == 0 where R was initialized to zero earlier */
2255 if (BPF_SRC(insn->code) == BPF_K &&
2256 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2257 dst_reg->type == CONST_IMM && dst_reg->imm == insn->imm) {
2258 if (opcode == BPF_JEQ) {
2259 /* if (imm == imm) goto pc+off;
2260 * only follow the goto, ignore fall-through
2261 */
2262 *insn_idx += insn->off;
2263 return 0;
2264 } else {
2265 /* if (imm != imm) goto pc+off;
2266 * only follow fall-through branch, since
2267 * that's where the program will go
2268 */
2269 return 0;
2270 }
2271 }
2272
2273 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
2274 if (!other_branch)
2275 return -EFAULT;
2276
2277 /* detect if we are comparing against a constant value so we can adjust
2278 * our min/max values for our dst register.
2279 */
2280 if (BPF_SRC(insn->code) == BPF_X) {
2281 if (regs[insn->src_reg].type == CONST_IMM)
2282 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2283 dst_reg, regs[insn->src_reg].imm,
2284 opcode);
2285 else if (dst_reg->type == CONST_IMM)
2286 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
2287 ®s[insn->src_reg], dst_reg->imm,
2288 opcode);
2289 } else {
2290 reg_set_min_max(&other_branch->regs[insn->dst_reg],
2291 dst_reg, insn->imm, opcode);
2292 }
2293
2294 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
2295 if (BPF_SRC(insn->code) == BPF_K &&
2296 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
2297 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
2298 /* Mark all identical map registers in each branch as either
2299 * safe or unknown depending R == 0 or R != 0 conditional.
2300 */
2301 mark_map_regs(this_branch, insn->dst_reg,
2302 opcode == BPF_JEQ ? PTR_TO_MAP_VALUE : UNKNOWN_VALUE);
2303 mark_map_regs(other_branch, insn->dst_reg,
2304 opcode == BPF_JEQ ? UNKNOWN_VALUE : PTR_TO_MAP_VALUE);
2305 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGT &&
2306 dst_reg->type == PTR_TO_PACKET &&
2307 regs[insn->src_reg].type == PTR_TO_PACKET_END) {
2308 find_good_pkt_pointers(this_branch, dst_reg);
2309 } else if (BPF_SRC(insn->code) == BPF_X && opcode == BPF_JGE &&
2310 dst_reg->type == PTR_TO_PACKET_END &&
2311 regs[insn->src_reg].type == PTR_TO_PACKET) {
2312 find_good_pkt_pointers(other_branch, ®s[insn->src_reg]);
2313 } else if (is_pointer_value(env, insn->dst_reg)) {
2314 verbose("R%d pointer comparison prohibited\n", insn->dst_reg);
2315 return -EACCES;
2316 }
2317 if (log_level)
2318 print_verifier_state(this_branch);
2319 return 0;
2320 }
2321
2322 /* return the map pointer stored inside BPF_LD_IMM64 instruction */
ld_imm64_to_map_ptr(struct bpf_insn * insn)2323 static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
2324 {
2325 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
2326
2327 return (struct bpf_map *) (unsigned long) imm64;
2328 }
2329
2330 /* verify BPF_LD_IMM64 instruction */
check_ld_imm(struct bpf_verifier_env * env,struct bpf_insn * insn)2331 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
2332 {
2333 struct bpf_reg_state *regs = env->cur_state.regs;
2334 int err;
2335
2336 if (BPF_SIZE(insn->code) != BPF_DW) {
2337 verbose("invalid BPF_LD_IMM insn\n");
2338 return -EINVAL;
2339 }
2340 if (insn->off != 0) {
2341 verbose("BPF_LD_IMM64 uses reserved fields\n");
2342 return -EINVAL;
2343 }
2344
2345 err = check_reg_arg(regs, insn->dst_reg, DST_OP);
2346 if (err)
2347 return err;
2348
2349 if (insn->src_reg == 0) {
2350 /* generic move 64-bit immediate into a register,
2351 * only analyzer needs to collect the ld_imm value.
2352 */
2353 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
2354
2355 if (!env->analyzer_ops)
2356 return 0;
2357
2358 regs[insn->dst_reg].type = CONST_IMM;
2359 regs[insn->dst_reg].imm = imm;
2360 return 0;
2361 }
2362
2363 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
2364 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
2365
2366 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
2367 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
2368 return 0;
2369 }
2370
may_access_skb(enum bpf_prog_type type)2371 static bool may_access_skb(enum bpf_prog_type type)
2372 {
2373 switch (type) {
2374 case BPF_PROG_TYPE_SOCKET_FILTER:
2375 case BPF_PROG_TYPE_SCHED_CLS:
2376 case BPF_PROG_TYPE_SCHED_ACT:
2377 return true;
2378 default:
2379 return false;
2380 }
2381 }
2382
2383 /* verify safety of LD_ABS|LD_IND instructions:
2384 * - they can only appear in the programs where ctx == skb
2385 * - since they are wrappers of function calls, they scratch R1-R5 registers,
2386 * preserve R6-R9, and store return value into R0
2387 *
2388 * Implicit input:
2389 * ctx == skb == R6 == CTX
2390 *
2391 * Explicit input:
2392 * SRC == any register
2393 * IMM == 32-bit immediate
2394 *
2395 * Output:
2396 * R0 - 8/16/32-bit skb data converted to cpu endianness
2397 */
check_ld_abs(struct bpf_verifier_env * env,struct bpf_insn * insn)2398 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
2399 {
2400 struct bpf_reg_state *regs = env->cur_state.regs;
2401 u8 mode = BPF_MODE(insn->code);
2402 struct bpf_reg_state *reg;
2403 int i, err;
2404
2405 if (!may_access_skb(env->prog->type)) {
2406 verbose("BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
2407 return -EINVAL;
2408 }
2409
2410 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
2411 BPF_SIZE(insn->code) == BPF_DW ||
2412 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
2413 verbose("BPF_LD_[ABS|IND] uses reserved fields\n");
2414 return -EINVAL;
2415 }
2416
2417 /* check whether implicit source operand (register R6) is readable */
2418 err = check_reg_arg(regs, BPF_REG_6, SRC_OP);
2419 if (err)
2420 return err;
2421
2422 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
2423 verbose("at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
2424 return -EINVAL;
2425 }
2426
2427 if (mode == BPF_IND) {
2428 /* check explicit source operand */
2429 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2430 if (err)
2431 return err;
2432 }
2433
2434 /* reset caller saved regs to unreadable */
2435 for (i = 0; i < CALLER_SAVED_REGS; i++) {
2436 reg = regs + caller_saved[i];
2437 reg->type = NOT_INIT;
2438 reg->imm = 0;
2439 }
2440
2441 /* mark destination R0 register as readable, since it contains
2442 * the value fetched from the packet
2443 */
2444 regs[BPF_REG_0].type = UNKNOWN_VALUE;
2445 return 0;
2446 }
2447
2448 /* non-recursive DFS pseudo code
2449 * 1 procedure DFS-iterative(G,v):
2450 * 2 label v as discovered
2451 * 3 let S be a stack
2452 * 4 S.push(v)
2453 * 5 while S is not empty
2454 * 6 t <- S.pop()
2455 * 7 if t is what we're looking for:
2456 * 8 return t
2457 * 9 for all edges e in G.adjacentEdges(t) do
2458 * 10 if edge e is already labelled
2459 * 11 continue with the next edge
2460 * 12 w <- G.adjacentVertex(t,e)
2461 * 13 if vertex w is not discovered and not explored
2462 * 14 label e as tree-edge
2463 * 15 label w as discovered
2464 * 16 S.push(w)
2465 * 17 continue at 5
2466 * 18 else if vertex w is discovered
2467 * 19 label e as back-edge
2468 * 20 else
2469 * 21 // vertex w is explored
2470 * 22 label e as forward- or cross-edge
2471 * 23 label t as explored
2472 * 24 S.pop()
2473 *
2474 * convention:
2475 * 0x10 - discovered
2476 * 0x11 - discovered and fall-through edge labelled
2477 * 0x12 - discovered and fall-through and branch edges labelled
2478 * 0x20 - explored
2479 */
2480
2481 enum {
2482 DISCOVERED = 0x10,
2483 EXPLORED = 0x20,
2484 FALLTHROUGH = 1,
2485 BRANCH = 2,
2486 };
2487
2488 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
2489
2490 static int *insn_stack; /* stack of insns to process */
2491 static int cur_stack; /* current stack index */
2492 static int *insn_state;
2493
2494 /* t, w, e - match pseudo-code above:
2495 * t - index of current instruction
2496 * w - next instruction
2497 * e - edge
2498 */
push_insn(int t,int w,int e,struct bpf_verifier_env * env)2499 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
2500 {
2501 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
2502 return 0;
2503
2504 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
2505 return 0;
2506
2507 if (w < 0 || w >= env->prog->len) {
2508 verbose("jump out of range from insn %d to %d\n", t, w);
2509 return -EINVAL;
2510 }
2511
2512 if (e == BRANCH)
2513 /* mark branch target for state pruning */
2514 env->explored_states[w] = STATE_LIST_MARK;
2515
2516 if (insn_state[w] == 0) {
2517 /* tree-edge */
2518 insn_state[t] = DISCOVERED | e;
2519 insn_state[w] = DISCOVERED;
2520 if (cur_stack >= env->prog->len)
2521 return -E2BIG;
2522 insn_stack[cur_stack++] = w;
2523 return 1;
2524 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
2525 verbose("back-edge from insn %d to %d\n", t, w);
2526 return -EINVAL;
2527 } else if (insn_state[w] == EXPLORED) {
2528 /* forward- or cross-edge */
2529 insn_state[t] = DISCOVERED | e;
2530 } else {
2531 verbose("insn state internal bug\n");
2532 return -EFAULT;
2533 }
2534 return 0;
2535 }
2536
2537 /* non-recursive depth-first-search to detect loops in BPF program
2538 * loop == back-edge in directed graph
2539 */
check_cfg(struct bpf_verifier_env * env)2540 static int check_cfg(struct bpf_verifier_env *env)
2541 {
2542 struct bpf_insn *insns = env->prog->insnsi;
2543 int insn_cnt = env->prog->len;
2544 int ret = 0;
2545 int i, t;
2546
2547 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2548 if (!insn_state)
2549 return -ENOMEM;
2550
2551 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
2552 if (!insn_stack) {
2553 kfree(insn_state);
2554 return -ENOMEM;
2555 }
2556
2557 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
2558 insn_stack[0] = 0; /* 0 is the first instruction */
2559 cur_stack = 1;
2560
2561 peek_stack:
2562 if (cur_stack == 0)
2563 goto check_state;
2564 t = insn_stack[cur_stack - 1];
2565
2566 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
2567 u8 opcode = BPF_OP(insns[t].code);
2568
2569 if (opcode == BPF_EXIT) {
2570 goto mark_explored;
2571 } else if (opcode == BPF_CALL) {
2572 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2573 if (ret == 1)
2574 goto peek_stack;
2575 else if (ret < 0)
2576 goto err_free;
2577 if (t + 1 < insn_cnt)
2578 env->explored_states[t + 1] = STATE_LIST_MARK;
2579 } else if (opcode == BPF_JA) {
2580 if (BPF_SRC(insns[t].code) != BPF_K) {
2581 ret = -EINVAL;
2582 goto err_free;
2583 }
2584 /* unconditional jump with single edge */
2585 ret = push_insn(t, t + insns[t].off + 1,
2586 FALLTHROUGH, env);
2587 if (ret == 1)
2588 goto peek_stack;
2589 else if (ret < 0)
2590 goto err_free;
2591 /* tell verifier to check for equivalent states
2592 * after every call and jump
2593 */
2594 if (t + 1 < insn_cnt)
2595 env->explored_states[t + 1] = STATE_LIST_MARK;
2596 } else {
2597 /* conditional jump with two edges */
2598 env->explored_states[t] = STATE_LIST_MARK;
2599 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2600 if (ret == 1)
2601 goto peek_stack;
2602 else if (ret < 0)
2603 goto err_free;
2604
2605 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
2606 if (ret == 1)
2607 goto peek_stack;
2608 else if (ret < 0)
2609 goto err_free;
2610 }
2611 } else {
2612 /* all other non-branch instructions with single
2613 * fall-through edge
2614 */
2615 ret = push_insn(t, t + 1, FALLTHROUGH, env);
2616 if (ret == 1)
2617 goto peek_stack;
2618 else if (ret < 0)
2619 goto err_free;
2620 }
2621
2622 mark_explored:
2623 insn_state[t] = EXPLORED;
2624 if (cur_stack-- <= 0) {
2625 verbose("pop stack internal bug\n");
2626 ret = -EFAULT;
2627 goto err_free;
2628 }
2629 goto peek_stack;
2630
2631 check_state:
2632 for (i = 0; i < insn_cnt; i++) {
2633 if (insn_state[i] != EXPLORED) {
2634 verbose("unreachable insn %d\n", i);
2635 ret = -EINVAL;
2636 goto err_free;
2637 }
2638 }
2639 ret = 0; /* cfg looks good */
2640
2641 err_free:
2642 kfree(insn_state);
2643 kfree(insn_stack);
2644 return ret;
2645 }
2646
2647 /* the following conditions reduce the number of explored insns
2648 * from ~140k to ~80k for ultra large programs that use a lot of ptr_to_packet
2649 */
compare_ptrs_to_packet(struct bpf_reg_state * old,struct bpf_reg_state * cur)2650 static bool compare_ptrs_to_packet(struct bpf_reg_state *old,
2651 struct bpf_reg_state *cur)
2652 {
2653 if (old->id != cur->id)
2654 return false;
2655
2656 /* old ptr_to_packet is more conservative, since it allows smaller
2657 * range. Ex:
2658 * old(off=0,r=10) is equal to cur(off=0,r=20), because
2659 * old(off=0,r=10) means that with range=10 the verifier proceeded
2660 * further and found no issues with the program. Now we're in the same
2661 * spot with cur(off=0,r=20), so we're safe too, since anything further
2662 * will only be looking at most 10 bytes after this pointer.
2663 */
2664 if (old->off == cur->off && old->range < cur->range)
2665 return true;
2666
2667 /* old(off=20,r=10) is equal to cur(off=22,re=22 or 5 or 0)
2668 * since both cannot be used for packet access and safe(old)
2669 * pointer has smaller off that could be used for further
2670 * 'if (ptr > data_end)' check
2671 * Ex:
2672 * old(off=20,r=10) and cur(off=22,r=22) and cur(off=22,r=0) mean
2673 * that we cannot access the packet.
2674 * The safe range is:
2675 * [ptr, ptr + range - off)
2676 * so whenever off >=range, it means no safe bytes from this pointer.
2677 * When comparing old->off <= cur->off, it means that older code
2678 * went with smaller offset and that offset was later
2679 * used to figure out the safe range after 'if (ptr > data_end)' check
2680 * Say, 'old' state was explored like:
2681 * ... R3(off=0, r=0)
2682 * R4 = R3 + 20
2683 * ... now R4(off=20,r=0) <-- here
2684 * if (R4 > data_end)
2685 * ... R4(off=20,r=20), R3(off=0,r=20) and R3 can be used to access.
2686 * ... the code further went all the way to bpf_exit.
2687 * Now the 'cur' state at the mark 'here' has R4(off=30,r=0).
2688 * old_R4(off=20,r=0) equal to cur_R4(off=30,r=0), since if the verifier
2689 * goes further, such cur_R4 will give larger safe packet range after
2690 * 'if (R4 > data_end)' and all further insn were already good with r=20,
2691 * so they will be good with r=30 and we can prune the search.
2692 */
2693 if (old->off <= cur->off &&
2694 old->off >= old->range && cur->off >= cur->range)
2695 return true;
2696
2697 return false;
2698 }
2699
2700 /* compare two verifier states
2701 *
2702 * all states stored in state_list are known to be valid, since
2703 * verifier reached 'bpf_exit' instruction through them
2704 *
2705 * this function is called when verifier exploring different branches of
2706 * execution popped from the state stack. If it sees an old state that has
2707 * more strict register state and more strict stack state then this execution
2708 * branch doesn't need to be explored further, since verifier already
2709 * concluded that more strict state leads to valid finish.
2710 *
2711 * Therefore two states are equivalent if register state is more conservative
2712 * and explored stack state is more conservative than the current one.
2713 * Example:
2714 * explored current
2715 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
2716 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
2717 *
2718 * In other words if current stack state (one being explored) has more
2719 * valid slots than old one that already passed validation, it means
2720 * the verifier can stop exploring and conclude that current state is valid too
2721 *
2722 * Similarly with registers. If explored state has register type as invalid
2723 * whereas register type in current state is meaningful, it means that
2724 * the current state will reach 'bpf_exit' instruction safely
2725 */
states_equal(struct bpf_verifier_env * env,struct bpf_verifier_state * old,struct bpf_verifier_state * cur)2726 static bool states_equal(struct bpf_verifier_env *env,
2727 struct bpf_verifier_state *old,
2728 struct bpf_verifier_state *cur)
2729 {
2730 bool varlen_map_access = env->varlen_map_value_access;
2731 struct bpf_reg_state *rold, *rcur;
2732 int i;
2733
2734 for (i = 0; i < MAX_BPF_REG; i++) {
2735 rold = &old->regs[i];
2736 rcur = &cur->regs[i];
2737
2738 if (memcmp(rold, rcur, sizeof(*rold)) == 0)
2739 continue;
2740
2741 /* If the ranges were not the same, but everything else was and
2742 * we didn't do a variable access into a map then we are a-ok.
2743 */
2744 if (!varlen_map_access &&
2745 memcmp(rold, rcur, offsetofend(struct bpf_reg_state, id)) == 0)
2746 continue;
2747
2748 /* If we didn't map access then again we don't care about the
2749 * mismatched range values and it's ok if our old type was
2750 * UNKNOWN and we didn't go to a NOT_INIT'ed or pointer reg.
2751 */
2752 if (rold->type == NOT_INIT ||
2753 (!varlen_map_access && rold->type == UNKNOWN_VALUE &&
2754 rcur->type != NOT_INIT &&
2755 !__is_pointer_value(env->allow_ptr_leaks, rcur)))
2756 continue;
2757
2758 /* Don't care about the reg->id in this case. */
2759 if (rold->type == PTR_TO_MAP_VALUE_OR_NULL &&
2760 rcur->type == PTR_TO_MAP_VALUE_OR_NULL &&
2761 rold->map_ptr == rcur->map_ptr)
2762 continue;
2763
2764 if (rold->type == PTR_TO_PACKET && rcur->type == PTR_TO_PACKET &&
2765 compare_ptrs_to_packet(rold, rcur))
2766 continue;
2767
2768 return false;
2769 }
2770
2771 for (i = 0; i < MAX_BPF_STACK; i++) {
2772 if (old->stack_slot_type[i] == STACK_INVALID)
2773 continue;
2774 if (old->stack_slot_type[i] != cur->stack_slot_type[i])
2775 /* Ex: old explored (safe) state has STACK_SPILL in
2776 * this stack slot, but current has has STACK_MISC ->
2777 * this verifier states are not equivalent,
2778 * return false to continue verification of this path
2779 */
2780 return false;
2781 if (i % BPF_REG_SIZE)
2782 continue;
2783 if (memcmp(&old->spilled_regs[i / BPF_REG_SIZE],
2784 &cur->spilled_regs[i / BPF_REG_SIZE],
2785 sizeof(old->spilled_regs[0])))
2786 /* when explored and current stack slot types are
2787 * the same, check that stored pointers types
2788 * are the same as well.
2789 * Ex: explored safe path could have stored
2790 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -8}
2791 * but current path has stored:
2792 * (bpf_reg_state) {.type = PTR_TO_STACK, .imm = -16}
2793 * such verifier states are not equivalent.
2794 * return false to continue verification of this path
2795 */
2796 return false;
2797 else
2798 continue;
2799 }
2800 return true;
2801 }
2802
is_state_visited(struct bpf_verifier_env * env,int insn_idx)2803 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
2804 {
2805 struct bpf_verifier_state_list *new_sl;
2806 struct bpf_verifier_state_list *sl;
2807
2808 sl = env->explored_states[insn_idx];
2809 if (!sl)
2810 /* this 'insn_idx' instruction wasn't marked, so we will not
2811 * be doing state search here
2812 */
2813 return 0;
2814
2815 while (sl != STATE_LIST_MARK) {
2816 if (states_equal(env, &sl->state, &env->cur_state))
2817 /* reached equivalent register/stack state,
2818 * prune the search
2819 */
2820 return 1;
2821 sl = sl->next;
2822 }
2823
2824 /* there were no equivalent states, remember current one.
2825 * technically the current state is not proven to be safe yet,
2826 * but it will either reach bpf_exit (which means it's safe) or
2827 * it will be rejected. Since there are no loops, we won't be
2828 * seeing this 'insn_idx' instruction again on the way to bpf_exit
2829 */
2830 new_sl = kmalloc(sizeof(struct bpf_verifier_state_list), GFP_USER);
2831 if (!new_sl)
2832 return -ENOMEM;
2833
2834 /* add new state to the head of linked list */
2835 memcpy(&new_sl->state, &env->cur_state, sizeof(env->cur_state));
2836 new_sl->next = env->explored_states[insn_idx];
2837 env->explored_states[insn_idx] = new_sl;
2838 return 0;
2839 }
2840
ext_analyzer_insn_hook(struct bpf_verifier_env * env,int insn_idx,int prev_insn_idx)2841 static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
2842 int insn_idx, int prev_insn_idx)
2843 {
2844 if (!env->analyzer_ops || !env->analyzer_ops->insn_hook)
2845 return 0;
2846
2847 return env->analyzer_ops->insn_hook(env, insn_idx, prev_insn_idx);
2848 }
2849
do_check(struct bpf_verifier_env * env)2850 static int do_check(struct bpf_verifier_env *env)
2851 {
2852 struct bpf_verifier_state *state = &env->cur_state;
2853 struct bpf_insn *insns = env->prog->insnsi;
2854 struct bpf_reg_state *regs = state->regs;
2855 int insn_cnt = env->prog->len;
2856 int insn_idx, prev_insn_idx = 0;
2857 int insn_processed = 0;
2858 bool do_print_state = false;
2859
2860 init_reg_state(regs);
2861 insn_idx = 0;
2862 env->varlen_map_value_access = false;
2863 for (;;) {
2864 struct bpf_insn *insn;
2865 u8 class;
2866 int err;
2867
2868 if (insn_idx >= insn_cnt) {
2869 verbose("invalid insn idx %d insn_cnt %d\n",
2870 insn_idx, insn_cnt);
2871 return -EFAULT;
2872 }
2873
2874 insn = &insns[insn_idx];
2875 class = BPF_CLASS(insn->code);
2876
2877 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
2878 verbose("BPF program is too large. Proccessed %d insn\n",
2879 insn_processed);
2880 return -E2BIG;
2881 }
2882
2883 err = is_state_visited(env, insn_idx);
2884 if (err < 0)
2885 return err;
2886 if (err == 1) {
2887 /* found equivalent state, can prune the search */
2888 if (log_level) {
2889 if (do_print_state)
2890 verbose("\nfrom %d to %d: safe\n",
2891 prev_insn_idx, insn_idx);
2892 else
2893 verbose("%d: safe\n", insn_idx);
2894 }
2895 goto process_bpf_exit;
2896 }
2897
2898 if (need_resched())
2899 cond_resched();
2900
2901 if (log_level && do_print_state) {
2902 verbose("\nfrom %d to %d:", prev_insn_idx, insn_idx);
2903 print_verifier_state(&env->cur_state);
2904 do_print_state = false;
2905 }
2906
2907 if (log_level) {
2908 verbose("%d: ", insn_idx);
2909 print_bpf_insn(env, insn);
2910 }
2911
2912 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
2913 if (err)
2914 return err;
2915
2916 env->insn_aux_data[insn_idx].seen = true;
2917 if (class == BPF_ALU || class == BPF_ALU64) {
2918 err = check_alu_op(env, insn);
2919 if (err)
2920 return err;
2921
2922 } else if (class == BPF_LDX) {
2923 enum bpf_reg_type *prev_src_type, src_reg_type;
2924
2925 /* check for reserved fields is already done */
2926
2927 /* check src operand */
2928 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2929 if (err)
2930 return err;
2931
2932 err = check_reg_arg(regs, insn->dst_reg, DST_OP_NO_MARK);
2933 if (err)
2934 return err;
2935
2936 src_reg_type = regs[insn->src_reg].type;
2937
2938 /* check that memory (src_reg + off) is readable,
2939 * the state of dst_reg will be updated by this func
2940 */
2941 err = check_mem_access(env, insn->src_reg, insn->off,
2942 BPF_SIZE(insn->code), BPF_READ,
2943 insn->dst_reg);
2944 if (err)
2945 return err;
2946
2947 reset_reg_range_values(regs, insn->dst_reg);
2948 if (BPF_SIZE(insn->code) != BPF_W &&
2949 BPF_SIZE(insn->code) != BPF_DW) {
2950 insn_idx++;
2951 continue;
2952 }
2953
2954 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
2955
2956 if (*prev_src_type == NOT_INIT) {
2957 /* saw a valid insn
2958 * dst_reg = *(u32 *)(src_reg + off)
2959 * save type to validate intersecting paths
2960 */
2961 *prev_src_type = src_reg_type;
2962
2963 } else if (src_reg_type != *prev_src_type &&
2964 (src_reg_type == PTR_TO_CTX ||
2965 *prev_src_type == PTR_TO_CTX)) {
2966 /* ABuser program is trying to use the same insn
2967 * dst_reg = *(u32*) (src_reg + off)
2968 * with different pointer types:
2969 * src_reg == ctx in one branch and
2970 * src_reg == stack|map in some other branch.
2971 * Reject it.
2972 */
2973 verbose("same insn cannot be used with different pointers\n");
2974 return -EINVAL;
2975 }
2976
2977 } else if (class == BPF_STX) {
2978 enum bpf_reg_type *prev_dst_type, dst_reg_type;
2979
2980 if (BPF_MODE(insn->code) == BPF_XADD) {
2981 err = check_xadd(env, insn);
2982 if (err)
2983 return err;
2984 insn_idx++;
2985 continue;
2986 }
2987
2988 /* check src1 operand */
2989 err = check_reg_arg(regs, insn->src_reg, SRC_OP);
2990 if (err)
2991 return err;
2992 /* check src2 operand */
2993 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
2994 if (err)
2995 return err;
2996
2997 dst_reg_type = regs[insn->dst_reg].type;
2998
2999 /* check that memory (dst_reg + off) is writeable */
3000 err = check_mem_access(env, insn->dst_reg, insn->off,
3001 BPF_SIZE(insn->code), BPF_WRITE,
3002 insn->src_reg);
3003 if (err)
3004 return err;
3005
3006 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
3007
3008 if (*prev_dst_type == NOT_INIT) {
3009 *prev_dst_type = dst_reg_type;
3010 } else if (dst_reg_type != *prev_dst_type &&
3011 (dst_reg_type == PTR_TO_CTX ||
3012 *prev_dst_type == PTR_TO_CTX)) {
3013 verbose("same insn cannot be used with different pointers\n");
3014 return -EINVAL;
3015 }
3016
3017 } else if (class == BPF_ST) {
3018 if (BPF_MODE(insn->code) != BPF_MEM ||
3019 insn->src_reg != BPF_REG_0) {
3020 verbose("BPF_ST uses reserved fields\n");
3021 return -EINVAL;
3022 }
3023 /* check src operand */
3024 err = check_reg_arg(regs, insn->dst_reg, SRC_OP);
3025 if (err)
3026 return err;
3027
3028 if (is_ctx_reg(env, insn->dst_reg)) {
3029 verbose("BPF_ST stores into R%d context is not allowed\n",
3030 insn->dst_reg);
3031 return -EACCES;
3032 }
3033
3034 /* check that memory (dst_reg + off) is writeable */
3035 err = check_mem_access(env, insn->dst_reg, insn->off,
3036 BPF_SIZE(insn->code), BPF_WRITE,
3037 -1);
3038 if (err)
3039 return err;
3040
3041 } else if (class == BPF_JMP) {
3042 u8 opcode = BPF_OP(insn->code);
3043
3044 if (opcode == BPF_CALL) {
3045 if (BPF_SRC(insn->code) != BPF_K ||
3046 insn->off != 0 ||
3047 insn->src_reg != BPF_REG_0 ||
3048 insn->dst_reg != BPF_REG_0) {
3049 verbose("BPF_CALL uses reserved fields\n");
3050 return -EINVAL;
3051 }
3052
3053 err = check_call(env, insn->imm, insn_idx);
3054 if (err)
3055 return err;
3056
3057 } else if (opcode == BPF_JA) {
3058 if (BPF_SRC(insn->code) != BPF_K ||
3059 insn->imm != 0 ||
3060 insn->src_reg != BPF_REG_0 ||
3061 insn->dst_reg != BPF_REG_0) {
3062 verbose("BPF_JA uses reserved fields\n");
3063 return -EINVAL;
3064 }
3065
3066 insn_idx += insn->off + 1;
3067 continue;
3068
3069 } else if (opcode == BPF_EXIT) {
3070 if (BPF_SRC(insn->code) != BPF_K ||
3071 insn->imm != 0 ||
3072 insn->src_reg != BPF_REG_0 ||
3073 insn->dst_reg != BPF_REG_0) {
3074 verbose("BPF_EXIT uses reserved fields\n");
3075 return -EINVAL;
3076 }
3077
3078 /* eBPF calling convetion is such that R0 is used
3079 * to return the value from eBPF program.
3080 * Make sure that it's readable at this time
3081 * of bpf_exit, which means that program wrote
3082 * something into it earlier
3083 */
3084 err = check_reg_arg(regs, BPF_REG_0, SRC_OP);
3085 if (err)
3086 return err;
3087
3088 if (is_pointer_value(env, BPF_REG_0)) {
3089 verbose("R0 leaks addr as return value\n");
3090 return -EACCES;
3091 }
3092
3093 process_bpf_exit:
3094 insn_idx = pop_stack(env, &prev_insn_idx);
3095 if (insn_idx < 0) {
3096 break;
3097 } else {
3098 do_print_state = true;
3099 continue;
3100 }
3101 } else {
3102 err = check_cond_jmp_op(env, insn, &insn_idx);
3103 if (err)
3104 return err;
3105 }
3106 } else if (class == BPF_LD) {
3107 u8 mode = BPF_MODE(insn->code);
3108
3109 if (mode == BPF_ABS || mode == BPF_IND) {
3110 err = check_ld_abs(env, insn);
3111 if (err)
3112 return err;
3113
3114 } else if (mode == BPF_IMM) {
3115 err = check_ld_imm(env, insn);
3116 if (err)
3117 return err;
3118
3119 insn_idx++;
3120 env->insn_aux_data[insn_idx].seen = true;
3121 } else {
3122 verbose("invalid BPF_LD mode\n");
3123 return -EINVAL;
3124 }
3125 reset_reg_range_values(regs, insn->dst_reg);
3126 } else {
3127 verbose("unknown insn class %d\n", class);
3128 return -EINVAL;
3129 }
3130
3131 insn_idx++;
3132 }
3133
3134 verbose("processed %d insns\n", insn_processed);
3135 return 0;
3136 }
3137
check_map_prog_compatibility(struct bpf_map * map,struct bpf_prog * prog)3138 static int check_map_prog_compatibility(struct bpf_map *map,
3139 struct bpf_prog *prog)
3140
3141 {
3142 if (prog->type == BPF_PROG_TYPE_PERF_EVENT &&
3143 (map->map_type == BPF_MAP_TYPE_HASH ||
3144 map->map_type == BPF_MAP_TYPE_PERCPU_HASH) &&
3145 (map->map_flags & BPF_F_NO_PREALLOC)) {
3146 verbose("perf_event programs can only use preallocated hash map\n");
3147 return -EINVAL;
3148 }
3149 return 0;
3150 }
3151
3152 /* look for pseudo eBPF instructions that access map FDs and
3153 * replace them with actual map pointers
3154 */
replace_map_fd_with_map_ptr(struct bpf_verifier_env * env)3155 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
3156 {
3157 struct bpf_insn *insn = env->prog->insnsi;
3158 int insn_cnt = env->prog->len;
3159 int i, j, err;
3160
3161 for (i = 0; i < insn_cnt; i++, insn++) {
3162 if (BPF_CLASS(insn->code) == BPF_LDX &&
3163 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
3164 verbose("BPF_LDX uses reserved fields\n");
3165 return -EINVAL;
3166 }
3167
3168 if (BPF_CLASS(insn->code) == BPF_STX &&
3169 ((BPF_MODE(insn->code) != BPF_MEM &&
3170 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
3171 verbose("BPF_STX uses reserved fields\n");
3172 return -EINVAL;
3173 }
3174
3175 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
3176 struct bpf_map *map;
3177 struct fd f;
3178
3179 if (i == insn_cnt - 1 || insn[1].code != 0 ||
3180 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
3181 insn[1].off != 0) {
3182 verbose("invalid bpf_ld_imm64 insn\n");
3183 return -EINVAL;
3184 }
3185
3186 if (insn->src_reg == 0)
3187 /* valid generic load 64-bit imm */
3188 goto next_insn;
3189
3190 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
3191 verbose("unrecognized bpf_ld_imm64 insn\n");
3192 return -EINVAL;
3193 }
3194
3195 f = fdget(insn->imm);
3196 map = __bpf_map_get(f);
3197 if (IS_ERR(map)) {
3198 verbose("fd %d is not pointing to valid bpf_map\n",
3199 insn->imm);
3200 return PTR_ERR(map);
3201 }
3202
3203 err = check_map_prog_compatibility(map, env->prog);
3204 if (err) {
3205 fdput(f);
3206 return err;
3207 }
3208
3209 /* store map pointer inside BPF_LD_IMM64 instruction */
3210 insn[0].imm = (u32) (unsigned long) map;
3211 insn[1].imm = ((u64) (unsigned long) map) >> 32;
3212
3213 /* check whether we recorded this map already */
3214 for (j = 0; j < env->used_map_cnt; j++)
3215 if (env->used_maps[j] == map) {
3216 fdput(f);
3217 goto next_insn;
3218 }
3219
3220 if (env->used_map_cnt >= MAX_USED_MAPS) {
3221 fdput(f);
3222 return -E2BIG;
3223 }
3224
3225 /* hold the map. If the program is rejected by verifier,
3226 * the map will be released by release_maps() or it
3227 * will be used by the valid program until it's unloaded
3228 * and all maps are released in free_bpf_prog_info()
3229 */
3230 map = bpf_map_inc(map, false);
3231 if (IS_ERR(map)) {
3232 fdput(f);
3233 return PTR_ERR(map);
3234 }
3235 env->used_maps[env->used_map_cnt++] = map;
3236
3237 fdput(f);
3238 next_insn:
3239 insn++;
3240 i++;
3241 }
3242 }
3243
3244 /* now all pseudo BPF_LD_IMM64 instructions load valid
3245 * 'struct bpf_map *' into a register instead of user map_fd.
3246 * These pointers will be used later by verifier to validate map access.
3247 */
3248 return 0;
3249 }
3250
3251 /* drop refcnt of maps used by the rejected program */
release_maps(struct bpf_verifier_env * env)3252 static void release_maps(struct bpf_verifier_env *env)
3253 {
3254 int i;
3255
3256 for (i = 0; i < env->used_map_cnt; i++)
3257 bpf_map_put(env->used_maps[i]);
3258 }
3259
3260 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
convert_pseudo_ld_imm64(struct bpf_verifier_env * env)3261 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
3262 {
3263 struct bpf_insn *insn = env->prog->insnsi;
3264 int insn_cnt = env->prog->len;
3265 int i;
3266
3267 for (i = 0; i < insn_cnt; i++, insn++)
3268 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
3269 insn->src_reg = 0;
3270 }
3271
3272 /* single env->prog->insni[off] instruction was replaced with the range
3273 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
3274 * [0, off) and [off, end) to new locations, so the patched range stays zero
3275 */
adjust_insn_aux_data(struct bpf_verifier_env * env,u32 prog_len,u32 off,u32 cnt)3276 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
3277 u32 off, u32 cnt)
3278 {
3279 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
3280 int i;
3281
3282 if (cnt == 1)
3283 return 0;
3284 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
3285 if (!new_data)
3286 return -ENOMEM;
3287 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
3288 memcpy(new_data + off + cnt - 1, old_data + off,
3289 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
3290 for (i = off; i < off + cnt - 1; i++)
3291 new_data[i].seen = true;
3292 env->insn_aux_data = new_data;
3293 vfree(old_data);
3294 return 0;
3295 }
3296
bpf_patch_insn_data(struct bpf_verifier_env * env,u32 off,const struct bpf_insn * patch,u32 len)3297 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
3298 const struct bpf_insn *patch, u32 len)
3299 {
3300 struct bpf_prog *new_prog;
3301
3302 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
3303 if (!new_prog)
3304 return NULL;
3305 if (adjust_insn_aux_data(env, new_prog->len, off, len))
3306 return NULL;
3307 return new_prog;
3308 }
3309
3310 /* The verifier does more data flow analysis than llvm and will not explore
3311 * branches that are dead at run time. Malicious programs can have dead code
3312 * too. Therefore replace all dead at-run-time code with nops.
3313 */
sanitize_dead_code(struct bpf_verifier_env * env)3314 static void sanitize_dead_code(struct bpf_verifier_env *env)
3315 {
3316 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
3317 struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
3318 struct bpf_insn *insn = env->prog->insnsi;
3319 const int insn_cnt = env->prog->len;
3320 int i;
3321
3322 for (i = 0; i < insn_cnt; i++) {
3323 if (aux_data[i].seen)
3324 continue;
3325 memcpy(insn + i, &nop, sizeof(nop));
3326 }
3327 }
3328
3329 /* convert load instructions that access fields of 'struct __sk_buff'
3330 * into sequence of instructions that access fields of 'struct sk_buff'
3331 */
convert_ctx_accesses(struct bpf_verifier_env * env)3332 static int convert_ctx_accesses(struct bpf_verifier_env *env)
3333 {
3334 const struct bpf_verifier_ops *ops = env->prog->aux->ops;
3335 const int insn_cnt = env->prog->len;
3336 struct bpf_insn insn_buf[16], *insn;
3337 struct bpf_prog *new_prog;
3338 enum bpf_access_type type;
3339 int i, cnt, delta = 0;
3340
3341 if (ops->gen_prologue) {
3342 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
3343 env->prog);
3344 if (cnt >= ARRAY_SIZE(insn_buf)) {
3345 verbose("bpf verifier is misconfigured\n");
3346 return -EINVAL;
3347 } else if (cnt) {
3348 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
3349 if (!new_prog)
3350 return -ENOMEM;
3351
3352 env->prog = new_prog;
3353 delta += cnt - 1;
3354 }
3355 }
3356
3357 if (!ops->convert_ctx_access)
3358 return 0;
3359
3360 insn = env->prog->insnsi + delta;
3361
3362 for (i = 0; i < insn_cnt; i++, insn++) {
3363 if (insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
3364 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
3365 type = BPF_READ;
3366 else if (insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
3367 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
3368 type = BPF_WRITE;
3369 else
3370 continue;
3371
3372 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
3373 continue;
3374
3375 cnt = ops->convert_ctx_access(type, insn->dst_reg, insn->src_reg,
3376 insn->off, insn_buf, env->prog);
3377 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
3378 verbose("bpf verifier is misconfigured\n");
3379 return -EINVAL;
3380 }
3381
3382 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
3383 if (!new_prog)
3384 return -ENOMEM;
3385
3386 delta += cnt - 1;
3387
3388 /* keep walking new program and skip insns we just inserted */
3389 env->prog = new_prog;
3390 insn = new_prog->insnsi + i + delta;
3391 }
3392
3393 return 0;
3394 }
3395
3396 /* fixup insn->imm field of bpf_call instructions
3397 *
3398 * this function is called after eBPF program passed verification
3399 */
fixup_bpf_calls(struct bpf_verifier_env * env)3400 static int fixup_bpf_calls(struct bpf_verifier_env *env)
3401 {
3402 struct bpf_prog *prog = env->prog;
3403 struct bpf_insn *insn = prog->insnsi;
3404 const struct bpf_func_proto *fn;
3405 const int insn_cnt = prog->len;
3406 struct bpf_insn insn_buf[16];
3407 struct bpf_prog *new_prog;
3408 struct bpf_map *map_ptr;
3409 int i, cnt, delta = 0;
3410
3411
3412 for (i = 0; i < insn_cnt; i++, insn++) {
3413 if (insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
3414 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
3415 /* due to JIT bugs clear upper 32-bits of src register
3416 * before div/mod operation
3417 */
3418 insn_buf[0] = BPF_MOV32_REG(insn->src_reg, insn->src_reg);
3419 insn_buf[1] = *insn;
3420 cnt = 2;
3421 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
3422 if (!new_prog)
3423 return -ENOMEM;
3424
3425 delta += cnt - 1;
3426 env->prog = prog = new_prog;
3427 insn = new_prog->insnsi + i + delta;
3428 continue;
3429 }
3430
3431 if (insn->code != (BPF_JMP | BPF_CALL))
3432 continue;
3433
3434 if (insn->imm == BPF_FUNC_get_route_realm)
3435 prog->dst_needed = 1;
3436 if (insn->imm == BPF_FUNC_get_prandom_u32)
3437 bpf_user_rnd_init_once();
3438 if (insn->imm == BPF_FUNC_tail_call) {
3439 /* mark bpf_tail_call as different opcode to avoid
3440 * conditional branch in the interpeter for every normal
3441 * call and to prevent accidental JITing by JIT compiler
3442 * that doesn't support bpf_tail_call yet
3443 */
3444 insn->imm = 0;
3445 insn->code |= BPF_X;
3446
3447 /* instead of changing every JIT dealing with tail_call
3448 * emit two extra insns:
3449 * if (index >= max_entries) goto out;
3450 * index &= array->index_mask;
3451 * to avoid out-of-bounds cpu speculation
3452 */
3453 map_ptr = env->insn_aux_data[i + delta].map_ptr;
3454 if (!map_ptr->unpriv_array)
3455 continue;
3456 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
3457 map_ptr->max_entries, 2);
3458 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
3459 container_of(map_ptr,
3460 struct bpf_array,
3461 map)->index_mask);
3462 insn_buf[2] = *insn;
3463 cnt = 3;
3464 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
3465 if (!new_prog)
3466 return -ENOMEM;
3467
3468 delta += cnt - 1;
3469 env->prog = prog = new_prog;
3470 insn = new_prog->insnsi + i + delta;
3471 continue;
3472 }
3473
3474 fn = prog->aux->ops->get_func_proto(insn->imm);
3475 /* all functions that have prototype and verifier allowed
3476 * programs to call them, must be real in-kernel functions
3477 */
3478 if (!fn->func) {
3479 verbose("kernel subsystem misconfigured func %d\n",
3480 insn->imm);
3481 return -EFAULT;
3482 }
3483 insn->imm = fn->func - __bpf_call_base;
3484 }
3485
3486 return 0;
3487 }
3488
free_states(struct bpf_verifier_env * env)3489 static void free_states(struct bpf_verifier_env *env)
3490 {
3491 struct bpf_verifier_state_list *sl, *sln;
3492 int i;
3493
3494 if (!env->explored_states)
3495 return;
3496
3497 for (i = 0; i < env->prog->len; i++) {
3498 sl = env->explored_states[i];
3499
3500 if (sl)
3501 while (sl != STATE_LIST_MARK) {
3502 sln = sl->next;
3503 kfree(sl);
3504 sl = sln;
3505 }
3506 }
3507
3508 kfree(env->explored_states);
3509 }
3510
bpf_check(struct bpf_prog ** prog,union bpf_attr * attr)3511 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
3512 {
3513 char __user *log_ubuf = NULL;
3514 struct bpf_verifier_env *env;
3515 int ret = -EINVAL;
3516
3517 if ((*prog)->len <= 0 || (*prog)->len > BPF_MAXINSNS)
3518 return -E2BIG;
3519
3520 /* 'struct bpf_verifier_env' can be global, but since it's not small,
3521 * allocate/free it every time bpf_check() is called
3522 */
3523 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3524 if (!env)
3525 return -ENOMEM;
3526
3527 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3528 (*prog)->len);
3529 ret = -ENOMEM;
3530 if (!env->insn_aux_data)
3531 goto err_free_env;
3532 env->prog = *prog;
3533
3534 /* grab the mutex to protect few globals used by verifier */
3535 mutex_lock(&bpf_verifier_lock);
3536
3537 if (attr->log_level || attr->log_buf || attr->log_size) {
3538 /* user requested verbose verifier output
3539 * and supplied buffer to store the verification trace
3540 */
3541 log_level = attr->log_level;
3542 log_ubuf = (char __user *) (unsigned long) attr->log_buf;
3543 log_size = attr->log_size;
3544 log_len = 0;
3545
3546 ret = -EINVAL;
3547 /* log_* values have to be sane */
3548 if (log_size < 128 || log_size > UINT_MAX >> 8 ||
3549 log_level == 0 || log_ubuf == NULL)
3550 goto err_unlock;
3551
3552 ret = -ENOMEM;
3553 log_buf = vmalloc(log_size);
3554 if (!log_buf)
3555 goto err_unlock;
3556 } else {
3557 log_level = 0;
3558 }
3559
3560 ret = replace_map_fd_with_map_ptr(env);
3561 if (ret < 0)
3562 goto skip_full_check;
3563
3564 env->explored_states = kcalloc(env->prog->len,
3565 sizeof(struct bpf_verifier_state_list *),
3566 GFP_USER);
3567 ret = -ENOMEM;
3568 if (!env->explored_states)
3569 goto skip_full_check;
3570
3571 ret = check_cfg(env);
3572 if (ret < 0)
3573 goto skip_full_check;
3574
3575 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3576
3577 ret = do_check(env);
3578
3579 skip_full_check:
3580 while (pop_stack(env, NULL) >= 0);
3581 free_states(env);
3582
3583 if (ret == 0)
3584 sanitize_dead_code(env);
3585
3586 if (ret == 0)
3587 /* program is valid, convert *(u32*)(ctx + off) accesses */
3588 ret = convert_ctx_accesses(env);
3589
3590 if (ret == 0)
3591 ret = fixup_bpf_calls(env);
3592
3593 if (log_level && log_len >= log_size - 1) {
3594 BUG_ON(log_len >= log_size);
3595 /* verifier log exceeded user supplied buffer */
3596 ret = -ENOSPC;
3597 /* fall through to return what was recorded */
3598 }
3599
3600 /* copy verifier log back to user space including trailing zero */
3601 if (log_level && copy_to_user(log_ubuf, log_buf, log_len + 1) != 0) {
3602 ret = -EFAULT;
3603 goto free_log_buf;
3604 }
3605
3606 if (ret == 0 && env->used_map_cnt) {
3607 /* if program passed verifier, update used_maps in bpf_prog_info */
3608 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
3609 sizeof(env->used_maps[0]),
3610 GFP_KERNEL);
3611
3612 if (!env->prog->aux->used_maps) {
3613 ret = -ENOMEM;
3614 goto free_log_buf;
3615 }
3616
3617 memcpy(env->prog->aux->used_maps, env->used_maps,
3618 sizeof(env->used_maps[0]) * env->used_map_cnt);
3619 env->prog->aux->used_map_cnt = env->used_map_cnt;
3620
3621 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
3622 * bpf_ld_imm64 instructions
3623 */
3624 convert_pseudo_ld_imm64(env);
3625 }
3626
3627 free_log_buf:
3628 if (log_level)
3629 vfree(log_buf);
3630 if (!env->prog->aux->used_maps)
3631 /* if we didn't copy map pointers into bpf_prog_info, release
3632 * them now. Otherwise free_bpf_prog_info() will release them.
3633 */
3634 release_maps(env);
3635 *prog = env->prog;
3636 err_unlock:
3637 mutex_unlock(&bpf_verifier_lock);
3638 vfree(env->insn_aux_data);
3639 err_free_env:
3640 kfree(env);
3641 return ret;
3642 }
3643
bpf_analyzer(struct bpf_prog * prog,const struct bpf_ext_analyzer_ops * ops,void * priv)3644 int bpf_analyzer(struct bpf_prog *prog, const struct bpf_ext_analyzer_ops *ops,
3645 void *priv)
3646 {
3647 struct bpf_verifier_env *env;
3648 int ret;
3649
3650 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
3651 if (!env)
3652 return -ENOMEM;
3653
3654 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
3655 prog->len);
3656 ret = -ENOMEM;
3657 if (!env->insn_aux_data)
3658 goto err_free_env;
3659 env->prog = prog;
3660 env->analyzer_ops = ops;
3661 env->analyzer_priv = priv;
3662
3663 /* grab the mutex to protect few globals used by verifier */
3664 mutex_lock(&bpf_verifier_lock);
3665
3666 log_level = 0;
3667
3668 env->explored_states = kcalloc(env->prog->len,
3669 sizeof(struct bpf_verifier_state_list *),
3670 GFP_KERNEL);
3671 ret = -ENOMEM;
3672 if (!env->explored_states)
3673 goto skip_full_check;
3674
3675 ret = check_cfg(env);
3676 if (ret < 0)
3677 goto skip_full_check;
3678
3679 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
3680
3681 ret = do_check(env);
3682
3683 skip_full_check:
3684 while (pop_stack(env, NULL) >= 0);
3685 free_states(env);
3686
3687 mutex_unlock(&bpf_verifier_lock);
3688 vfree(env->insn_aux_data);
3689 err_free_env:
3690 kfree(env);
3691 return ret;
3692 }
3693 EXPORT_SYMBOL_GPL(bpf_analyzer);
3694