• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include <linux/uio.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
44 #include "compression.h"
45 
46 static struct kmem_cache *btrfs_inode_defrag_cachep;
47 /*
48  * when auto defrag is enabled we
49  * queue up these defrag structs to remember which
50  * inodes need defragging passes
51  */
52 struct inode_defrag {
53 	struct rb_node rb_node;
54 	/* objectid */
55 	u64 ino;
56 	/*
57 	 * transid where the defrag was added, we search for
58 	 * extents newer than this
59 	 */
60 	u64 transid;
61 
62 	/* root objectid */
63 	u64 root;
64 
65 	/* last offset we were able to defrag */
66 	u64 last_offset;
67 
68 	/* if we've wrapped around back to zero once already */
69 	int cycled;
70 };
71 
__compare_inode_defrag(struct inode_defrag * defrag1,struct inode_defrag * defrag2)72 static int __compare_inode_defrag(struct inode_defrag *defrag1,
73 				  struct inode_defrag *defrag2)
74 {
75 	if (defrag1->root > defrag2->root)
76 		return 1;
77 	else if (defrag1->root < defrag2->root)
78 		return -1;
79 	else if (defrag1->ino > defrag2->ino)
80 		return 1;
81 	else if (defrag1->ino < defrag2->ino)
82 		return -1;
83 	else
84 		return 0;
85 }
86 
87 /* pop a record for an inode into the defrag tree.  The lock
88  * must be held already
89  *
90  * If you're inserting a record for an older transid than an
91  * existing record, the transid already in the tree is lowered
92  *
93  * If an existing record is found the defrag item you
94  * pass in is freed
95  */
__btrfs_add_inode_defrag(struct inode * inode,struct inode_defrag * defrag)96 static int __btrfs_add_inode_defrag(struct inode *inode,
97 				    struct inode_defrag *defrag)
98 {
99 	struct btrfs_root *root = BTRFS_I(inode)->root;
100 	struct inode_defrag *entry;
101 	struct rb_node **p;
102 	struct rb_node *parent = NULL;
103 	int ret;
104 
105 	p = &root->fs_info->defrag_inodes.rb_node;
106 	while (*p) {
107 		parent = *p;
108 		entry = rb_entry(parent, struct inode_defrag, rb_node);
109 
110 		ret = __compare_inode_defrag(defrag, entry);
111 		if (ret < 0)
112 			p = &parent->rb_left;
113 		else if (ret > 0)
114 			p = &parent->rb_right;
115 		else {
116 			/* if we're reinserting an entry for
117 			 * an old defrag run, make sure to
118 			 * lower the transid of our existing record
119 			 */
120 			if (defrag->transid < entry->transid)
121 				entry->transid = defrag->transid;
122 			if (defrag->last_offset > entry->last_offset)
123 				entry->last_offset = defrag->last_offset;
124 			return -EEXIST;
125 		}
126 	}
127 	set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
128 	rb_link_node(&defrag->rb_node, parent, p);
129 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
130 	return 0;
131 }
132 
__need_auto_defrag(struct btrfs_root * root)133 static inline int __need_auto_defrag(struct btrfs_root *root)
134 {
135 	if (!btrfs_test_opt(root->fs_info, AUTO_DEFRAG))
136 		return 0;
137 
138 	if (btrfs_fs_closing(root->fs_info))
139 		return 0;
140 
141 	return 1;
142 }
143 
144 /*
145  * insert a defrag record for this inode if auto defrag is
146  * enabled
147  */
btrfs_add_inode_defrag(struct btrfs_trans_handle * trans,struct inode * inode)148 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
149 			   struct inode *inode)
150 {
151 	struct btrfs_root *root = BTRFS_I(inode)->root;
152 	struct inode_defrag *defrag;
153 	u64 transid;
154 	int ret;
155 
156 	if (!__need_auto_defrag(root))
157 		return 0;
158 
159 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
160 		return 0;
161 
162 	if (trans)
163 		transid = trans->transid;
164 	else
165 		transid = BTRFS_I(inode)->root->last_trans;
166 
167 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
168 	if (!defrag)
169 		return -ENOMEM;
170 
171 	defrag->ino = btrfs_ino(inode);
172 	defrag->transid = transid;
173 	defrag->root = root->root_key.objectid;
174 
175 	spin_lock(&root->fs_info->defrag_inodes_lock);
176 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
177 		/*
178 		 * If we set IN_DEFRAG flag and evict the inode from memory,
179 		 * and then re-read this inode, this new inode doesn't have
180 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 		 */
182 		ret = __btrfs_add_inode_defrag(inode, defrag);
183 		if (ret)
184 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 	} else {
186 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187 	}
188 	spin_unlock(&root->fs_info->defrag_inodes_lock);
189 	return 0;
190 }
191 
192 /*
193  * Requeue the defrag object. If there is a defrag object that points to
194  * the same inode in the tree, we will merge them together (by
195  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196  */
btrfs_requeue_inode_defrag(struct inode * inode,struct inode_defrag * defrag)197 static void btrfs_requeue_inode_defrag(struct inode *inode,
198 				       struct inode_defrag *defrag)
199 {
200 	struct btrfs_root *root = BTRFS_I(inode)->root;
201 	int ret;
202 
203 	if (!__need_auto_defrag(root))
204 		goto out;
205 
206 	/*
207 	 * Here we don't check the IN_DEFRAG flag, because we need merge
208 	 * them together.
209 	 */
210 	spin_lock(&root->fs_info->defrag_inodes_lock);
211 	ret = __btrfs_add_inode_defrag(inode, defrag);
212 	spin_unlock(&root->fs_info->defrag_inodes_lock);
213 	if (ret)
214 		goto out;
215 	return;
216 out:
217 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218 }
219 
220 /*
221  * pick the defragable inode that we want, if it doesn't exist, we will get
222  * the next one.
223  */
224 static struct inode_defrag *
btrfs_pick_defrag_inode(struct btrfs_fs_info * fs_info,u64 root,u64 ino)225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226 {
227 	struct inode_defrag *entry = NULL;
228 	struct inode_defrag tmp;
229 	struct rb_node *p;
230 	struct rb_node *parent = NULL;
231 	int ret;
232 
233 	tmp.ino = ino;
234 	tmp.root = root;
235 
236 	spin_lock(&fs_info->defrag_inodes_lock);
237 	p = fs_info->defrag_inodes.rb_node;
238 	while (p) {
239 		parent = p;
240 		entry = rb_entry(parent, struct inode_defrag, rb_node);
241 
242 		ret = __compare_inode_defrag(&tmp, entry);
243 		if (ret < 0)
244 			p = parent->rb_left;
245 		else if (ret > 0)
246 			p = parent->rb_right;
247 		else
248 			goto out;
249 	}
250 
251 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 		parent = rb_next(parent);
253 		if (parent)
254 			entry = rb_entry(parent, struct inode_defrag, rb_node);
255 		else
256 			entry = NULL;
257 	}
258 out:
259 	if (entry)
260 		rb_erase(parent, &fs_info->defrag_inodes);
261 	spin_unlock(&fs_info->defrag_inodes_lock);
262 	return entry;
263 }
264 
btrfs_cleanup_defrag_inodes(struct btrfs_fs_info * fs_info)265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266 {
267 	struct inode_defrag *defrag;
268 	struct rb_node *node;
269 
270 	spin_lock(&fs_info->defrag_inodes_lock);
271 	node = rb_first(&fs_info->defrag_inodes);
272 	while (node) {
273 		rb_erase(node, &fs_info->defrag_inodes);
274 		defrag = rb_entry(node, struct inode_defrag, rb_node);
275 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276 
277 		cond_resched_lock(&fs_info->defrag_inodes_lock);
278 
279 		node = rb_first(&fs_info->defrag_inodes);
280 	}
281 	spin_unlock(&fs_info->defrag_inodes_lock);
282 }
283 
284 #define BTRFS_DEFRAG_BATCH	1024
285 
__btrfs_run_defrag_inode(struct btrfs_fs_info * fs_info,struct inode_defrag * defrag)286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 				    struct inode_defrag *defrag)
288 {
289 	struct btrfs_root *inode_root;
290 	struct inode *inode;
291 	struct btrfs_key key;
292 	struct btrfs_ioctl_defrag_range_args range;
293 	int num_defrag;
294 	int index;
295 	int ret;
296 
297 	/* get the inode */
298 	key.objectid = defrag->root;
299 	key.type = BTRFS_ROOT_ITEM_KEY;
300 	key.offset = (u64)-1;
301 
302 	index = srcu_read_lock(&fs_info->subvol_srcu);
303 
304 	inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 	if (IS_ERR(inode_root)) {
306 		ret = PTR_ERR(inode_root);
307 		goto cleanup;
308 	}
309 
310 	key.objectid = defrag->ino;
311 	key.type = BTRFS_INODE_ITEM_KEY;
312 	key.offset = 0;
313 	inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314 	if (IS_ERR(inode)) {
315 		ret = PTR_ERR(inode);
316 		goto cleanup;
317 	}
318 	srcu_read_unlock(&fs_info->subvol_srcu, index);
319 
320 	/* do a chunk of defrag */
321 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
322 	memset(&range, 0, sizeof(range));
323 	range.len = (u64)-1;
324 	range.start = defrag->last_offset;
325 
326 	sb_start_write(fs_info->sb);
327 	num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328 				       BTRFS_DEFRAG_BATCH);
329 	sb_end_write(fs_info->sb);
330 	/*
331 	 * if we filled the whole defrag batch, there
332 	 * must be more work to do.  Queue this defrag
333 	 * again
334 	 */
335 	if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 		defrag->last_offset = range.start;
337 		btrfs_requeue_inode_defrag(inode, defrag);
338 	} else if (defrag->last_offset && !defrag->cycled) {
339 		/*
340 		 * we didn't fill our defrag batch, but
341 		 * we didn't start at zero.  Make sure we loop
342 		 * around to the start of the file.
343 		 */
344 		defrag->last_offset = 0;
345 		defrag->cycled = 1;
346 		btrfs_requeue_inode_defrag(inode, defrag);
347 	} else {
348 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349 	}
350 
351 	iput(inode);
352 	return 0;
353 cleanup:
354 	srcu_read_unlock(&fs_info->subvol_srcu, index);
355 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 	return ret;
357 }
358 
359 /*
360  * run through the list of inodes in the FS that need
361  * defragging
362  */
btrfs_run_defrag_inodes(struct btrfs_fs_info * fs_info)363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364 {
365 	struct inode_defrag *defrag;
366 	u64 first_ino = 0;
367 	u64 root_objectid = 0;
368 
369 	atomic_inc(&fs_info->defrag_running);
370 	while (1) {
371 		/* Pause the auto defragger. */
372 		if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373 			     &fs_info->fs_state))
374 			break;
375 
376 		if (!__need_auto_defrag(fs_info->tree_root))
377 			break;
378 
379 		/* find an inode to defrag */
380 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381 						 first_ino);
382 		if (!defrag) {
383 			if (root_objectid || first_ino) {
384 				root_objectid = 0;
385 				first_ino = 0;
386 				continue;
387 			} else {
388 				break;
389 			}
390 		}
391 
392 		first_ino = defrag->ino + 1;
393 		root_objectid = defrag->root;
394 
395 		__btrfs_run_defrag_inode(fs_info, defrag);
396 	}
397 	atomic_dec(&fs_info->defrag_running);
398 
399 	/*
400 	 * during unmount, we use the transaction_wait queue to
401 	 * wait for the defragger to stop
402 	 */
403 	wake_up(&fs_info->transaction_wait);
404 	return 0;
405 }
406 
407 /* simple helper to fault in pages and copy.  This should go away
408  * and be replaced with calls into generic code.
409  */
btrfs_copy_from_user(loff_t pos,size_t write_bytes,struct page ** prepared_pages,struct iov_iter * i)410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
411 					 struct page **prepared_pages,
412 					 struct iov_iter *i)
413 {
414 	size_t copied = 0;
415 	size_t total_copied = 0;
416 	int pg = 0;
417 	int offset = pos & (PAGE_SIZE - 1);
418 
419 	while (write_bytes > 0) {
420 		size_t count = min_t(size_t,
421 				     PAGE_SIZE - offset, write_bytes);
422 		struct page *page = prepared_pages[pg];
423 		/*
424 		 * Copy data from userspace to the current page
425 		 */
426 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427 
428 		/* Flush processor's dcache for this page */
429 		flush_dcache_page(page);
430 
431 		/*
432 		 * if we get a partial write, we can end up with
433 		 * partially up to date pages.  These add
434 		 * a lot of complexity, so make sure they don't
435 		 * happen by forcing this copy to be retried.
436 		 *
437 		 * The rest of the btrfs_file_write code will fall
438 		 * back to page at a time copies after we return 0.
439 		 */
440 		if (!PageUptodate(page) && copied < count)
441 			copied = 0;
442 
443 		iov_iter_advance(i, copied);
444 		write_bytes -= copied;
445 		total_copied += copied;
446 
447 		/* Return to btrfs_file_write_iter to fault page */
448 		if (unlikely(copied == 0))
449 			break;
450 
451 		if (copied < PAGE_SIZE - offset) {
452 			offset += copied;
453 		} else {
454 			pg++;
455 			offset = 0;
456 		}
457 	}
458 	return total_copied;
459 }
460 
461 /*
462  * unlocks pages after btrfs_file_write is done with them
463  */
btrfs_drop_pages(struct page ** pages,size_t num_pages)464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466 	size_t i;
467 	for (i = 0; i < num_pages; i++) {
468 		/* page checked is some magic around finding pages that
469 		 * have been modified without going through btrfs_set_page_dirty
470 		 * clear it here. There should be no need to mark the pages
471 		 * accessed as prepare_pages should have marked them accessed
472 		 * in prepare_pages via find_or_create_page()
473 		 */
474 		ClearPageChecked(pages[i]);
475 		unlock_page(pages[i]);
476 		put_page(pages[i]);
477 	}
478 }
479 
480 /*
481  * after copy_from_user, pages need to be dirtied and we need to make
482  * sure holes are created between the current EOF and the start of
483  * any next extents (if required).
484  *
485  * this also makes the decision about creating an inline extent vs
486  * doing real data extents, marking pages dirty and delalloc as required.
487  */
btrfs_dirty_pages(struct btrfs_root * root,struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,struct extent_state ** cached)488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
489 			     struct page **pages, size_t num_pages,
490 			     loff_t pos, size_t write_bytes,
491 			     struct extent_state **cached)
492 {
493 	int err = 0;
494 	int i;
495 	u64 num_bytes;
496 	u64 start_pos;
497 	u64 end_of_last_block;
498 	u64 end_pos = pos + write_bytes;
499 	loff_t isize = i_size_read(inode);
500 
501 	start_pos = pos & ~((u64)root->sectorsize - 1);
502 	num_bytes = round_up(write_bytes + pos - start_pos, root->sectorsize);
503 
504 	end_of_last_block = start_pos + num_bytes - 1;
505 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506 					cached, 0);
507 	if (err)
508 		return err;
509 
510 	for (i = 0; i < num_pages; i++) {
511 		struct page *p = pages[i];
512 		SetPageUptodate(p);
513 		ClearPageChecked(p);
514 		set_page_dirty(p);
515 	}
516 
517 	/*
518 	 * we've only changed i_size in ram, and we haven't updated
519 	 * the disk i_size.  There is no need to log the inode
520 	 * at this time.
521 	 */
522 	if (end_pos > isize)
523 		i_size_write(inode, end_pos);
524 	return 0;
525 }
526 
527 /*
528  * this drops all the extents in the cache that intersect the range
529  * [start, end].  Existing extents are split as required.
530  */
btrfs_drop_extent_cache(struct inode * inode,u64 start,u64 end,int skip_pinned)531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
532 			     int skip_pinned)
533 {
534 	struct extent_map *em;
535 	struct extent_map *split = NULL;
536 	struct extent_map *split2 = NULL;
537 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 	u64 len = end - start + 1;
539 	u64 gen;
540 	int ret;
541 	int testend = 1;
542 	unsigned long flags;
543 	int compressed = 0;
544 	bool modified;
545 
546 	WARN_ON(end < start);
547 	if (end == (u64)-1) {
548 		len = (u64)-1;
549 		testend = 0;
550 	}
551 	while (1) {
552 		int no_splits = 0;
553 
554 		modified = false;
555 		if (!split)
556 			split = alloc_extent_map();
557 		if (!split2)
558 			split2 = alloc_extent_map();
559 		if (!split || !split2)
560 			no_splits = 1;
561 
562 		write_lock(&em_tree->lock);
563 		em = lookup_extent_mapping(em_tree, start, len);
564 		if (!em) {
565 			write_unlock(&em_tree->lock);
566 			break;
567 		}
568 		flags = em->flags;
569 		gen = em->generation;
570 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
571 			if (testend && em->start + em->len >= start + len) {
572 				free_extent_map(em);
573 				write_unlock(&em_tree->lock);
574 				break;
575 			}
576 			start = em->start + em->len;
577 			if (testend)
578 				len = start + len - (em->start + em->len);
579 			free_extent_map(em);
580 			write_unlock(&em_tree->lock);
581 			continue;
582 		}
583 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
584 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
585 		clear_bit(EXTENT_FLAG_LOGGING, &flags);
586 		modified = !list_empty(&em->list);
587 		if (no_splits)
588 			goto next;
589 
590 		if (em->start < start) {
591 			split->start = em->start;
592 			split->len = start - em->start;
593 
594 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
595 				split->orig_start = em->orig_start;
596 				split->block_start = em->block_start;
597 
598 				if (compressed)
599 					split->block_len = em->block_len;
600 				else
601 					split->block_len = split->len;
602 				split->orig_block_len = max(split->block_len,
603 						em->orig_block_len);
604 				split->ram_bytes = em->ram_bytes;
605 			} else {
606 				split->orig_start = split->start;
607 				split->block_len = 0;
608 				split->block_start = em->block_start;
609 				split->orig_block_len = 0;
610 				split->ram_bytes = split->len;
611 			}
612 
613 			split->generation = gen;
614 			split->bdev = em->bdev;
615 			split->flags = flags;
616 			split->compress_type = em->compress_type;
617 			replace_extent_mapping(em_tree, em, split, modified);
618 			free_extent_map(split);
619 			split = split2;
620 			split2 = NULL;
621 		}
622 		if (testend && em->start + em->len > start + len) {
623 			u64 diff = start + len - em->start;
624 
625 			split->start = start + len;
626 			split->len = em->start + em->len - (start + len);
627 			split->bdev = em->bdev;
628 			split->flags = flags;
629 			split->compress_type = em->compress_type;
630 			split->generation = gen;
631 
632 			if (em->block_start < EXTENT_MAP_LAST_BYTE) {
633 				split->orig_block_len = max(em->block_len,
634 						    em->orig_block_len);
635 
636 				split->ram_bytes = em->ram_bytes;
637 				if (compressed) {
638 					split->block_len = em->block_len;
639 					split->block_start = em->block_start;
640 					split->orig_start = em->orig_start;
641 				} else {
642 					split->block_len = split->len;
643 					split->block_start = em->block_start
644 						+ diff;
645 					split->orig_start = em->orig_start;
646 				}
647 			} else {
648 				split->ram_bytes = split->len;
649 				split->orig_start = split->start;
650 				split->block_len = 0;
651 				split->block_start = em->block_start;
652 				split->orig_block_len = 0;
653 			}
654 
655 			if (extent_map_in_tree(em)) {
656 				replace_extent_mapping(em_tree, em, split,
657 						       modified);
658 			} else {
659 				ret = add_extent_mapping(em_tree, split,
660 							 modified);
661 				ASSERT(ret == 0); /* Logic error */
662 			}
663 			free_extent_map(split);
664 			split = NULL;
665 		}
666 next:
667 		if (extent_map_in_tree(em))
668 			remove_extent_mapping(em_tree, em);
669 		write_unlock(&em_tree->lock);
670 
671 		/* once for us */
672 		free_extent_map(em);
673 		/* once for the tree*/
674 		free_extent_map(em);
675 	}
676 	if (split)
677 		free_extent_map(split);
678 	if (split2)
679 		free_extent_map(split2);
680 }
681 
682 /*
683  * this is very complex, but the basic idea is to drop all extents
684  * in the range start - end.  hint_block is filled in with a block number
685  * that would be a good hint to the block allocator for this file.
686  *
687  * If an extent intersects the range but is not entirely inside the range
688  * it is either truncated or split.  Anything entirely inside the range
689  * is deleted from the tree.
690  */
__btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,u64 start,u64 end,u64 * drop_end,int drop_cache,int replace_extent,u32 extent_item_size,int * key_inserted)691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
692 			 struct btrfs_root *root, struct inode *inode,
693 			 struct btrfs_path *path, u64 start, u64 end,
694 			 u64 *drop_end, int drop_cache,
695 			 int replace_extent,
696 			 u32 extent_item_size,
697 			 int *key_inserted)
698 {
699 	struct extent_buffer *leaf;
700 	struct btrfs_file_extent_item *fi;
701 	struct btrfs_key key;
702 	struct btrfs_key new_key;
703 	u64 ino = btrfs_ino(inode);
704 	u64 search_start = start;
705 	u64 disk_bytenr = 0;
706 	u64 num_bytes = 0;
707 	u64 extent_offset = 0;
708 	u64 extent_end = 0;
709 	int del_nr = 0;
710 	int del_slot = 0;
711 	int extent_type;
712 	int recow;
713 	int ret;
714 	int modify_tree = -1;
715 	int update_refs;
716 	int found = 0;
717 	int leafs_visited = 0;
718 
719 	if (drop_cache)
720 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
721 
722 	if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
723 		modify_tree = 0;
724 
725 	update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
726 		       root == root->fs_info->tree_root);
727 	while (1) {
728 		recow = 0;
729 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
730 					       search_start, modify_tree);
731 		if (ret < 0)
732 			break;
733 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734 			leaf = path->nodes[0];
735 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736 			if (key.objectid == ino &&
737 			    key.type == BTRFS_EXTENT_DATA_KEY)
738 				path->slots[0]--;
739 		}
740 		ret = 0;
741 		leafs_visited++;
742 next_slot:
743 		leaf = path->nodes[0];
744 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 			BUG_ON(del_nr > 0);
746 			ret = btrfs_next_leaf(root, path);
747 			if (ret < 0)
748 				break;
749 			if (ret > 0) {
750 				ret = 0;
751 				break;
752 			}
753 			leafs_visited++;
754 			leaf = path->nodes[0];
755 			recow = 1;
756 		}
757 
758 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
759 
760 		if (key.objectid > ino)
761 			break;
762 		if (WARN_ON_ONCE(key.objectid < ino) ||
763 		    key.type < BTRFS_EXTENT_DATA_KEY) {
764 			ASSERT(del_nr == 0);
765 			path->slots[0]++;
766 			goto next_slot;
767 		}
768 		if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
769 			break;
770 
771 		fi = btrfs_item_ptr(leaf, path->slots[0],
772 				    struct btrfs_file_extent_item);
773 		extent_type = btrfs_file_extent_type(leaf, fi);
774 
775 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
776 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
777 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
778 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
779 			extent_offset = btrfs_file_extent_offset(leaf, fi);
780 			extent_end = key.offset +
781 				btrfs_file_extent_num_bytes(leaf, fi);
782 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
783 			extent_end = key.offset +
784 				btrfs_file_extent_inline_len(leaf,
785 						     path->slots[0], fi);
786 		} else {
787 			/* can't happen */
788 			BUG();
789 		}
790 
791 		/*
792 		 * Don't skip extent items representing 0 byte lengths. They
793 		 * used to be created (bug) if while punching holes we hit
794 		 * -ENOSPC condition. So if we find one here, just ensure we
795 		 * delete it, otherwise we would insert a new file extent item
796 		 * with the same key (offset) as that 0 bytes length file
797 		 * extent item in the call to setup_items_for_insert() later
798 		 * in this function.
799 		 */
800 		if (extent_end == key.offset && extent_end >= search_start)
801 			goto delete_extent_item;
802 
803 		if (extent_end <= search_start) {
804 			path->slots[0]++;
805 			goto next_slot;
806 		}
807 
808 		found = 1;
809 		search_start = max(key.offset, start);
810 		if (recow || !modify_tree) {
811 			modify_tree = -1;
812 			btrfs_release_path(path);
813 			continue;
814 		}
815 
816 		/*
817 		 *     | - range to drop - |
818 		 *  | -------- extent -------- |
819 		 */
820 		if (start > key.offset && end < extent_end) {
821 			BUG_ON(del_nr > 0);
822 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
823 				ret = -EOPNOTSUPP;
824 				break;
825 			}
826 
827 			memcpy(&new_key, &key, sizeof(new_key));
828 			new_key.offset = start;
829 			ret = btrfs_duplicate_item(trans, root, path,
830 						   &new_key);
831 			if (ret == -EAGAIN) {
832 				btrfs_release_path(path);
833 				continue;
834 			}
835 			if (ret < 0)
836 				break;
837 
838 			leaf = path->nodes[0];
839 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
840 					    struct btrfs_file_extent_item);
841 			btrfs_set_file_extent_num_bytes(leaf, fi,
842 							start - key.offset);
843 
844 			fi = btrfs_item_ptr(leaf, path->slots[0],
845 					    struct btrfs_file_extent_item);
846 
847 			extent_offset += start - key.offset;
848 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
849 			btrfs_set_file_extent_num_bytes(leaf, fi,
850 							extent_end - start);
851 			btrfs_mark_buffer_dirty(leaf);
852 
853 			if (update_refs && disk_bytenr > 0) {
854 				ret = btrfs_inc_extent_ref(trans, root,
855 						disk_bytenr, num_bytes, 0,
856 						root->root_key.objectid,
857 						new_key.objectid,
858 						start - extent_offset);
859 				BUG_ON(ret); /* -ENOMEM */
860 			}
861 			key.offset = start;
862 		}
863 		/*
864 		 *  | ---- range to drop ----- |
865 		 *      | -------- extent -------- |
866 		 */
867 		if (start <= key.offset && end < extent_end) {
868 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
869 				ret = -EOPNOTSUPP;
870 				break;
871 			}
872 
873 			memcpy(&new_key, &key, sizeof(new_key));
874 			new_key.offset = end;
875 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
876 
877 			extent_offset += end - key.offset;
878 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
879 			btrfs_set_file_extent_num_bytes(leaf, fi,
880 							extent_end - end);
881 			btrfs_mark_buffer_dirty(leaf);
882 			if (update_refs && disk_bytenr > 0)
883 				inode_sub_bytes(inode, end - key.offset);
884 			break;
885 		}
886 
887 		search_start = extent_end;
888 		/*
889 		 *       | ---- range to drop ----- |
890 		 *  | -------- extent -------- |
891 		 */
892 		if (start > key.offset && end >= extent_end) {
893 			BUG_ON(del_nr > 0);
894 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
895 				ret = -EOPNOTSUPP;
896 				break;
897 			}
898 
899 			btrfs_set_file_extent_num_bytes(leaf, fi,
900 							start - key.offset);
901 			btrfs_mark_buffer_dirty(leaf);
902 			if (update_refs && disk_bytenr > 0)
903 				inode_sub_bytes(inode, extent_end - start);
904 			if (end == extent_end)
905 				break;
906 
907 			path->slots[0]++;
908 			goto next_slot;
909 		}
910 
911 		/*
912 		 *  | ---- range to drop ----- |
913 		 *    | ------ extent ------ |
914 		 */
915 		if (start <= key.offset && end >= extent_end) {
916 delete_extent_item:
917 			if (del_nr == 0) {
918 				del_slot = path->slots[0];
919 				del_nr = 1;
920 			} else {
921 				BUG_ON(del_slot + del_nr != path->slots[0]);
922 				del_nr++;
923 			}
924 
925 			if (update_refs &&
926 			    extent_type == BTRFS_FILE_EXTENT_INLINE) {
927 				inode_sub_bytes(inode,
928 						extent_end - key.offset);
929 				extent_end = ALIGN(extent_end,
930 						   root->sectorsize);
931 			} else if (update_refs && disk_bytenr > 0) {
932 				ret = btrfs_free_extent(trans, root,
933 						disk_bytenr, num_bytes, 0,
934 						root->root_key.objectid,
935 						key.objectid, key.offset -
936 						extent_offset);
937 				BUG_ON(ret); /* -ENOMEM */
938 				inode_sub_bytes(inode,
939 						extent_end - key.offset);
940 			}
941 
942 			if (end == extent_end)
943 				break;
944 
945 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
946 				path->slots[0]++;
947 				goto next_slot;
948 			}
949 
950 			ret = btrfs_del_items(trans, root, path, del_slot,
951 					      del_nr);
952 			if (ret) {
953 				btrfs_abort_transaction(trans, ret);
954 				break;
955 			}
956 
957 			del_nr = 0;
958 			del_slot = 0;
959 
960 			btrfs_release_path(path);
961 			continue;
962 		}
963 
964 		BUG_ON(1);
965 	}
966 
967 	if (!ret && del_nr > 0) {
968 		/*
969 		 * Set path->slots[0] to first slot, so that after the delete
970 		 * if items are move off from our leaf to its immediate left or
971 		 * right neighbor leafs, we end up with a correct and adjusted
972 		 * path->slots[0] for our insertion (if replace_extent != 0).
973 		 */
974 		path->slots[0] = del_slot;
975 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
976 		if (ret)
977 			btrfs_abort_transaction(trans, ret);
978 	}
979 
980 	leaf = path->nodes[0];
981 	/*
982 	 * If btrfs_del_items() was called, it might have deleted a leaf, in
983 	 * which case it unlocked our path, so check path->locks[0] matches a
984 	 * write lock.
985 	 */
986 	if (!ret && replace_extent && leafs_visited == 1 &&
987 	    (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
988 	     path->locks[0] == BTRFS_WRITE_LOCK) &&
989 	    btrfs_leaf_free_space(root, leaf) >=
990 	    sizeof(struct btrfs_item) + extent_item_size) {
991 
992 		key.objectid = ino;
993 		key.type = BTRFS_EXTENT_DATA_KEY;
994 		key.offset = start;
995 		if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
996 			struct btrfs_key slot_key;
997 
998 			btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
999 			if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1000 				path->slots[0]++;
1001 		}
1002 		setup_items_for_insert(root, path, &key,
1003 				       &extent_item_size,
1004 				       extent_item_size,
1005 				       sizeof(struct btrfs_item) +
1006 				       extent_item_size, 1);
1007 		*key_inserted = 1;
1008 	}
1009 
1010 	if (!replace_extent || !(*key_inserted))
1011 		btrfs_release_path(path);
1012 	if (drop_end)
1013 		*drop_end = found ? min(end, extent_end) : end;
1014 	return ret;
1015 }
1016 
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 start,u64 end,int drop_cache)1017 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1018 		       struct btrfs_root *root, struct inode *inode, u64 start,
1019 		       u64 end, int drop_cache)
1020 {
1021 	struct btrfs_path *path;
1022 	int ret;
1023 
1024 	path = btrfs_alloc_path();
1025 	if (!path)
1026 		return -ENOMEM;
1027 	ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1028 				   drop_cache, 0, 0, NULL);
1029 	btrfs_free_path(path);
1030 	return ret;
1031 }
1032 
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)1033 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1034 			    u64 objectid, u64 bytenr, u64 orig_offset,
1035 			    u64 *start, u64 *end)
1036 {
1037 	struct btrfs_file_extent_item *fi;
1038 	struct btrfs_key key;
1039 	u64 extent_end;
1040 
1041 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1042 		return 0;
1043 
1044 	btrfs_item_key_to_cpu(leaf, &key, slot);
1045 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1046 		return 0;
1047 
1048 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1049 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1050 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1051 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1052 	    btrfs_file_extent_compression(leaf, fi) ||
1053 	    btrfs_file_extent_encryption(leaf, fi) ||
1054 	    btrfs_file_extent_other_encoding(leaf, fi))
1055 		return 0;
1056 
1057 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1058 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
1059 		return 0;
1060 
1061 	*start = key.offset;
1062 	*end = extent_end;
1063 	return 1;
1064 }
1065 
1066 /*
1067  * Mark extent in the range start - end as written.
1068  *
1069  * This changes extent type from 'pre-allocated' to 'regular'. If only
1070  * part of extent is marked as written, the extent will be split into
1071  * two or three.
1072  */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct inode * inode,u64 start,u64 end)1073 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1074 			      struct inode *inode, u64 start, u64 end)
1075 {
1076 	struct btrfs_root *root = BTRFS_I(inode)->root;
1077 	struct extent_buffer *leaf;
1078 	struct btrfs_path *path;
1079 	struct btrfs_file_extent_item *fi;
1080 	struct btrfs_key key;
1081 	struct btrfs_key new_key;
1082 	u64 bytenr;
1083 	u64 num_bytes;
1084 	u64 extent_end;
1085 	u64 orig_offset;
1086 	u64 other_start;
1087 	u64 other_end;
1088 	u64 split;
1089 	int del_nr = 0;
1090 	int del_slot = 0;
1091 	int recow;
1092 	int ret;
1093 	u64 ino = btrfs_ino(inode);
1094 
1095 	path = btrfs_alloc_path();
1096 	if (!path)
1097 		return -ENOMEM;
1098 again:
1099 	recow = 0;
1100 	split = start;
1101 	key.objectid = ino;
1102 	key.type = BTRFS_EXTENT_DATA_KEY;
1103 	key.offset = split;
1104 
1105 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1106 	if (ret < 0)
1107 		goto out;
1108 	if (ret > 0 && path->slots[0] > 0)
1109 		path->slots[0]--;
1110 
1111 	leaf = path->nodes[0];
1112 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1113 	if (key.objectid != ino ||
1114 	    key.type != BTRFS_EXTENT_DATA_KEY) {
1115 		ret = -EINVAL;
1116 		btrfs_abort_transaction(trans, ret);
1117 		goto out;
1118 	}
1119 	fi = btrfs_item_ptr(leaf, path->slots[0],
1120 			    struct btrfs_file_extent_item);
1121 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1122 		ret = -EINVAL;
1123 		btrfs_abort_transaction(trans, ret);
1124 		goto out;
1125 	}
1126 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1127 	if (key.offset > start || extent_end < end) {
1128 		ret = -EINVAL;
1129 		btrfs_abort_transaction(trans, ret);
1130 		goto out;
1131 	}
1132 
1133 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1134 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1135 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1136 	memcpy(&new_key, &key, sizeof(new_key));
1137 
1138 	if (start == key.offset && end < extent_end) {
1139 		other_start = 0;
1140 		other_end = start;
1141 		if (extent_mergeable(leaf, path->slots[0] - 1,
1142 				     ino, bytenr, orig_offset,
1143 				     &other_start, &other_end)) {
1144 			new_key.offset = end;
1145 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1146 			fi = btrfs_item_ptr(leaf, path->slots[0],
1147 					    struct btrfs_file_extent_item);
1148 			btrfs_set_file_extent_generation(leaf, fi,
1149 							 trans->transid);
1150 			btrfs_set_file_extent_num_bytes(leaf, fi,
1151 							extent_end - end);
1152 			btrfs_set_file_extent_offset(leaf, fi,
1153 						     end - orig_offset);
1154 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1155 					    struct btrfs_file_extent_item);
1156 			btrfs_set_file_extent_generation(leaf, fi,
1157 							 trans->transid);
1158 			btrfs_set_file_extent_num_bytes(leaf, fi,
1159 							end - other_start);
1160 			btrfs_mark_buffer_dirty(leaf);
1161 			goto out;
1162 		}
1163 	}
1164 
1165 	if (start > key.offset && end == extent_end) {
1166 		other_start = end;
1167 		other_end = 0;
1168 		if (extent_mergeable(leaf, path->slots[0] + 1,
1169 				     ino, bytenr, orig_offset,
1170 				     &other_start, &other_end)) {
1171 			fi = btrfs_item_ptr(leaf, path->slots[0],
1172 					    struct btrfs_file_extent_item);
1173 			btrfs_set_file_extent_num_bytes(leaf, fi,
1174 							start - key.offset);
1175 			btrfs_set_file_extent_generation(leaf, fi,
1176 							 trans->transid);
1177 			path->slots[0]++;
1178 			new_key.offset = start;
1179 			btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1180 
1181 			fi = btrfs_item_ptr(leaf, path->slots[0],
1182 					    struct btrfs_file_extent_item);
1183 			btrfs_set_file_extent_generation(leaf, fi,
1184 							 trans->transid);
1185 			btrfs_set_file_extent_num_bytes(leaf, fi,
1186 							other_end - start);
1187 			btrfs_set_file_extent_offset(leaf, fi,
1188 						     start - orig_offset);
1189 			btrfs_mark_buffer_dirty(leaf);
1190 			goto out;
1191 		}
1192 	}
1193 
1194 	while (start > key.offset || end < extent_end) {
1195 		if (key.offset == start)
1196 			split = end;
1197 
1198 		new_key.offset = split;
1199 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
1200 		if (ret == -EAGAIN) {
1201 			btrfs_release_path(path);
1202 			goto again;
1203 		}
1204 		if (ret < 0) {
1205 			btrfs_abort_transaction(trans, ret);
1206 			goto out;
1207 		}
1208 
1209 		leaf = path->nodes[0];
1210 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1211 				    struct btrfs_file_extent_item);
1212 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1213 		btrfs_set_file_extent_num_bytes(leaf, fi,
1214 						split - key.offset);
1215 
1216 		fi = btrfs_item_ptr(leaf, path->slots[0],
1217 				    struct btrfs_file_extent_item);
1218 
1219 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1220 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1221 		btrfs_set_file_extent_num_bytes(leaf, fi,
1222 						extent_end - split);
1223 		btrfs_mark_buffer_dirty(leaf);
1224 
1225 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1226 					   root->root_key.objectid,
1227 					   ino, orig_offset);
1228 		if (ret) {
1229 			btrfs_abort_transaction(trans, ret);
1230 			goto out;
1231 		}
1232 
1233 		if (split == start) {
1234 			key.offset = start;
1235 		} else {
1236 			if (start != key.offset) {
1237 				ret = -EINVAL;
1238 				btrfs_abort_transaction(trans, ret);
1239 				goto out;
1240 			}
1241 			path->slots[0]--;
1242 			extent_end = end;
1243 		}
1244 		recow = 1;
1245 	}
1246 
1247 	other_start = end;
1248 	other_end = 0;
1249 	if (extent_mergeable(leaf, path->slots[0] + 1,
1250 			     ino, bytenr, orig_offset,
1251 			     &other_start, &other_end)) {
1252 		if (recow) {
1253 			btrfs_release_path(path);
1254 			goto again;
1255 		}
1256 		extent_end = other_end;
1257 		del_slot = path->slots[0] + 1;
1258 		del_nr++;
1259 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1260 					0, root->root_key.objectid,
1261 					ino, orig_offset);
1262 		if (ret) {
1263 			btrfs_abort_transaction(trans, ret);
1264 			goto out;
1265 		}
1266 	}
1267 	other_start = 0;
1268 	other_end = start;
1269 	if (extent_mergeable(leaf, path->slots[0] - 1,
1270 			     ino, bytenr, orig_offset,
1271 			     &other_start, &other_end)) {
1272 		if (recow) {
1273 			btrfs_release_path(path);
1274 			goto again;
1275 		}
1276 		key.offset = other_start;
1277 		del_slot = path->slots[0];
1278 		del_nr++;
1279 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1280 					0, root->root_key.objectid,
1281 					ino, orig_offset);
1282 		if (ret) {
1283 			btrfs_abort_transaction(trans, ret);
1284 			goto out;
1285 		}
1286 	}
1287 	if (del_nr == 0) {
1288 		fi = btrfs_item_ptr(leaf, path->slots[0],
1289 			   struct btrfs_file_extent_item);
1290 		btrfs_set_file_extent_type(leaf, fi,
1291 					   BTRFS_FILE_EXTENT_REG);
1292 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1293 		btrfs_mark_buffer_dirty(leaf);
1294 	} else {
1295 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1296 			   struct btrfs_file_extent_item);
1297 		btrfs_set_file_extent_type(leaf, fi,
1298 					   BTRFS_FILE_EXTENT_REG);
1299 		btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1300 		btrfs_set_file_extent_num_bytes(leaf, fi,
1301 						extent_end - key.offset);
1302 		btrfs_mark_buffer_dirty(leaf);
1303 
1304 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1305 		if (ret < 0) {
1306 			btrfs_abort_transaction(trans, ret);
1307 			goto out;
1308 		}
1309 	}
1310 out:
1311 	btrfs_free_path(path);
1312 	return 0;
1313 }
1314 
1315 /*
1316  * on error we return an unlocked page and the error value
1317  * on success we return a locked page and 0
1318  */
prepare_uptodate_page(struct inode * inode,struct page * page,u64 pos,bool force_uptodate)1319 static int prepare_uptodate_page(struct inode *inode,
1320 				 struct page *page, u64 pos,
1321 				 bool force_uptodate)
1322 {
1323 	int ret = 0;
1324 
1325 	if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1326 	    !PageUptodate(page)) {
1327 		ret = btrfs_readpage(NULL, page);
1328 		if (ret)
1329 			return ret;
1330 		lock_page(page);
1331 		if (!PageUptodate(page)) {
1332 			unlock_page(page);
1333 			return -EIO;
1334 		}
1335 		if (page->mapping != inode->i_mapping) {
1336 			unlock_page(page);
1337 			return -EAGAIN;
1338 		}
1339 	}
1340 	return 0;
1341 }
1342 
1343 /*
1344  * this just gets pages into the page cache and locks them down.
1345  */
prepare_pages(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,bool force_uptodate)1346 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1347 				  size_t num_pages, loff_t pos,
1348 				  size_t write_bytes, bool force_uptodate)
1349 {
1350 	int i;
1351 	unsigned long index = pos >> PAGE_SHIFT;
1352 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1353 	int err = 0;
1354 	int faili;
1355 
1356 	for (i = 0; i < num_pages; i++) {
1357 again:
1358 		pages[i] = find_or_create_page(inode->i_mapping, index + i,
1359 					       mask | __GFP_WRITE);
1360 		if (!pages[i]) {
1361 			faili = i - 1;
1362 			err = -ENOMEM;
1363 			goto fail;
1364 		}
1365 
1366 		if (i == 0)
1367 			err = prepare_uptodate_page(inode, pages[i], pos,
1368 						    force_uptodate);
1369 		if (!err && i == num_pages - 1)
1370 			err = prepare_uptodate_page(inode, pages[i],
1371 						    pos + write_bytes, false);
1372 		if (err) {
1373 			put_page(pages[i]);
1374 			if (err == -EAGAIN) {
1375 				err = 0;
1376 				goto again;
1377 			}
1378 			faili = i - 1;
1379 			goto fail;
1380 		}
1381 		wait_on_page_writeback(pages[i]);
1382 	}
1383 
1384 	return 0;
1385 fail:
1386 	while (faili >= 0) {
1387 		unlock_page(pages[faili]);
1388 		put_page(pages[faili]);
1389 		faili--;
1390 	}
1391 	return err;
1392 
1393 }
1394 
1395 /*
1396  * This function locks the extent and properly waits for data=ordered extents
1397  * to finish before allowing the pages to be modified if need.
1398  *
1399  * The return value:
1400  * 1 - the extent is locked
1401  * 0 - the extent is not locked, and everything is OK
1402  * -EAGAIN - need re-prepare the pages
1403  * the other < 0 number - Something wrong happens
1404  */
1405 static noinline int
lock_and_cleanup_extent_if_need(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,struct extent_state ** cached_state)1406 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1407 				size_t num_pages, loff_t pos,
1408 				size_t write_bytes,
1409 				u64 *lockstart, u64 *lockend,
1410 				struct extent_state **cached_state)
1411 {
1412 	struct btrfs_root *root = BTRFS_I(inode)->root;
1413 	u64 start_pos;
1414 	u64 last_pos;
1415 	int i;
1416 	int ret = 0;
1417 
1418 	start_pos = round_down(pos, root->sectorsize);
1419 	last_pos = start_pos
1420 		+ round_up(pos + write_bytes - start_pos, root->sectorsize) - 1;
1421 
1422 	if (start_pos < inode->i_size) {
1423 		struct btrfs_ordered_extent *ordered;
1424 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1425 				 start_pos, last_pos, cached_state);
1426 		ordered = btrfs_lookup_ordered_range(inode, start_pos,
1427 						     last_pos - start_pos + 1);
1428 		if (ordered &&
1429 		    ordered->file_offset + ordered->len > start_pos &&
1430 		    ordered->file_offset <= last_pos) {
1431 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1432 					     start_pos, last_pos,
1433 					     cached_state, GFP_NOFS);
1434 			for (i = 0; i < num_pages; i++) {
1435 				unlock_page(pages[i]);
1436 				put_page(pages[i]);
1437 			}
1438 			btrfs_start_ordered_extent(inode, ordered, 1);
1439 			btrfs_put_ordered_extent(ordered);
1440 			return -EAGAIN;
1441 		}
1442 		if (ordered)
1443 			btrfs_put_ordered_extent(ordered);
1444 
1445 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1446 				  last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1447 				  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1448 				  0, 0, cached_state, GFP_NOFS);
1449 		*lockstart = start_pos;
1450 		*lockend = last_pos;
1451 		ret = 1;
1452 	}
1453 
1454 	for (i = 0; i < num_pages; i++) {
1455 		if (clear_page_dirty_for_io(pages[i]))
1456 			account_page_redirty(pages[i]);
1457 		set_page_extent_mapped(pages[i]);
1458 		WARN_ON(!PageLocked(pages[i]));
1459 	}
1460 
1461 	return ret;
1462 }
1463 
check_can_nocow(struct inode * inode,loff_t pos,size_t * write_bytes)1464 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1465 				    size_t *write_bytes)
1466 {
1467 	struct btrfs_root *root = BTRFS_I(inode)->root;
1468 	struct btrfs_ordered_extent *ordered;
1469 	u64 lockstart, lockend;
1470 	u64 num_bytes;
1471 	int ret;
1472 
1473 	ret = btrfs_start_write_no_snapshoting(root);
1474 	if (!ret)
1475 		return -ENOSPC;
1476 
1477 	lockstart = round_down(pos, root->sectorsize);
1478 	lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1479 
1480 	while (1) {
1481 		lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1482 		ordered = btrfs_lookup_ordered_range(inode, lockstart,
1483 						     lockend - lockstart + 1);
1484 		if (!ordered) {
1485 			break;
1486 		}
1487 		unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1488 		btrfs_start_ordered_extent(inode, ordered, 1);
1489 		btrfs_put_ordered_extent(ordered);
1490 	}
1491 
1492 	num_bytes = lockend - lockstart + 1;
1493 	ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1494 	if (ret <= 0) {
1495 		ret = 0;
1496 		btrfs_end_write_no_snapshoting(root);
1497 	} else {
1498 		*write_bytes = min_t(size_t, *write_bytes ,
1499 				     num_bytes - pos + lockstart);
1500 	}
1501 
1502 	unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1503 
1504 	return ret;
1505 }
1506 
__btrfs_buffered_write(struct file * file,struct iov_iter * i,loff_t pos)1507 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1508 					       struct iov_iter *i,
1509 					       loff_t pos)
1510 {
1511 	struct inode *inode = file_inode(file);
1512 	struct btrfs_root *root = BTRFS_I(inode)->root;
1513 	struct page **pages = NULL;
1514 	struct extent_state *cached_state = NULL;
1515 	u64 release_bytes = 0;
1516 	u64 lockstart;
1517 	u64 lockend;
1518 	size_t num_written = 0;
1519 	int nrptrs;
1520 	int ret = 0;
1521 	bool only_release_metadata = false;
1522 	bool force_page_uptodate = false;
1523 	bool need_unlock;
1524 
1525 	nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1526 			PAGE_SIZE / (sizeof(struct page *)));
1527 	nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1528 	nrptrs = max(nrptrs, 8);
1529 	pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1530 	if (!pages)
1531 		return -ENOMEM;
1532 
1533 	while (iov_iter_count(i) > 0) {
1534 		size_t offset = pos & (PAGE_SIZE - 1);
1535 		size_t sector_offset;
1536 		size_t write_bytes = min(iov_iter_count(i),
1537 					 nrptrs * (size_t)PAGE_SIZE -
1538 					 offset);
1539 		size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1540 						PAGE_SIZE);
1541 		size_t reserve_bytes;
1542 		size_t dirty_pages;
1543 		size_t copied;
1544 		size_t dirty_sectors;
1545 		size_t num_sectors;
1546 
1547 		WARN_ON(num_pages > nrptrs);
1548 
1549 		/*
1550 		 * Fault pages before locking them in prepare_pages
1551 		 * to avoid recursive lock
1552 		 */
1553 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1554 			ret = -EFAULT;
1555 			break;
1556 		}
1557 
1558 		sector_offset = pos & (root->sectorsize - 1);
1559 		reserve_bytes = round_up(write_bytes + sector_offset,
1560 				root->sectorsize);
1561 
1562 		ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1563 		if (ret < 0) {
1564 			if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1565 						      BTRFS_INODE_PREALLOC)) &&
1566 			    check_can_nocow(inode, pos, &write_bytes) > 0) {
1567 				/*
1568 				 * For nodata cow case, no need to reserve
1569 				 * data space.
1570 				 */
1571 				only_release_metadata = true;
1572 				/*
1573 				 * our prealloc extent may be smaller than
1574 				 * write_bytes, so scale down.
1575 				 */
1576 				num_pages = DIV_ROUND_UP(write_bytes + offset,
1577 							 PAGE_SIZE);
1578 				reserve_bytes = round_up(write_bytes +
1579 							 sector_offset,
1580 							 root->sectorsize);
1581 			} else {
1582 				break;
1583 			}
1584 		}
1585 
1586 		ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1587 		if (ret) {
1588 			if (!only_release_metadata)
1589 				btrfs_free_reserved_data_space(inode, pos,
1590 							       write_bytes);
1591 			else
1592 				btrfs_end_write_no_snapshoting(root);
1593 			break;
1594 		}
1595 
1596 		release_bytes = reserve_bytes;
1597 		need_unlock = false;
1598 again:
1599 		/*
1600 		 * This is going to setup the pages array with the number of
1601 		 * pages we want, so we don't really need to worry about the
1602 		 * contents of pages from loop to loop
1603 		 */
1604 		ret = prepare_pages(inode, pages, num_pages,
1605 				    pos, write_bytes,
1606 				    force_page_uptodate);
1607 		if (ret)
1608 			break;
1609 
1610 		ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1611 						pos, write_bytes, &lockstart,
1612 						&lockend, &cached_state);
1613 		if (ret < 0) {
1614 			if (ret == -EAGAIN)
1615 				goto again;
1616 			break;
1617 		} else if (ret > 0) {
1618 			need_unlock = true;
1619 			ret = 0;
1620 		}
1621 
1622 		copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1623 
1624 		num_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1625 						reserve_bytes);
1626 		dirty_sectors = round_up(copied + sector_offset,
1627 					root->sectorsize);
1628 		dirty_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1629 						dirty_sectors);
1630 
1631 		/*
1632 		 * if we have trouble faulting in the pages, fall
1633 		 * back to one page at a time
1634 		 */
1635 		if (copied < write_bytes)
1636 			nrptrs = 1;
1637 
1638 		if (copied == 0) {
1639 			force_page_uptodate = true;
1640 			dirty_sectors = 0;
1641 			dirty_pages = 0;
1642 		} else {
1643 			force_page_uptodate = false;
1644 			dirty_pages = DIV_ROUND_UP(copied + offset,
1645 						   PAGE_SIZE);
1646 		}
1647 
1648 		/*
1649 		 * If we had a short copy we need to release the excess delaloc
1650 		 * bytes we reserved.  We need to increment outstanding_extents
1651 		 * because btrfs_delalloc_release_space and
1652 		 * btrfs_delalloc_release_metadata will decrement it, but
1653 		 * we still have an outstanding extent for the chunk we actually
1654 		 * managed to copy.
1655 		 */
1656 		if (num_sectors > dirty_sectors) {
1657 
1658 			/* release everything except the sectors we dirtied */
1659 			release_bytes -= dirty_sectors <<
1660 				root->fs_info->sb->s_blocksize_bits;
1661 
1662 			if (copied > 0) {
1663 				spin_lock(&BTRFS_I(inode)->lock);
1664 				BTRFS_I(inode)->outstanding_extents++;
1665 				spin_unlock(&BTRFS_I(inode)->lock);
1666 			}
1667 			if (only_release_metadata) {
1668 				btrfs_delalloc_release_metadata(inode,
1669 								release_bytes);
1670 			} else {
1671 				u64 __pos;
1672 
1673 				__pos = round_down(pos, root->sectorsize) +
1674 					(dirty_pages << PAGE_SHIFT);
1675 				btrfs_delalloc_release_space(inode, __pos,
1676 							     release_bytes);
1677 			}
1678 		}
1679 
1680 		release_bytes = round_up(copied + sector_offset,
1681 					root->sectorsize);
1682 
1683 		if (copied > 0)
1684 			ret = btrfs_dirty_pages(root, inode, pages,
1685 						dirty_pages, pos, copied,
1686 						NULL);
1687 		if (need_unlock)
1688 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1689 					     lockstart, lockend, &cached_state,
1690 					     GFP_NOFS);
1691 		if (ret) {
1692 			btrfs_drop_pages(pages, num_pages);
1693 			break;
1694 		}
1695 
1696 		release_bytes = 0;
1697 		if (only_release_metadata)
1698 			btrfs_end_write_no_snapshoting(root);
1699 
1700 		if (only_release_metadata && copied > 0) {
1701 			lockstart = round_down(pos, root->sectorsize);
1702 			lockend = round_up(pos + copied, root->sectorsize) - 1;
1703 
1704 			set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1705 				       lockend, EXTENT_NORESERVE, NULL,
1706 				       NULL, GFP_NOFS);
1707 			only_release_metadata = false;
1708 		}
1709 
1710 		btrfs_drop_pages(pages, num_pages);
1711 
1712 		cond_resched();
1713 
1714 		balance_dirty_pages_ratelimited(inode->i_mapping);
1715 		if (dirty_pages < (root->nodesize >> PAGE_SHIFT) + 1)
1716 			btrfs_btree_balance_dirty(root);
1717 
1718 		pos += copied;
1719 		num_written += copied;
1720 	}
1721 
1722 	kfree(pages);
1723 
1724 	if (release_bytes) {
1725 		if (only_release_metadata) {
1726 			btrfs_end_write_no_snapshoting(root);
1727 			btrfs_delalloc_release_metadata(inode, release_bytes);
1728 		} else {
1729 			btrfs_delalloc_release_space(inode,
1730 						round_down(pos, root->sectorsize),
1731 						release_bytes);
1732 		}
1733 	}
1734 
1735 	return num_written ? num_written : ret;
1736 }
1737 
__btrfs_direct_write(struct kiocb * iocb,struct iov_iter * from)1738 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1739 {
1740 	struct file *file = iocb->ki_filp;
1741 	struct inode *inode = file_inode(file);
1742 	loff_t pos = iocb->ki_pos;
1743 	ssize_t written;
1744 	ssize_t written_buffered;
1745 	loff_t endbyte;
1746 	int err;
1747 
1748 	written = generic_file_direct_write(iocb, from);
1749 
1750 	if (written < 0 || !iov_iter_count(from))
1751 		return written;
1752 
1753 	pos += written;
1754 	written_buffered = __btrfs_buffered_write(file, from, pos);
1755 	if (written_buffered < 0) {
1756 		err = written_buffered;
1757 		goto out;
1758 	}
1759 	/*
1760 	 * Ensure all data is persisted. We want the next direct IO read to be
1761 	 * able to read what was just written.
1762 	 */
1763 	endbyte = pos + written_buffered - 1;
1764 	err = btrfs_fdatawrite_range(inode, pos, endbyte);
1765 	if (err)
1766 		goto out;
1767 	err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1768 	if (err)
1769 		goto out;
1770 	written += written_buffered;
1771 	iocb->ki_pos = pos + written_buffered;
1772 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1773 				 endbyte >> PAGE_SHIFT);
1774 out:
1775 	return written ? written : err;
1776 }
1777 
update_time_for_write(struct inode * inode)1778 static void update_time_for_write(struct inode *inode)
1779 {
1780 	struct timespec now;
1781 
1782 	if (IS_NOCMTIME(inode))
1783 		return;
1784 
1785 	now = current_time(inode);
1786 	if (!timespec_equal(&inode->i_mtime, &now))
1787 		inode->i_mtime = now;
1788 
1789 	if (!timespec_equal(&inode->i_ctime, &now))
1790 		inode->i_ctime = now;
1791 
1792 	if (IS_I_VERSION(inode))
1793 		inode_inc_iversion(inode);
1794 }
1795 
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1796 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1797 				    struct iov_iter *from)
1798 {
1799 	struct file *file = iocb->ki_filp;
1800 	struct inode *inode = file_inode(file);
1801 	struct btrfs_root *root = BTRFS_I(inode)->root;
1802 	u64 start_pos;
1803 	u64 end_pos;
1804 	ssize_t num_written = 0;
1805 	bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1806 	ssize_t err;
1807 	loff_t pos;
1808 	size_t count;
1809 	loff_t oldsize;
1810 	int clean_page = 0;
1811 
1812 	inode_lock(inode);
1813 	err = generic_write_checks(iocb, from);
1814 	if (err <= 0) {
1815 		inode_unlock(inode);
1816 		return err;
1817 	}
1818 
1819 	current->backing_dev_info = inode_to_bdi(inode);
1820 	err = file_remove_privs(file);
1821 	if (err) {
1822 		inode_unlock(inode);
1823 		goto out;
1824 	}
1825 
1826 	/*
1827 	 * If BTRFS flips readonly due to some impossible error
1828 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1829 	 * although we have opened a file as writable, we have
1830 	 * to stop this write operation to ensure FS consistency.
1831 	 */
1832 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1833 		inode_unlock(inode);
1834 		err = -EROFS;
1835 		goto out;
1836 	}
1837 
1838 	/*
1839 	 * We reserve space for updating the inode when we reserve space for the
1840 	 * extent we are going to write, so we will enospc out there.  We don't
1841 	 * need to start yet another transaction to update the inode as we will
1842 	 * update the inode when we finish writing whatever data we write.
1843 	 */
1844 	update_time_for_write(inode);
1845 
1846 	pos = iocb->ki_pos;
1847 	count = iov_iter_count(from);
1848 	start_pos = round_down(pos, root->sectorsize);
1849 	oldsize = i_size_read(inode);
1850 	if (start_pos > oldsize) {
1851 		/* Expand hole size to cover write data, preventing empty gap */
1852 		end_pos = round_up(pos + count, root->sectorsize);
1853 		err = btrfs_cont_expand(inode, oldsize, end_pos);
1854 		if (err) {
1855 			inode_unlock(inode);
1856 			goto out;
1857 		}
1858 		if (start_pos > round_up(oldsize, root->sectorsize))
1859 			clean_page = 1;
1860 	}
1861 
1862 	if (sync)
1863 		atomic_inc(&BTRFS_I(inode)->sync_writers);
1864 
1865 	if (iocb->ki_flags & IOCB_DIRECT) {
1866 		num_written = __btrfs_direct_write(iocb, from);
1867 	} else {
1868 		num_written = __btrfs_buffered_write(file, from, pos);
1869 		if (num_written > 0)
1870 			iocb->ki_pos = pos + num_written;
1871 		if (clean_page)
1872 			pagecache_isize_extended(inode, oldsize,
1873 						i_size_read(inode));
1874 	}
1875 
1876 	inode_unlock(inode);
1877 
1878 	/*
1879 	 * We also have to set last_sub_trans to the current log transid,
1880 	 * otherwise subsequent syncs to a file that's been synced in this
1881 	 * transaction will appear to have already occurred.
1882 	 */
1883 	spin_lock(&BTRFS_I(inode)->lock);
1884 	BTRFS_I(inode)->last_sub_trans = root->log_transid;
1885 	spin_unlock(&BTRFS_I(inode)->lock);
1886 	if (num_written > 0)
1887 		num_written = generic_write_sync(iocb, num_written);
1888 
1889 	if (sync)
1890 		atomic_dec(&BTRFS_I(inode)->sync_writers);
1891 out:
1892 	current->backing_dev_info = NULL;
1893 	return num_written ? num_written : err;
1894 }
1895 
btrfs_release_file(struct inode * inode,struct file * filp)1896 int btrfs_release_file(struct inode *inode, struct file *filp)
1897 {
1898 	if (filp->private_data)
1899 		btrfs_ioctl_trans_end(filp);
1900 	/*
1901 	 * ordered_data_close is set by settattr when we are about to truncate
1902 	 * a file from a non-zero size to a zero size.  This tries to
1903 	 * flush down new bytes that may have been written if the
1904 	 * application were using truncate to replace a file in place.
1905 	 */
1906 	if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1907 			       &BTRFS_I(inode)->runtime_flags))
1908 			filemap_flush(inode->i_mapping);
1909 	return 0;
1910 }
1911 
start_ordered_ops(struct inode * inode,loff_t start,loff_t end)1912 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1913 {
1914 	int ret;
1915 
1916 	atomic_inc(&BTRFS_I(inode)->sync_writers);
1917 	ret = btrfs_fdatawrite_range(inode, start, end);
1918 	atomic_dec(&BTRFS_I(inode)->sync_writers);
1919 
1920 	return ret;
1921 }
1922 
1923 /*
1924  * fsync call for both files and directories.  This logs the inode into
1925  * the tree log instead of forcing full commits whenever possible.
1926  *
1927  * It needs to call filemap_fdatawait so that all ordered extent updates are
1928  * in the metadata btree are up to date for copying to the log.
1929  *
1930  * It drops the inode mutex before doing the tree log commit.  This is an
1931  * important optimization for directories because holding the mutex prevents
1932  * new operations on the dir while we write to disk.
1933  */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)1934 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1935 {
1936 	struct dentry *dentry = file_dentry(file);
1937 	struct inode *inode = d_inode(dentry);
1938 	struct btrfs_root *root = BTRFS_I(inode)->root;
1939 	struct btrfs_trans_handle *trans;
1940 	struct btrfs_log_ctx ctx;
1941 	int ret = 0;
1942 	bool full_sync = 0;
1943 	u64 len;
1944 
1945 	/*
1946 	 * The range length can be represented by u64, we have to do the typecasts
1947 	 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1948 	 */
1949 	len = (u64)end - (u64)start + 1;
1950 	trace_btrfs_sync_file(file, datasync);
1951 
1952 	/*
1953 	 * We write the dirty pages in the range and wait until they complete
1954 	 * out of the ->i_mutex. If so, we can flush the dirty pages by
1955 	 * multi-task, and make the performance up.  See
1956 	 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1957 	 */
1958 	ret = start_ordered_ops(inode, start, end);
1959 	if (ret)
1960 		return ret;
1961 
1962 	inode_lock(inode);
1963 	atomic_inc(&root->log_batch);
1964 	full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1965 			     &BTRFS_I(inode)->runtime_flags);
1966 	/*
1967 	 * We might have have had more pages made dirty after calling
1968 	 * start_ordered_ops and before acquiring the inode's i_mutex.
1969 	 */
1970 	if (full_sync) {
1971 		/*
1972 		 * For a full sync, we need to make sure any ordered operations
1973 		 * start and finish before we start logging the inode, so that
1974 		 * all extents are persisted and the respective file extent
1975 		 * items are in the fs/subvol btree.
1976 		 */
1977 		ret = btrfs_wait_ordered_range(inode, start, len);
1978 	} else {
1979 		/*
1980 		 * Start any new ordered operations before starting to log the
1981 		 * inode. We will wait for them to finish in btrfs_sync_log().
1982 		 *
1983 		 * Right before acquiring the inode's mutex, we might have new
1984 		 * writes dirtying pages, which won't immediately start the
1985 		 * respective ordered operations - that is done through the
1986 		 * fill_delalloc callbacks invoked from the writepage and
1987 		 * writepages address space operations. So make sure we start
1988 		 * all ordered operations before starting to log our inode. Not
1989 		 * doing this means that while logging the inode, writeback
1990 		 * could start and invoke writepage/writepages, which would call
1991 		 * the fill_delalloc callbacks (cow_file_range,
1992 		 * submit_compressed_extents). These callbacks add first an
1993 		 * extent map to the modified list of extents and then create
1994 		 * the respective ordered operation, which means in
1995 		 * tree-log.c:btrfs_log_inode() we might capture all existing
1996 		 * ordered operations (with btrfs_get_logged_extents()) before
1997 		 * the fill_delalloc callback adds its ordered operation, and by
1998 		 * the time we visit the modified list of extent maps (with
1999 		 * btrfs_log_changed_extents()), we see and process the extent
2000 		 * map they created. We then use the extent map to construct a
2001 		 * file extent item for logging without waiting for the
2002 		 * respective ordered operation to finish - this file extent
2003 		 * item points to a disk location that might not have yet been
2004 		 * written to, containing random data - so after a crash a log
2005 		 * replay will make our inode have file extent items that point
2006 		 * to disk locations containing invalid data, as we returned
2007 		 * success to userspace without waiting for the respective
2008 		 * ordered operation to finish, because it wasn't captured by
2009 		 * btrfs_get_logged_extents().
2010 		 */
2011 		ret = start_ordered_ops(inode, start, end);
2012 	}
2013 	if (ret) {
2014 		inode_unlock(inode);
2015 		goto out;
2016 	}
2017 	atomic_inc(&root->log_batch);
2018 
2019 	/*
2020 	 * If the last transaction that changed this file was before the current
2021 	 * transaction and we have the full sync flag set in our inode, we can
2022 	 * bail out now without any syncing.
2023 	 *
2024 	 * Note that we can't bail out if the full sync flag isn't set. This is
2025 	 * because when the full sync flag is set we start all ordered extents
2026 	 * and wait for them to fully complete - when they complete they update
2027 	 * the inode's last_trans field through:
2028 	 *
2029 	 *     btrfs_finish_ordered_io() ->
2030 	 *         btrfs_update_inode_fallback() ->
2031 	 *             btrfs_update_inode() ->
2032 	 *                 btrfs_set_inode_last_trans()
2033 	 *
2034 	 * So we are sure that last_trans is up to date and can do this check to
2035 	 * bail out safely. For the fast path, when the full sync flag is not
2036 	 * set in our inode, we can not do it because we start only our ordered
2037 	 * extents and don't wait for them to complete (that is when
2038 	 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2039 	 * value might be less than or equals to fs_info->last_trans_committed,
2040 	 * and setting a speculative last_trans for an inode when a buffered
2041 	 * write is made (such as fs_info->generation + 1 for example) would not
2042 	 * be reliable since after setting the value and before fsync is called
2043 	 * any number of transactions can start and commit (transaction kthread
2044 	 * commits the current transaction periodically), and a transaction
2045 	 * commit does not start nor waits for ordered extents to complete.
2046 	 */
2047 	smp_mb();
2048 	if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
2049 	    (full_sync && BTRFS_I(inode)->last_trans <=
2050 	     root->fs_info->last_trans_committed) ||
2051 	    (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2052 	     BTRFS_I(inode)->last_trans
2053 	     <= root->fs_info->last_trans_committed)) {
2054 		/*
2055 		 * We've had everything committed since the last time we were
2056 		 * modified so clear this flag in case it was set for whatever
2057 		 * reason, it's no longer relevant.
2058 		 */
2059 		clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2060 			  &BTRFS_I(inode)->runtime_flags);
2061 		/*
2062 		 * An ordered extent might have started before and completed
2063 		 * already with io errors, in which case the inode was not
2064 		 * updated and we end up here. So check the inode's mapping
2065 		 * flags for any errors that might have happened while doing
2066 		 * writeback of file data.
2067 		 */
2068 		ret = filemap_check_errors(inode->i_mapping);
2069 		inode_unlock(inode);
2070 		goto out;
2071 	}
2072 
2073 	/*
2074 	 * ok we haven't committed the transaction yet, lets do a commit
2075 	 */
2076 	if (file->private_data)
2077 		btrfs_ioctl_trans_end(file);
2078 
2079 	/*
2080 	 * We use start here because we will need to wait on the IO to complete
2081 	 * in btrfs_sync_log, which could require joining a transaction (for
2082 	 * example checking cross references in the nocow path).  If we use join
2083 	 * here we could get into a situation where we're waiting on IO to
2084 	 * happen that is blocked on a transaction trying to commit.  With start
2085 	 * we inc the extwriter counter, so we wait for all extwriters to exit
2086 	 * before we start blocking join'ers.  This comment is to keep somebody
2087 	 * from thinking they are super smart and changing this to
2088 	 * btrfs_join_transaction *cough*Josef*cough*.
2089 	 */
2090 	trans = btrfs_start_transaction(root, 0);
2091 	if (IS_ERR(trans)) {
2092 		ret = PTR_ERR(trans);
2093 		inode_unlock(inode);
2094 		goto out;
2095 	}
2096 	trans->sync = true;
2097 
2098 	btrfs_init_log_ctx(&ctx, inode);
2099 
2100 	ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2101 	if (ret < 0) {
2102 		/* Fallthrough and commit/free transaction. */
2103 		ret = 1;
2104 	}
2105 
2106 	/* we've logged all the items and now have a consistent
2107 	 * version of the file in the log.  It is possible that
2108 	 * someone will come in and modify the file, but that's
2109 	 * fine because the log is consistent on disk, and we
2110 	 * have references to all of the file's extents
2111 	 *
2112 	 * It is possible that someone will come in and log the
2113 	 * file again, but that will end up using the synchronization
2114 	 * inside btrfs_sync_log to keep things safe.
2115 	 */
2116 	inode_unlock(inode);
2117 
2118 	/*
2119 	 * If any of the ordered extents had an error, just return it to user
2120 	 * space, so that the application knows some writes didn't succeed and
2121 	 * can take proper action (retry for e.g.). Blindly committing the
2122 	 * transaction in this case, would fool userspace that everything was
2123 	 * successful. And we also want to make sure our log doesn't contain
2124 	 * file extent items pointing to extents that weren't fully written to -
2125 	 * just like in the non fast fsync path, where we check for the ordered
2126 	 * operation's error flag before writing to the log tree and return -EIO
2127 	 * if any of them had this flag set (btrfs_wait_ordered_range) -
2128 	 * therefore we need to check for errors in the ordered operations,
2129 	 * which are indicated by ctx.io_err.
2130 	 */
2131 	if (ctx.io_err) {
2132 		btrfs_end_transaction(trans, root);
2133 		ret = ctx.io_err;
2134 		goto out;
2135 	}
2136 
2137 	if (ret != BTRFS_NO_LOG_SYNC) {
2138 		if (!ret) {
2139 			ret = btrfs_sync_log(trans, root, &ctx);
2140 			if (!ret) {
2141 				ret = btrfs_end_transaction(trans, root);
2142 				goto out;
2143 			}
2144 		}
2145 		if (!full_sync) {
2146 			ret = btrfs_wait_ordered_range(inode, start, len);
2147 			if (ret) {
2148 				btrfs_end_transaction(trans, root);
2149 				goto out;
2150 			}
2151 		}
2152 		ret = btrfs_commit_transaction(trans, root);
2153 	} else {
2154 		ret = btrfs_end_transaction(trans, root);
2155 	}
2156 out:
2157 	return ret > 0 ? -EIO : ret;
2158 }
2159 
2160 static const struct vm_operations_struct btrfs_file_vm_ops = {
2161 	.fault		= filemap_fault,
2162 	.map_pages	= filemap_map_pages,
2163 	.page_mkwrite	= btrfs_page_mkwrite,
2164 };
2165 
btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)2166 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
2167 {
2168 	struct address_space *mapping = filp->f_mapping;
2169 
2170 	if (!mapping->a_ops->readpage)
2171 		return -ENOEXEC;
2172 
2173 	file_accessed(filp);
2174 	vma->vm_ops = &btrfs_file_vm_ops;
2175 
2176 	return 0;
2177 }
2178 
hole_mergeable(struct inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2179 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2180 			  int slot, u64 start, u64 end)
2181 {
2182 	struct btrfs_file_extent_item *fi;
2183 	struct btrfs_key key;
2184 
2185 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2186 		return 0;
2187 
2188 	btrfs_item_key_to_cpu(leaf, &key, slot);
2189 	if (key.objectid != btrfs_ino(inode) ||
2190 	    key.type != BTRFS_EXTENT_DATA_KEY)
2191 		return 0;
2192 
2193 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2194 
2195 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2196 		return 0;
2197 
2198 	if (btrfs_file_extent_disk_bytenr(leaf, fi))
2199 		return 0;
2200 
2201 	if (key.offset == end)
2202 		return 1;
2203 	if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2204 		return 1;
2205 	return 0;
2206 }
2207 
fill_holes(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_path * path,u64 offset,u64 end)2208 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2209 		      struct btrfs_path *path, u64 offset, u64 end)
2210 {
2211 	struct btrfs_root *root = BTRFS_I(inode)->root;
2212 	struct extent_buffer *leaf;
2213 	struct btrfs_file_extent_item *fi;
2214 	struct extent_map *hole_em;
2215 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2216 	struct btrfs_key key;
2217 	int ret;
2218 
2219 	if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2220 		goto out;
2221 
2222 	key.objectid = btrfs_ino(inode);
2223 	key.type = BTRFS_EXTENT_DATA_KEY;
2224 	key.offset = offset;
2225 
2226 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2227 	if (ret < 0)
2228 		return ret;
2229 	BUG_ON(!ret);
2230 
2231 	leaf = path->nodes[0];
2232 	if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2233 		u64 num_bytes;
2234 
2235 		path->slots[0]--;
2236 		fi = btrfs_item_ptr(leaf, path->slots[0],
2237 				    struct btrfs_file_extent_item);
2238 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2239 			end - offset;
2240 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2241 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2242 		btrfs_set_file_extent_offset(leaf, fi, 0);
2243 		btrfs_mark_buffer_dirty(leaf);
2244 		goto out;
2245 	}
2246 
2247 	if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2248 		u64 num_bytes;
2249 
2250 		key.offset = offset;
2251 		btrfs_set_item_key_safe(root->fs_info, path, &key);
2252 		fi = btrfs_item_ptr(leaf, path->slots[0],
2253 				    struct btrfs_file_extent_item);
2254 		num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2255 			offset;
2256 		btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2257 		btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2258 		btrfs_set_file_extent_offset(leaf, fi, 0);
2259 		btrfs_mark_buffer_dirty(leaf);
2260 		goto out;
2261 	}
2262 	btrfs_release_path(path);
2263 
2264 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2265 				       0, 0, end - offset, 0, end - offset,
2266 				       0, 0, 0);
2267 	if (ret)
2268 		return ret;
2269 
2270 out:
2271 	btrfs_release_path(path);
2272 
2273 	hole_em = alloc_extent_map();
2274 	if (!hole_em) {
2275 		btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2276 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2277 			&BTRFS_I(inode)->runtime_flags);
2278 	} else {
2279 		hole_em->start = offset;
2280 		hole_em->len = end - offset;
2281 		hole_em->ram_bytes = hole_em->len;
2282 		hole_em->orig_start = offset;
2283 
2284 		hole_em->block_start = EXTENT_MAP_HOLE;
2285 		hole_em->block_len = 0;
2286 		hole_em->orig_block_len = 0;
2287 		hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2288 		hole_em->compress_type = BTRFS_COMPRESS_NONE;
2289 		hole_em->generation = trans->transid;
2290 
2291 		do {
2292 			btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2293 			write_lock(&em_tree->lock);
2294 			ret = add_extent_mapping(em_tree, hole_em, 1);
2295 			write_unlock(&em_tree->lock);
2296 		} while (ret == -EEXIST);
2297 		free_extent_map(hole_em);
2298 		if (ret)
2299 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2300 				&BTRFS_I(inode)->runtime_flags);
2301 	}
2302 
2303 	return 0;
2304 }
2305 
2306 /*
2307  * Find a hole extent on given inode and change start/len to the end of hole
2308  * extent.(hole/vacuum extent whose em->start <= start &&
2309  *	   em->start + em->len > start)
2310  * When a hole extent is found, return 1 and modify start/len.
2311  */
find_first_non_hole(struct inode * inode,u64 * start,u64 * len)2312 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2313 {
2314 	struct extent_map *em;
2315 	int ret = 0;
2316 
2317 	em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2318 	if (IS_ERR_OR_NULL(em)) {
2319 		if (!em)
2320 			ret = -ENOMEM;
2321 		else
2322 			ret = PTR_ERR(em);
2323 		return ret;
2324 	}
2325 
2326 	/* Hole or vacuum extent(only exists in no-hole mode) */
2327 	if (em->block_start == EXTENT_MAP_HOLE) {
2328 		ret = 1;
2329 		*len = em->start + em->len > *start + *len ?
2330 		       0 : *start + *len - em->start - em->len;
2331 		*start = em->start + em->len;
2332 	}
2333 	free_extent_map(em);
2334 	return ret;
2335 }
2336 
btrfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)2337 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2338 {
2339 	struct btrfs_root *root = BTRFS_I(inode)->root;
2340 	struct extent_state *cached_state = NULL;
2341 	struct btrfs_path *path;
2342 	struct btrfs_block_rsv *rsv;
2343 	struct btrfs_trans_handle *trans;
2344 	u64 lockstart;
2345 	u64 lockend;
2346 	u64 tail_start;
2347 	u64 tail_len;
2348 	u64 orig_start = offset;
2349 	u64 cur_offset;
2350 	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2351 	u64 drop_end;
2352 	int ret = 0;
2353 	int err = 0;
2354 	unsigned int rsv_count;
2355 	bool same_block;
2356 	bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2357 	u64 ino_size;
2358 	bool truncated_block = false;
2359 	bool updated_inode = false;
2360 
2361 	ret = btrfs_wait_ordered_range(inode, offset, len);
2362 	if (ret)
2363 		return ret;
2364 
2365 	inode_lock(inode);
2366 	ino_size = round_up(inode->i_size, root->sectorsize);
2367 	ret = find_first_non_hole(inode, &offset, &len);
2368 	if (ret < 0)
2369 		goto out_only_mutex;
2370 	if (ret && !len) {
2371 		/* Already in a large hole */
2372 		ret = 0;
2373 		goto out_only_mutex;
2374 	}
2375 
2376 	lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2377 	lockend = round_down(offset + len,
2378 			     BTRFS_I(inode)->root->sectorsize) - 1;
2379 	same_block = (BTRFS_BYTES_TO_BLKS(root->fs_info, offset))
2380 		== (BTRFS_BYTES_TO_BLKS(root->fs_info, offset + len - 1));
2381 	/*
2382 	 * We needn't truncate any block which is beyond the end of the file
2383 	 * because we are sure there is no data there.
2384 	 */
2385 	/*
2386 	 * Only do this if we are in the same block and we aren't doing the
2387 	 * entire block.
2388 	 */
2389 	if (same_block && len < root->sectorsize) {
2390 		if (offset < ino_size) {
2391 			truncated_block = true;
2392 			ret = btrfs_truncate_block(inode, offset, len, 0);
2393 		} else {
2394 			ret = 0;
2395 		}
2396 		goto out_only_mutex;
2397 	}
2398 
2399 	/* zero back part of the first block */
2400 	if (offset < ino_size) {
2401 		truncated_block = true;
2402 		ret = btrfs_truncate_block(inode, offset, 0, 0);
2403 		if (ret) {
2404 			inode_unlock(inode);
2405 			return ret;
2406 		}
2407 	}
2408 
2409 	/* Check the aligned pages after the first unaligned page,
2410 	 * if offset != orig_start, which means the first unaligned page
2411 	 * including several following pages are already in holes,
2412 	 * the extra check can be skipped */
2413 	if (offset == orig_start) {
2414 		/* after truncate page, check hole again */
2415 		len = offset + len - lockstart;
2416 		offset = lockstart;
2417 		ret = find_first_non_hole(inode, &offset, &len);
2418 		if (ret < 0)
2419 			goto out_only_mutex;
2420 		if (ret && !len) {
2421 			ret = 0;
2422 			goto out_only_mutex;
2423 		}
2424 		lockstart = offset;
2425 	}
2426 
2427 	/* Check the tail unaligned part is in a hole */
2428 	tail_start = lockend + 1;
2429 	tail_len = offset + len - tail_start;
2430 	if (tail_len) {
2431 		ret = find_first_non_hole(inode, &tail_start, &tail_len);
2432 		if (unlikely(ret < 0))
2433 			goto out_only_mutex;
2434 		if (!ret) {
2435 			/* zero the front end of the last page */
2436 			if (tail_start + tail_len < ino_size) {
2437 				truncated_block = true;
2438 				ret = btrfs_truncate_block(inode,
2439 							tail_start + tail_len,
2440 							0, 1);
2441 				if (ret)
2442 					goto out_only_mutex;
2443 			}
2444 		}
2445 	}
2446 
2447 	if (lockend < lockstart) {
2448 		ret = 0;
2449 		goto out_only_mutex;
2450 	}
2451 
2452 	while (1) {
2453 		struct btrfs_ordered_extent *ordered;
2454 
2455 		truncate_pagecache_range(inode, lockstart, lockend);
2456 
2457 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2458 				 &cached_state);
2459 		ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2460 
2461 		/*
2462 		 * We need to make sure we have no ordered extents in this range
2463 		 * and nobody raced in and read a page in this range, if we did
2464 		 * we need to try again.
2465 		 */
2466 		if ((!ordered ||
2467 		    (ordered->file_offset + ordered->len <= lockstart ||
2468 		     ordered->file_offset > lockend)) &&
2469 		     !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2470 			if (ordered)
2471 				btrfs_put_ordered_extent(ordered);
2472 			break;
2473 		}
2474 		if (ordered)
2475 			btrfs_put_ordered_extent(ordered);
2476 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2477 				     lockend, &cached_state, GFP_NOFS);
2478 		ret = btrfs_wait_ordered_range(inode, lockstart,
2479 					       lockend - lockstart + 1);
2480 		if (ret) {
2481 			inode_unlock(inode);
2482 			return ret;
2483 		}
2484 	}
2485 
2486 	path = btrfs_alloc_path();
2487 	if (!path) {
2488 		ret = -ENOMEM;
2489 		goto out;
2490 	}
2491 
2492 	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2493 	if (!rsv) {
2494 		ret = -ENOMEM;
2495 		goto out_free;
2496 	}
2497 	rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2498 	rsv->failfast = 1;
2499 
2500 	/*
2501 	 * 1 - update the inode
2502 	 * 1 - removing the extents in the range
2503 	 * 1 - adding the hole extent if no_holes isn't set
2504 	 */
2505 	rsv_count = no_holes ? 2 : 3;
2506 	trans = btrfs_start_transaction(root, rsv_count);
2507 	if (IS_ERR(trans)) {
2508 		err = PTR_ERR(trans);
2509 		goto out_free;
2510 	}
2511 
2512 	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2513 				      min_size, 0);
2514 	BUG_ON(ret);
2515 	trans->block_rsv = rsv;
2516 
2517 	cur_offset = lockstart;
2518 	len = lockend - cur_offset;
2519 	while (cur_offset < lockend) {
2520 		ret = __btrfs_drop_extents(trans, root, inode, path,
2521 					   cur_offset, lockend + 1,
2522 					   &drop_end, 1, 0, 0, NULL);
2523 		if (ret != -ENOSPC)
2524 			break;
2525 
2526 		trans->block_rsv = &root->fs_info->trans_block_rsv;
2527 
2528 		if (cur_offset < ino_size) {
2529 			ret = fill_holes(trans, inode, path, cur_offset,
2530 					 drop_end);
2531 			if (ret) {
2532 				err = ret;
2533 				break;
2534 			}
2535 		}
2536 
2537 		cur_offset = drop_end;
2538 
2539 		ret = btrfs_update_inode(trans, root, inode);
2540 		if (ret) {
2541 			err = ret;
2542 			break;
2543 		}
2544 
2545 		btrfs_end_transaction(trans, root);
2546 		btrfs_btree_balance_dirty(root);
2547 
2548 		trans = btrfs_start_transaction(root, rsv_count);
2549 		if (IS_ERR(trans)) {
2550 			ret = PTR_ERR(trans);
2551 			trans = NULL;
2552 			break;
2553 		}
2554 
2555 		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2556 					      rsv, min_size, 0);
2557 		BUG_ON(ret);	/* shouldn't happen */
2558 		trans->block_rsv = rsv;
2559 
2560 		ret = find_first_non_hole(inode, &cur_offset, &len);
2561 		if (unlikely(ret < 0))
2562 			break;
2563 		if (ret && !len) {
2564 			ret = 0;
2565 			break;
2566 		}
2567 	}
2568 
2569 	if (ret) {
2570 		err = ret;
2571 		goto out_trans;
2572 	}
2573 
2574 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2575 	/*
2576 	 * If we are using the NO_HOLES feature we might have had already an
2577 	 * hole that overlaps a part of the region [lockstart, lockend] and
2578 	 * ends at (or beyond) lockend. Since we have no file extent items to
2579 	 * represent holes, drop_end can be less than lockend and so we must
2580 	 * make sure we have an extent map representing the existing hole (the
2581 	 * call to __btrfs_drop_extents() might have dropped the existing extent
2582 	 * map representing the existing hole), otherwise the fast fsync path
2583 	 * will not record the existence of the hole region
2584 	 * [existing_hole_start, lockend].
2585 	 */
2586 	if (drop_end <= lockend)
2587 		drop_end = lockend + 1;
2588 	/*
2589 	 * Don't insert file hole extent item if it's for a range beyond eof
2590 	 * (because it's useless) or if it represents a 0 bytes range (when
2591 	 * cur_offset == drop_end).
2592 	 */
2593 	if (cur_offset < ino_size && cur_offset < drop_end) {
2594 		ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2595 		if (ret) {
2596 			err = ret;
2597 			goto out_trans;
2598 		}
2599 	}
2600 
2601 out_trans:
2602 	if (!trans)
2603 		goto out_free;
2604 
2605 	inode_inc_iversion(inode);
2606 	inode->i_mtime = inode->i_ctime = current_time(inode);
2607 
2608 	trans->block_rsv = &root->fs_info->trans_block_rsv;
2609 	ret = btrfs_update_inode(trans, root, inode);
2610 	updated_inode = true;
2611 	btrfs_end_transaction(trans, root);
2612 	btrfs_btree_balance_dirty(root);
2613 out_free:
2614 	btrfs_free_path(path);
2615 	btrfs_free_block_rsv(root, rsv);
2616 out:
2617 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2618 			     &cached_state, GFP_NOFS);
2619 out_only_mutex:
2620 	if (!updated_inode && truncated_block && !ret && !err) {
2621 		/*
2622 		 * If we only end up zeroing part of a page, we still need to
2623 		 * update the inode item, so that all the time fields are
2624 		 * updated as well as the necessary btrfs inode in memory fields
2625 		 * for detecting, at fsync time, if the inode isn't yet in the
2626 		 * log tree or it's there but not up to date.
2627 		 */
2628 		trans = btrfs_start_transaction(root, 1);
2629 		if (IS_ERR(trans)) {
2630 			err = PTR_ERR(trans);
2631 		} else {
2632 			err = btrfs_update_inode(trans, root, inode);
2633 			ret = btrfs_end_transaction(trans, root);
2634 		}
2635 	}
2636 	inode_unlock(inode);
2637 	if (ret && !err)
2638 		err = ret;
2639 	return err;
2640 }
2641 
2642 /* Helper structure to record which range is already reserved */
2643 struct falloc_range {
2644 	struct list_head list;
2645 	u64 start;
2646 	u64 len;
2647 };
2648 
2649 /*
2650  * Helper function to add falloc range
2651  *
2652  * Caller should have locked the larger range of extent containing
2653  * [start, len)
2654  */
add_falloc_range(struct list_head * head,u64 start,u64 len)2655 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2656 {
2657 	struct falloc_range *prev = NULL;
2658 	struct falloc_range *range = NULL;
2659 
2660 	if (list_empty(head))
2661 		goto insert;
2662 
2663 	/*
2664 	 * As fallocate iterate by bytenr order, we only need to check
2665 	 * the last range.
2666 	 */
2667 	prev = list_entry(head->prev, struct falloc_range, list);
2668 	if (prev->start + prev->len == start) {
2669 		prev->len += len;
2670 		return 0;
2671 	}
2672 insert:
2673 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2674 	if (!range)
2675 		return -ENOMEM;
2676 	range->start = start;
2677 	range->len = len;
2678 	list_add_tail(&range->list, head);
2679 	return 0;
2680 }
2681 
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2682 static long btrfs_fallocate(struct file *file, int mode,
2683 			    loff_t offset, loff_t len)
2684 {
2685 	struct inode *inode = file_inode(file);
2686 	struct extent_state *cached_state = NULL;
2687 	struct falloc_range *range;
2688 	struct falloc_range *tmp;
2689 	struct list_head reserve_list;
2690 	u64 cur_offset;
2691 	u64 last_byte;
2692 	u64 alloc_start;
2693 	u64 alloc_end;
2694 	u64 alloc_hint = 0;
2695 	u64 locked_end;
2696 	u64 actual_end = 0;
2697 	struct extent_map *em;
2698 	int blocksize = BTRFS_I(inode)->root->sectorsize;
2699 	int ret;
2700 
2701 	alloc_start = round_down(offset, blocksize);
2702 	alloc_end = round_up(offset + len, blocksize);
2703 	cur_offset = alloc_start;
2704 
2705 	/* Make sure we aren't being give some crap mode */
2706 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2707 		return -EOPNOTSUPP;
2708 
2709 	if (mode & FALLOC_FL_PUNCH_HOLE)
2710 		return btrfs_punch_hole(inode, offset, len);
2711 
2712 	/*
2713 	 * Only trigger disk allocation, don't trigger qgroup reserve
2714 	 *
2715 	 * For qgroup space, it will be checked later.
2716 	 */
2717 	ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2718 	if (ret < 0)
2719 		return ret;
2720 
2721 	inode_lock(inode);
2722 
2723 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2724 		ret = inode_newsize_ok(inode, offset + len);
2725 		if (ret)
2726 			goto out;
2727 	}
2728 
2729 	/*
2730 	 * TODO: Move these two operations after we have checked
2731 	 * accurate reserved space, or fallocate can still fail but
2732 	 * with page truncated or size expanded.
2733 	 *
2734 	 * But that's a minor problem and won't do much harm BTW.
2735 	 */
2736 	if (alloc_start > inode->i_size) {
2737 		ret = btrfs_cont_expand(inode, i_size_read(inode),
2738 					alloc_start);
2739 		if (ret)
2740 			goto out;
2741 	} else if (offset + len > inode->i_size) {
2742 		/*
2743 		 * If we are fallocating from the end of the file onward we
2744 		 * need to zero out the end of the block if i_size lands in the
2745 		 * middle of a block.
2746 		 */
2747 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2748 		if (ret)
2749 			goto out;
2750 	}
2751 
2752 	/*
2753 	 * wait for ordered IO before we have any locks.  We'll loop again
2754 	 * below with the locks held.
2755 	 */
2756 	ret = btrfs_wait_ordered_range(inode, alloc_start,
2757 				       alloc_end - alloc_start);
2758 	if (ret)
2759 		goto out;
2760 
2761 	locked_end = alloc_end - 1;
2762 	while (1) {
2763 		struct btrfs_ordered_extent *ordered;
2764 
2765 		/* the extent lock is ordered inside the running
2766 		 * transaction
2767 		 */
2768 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2769 				 locked_end, &cached_state);
2770 		ordered = btrfs_lookup_first_ordered_extent(inode,
2771 							    alloc_end - 1);
2772 		if (ordered &&
2773 		    ordered->file_offset + ordered->len > alloc_start &&
2774 		    ordered->file_offset < alloc_end) {
2775 			btrfs_put_ordered_extent(ordered);
2776 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2777 					     alloc_start, locked_end,
2778 					     &cached_state, GFP_KERNEL);
2779 			/*
2780 			 * we can't wait on the range with the transaction
2781 			 * running or with the extent lock held
2782 			 */
2783 			ret = btrfs_wait_ordered_range(inode, alloc_start,
2784 						       alloc_end - alloc_start);
2785 			if (ret)
2786 				goto out;
2787 		} else {
2788 			if (ordered)
2789 				btrfs_put_ordered_extent(ordered);
2790 			break;
2791 		}
2792 	}
2793 
2794 	/* First, check if we exceed the qgroup limit */
2795 	INIT_LIST_HEAD(&reserve_list);
2796 	while (1) {
2797 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2798 				      alloc_end - cur_offset, 0);
2799 		if (IS_ERR_OR_NULL(em)) {
2800 			if (!em)
2801 				ret = -ENOMEM;
2802 			else
2803 				ret = PTR_ERR(em);
2804 			break;
2805 		}
2806 		last_byte = min(extent_map_end(em), alloc_end);
2807 		actual_end = min_t(u64, extent_map_end(em), offset + len);
2808 		last_byte = ALIGN(last_byte, blocksize);
2809 		if (em->block_start == EXTENT_MAP_HOLE ||
2810 		    (cur_offset >= inode->i_size &&
2811 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2812 			ret = add_falloc_range(&reserve_list, cur_offset,
2813 					       last_byte - cur_offset);
2814 			if (ret < 0) {
2815 				free_extent_map(em);
2816 				break;
2817 			}
2818 			ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2819 					last_byte - cur_offset);
2820 			if (ret < 0) {
2821 				free_extent_map(em);
2822 				break;
2823 			}
2824 		} else {
2825 			/*
2826 			 * Do not need to reserve unwritten extent for this
2827 			 * range, free reserved data space first, otherwise
2828 			 * it'll result in false ENOSPC error.
2829 			 */
2830 			btrfs_free_reserved_data_space(inode, cur_offset,
2831 				last_byte - cur_offset);
2832 		}
2833 		free_extent_map(em);
2834 		cur_offset = last_byte;
2835 		if (cur_offset >= alloc_end)
2836 			break;
2837 	}
2838 
2839 	/*
2840 	 * If ret is still 0, means we're OK to fallocate.
2841 	 * Or just cleanup the list and exit.
2842 	 */
2843 	list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2844 		if (!ret)
2845 			ret = btrfs_prealloc_file_range(inode, mode,
2846 					range->start,
2847 					range->len, i_blocksize(inode),
2848 					offset + len, &alloc_hint);
2849 		else
2850 			btrfs_free_reserved_data_space(inode, range->start,
2851 						       range->len);
2852 		list_del(&range->list);
2853 		kfree(range);
2854 	}
2855 	if (ret < 0)
2856 		goto out_unlock;
2857 
2858 	if (actual_end > inode->i_size &&
2859 	    !(mode & FALLOC_FL_KEEP_SIZE)) {
2860 		struct btrfs_trans_handle *trans;
2861 		struct btrfs_root *root = BTRFS_I(inode)->root;
2862 
2863 		/*
2864 		 * We didn't need to allocate any more space, but we
2865 		 * still extended the size of the file so we need to
2866 		 * update i_size and the inode item.
2867 		 */
2868 		trans = btrfs_start_transaction(root, 1);
2869 		if (IS_ERR(trans)) {
2870 			ret = PTR_ERR(trans);
2871 		} else {
2872 			inode->i_ctime = current_time(inode);
2873 			i_size_write(inode, actual_end);
2874 			btrfs_ordered_update_i_size(inode, actual_end, NULL);
2875 			ret = btrfs_update_inode(trans, root, inode);
2876 			if (ret)
2877 				btrfs_end_transaction(trans, root);
2878 			else
2879 				ret = btrfs_end_transaction(trans, root);
2880 		}
2881 	}
2882 out_unlock:
2883 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2884 			     &cached_state, GFP_KERNEL);
2885 out:
2886 	inode_unlock(inode);
2887 	/* Let go of our reservation. */
2888 	if (ret != 0)
2889 		btrfs_free_reserved_data_space(inode, alloc_start,
2890 				       alloc_end - cur_offset);
2891 	return ret;
2892 }
2893 
find_desired_extent(struct inode * inode,loff_t * offset,int whence)2894 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2895 {
2896 	struct btrfs_root *root = BTRFS_I(inode)->root;
2897 	struct extent_map *em = NULL;
2898 	struct extent_state *cached_state = NULL;
2899 	u64 lockstart;
2900 	u64 lockend;
2901 	u64 start;
2902 	u64 len;
2903 	int ret = 0;
2904 
2905 	if (inode->i_size == 0)
2906 		return -ENXIO;
2907 
2908 	/*
2909 	 * *offset can be negative, in this case we start finding DATA/HOLE from
2910 	 * the very start of the file.
2911 	 */
2912 	start = max_t(loff_t, 0, *offset);
2913 
2914 	lockstart = round_down(start, root->sectorsize);
2915 	lockend = round_up(i_size_read(inode), root->sectorsize);
2916 	if (lockend <= lockstart)
2917 		lockend = lockstart + root->sectorsize;
2918 	lockend--;
2919 	len = lockend - lockstart + 1;
2920 
2921 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2922 			 &cached_state);
2923 
2924 	while (start < inode->i_size) {
2925 		em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2926 		if (IS_ERR(em)) {
2927 			ret = PTR_ERR(em);
2928 			em = NULL;
2929 			break;
2930 		}
2931 
2932 		if (whence == SEEK_HOLE &&
2933 		    (em->block_start == EXTENT_MAP_HOLE ||
2934 		     test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2935 			break;
2936 		else if (whence == SEEK_DATA &&
2937 			   (em->block_start != EXTENT_MAP_HOLE &&
2938 			    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2939 			break;
2940 
2941 		start = em->start + em->len;
2942 		free_extent_map(em);
2943 		em = NULL;
2944 		cond_resched();
2945 	}
2946 	free_extent_map(em);
2947 	if (!ret) {
2948 		if (whence == SEEK_DATA && start >= inode->i_size)
2949 			ret = -ENXIO;
2950 		else
2951 			*offset = min_t(loff_t, start, inode->i_size);
2952 	}
2953 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2954 			     &cached_state, GFP_NOFS);
2955 	return ret;
2956 }
2957 
btrfs_file_llseek(struct file * file,loff_t offset,int whence)2958 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2959 {
2960 	struct inode *inode = file->f_mapping->host;
2961 	int ret;
2962 
2963 	inode_lock(inode);
2964 	switch (whence) {
2965 	case SEEK_END:
2966 	case SEEK_CUR:
2967 		offset = generic_file_llseek(file, offset, whence);
2968 		goto out;
2969 	case SEEK_DATA:
2970 	case SEEK_HOLE:
2971 		if (offset >= i_size_read(inode)) {
2972 			inode_unlock(inode);
2973 			return -ENXIO;
2974 		}
2975 
2976 		ret = find_desired_extent(inode, &offset, whence);
2977 		if (ret) {
2978 			inode_unlock(inode);
2979 			return ret;
2980 		}
2981 	}
2982 
2983 	offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2984 out:
2985 	inode_unlock(inode);
2986 	return offset;
2987 }
2988 
2989 const struct file_operations btrfs_file_operations = {
2990 	.llseek		= btrfs_file_llseek,
2991 	.read_iter      = generic_file_read_iter,
2992 	.splice_read	= generic_file_splice_read,
2993 	.write_iter	= btrfs_file_write_iter,
2994 	.mmap		= btrfs_file_mmap,
2995 	.open		= generic_file_open,
2996 	.release	= btrfs_release_file,
2997 	.fsync		= btrfs_sync_file,
2998 	.fallocate	= btrfs_fallocate,
2999 	.unlocked_ioctl	= btrfs_ioctl,
3000 #ifdef CONFIG_COMPAT
3001 	.compat_ioctl	= btrfs_compat_ioctl,
3002 #endif
3003 	.copy_file_range = btrfs_copy_file_range,
3004 	.clone_file_range = btrfs_clone_file_range,
3005 	.dedupe_file_range = btrfs_dedupe_file_range,
3006 };
3007 
btrfs_auto_defrag_exit(void)3008 void btrfs_auto_defrag_exit(void)
3009 {
3010 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
3011 }
3012 
btrfs_auto_defrag_init(void)3013 int btrfs_auto_defrag_init(void)
3014 {
3015 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3016 					sizeof(struct inode_defrag), 0,
3017 					SLAB_MEM_SPREAD,
3018 					NULL);
3019 	if (!btrfs_inode_defrag_cachep)
3020 		return -ENOMEM;
3021 
3022 	return 0;
3023 }
3024 
btrfs_fdatawrite_range(struct inode * inode,loff_t start,loff_t end)3025 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3026 {
3027 	int ret;
3028 
3029 	/*
3030 	 * So with compression we will find and lock a dirty page and clear the
3031 	 * first one as dirty, setup an async extent, and immediately return
3032 	 * with the entire range locked but with nobody actually marked with
3033 	 * writeback.  So we can't just filemap_write_and_wait_range() and
3034 	 * expect it to work since it will just kick off a thread to do the
3035 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
3036 	 * since it will wait on the page lock, which won't be unlocked until
3037 	 * after the pages have been marked as writeback and so we're good to go
3038 	 * from there.  We have to do this otherwise we'll miss the ordered
3039 	 * extents and that results in badness.  Please Josef, do not think you
3040 	 * know better and pull this out at some point in the future, it is
3041 	 * right and you are wrong.
3042 	 */
3043 	ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3044 	if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3045 			     &BTRFS_I(inode)->runtime_flags))
3046 		ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3047 
3048 	return ret;
3049 }
3050