1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include <linux/btrfs.h>
34 #include <linux/uio.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43 #include "qgroup.h"
44 #include "compression.h"
45
46 static struct kmem_cache *btrfs_inode_defrag_cachep;
47 /*
48 * when auto defrag is enabled we
49 * queue up these defrag structs to remember which
50 * inodes need defragging passes
51 */
52 struct inode_defrag {
53 struct rb_node rb_node;
54 /* objectid */
55 u64 ino;
56 /*
57 * transid where the defrag was added, we search for
58 * extents newer than this
59 */
60 u64 transid;
61
62 /* root objectid */
63 u64 root;
64
65 /* last offset we were able to defrag */
66 u64 last_offset;
67
68 /* if we've wrapped around back to zero once already */
69 int cycled;
70 };
71
__compare_inode_defrag(struct inode_defrag * defrag1,struct inode_defrag * defrag2)72 static int __compare_inode_defrag(struct inode_defrag *defrag1,
73 struct inode_defrag *defrag2)
74 {
75 if (defrag1->root > defrag2->root)
76 return 1;
77 else if (defrag1->root < defrag2->root)
78 return -1;
79 else if (defrag1->ino > defrag2->ino)
80 return 1;
81 else if (defrag1->ino < defrag2->ino)
82 return -1;
83 else
84 return 0;
85 }
86
87 /* pop a record for an inode into the defrag tree. The lock
88 * must be held already
89 *
90 * If you're inserting a record for an older transid than an
91 * existing record, the transid already in the tree is lowered
92 *
93 * If an existing record is found the defrag item you
94 * pass in is freed
95 */
__btrfs_add_inode_defrag(struct inode * inode,struct inode_defrag * defrag)96 static int __btrfs_add_inode_defrag(struct inode *inode,
97 struct inode_defrag *defrag)
98 {
99 struct btrfs_root *root = BTRFS_I(inode)->root;
100 struct inode_defrag *entry;
101 struct rb_node **p;
102 struct rb_node *parent = NULL;
103 int ret;
104
105 p = &root->fs_info->defrag_inodes.rb_node;
106 while (*p) {
107 parent = *p;
108 entry = rb_entry(parent, struct inode_defrag, rb_node);
109
110 ret = __compare_inode_defrag(defrag, entry);
111 if (ret < 0)
112 p = &parent->rb_left;
113 else if (ret > 0)
114 p = &parent->rb_right;
115 else {
116 /* if we're reinserting an entry for
117 * an old defrag run, make sure to
118 * lower the transid of our existing record
119 */
120 if (defrag->transid < entry->transid)
121 entry->transid = defrag->transid;
122 if (defrag->last_offset > entry->last_offset)
123 entry->last_offset = defrag->last_offset;
124 return -EEXIST;
125 }
126 }
127 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
128 rb_link_node(&defrag->rb_node, parent, p);
129 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
130 return 0;
131 }
132
__need_auto_defrag(struct btrfs_root * root)133 static inline int __need_auto_defrag(struct btrfs_root *root)
134 {
135 if (!btrfs_test_opt(root->fs_info, AUTO_DEFRAG))
136 return 0;
137
138 if (btrfs_fs_closing(root->fs_info))
139 return 0;
140
141 return 1;
142 }
143
144 /*
145 * insert a defrag record for this inode if auto defrag is
146 * enabled
147 */
btrfs_add_inode_defrag(struct btrfs_trans_handle * trans,struct inode * inode)148 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
149 struct inode *inode)
150 {
151 struct btrfs_root *root = BTRFS_I(inode)->root;
152 struct inode_defrag *defrag;
153 u64 transid;
154 int ret;
155
156 if (!__need_auto_defrag(root))
157 return 0;
158
159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
160 return 0;
161
162 if (trans)
163 transid = trans->transid;
164 else
165 transid = BTRFS_I(inode)->root->last_trans;
166
167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
168 if (!defrag)
169 return -ENOMEM;
170
171 defrag->ino = btrfs_ino(inode);
172 defrag->transid = transid;
173 defrag->root = root->root_key.objectid;
174
175 spin_lock(&root->fs_info->defrag_inodes_lock);
176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
177 /*
178 * If we set IN_DEFRAG flag and evict the inode from memory,
179 * and then re-read this inode, this new inode doesn't have
180 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 */
182 ret = __btrfs_add_inode_defrag(inode, defrag);
183 if (ret)
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 } else {
186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
187 }
188 spin_unlock(&root->fs_info->defrag_inodes_lock);
189 return 0;
190 }
191
192 /*
193 * Requeue the defrag object. If there is a defrag object that points to
194 * the same inode in the tree, we will merge them together (by
195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
196 */
btrfs_requeue_inode_defrag(struct inode * inode,struct inode_defrag * defrag)197 static void btrfs_requeue_inode_defrag(struct inode *inode,
198 struct inode_defrag *defrag)
199 {
200 struct btrfs_root *root = BTRFS_I(inode)->root;
201 int ret;
202
203 if (!__need_auto_defrag(root))
204 goto out;
205
206 /*
207 * Here we don't check the IN_DEFRAG flag, because we need merge
208 * them together.
209 */
210 spin_lock(&root->fs_info->defrag_inodes_lock);
211 ret = __btrfs_add_inode_defrag(inode, defrag);
212 spin_unlock(&root->fs_info->defrag_inodes_lock);
213 if (ret)
214 goto out;
215 return;
216 out:
217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218 }
219
220 /*
221 * pick the defragable inode that we want, if it doesn't exist, we will get
222 * the next one.
223 */
224 static struct inode_defrag *
btrfs_pick_defrag_inode(struct btrfs_fs_info * fs_info,u64 root,u64 ino)225 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
226 {
227 struct inode_defrag *entry = NULL;
228 struct inode_defrag tmp;
229 struct rb_node *p;
230 struct rb_node *parent = NULL;
231 int ret;
232
233 tmp.ino = ino;
234 tmp.root = root;
235
236 spin_lock(&fs_info->defrag_inodes_lock);
237 p = fs_info->defrag_inodes.rb_node;
238 while (p) {
239 parent = p;
240 entry = rb_entry(parent, struct inode_defrag, rb_node);
241
242 ret = __compare_inode_defrag(&tmp, entry);
243 if (ret < 0)
244 p = parent->rb_left;
245 else if (ret > 0)
246 p = parent->rb_right;
247 else
248 goto out;
249 }
250
251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 parent = rb_next(parent);
253 if (parent)
254 entry = rb_entry(parent, struct inode_defrag, rb_node);
255 else
256 entry = NULL;
257 }
258 out:
259 if (entry)
260 rb_erase(parent, &fs_info->defrag_inodes);
261 spin_unlock(&fs_info->defrag_inodes_lock);
262 return entry;
263 }
264
btrfs_cleanup_defrag_inodes(struct btrfs_fs_info * fs_info)265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
266 {
267 struct inode_defrag *defrag;
268 struct rb_node *node;
269
270 spin_lock(&fs_info->defrag_inodes_lock);
271 node = rb_first(&fs_info->defrag_inodes);
272 while (node) {
273 rb_erase(node, &fs_info->defrag_inodes);
274 defrag = rb_entry(node, struct inode_defrag, rb_node);
275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276
277 cond_resched_lock(&fs_info->defrag_inodes_lock);
278
279 node = rb_first(&fs_info->defrag_inodes);
280 }
281 spin_unlock(&fs_info->defrag_inodes_lock);
282 }
283
284 #define BTRFS_DEFRAG_BATCH 1024
285
__btrfs_run_defrag_inode(struct btrfs_fs_info * fs_info,struct inode_defrag * defrag)286 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 struct inode_defrag *defrag)
288 {
289 struct btrfs_root *inode_root;
290 struct inode *inode;
291 struct btrfs_key key;
292 struct btrfs_ioctl_defrag_range_args range;
293 int num_defrag;
294 int index;
295 int ret;
296
297 /* get the inode */
298 key.objectid = defrag->root;
299 key.type = BTRFS_ROOT_ITEM_KEY;
300 key.offset = (u64)-1;
301
302 index = srcu_read_lock(&fs_info->subvol_srcu);
303
304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 if (IS_ERR(inode_root)) {
306 ret = PTR_ERR(inode_root);
307 goto cleanup;
308 }
309
310 key.objectid = defrag->ino;
311 key.type = BTRFS_INODE_ITEM_KEY;
312 key.offset = 0;
313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314 if (IS_ERR(inode)) {
315 ret = PTR_ERR(inode);
316 goto cleanup;
317 }
318 srcu_read_unlock(&fs_info->subvol_srcu, index);
319
320 /* do a chunk of defrag */
321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
322 memset(&range, 0, sizeof(range));
323 range.len = (u64)-1;
324 range.start = defrag->last_offset;
325
326 sb_start_write(fs_info->sb);
327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328 BTRFS_DEFRAG_BATCH);
329 sb_end_write(fs_info->sb);
330 /*
331 * if we filled the whole defrag batch, there
332 * must be more work to do. Queue this defrag
333 * again
334 */
335 if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 defrag->last_offset = range.start;
337 btrfs_requeue_inode_defrag(inode, defrag);
338 } else if (defrag->last_offset && !defrag->cycled) {
339 /*
340 * we didn't fill our defrag batch, but
341 * we didn't start at zero. Make sure we loop
342 * around to the start of the file.
343 */
344 defrag->last_offset = 0;
345 defrag->cycled = 1;
346 btrfs_requeue_inode_defrag(inode, defrag);
347 } else {
348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349 }
350
351 iput(inode);
352 return 0;
353 cleanup:
354 srcu_read_unlock(&fs_info->subvol_srcu, index);
355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 return ret;
357 }
358
359 /*
360 * run through the list of inodes in the FS that need
361 * defragging
362 */
btrfs_run_defrag_inodes(struct btrfs_fs_info * fs_info)363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364 {
365 struct inode_defrag *defrag;
366 u64 first_ino = 0;
367 u64 root_objectid = 0;
368
369 atomic_inc(&fs_info->defrag_running);
370 while (1) {
371 /* Pause the auto defragger. */
372 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373 &fs_info->fs_state))
374 break;
375
376 if (!__need_auto_defrag(fs_info->tree_root))
377 break;
378
379 /* find an inode to defrag */
380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381 first_ino);
382 if (!defrag) {
383 if (root_objectid || first_ino) {
384 root_objectid = 0;
385 first_ino = 0;
386 continue;
387 } else {
388 break;
389 }
390 }
391
392 first_ino = defrag->ino + 1;
393 root_objectid = defrag->root;
394
395 __btrfs_run_defrag_inode(fs_info, defrag);
396 }
397 atomic_dec(&fs_info->defrag_running);
398
399 /*
400 * during unmount, we use the transaction_wait queue to
401 * wait for the defragger to stop
402 */
403 wake_up(&fs_info->transaction_wait);
404 return 0;
405 }
406
407 /* simple helper to fault in pages and copy. This should go away
408 * and be replaced with calls into generic code.
409 */
btrfs_copy_from_user(loff_t pos,size_t write_bytes,struct page ** prepared_pages,struct iov_iter * i)410 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
411 struct page **prepared_pages,
412 struct iov_iter *i)
413 {
414 size_t copied = 0;
415 size_t total_copied = 0;
416 int pg = 0;
417 int offset = pos & (PAGE_SIZE - 1);
418
419 while (write_bytes > 0) {
420 size_t count = min_t(size_t,
421 PAGE_SIZE - offset, write_bytes);
422 struct page *page = prepared_pages[pg];
423 /*
424 * Copy data from userspace to the current page
425 */
426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
427
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
430
431 /*
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
436 *
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
439 */
440 if (!PageUptodate(page) && copied < count)
441 copied = 0;
442
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
445 total_copied += copied;
446
447 /* Return to btrfs_file_write_iter to fault page */
448 if (unlikely(copied == 0))
449 break;
450
451 if (copied < PAGE_SIZE - offset) {
452 offset += copied;
453 } else {
454 pg++;
455 offset = 0;
456 }
457 }
458 return total_copied;
459 }
460
461 /*
462 * unlocks pages after btrfs_file_write is done with them
463 */
btrfs_drop_pages(struct page ** pages,size_t num_pages)464 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
465 {
466 size_t i;
467 for (i = 0; i < num_pages; i++) {
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
473 */
474 ClearPageChecked(pages[i]);
475 unlock_page(pages[i]);
476 put_page(pages[i]);
477 }
478 }
479
480 /*
481 * after copy_from_user, pages need to be dirtied and we need to make
482 * sure holes are created between the current EOF and the start of
483 * any next extents (if required).
484 *
485 * this also makes the decision about creating an inline extent vs
486 * doing real data extents, marking pages dirty and delalloc as required.
487 */
btrfs_dirty_pages(struct btrfs_root * root,struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,struct extent_state ** cached)488 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
489 struct page **pages, size_t num_pages,
490 loff_t pos, size_t write_bytes,
491 struct extent_state **cached)
492 {
493 int err = 0;
494 int i;
495 u64 num_bytes;
496 u64 start_pos;
497 u64 end_of_last_block;
498 u64 end_pos = pos + write_bytes;
499 loff_t isize = i_size_read(inode);
500
501 start_pos = pos & ~((u64)root->sectorsize - 1);
502 num_bytes = round_up(write_bytes + pos - start_pos, root->sectorsize);
503
504 end_of_last_block = start_pos + num_bytes - 1;
505 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
506 cached, 0);
507 if (err)
508 return err;
509
510 for (i = 0; i < num_pages; i++) {
511 struct page *p = pages[i];
512 SetPageUptodate(p);
513 ClearPageChecked(p);
514 set_page_dirty(p);
515 }
516
517 /*
518 * we've only changed i_size in ram, and we haven't updated
519 * the disk i_size. There is no need to log the inode
520 * at this time.
521 */
522 if (end_pos > isize)
523 i_size_write(inode, end_pos);
524 return 0;
525 }
526
527 /*
528 * this drops all the extents in the cache that intersect the range
529 * [start, end]. Existing extents are split as required.
530 */
btrfs_drop_extent_cache(struct inode * inode,u64 start,u64 end,int skip_pinned)531 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
532 int skip_pinned)
533 {
534 struct extent_map *em;
535 struct extent_map *split = NULL;
536 struct extent_map *split2 = NULL;
537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
538 u64 len = end - start + 1;
539 u64 gen;
540 int ret;
541 int testend = 1;
542 unsigned long flags;
543 int compressed = 0;
544 bool modified;
545
546 WARN_ON(end < start);
547 if (end == (u64)-1) {
548 len = (u64)-1;
549 testend = 0;
550 }
551 while (1) {
552 int no_splits = 0;
553
554 modified = false;
555 if (!split)
556 split = alloc_extent_map();
557 if (!split2)
558 split2 = alloc_extent_map();
559 if (!split || !split2)
560 no_splits = 1;
561
562 write_lock(&em_tree->lock);
563 em = lookup_extent_mapping(em_tree, start, len);
564 if (!em) {
565 write_unlock(&em_tree->lock);
566 break;
567 }
568 flags = em->flags;
569 gen = em->generation;
570 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
571 if (testend && em->start + em->len >= start + len) {
572 free_extent_map(em);
573 write_unlock(&em_tree->lock);
574 break;
575 }
576 start = em->start + em->len;
577 if (testend)
578 len = start + len - (em->start + em->len);
579 free_extent_map(em);
580 write_unlock(&em_tree->lock);
581 continue;
582 }
583 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
584 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
585 clear_bit(EXTENT_FLAG_LOGGING, &flags);
586 modified = !list_empty(&em->list);
587 if (no_splits)
588 goto next;
589
590 if (em->start < start) {
591 split->start = em->start;
592 split->len = start - em->start;
593
594 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
595 split->orig_start = em->orig_start;
596 split->block_start = em->block_start;
597
598 if (compressed)
599 split->block_len = em->block_len;
600 else
601 split->block_len = split->len;
602 split->orig_block_len = max(split->block_len,
603 em->orig_block_len);
604 split->ram_bytes = em->ram_bytes;
605 } else {
606 split->orig_start = split->start;
607 split->block_len = 0;
608 split->block_start = em->block_start;
609 split->orig_block_len = 0;
610 split->ram_bytes = split->len;
611 }
612
613 split->generation = gen;
614 split->bdev = em->bdev;
615 split->flags = flags;
616 split->compress_type = em->compress_type;
617 replace_extent_mapping(em_tree, em, split, modified);
618 free_extent_map(split);
619 split = split2;
620 split2 = NULL;
621 }
622 if (testend && em->start + em->len > start + len) {
623 u64 diff = start + len - em->start;
624
625 split->start = start + len;
626 split->len = em->start + em->len - (start + len);
627 split->bdev = em->bdev;
628 split->flags = flags;
629 split->compress_type = em->compress_type;
630 split->generation = gen;
631
632 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
633 split->orig_block_len = max(em->block_len,
634 em->orig_block_len);
635
636 split->ram_bytes = em->ram_bytes;
637 if (compressed) {
638 split->block_len = em->block_len;
639 split->block_start = em->block_start;
640 split->orig_start = em->orig_start;
641 } else {
642 split->block_len = split->len;
643 split->block_start = em->block_start
644 + diff;
645 split->orig_start = em->orig_start;
646 }
647 } else {
648 split->ram_bytes = split->len;
649 split->orig_start = split->start;
650 split->block_len = 0;
651 split->block_start = em->block_start;
652 split->orig_block_len = 0;
653 }
654
655 if (extent_map_in_tree(em)) {
656 replace_extent_mapping(em_tree, em, split,
657 modified);
658 } else {
659 ret = add_extent_mapping(em_tree, split,
660 modified);
661 ASSERT(ret == 0); /* Logic error */
662 }
663 free_extent_map(split);
664 split = NULL;
665 }
666 next:
667 if (extent_map_in_tree(em))
668 remove_extent_mapping(em_tree, em);
669 write_unlock(&em_tree->lock);
670
671 /* once for us */
672 free_extent_map(em);
673 /* once for the tree*/
674 free_extent_map(em);
675 }
676 if (split)
677 free_extent_map(split);
678 if (split2)
679 free_extent_map(split2);
680 }
681
682 /*
683 * this is very complex, but the basic idea is to drop all extents
684 * in the range start - end. hint_block is filled in with a block number
685 * that would be a good hint to the block allocator for this file.
686 *
687 * If an extent intersects the range but is not entirely inside the range
688 * it is either truncated or split. Anything entirely inside the range
689 * is deleted from the tree.
690 */
__btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,u64 start,u64 end,u64 * drop_end,int drop_cache,int replace_extent,u32 extent_item_size,int * key_inserted)691 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
692 struct btrfs_root *root, struct inode *inode,
693 struct btrfs_path *path, u64 start, u64 end,
694 u64 *drop_end, int drop_cache,
695 int replace_extent,
696 u32 extent_item_size,
697 int *key_inserted)
698 {
699 struct extent_buffer *leaf;
700 struct btrfs_file_extent_item *fi;
701 struct btrfs_key key;
702 struct btrfs_key new_key;
703 u64 ino = btrfs_ino(inode);
704 u64 search_start = start;
705 u64 disk_bytenr = 0;
706 u64 num_bytes = 0;
707 u64 extent_offset = 0;
708 u64 extent_end = 0;
709 int del_nr = 0;
710 int del_slot = 0;
711 int extent_type;
712 int recow;
713 int ret;
714 int modify_tree = -1;
715 int update_refs;
716 int found = 0;
717 int leafs_visited = 0;
718
719 if (drop_cache)
720 btrfs_drop_extent_cache(inode, start, end - 1, 0);
721
722 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
723 modify_tree = 0;
724
725 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
726 root == root->fs_info->tree_root);
727 while (1) {
728 recow = 0;
729 ret = btrfs_lookup_file_extent(trans, root, path, ino,
730 search_start, modify_tree);
731 if (ret < 0)
732 break;
733 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734 leaf = path->nodes[0];
735 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736 if (key.objectid == ino &&
737 key.type == BTRFS_EXTENT_DATA_KEY)
738 path->slots[0]--;
739 }
740 ret = 0;
741 leafs_visited++;
742 next_slot:
743 leaf = path->nodes[0];
744 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745 BUG_ON(del_nr > 0);
746 ret = btrfs_next_leaf(root, path);
747 if (ret < 0)
748 break;
749 if (ret > 0) {
750 ret = 0;
751 break;
752 }
753 leafs_visited++;
754 leaf = path->nodes[0];
755 recow = 1;
756 }
757
758 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
759
760 if (key.objectid > ino)
761 break;
762 if (WARN_ON_ONCE(key.objectid < ino) ||
763 key.type < BTRFS_EXTENT_DATA_KEY) {
764 ASSERT(del_nr == 0);
765 path->slots[0]++;
766 goto next_slot;
767 }
768 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
769 break;
770
771 fi = btrfs_item_ptr(leaf, path->slots[0],
772 struct btrfs_file_extent_item);
773 extent_type = btrfs_file_extent_type(leaf, fi);
774
775 if (extent_type == BTRFS_FILE_EXTENT_REG ||
776 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
777 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
778 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
779 extent_offset = btrfs_file_extent_offset(leaf, fi);
780 extent_end = key.offset +
781 btrfs_file_extent_num_bytes(leaf, fi);
782 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
783 extent_end = key.offset +
784 btrfs_file_extent_inline_len(leaf,
785 path->slots[0], fi);
786 } else {
787 /* can't happen */
788 BUG();
789 }
790
791 /*
792 * Don't skip extent items representing 0 byte lengths. They
793 * used to be created (bug) if while punching holes we hit
794 * -ENOSPC condition. So if we find one here, just ensure we
795 * delete it, otherwise we would insert a new file extent item
796 * with the same key (offset) as that 0 bytes length file
797 * extent item in the call to setup_items_for_insert() later
798 * in this function.
799 */
800 if (extent_end == key.offset && extent_end >= search_start)
801 goto delete_extent_item;
802
803 if (extent_end <= search_start) {
804 path->slots[0]++;
805 goto next_slot;
806 }
807
808 found = 1;
809 search_start = max(key.offset, start);
810 if (recow || !modify_tree) {
811 modify_tree = -1;
812 btrfs_release_path(path);
813 continue;
814 }
815
816 /*
817 * | - range to drop - |
818 * | -------- extent -------- |
819 */
820 if (start > key.offset && end < extent_end) {
821 BUG_ON(del_nr > 0);
822 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
823 ret = -EOPNOTSUPP;
824 break;
825 }
826
827 memcpy(&new_key, &key, sizeof(new_key));
828 new_key.offset = start;
829 ret = btrfs_duplicate_item(trans, root, path,
830 &new_key);
831 if (ret == -EAGAIN) {
832 btrfs_release_path(path);
833 continue;
834 }
835 if (ret < 0)
836 break;
837
838 leaf = path->nodes[0];
839 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
840 struct btrfs_file_extent_item);
841 btrfs_set_file_extent_num_bytes(leaf, fi,
842 start - key.offset);
843
844 fi = btrfs_item_ptr(leaf, path->slots[0],
845 struct btrfs_file_extent_item);
846
847 extent_offset += start - key.offset;
848 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
849 btrfs_set_file_extent_num_bytes(leaf, fi,
850 extent_end - start);
851 btrfs_mark_buffer_dirty(leaf);
852
853 if (update_refs && disk_bytenr > 0) {
854 ret = btrfs_inc_extent_ref(trans, root,
855 disk_bytenr, num_bytes, 0,
856 root->root_key.objectid,
857 new_key.objectid,
858 start - extent_offset);
859 BUG_ON(ret); /* -ENOMEM */
860 }
861 key.offset = start;
862 }
863 /*
864 * | ---- range to drop ----- |
865 * | -------- extent -------- |
866 */
867 if (start <= key.offset && end < extent_end) {
868 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
869 ret = -EOPNOTSUPP;
870 break;
871 }
872
873 memcpy(&new_key, &key, sizeof(new_key));
874 new_key.offset = end;
875 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
876
877 extent_offset += end - key.offset;
878 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
879 btrfs_set_file_extent_num_bytes(leaf, fi,
880 extent_end - end);
881 btrfs_mark_buffer_dirty(leaf);
882 if (update_refs && disk_bytenr > 0)
883 inode_sub_bytes(inode, end - key.offset);
884 break;
885 }
886
887 search_start = extent_end;
888 /*
889 * | ---- range to drop ----- |
890 * | -------- extent -------- |
891 */
892 if (start > key.offset && end >= extent_end) {
893 BUG_ON(del_nr > 0);
894 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
895 ret = -EOPNOTSUPP;
896 break;
897 }
898
899 btrfs_set_file_extent_num_bytes(leaf, fi,
900 start - key.offset);
901 btrfs_mark_buffer_dirty(leaf);
902 if (update_refs && disk_bytenr > 0)
903 inode_sub_bytes(inode, extent_end - start);
904 if (end == extent_end)
905 break;
906
907 path->slots[0]++;
908 goto next_slot;
909 }
910
911 /*
912 * | ---- range to drop ----- |
913 * | ------ extent ------ |
914 */
915 if (start <= key.offset && end >= extent_end) {
916 delete_extent_item:
917 if (del_nr == 0) {
918 del_slot = path->slots[0];
919 del_nr = 1;
920 } else {
921 BUG_ON(del_slot + del_nr != path->slots[0]);
922 del_nr++;
923 }
924
925 if (update_refs &&
926 extent_type == BTRFS_FILE_EXTENT_INLINE) {
927 inode_sub_bytes(inode,
928 extent_end - key.offset);
929 extent_end = ALIGN(extent_end,
930 root->sectorsize);
931 } else if (update_refs && disk_bytenr > 0) {
932 ret = btrfs_free_extent(trans, root,
933 disk_bytenr, num_bytes, 0,
934 root->root_key.objectid,
935 key.objectid, key.offset -
936 extent_offset);
937 BUG_ON(ret); /* -ENOMEM */
938 inode_sub_bytes(inode,
939 extent_end - key.offset);
940 }
941
942 if (end == extent_end)
943 break;
944
945 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
946 path->slots[0]++;
947 goto next_slot;
948 }
949
950 ret = btrfs_del_items(trans, root, path, del_slot,
951 del_nr);
952 if (ret) {
953 btrfs_abort_transaction(trans, ret);
954 break;
955 }
956
957 del_nr = 0;
958 del_slot = 0;
959
960 btrfs_release_path(path);
961 continue;
962 }
963
964 BUG_ON(1);
965 }
966
967 if (!ret && del_nr > 0) {
968 /*
969 * Set path->slots[0] to first slot, so that after the delete
970 * if items are move off from our leaf to its immediate left or
971 * right neighbor leafs, we end up with a correct and adjusted
972 * path->slots[0] for our insertion (if replace_extent != 0).
973 */
974 path->slots[0] = del_slot;
975 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
976 if (ret)
977 btrfs_abort_transaction(trans, ret);
978 }
979
980 leaf = path->nodes[0];
981 /*
982 * If btrfs_del_items() was called, it might have deleted a leaf, in
983 * which case it unlocked our path, so check path->locks[0] matches a
984 * write lock.
985 */
986 if (!ret && replace_extent && leafs_visited == 1 &&
987 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
988 path->locks[0] == BTRFS_WRITE_LOCK) &&
989 btrfs_leaf_free_space(root, leaf) >=
990 sizeof(struct btrfs_item) + extent_item_size) {
991
992 key.objectid = ino;
993 key.type = BTRFS_EXTENT_DATA_KEY;
994 key.offset = start;
995 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
996 struct btrfs_key slot_key;
997
998 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
999 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1000 path->slots[0]++;
1001 }
1002 setup_items_for_insert(root, path, &key,
1003 &extent_item_size,
1004 extent_item_size,
1005 sizeof(struct btrfs_item) +
1006 extent_item_size, 1);
1007 *key_inserted = 1;
1008 }
1009
1010 if (!replace_extent || !(*key_inserted))
1011 btrfs_release_path(path);
1012 if (drop_end)
1013 *drop_end = found ? min(end, extent_end) : end;
1014 return ret;
1015 }
1016
btrfs_drop_extents(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,u64 start,u64 end,int drop_cache)1017 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1018 struct btrfs_root *root, struct inode *inode, u64 start,
1019 u64 end, int drop_cache)
1020 {
1021 struct btrfs_path *path;
1022 int ret;
1023
1024 path = btrfs_alloc_path();
1025 if (!path)
1026 return -ENOMEM;
1027 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1028 drop_cache, 0, 0, NULL);
1029 btrfs_free_path(path);
1030 return ret;
1031 }
1032
extent_mergeable(struct extent_buffer * leaf,int slot,u64 objectid,u64 bytenr,u64 orig_offset,u64 * start,u64 * end)1033 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1034 u64 objectid, u64 bytenr, u64 orig_offset,
1035 u64 *start, u64 *end)
1036 {
1037 struct btrfs_file_extent_item *fi;
1038 struct btrfs_key key;
1039 u64 extent_end;
1040
1041 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1042 return 0;
1043
1044 btrfs_item_key_to_cpu(leaf, &key, slot);
1045 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1046 return 0;
1047
1048 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1049 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1050 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1051 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1052 btrfs_file_extent_compression(leaf, fi) ||
1053 btrfs_file_extent_encryption(leaf, fi) ||
1054 btrfs_file_extent_other_encoding(leaf, fi))
1055 return 0;
1056
1057 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1058 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1059 return 0;
1060
1061 *start = key.offset;
1062 *end = extent_end;
1063 return 1;
1064 }
1065
1066 /*
1067 * Mark extent in the range start - end as written.
1068 *
1069 * This changes extent type from 'pre-allocated' to 'regular'. If only
1070 * part of extent is marked as written, the extent will be split into
1071 * two or three.
1072 */
btrfs_mark_extent_written(struct btrfs_trans_handle * trans,struct inode * inode,u64 start,u64 end)1073 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1074 struct inode *inode, u64 start, u64 end)
1075 {
1076 struct btrfs_root *root = BTRFS_I(inode)->root;
1077 struct extent_buffer *leaf;
1078 struct btrfs_path *path;
1079 struct btrfs_file_extent_item *fi;
1080 struct btrfs_key key;
1081 struct btrfs_key new_key;
1082 u64 bytenr;
1083 u64 num_bytes;
1084 u64 extent_end;
1085 u64 orig_offset;
1086 u64 other_start;
1087 u64 other_end;
1088 u64 split;
1089 int del_nr = 0;
1090 int del_slot = 0;
1091 int recow;
1092 int ret;
1093 u64 ino = btrfs_ino(inode);
1094
1095 path = btrfs_alloc_path();
1096 if (!path)
1097 return -ENOMEM;
1098 again:
1099 recow = 0;
1100 split = start;
1101 key.objectid = ino;
1102 key.type = BTRFS_EXTENT_DATA_KEY;
1103 key.offset = split;
1104
1105 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1106 if (ret < 0)
1107 goto out;
1108 if (ret > 0 && path->slots[0] > 0)
1109 path->slots[0]--;
1110
1111 leaf = path->nodes[0];
1112 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1113 if (key.objectid != ino ||
1114 key.type != BTRFS_EXTENT_DATA_KEY) {
1115 ret = -EINVAL;
1116 btrfs_abort_transaction(trans, ret);
1117 goto out;
1118 }
1119 fi = btrfs_item_ptr(leaf, path->slots[0],
1120 struct btrfs_file_extent_item);
1121 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1122 ret = -EINVAL;
1123 btrfs_abort_transaction(trans, ret);
1124 goto out;
1125 }
1126 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1127 if (key.offset > start || extent_end < end) {
1128 ret = -EINVAL;
1129 btrfs_abort_transaction(trans, ret);
1130 goto out;
1131 }
1132
1133 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1134 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1135 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1136 memcpy(&new_key, &key, sizeof(new_key));
1137
1138 if (start == key.offset && end < extent_end) {
1139 other_start = 0;
1140 other_end = start;
1141 if (extent_mergeable(leaf, path->slots[0] - 1,
1142 ino, bytenr, orig_offset,
1143 &other_start, &other_end)) {
1144 new_key.offset = end;
1145 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1146 fi = btrfs_item_ptr(leaf, path->slots[0],
1147 struct btrfs_file_extent_item);
1148 btrfs_set_file_extent_generation(leaf, fi,
1149 trans->transid);
1150 btrfs_set_file_extent_num_bytes(leaf, fi,
1151 extent_end - end);
1152 btrfs_set_file_extent_offset(leaf, fi,
1153 end - orig_offset);
1154 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1155 struct btrfs_file_extent_item);
1156 btrfs_set_file_extent_generation(leaf, fi,
1157 trans->transid);
1158 btrfs_set_file_extent_num_bytes(leaf, fi,
1159 end - other_start);
1160 btrfs_mark_buffer_dirty(leaf);
1161 goto out;
1162 }
1163 }
1164
1165 if (start > key.offset && end == extent_end) {
1166 other_start = end;
1167 other_end = 0;
1168 if (extent_mergeable(leaf, path->slots[0] + 1,
1169 ino, bytenr, orig_offset,
1170 &other_start, &other_end)) {
1171 fi = btrfs_item_ptr(leaf, path->slots[0],
1172 struct btrfs_file_extent_item);
1173 btrfs_set_file_extent_num_bytes(leaf, fi,
1174 start - key.offset);
1175 btrfs_set_file_extent_generation(leaf, fi,
1176 trans->transid);
1177 path->slots[0]++;
1178 new_key.offset = start;
1179 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
1180
1181 fi = btrfs_item_ptr(leaf, path->slots[0],
1182 struct btrfs_file_extent_item);
1183 btrfs_set_file_extent_generation(leaf, fi,
1184 trans->transid);
1185 btrfs_set_file_extent_num_bytes(leaf, fi,
1186 other_end - start);
1187 btrfs_set_file_extent_offset(leaf, fi,
1188 start - orig_offset);
1189 btrfs_mark_buffer_dirty(leaf);
1190 goto out;
1191 }
1192 }
1193
1194 while (start > key.offset || end < extent_end) {
1195 if (key.offset == start)
1196 split = end;
1197
1198 new_key.offset = split;
1199 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1200 if (ret == -EAGAIN) {
1201 btrfs_release_path(path);
1202 goto again;
1203 }
1204 if (ret < 0) {
1205 btrfs_abort_transaction(trans, ret);
1206 goto out;
1207 }
1208
1209 leaf = path->nodes[0];
1210 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1211 struct btrfs_file_extent_item);
1212 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1213 btrfs_set_file_extent_num_bytes(leaf, fi,
1214 split - key.offset);
1215
1216 fi = btrfs_item_ptr(leaf, path->slots[0],
1217 struct btrfs_file_extent_item);
1218
1219 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1220 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1221 btrfs_set_file_extent_num_bytes(leaf, fi,
1222 extent_end - split);
1223 btrfs_mark_buffer_dirty(leaf);
1224
1225 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1226 root->root_key.objectid,
1227 ino, orig_offset);
1228 if (ret) {
1229 btrfs_abort_transaction(trans, ret);
1230 goto out;
1231 }
1232
1233 if (split == start) {
1234 key.offset = start;
1235 } else {
1236 if (start != key.offset) {
1237 ret = -EINVAL;
1238 btrfs_abort_transaction(trans, ret);
1239 goto out;
1240 }
1241 path->slots[0]--;
1242 extent_end = end;
1243 }
1244 recow = 1;
1245 }
1246
1247 other_start = end;
1248 other_end = 0;
1249 if (extent_mergeable(leaf, path->slots[0] + 1,
1250 ino, bytenr, orig_offset,
1251 &other_start, &other_end)) {
1252 if (recow) {
1253 btrfs_release_path(path);
1254 goto again;
1255 }
1256 extent_end = other_end;
1257 del_slot = path->slots[0] + 1;
1258 del_nr++;
1259 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1260 0, root->root_key.objectid,
1261 ino, orig_offset);
1262 if (ret) {
1263 btrfs_abort_transaction(trans, ret);
1264 goto out;
1265 }
1266 }
1267 other_start = 0;
1268 other_end = start;
1269 if (extent_mergeable(leaf, path->slots[0] - 1,
1270 ino, bytenr, orig_offset,
1271 &other_start, &other_end)) {
1272 if (recow) {
1273 btrfs_release_path(path);
1274 goto again;
1275 }
1276 key.offset = other_start;
1277 del_slot = path->slots[0];
1278 del_nr++;
1279 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1280 0, root->root_key.objectid,
1281 ino, orig_offset);
1282 if (ret) {
1283 btrfs_abort_transaction(trans, ret);
1284 goto out;
1285 }
1286 }
1287 if (del_nr == 0) {
1288 fi = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_file_extent_item);
1290 btrfs_set_file_extent_type(leaf, fi,
1291 BTRFS_FILE_EXTENT_REG);
1292 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1293 btrfs_mark_buffer_dirty(leaf);
1294 } else {
1295 fi = btrfs_item_ptr(leaf, del_slot - 1,
1296 struct btrfs_file_extent_item);
1297 btrfs_set_file_extent_type(leaf, fi,
1298 BTRFS_FILE_EXTENT_REG);
1299 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1300 btrfs_set_file_extent_num_bytes(leaf, fi,
1301 extent_end - key.offset);
1302 btrfs_mark_buffer_dirty(leaf);
1303
1304 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1305 if (ret < 0) {
1306 btrfs_abort_transaction(trans, ret);
1307 goto out;
1308 }
1309 }
1310 out:
1311 btrfs_free_path(path);
1312 return 0;
1313 }
1314
1315 /*
1316 * on error we return an unlocked page and the error value
1317 * on success we return a locked page and 0
1318 */
prepare_uptodate_page(struct inode * inode,struct page * page,u64 pos,bool force_uptodate)1319 static int prepare_uptodate_page(struct inode *inode,
1320 struct page *page, u64 pos,
1321 bool force_uptodate)
1322 {
1323 int ret = 0;
1324
1325 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
1326 !PageUptodate(page)) {
1327 ret = btrfs_readpage(NULL, page);
1328 if (ret)
1329 return ret;
1330 lock_page(page);
1331 if (!PageUptodate(page)) {
1332 unlock_page(page);
1333 return -EIO;
1334 }
1335 if (page->mapping != inode->i_mapping) {
1336 unlock_page(page);
1337 return -EAGAIN;
1338 }
1339 }
1340 return 0;
1341 }
1342
1343 /*
1344 * this just gets pages into the page cache and locks them down.
1345 */
prepare_pages(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,bool force_uptodate)1346 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1347 size_t num_pages, loff_t pos,
1348 size_t write_bytes, bool force_uptodate)
1349 {
1350 int i;
1351 unsigned long index = pos >> PAGE_SHIFT;
1352 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1353 int err = 0;
1354 int faili;
1355
1356 for (i = 0; i < num_pages; i++) {
1357 again:
1358 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1359 mask | __GFP_WRITE);
1360 if (!pages[i]) {
1361 faili = i - 1;
1362 err = -ENOMEM;
1363 goto fail;
1364 }
1365
1366 if (i == 0)
1367 err = prepare_uptodate_page(inode, pages[i], pos,
1368 force_uptodate);
1369 if (!err && i == num_pages - 1)
1370 err = prepare_uptodate_page(inode, pages[i],
1371 pos + write_bytes, false);
1372 if (err) {
1373 put_page(pages[i]);
1374 if (err == -EAGAIN) {
1375 err = 0;
1376 goto again;
1377 }
1378 faili = i - 1;
1379 goto fail;
1380 }
1381 wait_on_page_writeback(pages[i]);
1382 }
1383
1384 return 0;
1385 fail:
1386 while (faili >= 0) {
1387 unlock_page(pages[faili]);
1388 put_page(pages[faili]);
1389 faili--;
1390 }
1391 return err;
1392
1393 }
1394
1395 /*
1396 * This function locks the extent and properly waits for data=ordered extents
1397 * to finish before allowing the pages to be modified if need.
1398 *
1399 * The return value:
1400 * 1 - the extent is locked
1401 * 0 - the extent is not locked, and everything is OK
1402 * -EAGAIN - need re-prepare the pages
1403 * the other < 0 number - Something wrong happens
1404 */
1405 static noinline int
lock_and_cleanup_extent_if_need(struct inode * inode,struct page ** pages,size_t num_pages,loff_t pos,size_t write_bytes,u64 * lockstart,u64 * lockend,struct extent_state ** cached_state)1406 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1407 size_t num_pages, loff_t pos,
1408 size_t write_bytes,
1409 u64 *lockstart, u64 *lockend,
1410 struct extent_state **cached_state)
1411 {
1412 struct btrfs_root *root = BTRFS_I(inode)->root;
1413 u64 start_pos;
1414 u64 last_pos;
1415 int i;
1416 int ret = 0;
1417
1418 start_pos = round_down(pos, root->sectorsize);
1419 last_pos = start_pos
1420 + round_up(pos + write_bytes - start_pos, root->sectorsize) - 1;
1421
1422 if (start_pos < inode->i_size) {
1423 struct btrfs_ordered_extent *ordered;
1424 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1425 start_pos, last_pos, cached_state);
1426 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1427 last_pos - start_pos + 1);
1428 if (ordered &&
1429 ordered->file_offset + ordered->len > start_pos &&
1430 ordered->file_offset <= last_pos) {
1431 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1432 start_pos, last_pos,
1433 cached_state, GFP_NOFS);
1434 for (i = 0; i < num_pages; i++) {
1435 unlock_page(pages[i]);
1436 put_page(pages[i]);
1437 }
1438 btrfs_start_ordered_extent(inode, ordered, 1);
1439 btrfs_put_ordered_extent(ordered);
1440 return -EAGAIN;
1441 }
1442 if (ordered)
1443 btrfs_put_ordered_extent(ordered);
1444
1445 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1446 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1447 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1448 0, 0, cached_state, GFP_NOFS);
1449 *lockstart = start_pos;
1450 *lockend = last_pos;
1451 ret = 1;
1452 }
1453
1454 for (i = 0; i < num_pages; i++) {
1455 if (clear_page_dirty_for_io(pages[i]))
1456 account_page_redirty(pages[i]);
1457 set_page_extent_mapped(pages[i]);
1458 WARN_ON(!PageLocked(pages[i]));
1459 }
1460
1461 return ret;
1462 }
1463
check_can_nocow(struct inode * inode,loff_t pos,size_t * write_bytes)1464 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1465 size_t *write_bytes)
1466 {
1467 struct btrfs_root *root = BTRFS_I(inode)->root;
1468 struct btrfs_ordered_extent *ordered;
1469 u64 lockstart, lockend;
1470 u64 num_bytes;
1471 int ret;
1472
1473 ret = btrfs_start_write_no_snapshoting(root);
1474 if (!ret)
1475 return -ENOSPC;
1476
1477 lockstart = round_down(pos, root->sectorsize);
1478 lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1479
1480 while (1) {
1481 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1482 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1483 lockend - lockstart + 1);
1484 if (!ordered) {
1485 break;
1486 }
1487 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1488 btrfs_start_ordered_extent(inode, ordered, 1);
1489 btrfs_put_ordered_extent(ordered);
1490 }
1491
1492 num_bytes = lockend - lockstart + 1;
1493 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1494 if (ret <= 0) {
1495 ret = 0;
1496 btrfs_end_write_no_snapshoting(root);
1497 } else {
1498 *write_bytes = min_t(size_t, *write_bytes ,
1499 num_bytes - pos + lockstart);
1500 }
1501
1502 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1503
1504 return ret;
1505 }
1506
__btrfs_buffered_write(struct file * file,struct iov_iter * i,loff_t pos)1507 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1508 struct iov_iter *i,
1509 loff_t pos)
1510 {
1511 struct inode *inode = file_inode(file);
1512 struct btrfs_root *root = BTRFS_I(inode)->root;
1513 struct page **pages = NULL;
1514 struct extent_state *cached_state = NULL;
1515 u64 release_bytes = 0;
1516 u64 lockstart;
1517 u64 lockend;
1518 size_t num_written = 0;
1519 int nrptrs;
1520 int ret = 0;
1521 bool only_release_metadata = false;
1522 bool force_page_uptodate = false;
1523 bool need_unlock;
1524
1525 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1526 PAGE_SIZE / (sizeof(struct page *)));
1527 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1528 nrptrs = max(nrptrs, 8);
1529 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1530 if (!pages)
1531 return -ENOMEM;
1532
1533 while (iov_iter_count(i) > 0) {
1534 size_t offset = pos & (PAGE_SIZE - 1);
1535 size_t sector_offset;
1536 size_t write_bytes = min(iov_iter_count(i),
1537 nrptrs * (size_t)PAGE_SIZE -
1538 offset);
1539 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
1540 PAGE_SIZE);
1541 size_t reserve_bytes;
1542 size_t dirty_pages;
1543 size_t copied;
1544 size_t dirty_sectors;
1545 size_t num_sectors;
1546
1547 WARN_ON(num_pages > nrptrs);
1548
1549 /*
1550 * Fault pages before locking them in prepare_pages
1551 * to avoid recursive lock
1552 */
1553 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1554 ret = -EFAULT;
1555 break;
1556 }
1557
1558 sector_offset = pos & (root->sectorsize - 1);
1559 reserve_bytes = round_up(write_bytes + sector_offset,
1560 root->sectorsize);
1561
1562 ret = btrfs_check_data_free_space(inode, pos, write_bytes);
1563 if (ret < 0) {
1564 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1565 BTRFS_INODE_PREALLOC)) &&
1566 check_can_nocow(inode, pos, &write_bytes) > 0) {
1567 /*
1568 * For nodata cow case, no need to reserve
1569 * data space.
1570 */
1571 only_release_metadata = true;
1572 /*
1573 * our prealloc extent may be smaller than
1574 * write_bytes, so scale down.
1575 */
1576 num_pages = DIV_ROUND_UP(write_bytes + offset,
1577 PAGE_SIZE);
1578 reserve_bytes = round_up(write_bytes +
1579 sector_offset,
1580 root->sectorsize);
1581 } else {
1582 break;
1583 }
1584 }
1585
1586 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1587 if (ret) {
1588 if (!only_release_metadata)
1589 btrfs_free_reserved_data_space(inode, pos,
1590 write_bytes);
1591 else
1592 btrfs_end_write_no_snapshoting(root);
1593 break;
1594 }
1595
1596 release_bytes = reserve_bytes;
1597 need_unlock = false;
1598 again:
1599 /*
1600 * This is going to setup the pages array with the number of
1601 * pages we want, so we don't really need to worry about the
1602 * contents of pages from loop to loop
1603 */
1604 ret = prepare_pages(inode, pages, num_pages,
1605 pos, write_bytes,
1606 force_page_uptodate);
1607 if (ret)
1608 break;
1609
1610 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1611 pos, write_bytes, &lockstart,
1612 &lockend, &cached_state);
1613 if (ret < 0) {
1614 if (ret == -EAGAIN)
1615 goto again;
1616 break;
1617 } else if (ret > 0) {
1618 need_unlock = true;
1619 ret = 0;
1620 }
1621
1622 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1623
1624 num_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1625 reserve_bytes);
1626 dirty_sectors = round_up(copied + sector_offset,
1627 root->sectorsize);
1628 dirty_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1629 dirty_sectors);
1630
1631 /*
1632 * if we have trouble faulting in the pages, fall
1633 * back to one page at a time
1634 */
1635 if (copied < write_bytes)
1636 nrptrs = 1;
1637
1638 if (copied == 0) {
1639 force_page_uptodate = true;
1640 dirty_sectors = 0;
1641 dirty_pages = 0;
1642 } else {
1643 force_page_uptodate = false;
1644 dirty_pages = DIV_ROUND_UP(copied + offset,
1645 PAGE_SIZE);
1646 }
1647
1648 /*
1649 * If we had a short copy we need to release the excess delaloc
1650 * bytes we reserved. We need to increment outstanding_extents
1651 * because btrfs_delalloc_release_space and
1652 * btrfs_delalloc_release_metadata will decrement it, but
1653 * we still have an outstanding extent for the chunk we actually
1654 * managed to copy.
1655 */
1656 if (num_sectors > dirty_sectors) {
1657
1658 /* release everything except the sectors we dirtied */
1659 release_bytes -= dirty_sectors <<
1660 root->fs_info->sb->s_blocksize_bits;
1661
1662 if (copied > 0) {
1663 spin_lock(&BTRFS_I(inode)->lock);
1664 BTRFS_I(inode)->outstanding_extents++;
1665 spin_unlock(&BTRFS_I(inode)->lock);
1666 }
1667 if (only_release_metadata) {
1668 btrfs_delalloc_release_metadata(inode,
1669 release_bytes);
1670 } else {
1671 u64 __pos;
1672
1673 __pos = round_down(pos, root->sectorsize) +
1674 (dirty_pages << PAGE_SHIFT);
1675 btrfs_delalloc_release_space(inode, __pos,
1676 release_bytes);
1677 }
1678 }
1679
1680 release_bytes = round_up(copied + sector_offset,
1681 root->sectorsize);
1682
1683 if (copied > 0)
1684 ret = btrfs_dirty_pages(root, inode, pages,
1685 dirty_pages, pos, copied,
1686 NULL);
1687 if (need_unlock)
1688 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1689 lockstart, lockend, &cached_state,
1690 GFP_NOFS);
1691 if (ret) {
1692 btrfs_drop_pages(pages, num_pages);
1693 break;
1694 }
1695
1696 release_bytes = 0;
1697 if (only_release_metadata)
1698 btrfs_end_write_no_snapshoting(root);
1699
1700 if (only_release_metadata && copied > 0) {
1701 lockstart = round_down(pos, root->sectorsize);
1702 lockend = round_up(pos + copied, root->sectorsize) - 1;
1703
1704 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1705 lockend, EXTENT_NORESERVE, NULL,
1706 NULL, GFP_NOFS);
1707 only_release_metadata = false;
1708 }
1709
1710 btrfs_drop_pages(pages, num_pages);
1711
1712 cond_resched();
1713
1714 balance_dirty_pages_ratelimited(inode->i_mapping);
1715 if (dirty_pages < (root->nodesize >> PAGE_SHIFT) + 1)
1716 btrfs_btree_balance_dirty(root);
1717
1718 pos += copied;
1719 num_written += copied;
1720 }
1721
1722 kfree(pages);
1723
1724 if (release_bytes) {
1725 if (only_release_metadata) {
1726 btrfs_end_write_no_snapshoting(root);
1727 btrfs_delalloc_release_metadata(inode, release_bytes);
1728 } else {
1729 btrfs_delalloc_release_space(inode,
1730 round_down(pos, root->sectorsize),
1731 release_bytes);
1732 }
1733 }
1734
1735 return num_written ? num_written : ret;
1736 }
1737
__btrfs_direct_write(struct kiocb * iocb,struct iov_iter * from)1738 static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1739 {
1740 struct file *file = iocb->ki_filp;
1741 struct inode *inode = file_inode(file);
1742 loff_t pos = iocb->ki_pos;
1743 ssize_t written;
1744 ssize_t written_buffered;
1745 loff_t endbyte;
1746 int err;
1747
1748 written = generic_file_direct_write(iocb, from);
1749
1750 if (written < 0 || !iov_iter_count(from))
1751 return written;
1752
1753 pos += written;
1754 written_buffered = __btrfs_buffered_write(file, from, pos);
1755 if (written_buffered < 0) {
1756 err = written_buffered;
1757 goto out;
1758 }
1759 /*
1760 * Ensure all data is persisted. We want the next direct IO read to be
1761 * able to read what was just written.
1762 */
1763 endbyte = pos + written_buffered - 1;
1764 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1765 if (err)
1766 goto out;
1767 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1768 if (err)
1769 goto out;
1770 written += written_buffered;
1771 iocb->ki_pos = pos + written_buffered;
1772 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1773 endbyte >> PAGE_SHIFT);
1774 out:
1775 return written ? written : err;
1776 }
1777
update_time_for_write(struct inode * inode)1778 static void update_time_for_write(struct inode *inode)
1779 {
1780 struct timespec now;
1781
1782 if (IS_NOCMTIME(inode))
1783 return;
1784
1785 now = current_time(inode);
1786 if (!timespec_equal(&inode->i_mtime, &now))
1787 inode->i_mtime = now;
1788
1789 if (!timespec_equal(&inode->i_ctime, &now))
1790 inode->i_ctime = now;
1791
1792 if (IS_I_VERSION(inode))
1793 inode_inc_iversion(inode);
1794 }
1795
btrfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1796 static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1797 struct iov_iter *from)
1798 {
1799 struct file *file = iocb->ki_filp;
1800 struct inode *inode = file_inode(file);
1801 struct btrfs_root *root = BTRFS_I(inode)->root;
1802 u64 start_pos;
1803 u64 end_pos;
1804 ssize_t num_written = 0;
1805 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1806 ssize_t err;
1807 loff_t pos;
1808 size_t count;
1809 loff_t oldsize;
1810 int clean_page = 0;
1811
1812 inode_lock(inode);
1813 err = generic_write_checks(iocb, from);
1814 if (err <= 0) {
1815 inode_unlock(inode);
1816 return err;
1817 }
1818
1819 current->backing_dev_info = inode_to_bdi(inode);
1820 err = file_remove_privs(file);
1821 if (err) {
1822 inode_unlock(inode);
1823 goto out;
1824 }
1825
1826 /*
1827 * If BTRFS flips readonly due to some impossible error
1828 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1829 * although we have opened a file as writable, we have
1830 * to stop this write operation to ensure FS consistency.
1831 */
1832 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1833 inode_unlock(inode);
1834 err = -EROFS;
1835 goto out;
1836 }
1837
1838 /*
1839 * We reserve space for updating the inode when we reserve space for the
1840 * extent we are going to write, so we will enospc out there. We don't
1841 * need to start yet another transaction to update the inode as we will
1842 * update the inode when we finish writing whatever data we write.
1843 */
1844 update_time_for_write(inode);
1845
1846 pos = iocb->ki_pos;
1847 count = iov_iter_count(from);
1848 start_pos = round_down(pos, root->sectorsize);
1849 oldsize = i_size_read(inode);
1850 if (start_pos > oldsize) {
1851 /* Expand hole size to cover write data, preventing empty gap */
1852 end_pos = round_up(pos + count, root->sectorsize);
1853 err = btrfs_cont_expand(inode, oldsize, end_pos);
1854 if (err) {
1855 inode_unlock(inode);
1856 goto out;
1857 }
1858 if (start_pos > round_up(oldsize, root->sectorsize))
1859 clean_page = 1;
1860 }
1861
1862 if (sync)
1863 atomic_inc(&BTRFS_I(inode)->sync_writers);
1864
1865 if (iocb->ki_flags & IOCB_DIRECT) {
1866 num_written = __btrfs_direct_write(iocb, from);
1867 } else {
1868 num_written = __btrfs_buffered_write(file, from, pos);
1869 if (num_written > 0)
1870 iocb->ki_pos = pos + num_written;
1871 if (clean_page)
1872 pagecache_isize_extended(inode, oldsize,
1873 i_size_read(inode));
1874 }
1875
1876 inode_unlock(inode);
1877
1878 /*
1879 * We also have to set last_sub_trans to the current log transid,
1880 * otherwise subsequent syncs to a file that's been synced in this
1881 * transaction will appear to have already occurred.
1882 */
1883 spin_lock(&BTRFS_I(inode)->lock);
1884 BTRFS_I(inode)->last_sub_trans = root->log_transid;
1885 spin_unlock(&BTRFS_I(inode)->lock);
1886 if (num_written > 0)
1887 num_written = generic_write_sync(iocb, num_written);
1888
1889 if (sync)
1890 atomic_dec(&BTRFS_I(inode)->sync_writers);
1891 out:
1892 current->backing_dev_info = NULL;
1893 return num_written ? num_written : err;
1894 }
1895
btrfs_release_file(struct inode * inode,struct file * filp)1896 int btrfs_release_file(struct inode *inode, struct file *filp)
1897 {
1898 if (filp->private_data)
1899 btrfs_ioctl_trans_end(filp);
1900 /*
1901 * ordered_data_close is set by settattr when we are about to truncate
1902 * a file from a non-zero size to a zero size. This tries to
1903 * flush down new bytes that may have been written if the
1904 * application were using truncate to replace a file in place.
1905 */
1906 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1907 &BTRFS_I(inode)->runtime_flags))
1908 filemap_flush(inode->i_mapping);
1909 return 0;
1910 }
1911
start_ordered_ops(struct inode * inode,loff_t start,loff_t end)1912 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1913 {
1914 int ret;
1915
1916 atomic_inc(&BTRFS_I(inode)->sync_writers);
1917 ret = btrfs_fdatawrite_range(inode, start, end);
1918 atomic_dec(&BTRFS_I(inode)->sync_writers);
1919
1920 return ret;
1921 }
1922
1923 /*
1924 * fsync call for both files and directories. This logs the inode into
1925 * the tree log instead of forcing full commits whenever possible.
1926 *
1927 * It needs to call filemap_fdatawait so that all ordered extent updates are
1928 * in the metadata btree are up to date for copying to the log.
1929 *
1930 * It drops the inode mutex before doing the tree log commit. This is an
1931 * important optimization for directories because holding the mutex prevents
1932 * new operations on the dir while we write to disk.
1933 */
btrfs_sync_file(struct file * file,loff_t start,loff_t end,int datasync)1934 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1935 {
1936 struct dentry *dentry = file_dentry(file);
1937 struct inode *inode = d_inode(dentry);
1938 struct btrfs_root *root = BTRFS_I(inode)->root;
1939 struct btrfs_trans_handle *trans;
1940 struct btrfs_log_ctx ctx;
1941 int ret = 0;
1942 bool full_sync = 0;
1943 u64 len;
1944
1945 /*
1946 * The range length can be represented by u64, we have to do the typecasts
1947 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1948 */
1949 len = (u64)end - (u64)start + 1;
1950 trace_btrfs_sync_file(file, datasync);
1951
1952 /*
1953 * We write the dirty pages in the range and wait until they complete
1954 * out of the ->i_mutex. If so, we can flush the dirty pages by
1955 * multi-task, and make the performance up. See
1956 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1957 */
1958 ret = start_ordered_ops(inode, start, end);
1959 if (ret)
1960 return ret;
1961
1962 inode_lock(inode);
1963 atomic_inc(&root->log_batch);
1964 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1965 &BTRFS_I(inode)->runtime_flags);
1966 /*
1967 * We might have have had more pages made dirty after calling
1968 * start_ordered_ops and before acquiring the inode's i_mutex.
1969 */
1970 if (full_sync) {
1971 /*
1972 * For a full sync, we need to make sure any ordered operations
1973 * start and finish before we start logging the inode, so that
1974 * all extents are persisted and the respective file extent
1975 * items are in the fs/subvol btree.
1976 */
1977 ret = btrfs_wait_ordered_range(inode, start, len);
1978 } else {
1979 /*
1980 * Start any new ordered operations before starting to log the
1981 * inode. We will wait for them to finish in btrfs_sync_log().
1982 *
1983 * Right before acquiring the inode's mutex, we might have new
1984 * writes dirtying pages, which won't immediately start the
1985 * respective ordered operations - that is done through the
1986 * fill_delalloc callbacks invoked from the writepage and
1987 * writepages address space operations. So make sure we start
1988 * all ordered operations before starting to log our inode. Not
1989 * doing this means that while logging the inode, writeback
1990 * could start and invoke writepage/writepages, which would call
1991 * the fill_delalloc callbacks (cow_file_range,
1992 * submit_compressed_extents). These callbacks add first an
1993 * extent map to the modified list of extents and then create
1994 * the respective ordered operation, which means in
1995 * tree-log.c:btrfs_log_inode() we might capture all existing
1996 * ordered operations (with btrfs_get_logged_extents()) before
1997 * the fill_delalloc callback adds its ordered operation, and by
1998 * the time we visit the modified list of extent maps (with
1999 * btrfs_log_changed_extents()), we see and process the extent
2000 * map they created. We then use the extent map to construct a
2001 * file extent item for logging without waiting for the
2002 * respective ordered operation to finish - this file extent
2003 * item points to a disk location that might not have yet been
2004 * written to, containing random data - so after a crash a log
2005 * replay will make our inode have file extent items that point
2006 * to disk locations containing invalid data, as we returned
2007 * success to userspace without waiting for the respective
2008 * ordered operation to finish, because it wasn't captured by
2009 * btrfs_get_logged_extents().
2010 */
2011 ret = start_ordered_ops(inode, start, end);
2012 }
2013 if (ret) {
2014 inode_unlock(inode);
2015 goto out;
2016 }
2017 atomic_inc(&root->log_batch);
2018
2019 /*
2020 * If the last transaction that changed this file was before the current
2021 * transaction and we have the full sync flag set in our inode, we can
2022 * bail out now without any syncing.
2023 *
2024 * Note that we can't bail out if the full sync flag isn't set. This is
2025 * because when the full sync flag is set we start all ordered extents
2026 * and wait for them to fully complete - when they complete they update
2027 * the inode's last_trans field through:
2028 *
2029 * btrfs_finish_ordered_io() ->
2030 * btrfs_update_inode_fallback() ->
2031 * btrfs_update_inode() ->
2032 * btrfs_set_inode_last_trans()
2033 *
2034 * So we are sure that last_trans is up to date and can do this check to
2035 * bail out safely. For the fast path, when the full sync flag is not
2036 * set in our inode, we can not do it because we start only our ordered
2037 * extents and don't wait for them to complete (that is when
2038 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2039 * value might be less than or equals to fs_info->last_trans_committed,
2040 * and setting a speculative last_trans for an inode when a buffered
2041 * write is made (such as fs_info->generation + 1 for example) would not
2042 * be reliable since after setting the value and before fsync is called
2043 * any number of transactions can start and commit (transaction kthread
2044 * commits the current transaction periodically), and a transaction
2045 * commit does not start nor waits for ordered extents to complete.
2046 */
2047 smp_mb();
2048 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
2049 (full_sync && BTRFS_I(inode)->last_trans <=
2050 root->fs_info->last_trans_committed) ||
2051 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2052 BTRFS_I(inode)->last_trans
2053 <= root->fs_info->last_trans_committed)) {
2054 /*
2055 * We've had everything committed since the last time we were
2056 * modified so clear this flag in case it was set for whatever
2057 * reason, it's no longer relevant.
2058 */
2059 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2060 &BTRFS_I(inode)->runtime_flags);
2061 /*
2062 * An ordered extent might have started before and completed
2063 * already with io errors, in which case the inode was not
2064 * updated and we end up here. So check the inode's mapping
2065 * flags for any errors that might have happened while doing
2066 * writeback of file data.
2067 */
2068 ret = filemap_check_errors(inode->i_mapping);
2069 inode_unlock(inode);
2070 goto out;
2071 }
2072
2073 /*
2074 * ok we haven't committed the transaction yet, lets do a commit
2075 */
2076 if (file->private_data)
2077 btrfs_ioctl_trans_end(file);
2078
2079 /*
2080 * We use start here because we will need to wait on the IO to complete
2081 * in btrfs_sync_log, which could require joining a transaction (for
2082 * example checking cross references in the nocow path). If we use join
2083 * here we could get into a situation where we're waiting on IO to
2084 * happen that is blocked on a transaction trying to commit. With start
2085 * we inc the extwriter counter, so we wait for all extwriters to exit
2086 * before we start blocking join'ers. This comment is to keep somebody
2087 * from thinking they are super smart and changing this to
2088 * btrfs_join_transaction *cough*Josef*cough*.
2089 */
2090 trans = btrfs_start_transaction(root, 0);
2091 if (IS_ERR(trans)) {
2092 ret = PTR_ERR(trans);
2093 inode_unlock(inode);
2094 goto out;
2095 }
2096 trans->sync = true;
2097
2098 btrfs_init_log_ctx(&ctx, inode);
2099
2100 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
2101 if (ret < 0) {
2102 /* Fallthrough and commit/free transaction. */
2103 ret = 1;
2104 }
2105
2106 /* we've logged all the items and now have a consistent
2107 * version of the file in the log. It is possible that
2108 * someone will come in and modify the file, but that's
2109 * fine because the log is consistent on disk, and we
2110 * have references to all of the file's extents
2111 *
2112 * It is possible that someone will come in and log the
2113 * file again, but that will end up using the synchronization
2114 * inside btrfs_sync_log to keep things safe.
2115 */
2116 inode_unlock(inode);
2117
2118 /*
2119 * If any of the ordered extents had an error, just return it to user
2120 * space, so that the application knows some writes didn't succeed and
2121 * can take proper action (retry for e.g.). Blindly committing the
2122 * transaction in this case, would fool userspace that everything was
2123 * successful. And we also want to make sure our log doesn't contain
2124 * file extent items pointing to extents that weren't fully written to -
2125 * just like in the non fast fsync path, where we check for the ordered
2126 * operation's error flag before writing to the log tree and return -EIO
2127 * if any of them had this flag set (btrfs_wait_ordered_range) -
2128 * therefore we need to check for errors in the ordered operations,
2129 * which are indicated by ctx.io_err.
2130 */
2131 if (ctx.io_err) {
2132 btrfs_end_transaction(trans, root);
2133 ret = ctx.io_err;
2134 goto out;
2135 }
2136
2137 if (ret != BTRFS_NO_LOG_SYNC) {
2138 if (!ret) {
2139 ret = btrfs_sync_log(trans, root, &ctx);
2140 if (!ret) {
2141 ret = btrfs_end_transaction(trans, root);
2142 goto out;
2143 }
2144 }
2145 if (!full_sync) {
2146 ret = btrfs_wait_ordered_range(inode, start, len);
2147 if (ret) {
2148 btrfs_end_transaction(trans, root);
2149 goto out;
2150 }
2151 }
2152 ret = btrfs_commit_transaction(trans, root);
2153 } else {
2154 ret = btrfs_end_transaction(trans, root);
2155 }
2156 out:
2157 return ret > 0 ? -EIO : ret;
2158 }
2159
2160 static const struct vm_operations_struct btrfs_file_vm_ops = {
2161 .fault = filemap_fault,
2162 .map_pages = filemap_map_pages,
2163 .page_mkwrite = btrfs_page_mkwrite,
2164 };
2165
btrfs_file_mmap(struct file * filp,struct vm_area_struct * vma)2166 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2167 {
2168 struct address_space *mapping = filp->f_mapping;
2169
2170 if (!mapping->a_ops->readpage)
2171 return -ENOEXEC;
2172
2173 file_accessed(filp);
2174 vma->vm_ops = &btrfs_file_vm_ops;
2175
2176 return 0;
2177 }
2178
hole_mergeable(struct inode * inode,struct extent_buffer * leaf,int slot,u64 start,u64 end)2179 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2180 int slot, u64 start, u64 end)
2181 {
2182 struct btrfs_file_extent_item *fi;
2183 struct btrfs_key key;
2184
2185 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2186 return 0;
2187
2188 btrfs_item_key_to_cpu(leaf, &key, slot);
2189 if (key.objectid != btrfs_ino(inode) ||
2190 key.type != BTRFS_EXTENT_DATA_KEY)
2191 return 0;
2192
2193 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2194
2195 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2196 return 0;
2197
2198 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2199 return 0;
2200
2201 if (key.offset == end)
2202 return 1;
2203 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2204 return 1;
2205 return 0;
2206 }
2207
fill_holes(struct btrfs_trans_handle * trans,struct inode * inode,struct btrfs_path * path,u64 offset,u64 end)2208 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2209 struct btrfs_path *path, u64 offset, u64 end)
2210 {
2211 struct btrfs_root *root = BTRFS_I(inode)->root;
2212 struct extent_buffer *leaf;
2213 struct btrfs_file_extent_item *fi;
2214 struct extent_map *hole_em;
2215 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2216 struct btrfs_key key;
2217 int ret;
2218
2219 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2220 goto out;
2221
2222 key.objectid = btrfs_ino(inode);
2223 key.type = BTRFS_EXTENT_DATA_KEY;
2224 key.offset = offset;
2225
2226 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2227 if (ret < 0)
2228 return ret;
2229 BUG_ON(!ret);
2230
2231 leaf = path->nodes[0];
2232 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2233 u64 num_bytes;
2234
2235 path->slots[0]--;
2236 fi = btrfs_item_ptr(leaf, path->slots[0],
2237 struct btrfs_file_extent_item);
2238 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2239 end - offset;
2240 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2241 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2242 btrfs_set_file_extent_offset(leaf, fi, 0);
2243 btrfs_mark_buffer_dirty(leaf);
2244 goto out;
2245 }
2246
2247 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2248 u64 num_bytes;
2249
2250 key.offset = offset;
2251 btrfs_set_item_key_safe(root->fs_info, path, &key);
2252 fi = btrfs_item_ptr(leaf, path->slots[0],
2253 struct btrfs_file_extent_item);
2254 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2255 offset;
2256 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2257 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2258 btrfs_set_file_extent_offset(leaf, fi, 0);
2259 btrfs_mark_buffer_dirty(leaf);
2260 goto out;
2261 }
2262 btrfs_release_path(path);
2263
2264 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2265 0, 0, end - offset, 0, end - offset,
2266 0, 0, 0);
2267 if (ret)
2268 return ret;
2269
2270 out:
2271 btrfs_release_path(path);
2272
2273 hole_em = alloc_extent_map();
2274 if (!hole_em) {
2275 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2276 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2277 &BTRFS_I(inode)->runtime_flags);
2278 } else {
2279 hole_em->start = offset;
2280 hole_em->len = end - offset;
2281 hole_em->ram_bytes = hole_em->len;
2282 hole_em->orig_start = offset;
2283
2284 hole_em->block_start = EXTENT_MAP_HOLE;
2285 hole_em->block_len = 0;
2286 hole_em->orig_block_len = 0;
2287 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2288 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2289 hole_em->generation = trans->transid;
2290
2291 do {
2292 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2293 write_lock(&em_tree->lock);
2294 ret = add_extent_mapping(em_tree, hole_em, 1);
2295 write_unlock(&em_tree->lock);
2296 } while (ret == -EEXIST);
2297 free_extent_map(hole_em);
2298 if (ret)
2299 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2300 &BTRFS_I(inode)->runtime_flags);
2301 }
2302
2303 return 0;
2304 }
2305
2306 /*
2307 * Find a hole extent on given inode and change start/len to the end of hole
2308 * extent.(hole/vacuum extent whose em->start <= start &&
2309 * em->start + em->len > start)
2310 * When a hole extent is found, return 1 and modify start/len.
2311 */
find_first_non_hole(struct inode * inode,u64 * start,u64 * len)2312 static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2313 {
2314 struct extent_map *em;
2315 int ret = 0;
2316
2317 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2318 if (IS_ERR_OR_NULL(em)) {
2319 if (!em)
2320 ret = -ENOMEM;
2321 else
2322 ret = PTR_ERR(em);
2323 return ret;
2324 }
2325
2326 /* Hole or vacuum extent(only exists in no-hole mode) */
2327 if (em->block_start == EXTENT_MAP_HOLE) {
2328 ret = 1;
2329 *len = em->start + em->len > *start + *len ?
2330 0 : *start + *len - em->start - em->len;
2331 *start = em->start + em->len;
2332 }
2333 free_extent_map(em);
2334 return ret;
2335 }
2336
btrfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)2337 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2338 {
2339 struct btrfs_root *root = BTRFS_I(inode)->root;
2340 struct extent_state *cached_state = NULL;
2341 struct btrfs_path *path;
2342 struct btrfs_block_rsv *rsv;
2343 struct btrfs_trans_handle *trans;
2344 u64 lockstart;
2345 u64 lockend;
2346 u64 tail_start;
2347 u64 tail_len;
2348 u64 orig_start = offset;
2349 u64 cur_offset;
2350 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2351 u64 drop_end;
2352 int ret = 0;
2353 int err = 0;
2354 unsigned int rsv_count;
2355 bool same_block;
2356 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2357 u64 ino_size;
2358 bool truncated_block = false;
2359 bool updated_inode = false;
2360
2361 ret = btrfs_wait_ordered_range(inode, offset, len);
2362 if (ret)
2363 return ret;
2364
2365 inode_lock(inode);
2366 ino_size = round_up(inode->i_size, root->sectorsize);
2367 ret = find_first_non_hole(inode, &offset, &len);
2368 if (ret < 0)
2369 goto out_only_mutex;
2370 if (ret && !len) {
2371 /* Already in a large hole */
2372 ret = 0;
2373 goto out_only_mutex;
2374 }
2375
2376 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2377 lockend = round_down(offset + len,
2378 BTRFS_I(inode)->root->sectorsize) - 1;
2379 same_block = (BTRFS_BYTES_TO_BLKS(root->fs_info, offset))
2380 == (BTRFS_BYTES_TO_BLKS(root->fs_info, offset + len - 1));
2381 /*
2382 * We needn't truncate any block which is beyond the end of the file
2383 * because we are sure there is no data there.
2384 */
2385 /*
2386 * Only do this if we are in the same block and we aren't doing the
2387 * entire block.
2388 */
2389 if (same_block && len < root->sectorsize) {
2390 if (offset < ino_size) {
2391 truncated_block = true;
2392 ret = btrfs_truncate_block(inode, offset, len, 0);
2393 } else {
2394 ret = 0;
2395 }
2396 goto out_only_mutex;
2397 }
2398
2399 /* zero back part of the first block */
2400 if (offset < ino_size) {
2401 truncated_block = true;
2402 ret = btrfs_truncate_block(inode, offset, 0, 0);
2403 if (ret) {
2404 inode_unlock(inode);
2405 return ret;
2406 }
2407 }
2408
2409 /* Check the aligned pages after the first unaligned page,
2410 * if offset != orig_start, which means the first unaligned page
2411 * including several following pages are already in holes,
2412 * the extra check can be skipped */
2413 if (offset == orig_start) {
2414 /* after truncate page, check hole again */
2415 len = offset + len - lockstart;
2416 offset = lockstart;
2417 ret = find_first_non_hole(inode, &offset, &len);
2418 if (ret < 0)
2419 goto out_only_mutex;
2420 if (ret && !len) {
2421 ret = 0;
2422 goto out_only_mutex;
2423 }
2424 lockstart = offset;
2425 }
2426
2427 /* Check the tail unaligned part is in a hole */
2428 tail_start = lockend + 1;
2429 tail_len = offset + len - tail_start;
2430 if (tail_len) {
2431 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2432 if (unlikely(ret < 0))
2433 goto out_only_mutex;
2434 if (!ret) {
2435 /* zero the front end of the last page */
2436 if (tail_start + tail_len < ino_size) {
2437 truncated_block = true;
2438 ret = btrfs_truncate_block(inode,
2439 tail_start + tail_len,
2440 0, 1);
2441 if (ret)
2442 goto out_only_mutex;
2443 }
2444 }
2445 }
2446
2447 if (lockend < lockstart) {
2448 ret = 0;
2449 goto out_only_mutex;
2450 }
2451
2452 while (1) {
2453 struct btrfs_ordered_extent *ordered;
2454
2455 truncate_pagecache_range(inode, lockstart, lockend);
2456
2457 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2458 &cached_state);
2459 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2460
2461 /*
2462 * We need to make sure we have no ordered extents in this range
2463 * and nobody raced in and read a page in this range, if we did
2464 * we need to try again.
2465 */
2466 if ((!ordered ||
2467 (ordered->file_offset + ordered->len <= lockstart ||
2468 ordered->file_offset > lockend)) &&
2469 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2470 if (ordered)
2471 btrfs_put_ordered_extent(ordered);
2472 break;
2473 }
2474 if (ordered)
2475 btrfs_put_ordered_extent(ordered);
2476 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2477 lockend, &cached_state, GFP_NOFS);
2478 ret = btrfs_wait_ordered_range(inode, lockstart,
2479 lockend - lockstart + 1);
2480 if (ret) {
2481 inode_unlock(inode);
2482 return ret;
2483 }
2484 }
2485
2486 path = btrfs_alloc_path();
2487 if (!path) {
2488 ret = -ENOMEM;
2489 goto out;
2490 }
2491
2492 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2493 if (!rsv) {
2494 ret = -ENOMEM;
2495 goto out_free;
2496 }
2497 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2498 rsv->failfast = 1;
2499
2500 /*
2501 * 1 - update the inode
2502 * 1 - removing the extents in the range
2503 * 1 - adding the hole extent if no_holes isn't set
2504 */
2505 rsv_count = no_holes ? 2 : 3;
2506 trans = btrfs_start_transaction(root, rsv_count);
2507 if (IS_ERR(trans)) {
2508 err = PTR_ERR(trans);
2509 goto out_free;
2510 }
2511
2512 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2513 min_size, 0);
2514 BUG_ON(ret);
2515 trans->block_rsv = rsv;
2516
2517 cur_offset = lockstart;
2518 len = lockend - cur_offset;
2519 while (cur_offset < lockend) {
2520 ret = __btrfs_drop_extents(trans, root, inode, path,
2521 cur_offset, lockend + 1,
2522 &drop_end, 1, 0, 0, NULL);
2523 if (ret != -ENOSPC)
2524 break;
2525
2526 trans->block_rsv = &root->fs_info->trans_block_rsv;
2527
2528 if (cur_offset < ino_size) {
2529 ret = fill_holes(trans, inode, path, cur_offset,
2530 drop_end);
2531 if (ret) {
2532 err = ret;
2533 break;
2534 }
2535 }
2536
2537 cur_offset = drop_end;
2538
2539 ret = btrfs_update_inode(trans, root, inode);
2540 if (ret) {
2541 err = ret;
2542 break;
2543 }
2544
2545 btrfs_end_transaction(trans, root);
2546 btrfs_btree_balance_dirty(root);
2547
2548 trans = btrfs_start_transaction(root, rsv_count);
2549 if (IS_ERR(trans)) {
2550 ret = PTR_ERR(trans);
2551 trans = NULL;
2552 break;
2553 }
2554
2555 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2556 rsv, min_size, 0);
2557 BUG_ON(ret); /* shouldn't happen */
2558 trans->block_rsv = rsv;
2559
2560 ret = find_first_non_hole(inode, &cur_offset, &len);
2561 if (unlikely(ret < 0))
2562 break;
2563 if (ret && !len) {
2564 ret = 0;
2565 break;
2566 }
2567 }
2568
2569 if (ret) {
2570 err = ret;
2571 goto out_trans;
2572 }
2573
2574 trans->block_rsv = &root->fs_info->trans_block_rsv;
2575 /*
2576 * If we are using the NO_HOLES feature we might have had already an
2577 * hole that overlaps a part of the region [lockstart, lockend] and
2578 * ends at (or beyond) lockend. Since we have no file extent items to
2579 * represent holes, drop_end can be less than lockend and so we must
2580 * make sure we have an extent map representing the existing hole (the
2581 * call to __btrfs_drop_extents() might have dropped the existing extent
2582 * map representing the existing hole), otherwise the fast fsync path
2583 * will not record the existence of the hole region
2584 * [existing_hole_start, lockend].
2585 */
2586 if (drop_end <= lockend)
2587 drop_end = lockend + 1;
2588 /*
2589 * Don't insert file hole extent item if it's for a range beyond eof
2590 * (because it's useless) or if it represents a 0 bytes range (when
2591 * cur_offset == drop_end).
2592 */
2593 if (cur_offset < ino_size && cur_offset < drop_end) {
2594 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2595 if (ret) {
2596 err = ret;
2597 goto out_trans;
2598 }
2599 }
2600
2601 out_trans:
2602 if (!trans)
2603 goto out_free;
2604
2605 inode_inc_iversion(inode);
2606 inode->i_mtime = inode->i_ctime = current_time(inode);
2607
2608 trans->block_rsv = &root->fs_info->trans_block_rsv;
2609 ret = btrfs_update_inode(trans, root, inode);
2610 updated_inode = true;
2611 btrfs_end_transaction(trans, root);
2612 btrfs_btree_balance_dirty(root);
2613 out_free:
2614 btrfs_free_path(path);
2615 btrfs_free_block_rsv(root, rsv);
2616 out:
2617 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2618 &cached_state, GFP_NOFS);
2619 out_only_mutex:
2620 if (!updated_inode && truncated_block && !ret && !err) {
2621 /*
2622 * If we only end up zeroing part of a page, we still need to
2623 * update the inode item, so that all the time fields are
2624 * updated as well as the necessary btrfs inode in memory fields
2625 * for detecting, at fsync time, if the inode isn't yet in the
2626 * log tree or it's there but not up to date.
2627 */
2628 trans = btrfs_start_transaction(root, 1);
2629 if (IS_ERR(trans)) {
2630 err = PTR_ERR(trans);
2631 } else {
2632 err = btrfs_update_inode(trans, root, inode);
2633 ret = btrfs_end_transaction(trans, root);
2634 }
2635 }
2636 inode_unlock(inode);
2637 if (ret && !err)
2638 err = ret;
2639 return err;
2640 }
2641
2642 /* Helper structure to record which range is already reserved */
2643 struct falloc_range {
2644 struct list_head list;
2645 u64 start;
2646 u64 len;
2647 };
2648
2649 /*
2650 * Helper function to add falloc range
2651 *
2652 * Caller should have locked the larger range of extent containing
2653 * [start, len)
2654 */
add_falloc_range(struct list_head * head,u64 start,u64 len)2655 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2656 {
2657 struct falloc_range *prev = NULL;
2658 struct falloc_range *range = NULL;
2659
2660 if (list_empty(head))
2661 goto insert;
2662
2663 /*
2664 * As fallocate iterate by bytenr order, we only need to check
2665 * the last range.
2666 */
2667 prev = list_entry(head->prev, struct falloc_range, list);
2668 if (prev->start + prev->len == start) {
2669 prev->len += len;
2670 return 0;
2671 }
2672 insert:
2673 range = kmalloc(sizeof(*range), GFP_KERNEL);
2674 if (!range)
2675 return -ENOMEM;
2676 range->start = start;
2677 range->len = len;
2678 list_add_tail(&range->list, head);
2679 return 0;
2680 }
2681
btrfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)2682 static long btrfs_fallocate(struct file *file, int mode,
2683 loff_t offset, loff_t len)
2684 {
2685 struct inode *inode = file_inode(file);
2686 struct extent_state *cached_state = NULL;
2687 struct falloc_range *range;
2688 struct falloc_range *tmp;
2689 struct list_head reserve_list;
2690 u64 cur_offset;
2691 u64 last_byte;
2692 u64 alloc_start;
2693 u64 alloc_end;
2694 u64 alloc_hint = 0;
2695 u64 locked_end;
2696 u64 actual_end = 0;
2697 struct extent_map *em;
2698 int blocksize = BTRFS_I(inode)->root->sectorsize;
2699 int ret;
2700
2701 alloc_start = round_down(offset, blocksize);
2702 alloc_end = round_up(offset + len, blocksize);
2703 cur_offset = alloc_start;
2704
2705 /* Make sure we aren't being give some crap mode */
2706 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2707 return -EOPNOTSUPP;
2708
2709 if (mode & FALLOC_FL_PUNCH_HOLE)
2710 return btrfs_punch_hole(inode, offset, len);
2711
2712 /*
2713 * Only trigger disk allocation, don't trigger qgroup reserve
2714 *
2715 * For qgroup space, it will be checked later.
2716 */
2717 ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2718 if (ret < 0)
2719 return ret;
2720
2721 inode_lock(inode);
2722
2723 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2724 ret = inode_newsize_ok(inode, offset + len);
2725 if (ret)
2726 goto out;
2727 }
2728
2729 /*
2730 * TODO: Move these two operations after we have checked
2731 * accurate reserved space, or fallocate can still fail but
2732 * with page truncated or size expanded.
2733 *
2734 * But that's a minor problem and won't do much harm BTW.
2735 */
2736 if (alloc_start > inode->i_size) {
2737 ret = btrfs_cont_expand(inode, i_size_read(inode),
2738 alloc_start);
2739 if (ret)
2740 goto out;
2741 } else if (offset + len > inode->i_size) {
2742 /*
2743 * If we are fallocating from the end of the file onward we
2744 * need to zero out the end of the block if i_size lands in the
2745 * middle of a block.
2746 */
2747 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
2748 if (ret)
2749 goto out;
2750 }
2751
2752 /*
2753 * wait for ordered IO before we have any locks. We'll loop again
2754 * below with the locks held.
2755 */
2756 ret = btrfs_wait_ordered_range(inode, alloc_start,
2757 alloc_end - alloc_start);
2758 if (ret)
2759 goto out;
2760
2761 locked_end = alloc_end - 1;
2762 while (1) {
2763 struct btrfs_ordered_extent *ordered;
2764
2765 /* the extent lock is ordered inside the running
2766 * transaction
2767 */
2768 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2769 locked_end, &cached_state);
2770 ordered = btrfs_lookup_first_ordered_extent(inode,
2771 alloc_end - 1);
2772 if (ordered &&
2773 ordered->file_offset + ordered->len > alloc_start &&
2774 ordered->file_offset < alloc_end) {
2775 btrfs_put_ordered_extent(ordered);
2776 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2777 alloc_start, locked_end,
2778 &cached_state, GFP_KERNEL);
2779 /*
2780 * we can't wait on the range with the transaction
2781 * running or with the extent lock held
2782 */
2783 ret = btrfs_wait_ordered_range(inode, alloc_start,
2784 alloc_end - alloc_start);
2785 if (ret)
2786 goto out;
2787 } else {
2788 if (ordered)
2789 btrfs_put_ordered_extent(ordered);
2790 break;
2791 }
2792 }
2793
2794 /* First, check if we exceed the qgroup limit */
2795 INIT_LIST_HEAD(&reserve_list);
2796 while (1) {
2797 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2798 alloc_end - cur_offset, 0);
2799 if (IS_ERR_OR_NULL(em)) {
2800 if (!em)
2801 ret = -ENOMEM;
2802 else
2803 ret = PTR_ERR(em);
2804 break;
2805 }
2806 last_byte = min(extent_map_end(em), alloc_end);
2807 actual_end = min_t(u64, extent_map_end(em), offset + len);
2808 last_byte = ALIGN(last_byte, blocksize);
2809 if (em->block_start == EXTENT_MAP_HOLE ||
2810 (cur_offset >= inode->i_size &&
2811 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2812 ret = add_falloc_range(&reserve_list, cur_offset,
2813 last_byte - cur_offset);
2814 if (ret < 0) {
2815 free_extent_map(em);
2816 break;
2817 }
2818 ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2819 last_byte - cur_offset);
2820 if (ret < 0) {
2821 free_extent_map(em);
2822 break;
2823 }
2824 } else {
2825 /*
2826 * Do not need to reserve unwritten extent for this
2827 * range, free reserved data space first, otherwise
2828 * it'll result in false ENOSPC error.
2829 */
2830 btrfs_free_reserved_data_space(inode, cur_offset,
2831 last_byte - cur_offset);
2832 }
2833 free_extent_map(em);
2834 cur_offset = last_byte;
2835 if (cur_offset >= alloc_end)
2836 break;
2837 }
2838
2839 /*
2840 * If ret is still 0, means we're OK to fallocate.
2841 * Or just cleanup the list and exit.
2842 */
2843 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2844 if (!ret)
2845 ret = btrfs_prealloc_file_range(inode, mode,
2846 range->start,
2847 range->len, i_blocksize(inode),
2848 offset + len, &alloc_hint);
2849 else
2850 btrfs_free_reserved_data_space(inode, range->start,
2851 range->len);
2852 list_del(&range->list);
2853 kfree(range);
2854 }
2855 if (ret < 0)
2856 goto out_unlock;
2857
2858 if (actual_end > inode->i_size &&
2859 !(mode & FALLOC_FL_KEEP_SIZE)) {
2860 struct btrfs_trans_handle *trans;
2861 struct btrfs_root *root = BTRFS_I(inode)->root;
2862
2863 /*
2864 * We didn't need to allocate any more space, but we
2865 * still extended the size of the file so we need to
2866 * update i_size and the inode item.
2867 */
2868 trans = btrfs_start_transaction(root, 1);
2869 if (IS_ERR(trans)) {
2870 ret = PTR_ERR(trans);
2871 } else {
2872 inode->i_ctime = current_time(inode);
2873 i_size_write(inode, actual_end);
2874 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2875 ret = btrfs_update_inode(trans, root, inode);
2876 if (ret)
2877 btrfs_end_transaction(trans, root);
2878 else
2879 ret = btrfs_end_transaction(trans, root);
2880 }
2881 }
2882 out_unlock:
2883 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2884 &cached_state, GFP_KERNEL);
2885 out:
2886 inode_unlock(inode);
2887 /* Let go of our reservation. */
2888 if (ret != 0)
2889 btrfs_free_reserved_data_space(inode, alloc_start,
2890 alloc_end - cur_offset);
2891 return ret;
2892 }
2893
find_desired_extent(struct inode * inode,loff_t * offset,int whence)2894 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2895 {
2896 struct btrfs_root *root = BTRFS_I(inode)->root;
2897 struct extent_map *em = NULL;
2898 struct extent_state *cached_state = NULL;
2899 u64 lockstart;
2900 u64 lockend;
2901 u64 start;
2902 u64 len;
2903 int ret = 0;
2904
2905 if (inode->i_size == 0)
2906 return -ENXIO;
2907
2908 /*
2909 * *offset can be negative, in this case we start finding DATA/HOLE from
2910 * the very start of the file.
2911 */
2912 start = max_t(loff_t, 0, *offset);
2913
2914 lockstart = round_down(start, root->sectorsize);
2915 lockend = round_up(i_size_read(inode), root->sectorsize);
2916 if (lockend <= lockstart)
2917 lockend = lockstart + root->sectorsize;
2918 lockend--;
2919 len = lockend - lockstart + 1;
2920
2921 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2922 &cached_state);
2923
2924 while (start < inode->i_size) {
2925 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2926 if (IS_ERR(em)) {
2927 ret = PTR_ERR(em);
2928 em = NULL;
2929 break;
2930 }
2931
2932 if (whence == SEEK_HOLE &&
2933 (em->block_start == EXTENT_MAP_HOLE ||
2934 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2935 break;
2936 else if (whence == SEEK_DATA &&
2937 (em->block_start != EXTENT_MAP_HOLE &&
2938 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2939 break;
2940
2941 start = em->start + em->len;
2942 free_extent_map(em);
2943 em = NULL;
2944 cond_resched();
2945 }
2946 free_extent_map(em);
2947 if (!ret) {
2948 if (whence == SEEK_DATA && start >= inode->i_size)
2949 ret = -ENXIO;
2950 else
2951 *offset = min_t(loff_t, start, inode->i_size);
2952 }
2953 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2954 &cached_state, GFP_NOFS);
2955 return ret;
2956 }
2957
btrfs_file_llseek(struct file * file,loff_t offset,int whence)2958 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2959 {
2960 struct inode *inode = file->f_mapping->host;
2961 int ret;
2962
2963 inode_lock(inode);
2964 switch (whence) {
2965 case SEEK_END:
2966 case SEEK_CUR:
2967 offset = generic_file_llseek(file, offset, whence);
2968 goto out;
2969 case SEEK_DATA:
2970 case SEEK_HOLE:
2971 if (offset >= i_size_read(inode)) {
2972 inode_unlock(inode);
2973 return -ENXIO;
2974 }
2975
2976 ret = find_desired_extent(inode, &offset, whence);
2977 if (ret) {
2978 inode_unlock(inode);
2979 return ret;
2980 }
2981 }
2982
2983 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2984 out:
2985 inode_unlock(inode);
2986 return offset;
2987 }
2988
2989 const struct file_operations btrfs_file_operations = {
2990 .llseek = btrfs_file_llseek,
2991 .read_iter = generic_file_read_iter,
2992 .splice_read = generic_file_splice_read,
2993 .write_iter = btrfs_file_write_iter,
2994 .mmap = btrfs_file_mmap,
2995 .open = generic_file_open,
2996 .release = btrfs_release_file,
2997 .fsync = btrfs_sync_file,
2998 .fallocate = btrfs_fallocate,
2999 .unlocked_ioctl = btrfs_ioctl,
3000 #ifdef CONFIG_COMPAT
3001 .compat_ioctl = btrfs_compat_ioctl,
3002 #endif
3003 .copy_file_range = btrfs_copy_file_range,
3004 .clone_file_range = btrfs_clone_file_range,
3005 .dedupe_file_range = btrfs_dedupe_file_range,
3006 };
3007
btrfs_auto_defrag_exit(void)3008 void btrfs_auto_defrag_exit(void)
3009 {
3010 kmem_cache_destroy(btrfs_inode_defrag_cachep);
3011 }
3012
btrfs_auto_defrag_init(void)3013 int btrfs_auto_defrag_init(void)
3014 {
3015 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3016 sizeof(struct inode_defrag), 0,
3017 SLAB_MEM_SPREAD,
3018 NULL);
3019 if (!btrfs_inode_defrag_cachep)
3020 return -ENOMEM;
3021
3022 return 0;
3023 }
3024
btrfs_fdatawrite_range(struct inode * inode,loff_t start,loff_t end)3025 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3026 {
3027 int ret;
3028
3029 /*
3030 * So with compression we will find and lock a dirty page and clear the
3031 * first one as dirty, setup an async extent, and immediately return
3032 * with the entire range locked but with nobody actually marked with
3033 * writeback. So we can't just filemap_write_and_wait_range() and
3034 * expect it to work since it will just kick off a thread to do the
3035 * actual work. So we need to call filemap_fdatawrite_range _again_
3036 * since it will wait on the page lock, which won't be unlocked until
3037 * after the pages have been marked as writeback and so we're good to go
3038 * from there. We have to do this otherwise we'll miss the ordered
3039 * extents and that results in badness. Please Josef, do not think you
3040 * know better and pull this out at some point in the future, it is
3041 * right and you are wrong.
3042 */
3043 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3044 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3045 &BTRFS_I(inode)->runtime_flags))
3046 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3047
3048 return ret;
3049 }
3050