1 /*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
23 #include <linux/ratelimit.h>
24 #include "ctree.h"
25 #include "free-space-cache.h"
26 #include "transaction.h"
27 #include "disk-io.h"
28 #include "extent_io.h"
29 #include "inode-map.h"
30 #include "volumes.h"
31
32 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
33 #define MAX_CACHE_BYTES_PER_GIG SZ_32K
34
35 struct btrfs_trim_range {
36 u64 start;
37 u64 bytes;
38 struct list_head list;
39 };
40
41 static int link_free_space(struct btrfs_free_space_ctl *ctl,
42 struct btrfs_free_space *info);
43 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
44 struct btrfs_free_space *info);
45
__lookup_free_space_inode(struct btrfs_root * root,struct btrfs_path * path,u64 offset)46 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
47 struct btrfs_path *path,
48 u64 offset)
49 {
50 struct btrfs_key key;
51 struct btrfs_key location;
52 struct btrfs_disk_key disk_key;
53 struct btrfs_free_space_header *header;
54 struct extent_buffer *leaf;
55 struct inode *inode = NULL;
56 int ret;
57
58 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
59 key.offset = offset;
60 key.type = 0;
61
62 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
63 if (ret < 0)
64 return ERR_PTR(ret);
65 if (ret > 0) {
66 btrfs_release_path(path);
67 return ERR_PTR(-ENOENT);
68 }
69
70 leaf = path->nodes[0];
71 header = btrfs_item_ptr(leaf, path->slots[0],
72 struct btrfs_free_space_header);
73 btrfs_free_space_key(leaf, header, &disk_key);
74 btrfs_disk_key_to_cpu(&location, &disk_key);
75 btrfs_release_path(path);
76
77 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
78 if (!inode)
79 return ERR_PTR(-ENOENT);
80 if (IS_ERR(inode))
81 return inode;
82 if (is_bad_inode(inode)) {
83 iput(inode);
84 return ERR_PTR(-ENOENT);
85 }
86
87 mapping_set_gfp_mask(inode->i_mapping,
88 mapping_gfp_constraint(inode->i_mapping,
89 ~(__GFP_FS | __GFP_HIGHMEM)));
90
91 return inode;
92 }
93
lookup_free_space_inode(struct btrfs_root * root,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)94 struct inode *lookup_free_space_inode(struct btrfs_root *root,
95 struct btrfs_block_group_cache
96 *block_group, struct btrfs_path *path)
97 {
98 struct inode *inode = NULL;
99 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
100
101 spin_lock(&block_group->lock);
102 if (block_group->inode)
103 inode = igrab(block_group->inode);
104 spin_unlock(&block_group->lock);
105 if (inode)
106 return inode;
107
108 inode = __lookup_free_space_inode(root, path,
109 block_group->key.objectid);
110 if (IS_ERR(inode))
111 return inode;
112
113 spin_lock(&block_group->lock);
114 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
115 btrfs_info(root->fs_info,
116 "Old style space inode found, converting.");
117 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
118 BTRFS_INODE_NODATACOW;
119 block_group->disk_cache_state = BTRFS_DC_CLEAR;
120 }
121
122 if (!block_group->iref) {
123 block_group->inode = igrab(inode);
124 block_group->iref = 1;
125 }
126 spin_unlock(&block_group->lock);
127
128 return inode;
129 }
130
__create_free_space_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 ino,u64 offset)131 static int __create_free_space_inode(struct btrfs_root *root,
132 struct btrfs_trans_handle *trans,
133 struct btrfs_path *path,
134 u64 ino, u64 offset)
135 {
136 struct btrfs_key key;
137 struct btrfs_disk_key disk_key;
138 struct btrfs_free_space_header *header;
139 struct btrfs_inode_item *inode_item;
140 struct extent_buffer *leaf;
141 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
142 int ret;
143
144 ret = btrfs_insert_empty_inode(trans, root, path, ino);
145 if (ret)
146 return ret;
147
148 /* We inline crc's for the free disk space cache */
149 if (ino != BTRFS_FREE_INO_OBJECTID)
150 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
151
152 leaf = path->nodes[0];
153 inode_item = btrfs_item_ptr(leaf, path->slots[0],
154 struct btrfs_inode_item);
155 btrfs_item_key(leaf, &disk_key, path->slots[0]);
156 memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
157 sizeof(*inode_item));
158 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
159 btrfs_set_inode_size(leaf, inode_item, 0);
160 btrfs_set_inode_nbytes(leaf, inode_item, 0);
161 btrfs_set_inode_uid(leaf, inode_item, 0);
162 btrfs_set_inode_gid(leaf, inode_item, 0);
163 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
164 btrfs_set_inode_flags(leaf, inode_item, flags);
165 btrfs_set_inode_nlink(leaf, inode_item, 1);
166 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
167 btrfs_set_inode_block_group(leaf, inode_item, offset);
168 btrfs_mark_buffer_dirty(leaf);
169 btrfs_release_path(path);
170
171 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
172 key.offset = offset;
173 key.type = 0;
174 ret = btrfs_insert_empty_item(trans, root, path, &key,
175 sizeof(struct btrfs_free_space_header));
176 if (ret < 0) {
177 btrfs_release_path(path);
178 return ret;
179 }
180
181 leaf = path->nodes[0];
182 header = btrfs_item_ptr(leaf, path->slots[0],
183 struct btrfs_free_space_header);
184 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
185 btrfs_set_free_space_key(leaf, header, &disk_key);
186 btrfs_mark_buffer_dirty(leaf);
187 btrfs_release_path(path);
188
189 return 0;
190 }
191
create_free_space_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)192 int create_free_space_inode(struct btrfs_root *root,
193 struct btrfs_trans_handle *trans,
194 struct btrfs_block_group_cache *block_group,
195 struct btrfs_path *path)
196 {
197 int ret;
198 u64 ino;
199
200 ret = btrfs_find_free_objectid(root, &ino);
201 if (ret < 0)
202 return ret;
203
204 return __create_free_space_inode(root, trans, path, ino,
205 block_group->key.objectid);
206 }
207
btrfs_check_trunc_cache_free_space(struct btrfs_root * root,struct btrfs_block_rsv * rsv)208 int btrfs_check_trunc_cache_free_space(struct btrfs_root *root,
209 struct btrfs_block_rsv *rsv)
210 {
211 u64 needed_bytes;
212 int ret;
213
214 /* 1 for slack space, 1 for updating the inode */
215 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
216 btrfs_calc_trans_metadata_size(root, 1);
217
218 spin_lock(&rsv->lock);
219 if (rsv->reserved < needed_bytes)
220 ret = -ENOSPC;
221 else
222 ret = 0;
223 spin_unlock(&rsv->lock);
224 return ret;
225 }
226
btrfs_truncate_free_space_cache(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct inode * inode)227 int btrfs_truncate_free_space_cache(struct btrfs_root *root,
228 struct btrfs_trans_handle *trans,
229 struct btrfs_block_group_cache *block_group,
230 struct inode *inode)
231 {
232 int ret = 0;
233 struct btrfs_path *path = btrfs_alloc_path();
234 bool locked = false;
235
236 if (!path) {
237 ret = -ENOMEM;
238 goto fail;
239 }
240
241 if (block_group) {
242 locked = true;
243 mutex_lock(&trans->transaction->cache_write_mutex);
244 if (!list_empty(&block_group->io_list)) {
245 list_del_init(&block_group->io_list);
246
247 btrfs_wait_cache_io(root, trans, block_group,
248 &block_group->io_ctl, path,
249 block_group->key.objectid);
250 btrfs_put_block_group(block_group);
251 }
252
253 /*
254 * now that we've truncated the cache away, its no longer
255 * setup or written
256 */
257 spin_lock(&block_group->lock);
258 block_group->disk_cache_state = BTRFS_DC_CLEAR;
259 spin_unlock(&block_group->lock);
260 }
261 btrfs_free_path(path);
262
263 btrfs_i_size_write(inode, 0);
264 truncate_pagecache(inode, 0);
265
266 /*
267 * We don't need an orphan item because truncating the free space cache
268 * will never be split across transactions.
269 * We don't need to check for -EAGAIN because we're a free space
270 * cache inode
271 */
272 ret = btrfs_truncate_inode_items(trans, root, inode,
273 0, BTRFS_EXTENT_DATA_KEY);
274 if (ret)
275 goto fail;
276
277 ret = btrfs_update_inode(trans, root, inode);
278
279 fail:
280 if (locked)
281 mutex_unlock(&trans->transaction->cache_write_mutex);
282 if (ret)
283 btrfs_abort_transaction(trans, ret);
284
285 return ret;
286 }
287
readahead_cache(struct inode * inode)288 static int readahead_cache(struct inode *inode)
289 {
290 struct file_ra_state *ra;
291 unsigned long last_index;
292
293 ra = kzalloc(sizeof(*ra), GFP_NOFS);
294 if (!ra)
295 return -ENOMEM;
296
297 file_ra_state_init(ra, inode->i_mapping);
298 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
299
300 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
301
302 kfree(ra);
303
304 return 0;
305 }
306
io_ctl_init(struct btrfs_io_ctl * io_ctl,struct inode * inode,struct btrfs_root * root,int write)307 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
308 struct btrfs_root *root, int write)
309 {
310 int num_pages;
311 int check_crcs = 0;
312
313 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
314
315 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
316 check_crcs = 1;
317
318 /* Make sure we can fit our crcs into the first page */
319 if (write && check_crcs &&
320 (num_pages * sizeof(u32)) >= PAGE_SIZE)
321 return -ENOSPC;
322
323 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
324
325 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
326 if (!io_ctl->pages)
327 return -ENOMEM;
328
329 io_ctl->num_pages = num_pages;
330 io_ctl->root = root;
331 io_ctl->check_crcs = check_crcs;
332 io_ctl->inode = inode;
333
334 return 0;
335 }
336
io_ctl_free(struct btrfs_io_ctl * io_ctl)337 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
338 {
339 kfree(io_ctl->pages);
340 io_ctl->pages = NULL;
341 }
342
io_ctl_unmap_page(struct btrfs_io_ctl * io_ctl)343 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
344 {
345 if (io_ctl->cur) {
346 io_ctl->cur = NULL;
347 io_ctl->orig = NULL;
348 }
349 }
350
io_ctl_map_page(struct btrfs_io_ctl * io_ctl,int clear)351 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
352 {
353 ASSERT(io_ctl->index < io_ctl->num_pages);
354 io_ctl->page = io_ctl->pages[io_ctl->index++];
355 io_ctl->cur = page_address(io_ctl->page);
356 io_ctl->orig = io_ctl->cur;
357 io_ctl->size = PAGE_SIZE;
358 if (clear)
359 memset(io_ctl->cur, 0, PAGE_SIZE);
360 }
361
io_ctl_drop_pages(struct btrfs_io_ctl * io_ctl)362 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
363 {
364 int i;
365
366 io_ctl_unmap_page(io_ctl);
367
368 for (i = 0; i < io_ctl->num_pages; i++) {
369 if (io_ctl->pages[i]) {
370 ClearPageChecked(io_ctl->pages[i]);
371 unlock_page(io_ctl->pages[i]);
372 put_page(io_ctl->pages[i]);
373 }
374 }
375 }
376
io_ctl_prepare_pages(struct btrfs_io_ctl * io_ctl,struct inode * inode,int uptodate)377 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, struct inode *inode,
378 int uptodate)
379 {
380 struct page *page;
381 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
382 int i;
383
384 for (i = 0; i < io_ctl->num_pages; i++) {
385 page = find_or_create_page(inode->i_mapping, i, mask);
386 if (!page) {
387 io_ctl_drop_pages(io_ctl);
388 return -ENOMEM;
389 }
390 io_ctl->pages[i] = page;
391 if (uptodate && !PageUptodate(page)) {
392 btrfs_readpage(NULL, page);
393 lock_page(page);
394 if (!PageUptodate(page)) {
395 btrfs_err(BTRFS_I(inode)->root->fs_info,
396 "error reading free space cache");
397 io_ctl_drop_pages(io_ctl);
398 return -EIO;
399 }
400 }
401 }
402
403 for (i = 0; i < io_ctl->num_pages; i++) {
404 clear_page_dirty_for_io(io_ctl->pages[i]);
405 set_page_extent_mapped(io_ctl->pages[i]);
406 }
407
408 return 0;
409 }
410
io_ctl_set_generation(struct btrfs_io_ctl * io_ctl,u64 generation)411 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
412 {
413 __le64 *val;
414
415 io_ctl_map_page(io_ctl, 1);
416
417 /*
418 * Skip the csum areas. If we don't check crcs then we just have a
419 * 64bit chunk at the front of the first page.
420 */
421 if (io_ctl->check_crcs) {
422 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
423 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
424 } else {
425 io_ctl->cur += sizeof(u64);
426 io_ctl->size -= sizeof(u64) * 2;
427 }
428
429 val = io_ctl->cur;
430 *val = cpu_to_le64(generation);
431 io_ctl->cur += sizeof(u64);
432 }
433
io_ctl_check_generation(struct btrfs_io_ctl * io_ctl,u64 generation)434 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
435 {
436 __le64 *gen;
437
438 /*
439 * Skip the crc area. If we don't check crcs then we just have a 64bit
440 * chunk at the front of the first page.
441 */
442 if (io_ctl->check_crcs) {
443 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
444 io_ctl->size -= sizeof(u64) +
445 (sizeof(u32) * io_ctl->num_pages);
446 } else {
447 io_ctl->cur += sizeof(u64);
448 io_ctl->size -= sizeof(u64) * 2;
449 }
450
451 gen = io_ctl->cur;
452 if (le64_to_cpu(*gen) != generation) {
453 btrfs_err_rl(io_ctl->root->fs_info,
454 "space cache generation (%llu) does not match inode (%llu)",
455 *gen, generation);
456 io_ctl_unmap_page(io_ctl);
457 return -EIO;
458 }
459 io_ctl->cur += sizeof(u64);
460 return 0;
461 }
462
io_ctl_set_crc(struct btrfs_io_ctl * io_ctl,int index)463 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
464 {
465 u32 *tmp;
466 u32 crc = ~(u32)0;
467 unsigned offset = 0;
468
469 if (!io_ctl->check_crcs) {
470 io_ctl_unmap_page(io_ctl);
471 return;
472 }
473
474 if (index == 0)
475 offset = sizeof(u32) * io_ctl->num_pages;
476
477 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
478 PAGE_SIZE - offset);
479 btrfs_csum_final(crc, (char *)&crc);
480 io_ctl_unmap_page(io_ctl);
481 tmp = page_address(io_ctl->pages[0]);
482 tmp += index;
483 *tmp = crc;
484 }
485
io_ctl_check_crc(struct btrfs_io_ctl * io_ctl,int index)486 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
487 {
488 u32 *tmp, val;
489 u32 crc = ~(u32)0;
490 unsigned offset = 0;
491
492 if (!io_ctl->check_crcs) {
493 io_ctl_map_page(io_ctl, 0);
494 return 0;
495 }
496
497 if (index == 0)
498 offset = sizeof(u32) * io_ctl->num_pages;
499
500 tmp = page_address(io_ctl->pages[0]);
501 tmp += index;
502 val = *tmp;
503
504 io_ctl_map_page(io_ctl, 0);
505 crc = btrfs_csum_data(io_ctl->orig + offset, crc,
506 PAGE_SIZE - offset);
507 btrfs_csum_final(crc, (char *)&crc);
508 if (val != crc) {
509 btrfs_err_rl(io_ctl->root->fs_info,
510 "csum mismatch on free space cache");
511 io_ctl_unmap_page(io_ctl);
512 return -EIO;
513 }
514
515 return 0;
516 }
517
io_ctl_add_entry(struct btrfs_io_ctl * io_ctl,u64 offset,u64 bytes,void * bitmap)518 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
519 void *bitmap)
520 {
521 struct btrfs_free_space_entry *entry;
522
523 if (!io_ctl->cur)
524 return -ENOSPC;
525
526 entry = io_ctl->cur;
527 entry->offset = cpu_to_le64(offset);
528 entry->bytes = cpu_to_le64(bytes);
529 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
530 BTRFS_FREE_SPACE_EXTENT;
531 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
532 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
533
534 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
535 return 0;
536
537 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
538
539 /* No more pages to map */
540 if (io_ctl->index >= io_ctl->num_pages)
541 return 0;
542
543 /* map the next page */
544 io_ctl_map_page(io_ctl, 1);
545 return 0;
546 }
547
io_ctl_add_bitmap(struct btrfs_io_ctl * io_ctl,void * bitmap)548 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
549 {
550 if (!io_ctl->cur)
551 return -ENOSPC;
552
553 /*
554 * If we aren't at the start of the current page, unmap this one and
555 * map the next one if there is any left.
556 */
557 if (io_ctl->cur != io_ctl->orig) {
558 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
559 if (io_ctl->index >= io_ctl->num_pages)
560 return -ENOSPC;
561 io_ctl_map_page(io_ctl, 0);
562 }
563
564 memcpy(io_ctl->cur, bitmap, PAGE_SIZE);
565 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
566 if (io_ctl->index < io_ctl->num_pages)
567 io_ctl_map_page(io_ctl, 0);
568 return 0;
569 }
570
io_ctl_zero_remaining_pages(struct btrfs_io_ctl * io_ctl)571 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
572 {
573 /*
574 * If we're not on the boundary we know we've modified the page and we
575 * need to crc the page.
576 */
577 if (io_ctl->cur != io_ctl->orig)
578 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
579 else
580 io_ctl_unmap_page(io_ctl);
581
582 while (io_ctl->index < io_ctl->num_pages) {
583 io_ctl_map_page(io_ctl, 1);
584 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
585 }
586 }
587
io_ctl_read_entry(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry,u8 * type)588 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
589 struct btrfs_free_space *entry, u8 *type)
590 {
591 struct btrfs_free_space_entry *e;
592 int ret;
593
594 if (!io_ctl->cur) {
595 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
596 if (ret)
597 return ret;
598 }
599
600 e = io_ctl->cur;
601 entry->offset = le64_to_cpu(e->offset);
602 entry->bytes = le64_to_cpu(e->bytes);
603 *type = e->type;
604 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
605 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
606
607 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
608 return 0;
609
610 io_ctl_unmap_page(io_ctl);
611
612 return 0;
613 }
614
io_ctl_read_bitmap(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space * entry)615 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
616 struct btrfs_free_space *entry)
617 {
618 int ret;
619
620 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
621 if (ret)
622 return ret;
623
624 memcpy(entry->bitmap, io_ctl->cur, PAGE_SIZE);
625 io_ctl_unmap_page(io_ctl);
626
627 return 0;
628 }
629
630 /*
631 * Since we attach pinned extents after the fact we can have contiguous sections
632 * of free space that are split up in entries. This poses a problem with the
633 * tree logging stuff since it could have allocated across what appears to be 2
634 * entries since we would have merged the entries when adding the pinned extents
635 * back to the free space cache. So run through the space cache that we just
636 * loaded and merge contiguous entries. This will make the log replay stuff not
637 * blow up and it will make for nicer allocator behavior.
638 */
merge_space_tree(struct btrfs_free_space_ctl * ctl)639 static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
640 {
641 struct btrfs_free_space *e, *prev = NULL;
642 struct rb_node *n;
643
644 again:
645 spin_lock(&ctl->tree_lock);
646 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
647 e = rb_entry(n, struct btrfs_free_space, offset_index);
648 if (!prev)
649 goto next;
650 if (e->bitmap || prev->bitmap)
651 goto next;
652 if (prev->offset + prev->bytes == e->offset) {
653 unlink_free_space(ctl, prev);
654 unlink_free_space(ctl, e);
655 prev->bytes += e->bytes;
656 kmem_cache_free(btrfs_free_space_cachep, e);
657 link_free_space(ctl, prev);
658 prev = NULL;
659 spin_unlock(&ctl->tree_lock);
660 goto again;
661 }
662 next:
663 prev = e;
664 }
665 spin_unlock(&ctl->tree_lock);
666 }
667
__load_free_space_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_path * path,u64 offset)668 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
669 struct btrfs_free_space_ctl *ctl,
670 struct btrfs_path *path, u64 offset)
671 {
672 struct btrfs_free_space_header *header;
673 struct extent_buffer *leaf;
674 struct btrfs_io_ctl io_ctl;
675 struct btrfs_key key;
676 struct btrfs_free_space *e, *n;
677 LIST_HEAD(bitmaps);
678 u64 num_entries;
679 u64 num_bitmaps;
680 u64 generation;
681 u8 type;
682 int ret = 0;
683
684 /* Nothing in the space cache, goodbye */
685 if (!i_size_read(inode))
686 return 0;
687
688 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
689 key.offset = offset;
690 key.type = 0;
691
692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
693 if (ret < 0)
694 return 0;
695 else if (ret > 0) {
696 btrfs_release_path(path);
697 return 0;
698 }
699
700 ret = -1;
701
702 leaf = path->nodes[0];
703 header = btrfs_item_ptr(leaf, path->slots[0],
704 struct btrfs_free_space_header);
705 num_entries = btrfs_free_space_entries(leaf, header);
706 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
707 generation = btrfs_free_space_generation(leaf, header);
708 btrfs_release_path(path);
709
710 if (!BTRFS_I(inode)->generation) {
711 btrfs_info(root->fs_info,
712 "The free space cache file (%llu) is invalid. skip it\n",
713 offset);
714 return 0;
715 }
716
717 if (BTRFS_I(inode)->generation != generation) {
718 btrfs_err(root->fs_info,
719 "free space inode generation (%llu) did not match free space cache generation (%llu)",
720 BTRFS_I(inode)->generation, generation);
721 return 0;
722 }
723
724 if (!num_entries)
725 return 0;
726
727 ret = io_ctl_init(&io_ctl, inode, root, 0);
728 if (ret)
729 return ret;
730
731 ret = readahead_cache(inode);
732 if (ret)
733 goto out;
734
735 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
736 if (ret)
737 goto out;
738
739 ret = io_ctl_check_crc(&io_ctl, 0);
740 if (ret)
741 goto free_cache;
742
743 ret = io_ctl_check_generation(&io_ctl, generation);
744 if (ret)
745 goto free_cache;
746
747 while (num_entries) {
748 e = kmem_cache_zalloc(btrfs_free_space_cachep,
749 GFP_NOFS);
750 if (!e)
751 goto free_cache;
752
753 ret = io_ctl_read_entry(&io_ctl, e, &type);
754 if (ret) {
755 kmem_cache_free(btrfs_free_space_cachep, e);
756 goto free_cache;
757 }
758
759 if (!e->bytes) {
760 kmem_cache_free(btrfs_free_space_cachep, e);
761 goto free_cache;
762 }
763
764 if (type == BTRFS_FREE_SPACE_EXTENT) {
765 spin_lock(&ctl->tree_lock);
766 ret = link_free_space(ctl, e);
767 spin_unlock(&ctl->tree_lock);
768 if (ret) {
769 btrfs_err(root->fs_info,
770 "Duplicate entries in free space cache, dumping");
771 kmem_cache_free(btrfs_free_space_cachep, e);
772 goto free_cache;
773 }
774 } else {
775 ASSERT(num_bitmaps);
776 num_bitmaps--;
777 e->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
778 if (!e->bitmap) {
779 kmem_cache_free(
780 btrfs_free_space_cachep, e);
781 goto free_cache;
782 }
783 spin_lock(&ctl->tree_lock);
784 ret = link_free_space(ctl, e);
785 ctl->total_bitmaps++;
786 ctl->op->recalc_thresholds(ctl);
787 spin_unlock(&ctl->tree_lock);
788 if (ret) {
789 btrfs_err(root->fs_info,
790 "Duplicate entries in free space cache, dumping");
791 kmem_cache_free(btrfs_free_space_cachep, e);
792 goto free_cache;
793 }
794 list_add_tail(&e->list, &bitmaps);
795 }
796
797 num_entries--;
798 }
799
800 io_ctl_unmap_page(&io_ctl);
801
802 /*
803 * We add the bitmaps at the end of the entries in order that
804 * the bitmap entries are added to the cache.
805 */
806 list_for_each_entry_safe(e, n, &bitmaps, list) {
807 list_del_init(&e->list);
808 ret = io_ctl_read_bitmap(&io_ctl, e);
809 if (ret)
810 goto free_cache;
811 }
812
813 io_ctl_drop_pages(&io_ctl);
814 merge_space_tree(ctl);
815 ret = 1;
816 out:
817 io_ctl_free(&io_ctl);
818 return ret;
819 free_cache:
820 io_ctl_drop_pages(&io_ctl);
821 __btrfs_remove_free_space_cache(ctl);
822 goto out;
823 }
824
load_free_space_cache(struct btrfs_fs_info * fs_info,struct btrfs_block_group_cache * block_group)825 int load_free_space_cache(struct btrfs_fs_info *fs_info,
826 struct btrfs_block_group_cache *block_group)
827 {
828 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
829 struct btrfs_root *root = fs_info->tree_root;
830 struct inode *inode;
831 struct btrfs_path *path;
832 int ret = 0;
833 bool matched;
834 u64 used = btrfs_block_group_used(&block_group->item);
835
836 /*
837 * If this block group has been marked to be cleared for one reason or
838 * another then we can't trust the on disk cache, so just return.
839 */
840 spin_lock(&block_group->lock);
841 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
842 spin_unlock(&block_group->lock);
843 return 0;
844 }
845 spin_unlock(&block_group->lock);
846
847 path = btrfs_alloc_path();
848 if (!path)
849 return 0;
850 path->search_commit_root = 1;
851 path->skip_locking = 1;
852
853 inode = lookup_free_space_inode(root, block_group, path);
854 if (IS_ERR(inode)) {
855 btrfs_free_path(path);
856 return 0;
857 }
858
859 /* We may have converted the inode and made the cache invalid. */
860 spin_lock(&block_group->lock);
861 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
862 spin_unlock(&block_group->lock);
863 btrfs_free_path(path);
864 goto out;
865 }
866 spin_unlock(&block_group->lock);
867
868 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
869 path, block_group->key.objectid);
870 btrfs_free_path(path);
871 if (ret <= 0)
872 goto out;
873
874 spin_lock(&ctl->tree_lock);
875 matched = (ctl->free_space == (block_group->key.offset - used -
876 block_group->bytes_super));
877 spin_unlock(&ctl->tree_lock);
878
879 if (!matched) {
880 __btrfs_remove_free_space_cache(ctl);
881 btrfs_warn(fs_info,
882 "block group %llu has wrong amount of free space",
883 block_group->key.objectid);
884 ret = -1;
885 }
886 out:
887 if (ret < 0) {
888 /* This cache is bogus, make sure it gets cleared */
889 spin_lock(&block_group->lock);
890 block_group->disk_cache_state = BTRFS_DC_CLEAR;
891 spin_unlock(&block_group->lock);
892 ret = 0;
893
894 btrfs_warn(fs_info,
895 "failed to load free space cache for block group %llu, rebuilding it now",
896 block_group->key.objectid);
897 }
898
899 iput(inode);
900 return ret;
901 }
902
903 static noinline_for_stack
write_cache_extent_entries(struct btrfs_io_ctl * io_ctl,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group_cache * block_group,int * entries,int * bitmaps,struct list_head * bitmap_list)904 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
905 struct btrfs_free_space_ctl *ctl,
906 struct btrfs_block_group_cache *block_group,
907 int *entries, int *bitmaps,
908 struct list_head *bitmap_list)
909 {
910 int ret;
911 struct btrfs_free_cluster *cluster = NULL;
912 struct btrfs_free_cluster *cluster_locked = NULL;
913 struct rb_node *node = rb_first(&ctl->free_space_offset);
914 struct btrfs_trim_range *trim_entry;
915
916 /* Get the cluster for this block_group if it exists */
917 if (block_group && !list_empty(&block_group->cluster_list)) {
918 cluster = list_entry(block_group->cluster_list.next,
919 struct btrfs_free_cluster,
920 block_group_list);
921 }
922
923 if (!node && cluster) {
924 cluster_locked = cluster;
925 spin_lock(&cluster_locked->lock);
926 node = rb_first(&cluster->root);
927 cluster = NULL;
928 }
929
930 /* Write out the extent entries */
931 while (node) {
932 struct btrfs_free_space *e;
933
934 e = rb_entry(node, struct btrfs_free_space, offset_index);
935 *entries += 1;
936
937 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
938 e->bitmap);
939 if (ret)
940 goto fail;
941
942 if (e->bitmap) {
943 list_add_tail(&e->list, bitmap_list);
944 *bitmaps += 1;
945 }
946 node = rb_next(node);
947 if (!node && cluster) {
948 node = rb_first(&cluster->root);
949 cluster_locked = cluster;
950 spin_lock(&cluster_locked->lock);
951 cluster = NULL;
952 }
953 }
954 if (cluster_locked) {
955 spin_unlock(&cluster_locked->lock);
956 cluster_locked = NULL;
957 }
958
959 /*
960 * Make sure we don't miss any range that was removed from our rbtree
961 * because trimming is running. Otherwise after a umount+mount (or crash
962 * after committing the transaction) we would leak free space and get
963 * an inconsistent free space cache report from fsck.
964 */
965 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
966 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
967 trim_entry->bytes, NULL);
968 if (ret)
969 goto fail;
970 *entries += 1;
971 }
972
973 return 0;
974 fail:
975 if (cluster_locked)
976 spin_unlock(&cluster_locked->lock);
977 return -ENOSPC;
978 }
979
980 static noinline_for_stack int
update_cache_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_path * path,u64 offset,int entries,int bitmaps)981 update_cache_item(struct btrfs_trans_handle *trans,
982 struct btrfs_root *root,
983 struct inode *inode,
984 struct btrfs_path *path, u64 offset,
985 int entries, int bitmaps)
986 {
987 struct btrfs_key key;
988 struct btrfs_free_space_header *header;
989 struct extent_buffer *leaf;
990 int ret;
991
992 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
993 key.offset = offset;
994 key.type = 0;
995
996 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
997 if (ret < 0) {
998 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
999 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1000 GFP_NOFS);
1001 goto fail;
1002 }
1003 leaf = path->nodes[0];
1004 if (ret > 0) {
1005 struct btrfs_key found_key;
1006 ASSERT(path->slots[0]);
1007 path->slots[0]--;
1008 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1009 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1010 found_key.offset != offset) {
1011 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1012 inode->i_size - 1,
1013 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1014 NULL, GFP_NOFS);
1015 btrfs_release_path(path);
1016 goto fail;
1017 }
1018 }
1019
1020 BTRFS_I(inode)->generation = trans->transid;
1021 header = btrfs_item_ptr(leaf, path->slots[0],
1022 struct btrfs_free_space_header);
1023 btrfs_set_free_space_entries(leaf, header, entries);
1024 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1025 btrfs_set_free_space_generation(leaf, header, trans->transid);
1026 btrfs_mark_buffer_dirty(leaf);
1027 btrfs_release_path(path);
1028
1029 return 0;
1030
1031 fail:
1032 return -1;
1033 }
1034
1035 static noinline_for_stack int
write_pinned_extent_entries(struct btrfs_root * root,struct btrfs_block_group_cache * block_group,struct btrfs_io_ctl * io_ctl,int * entries)1036 write_pinned_extent_entries(struct btrfs_root *root,
1037 struct btrfs_block_group_cache *block_group,
1038 struct btrfs_io_ctl *io_ctl,
1039 int *entries)
1040 {
1041 u64 start, extent_start, extent_end, len;
1042 struct extent_io_tree *unpin = NULL;
1043 int ret;
1044
1045 if (!block_group)
1046 return 0;
1047
1048 /*
1049 * We want to add any pinned extents to our free space cache
1050 * so we don't leak the space
1051 *
1052 * We shouldn't have switched the pinned extents yet so this is the
1053 * right one
1054 */
1055 unpin = root->fs_info->pinned_extents;
1056
1057 start = block_group->key.objectid;
1058
1059 while (start < block_group->key.objectid + block_group->key.offset) {
1060 ret = find_first_extent_bit(unpin, start,
1061 &extent_start, &extent_end,
1062 EXTENT_DIRTY, NULL);
1063 if (ret)
1064 return 0;
1065
1066 /* This pinned extent is out of our range */
1067 if (extent_start >= block_group->key.objectid +
1068 block_group->key.offset)
1069 return 0;
1070
1071 extent_start = max(extent_start, start);
1072 extent_end = min(block_group->key.objectid +
1073 block_group->key.offset, extent_end + 1);
1074 len = extent_end - extent_start;
1075
1076 *entries += 1;
1077 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1078 if (ret)
1079 return -ENOSPC;
1080
1081 start = extent_end;
1082 }
1083
1084 return 0;
1085 }
1086
1087 static noinline_for_stack int
write_bitmap_entries(struct btrfs_io_ctl * io_ctl,struct list_head * bitmap_list)1088 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1089 {
1090 struct btrfs_free_space *entry, *next;
1091 int ret;
1092
1093 /* Write out the bitmaps */
1094 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1095 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1096 if (ret)
1097 return -ENOSPC;
1098 list_del_init(&entry->list);
1099 }
1100
1101 return 0;
1102 }
1103
flush_dirty_cache(struct inode * inode)1104 static int flush_dirty_cache(struct inode *inode)
1105 {
1106 int ret;
1107
1108 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1109 if (ret)
1110 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1111 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1112 GFP_NOFS);
1113
1114 return ret;
1115 }
1116
1117 static void noinline_for_stack
cleanup_bitmap_list(struct list_head * bitmap_list)1118 cleanup_bitmap_list(struct list_head *bitmap_list)
1119 {
1120 struct btrfs_free_space *entry, *next;
1121
1122 list_for_each_entry_safe(entry, next, bitmap_list, list)
1123 list_del_init(&entry->list);
1124 }
1125
1126 static void noinline_for_stack
cleanup_write_cache_enospc(struct inode * inode,struct btrfs_io_ctl * io_ctl,struct extent_state ** cached_state,struct list_head * bitmap_list)1127 cleanup_write_cache_enospc(struct inode *inode,
1128 struct btrfs_io_ctl *io_ctl,
1129 struct extent_state **cached_state,
1130 struct list_head *bitmap_list)
1131 {
1132 io_ctl_drop_pages(io_ctl);
1133 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1134 i_size_read(inode) - 1, cached_state,
1135 GFP_NOFS);
1136 }
1137
btrfs_wait_cache_io(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_path * path,u64 offset)1138 int btrfs_wait_cache_io(struct btrfs_root *root,
1139 struct btrfs_trans_handle *trans,
1140 struct btrfs_block_group_cache *block_group,
1141 struct btrfs_io_ctl *io_ctl,
1142 struct btrfs_path *path, u64 offset)
1143 {
1144 int ret;
1145 struct inode *inode = io_ctl->inode;
1146
1147 if (!inode)
1148 return 0;
1149
1150 if (block_group)
1151 root = root->fs_info->tree_root;
1152
1153 /* Flush the dirty pages in the cache file. */
1154 ret = flush_dirty_cache(inode);
1155 if (ret)
1156 goto out;
1157
1158 /* Update the cache item to tell everyone this cache file is valid. */
1159 ret = update_cache_item(trans, root, inode, path, offset,
1160 io_ctl->entries, io_ctl->bitmaps);
1161 out:
1162 io_ctl_free(io_ctl);
1163 if (ret) {
1164 invalidate_inode_pages2(inode->i_mapping);
1165 BTRFS_I(inode)->generation = 0;
1166 if (block_group) {
1167 #ifdef DEBUG
1168 btrfs_err(root->fs_info,
1169 "failed to write free space cache for block group %llu",
1170 block_group->key.objectid);
1171 #endif
1172 }
1173 }
1174 btrfs_update_inode(trans, root, inode);
1175
1176 if (block_group) {
1177 /* the dirty list is protected by the dirty_bgs_lock */
1178 spin_lock(&trans->transaction->dirty_bgs_lock);
1179
1180 /* the disk_cache_state is protected by the block group lock */
1181 spin_lock(&block_group->lock);
1182
1183 /*
1184 * only mark this as written if we didn't get put back on
1185 * the dirty list while waiting for IO. Otherwise our
1186 * cache state won't be right, and we won't get written again
1187 */
1188 if (!ret && list_empty(&block_group->dirty_list))
1189 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1190 else if (ret)
1191 block_group->disk_cache_state = BTRFS_DC_ERROR;
1192
1193 spin_unlock(&block_group->lock);
1194 spin_unlock(&trans->transaction->dirty_bgs_lock);
1195 io_ctl->inode = NULL;
1196 iput(inode);
1197 }
1198
1199 return ret;
1200
1201 }
1202
1203 /**
1204 * __btrfs_write_out_cache - write out cached info to an inode
1205 * @root - the root the inode belongs to
1206 * @ctl - the free space cache we are going to write out
1207 * @block_group - the block_group for this cache if it belongs to a block_group
1208 * @trans - the trans handle
1209 * @path - the path to use
1210 * @offset - the offset for the key we'll insert
1211 *
1212 * This function writes out a free space cache struct to disk for quick recovery
1213 * on mount. This will return 0 if it was successful in writing the cache out,
1214 * or an errno if it was not.
1215 */
__btrfs_write_out_cache(struct btrfs_root * root,struct inode * inode,struct btrfs_free_space_ctl * ctl,struct btrfs_block_group_cache * block_group,struct btrfs_io_ctl * io_ctl,struct btrfs_trans_handle * trans,struct btrfs_path * path,u64 offset)1216 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1217 struct btrfs_free_space_ctl *ctl,
1218 struct btrfs_block_group_cache *block_group,
1219 struct btrfs_io_ctl *io_ctl,
1220 struct btrfs_trans_handle *trans,
1221 struct btrfs_path *path, u64 offset)
1222 {
1223 struct extent_state *cached_state = NULL;
1224 LIST_HEAD(bitmap_list);
1225 int entries = 0;
1226 int bitmaps = 0;
1227 int ret;
1228 int must_iput = 0;
1229
1230 if (!i_size_read(inode))
1231 return -EIO;
1232
1233 WARN_ON(io_ctl->pages);
1234 ret = io_ctl_init(io_ctl, inode, root, 1);
1235 if (ret)
1236 return ret;
1237
1238 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1239 down_write(&block_group->data_rwsem);
1240 spin_lock(&block_group->lock);
1241 if (block_group->delalloc_bytes) {
1242 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1243 spin_unlock(&block_group->lock);
1244 up_write(&block_group->data_rwsem);
1245 BTRFS_I(inode)->generation = 0;
1246 ret = 0;
1247 must_iput = 1;
1248 goto out;
1249 }
1250 spin_unlock(&block_group->lock);
1251 }
1252
1253 /* Lock all pages first so we can lock the extent safely. */
1254 ret = io_ctl_prepare_pages(io_ctl, inode, 0);
1255 if (ret)
1256 goto out_unlock;
1257
1258 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1259 &cached_state);
1260
1261 io_ctl_set_generation(io_ctl, trans->transid);
1262
1263 mutex_lock(&ctl->cache_writeout_mutex);
1264 /* Write out the extent entries in the free space cache */
1265 spin_lock(&ctl->tree_lock);
1266 ret = write_cache_extent_entries(io_ctl, ctl,
1267 block_group, &entries, &bitmaps,
1268 &bitmap_list);
1269 if (ret)
1270 goto out_nospc_locked;
1271
1272 /*
1273 * Some spaces that are freed in the current transaction are pinned,
1274 * they will be added into free space cache after the transaction is
1275 * committed, we shouldn't lose them.
1276 *
1277 * If this changes while we are working we'll get added back to
1278 * the dirty list and redo it. No locking needed
1279 */
1280 ret = write_pinned_extent_entries(root, block_group, io_ctl, &entries);
1281 if (ret)
1282 goto out_nospc_locked;
1283
1284 /*
1285 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1286 * locked while doing it because a concurrent trim can be manipulating
1287 * or freeing the bitmap.
1288 */
1289 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1290 spin_unlock(&ctl->tree_lock);
1291 mutex_unlock(&ctl->cache_writeout_mutex);
1292 if (ret)
1293 goto out_nospc;
1294
1295 /* Zero out the rest of the pages just to make sure */
1296 io_ctl_zero_remaining_pages(io_ctl);
1297
1298 /* Everything is written out, now we dirty the pages in the file. */
1299 ret = btrfs_dirty_pages(root, inode, io_ctl->pages, io_ctl->num_pages,
1300 0, i_size_read(inode), &cached_state);
1301 if (ret)
1302 goto out_nospc;
1303
1304 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1305 up_write(&block_group->data_rwsem);
1306 /*
1307 * Release the pages and unlock the extent, we will flush
1308 * them out later
1309 */
1310 io_ctl_drop_pages(io_ctl);
1311
1312 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1313 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1314
1315 /*
1316 * at this point the pages are under IO and we're happy,
1317 * The caller is responsible for waiting on them and updating the
1318 * the cache and the inode
1319 */
1320 io_ctl->entries = entries;
1321 io_ctl->bitmaps = bitmaps;
1322
1323 ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1324 if (ret)
1325 goto out;
1326
1327 return 0;
1328
1329 out:
1330 io_ctl->inode = NULL;
1331 io_ctl_free(io_ctl);
1332 if (ret) {
1333 invalidate_inode_pages2(inode->i_mapping);
1334 BTRFS_I(inode)->generation = 0;
1335 }
1336 btrfs_update_inode(trans, root, inode);
1337 if (must_iput)
1338 iput(inode);
1339 return ret;
1340
1341 out_nospc_locked:
1342 cleanup_bitmap_list(&bitmap_list);
1343 spin_unlock(&ctl->tree_lock);
1344 mutex_unlock(&ctl->cache_writeout_mutex);
1345
1346 out_nospc:
1347 cleanup_write_cache_enospc(inode, io_ctl, &cached_state, &bitmap_list);
1348
1349 out_unlock:
1350 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1351 up_write(&block_group->data_rwsem);
1352
1353 goto out;
1354 }
1355
btrfs_write_out_cache(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_block_group_cache * block_group,struct btrfs_path * path)1356 int btrfs_write_out_cache(struct btrfs_root *root,
1357 struct btrfs_trans_handle *trans,
1358 struct btrfs_block_group_cache *block_group,
1359 struct btrfs_path *path)
1360 {
1361 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1362 struct inode *inode;
1363 int ret = 0;
1364
1365 root = root->fs_info->tree_root;
1366
1367 spin_lock(&block_group->lock);
1368 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1369 spin_unlock(&block_group->lock);
1370 return 0;
1371 }
1372 spin_unlock(&block_group->lock);
1373
1374 inode = lookup_free_space_inode(root, block_group, path);
1375 if (IS_ERR(inode))
1376 return 0;
1377
1378 ret = __btrfs_write_out_cache(root, inode, ctl, block_group,
1379 &block_group->io_ctl, trans,
1380 path, block_group->key.objectid);
1381 if (ret) {
1382 #ifdef DEBUG
1383 btrfs_err(root->fs_info,
1384 "failed to write free space cache for block group %llu",
1385 block_group->key.objectid);
1386 #endif
1387 spin_lock(&block_group->lock);
1388 block_group->disk_cache_state = BTRFS_DC_ERROR;
1389 spin_unlock(&block_group->lock);
1390
1391 block_group->io_ctl.inode = NULL;
1392 iput(inode);
1393 }
1394
1395 /*
1396 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1397 * to wait for IO and put the inode
1398 */
1399
1400 return ret;
1401 }
1402
offset_to_bit(u64 bitmap_start,u32 unit,u64 offset)1403 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1404 u64 offset)
1405 {
1406 ASSERT(offset >= bitmap_start);
1407 offset -= bitmap_start;
1408 return (unsigned long)(div_u64(offset, unit));
1409 }
1410
bytes_to_bits(u64 bytes,u32 unit)1411 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1412 {
1413 return (unsigned long)(div_u64(bytes, unit));
1414 }
1415
offset_to_bitmap(struct btrfs_free_space_ctl * ctl,u64 offset)1416 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1417 u64 offset)
1418 {
1419 u64 bitmap_start;
1420 u64 bytes_per_bitmap;
1421
1422 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1423 bitmap_start = offset - ctl->start;
1424 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1425 bitmap_start *= bytes_per_bitmap;
1426 bitmap_start += ctl->start;
1427
1428 return bitmap_start;
1429 }
1430
tree_insert_offset(struct rb_root * root,u64 offset,struct rb_node * node,int bitmap)1431 static int tree_insert_offset(struct rb_root *root, u64 offset,
1432 struct rb_node *node, int bitmap)
1433 {
1434 struct rb_node **p = &root->rb_node;
1435 struct rb_node *parent = NULL;
1436 struct btrfs_free_space *info;
1437
1438 while (*p) {
1439 parent = *p;
1440 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1441
1442 if (offset < info->offset) {
1443 p = &(*p)->rb_left;
1444 } else if (offset > info->offset) {
1445 p = &(*p)->rb_right;
1446 } else {
1447 /*
1448 * we could have a bitmap entry and an extent entry
1449 * share the same offset. If this is the case, we want
1450 * the extent entry to always be found first if we do a
1451 * linear search through the tree, since we want to have
1452 * the quickest allocation time, and allocating from an
1453 * extent is faster than allocating from a bitmap. So
1454 * if we're inserting a bitmap and we find an entry at
1455 * this offset, we want to go right, or after this entry
1456 * logically. If we are inserting an extent and we've
1457 * found a bitmap, we want to go left, or before
1458 * logically.
1459 */
1460 if (bitmap) {
1461 if (info->bitmap) {
1462 WARN_ON_ONCE(1);
1463 return -EEXIST;
1464 }
1465 p = &(*p)->rb_right;
1466 } else {
1467 if (!info->bitmap) {
1468 WARN_ON_ONCE(1);
1469 return -EEXIST;
1470 }
1471 p = &(*p)->rb_left;
1472 }
1473 }
1474 }
1475
1476 rb_link_node(node, parent, p);
1477 rb_insert_color(node, root);
1478
1479 return 0;
1480 }
1481
1482 /*
1483 * searches the tree for the given offset.
1484 *
1485 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1486 * want a section that has at least bytes size and comes at or after the given
1487 * offset.
1488 */
1489 static struct btrfs_free_space *
tree_search_offset(struct btrfs_free_space_ctl * ctl,u64 offset,int bitmap_only,int fuzzy)1490 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1491 u64 offset, int bitmap_only, int fuzzy)
1492 {
1493 struct rb_node *n = ctl->free_space_offset.rb_node;
1494 struct btrfs_free_space *entry, *prev = NULL;
1495
1496 /* find entry that is closest to the 'offset' */
1497 while (1) {
1498 if (!n) {
1499 entry = NULL;
1500 break;
1501 }
1502
1503 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1504 prev = entry;
1505
1506 if (offset < entry->offset)
1507 n = n->rb_left;
1508 else if (offset > entry->offset)
1509 n = n->rb_right;
1510 else
1511 break;
1512 }
1513
1514 if (bitmap_only) {
1515 if (!entry)
1516 return NULL;
1517 if (entry->bitmap)
1518 return entry;
1519
1520 /*
1521 * bitmap entry and extent entry may share same offset,
1522 * in that case, bitmap entry comes after extent entry.
1523 */
1524 n = rb_next(n);
1525 if (!n)
1526 return NULL;
1527 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1528 if (entry->offset != offset)
1529 return NULL;
1530
1531 WARN_ON(!entry->bitmap);
1532 return entry;
1533 } else if (entry) {
1534 if (entry->bitmap) {
1535 /*
1536 * if previous extent entry covers the offset,
1537 * we should return it instead of the bitmap entry
1538 */
1539 n = rb_prev(&entry->offset_index);
1540 if (n) {
1541 prev = rb_entry(n, struct btrfs_free_space,
1542 offset_index);
1543 if (!prev->bitmap &&
1544 prev->offset + prev->bytes > offset)
1545 entry = prev;
1546 }
1547 }
1548 return entry;
1549 }
1550
1551 if (!prev)
1552 return NULL;
1553
1554 /* find last entry before the 'offset' */
1555 entry = prev;
1556 if (entry->offset > offset) {
1557 n = rb_prev(&entry->offset_index);
1558 if (n) {
1559 entry = rb_entry(n, struct btrfs_free_space,
1560 offset_index);
1561 ASSERT(entry->offset <= offset);
1562 } else {
1563 if (fuzzy)
1564 return entry;
1565 else
1566 return NULL;
1567 }
1568 }
1569
1570 if (entry->bitmap) {
1571 n = rb_prev(&entry->offset_index);
1572 if (n) {
1573 prev = rb_entry(n, struct btrfs_free_space,
1574 offset_index);
1575 if (!prev->bitmap &&
1576 prev->offset + prev->bytes > offset)
1577 return prev;
1578 }
1579 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1580 return entry;
1581 } else if (entry->offset + entry->bytes > offset)
1582 return entry;
1583
1584 if (!fuzzy)
1585 return NULL;
1586
1587 while (1) {
1588 if (entry->bitmap) {
1589 if (entry->offset + BITS_PER_BITMAP *
1590 ctl->unit > offset)
1591 break;
1592 } else {
1593 if (entry->offset + entry->bytes > offset)
1594 break;
1595 }
1596
1597 n = rb_next(&entry->offset_index);
1598 if (!n)
1599 return NULL;
1600 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1601 }
1602 return entry;
1603 }
1604
1605 static inline void
__unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1606 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1607 struct btrfs_free_space *info)
1608 {
1609 rb_erase(&info->offset_index, &ctl->free_space_offset);
1610 ctl->free_extents--;
1611 }
1612
unlink_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1613 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1614 struct btrfs_free_space *info)
1615 {
1616 __unlink_free_space(ctl, info);
1617 ctl->free_space -= info->bytes;
1618 }
1619
link_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1620 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1621 struct btrfs_free_space *info)
1622 {
1623 int ret = 0;
1624
1625 ASSERT(info->bytes || info->bitmap);
1626 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1627 &info->offset_index, (info->bitmap != NULL));
1628 if (ret)
1629 return ret;
1630
1631 ctl->free_space += info->bytes;
1632 ctl->free_extents++;
1633 return ret;
1634 }
1635
recalculate_thresholds(struct btrfs_free_space_ctl * ctl)1636 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
1637 {
1638 struct btrfs_block_group_cache *block_group = ctl->private;
1639 u64 max_bytes;
1640 u64 bitmap_bytes;
1641 u64 extent_bytes;
1642 u64 size = block_group->key.offset;
1643 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
1644 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1645
1646 max_bitmaps = max_t(u64, max_bitmaps, 1);
1647
1648 ASSERT(ctl->total_bitmaps <= max_bitmaps);
1649
1650 /*
1651 * The goal is to keep the total amount of memory used per 1gb of space
1652 * at or below 32k, so we need to adjust how much memory we allow to be
1653 * used by extent based free space tracking
1654 */
1655 if (size < SZ_1G)
1656 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1657 else
1658 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
1659
1660 /*
1661 * we want to account for 1 more bitmap than what we have so we can make
1662 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1663 * we add more bitmaps.
1664 */
1665 bitmap_bytes = (ctl->total_bitmaps + 1) * ctl->unit;
1666
1667 if (bitmap_bytes >= max_bytes) {
1668 ctl->extents_thresh = 0;
1669 return;
1670 }
1671
1672 /*
1673 * we want the extent entry threshold to always be at most 1/2 the max
1674 * bytes we can have, or whatever is less than that.
1675 */
1676 extent_bytes = max_bytes - bitmap_bytes;
1677 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
1678
1679 ctl->extents_thresh =
1680 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
1681 }
1682
__bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1683 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1684 struct btrfs_free_space *info,
1685 u64 offset, u64 bytes)
1686 {
1687 unsigned long start, count;
1688
1689 start = offset_to_bit(info->offset, ctl->unit, offset);
1690 count = bytes_to_bits(bytes, ctl->unit);
1691 ASSERT(start + count <= BITS_PER_BITMAP);
1692
1693 bitmap_clear(info->bitmap, start, count);
1694
1695 info->bytes -= bytes;
1696 }
1697
bitmap_clear_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1698 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1699 struct btrfs_free_space *info, u64 offset,
1700 u64 bytes)
1701 {
1702 __bitmap_clear_bits(ctl, info, offset, bytes);
1703 ctl->free_space -= bytes;
1704 }
1705
bitmap_set_bits(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1706 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1707 struct btrfs_free_space *info, u64 offset,
1708 u64 bytes)
1709 {
1710 unsigned long start, count;
1711
1712 start = offset_to_bit(info->offset, ctl->unit, offset);
1713 count = bytes_to_bits(bytes, ctl->unit);
1714 ASSERT(start + count <= BITS_PER_BITMAP);
1715
1716 bitmap_set(info->bitmap, start, count);
1717
1718 info->bytes += bytes;
1719 ctl->free_space += bytes;
1720 }
1721
1722 /*
1723 * If we can not find suitable extent, we will use bytes to record
1724 * the size of the max extent.
1725 */
search_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes,bool for_alloc)1726 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1727 struct btrfs_free_space *bitmap_info, u64 *offset,
1728 u64 *bytes, bool for_alloc)
1729 {
1730 unsigned long found_bits = 0;
1731 unsigned long max_bits = 0;
1732 unsigned long bits, i;
1733 unsigned long next_zero;
1734 unsigned long extent_bits;
1735
1736 /*
1737 * Skip searching the bitmap if we don't have a contiguous section that
1738 * is large enough for this allocation.
1739 */
1740 if (for_alloc &&
1741 bitmap_info->max_extent_size &&
1742 bitmap_info->max_extent_size < *bytes) {
1743 *bytes = bitmap_info->max_extent_size;
1744 return -1;
1745 }
1746
1747 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1748 max_t(u64, *offset, bitmap_info->offset));
1749 bits = bytes_to_bits(*bytes, ctl->unit);
1750
1751 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1752 if (for_alloc && bits == 1) {
1753 found_bits = 1;
1754 break;
1755 }
1756 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1757 BITS_PER_BITMAP, i);
1758 extent_bits = next_zero - i;
1759 if (extent_bits >= bits) {
1760 found_bits = extent_bits;
1761 break;
1762 } else if (extent_bits > max_bits) {
1763 max_bits = extent_bits;
1764 }
1765 i = next_zero;
1766 }
1767
1768 if (found_bits) {
1769 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1770 *bytes = (u64)(found_bits) * ctl->unit;
1771 return 0;
1772 }
1773
1774 *bytes = (u64)(max_bits) * ctl->unit;
1775 bitmap_info->max_extent_size = *bytes;
1776 return -1;
1777 }
1778
1779 /* Cache the size of the max extent in bytes */
1780 static struct btrfs_free_space *
find_free_space(struct btrfs_free_space_ctl * ctl,u64 * offset,u64 * bytes,unsigned long align,u64 * max_extent_size)1781 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1782 unsigned long align, u64 *max_extent_size)
1783 {
1784 struct btrfs_free_space *entry;
1785 struct rb_node *node;
1786 u64 tmp;
1787 u64 align_off;
1788 int ret;
1789
1790 if (!ctl->free_space_offset.rb_node)
1791 goto out;
1792
1793 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1794 if (!entry)
1795 goto out;
1796
1797 for (node = &entry->offset_index; node; node = rb_next(node)) {
1798 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1799 if (entry->bytes < *bytes) {
1800 if (entry->bytes > *max_extent_size)
1801 *max_extent_size = entry->bytes;
1802 continue;
1803 }
1804
1805 /* make sure the space returned is big enough
1806 * to match our requested alignment
1807 */
1808 if (*bytes >= align) {
1809 tmp = entry->offset - ctl->start + align - 1;
1810 tmp = div64_u64(tmp, align);
1811 tmp = tmp * align + ctl->start;
1812 align_off = tmp - entry->offset;
1813 } else {
1814 align_off = 0;
1815 tmp = entry->offset;
1816 }
1817
1818 if (entry->bytes < *bytes + align_off) {
1819 if (entry->bytes > *max_extent_size)
1820 *max_extent_size = entry->bytes;
1821 continue;
1822 }
1823
1824 if (entry->bitmap) {
1825 u64 size = *bytes;
1826
1827 ret = search_bitmap(ctl, entry, &tmp, &size, true);
1828 if (!ret) {
1829 *offset = tmp;
1830 *bytes = size;
1831 return entry;
1832 } else if (size > *max_extent_size) {
1833 *max_extent_size = size;
1834 }
1835 continue;
1836 }
1837
1838 *offset = tmp;
1839 *bytes = entry->bytes - align_off;
1840 return entry;
1841 }
1842 out:
1843 return NULL;
1844 }
1845
add_new_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset)1846 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1847 struct btrfs_free_space *info, u64 offset)
1848 {
1849 info->offset = offset_to_bitmap(ctl, offset);
1850 info->bytes = 0;
1851 INIT_LIST_HEAD(&info->list);
1852 link_free_space(ctl, info);
1853 ctl->total_bitmaps++;
1854
1855 ctl->op->recalc_thresholds(ctl);
1856 }
1857
free_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info)1858 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1859 struct btrfs_free_space *bitmap_info)
1860 {
1861 unlink_free_space(ctl, bitmap_info);
1862 kfree(bitmap_info->bitmap);
1863 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1864 ctl->total_bitmaps--;
1865 ctl->op->recalc_thresholds(ctl);
1866 }
1867
remove_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * bitmap_info,u64 * offset,u64 * bytes)1868 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1869 struct btrfs_free_space *bitmap_info,
1870 u64 *offset, u64 *bytes)
1871 {
1872 u64 end;
1873 u64 search_start, search_bytes;
1874 int ret;
1875
1876 again:
1877 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1878
1879 /*
1880 * We need to search for bits in this bitmap. We could only cover some
1881 * of the extent in this bitmap thanks to how we add space, so we need
1882 * to search for as much as it as we can and clear that amount, and then
1883 * go searching for the next bit.
1884 */
1885 search_start = *offset;
1886 search_bytes = ctl->unit;
1887 search_bytes = min(search_bytes, end - search_start + 1);
1888 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
1889 false);
1890 if (ret < 0 || search_start != *offset)
1891 return -EINVAL;
1892
1893 /* We may have found more bits than what we need */
1894 search_bytes = min(search_bytes, *bytes);
1895
1896 /* Cannot clear past the end of the bitmap */
1897 search_bytes = min(search_bytes, end - search_start + 1);
1898
1899 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1900 *offset += search_bytes;
1901 *bytes -= search_bytes;
1902
1903 if (*bytes) {
1904 struct rb_node *next = rb_next(&bitmap_info->offset_index);
1905 if (!bitmap_info->bytes)
1906 free_bitmap(ctl, bitmap_info);
1907
1908 /*
1909 * no entry after this bitmap, but we still have bytes to
1910 * remove, so something has gone wrong.
1911 */
1912 if (!next)
1913 return -EINVAL;
1914
1915 bitmap_info = rb_entry(next, struct btrfs_free_space,
1916 offset_index);
1917
1918 /*
1919 * if the next entry isn't a bitmap we need to return to let the
1920 * extent stuff do its work.
1921 */
1922 if (!bitmap_info->bitmap)
1923 return -EAGAIN;
1924
1925 /*
1926 * Ok the next item is a bitmap, but it may not actually hold
1927 * the information for the rest of this free space stuff, so
1928 * look for it, and if we don't find it return so we can try
1929 * everything over again.
1930 */
1931 search_start = *offset;
1932 search_bytes = ctl->unit;
1933 ret = search_bitmap(ctl, bitmap_info, &search_start,
1934 &search_bytes, false);
1935 if (ret < 0 || search_start != *offset)
1936 return -EAGAIN;
1937
1938 goto again;
1939 } else if (!bitmap_info->bytes)
1940 free_bitmap(ctl, bitmap_info);
1941
1942 return 0;
1943 }
1944
add_bytes_to_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,u64 offset,u64 bytes)1945 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1946 struct btrfs_free_space *info, u64 offset,
1947 u64 bytes)
1948 {
1949 u64 bytes_to_set = 0;
1950 u64 end;
1951
1952 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1953
1954 bytes_to_set = min(end - offset, bytes);
1955
1956 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1957
1958 /*
1959 * We set some bytes, we have no idea what the max extent size is
1960 * anymore.
1961 */
1962 info->max_extent_size = 0;
1963
1964 return bytes_to_set;
1965
1966 }
1967
use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)1968 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1969 struct btrfs_free_space *info)
1970 {
1971 struct btrfs_block_group_cache *block_group = ctl->private;
1972 bool forced = false;
1973
1974 #ifdef CONFIG_BTRFS_DEBUG
1975 if (btrfs_should_fragment_free_space(block_group->fs_info->extent_root,
1976 block_group))
1977 forced = true;
1978 #endif
1979
1980 /*
1981 * If we are below the extents threshold then we can add this as an
1982 * extent, and don't have to deal with the bitmap
1983 */
1984 if (!forced && ctl->free_extents < ctl->extents_thresh) {
1985 /*
1986 * If this block group has some small extents we don't want to
1987 * use up all of our free slots in the cache with them, we want
1988 * to reserve them to larger extents, however if we have plenty
1989 * of cache left then go ahead an dadd them, no sense in adding
1990 * the overhead of a bitmap if we don't have to.
1991 */
1992 if (info->bytes <= block_group->sectorsize * 4) {
1993 if (ctl->free_extents * 2 <= ctl->extents_thresh)
1994 return false;
1995 } else {
1996 return false;
1997 }
1998 }
1999
2000 /*
2001 * The original block groups from mkfs can be really small, like 8
2002 * megabytes, so don't bother with a bitmap for those entries. However
2003 * some block groups can be smaller than what a bitmap would cover but
2004 * are still large enough that they could overflow the 32k memory limit,
2005 * so allow those block groups to still be allowed to have a bitmap
2006 * entry.
2007 */
2008 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->key.offset)
2009 return false;
2010
2011 return true;
2012 }
2013
2014 static const struct btrfs_free_space_op free_space_op = {
2015 .recalc_thresholds = recalculate_thresholds,
2016 .use_bitmap = use_bitmap,
2017 };
2018
insert_into_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)2019 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2020 struct btrfs_free_space *info)
2021 {
2022 struct btrfs_free_space *bitmap_info;
2023 struct btrfs_block_group_cache *block_group = NULL;
2024 int added = 0;
2025 u64 bytes, offset, bytes_added;
2026 int ret;
2027
2028 bytes = info->bytes;
2029 offset = info->offset;
2030
2031 if (!ctl->op->use_bitmap(ctl, info))
2032 return 0;
2033
2034 if (ctl->op == &free_space_op)
2035 block_group = ctl->private;
2036 again:
2037 /*
2038 * Since we link bitmaps right into the cluster we need to see if we
2039 * have a cluster here, and if so and it has our bitmap we need to add
2040 * the free space to that bitmap.
2041 */
2042 if (block_group && !list_empty(&block_group->cluster_list)) {
2043 struct btrfs_free_cluster *cluster;
2044 struct rb_node *node;
2045 struct btrfs_free_space *entry;
2046
2047 cluster = list_entry(block_group->cluster_list.next,
2048 struct btrfs_free_cluster,
2049 block_group_list);
2050 spin_lock(&cluster->lock);
2051 node = rb_first(&cluster->root);
2052 if (!node) {
2053 spin_unlock(&cluster->lock);
2054 goto no_cluster_bitmap;
2055 }
2056
2057 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2058 if (!entry->bitmap) {
2059 spin_unlock(&cluster->lock);
2060 goto no_cluster_bitmap;
2061 }
2062
2063 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2064 bytes_added = add_bytes_to_bitmap(ctl, entry,
2065 offset, bytes);
2066 bytes -= bytes_added;
2067 offset += bytes_added;
2068 }
2069 spin_unlock(&cluster->lock);
2070 if (!bytes) {
2071 ret = 1;
2072 goto out;
2073 }
2074 }
2075
2076 no_cluster_bitmap:
2077 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2078 1, 0);
2079 if (!bitmap_info) {
2080 ASSERT(added == 0);
2081 goto new_bitmap;
2082 }
2083
2084 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
2085 bytes -= bytes_added;
2086 offset += bytes_added;
2087 added = 0;
2088
2089 if (!bytes) {
2090 ret = 1;
2091 goto out;
2092 } else
2093 goto again;
2094
2095 new_bitmap:
2096 if (info && info->bitmap) {
2097 add_new_bitmap(ctl, info, offset);
2098 added = 1;
2099 info = NULL;
2100 goto again;
2101 } else {
2102 spin_unlock(&ctl->tree_lock);
2103
2104 /* no pre-allocated info, allocate a new one */
2105 if (!info) {
2106 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2107 GFP_NOFS);
2108 if (!info) {
2109 spin_lock(&ctl->tree_lock);
2110 ret = -ENOMEM;
2111 goto out;
2112 }
2113 }
2114
2115 /* allocate the bitmap */
2116 info->bitmap = kzalloc(PAGE_SIZE, GFP_NOFS);
2117 spin_lock(&ctl->tree_lock);
2118 if (!info->bitmap) {
2119 ret = -ENOMEM;
2120 goto out;
2121 }
2122 goto again;
2123 }
2124
2125 out:
2126 if (info) {
2127 if (info->bitmap)
2128 kfree(info->bitmap);
2129 kmem_cache_free(btrfs_free_space_cachep, info);
2130 }
2131
2132 return ret;
2133 }
2134
try_merge_free_space(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2135 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2136 struct btrfs_free_space *info, bool update_stat)
2137 {
2138 struct btrfs_free_space *left_info;
2139 struct btrfs_free_space *right_info;
2140 bool merged = false;
2141 u64 offset = info->offset;
2142 u64 bytes = info->bytes;
2143
2144 /*
2145 * first we want to see if there is free space adjacent to the range we
2146 * are adding, if there is remove that struct and add a new one to
2147 * cover the entire range
2148 */
2149 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2150 if (right_info && rb_prev(&right_info->offset_index))
2151 left_info = rb_entry(rb_prev(&right_info->offset_index),
2152 struct btrfs_free_space, offset_index);
2153 else
2154 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2155
2156 if (right_info && !right_info->bitmap) {
2157 if (update_stat)
2158 unlink_free_space(ctl, right_info);
2159 else
2160 __unlink_free_space(ctl, right_info);
2161 info->bytes += right_info->bytes;
2162 kmem_cache_free(btrfs_free_space_cachep, right_info);
2163 merged = true;
2164 }
2165
2166 if (left_info && !left_info->bitmap &&
2167 left_info->offset + left_info->bytes == offset) {
2168 if (update_stat)
2169 unlink_free_space(ctl, left_info);
2170 else
2171 __unlink_free_space(ctl, left_info);
2172 info->offset = left_info->offset;
2173 info->bytes += left_info->bytes;
2174 kmem_cache_free(btrfs_free_space_cachep, left_info);
2175 merged = true;
2176 }
2177
2178 return merged;
2179 }
2180
steal_from_bitmap_to_end(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2181 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2182 struct btrfs_free_space *info,
2183 bool update_stat)
2184 {
2185 struct btrfs_free_space *bitmap;
2186 unsigned long i;
2187 unsigned long j;
2188 const u64 end = info->offset + info->bytes;
2189 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2190 u64 bytes;
2191
2192 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2193 if (!bitmap)
2194 return false;
2195
2196 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2197 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2198 if (j == i)
2199 return false;
2200 bytes = (j - i) * ctl->unit;
2201 info->bytes += bytes;
2202
2203 if (update_stat)
2204 bitmap_clear_bits(ctl, bitmap, end, bytes);
2205 else
2206 __bitmap_clear_bits(ctl, bitmap, end, bytes);
2207
2208 if (!bitmap->bytes)
2209 free_bitmap(ctl, bitmap);
2210
2211 return true;
2212 }
2213
steal_from_bitmap_to_front(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2214 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2215 struct btrfs_free_space *info,
2216 bool update_stat)
2217 {
2218 struct btrfs_free_space *bitmap;
2219 u64 bitmap_offset;
2220 unsigned long i;
2221 unsigned long j;
2222 unsigned long prev_j;
2223 u64 bytes;
2224
2225 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2226 /* If we're on a boundary, try the previous logical bitmap. */
2227 if (bitmap_offset == info->offset) {
2228 if (info->offset == 0)
2229 return false;
2230 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2231 }
2232
2233 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2234 if (!bitmap)
2235 return false;
2236
2237 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2238 j = 0;
2239 prev_j = (unsigned long)-1;
2240 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2241 if (j > i)
2242 break;
2243 prev_j = j;
2244 }
2245 if (prev_j == i)
2246 return false;
2247
2248 if (prev_j == (unsigned long)-1)
2249 bytes = (i + 1) * ctl->unit;
2250 else
2251 bytes = (i - prev_j) * ctl->unit;
2252
2253 info->offset -= bytes;
2254 info->bytes += bytes;
2255
2256 if (update_stat)
2257 bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2258 else
2259 __bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2260
2261 if (!bitmap->bytes)
2262 free_bitmap(ctl, bitmap);
2263
2264 return true;
2265 }
2266
2267 /*
2268 * We prefer always to allocate from extent entries, both for clustered and
2269 * non-clustered allocation requests. So when attempting to add a new extent
2270 * entry, try to see if there's adjacent free space in bitmap entries, and if
2271 * there is, migrate that space from the bitmaps to the extent.
2272 * Like this we get better chances of satisfying space allocation requests
2273 * because we attempt to satisfy them based on a single cache entry, and never
2274 * on 2 or more entries - even if the entries represent a contiguous free space
2275 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2276 * ends).
2277 */
steal_from_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info,bool update_stat)2278 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2279 struct btrfs_free_space *info,
2280 bool update_stat)
2281 {
2282 /*
2283 * Only work with disconnected entries, as we can change their offset,
2284 * and must be extent entries.
2285 */
2286 ASSERT(!info->bitmap);
2287 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2288
2289 if (ctl->total_bitmaps > 0) {
2290 bool stole_end;
2291 bool stole_front = false;
2292
2293 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2294 if (ctl->total_bitmaps > 0)
2295 stole_front = steal_from_bitmap_to_front(ctl, info,
2296 update_stat);
2297
2298 if (stole_end || stole_front)
2299 try_merge_free_space(ctl, info, update_stat);
2300 }
2301 }
2302
__btrfs_add_free_space(struct btrfs_fs_info * fs_info,struct btrfs_free_space_ctl * ctl,u64 offset,u64 bytes)2303 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2304 struct btrfs_free_space_ctl *ctl,
2305 u64 offset, u64 bytes)
2306 {
2307 struct btrfs_free_space *info;
2308 int ret = 0;
2309
2310 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2311 if (!info)
2312 return -ENOMEM;
2313
2314 info->offset = offset;
2315 info->bytes = bytes;
2316 RB_CLEAR_NODE(&info->offset_index);
2317
2318 spin_lock(&ctl->tree_lock);
2319
2320 if (try_merge_free_space(ctl, info, true))
2321 goto link;
2322
2323 /*
2324 * There was no extent directly to the left or right of this new
2325 * extent then we know we're going to have to allocate a new extent, so
2326 * before we do that see if we need to drop this into a bitmap
2327 */
2328 ret = insert_into_bitmap(ctl, info);
2329 if (ret < 0) {
2330 goto out;
2331 } else if (ret) {
2332 ret = 0;
2333 goto out;
2334 }
2335 link:
2336 /*
2337 * Only steal free space from adjacent bitmaps if we're sure we're not
2338 * going to add the new free space to existing bitmap entries - because
2339 * that would mean unnecessary work that would be reverted. Therefore
2340 * attempt to steal space from bitmaps if we're adding an extent entry.
2341 */
2342 steal_from_bitmap(ctl, info, true);
2343
2344 ret = link_free_space(ctl, info);
2345 if (ret)
2346 kmem_cache_free(btrfs_free_space_cachep, info);
2347 out:
2348 spin_unlock(&ctl->tree_lock);
2349
2350 if (ret) {
2351 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2352 ASSERT(ret != -EEXIST);
2353 }
2354
2355 return ret;
2356 }
2357
btrfs_remove_free_space(struct btrfs_block_group_cache * block_group,u64 offset,u64 bytes)2358 int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
2359 u64 offset, u64 bytes)
2360 {
2361 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2362 struct btrfs_free_space *info;
2363 int ret;
2364 bool re_search = false;
2365
2366 spin_lock(&ctl->tree_lock);
2367
2368 again:
2369 ret = 0;
2370 if (!bytes)
2371 goto out_lock;
2372
2373 info = tree_search_offset(ctl, offset, 0, 0);
2374 if (!info) {
2375 /*
2376 * oops didn't find an extent that matched the space we wanted
2377 * to remove, look for a bitmap instead
2378 */
2379 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2380 1, 0);
2381 if (!info) {
2382 /*
2383 * If we found a partial bit of our free space in a
2384 * bitmap but then couldn't find the other part this may
2385 * be a problem, so WARN about it.
2386 */
2387 WARN_ON(re_search);
2388 goto out_lock;
2389 }
2390 }
2391
2392 re_search = false;
2393 if (!info->bitmap) {
2394 unlink_free_space(ctl, info);
2395 if (offset == info->offset) {
2396 u64 to_free = min(bytes, info->bytes);
2397
2398 info->bytes -= to_free;
2399 info->offset += to_free;
2400 if (info->bytes) {
2401 ret = link_free_space(ctl, info);
2402 WARN_ON(ret);
2403 } else {
2404 kmem_cache_free(btrfs_free_space_cachep, info);
2405 }
2406
2407 offset += to_free;
2408 bytes -= to_free;
2409 goto again;
2410 } else {
2411 u64 old_end = info->bytes + info->offset;
2412
2413 info->bytes = offset - info->offset;
2414 ret = link_free_space(ctl, info);
2415 WARN_ON(ret);
2416 if (ret)
2417 goto out_lock;
2418
2419 /* Not enough bytes in this entry to satisfy us */
2420 if (old_end < offset + bytes) {
2421 bytes -= old_end - offset;
2422 offset = old_end;
2423 goto again;
2424 } else if (old_end == offset + bytes) {
2425 /* all done */
2426 goto out_lock;
2427 }
2428 spin_unlock(&ctl->tree_lock);
2429
2430 ret = btrfs_add_free_space(block_group, offset + bytes,
2431 old_end - (offset + bytes));
2432 WARN_ON(ret);
2433 goto out;
2434 }
2435 }
2436
2437 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2438 if (ret == -EAGAIN) {
2439 re_search = true;
2440 goto again;
2441 }
2442 out_lock:
2443 spin_unlock(&ctl->tree_lock);
2444 out:
2445 return ret;
2446 }
2447
btrfs_dump_free_space(struct btrfs_block_group_cache * block_group,u64 bytes)2448 void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
2449 u64 bytes)
2450 {
2451 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2452 struct btrfs_free_space *info;
2453 struct rb_node *n;
2454 int count = 0;
2455
2456 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2457 info = rb_entry(n, struct btrfs_free_space, offset_index);
2458 if (info->bytes >= bytes && !block_group->ro)
2459 count++;
2460 btrfs_crit(block_group->fs_info,
2461 "entry offset %llu, bytes %llu, bitmap %s",
2462 info->offset, info->bytes,
2463 (info->bitmap) ? "yes" : "no");
2464 }
2465 btrfs_info(block_group->fs_info, "block group has cluster?: %s",
2466 list_empty(&block_group->cluster_list) ? "no" : "yes");
2467 btrfs_info(block_group->fs_info,
2468 "%d blocks of free space at or bigger than bytes is", count);
2469 }
2470
btrfs_init_free_space_ctl(struct btrfs_block_group_cache * block_group)2471 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
2472 {
2473 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2474
2475 spin_lock_init(&ctl->tree_lock);
2476 ctl->unit = block_group->sectorsize;
2477 ctl->start = block_group->key.objectid;
2478 ctl->private = block_group;
2479 ctl->op = &free_space_op;
2480 INIT_LIST_HEAD(&ctl->trimming_ranges);
2481 mutex_init(&ctl->cache_writeout_mutex);
2482
2483 /*
2484 * we only want to have 32k of ram per block group for keeping
2485 * track of free space, and if we pass 1/2 of that we want to
2486 * start converting things over to using bitmaps
2487 */
2488 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2489 }
2490
2491 /*
2492 * for a given cluster, put all of its extents back into the free
2493 * space cache. If the block group passed doesn't match the block group
2494 * pointed to by the cluster, someone else raced in and freed the
2495 * cluster already. In that case, we just return without changing anything
2496 */
2497 static int
__btrfs_return_cluster_to_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster)2498 __btrfs_return_cluster_to_free_space(
2499 struct btrfs_block_group_cache *block_group,
2500 struct btrfs_free_cluster *cluster)
2501 {
2502 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2503 struct btrfs_free_space *entry;
2504 struct rb_node *node;
2505
2506 spin_lock(&cluster->lock);
2507 if (cluster->block_group != block_group)
2508 goto out;
2509
2510 cluster->block_group = NULL;
2511 cluster->window_start = 0;
2512 list_del_init(&cluster->block_group_list);
2513
2514 node = rb_first(&cluster->root);
2515 while (node) {
2516 bool bitmap;
2517
2518 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2519 node = rb_next(&entry->offset_index);
2520 rb_erase(&entry->offset_index, &cluster->root);
2521 RB_CLEAR_NODE(&entry->offset_index);
2522
2523 bitmap = (entry->bitmap != NULL);
2524 if (!bitmap) {
2525 try_merge_free_space(ctl, entry, false);
2526 steal_from_bitmap(ctl, entry, false);
2527 }
2528 tree_insert_offset(&ctl->free_space_offset,
2529 entry->offset, &entry->offset_index, bitmap);
2530 }
2531 cluster->root = RB_ROOT;
2532
2533 out:
2534 spin_unlock(&cluster->lock);
2535 btrfs_put_block_group(block_group);
2536 return 0;
2537 }
2538
__btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl * ctl)2539 static void __btrfs_remove_free_space_cache_locked(
2540 struct btrfs_free_space_ctl *ctl)
2541 {
2542 struct btrfs_free_space *info;
2543 struct rb_node *node;
2544
2545 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2546 info = rb_entry(node, struct btrfs_free_space, offset_index);
2547 if (!info->bitmap) {
2548 unlink_free_space(ctl, info);
2549 kmem_cache_free(btrfs_free_space_cachep, info);
2550 } else {
2551 free_bitmap(ctl, info);
2552 }
2553
2554 cond_resched_lock(&ctl->tree_lock);
2555 }
2556 }
2557
__btrfs_remove_free_space_cache(struct btrfs_free_space_ctl * ctl)2558 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2559 {
2560 spin_lock(&ctl->tree_lock);
2561 __btrfs_remove_free_space_cache_locked(ctl);
2562 spin_unlock(&ctl->tree_lock);
2563 }
2564
btrfs_remove_free_space_cache(struct btrfs_block_group_cache * block_group)2565 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2566 {
2567 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2568 struct btrfs_free_cluster *cluster;
2569 struct list_head *head;
2570
2571 spin_lock(&ctl->tree_lock);
2572 while ((head = block_group->cluster_list.next) !=
2573 &block_group->cluster_list) {
2574 cluster = list_entry(head, struct btrfs_free_cluster,
2575 block_group_list);
2576
2577 WARN_ON(cluster->block_group != block_group);
2578 __btrfs_return_cluster_to_free_space(block_group, cluster);
2579
2580 cond_resched_lock(&ctl->tree_lock);
2581 }
2582 __btrfs_remove_free_space_cache_locked(ctl);
2583 spin_unlock(&ctl->tree_lock);
2584
2585 }
2586
btrfs_find_space_for_alloc(struct btrfs_block_group_cache * block_group,u64 offset,u64 bytes,u64 empty_size,u64 * max_extent_size)2587 u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2588 u64 offset, u64 bytes, u64 empty_size,
2589 u64 *max_extent_size)
2590 {
2591 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2592 struct btrfs_free_space *entry = NULL;
2593 u64 bytes_search = bytes + empty_size;
2594 u64 ret = 0;
2595 u64 align_gap = 0;
2596 u64 align_gap_len = 0;
2597
2598 spin_lock(&ctl->tree_lock);
2599 entry = find_free_space(ctl, &offset, &bytes_search,
2600 block_group->full_stripe_len, max_extent_size);
2601 if (!entry)
2602 goto out;
2603
2604 ret = offset;
2605 if (entry->bitmap) {
2606 bitmap_clear_bits(ctl, entry, offset, bytes);
2607 if (!entry->bytes)
2608 free_bitmap(ctl, entry);
2609 } else {
2610 unlink_free_space(ctl, entry);
2611 align_gap_len = offset - entry->offset;
2612 align_gap = entry->offset;
2613
2614 entry->offset = offset + bytes;
2615 WARN_ON(entry->bytes < bytes + align_gap_len);
2616
2617 entry->bytes -= bytes + align_gap_len;
2618 if (!entry->bytes)
2619 kmem_cache_free(btrfs_free_space_cachep, entry);
2620 else
2621 link_free_space(ctl, entry);
2622 }
2623 out:
2624 spin_unlock(&ctl->tree_lock);
2625
2626 if (align_gap_len)
2627 __btrfs_add_free_space(block_group->fs_info, ctl,
2628 align_gap, align_gap_len);
2629 return ret;
2630 }
2631
2632 /*
2633 * given a cluster, put all of its extents back into the free space
2634 * cache. If a block group is passed, this function will only free
2635 * a cluster that belongs to the passed block group.
2636 *
2637 * Otherwise, it'll get a reference on the block group pointed to by the
2638 * cluster and remove the cluster from it.
2639 */
btrfs_return_cluster_to_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster)2640 int btrfs_return_cluster_to_free_space(
2641 struct btrfs_block_group_cache *block_group,
2642 struct btrfs_free_cluster *cluster)
2643 {
2644 struct btrfs_free_space_ctl *ctl;
2645 int ret;
2646
2647 /* first, get a safe pointer to the block group */
2648 spin_lock(&cluster->lock);
2649 if (!block_group) {
2650 block_group = cluster->block_group;
2651 if (!block_group) {
2652 spin_unlock(&cluster->lock);
2653 return 0;
2654 }
2655 } else if (cluster->block_group != block_group) {
2656 /* someone else has already freed it don't redo their work */
2657 spin_unlock(&cluster->lock);
2658 return 0;
2659 }
2660 atomic_inc(&block_group->count);
2661 spin_unlock(&cluster->lock);
2662
2663 ctl = block_group->free_space_ctl;
2664
2665 /* now return any extents the cluster had on it */
2666 spin_lock(&ctl->tree_lock);
2667 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
2668 spin_unlock(&ctl->tree_lock);
2669
2670 /* finally drop our ref */
2671 btrfs_put_block_group(block_group);
2672 return ret;
2673 }
2674
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct btrfs_free_space * entry,u64 bytes,u64 min_start,u64 * max_extent_size)2675 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2676 struct btrfs_free_cluster *cluster,
2677 struct btrfs_free_space *entry,
2678 u64 bytes, u64 min_start,
2679 u64 *max_extent_size)
2680 {
2681 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2682 int err;
2683 u64 search_start = cluster->window_start;
2684 u64 search_bytes = bytes;
2685 u64 ret = 0;
2686
2687 search_start = min_start;
2688 search_bytes = bytes;
2689
2690 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
2691 if (err) {
2692 if (search_bytes > *max_extent_size)
2693 *max_extent_size = search_bytes;
2694 return 0;
2695 }
2696
2697 ret = search_start;
2698 __bitmap_clear_bits(ctl, entry, ret, bytes);
2699
2700 return ret;
2701 }
2702
2703 /*
2704 * given a cluster, try to allocate 'bytes' from it, returns 0
2705 * if it couldn't find anything suitably large, or a logical disk offset
2706 * if things worked out
2707 */
btrfs_alloc_from_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,u64 bytes,u64 min_start,u64 * max_extent_size)2708 u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2709 struct btrfs_free_cluster *cluster, u64 bytes,
2710 u64 min_start, u64 *max_extent_size)
2711 {
2712 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2713 struct btrfs_free_space *entry = NULL;
2714 struct rb_node *node;
2715 u64 ret = 0;
2716
2717 spin_lock(&cluster->lock);
2718 if (bytes > cluster->max_size)
2719 goto out;
2720
2721 if (cluster->block_group != block_group)
2722 goto out;
2723
2724 node = rb_first(&cluster->root);
2725 if (!node)
2726 goto out;
2727
2728 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2729 while (1) {
2730 if (entry->bytes < bytes && entry->bytes > *max_extent_size)
2731 *max_extent_size = entry->bytes;
2732
2733 if (entry->bytes < bytes ||
2734 (!entry->bitmap && entry->offset < min_start)) {
2735 node = rb_next(&entry->offset_index);
2736 if (!node)
2737 break;
2738 entry = rb_entry(node, struct btrfs_free_space,
2739 offset_index);
2740 continue;
2741 }
2742
2743 if (entry->bitmap) {
2744 ret = btrfs_alloc_from_bitmap(block_group,
2745 cluster, entry, bytes,
2746 cluster->window_start,
2747 max_extent_size);
2748 if (ret == 0) {
2749 node = rb_next(&entry->offset_index);
2750 if (!node)
2751 break;
2752 entry = rb_entry(node, struct btrfs_free_space,
2753 offset_index);
2754 continue;
2755 }
2756 cluster->window_start += bytes;
2757 } else {
2758 ret = entry->offset;
2759
2760 entry->offset += bytes;
2761 entry->bytes -= bytes;
2762 }
2763
2764 if (entry->bytes == 0)
2765 rb_erase(&entry->offset_index, &cluster->root);
2766 break;
2767 }
2768 out:
2769 spin_unlock(&cluster->lock);
2770
2771 if (!ret)
2772 return 0;
2773
2774 spin_lock(&ctl->tree_lock);
2775
2776 ctl->free_space -= bytes;
2777 if (entry->bytes == 0) {
2778 ctl->free_extents--;
2779 if (entry->bitmap) {
2780 kfree(entry->bitmap);
2781 ctl->total_bitmaps--;
2782 ctl->op->recalc_thresholds(ctl);
2783 }
2784 kmem_cache_free(btrfs_free_space_cachep, entry);
2785 }
2786
2787 spin_unlock(&ctl->tree_lock);
2788
2789 return ret;
2790 }
2791
btrfs_bitmap_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_space * entry,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)2792 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2793 struct btrfs_free_space *entry,
2794 struct btrfs_free_cluster *cluster,
2795 u64 offset, u64 bytes,
2796 u64 cont1_bytes, u64 min_bytes)
2797 {
2798 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2799 unsigned long next_zero;
2800 unsigned long i;
2801 unsigned long want_bits;
2802 unsigned long min_bits;
2803 unsigned long found_bits;
2804 unsigned long max_bits = 0;
2805 unsigned long start = 0;
2806 unsigned long total_found = 0;
2807 int ret;
2808
2809 i = offset_to_bit(entry->offset, ctl->unit,
2810 max_t(u64, offset, entry->offset));
2811 want_bits = bytes_to_bits(bytes, ctl->unit);
2812 min_bits = bytes_to_bits(min_bytes, ctl->unit);
2813
2814 /*
2815 * Don't bother looking for a cluster in this bitmap if it's heavily
2816 * fragmented.
2817 */
2818 if (entry->max_extent_size &&
2819 entry->max_extent_size < cont1_bytes)
2820 return -ENOSPC;
2821 again:
2822 found_bits = 0;
2823 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
2824 next_zero = find_next_zero_bit(entry->bitmap,
2825 BITS_PER_BITMAP, i);
2826 if (next_zero - i >= min_bits) {
2827 found_bits = next_zero - i;
2828 if (found_bits > max_bits)
2829 max_bits = found_bits;
2830 break;
2831 }
2832 if (next_zero - i > max_bits)
2833 max_bits = next_zero - i;
2834 i = next_zero;
2835 }
2836
2837 if (!found_bits) {
2838 entry->max_extent_size = (u64)max_bits * ctl->unit;
2839 return -ENOSPC;
2840 }
2841
2842 if (!total_found) {
2843 start = i;
2844 cluster->max_size = 0;
2845 }
2846
2847 total_found += found_bits;
2848
2849 if (cluster->max_size < found_bits * ctl->unit)
2850 cluster->max_size = found_bits * ctl->unit;
2851
2852 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2853 i = next_zero + 1;
2854 goto again;
2855 }
2856
2857 cluster->window_start = start * ctl->unit + entry->offset;
2858 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2859 ret = tree_insert_offset(&cluster->root, entry->offset,
2860 &entry->offset_index, 1);
2861 ASSERT(!ret); /* -EEXIST; Logic error */
2862
2863 trace_btrfs_setup_cluster(block_group, cluster,
2864 total_found * ctl->unit, 1);
2865 return 0;
2866 }
2867
2868 /*
2869 * This searches the block group for just extents to fill the cluster with.
2870 * Try to find a cluster with at least bytes total bytes, at least one
2871 * extent of cont1_bytes, and other clusters of at least min_bytes.
2872 */
2873 static noinline int
setup_cluster_no_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)2874 setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2875 struct btrfs_free_cluster *cluster,
2876 struct list_head *bitmaps, u64 offset, u64 bytes,
2877 u64 cont1_bytes, u64 min_bytes)
2878 {
2879 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2880 struct btrfs_free_space *first = NULL;
2881 struct btrfs_free_space *entry = NULL;
2882 struct btrfs_free_space *last;
2883 struct rb_node *node;
2884 u64 window_free;
2885 u64 max_extent;
2886 u64 total_size = 0;
2887
2888 entry = tree_search_offset(ctl, offset, 0, 1);
2889 if (!entry)
2890 return -ENOSPC;
2891
2892 /*
2893 * We don't want bitmaps, so just move along until we find a normal
2894 * extent entry.
2895 */
2896 while (entry->bitmap || entry->bytes < min_bytes) {
2897 if (entry->bitmap && list_empty(&entry->list))
2898 list_add_tail(&entry->list, bitmaps);
2899 node = rb_next(&entry->offset_index);
2900 if (!node)
2901 return -ENOSPC;
2902 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2903 }
2904
2905 window_free = entry->bytes;
2906 max_extent = entry->bytes;
2907 first = entry;
2908 last = entry;
2909
2910 for (node = rb_next(&entry->offset_index); node;
2911 node = rb_next(&entry->offset_index)) {
2912 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2913
2914 if (entry->bitmap) {
2915 if (list_empty(&entry->list))
2916 list_add_tail(&entry->list, bitmaps);
2917 continue;
2918 }
2919
2920 if (entry->bytes < min_bytes)
2921 continue;
2922
2923 last = entry;
2924 window_free += entry->bytes;
2925 if (entry->bytes > max_extent)
2926 max_extent = entry->bytes;
2927 }
2928
2929 if (window_free < bytes || max_extent < cont1_bytes)
2930 return -ENOSPC;
2931
2932 cluster->window_start = first->offset;
2933
2934 node = &first->offset_index;
2935
2936 /*
2937 * now we've found our entries, pull them out of the free space
2938 * cache and put them into the cluster rbtree
2939 */
2940 do {
2941 int ret;
2942
2943 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2944 node = rb_next(&entry->offset_index);
2945 if (entry->bitmap || entry->bytes < min_bytes)
2946 continue;
2947
2948 rb_erase(&entry->offset_index, &ctl->free_space_offset);
2949 ret = tree_insert_offset(&cluster->root, entry->offset,
2950 &entry->offset_index, 0);
2951 total_size += entry->bytes;
2952 ASSERT(!ret); /* -EEXIST; Logic error */
2953 } while (node && entry != last);
2954
2955 cluster->max_size = max_extent;
2956 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
2957 return 0;
2958 }
2959
2960 /*
2961 * This specifically looks for bitmaps that may work in the cluster, we assume
2962 * that we have already failed to find extents that will work.
2963 */
2964 static noinline int
setup_cluster_bitmap(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,struct list_head * bitmaps,u64 offset,u64 bytes,u64 cont1_bytes,u64 min_bytes)2965 setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2966 struct btrfs_free_cluster *cluster,
2967 struct list_head *bitmaps, u64 offset, u64 bytes,
2968 u64 cont1_bytes, u64 min_bytes)
2969 {
2970 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2971 struct btrfs_free_space *entry = NULL;
2972 int ret = -ENOSPC;
2973 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
2974
2975 if (ctl->total_bitmaps == 0)
2976 return -ENOSPC;
2977
2978 /*
2979 * The bitmap that covers offset won't be in the list unless offset
2980 * is just its start offset.
2981 */
2982 if (!list_empty(bitmaps))
2983 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2984
2985 if (!entry || entry->offset != bitmap_offset) {
2986 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2987 if (entry && list_empty(&entry->list))
2988 list_add(&entry->list, bitmaps);
2989 }
2990
2991 list_for_each_entry(entry, bitmaps, list) {
2992 if (entry->bytes < bytes)
2993 continue;
2994 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
2995 bytes, cont1_bytes, min_bytes);
2996 if (!ret)
2997 return 0;
2998 }
2999
3000 /*
3001 * The bitmaps list has all the bitmaps that record free space
3002 * starting after offset, so no more search is required.
3003 */
3004 return -ENOSPC;
3005 }
3006
3007 /*
3008 * here we try to find a cluster of blocks in a block group. The goal
3009 * is to find at least bytes+empty_size.
3010 * We might not find them all in one contiguous area.
3011 *
3012 * returns zero and sets up cluster if things worked out, otherwise
3013 * it returns -enospc
3014 */
btrfs_find_space_cluster(struct btrfs_root * root,struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,u64 offset,u64 bytes,u64 empty_size)3015 int btrfs_find_space_cluster(struct btrfs_root *root,
3016 struct btrfs_block_group_cache *block_group,
3017 struct btrfs_free_cluster *cluster,
3018 u64 offset, u64 bytes, u64 empty_size)
3019 {
3020 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3021 struct btrfs_free_space *entry, *tmp;
3022 LIST_HEAD(bitmaps);
3023 u64 min_bytes;
3024 u64 cont1_bytes;
3025 int ret;
3026
3027 /*
3028 * Choose the minimum extent size we'll require for this
3029 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3030 * For metadata, allow allocates with smaller extents. For
3031 * data, keep it dense.
3032 */
3033 if (btrfs_test_opt(root->fs_info, SSD_SPREAD)) {
3034 cont1_bytes = min_bytes = bytes + empty_size;
3035 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3036 cont1_bytes = bytes;
3037 min_bytes = block_group->sectorsize;
3038 } else {
3039 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3040 min_bytes = block_group->sectorsize;
3041 }
3042
3043 spin_lock(&ctl->tree_lock);
3044
3045 /*
3046 * If we know we don't have enough space to make a cluster don't even
3047 * bother doing all the work to try and find one.
3048 */
3049 if (ctl->free_space < bytes) {
3050 spin_unlock(&ctl->tree_lock);
3051 return -ENOSPC;
3052 }
3053
3054 spin_lock(&cluster->lock);
3055
3056 /* someone already found a cluster, hooray */
3057 if (cluster->block_group) {
3058 ret = 0;
3059 goto out;
3060 }
3061
3062 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3063 min_bytes);
3064
3065 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3066 bytes + empty_size,
3067 cont1_bytes, min_bytes);
3068 if (ret)
3069 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3070 offset, bytes + empty_size,
3071 cont1_bytes, min_bytes);
3072
3073 /* Clear our temporary list */
3074 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3075 list_del_init(&entry->list);
3076
3077 if (!ret) {
3078 atomic_inc(&block_group->count);
3079 list_add_tail(&cluster->block_group_list,
3080 &block_group->cluster_list);
3081 cluster->block_group = block_group;
3082 } else {
3083 trace_btrfs_failed_cluster_setup(block_group);
3084 }
3085 out:
3086 spin_unlock(&cluster->lock);
3087 spin_unlock(&ctl->tree_lock);
3088
3089 return ret;
3090 }
3091
3092 /*
3093 * simple code to zero out a cluster
3094 */
btrfs_init_free_cluster(struct btrfs_free_cluster * cluster)3095 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3096 {
3097 spin_lock_init(&cluster->lock);
3098 spin_lock_init(&cluster->refill_lock);
3099 cluster->root = RB_ROOT;
3100 cluster->max_size = 0;
3101 cluster->fragmented = false;
3102 INIT_LIST_HEAD(&cluster->block_group_list);
3103 cluster->block_group = NULL;
3104 }
3105
do_trimming(struct btrfs_block_group_cache * block_group,u64 * total_trimmed,u64 start,u64 bytes,u64 reserved_start,u64 reserved_bytes,struct btrfs_trim_range * trim_entry)3106 static int do_trimming(struct btrfs_block_group_cache *block_group,
3107 u64 *total_trimmed, u64 start, u64 bytes,
3108 u64 reserved_start, u64 reserved_bytes,
3109 struct btrfs_trim_range *trim_entry)
3110 {
3111 struct btrfs_space_info *space_info = block_group->space_info;
3112 struct btrfs_fs_info *fs_info = block_group->fs_info;
3113 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3114 int ret;
3115 int update = 0;
3116 u64 trimmed = 0;
3117
3118 spin_lock(&space_info->lock);
3119 spin_lock(&block_group->lock);
3120 if (!block_group->ro) {
3121 block_group->reserved += reserved_bytes;
3122 space_info->bytes_reserved += reserved_bytes;
3123 update = 1;
3124 }
3125 spin_unlock(&block_group->lock);
3126 spin_unlock(&space_info->lock);
3127
3128 ret = btrfs_discard_extent(fs_info->extent_root,
3129 start, bytes, &trimmed);
3130 if (!ret)
3131 *total_trimmed += trimmed;
3132
3133 mutex_lock(&ctl->cache_writeout_mutex);
3134 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
3135 list_del(&trim_entry->list);
3136 mutex_unlock(&ctl->cache_writeout_mutex);
3137
3138 if (update) {
3139 spin_lock(&space_info->lock);
3140 spin_lock(&block_group->lock);
3141 if (block_group->ro)
3142 space_info->bytes_readonly += reserved_bytes;
3143 block_group->reserved -= reserved_bytes;
3144 space_info->bytes_reserved -= reserved_bytes;
3145 spin_unlock(&space_info->lock);
3146 spin_unlock(&block_group->lock);
3147 }
3148
3149 return ret;
3150 }
3151
trim_no_bitmap(struct btrfs_block_group_cache * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen)3152 static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
3153 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3154 {
3155 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3156 struct btrfs_free_space *entry;
3157 struct rb_node *node;
3158 int ret = 0;
3159 u64 extent_start;
3160 u64 extent_bytes;
3161 u64 bytes;
3162
3163 while (start < end) {
3164 struct btrfs_trim_range trim_entry;
3165
3166 mutex_lock(&ctl->cache_writeout_mutex);
3167 spin_lock(&ctl->tree_lock);
3168
3169 if (ctl->free_space < minlen) {
3170 spin_unlock(&ctl->tree_lock);
3171 mutex_unlock(&ctl->cache_writeout_mutex);
3172 break;
3173 }
3174
3175 entry = tree_search_offset(ctl, start, 0, 1);
3176 if (!entry) {
3177 spin_unlock(&ctl->tree_lock);
3178 mutex_unlock(&ctl->cache_writeout_mutex);
3179 break;
3180 }
3181
3182 /* skip bitmaps */
3183 while (entry->bitmap) {
3184 node = rb_next(&entry->offset_index);
3185 if (!node) {
3186 spin_unlock(&ctl->tree_lock);
3187 mutex_unlock(&ctl->cache_writeout_mutex);
3188 goto out;
3189 }
3190 entry = rb_entry(node, struct btrfs_free_space,
3191 offset_index);
3192 }
3193
3194 if (entry->offset >= end) {
3195 spin_unlock(&ctl->tree_lock);
3196 mutex_unlock(&ctl->cache_writeout_mutex);
3197 break;
3198 }
3199
3200 extent_start = entry->offset;
3201 extent_bytes = entry->bytes;
3202 start = max(start, extent_start);
3203 bytes = min(extent_start + extent_bytes, end) - start;
3204 if (bytes < minlen) {
3205 spin_unlock(&ctl->tree_lock);
3206 mutex_unlock(&ctl->cache_writeout_mutex);
3207 goto next;
3208 }
3209
3210 unlink_free_space(ctl, entry);
3211 kmem_cache_free(btrfs_free_space_cachep, entry);
3212
3213 spin_unlock(&ctl->tree_lock);
3214 trim_entry.start = extent_start;
3215 trim_entry.bytes = extent_bytes;
3216 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3217 mutex_unlock(&ctl->cache_writeout_mutex);
3218
3219 ret = do_trimming(block_group, total_trimmed, start, bytes,
3220 extent_start, extent_bytes, &trim_entry);
3221 if (ret)
3222 break;
3223 next:
3224 start += bytes;
3225
3226 if (fatal_signal_pending(current)) {
3227 ret = -ERESTARTSYS;
3228 break;
3229 }
3230
3231 cond_resched();
3232 }
3233 out:
3234 return ret;
3235 }
3236
trim_bitmaps(struct btrfs_block_group_cache * block_group,u64 * total_trimmed,u64 start,u64 end,u64 minlen)3237 static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
3238 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
3239 {
3240 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3241 struct btrfs_free_space *entry;
3242 int ret = 0;
3243 int ret2;
3244 u64 bytes;
3245 u64 offset = offset_to_bitmap(ctl, start);
3246
3247 while (offset < end) {
3248 bool next_bitmap = false;
3249 struct btrfs_trim_range trim_entry;
3250
3251 mutex_lock(&ctl->cache_writeout_mutex);
3252 spin_lock(&ctl->tree_lock);
3253
3254 if (ctl->free_space < minlen) {
3255 spin_unlock(&ctl->tree_lock);
3256 mutex_unlock(&ctl->cache_writeout_mutex);
3257 break;
3258 }
3259
3260 entry = tree_search_offset(ctl, offset, 1, 0);
3261 if (!entry) {
3262 spin_unlock(&ctl->tree_lock);
3263 mutex_unlock(&ctl->cache_writeout_mutex);
3264 next_bitmap = true;
3265 goto next;
3266 }
3267
3268 bytes = minlen;
3269 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3270 if (ret2 || start >= end) {
3271 spin_unlock(&ctl->tree_lock);
3272 mutex_unlock(&ctl->cache_writeout_mutex);
3273 next_bitmap = true;
3274 goto next;
3275 }
3276
3277 bytes = min(bytes, end - start);
3278 if (bytes < minlen) {
3279 spin_unlock(&ctl->tree_lock);
3280 mutex_unlock(&ctl->cache_writeout_mutex);
3281 goto next;
3282 }
3283
3284 bitmap_clear_bits(ctl, entry, start, bytes);
3285 if (entry->bytes == 0)
3286 free_bitmap(ctl, entry);
3287
3288 spin_unlock(&ctl->tree_lock);
3289 trim_entry.start = start;
3290 trim_entry.bytes = bytes;
3291 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3292 mutex_unlock(&ctl->cache_writeout_mutex);
3293
3294 ret = do_trimming(block_group, total_trimmed, start, bytes,
3295 start, bytes, &trim_entry);
3296 if (ret)
3297 break;
3298 next:
3299 if (next_bitmap) {
3300 offset += BITS_PER_BITMAP * ctl->unit;
3301 } else {
3302 start += bytes;
3303 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
3304 offset += BITS_PER_BITMAP * ctl->unit;
3305 }
3306
3307 if (fatal_signal_pending(current)) {
3308 ret = -ERESTARTSYS;
3309 break;
3310 }
3311
3312 cond_resched();
3313 }
3314
3315 return ret;
3316 }
3317
btrfs_get_block_group_trimming(struct btrfs_block_group_cache * cache)3318 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache)
3319 {
3320 atomic_inc(&cache->trimming);
3321 }
3322
btrfs_put_block_group_trimming(struct btrfs_block_group_cache * block_group)3323 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *block_group)
3324 {
3325 struct extent_map_tree *em_tree;
3326 struct extent_map *em;
3327 bool cleanup;
3328
3329 spin_lock(&block_group->lock);
3330 cleanup = (atomic_dec_and_test(&block_group->trimming) &&
3331 block_group->removed);
3332 spin_unlock(&block_group->lock);
3333
3334 if (cleanup) {
3335 lock_chunks(block_group->fs_info->chunk_root);
3336 em_tree = &block_group->fs_info->mapping_tree.map_tree;
3337 write_lock(&em_tree->lock);
3338 em = lookup_extent_mapping(em_tree, block_group->key.objectid,
3339 1);
3340 BUG_ON(!em); /* logic error, can't happen */
3341 /*
3342 * remove_extent_mapping() will delete us from the pinned_chunks
3343 * list, which is protected by the chunk mutex.
3344 */
3345 remove_extent_mapping(em_tree, em);
3346 write_unlock(&em_tree->lock);
3347 unlock_chunks(block_group->fs_info->chunk_root);
3348
3349 /* once for us and once for the tree */
3350 free_extent_map(em);
3351 free_extent_map(em);
3352
3353 /*
3354 * We've left one free space entry and other tasks trimming
3355 * this block group have left 1 entry each one. Free them.
3356 */
3357 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3358 }
3359 }
3360
btrfs_trim_block_group(struct btrfs_block_group_cache * block_group,u64 * trimmed,u64 start,u64 end,u64 minlen)3361 int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
3362 u64 *trimmed, u64 start, u64 end, u64 minlen)
3363 {
3364 int ret;
3365
3366 *trimmed = 0;
3367
3368 spin_lock(&block_group->lock);
3369 if (block_group->removed) {
3370 spin_unlock(&block_group->lock);
3371 return 0;
3372 }
3373 btrfs_get_block_group_trimming(block_group);
3374 spin_unlock(&block_group->lock);
3375
3376 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
3377 if (ret)
3378 goto out;
3379
3380 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
3381 out:
3382 btrfs_put_block_group_trimming(block_group);
3383 return ret;
3384 }
3385
3386 /*
3387 * Find the left-most item in the cache tree, and then return the
3388 * smallest inode number in the item.
3389 *
3390 * Note: the returned inode number may not be the smallest one in
3391 * the tree, if the left-most item is a bitmap.
3392 */
btrfs_find_ino_for_alloc(struct btrfs_root * fs_root)3393 u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
3394 {
3395 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
3396 struct btrfs_free_space *entry = NULL;
3397 u64 ino = 0;
3398
3399 spin_lock(&ctl->tree_lock);
3400
3401 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
3402 goto out;
3403
3404 entry = rb_entry(rb_first(&ctl->free_space_offset),
3405 struct btrfs_free_space, offset_index);
3406
3407 if (!entry->bitmap) {
3408 ino = entry->offset;
3409
3410 unlink_free_space(ctl, entry);
3411 entry->offset++;
3412 entry->bytes--;
3413 if (!entry->bytes)
3414 kmem_cache_free(btrfs_free_space_cachep, entry);
3415 else
3416 link_free_space(ctl, entry);
3417 } else {
3418 u64 offset = 0;
3419 u64 count = 1;
3420 int ret;
3421
3422 ret = search_bitmap(ctl, entry, &offset, &count, true);
3423 /* Logic error; Should be empty if it can't find anything */
3424 ASSERT(!ret);
3425
3426 ino = offset;
3427 bitmap_clear_bits(ctl, entry, offset, 1);
3428 if (entry->bytes == 0)
3429 free_bitmap(ctl, entry);
3430 }
3431 out:
3432 spin_unlock(&ctl->tree_lock);
3433
3434 return ino;
3435 }
3436
lookup_free_ino_inode(struct btrfs_root * root,struct btrfs_path * path)3437 struct inode *lookup_free_ino_inode(struct btrfs_root *root,
3438 struct btrfs_path *path)
3439 {
3440 struct inode *inode = NULL;
3441
3442 spin_lock(&root->ino_cache_lock);
3443 if (root->ino_cache_inode)
3444 inode = igrab(root->ino_cache_inode);
3445 spin_unlock(&root->ino_cache_lock);
3446 if (inode)
3447 return inode;
3448
3449 inode = __lookup_free_space_inode(root, path, 0);
3450 if (IS_ERR(inode))
3451 return inode;
3452
3453 spin_lock(&root->ino_cache_lock);
3454 if (!btrfs_fs_closing(root->fs_info))
3455 root->ino_cache_inode = igrab(inode);
3456 spin_unlock(&root->ino_cache_lock);
3457
3458 return inode;
3459 }
3460
create_free_ino_inode(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path)3461 int create_free_ino_inode(struct btrfs_root *root,
3462 struct btrfs_trans_handle *trans,
3463 struct btrfs_path *path)
3464 {
3465 return __create_free_space_inode(root, trans, path,
3466 BTRFS_FREE_INO_OBJECTID, 0);
3467 }
3468
load_free_ino_cache(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3469 int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3470 {
3471 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3472 struct btrfs_path *path;
3473 struct inode *inode;
3474 int ret = 0;
3475 u64 root_gen = btrfs_root_generation(&root->root_item);
3476
3477 if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
3478 return 0;
3479
3480 /*
3481 * If we're unmounting then just return, since this does a search on the
3482 * normal root and not the commit root and we could deadlock.
3483 */
3484 if (btrfs_fs_closing(fs_info))
3485 return 0;
3486
3487 path = btrfs_alloc_path();
3488 if (!path)
3489 return 0;
3490
3491 inode = lookup_free_ino_inode(root, path);
3492 if (IS_ERR(inode))
3493 goto out;
3494
3495 if (root_gen != BTRFS_I(inode)->generation)
3496 goto out_put;
3497
3498 ret = __load_free_space_cache(root, inode, ctl, path, 0);
3499
3500 if (ret < 0)
3501 btrfs_err(fs_info,
3502 "failed to load free ino cache for root %llu",
3503 root->root_key.objectid);
3504 out_put:
3505 iput(inode);
3506 out:
3507 btrfs_free_path(path);
3508 return ret;
3509 }
3510
btrfs_write_out_ino_cache(struct btrfs_root * root,struct btrfs_trans_handle * trans,struct btrfs_path * path,struct inode * inode)3511 int btrfs_write_out_ino_cache(struct btrfs_root *root,
3512 struct btrfs_trans_handle *trans,
3513 struct btrfs_path *path,
3514 struct inode *inode)
3515 {
3516 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
3517 int ret;
3518 struct btrfs_io_ctl io_ctl;
3519 bool release_metadata = true;
3520
3521 if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
3522 return 0;
3523
3524 memset(&io_ctl, 0, sizeof(io_ctl));
3525 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, &io_ctl,
3526 trans, path, 0);
3527 if (!ret) {
3528 /*
3529 * At this point writepages() didn't error out, so our metadata
3530 * reservation is released when the writeback finishes, at
3531 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3532 * with or without an error.
3533 */
3534 release_metadata = false;
3535 ret = btrfs_wait_cache_io(root, trans, NULL, &io_ctl, path, 0);
3536 }
3537
3538 if (ret) {
3539 if (release_metadata)
3540 btrfs_delalloc_release_metadata(inode, inode->i_size);
3541 #ifdef DEBUG
3542 btrfs_err(root->fs_info,
3543 "failed to write free ino cache for root %llu",
3544 root->root_key.objectid);
3545 #endif
3546 }
3547
3548 return ret;
3549 }
3550
3551 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3552 /*
3553 * Use this if you need to make a bitmap or extent entry specifically, it
3554 * doesn't do any of the merging that add_free_space does, this acts a lot like
3555 * how the free space cache loading stuff works, so you can get really weird
3556 * configurations.
3557 */
test_add_free_space_entry(struct btrfs_block_group_cache * cache,u64 offset,u64 bytes,bool bitmap)3558 int test_add_free_space_entry(struct btrfs_block_group_cache *cache,
3559 u64 offset, u64 bytes, bool bitmap)
3560 {
3561 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3562 struct btrfs_free_space *info = NULL, *bitmap_info;
3563 void *map = NULL;
3564 u64 bytes_added;
3565 int ret;
3566
3567 again:
3568 if (!info) {
3569 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
3570 if (!info)
3571 return -ENOMEM;
3572 }
3573
3574 if (!bitmap) {
3575 spin_lock(&ctl->tree_lock);
3576 info->offset = offset;
3577 info->bytes = bytes;
3578 info->max_extent_size = 0;
3579 ret = link_free_space(ctl, info);
3580 spin_unlock(&ctl->tree_lock);
3581 if (ret)
3582 kmem_cache_free(btrfs_free_space_cachep, info);
3583 return ret;
3584 }
3585
3586 if (!map) {
3587 map = kzalloc(PAGE_SIZE, GFP_NOFS);
3588 if (!map) {
3589 kmem_cache_free(btrfs_free_space_cachep, info);
3590 return -ENOMEM;
3591 }
3592 }
3593
3594 spin_lock(&ctl->tree_lock);
3595 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3596 1, 0);
3597 if (!bitmap_info) {
3598 info->bitmap = map;
3599 map = NULL;
3600 add_new_bitmap(ctl, info, offset);
3601 bitmap_info = info;
3602 info = NULL;
3603 }
3604
3605 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
3606
3607 bytes -= bytes_added;
3608 offset += bytes_added;
3609 spin_unlock(&ctl->tree_lock);
3610
3611 if (bytes)
3612 goto again;
3613
3614 if (info)
3615 kmem_cache_free(btrfs_free_space_cachep, info);
3616 if (map)
3617 kfree(map);
3618 return 0;
3619 }
3620
3621 /*
3622 * Checks to see if the given range is in the free space cache. This is really
3623 * just used to check the absence of space, so if there is free space in the
3624 * range at all we will return 1.
3625 */
test_check_exists(struct btrfs_block_group_cache * cache,u64 offset,u64 bytes)3626 int test_check_exists(struct btrfs_block_group_cache *cache,
3627 u64 offset, u64 bytes)
3628 {
3629 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
3630 struct btrfs_free_space *info;
3631 int ret = 0;
3632
3633 spin_lock(&ctl->tree_lock);
3634 info = tree_search_offset(ctl, offset, 0, 0);
3635 if (!info) {
3636 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
3637 1, 0);
3638 if (!info)
3639 goto out;
3640 }
3641
3642 have_info:
3643 if (info->bitmap) {
3644 u64 bit_off, bit_bytes;
3645 struct rb_node *n;
3646 struct btrfs_free_space *tmp;
3647
3648 bit_off = offset;
3649 bit_bytes = ctl->unit;
3650 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
3651 if (!ret) {
3652 if (bit_off == offset) {
3653 ret = 1;
3654 goto out;
3655 } else if (bit_off > offset &&
3656 offset + bytes > bit_off) {
3657 ret = 1;
3658 goto out;
3659 }
3660 }
3661
3662 n = rb_prev(&info->offset_index);
3663 while (n) {
3664 tmp = rb_entry(n, struct btrfs_free_space,
3665 offset_index);
3666 if (tmp->offset + tmp->bytes < offset)
3667 break;
3668 if (offset + bytes < tmp->offset) {
3669 n = rb_prev(&tmp->offset_index);
3670 continue;
3671 }
3672 info = tmp;
3673 goto have_info;
3674 }
3675
3676 n = rb_next(&info->offset_index);
3677 while (n) {
3678 tmp = rb_entry(n, struct btrfs_free_space,
3679 offset_index);
3680 if (offset + bytes < tmp->offset)
3681 break;
3682 if (tmp->offset + tmp->bytes < offset) {
3683 n = rb_next(&tmp->offset_index);
3684 continue;
3685 }
3686 info = tmp;
3687 goto have_info;
3688 }
3689
3690 ret = 0;
3691 goto out;
3692 }
3693
3694 if (info->offset == offset) {
3695 ret = 1;
3696 goto out;
3697 }
3698
3699 if (offset > info->offset && offset < info->offset + info->bytes)
3700 ret = 1;
3701 out:
3702 spin_unlock(&ctl->tree_lock);
3703 return ret;
3704 }
3705 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
3706