1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35
36 #define BTRFS_ROOT_TRANS_TAG 0
37
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59 };
60
btrfs_put_transaction(struct btrfs_transaction * transaction)61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 btrfs_err(transaction->fs_info,
69 "pending csums is %llu",
70 transaction->delayed_refs.pending_csums);
71 while (!list_empty(&transaction->pending_chunks)) {
72 struct extent_map *em;
73
74 em = list_first_entry(&transaction->pending_chunks,
75 struct extent_map, list);
76 list_del_init(&em->list);
77 free_extent_map(em);
78 }
79 /*
80 * If any block groups are found in ->deleted_bgs then it's
81 * because the transaction was aborted and a commit did not
82 * happen (things failed before writing the new superblock
83 * and calling btrfs_finish_extent_commit()), so we can not
84 * discard the physical locations of the block groups.
85 */
86 while (!list_empty(&transaction->deleted_bgs)) {
87 struct btrfs_block_group_cache *cache;
88
89 cache = list_first_entry(&transaction->deleted_bgs,
90 struct btrfs_block_group_cache,
91 bg_list);
92 list_del_init(&cache->bg_list);
93 btrfs_put_block_group_trimming(cache);
94 btrfs_put_block_group(cache);
95 }
96 kmem_cache_free(btrfs_transaction_cachep, transaction);
97 }
98 }
99
clear_btree_io_tree(struct extent_io_tree * tree)100 static void clear_btree_io_tree(struct extent_io_tree *tree)
101 {
102 spin_lock(&tree->lock);
103 /*
104 * Do a single barrier for the waitqueue_active check here, the state
105 * of the waitqueue should not change once clear_btree_io_tree is
106 * called.
107 */
108 smp_mb();
109 while (!RB_EMPTY_ROOT(&tree->state)) {
110 struct rb_node *node;
111 struct extent_state *state;
112
113 node = rb_first(&tree->state);
114 state = rb_entry(node, struct extent_state, rb_node);
115 rb_erase(&state->rb_node, &tree->state);
116 RB_CLEAR_NODE(&state->rb_node);
117 /*
118 * btree io trees aren't supposed to have tasks waiting for
119 * changes in the flags of extent states ever.
120 */
121 ASSERT(!waitqueue_active(&state->wq));
122 free_extent_state(state);
123
124 cond_resched_lock(&tree->lock);
125 }
126 spin_unlock(&tree->lock);
127 }
128
switch_commit_roots(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)129 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
130 struct btrfs_fs_info *fs_info)
131 {
132 struct btrfs_root *root, *tmp;
133
134 down_write(&fs_info->commit_root_sem);
135 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
136 dirty_list) {
137 list_del_init(&root->dirty_list);
138 free_extent_buffer(root->commit_root);
139 root->commit_root = btrfs_root_node(root);
140 if (is_fstree(root->objectid))
141 btrfs_unpin_free_ino(root);
142 clear_btree_io_tree(&root->dirty_log_pages);
143 }
144
145 /* We can free old roots now. */
146 spin_lock(&trans->dropped_roots_lock);
147 while (!list_empty(&trans->dropped_roots)) {
148 root = list_first_entry(&trans->dropped_roots,
149 struct btrfs_root, root_list);
150 list_del_init(&root->root_list);
151 spin_unlock(&trans->dropped_roots_lock);
152 btrfs_drop_and_free_fs_root(fs_info, root);
153 spin_lock(&trans->dropped_roots_lock);
154 }
155 spin_unlock(&trans->dropped_roots_lock);
156 up_write(&fs_info->commit_root_sem);
157 }
158
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)159 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
160 unsigned int type)
161 {
162 if (type & TRANS_EXTWRITERS)
163 atomic_inc(&trans->num_extwriters);
164 }
165
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)166 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
167 unsigned int type)
168 {
169 if (type & TRANS_EXTWRITERS)
170 atomic_dec(&trans->num_extwriters);
171 }
172
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)173 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
174 unsigned int type)
175 {
176 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
177 }
178
extwriter_counter_read(struct btrfs_transaction * trans)179 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
180 {
181 return atomic_read(&trans->num_extwriters);
182 }
183
184 /*
185 * either allocate a new transaction or hop into the existing one
186 */
join_transaction(struct btrfs_root * root,unsigned int type)187 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
188 {
189 struct btrfs_transaction *cur_trans;
190 struct btrfs_fs_info *fs_info = root->fs_info;
191
192 spin_lock(&fs_info->trans_lock);
193 loop:
194 /* The file system has been taken offline. No new transactions. */
195 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
196 spin_unlock(&fs_info->trans_lock);
197 return -EROFS;
198 }
199
200 cur_trans = fs_info->running_transaction;
201 if (cur_trans) {
202 if (cur_trans->aborted) {
203 spin_unlock(&fs_info->trans_lock);
204 return cur_trans->aborted;
205 }
206 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
207 spin_unlock(&fs_info->trans_lock);
208 return -EBUSY;
209 }
210 atomic_inc(&cur_trans->use_count);
211 atomic_inc(&cur_trans->num_writers);
212 extwriter_counter_inc(cur_trans, type);
213 spin_unlock(&fs_info->trans_lock);
214 return 0;
215 }
216 spin_unlock(&fs_info->trans_lock);
217
218 /*
219 * If we are ATTACH, we just want to catch the current transaction,
220 * and commit it. If there is no transaction, just return ENOENT.
221 */
222 if (type == TRANS_ATTACH)
223 return -ENOENT;
224
225 /*
226 * JOIN_NOLOCK only happens during the transaction commit, so
227 * it is impossible that ->running_transaction is NULL
228 */
229 BUG_ON(type == TRANS_JOIN_NOLOCK);
230
231 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
232 if (!cur_trans)
233 return -ENOMEM;
234
235 spin_lock(&fs_info->trans_lock);
236 if (fs_info->running_transaction) {
237 /*
238 * someone started a transaction after we unlocked. Make sure
239 * to redo the checks above
240 */
241 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
242 goto loop;
243 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
244 spin_unlock(&fs_info->trans_lock);
245 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
246 return -EROFS;
247 }
248
249 cur_trans->fs_info = fs_info;
250 atomic_set(&cur_trans->num_writers, 1);
251 extwriter_counter_init(cur_trans, type);
252 init_waitqueue_head(&cur_trans->writer_wait);
253 init_waitqueue_head(&cur_trans->commit_wait);
254 init_waitqueue_head(&cur_trans->pending_wait);
255 cur_trans->state = TRANS_STATE_RUNNING;
256 /*
257 * One for this trans handle, one so it will live on until we
258 * commit the transaction.
259 */
260 atomic_set(&cur_trans->use_count, 2);
261 atomic_set(&cur_trans->pending_ordered, 0);
262 cur_trans->flags = 0;
263 cur_trans->start_time = get_seconds();
264
265 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
266
267 cur_trans->delayed_refs.href_root = RB_ROOT;
268 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
269 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
270
271 /*
272 * although the tree mod log is per file system and not per transaction,
273 * the log must never go across transaction boundaries.
274 */
275 smp_mb();
276 if (!list_empty(&fs_info->tree_mod_seq_list))
277 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
278 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
279 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
280 atomic64_set(&fs_info->tree_mod_seq, 0);
281
282 spin_lock_init(&cur_trans->delayed_refs.lock);
283
284 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 INIT_LIST_HEAD(&cur_trans->switch_commits);
287 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 INIT_LIST_HEAD(&cur_trans->io_bgs);
289 INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 mutex_init(&cur_trans->cache_write_mutex);
291 cur_trans->num_dirty_bgs = 0;
292 spin_lock_init(&cur_trans->dirty_bgs_lock);
293 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 spin_lock_init(&cur_trans->dropped_roots_lock);
295 list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 extent_io_tree_init(&cur_trans->dirty_pages,
297 fs_info->btree_inode->i_mapping);
298 fs_info->generation++;
299 cur_trans->transid = fs_info->generation;
300 fs_info->running_transaction = cur_trans;
301 cur_trans->aborted = 0;
302 spin_unlock(&fs_info->trans_lock);
303
304 return 0;
305 }
306
307 /*
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
312 */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,int force)313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 struct btrfs_root *root,
315 int force)
316 {
317 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
318 root->last_trans < trans->transid) || force) {
319 WARN_ON(root == root->fs_info->extent_root);
320 WARN_ON(root->commit_root != root->node);
321
322 /*
323 * see below for IN_TRANS_SETUP usage rules
324 * we have the reloc mutex held now, so there
325 * is only one writer in this function
326 */
327 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
328
329 /* make sure readers find IN_TRANS_SETUP before
330 * they find our root->last_trans update
331 */
332 smp_wmb();
333
334 spin_lock(&root->fs_info->fs_roots_radix_lock);
335 if (root->last_trans == trans->transid && !force) {
336 spin_unlock(&root->fs_info->fs_roots_radix_lock);
337 return 0;
338 }
339 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
340 (unsigned long)root->root_key.objectid,
341 BTRFS_ROOT_TRANS_TAG);
342 spin_unlock(&root->fs_info->fs_roots_radix_lock);
343 root->last_trans = trans->transid;
344
345 /* this is pretty tricky. We don't want to
346 * take the relocation lock in btrfs_record_root_in_trans
347 * unless we're really doing the first setup for this root in
348 * this transaction.
349 *
350 * Normally we'd use root->last_trans as a flag to decide
351 * if we want to take the expensive mutex.
352 *
353 * But, we have to set root->last_trans before we
354 * init the relocation root, otherwise, we trip over warnings
355 * in ctree.c. The solution used here is to flag ourselves
356 * with root IN_TRANS_SETUP. When this is 1, we're still
357 * fixing up the reloc trees and everyone must wait.
358 *
359 * When this is zero, they can trust root->last_trans and fly
360 * through btrfs_record_root_in_trans without having to take the
361 * lock. smp_wmb() makes sure that all the writes above are
362 * done before we pop in the zero below
363 */
364 btrfs_init_reloc_root(trans, root);
365 smp_mb__before_atomic();
366 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
367 }
368 return 0;
369 }
370
371
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)372 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
373 struct btrfs_root *root)
374 {
375 struct btrfs_transaction *cur_trans = trans->transaction;
376
377 /* Add ourselves to the transaction dropped list */
378 spin_lock(&cur_trans->dropped_roots_lock);
379 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
380 spin_unlock(&cur_trans->dropped_roots_lock);
381
382 /* Make sure we don't try to update the root at commit time */
383 spin_lock(&root->fs_info->fs_roots_radix_lock);
384 radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
385 (unsigned long)root->root_key.objectid,
386 BTRFS_ROOT_TRANS_TAG);
387 spin_unlock(&root->fs_info->fs_roots_radix_lock);
388 }
389
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)390 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
391 struct btrfs_root *root)
392 {
393 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
394 return 0;
395
396 /*
397 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
398 * and barriers
399 */
400 smp_rmb();
401 if (root->last_trans == trans->transid &&
402 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
403 return 0;
404
405 mutex_lock(&root->fs_info->reloc_mutex);
406 record_root_in_trans(trans, root, 0);
407 mutex_unlock(&root->fs_info->reloc_mutex);
408
409 return 0;
410 }
411
is_transaction_blocked(struct btrfs_transaction * trans)412 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
413 {
414 return (trans->state >= TRANS_STATE_BLOCKED &&
415 trans->state < TRANS_STATE_UNBLOCKED &&
416 !trans->aborted);
417 }
418
419 /* wait for commit against the current transaction to become unblocked
420 * when this is done, it is safe to start a new transaction, but the current
421 * transaction might not be fully on disk.
422 */
wait_current_trans(struct btrfs_root * root)423 static void wait_current_trans(struct btrfs_root *root)
424 {
425 struct btrfs_transaction *cur_trans;
426
427 spin_lock(&root->fs_info->trans_lock);
428 cur_trans = root->fs_info->running_transaction;
429 if (cur_trans && is_transaction_blocked(cur_trans)) {
430 atomic_inc(&cur_trans->use_count);
431 spin_unlock(&root->fs_info->trans_lock);
432
433 wait_event(root->fs_info->transaction_wait,
434 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
435 cur_trans->aborted);
436 btrfs_put_transaction(cur_trans);
437 } else {
438 spin_unlock(&root->fs_info->trans_lock);
439 }
440 }
441
may_wait_transaction(struct btrfs_root * root,int type)442 static int may_wait_transaction(struct btrfs_root *root, int type)
443 {
444 if (test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
445 return 0;
446
447 if (type == TRANS_USERSPACE)
448 return 1;
449
450 if (type == TRANS_START &&
451 !atomic_read(&root->fs_info->open_ioctl_trans))
452 return 1;
453
454 return 0;
455 }
456
need_reserve_reloc_root(struct btrfs_root * root)457 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
458 {
459 if (!root->fs_info->reloc_ctl ||
460 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
461 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
462 root->reloc_root)
463 return false;
464
465 return true;
466 }
467
468 static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush)469 start_transaction(struct btrfs_root *root, unsigned int num_items,
470 unsigned int type, enum btrfs_reserve_flush_enum flush)
471 {
472 struct btrfs_trans_handle *h;
473 struct btrfs_transaction *cur_trans;
474 u64 num_bytes = 0;
475 u64 qgroup_reserved = 0;
476 bool reloc_reserved = false;
477 int ret;
478
479 /* Send isn't supposed to start transactions. */
480 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
481
482 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
483 return ERR_PTR(-EROFS);
484
485 if (current->journal_info) {
486 WARN_ON(type & TRANS_EXTWRITERS);
487 h = current->journal_info;
488 h->use_count++;
489 WARN_ON(h->use_count > 2);
490 h->orig_rsv = h->block_rsv;
491 h->block_rsv = NULL;
492 goto got_it;
493 }
494
495 /*
496 * Do the reservation before we join the transaction so we can do all
497 * the appropriate flushing if need be.
498 */
499 if (num_items > 0 && root != root->fs_info->chunk_root) {
500 qgroup_reserved = num_items * root->nodesize;
501 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
502 if (ret)
503 return ERR_PTR(ret);
504
505 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
506 /*
507 * Do the reservation for the relocation root creation
508 */
509 if (need_reserve_reloc_root(root)) {
510 num_bytes += root->nodesize;
511 reloc_reserved = true;
512 }
513
514 ret = btrfs_block_rsv_add(root,
515 &root->fs_info->trans_block_rsv,
516 num_bytes, flush);
517 if (ret)
518 goto reserve_fail;
519 }
520 again:
521 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
522 if (!h) {
523 ret = -ENOMEM;
524 goto alloc_fail;
525 }
526
527 /*
528 * If we are JOIN_NOLOCK we're already committing a transaction and
529 * waiting on this guy, so we don't need to do the sb_start_intwrite
530 * because we're already holding a ref. We need this because we could
531 * have raced in and did an fsync() on a file which can kick a commit
532 * and then we deadlock with somebody doing a freeze.
533 *
534 * If we are ATTACH, it means we just want to catch the current
535 * transaction and commit it, so we needn't do sb_start_intwrite().
536 */
537 if (type & __TRANS_FREEZABLE)
538 sb_start_intwrite(root->fs_info->sb);
539
540 if (may_wait_transaction(root, type))
541 wait_current_trans(root);
542
543 do {
544 ret = join_transaction(root, type);
545 if (ret == -EBUSY) {
546 wait_current_trans(root);
547 if (unlikely(type == TRANS_ATTACH))
548 ret = -ENOENT;
549 }
550 } while (ret == -EBUSY);
551
552 if (ret < 0)
553 goto join_fail;
554
555 cur_trans = root->fs_info->running_transaction;
556
557 h->transid = cur_trans->transid;
558 h->transaction = cur_trans;
559 h->root = root;
560 h->use_count = 1;
561 h->fs_info = root->fs_info;
562
563 h->type = type;
564 h->can_flush_pending_bgs = true;
565 INIT_LIST_HEAD(&h->qgroup_ref_list);
566 INIT_LIST_HEAD(&h->new_bgs);
567
568 smp_mb();
569 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
570 may_wait_transaction(root, type)) {
571 current->journal_info = h;
572 btrfs_commit_transaction(h, root);
573 goto again;
574 }
575
576 if (num_bytes) {
577 trace_btrfs_space_reservation(root->fs_info, "transaction",
578 h->transid, num_bytes, 1);
579 h->block_rsv = &root->fs_info->trans_block_rsv;
580 h->bytes_reserved = num_bytes;
581 h->reloc_reserved = reloc_reserved;
582 }
583
584 got_it:
585 btrfs_record_root_in_trans(h, root);
586
587 if (!current->journal_info && type != TRANS_USERSPACE)
588 current->journal_info = h;
589 return h;
590
591 join_fail:
592 if (type & __TRANS_FREEZABLE)
593 sb_end_intwrite(root->fs_info->sb);
594 kmem_cache_free(btrfs_trans_handle_cachep, h);
595 alloc_fail:
596 if (num_bytes)
597 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
598 num_bytes);
599 reserve_fail:
600 btrfs_qgroup_free_meta(root, qgroup_reserved);
601 return ERR_PTR(ret);
602 }
603
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)604 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
605 unsigned int num_items)
606 {
607 return start_transaction(root, num_items, TRANS_START,
608 BTRFS_RESERVE_FLUSH_ALL);
609 }
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items,int min_factor)610 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
611 struct btrfs_root *root,
612 unsigned int num_items,
613 int min_factor)
614 {
615 struct btrfs_trans_handle *trans;
616 u64 num_bytes;
617 int ret;
618
619 trans = btrfs_start_transaction(root, num_items);
620 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
621 return trans;
622
623 trans = btrfs_start_transaction(root, 0);
624 if (IS_ERR(trans))
625 return trans;
626
627 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
628 ret = btrfs_cond_migrate_bytes(root->fs_info,
629 &root->fs_info->trans_block_rsv,
630 num_bytes,
631 min_factor);
632 if (ret) {
633 btrfs_end_transaction(trans, root);
634 return ERR_PTR(ret);
635 }
636
637 trans->block_rsv = &root->fs_info->trans_block_rsv;
638 trans->bytes_reserved = num_bytes;
639 trace_btrfs_space_reservation(root->fs_info, "transaction",
640 trans->transid, num_bytes, 1);
641
642 return trans;
643 }
644
btrfs_start_transaction_lflush(struct btrfs_root * root,unsigned int num_items)645 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
646 struct btrfs_root *root,
647 unsigned int num_items)
648 {
649 return start_transaction(root, num_items, TRANS_START,
650 BTRFS_RESERVE_FLUSH_LIMIT);
651 }
652
btrfs_join_transaction(struct btrfs_root * root)653 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
654 {
655 return start_transaction(root, 0, TRANS_JOIN,
656 BTRFS_RESERVE_NO_FLUSH);
657 }
658
btrfs_join_transaction_nolock(struct btrfs_root * root)659 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
660 {
661 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
662 BTRFS_RESERVE_NO_FLUSH);
663 }
664
btrfs_start_ioctl_transaction(struct btrfs_root * root)665 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
666 {
667 return start_transaction(root, 0, TRANS_USERSPACE,
668 BTRFS_RESERVE_NO_FLUSH);
669 }
670
671 /*
672 * btrfs_attach_transaction() - catch the running transaction
673 *
674 * It is used when we want to commit the current the transaction, but
675 * don't want to start a new one.
676 *
677 * Note: If this function return -ENOENT, it just means there is no
678 * running transaction. But it is possible that the inactive transaction
679 * is still in the memory, not fully on disk. If you hope there is no
680 * inactive transaction in the fs when -ENOENT is returned, you should
681 * invoke
682 * btrfs_attach_transaction_barrier()
683 */
btrfs_attach_transaction(struct btrfs_root * root)684 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
685 {
686 return start_transaction(root, 0, TRANS_ATTACH,
687 BTRFS_RESERVE_NO_FLUSH);
688 }
689
690 /*
691 * btrfs_attach_transaction_barrier() - catch the running transaction
692 *
693 * It is similar to the above function, the differentia is this one
694 * will wait for all the inactive transactions until they fully
695 * complete.
696 */
697 struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)698 btrfs_attach_transaction_barrier(struct btrfs_root *root)
699 {
700 struct btrfs_trans_handle *trans;
701
702 trans = start_transaction(root, 0, TRANS_ATTACH,
703 BTRFS_RESERVE_NO_FLUSH);
704 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
705 btrfs_wait_for_commit(root, 0);
706
707 return trans;
708 }
709
710 /* wait for a transaction commit to be fully complete */
wait_for_commit(struct btrfs_root * root,struct btrfs_transaction * commit)711 static noinline void wait_for_commit(struct btrfs_root *root,
712 struct btrfs_transaction *commit)
713 {
714 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
715 }
716
btrfs_wait_for_commit(struct btrfs_root * root,u64 transid)717 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
718 {
719 struct btrfs_transaction *cur_trans = NULL, *t;
720 int ret = 0;
721
722 if (transid) {
723 if (transid <= root->fs_info->last_trans_committed)
724 goto out;
725
726 /* find specified transaction */
727 spin_lock(&root->fs_info->trans_lock);
728 list_for_each_entry(t, &root->fs_info->trans_list, list) {
729 if (t->transid == transid) {
730 cur_trans = t;
731 atomic_inc(&cur_trans->use_count);
732 ret = 0;
733 break;
734 }
735 if (t->transid > transid) {
736 ret = 0;
737 break;
738 }
739 }
740 spin_unlock(&root->fs_info->trans_lock);
741
742 /*
743 * The specified transaction doesn't exist, or we
744 * raced with btrfs_commit_transaction
745 */
746 if (!cur_trans) {
747 if (transid > root->fs_info->last_trans_committed)
748 ret = -EINVAL;
749 goto out;
750 }
751 } else {
752 /* find newest transaction that is committing | committed */
753 spin_lock(&root->fs_info->trans_lock);
754 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
755 list) {
756 if (t->state >= TRANS_STATE_COMMIT_START) {
757 if (t->state == TRANS_STATE_COMPLETED)
758 break;
759 cur_trans = t;
760 atomic_inc(&cur_trans->use_count);
761 break;
762 }
763 }
764 spin_unlock(&root->fs_info->trans_lock);
765 if (!cur_trans)
766 goto out; /* nothing committing|committed */
767 }
768
769 wait_for_commit(root, cur_trans);
770 btrfs_put_transaction(cur_trans);
771 out:
772 return ret;
773 }
774
btrfs_throttle(struct btrfs_root * root)775 void btrfs_throttle(struct btrfs_root *root)
776 {
777 if (!atomic_read(&root->fs_info->open_ioctl_trans))
778 wait_current_trans(root);
779 }
780
should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)781 static int should_end_transaction(struct btrfs_trans_handle *trans,
782 struct btrfs_root *root)
783 {
784 if (root->fs_info->global_block_rsv.space_info->full &&
785 btrfs_check_space_for_delayed_refs(trans, root))
786 return 1;
787
788 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
789 }
790
btrfs_should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)791 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
792 struct btrfs_root *root)
793 {
794 struct btrfs_transaction *cur_trans = trans->transaction;
795 int updates;
796 int err;
797
798 smp_mb();
799 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
800 cur_trans->delayed_refs.flushing)
801 return 1;
802
803 updates = trans->delayed_ref_updates;
804 trans->delayed_ref_updates = 0;
805 if (updates) {
806 err = btrfs_run_delayed_refs(trans, root, updates * 2);
807 if (err) /* Error code will also eval true */
808 return err;
809 }
810
811 return should_end_transaction(trans, root);
812 }
813
__btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root,int throttle)814 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
815 struct btrfs_root *root, int throttle)
816 {
817 struct btrfs_transaction *cur_trans = trans->transaction;
818 struct btrfs_fs_info *info = root->fs_info;
819 u64 transid = trans->transid;
820 unsigned long cur = trans->delayed_ref_updates;
821 int lock = (trans->type != TRANS_JOIN_NOLOCK);
822 int err = 0;
823 int must_run_delayed_refs = 0;
824
825 if (trans->use_count > 1) {
826 trans->use_count--;
827 trans->block_rsv = trans->orig_rsv;
828 return 0;
829 }
830
831 btrfs_trans_release_metadata(trans, root);
832 trans->block_rsv = NULL;
833
834 if (!list_empty(&trans->new_bgs))
835 btrfs_create_pending_block_groups(trans, root);
836
837 trans->delayed_ref_updates = 0;
838 if (!trans->sync) {
839 must_run_delayed_refs =
840 btrfs_should_throttle_delayed_refs(trans, root);
841 cur = max_t(unsigned long, cur, 32);
842
843 /*
844 * don't make the caller wait if they are from a NOLOCK
845 * or ATTACH transaction, it will deadlock with commit
846 */
847 if (must_run_delayed_refs == 1 &&
848 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
849 must_run_delayed_refs = 2;
850 }
851
852 btrfs_trans_release_metadata(trans, root);
853 trans->block_rsv = NULL;
854
855 if (!list_empty(&trans->new_bgs))
856 btrfs_create_pending_block_groups(trans, root);
857
858 btrfs_trans_release_chunk_metadata(trans);
859
860 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
861 should_end_transaction(trans, root) &&
862 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
863 spin_lock(&info->trans_lock);
864 if (cur_trans->state == TRANS_STATE_RUNNING)
865 cur_trans->state = TRANS_STATE_BLOCKED;
866 spin_unlock(&info->trans_lock);
867 }
868
869 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
870 if (throttle)
871 return btrfs_commit_transaction(trans, root);
872 else
873 wake_up_process(info->transaction_kthread);
874 }
875
876 if (trans->type & __TRANS_FREEZABLE)
877 sb_end_intwrite(root->fs_info->sb);
878
879 WARN_ON(cur_trans != info->running_transaction);
880 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
881 atomic_dec(&cur_trans->num_writers);
882 extwriter_counter_dec(cur_trans, trans->type);
883
884 /*
885 * Make sure counter is updated before we wake up waiters.
886 */
887 smp_mb();
888 if (waitqueue_active(&cur_trans->writer_wait))
889 wake_up(&cur_trans->writer_wait);
890 btrfs_put_transaction(cur_trans);
891
892 if (current->journal_info == trans)
893 current->journal_info = NULL;
894
895 if (throttle)
896 btrfs_run_delayed_iputs(root);
897
898 if (trans->aborted ||
899 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
900 wake_up_process(info->transaction_kthread);
901 err = -EIO;
902 }
903 assert_qgroups_uptodate(trans);
904
905 kmem_cache_free(btrfs_trans_handle_cachep, trans);
906 if (must_run_delayed_refs) {
907 btrfs_async_run_delayed_refs(root, cur, transid,
908 must_run_delayed_refs == 1);
909 }
910 return err;
911 }
912
btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)913 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
914 struct btrfs_root *root)
915 {
916 return __btrfs_end_transaction(trans, root, 0);
917 }
918
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans,struct btrfs_root * root)919 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
920 struct btrfs_root *root)
921 {
922 return __btrfs_end_transaction(trans, root, 1);
923 }
924
925 /*
926 * when btree blocks are allocated, they have some corresponding bits set for
927 * them in one of two extent_io trees. This is used to make sure all of
928 * those extents are sent to disk but does not wait on them
929 */
btrfs_write_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)930 int btrfs_write_marked_extents(struct btrfs_root *root,
931 struct extent_io_tree *dirty_pages, int mark)
932 {
933 int err = 0;
934 int werr = 0;
935 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
936 struct extent_state *cached_state = NULL;
937 u64 start = 0;
938 u64 end;
939
940 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
941 mark, &cached_state)) {
942 bool wait_writeback = false;
943
944 err = convert_extent_bit(dirty_pages, start, end,
945 EXTENT_NEED_WAIT,
946 mark, &cached_state);
947 /*
948 * convert_extent_bit can return -ENOMEM, which is most of the
949 * time a temporary error. So when it happens, ignore the error
950 * and wait for writeback of this range to finish - because we
951 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
952 * to btrfs_wait_marked_extents() would not know that writeback
953 * for this range started and therefore wouldn't wait for it to
954 * finish - we don't want to commit a superblock that points to
955 * btree nodes/leafs for which writeback hasn't finished yet
956 * (and without errors).
957 * We cleanup any entries left in the io tree when committing
958 * the transaction (through clear_btree_io_tree()).
959 */
960 if (err == -ENOMEM) {
961 err = 0;
962 wait_writeback = true;
963 }
964 if (!err)
965 err = filemap_fdatawrite_range(mapping, start, end);
966 if (err)
967 werr = err;
968 else if (wait_writeback)
969 werr = filemap_fdatawait_range(mapping, start, end);
970 free_extent_state(cached_state);
971 cached_state = NULL;
972 cond_resched();
973 start = end + 1;
974 }
975 return werr;
976 }
977
978 /*
979 * when btree blocks are allocated, they have some corresponding bits set for
980 * them in one of two extent_io trees. This is used to make sure all of
981 * those extents are on disk for transaction or log commit. We wait
982 * on all the pages and clear them from the dirty pages state tree
983 */
btrfs_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)984 int btrfs_wait_marked_extents(struct btrfs_root *root,
985 struct extent_io_tree *dirty_pages, int mark)
986 {
987 int err = 0;
988 int werr = 0;
989 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
990 struct extent_state *cached_state = NULL;
991 u64 start = 0;
992 u64 end;
993 bool errors = false;
994
995 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
996 EXTENT_NEED_WAIT, &cached_state)) {
997 /*
998 * Ignore -ENOMEM errors returned by clear_extent_bit().
999 * When committing the transaction, we'll remove any entries
1000 * left in the io tree. For a log commit, we don't remove them
1001 * after committing the log because the tree can be accessed
1002 * concurrently - we do it only at transaction commit time when
1003 * it's safe to do it (through clear_btree_io_tree()).
1004 */
1005 err = clear_extent_bit(dirty_pages, start, end,
1006 EXTENT_NEED_WAIT,
1007 0, 0, &cached_state, GFP_NOFS);
1008 if (err == -ENOMEM)
1009 err = 0;
1010 if (!err)
1011 err = filemap_fdatawait_range(mapping, start, end);
1012 if (err)
1013 werr = err;
1014 free_extent_state(cached_state);
1015 cached_state = NULL;
1016 cond_resched();
1017 start = end + 1;
1018 }
1019 if (err)
1020 werr = err;
1021
1022 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1023 if ((mark & EXTENT_DIRTY) &&
1024 test_and_clear_bit(BTRFS_FS_LOG1_ERR,
1025 &root->fs_info->flags))
1026 errors = true;
1027
1028 if ((mark & EXTENT_NEW) &&
1029 test_and_clear_bit(BTRFS_FS_LOG2_ERR,
1030 &root->fs_info->flags))
1031 errors = true;
1032 } else {
1033 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR,
1034 &root->fs_info->flags))
1035 errors = true;
1036 }
1037
1038 if (errors && !werr)
1039 werr = -EIO;
1040
1041 return werr;
1042 }
1043
1044 /*
1045 * when btree blocks are allocated, they have some corresponding bits set for
1046 * them in one of two extent_io trees. This is used to make sure all of
1047 * those extents are on disk for transaction or log commit
1048 */
btrfs_write_and_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)1049 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1050 struct extent_io_tree *dirty_pages, int mark)
1051 {
1052 int ret;
1053 int ret2;
1054 struct blk_plug plug;
1055
1056 blk_start_plug(&plug);
1057 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1058 blk_finish_plug(&plug);
1059 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1060
1061 if (ret)
1062 return ret;
1063 if (ret2)
1064 return ret2;
1065 return 0;
1066 }
1067
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)1068 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1069 struct btrfs_root *root)
1070 {
1071 int ret;
1072
1073 ret = btrfs_write_and_wait_marked_extents(root,
1074 &trans->transaction->dirty_pages,
1075 EXTENT_DIRTY);
1076 clear_btree_io_tree(&trans->transaction->dirty_pages);
1077
1078 return ret;
1079 }
1080
1081 /*
1082 * this is used to update the root pointer in the tree of tree roots.
1083 *
1084 * But, in the case of the extent allocation tree, updating the root
1085 * pointer may allocate blocks which may change the root of the extent
1086 * allocation tree.
1087 *
1088 * So, this loops and repeats and makes sure the cowonly root didn't
1089 * change while the root pointer was being updated in the metadata.
1090 */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1091 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1092 struct btrfs_root *root)
1093 {
1094 int ret;
1095 u64 old_root_bytenr;
1096 u64 old_root_used;
1097 struct btrfs_root *tree_root = root->fs_info->tree_root;
1098
1099 old_root_used = btrfs_root_used(&root->root_item);
1100
1101 while (1) {
1102 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1103 if (old_root_bytenr == root->node->start &&
1104 old_root_used == btrfs_root_used(&root->root_item))
1105 break;
1106
1107 btrfs_set_root_node(&root->root_item, root->node);
1108 ret = btrfs_update_root(trans, tree_root,
1109 &root->root_key,
1110 &root->root_item);
1111 if (ret)
1112 return ret;
1113
1114 old_root_used = btrfs_root_used(&root->root_item);
1115 }
1116
1117 return 0;
1118 }
1119
1120 /*
1121 * update all the cowonly tree roots on disk
1122 *
1123 * The error handling in this function may not be obvious. Any of the
1124 * failures will cause the file system to go offline. We still need
1125 * to clean up the delayed refs.
1126 */
commit_cowonly_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)1127 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1128 struct btrfs_root *root)
1129 {
1130 struct btrfs_fs_info *fs_info = root->fs_info;
1131 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1132 struct list_head *io_bgs = &trans->transaction->io_bgs;
1133 struct list_head *next;
1134 struct extent_buffer *eb;
1135 int ret;
1136
1137 eb = btrfs_lock_root_node(fs_info->tree_root);
1138 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1139 0, &eb);
1140 btrfs_tree_unlock(eb);
1141 free_extent_buffer(eb);
1142
1143 if (ret)
1144 return ret;
1145
1146 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1147 if (ret)
1148 return ret;
1149
1150 ret = btrfs_run_dev_stats(trans, root->fs_info);
1151 if (ret)
1152 return ret;
1153 ret = btrfs_run_dev_replace(trans, root->fs_info);
1154 if (ret)
1155 return ret;
1156 ret = btrfs_run_qgroups(trans, root->fs_info);
1157 if (ret)
1158 return ret;
1159
1160 ret = btrfs_setup_space_cache(trans, root);
1161 if (ret)
1162 return ret;
1163
1164 /* run_qgroups might have added some more refs */
1165 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1166 if (ret)
1167 return ret;
1168 again:
1169 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1170 next = fs_info->dirty_cowonly_roots.next;
1171 list_del_init(next);
1172 root = list_entry(next, struct btrfs_root, dirty_list);
1173 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1174
1175 if (root != fs_info->extent_root)
1176 list_add_tail(&root->dirty_list,
1177 &trans->transaction->switch_commits);
1178 ret = update_cowonly_root(trans, root);
1179 if (ret)
1180 return ret;
1181 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1182 if (ret)
1183 return ret;
1184 }
1185
1186 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1187 ret = btrfs_write_dirty_block_groups(trans, root);
1188 if (ret)
1189 return ret;
1190 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1191 if (ret)
1192 return ret;
1193 }
1194
1195 if (!list_empty(&fs_info->dirty_cowonly_roots))
1196 goto again;
1197
1198 list_add_tail(&fs_info->extent_root->dirty_list,
1199 &trans->transaction->switch_commits);
1200 btrfs_after_dev_replace_commit(fs_info);
1201
1202 return 0;
1203 }
1204
1205 /*
1206 * dead roots are old snapshots that need to be deleted. This allocates
1207 * a dirty root struct and adds it into the list of dead roots that need to
1208 * be deleted
1209 */
btrfs_add_dead_root(struct btrfs_root * root)1210 void btrfs_add_dead_root(struct btrfs_root *root)
1211 {
1212 spin_lock(&root->fs_info->trans_lock);
1213 if (list_empty(&root->root_list))
1214 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1215 spin_unlock(&root->fs_info->trans_lock);
1216 }
1217
1218 /*
1219 * update all the cowonly tree roots on disk
1220 */
commit_fs_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)1221 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1222 struct btrfs_root *root)
1223 {
1224 struct btrfs_root *gang[8];
1225 struct btrfs_fs_info *fs_info = root->fs_info;
1226 int i;
1227 int ret;
1228 int err = 0;
1229
1230 spin_lock(&fs_info->fs_roots_radix_lock);
1231 while (1) {
1232 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1233 (void **)gang, 0,
1234 ARRAY_SIZE(gang),
1235 BTRFS_ROOT_TRANS_TAG);
1236 if (ret == 0)
1237 break;
1238 for (i = 0; i < ret; i++) {
1239 root = gang[i];
1240 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1241 (unsigned long)root->root_key.objectid,
1242 BTRFS_ROOT_TRANS_TAG);
1243 spin_unlock(&fs_info->fs_roots_radix_lock);
1244
1245 btrfs_free_log(trans, root);
1246 btrfs_update_reloc_root(trans, root);
1247 btrfs_orphan_commit_root(trans, root);
1248
1249 btrfs_save_ino_cache(root, trans);
1250
1251 /* see comments in should_cow_block() */
1252 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1253 smp_mb__after_atomic();
1254
1255 if (root->commit_root != root->node) {
1256 list_add_tail(&root->dirty_list,
1257 &trans->transaction->switch_commits);
1258 btrfs_set_root_node(&root->root_item,
1259 root->node);
1260 }
1261
1262 err = btrfs_update_root(trans, fs_info->tree_root,
1263 &root->root_key,
1264 &root->root_item);
1265 spin_lock(&fs_info->fs_roots_radix_lock);
1266 if (err)
1267 break;
1268 btrfs_qgroup_free_meta_all(root);
1269 }
1270 }
1271 spin_unlock(&fs_info->fs_roots_radix_lock);
1272 return err;
1273 }
1274
1275 /*
1276 * defrag a given btree.
1277 * Every leaf in the btree is read and defragged.
1278 */
btrfs_defrag_root(struct btrfs_root * root)1279 int btrfs_defrag_root(struct btrfs_root *root)
1280 {
1281 struct btrfs_fs_info *info = root->fs_info;
1282 struct btrfs_trans_handle *trans;
1283 int ret;
1284
1285 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1286 return 0;
1287
1288 while (1) {
1289 trans = btrfs_start_transaction(root, 0);
1290 if (IS_ERR(trans))
1291 return PTR_ERR(trans);
1292
1293 ret = btrfs_defrag_leaves(trans, root);
1294
1295 btrfs_end_transaction(trans, root);
1296 btrfs_btree_balance_dirty(info->tree_root);
1297 cond_resched();
1298
1299 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1300 break;
1301
1302 if (btrfs_defrag_cancelled(info)) {
1303 btrfs_debug(info, "defrag_root cancelled");
1304 ret = -EAGAIN;
1305 break;
1306 }
1307 }
1308 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1309 return ret;
1310 }
1311
1312 /*
1313 * Do all special snapshot related qgroup dirty hack.
1314 *
1315 * Will do all needed qgroup inherit and dirty hack like switch commit
1316 * roots inside one transaction and write all btree into disk, to make
1317 * qgroup works.
1318 */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1319 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1320 struct btrfs_root *src,
1321 struct btrfs_root *parent,
1322 struct btrfs_qgroup_inherit *inherit,
1323 u64 dst_objectid)
1324 {
1325 struct btrfs_fs_info *fs_info = src->fs_info;
1326 int ret;
1327
1328 /*
1329 * Save some performance in the case that qgroups are not
1330 * enabled. If this check races with the ioctl, rescan will
1331 * kick in anyway.
1332 */
1333 mutex_lock(&fs_info->qgroup_ioctl_lock);
1334 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
1335 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1336 return 0;
1337 }
1338 mutex_unlock(&fs_info->qgroup_ioctl_lock);
1339
1340 /*
1341 * We are going to commit transaction, see btrfs_commit_transaction()
1342 * comment for reason locking tree_log_mutex
1343 */
1344 mutex_lock(&fs_info->tree_log_mutex);
1345
1346 ret = commit_fs_roots(trans, src);
1347 if (ret)
1348 goto out;
1349 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1350 if (ret < 0)
1351 goto out;
1352 ret = btrfs_qgroup_account_extents(trans, fs_info);
1353 if (ret < 0)
1354 goto out;
1355
1356 /* Now qgroup are all updated, we can inherit it to new qgroups */
1357 ret = btrfs_qgroup_inherit(trans, fs_info,
1358 src->root_key.objectid, dst_objectid,
1359 inherit);
1360 if (ret < 0)
1361 goto out;
1362
1363 /*
1364 * Now we do a simplified commit transaction, which will:
1365 * 1) commit all subvolume and extent tree
1366 * To ensure all subvolume and extent tree have a valid
1367 * commit_root to accounting later insert_dir_item()
1368 * 2) write all btree blocks onto disk
1369 * This is to make sure later btree modification will be cowed
1370 * Or commit_root can be populated and cause wrong qgroup numbers
1371 * In this simplified commit, we don't really care about other trees
1372 * like chunk and root tree, as they won't affect qgroup.
1373 * And we don't write super to avoid half committed status.
1374 */
1375 ret = commit_cowonly_roots(trans, src);
1376 if (ret)
1377 goto out;
1378 switch_commit_roots(trans->transaction, fs_info);
1379 ret = btrfs_write_and_wait_transaction(trans, src);
1380 if (ret)
1381 btrfs_handle_fs_error(fs_info, ret,
1382 "Error while writing out transaction for qgroup");
1383
1384 out:
1385 mutex_unlock(&fs_info->tree_log_mutex);
1386
1387 /*
1388 * Force parent root to be updated, as we recorded it before so its
1389 * last_trans == cur_transid.
1390 * Or it won't be committed again onto disk after later
1391 * insert_dir_item()
1392 */
1393 if (!ret)
1394 record_root_in_trans(trans, parent, 1);
1395 return ret;
1396 }
1397
1398 /*
1399 * new snapshots need to be created at a very specific time in the
1400 * transaction commit. This does the actual creation.
1401 *
1402 * Note:
1403 * If the error which may affect the commitment of the current transaction
1404 * happens, we should return the error number. If the error which just affect
1405 * the creation of the pending snapshots, just return 0.
1406 */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_pending_snapshot * pending)1407 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1408 struct btrfs_fs_info *fs_info,
1409 struct btrfs_pending_snapshot *pending)
1410 {
1411 struct btrfs_key key;
1412 struct btrfs_root_item *new_root_item;
1413 struct btrfs_root *tree_root = fs_info->tree_root;
1414 struct btrfs_root *root = pending->root;
1415 struct btrfs_root *parent_root;
1416 struct btrfs_block_rsv *rsv;
1417 struct inode *parent_inode;
1418 struct btrfs_path *path;
1419 struct btrfs_dir_item *dir_item;
1420 struct dentry *dentry;
1421 struct extent_buffer *tmp;
1422 struct extent_buffer *old;
1423 struct timespec cur_time;
1424 int ret = 0;
1425 u64 to_reserve = 0;
1426 u64 index = 0;
1427 u64 objectid;
1428 u64 root_flags;
1429 uuid_le new_uuid;
1430
1431 ASSERT(pending->path);
1432 path = pending->path;
1433
1434 ASSERT(pending->root_item);
1435 new_root_item = pending->root_item;
1436
1437 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1438 if (pending->error)
1439 goto no_free_objectid;
1440
1441 /*
1442 * Make qgroup to skip current new snapshot's qgroupid, as it is
1443 * accounted by later btrfs_qgroup_inherit().
1444 */
1445 btrfs_set_skip_qgroup(trans, objectid);
1446
1447 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1448
1449 if (to_reserve > 0) {
1450 pending->error = btrfs_block_rsv_add(root,
1451 &pending->block_rsv,
1452 to_reserve,
1453 BTRFS_RESERVE_NO_FLUSH);
1454 if (pending->error)
1455 goto clear_skip_qgroup;
1456 }
1457
1458 key.objectid = objectid;
1459 key.offset = (u64)-1;
1460 key.type = BTRFS_ROOT_ITEM_KEY;
1461
1462 rsv = trans->block_rsv;
1463 trans->block_rsv = &pending->block_rsv;
1464 trans->bytes_reserved = trans->block_rsv->reserved;
1465 trace_btrfs_space_reservation(root->fs_info, "transaction",
1466 trans->transid,
1467 trans->bytes_reserved, 1);
1468 dentry = pending->dentry;
1469 parent_inode = pending->dir;
1470 parent_root = BTRFS_I(parent_inode)->root;
1471 record_root_in_trans(trans, parent_root, 0);
1472
1473 cur_time = current_time(parent_inode);
1474
1475 /*
1476 * insert the directory item
1477 */
1478 ret = btrfs_set_inode_index(parent_inode, &index);
1479 BUG_ON(ret); /* -ENOMEM */
1480
1481 /* check if there is a file/dir which has the same name. */
1482 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1483 btrfs_ino(parent_inode),
1484 dentry->d_name.name,
1485 dentry->d_name.len, 0);
1486 if (dir_item != NULL && !IS_ERR(dir_item)) {
1487 pending->error = -EEXIST;
1488 goto dir_item_existed;
1489 } else if (IS_ERR(dir_item)) {
1490 ret = PTR_ERR(dir_item);
1491 btrfs_abort_transaction(trans, ret);
1492 goto fail;
1493 }
1494 btrfs_release_path(path);
1495
1496 /*
1497 * pull in the delayed directory update
1498 * and the delayed inode item
1499 * otherwise we corrupt the FS during
1500 * snapshot
1501 */
1502 ret = btrfs_run_delayed_items(trans, root);
1503 if (ret) { /* Transaction aborted */
1504 btrfs_abort_transaction(trans, ret);
1505 goto fail;
1506 }
1507
1508 record_root_in_trans(trans, root, 0);
1509 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1510 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1511 btrfs_check_and_init_root_item(new_root_item);
1512
1513 root_flags = btrfs_root_flags(new_root_item);
1514 if (pending->readonly)
1515 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1516 else
1517 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1518 btrfs_set_root_flags(new_root_item, root_flags);
1519
1520 btrfs_set_root_generation_v2(new_root_item,
1521 trans->transid);
1522 uuid_le_gen(&new_uuid);
1523 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1524 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1525 BTRFS_UUID_SIZE);
1526 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1527 memset(new_root_item->received_uuid, 0,
1528 sizeof(new_root_item->received_uuid));
1529 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1530 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1531 btrfs_set_root_stransid(new_root_item, 0);
1532 btrfs_set_root_rtransid(new_root_item, 0);
1533 }
1534 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1535 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1536 btrfs_set_root_otransid(new_root_item, trans->transid);
1537
1538 old = btrfs_lock_root_node(root);
1539 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1540 if (ret) {
1541 btrfs_tree_unlock(old);
1542 free_extent_buffer(old);
1543 btrfs_abort_transaction(trans, ret);
1544 goto fail;
1545 }
1546
1547 btrfs_set_lock_blocking(old);
1548
1549 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1550 /* clean up in any case */
1551 btrfs_tree_unlock(old);
1552 free_extent_buffer(old);
1553 if (ret) {
1554 btrfs_abort_transaction(trans, ret);
1555 goto fail;
1556 }
1557 /* see comments in should_cow_block() */
1558 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1559 smp_wmb();
1560
1561 btrfs_set_root_node(new_root_item, tmp);
1562 /* record when the snapshot was created in key.offset */
1563 key.offset = trans->transid;
1564 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1565 btrfs_tree_unlock(tmp);
1566 free_extent_buffer(tmp);
1567 if (ret) {
1568 btrfs_abort_transaction(trans, ret);
1569 goto fail;
1570 }
1571
1572 /*
1573 * insert root back/forward references
1574 */
1575 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1576 parent_root->root_key.objectid,
1577 btrfs_ino(parent_inode), index,
1578 dentry->d_name.name, dentry->d_name.len);
1579 if (ret) {
1580 btrfs_abort_transaction(trans, ret);
1581 goto fail;
1582 }
1583
1584 key.offset = (u64)-1;
1585 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1586 if (IS_ERR(pending->snap)) {
1587 ret = PTR_ERR(pending->snap);
1588 btrfs_abort_transaction(trans, ret);
1589 goto fail;
1590 }
1591
1592 ret = btrfs_reloc_post_snapshot(trans, pending);
1593 if (ret) {
1594 btrfs_abort_transaction(trans, ret);
1595 goto fail;
1596 }
1597
1598 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1599 if (ret) {
1600 btrfs_abort_transaction(trans, ret);
1601 goto fail;
1602 }
1603
1604 /*
1605 * Do special qgroup accounting for snapshot, as we do some qgroup
1606 * snapshot hack to do fast snapshot.
1607 * To co-operate with that hack, we do hack again.
1608 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1609 */
1610 ret = qgroup_account_snapshot(trans, root, parent_root,
1611 pending->inherit, objectid);
1612 if (ret < 0)
1613 goto fail;
1614
1615 ret = btrfs_insert_dir_item(trans, parent_root,
1616 dentry->d_name.name, dentry->d_name.len,
1617 parent_inode, &key,
1618 BTRFS_FT_DIR, index);
1619 /* We have check then name at the beginning, so it is impossible. */
1620 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1621 if (ret) {
1622 btrfs_abort_transaction(trans, ret);
1623 goto fail;
1624 }
1625
1626 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1627 dentry->d_name.len * 2);
1628 parent_inode->i_mtime = parent_inode->i_ctime =
1629 current_time(parent_inode);
1630 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1631 if (ret) {
1632 btrfs_abort_transaction(trans, ret);
1633 goto fail;
1634 }
1635 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1636 BTRFS_UUID_KEY_SUBVOL, objectid);
1637 if (ret) {
1638 btrfs_abort_transaction(trans, ret);
1639 goto fail;
1640 }
1641 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1642 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1643 new_root_item->received_uuid,
1644 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1645 objectid);
1646 if (ret && ret != -EEXIST) {
1647 btrfs_abort_transaction(trans, ret);
1648 goto fail;
1649 }
1650 }
1651
1652 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1653 if (ret) {
1654 btrfs_abort_transaction(trans, ret);
1655 goto fail;
1656 }
1657
1658 fail:
1659 pending->error = ret;
1660 dir_item_existed:
1661 trans->block_rsv = rsv;
1662 trans->bytes_reserved = 0;
1663 clear_skip_qgroup:
1664 btrfs_clear_skip_qgroup(trans);
1665 no_free_objectid:
1666 kfree(new_root_item);
1667 pending->root_item = NULL;
1668 btrfs_free_path(path);
1669 pending->path = NULL;
1670
1671 return ret;
1672 }
1673
1674 /*
1675 * create all the snapshots we've scheduled for creation
1676 */
create_pending_snapshots(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1677 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1678 struct btrfs_fs_info *fs_info)
1679 {
1680 struct btrfs_pending_snapshot *pending, *next;
1681 struct list_head *head = &trans->transaction->pending_snapshots;
1682 int ret = 0;
1683
1684 list_for_each_entry_safe(pending, next, head, list) {
1685 list_del(&pending->list);
1686 ret = create_pending_snapshot(trans, fs_info, pending);
1687 if (ret)
1688 break;
1689 }
1690 return ret;
1691 }
1692
update_super_roots(struct btrfs_root * root)1693 static void update_super_roots(struct btrfs_root *root)
1694 {
1695 struct btrfs_root_item *root_item;
1696 struct btrfs_super_block *super;
1697
1698 super = root->fs_info->super_copy;
1699
1700 root_item = &root->fs_info->chunk_root->root_item;
1701 super->chunk_root = root_item->bytenr;
1702 super->chunk_root_generation = root_item->generation;
1703 super->chunk_root_level = root_item->level;
1704
1705 root_item = &root->fs_info->tree_root->root_item;
1706 super->root = root_item->bytenr;
1707 super->generation = root_item->generation;
1708 super->root_level = root_item->level;
1709 if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
1710 super->cache_generation = root_item->generation;
1711 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &root->fs_info->flags))
1712 super->uuid_tree_generation = root_item->generation;
1713 }
1714
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1715 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1716 {
1717 struct btrfs_transaction *trans;
1718 int ret = 0;
1719
1720 spin_lock(&info->trans_lock);
1721 trans = info->running_transaction;
1722 if (trans)
1723 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1724 spin_unlock(&info->trans_lock);
1725 return ret;
1726 }
1727
btrfs_transaction_blocked(struct btrfs_fs_info * info)1728 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1729 {
1730 struct btrfs_transaction *trans;
1731 int ret = 0;
1732
1733 spin_lock(&info->trans_lock);
1734 trans = info->running_transaction;
1735 if (trans)
1736 ret = is_transaction_blocked(trans);
1737 spin_unlock(&info->trans_lock);
1738 return ret;
1739 }
1740
1741 /*
1742 * wait for the current transaction commit to start and block subsequent
1743 * transaction joins
1744 */
wait_current_trans_commit_start(struct btrfs_root * root,struct btrfs_transaction * trans)1745 static void wait_current_trans_commit_start(struct btrfs_root *root,
1746 struct btrfs_transaction *trans)
1747 {
1748 wait_event(root->fs_info->transaction_blocked_wait,
1749 trans->state >= TRANS_STATE_COMMIT_START ||
1750 trans->aborted);
1751 }
1752
1753 /*
1754 * wait for the current transaction to start and then become unblocked.
1755 * caller holds ref.
1756 */
wait_current_trans_commit_start_and_unblock(struct btrfs_root * root,struct btrfs_transaction * trans)1757 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1758 struct btrfs_transaction *trans)
1759 {
1760 wait_event(root->fs_info->transaction_wait,
1761 trans->state >= TRANS_STATE_UNBLOCKED ||
1762 trans->aborted);
1763 }
1764
1765 /*
1766 * commit transactions asynchronously. once btrfs_commit_transaction_async
1767 * returns, any subsequent transaction will not be allowed to join.
1768 */
1769 struct btrfs_async_commit {
1770 struct btrfs_trans_handle *newtrans;
1771 struct btrfs_root *root;
1772 struct work_struct work;
1773 };
1774
do_async_commit(struct work_struct * work)1775 static void do_async_commit(struct work_struct *work)
1776 {
1777 struct btrfs_async_commit *ac =
1778 container_of(work, struct btrfs_async_commit, work);
1779
1780 /*
1781 * We've got freeze protection passed with the transaction.
1782 * Tell lockdep about it.
1783 */
1784 if (ac->newtrans->type & __TRANS_FREEZABLE)
1785 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1786
1787 current->journal_info = ac->newtrans;
1788
1789 btrfs_commit_transaction(ac->newtrans, ac->root);
1790 kfree(ac);
1791 }
1792
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans,struct btrfs_root * root,int wait_for_unblock)1793 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1794 struct btrfs_root *root,
1795 int wait_for_unblock)
1796 {
1797 struct btrfs_async_commit *ac;
1798 struct btrfs_transaction *cur_trans;
1799
1800 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1801 if (!ac)
1802 return -ENOMEM;
1803
1804 INIT_WORK(&ac->work, do_async_commit);
1805 ac->root = root;
1806 ac->newtrans = btrfs_join_transaction(root);
1807 if (IS_ERR(ac->newtrans)) {
1808 int err = PTR_ERR(ac->newtrans);
1809 kfree(ac);
1810 return err;
1811 }
1812
1813 /* take transaction reference */
1814 cur_trans = trans->transaction;
1815 atomic_inc(&cur_trans->use_count);
1816
1817 btrfs_end_transaction(trans, root);
1818
1819 /*
1820 * Tell lockdep we've released the freeze rwsem, since the
1821 * async commit thread will be the one to unlock it.
1822 */
1823 if (ac->newtrans->type & __TRANS_FREEZABLE)
1824 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1825
1826 schedule_work(&ac->work);
1827
1828 /* wait for transaction to start and unblock */
1829 if (wait_for_unblock)
1830 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1831 else
1832 wait_current_trans_commit_start(root, cur_trans);
1833
1834 if (current->journal_info == trans)
1835 current->journal_info = NULL;
1836
1837 btrfs_put_transaction(cur_trans);
1838 return 0;
1839 }
1840
1841
cleanup_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root,int err)1842 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1843 struct btrfs_root *root, int err)
1844 {
1845 struct btrfs_transaction *cur_trans = trans->transaction;
1846 DEFINE_WAIT(wait);
1847
1848 WARN_ON(trans->use_count > 1);
1849
1850 btrfs_abort_transaction(trans, err);
1851
1852 spin_lock(&root->fs_info->trans_lock);
1853
1854 /*
1855 * If the transaction is removed from the list, it means this
1856 * transaction has been committed successfully, so it is impossible
1857 * to call the cleanup function.
1858 */
1859 BUG_ON(list_empty(&cur_trans->list));
1860
1861 list_del_init(&cur_trans->list);
1862 if (cur_trans == root->fs_info->running_transaction) {
1863 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1864 spin_unlock(&root->fs_info->trans_lock);
1865 wait_event(cur_trans->writer_wait,
1866 atomic_read(&cur_trans->num_writers) == 1);
1867
1868 spin_lock(&root->fs_info->trans_lock);
1869 }
1870 spin_unlock(&root->fs_info->trans_lock);
1871
1872 btrfs_cleanup_one_transaction(trans->transaction, root);
1873
1874 spin_lock(&root->fs_info->trans_lock);
1875 if (cur_trans == root->fs_info->running_transaction)
1876 root->fs_info->running_transaction = NULL;
1877 spin_unlock(&root->fs_info->trans_lock);
1878
1879 if (trans->type & __TRANS_FREEZABLE)
1880 sb_end_intwrite(root->fs_info->sb);
1881 btrfs_put_transaction(cur_trans);
1882 btrfs_put_transaction(cur_trans);
1883
1884 trace_btrfs_transaction_commit(root);
1885
1886 if (current->journal_info == trans)
1887 current->journal_info = NULL;
1888 btrfs_scrub_cancel(root->fs_info);
1889
1890 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1891 }
1892
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)1893 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1894 {
1895 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1896 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1897 return 0;
1898 }
1899
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)1900 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1901 {
1902 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1903 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1904 }
1905
1906 static inline void
btrfs_wait_pending_ordered(struct btrfs_transaction * cur_trans)1907 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1908 {
1909 wait_event(cur_trans->pending_wait,
1910 atomic_read(&cur_trans->pending_ordered) == 0);
1911 }
1912
btrfs_commit_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)1913 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1914 struct btrfs_root *root)
1915 {
1916 struct btrfs_transaction *cur_trans = trans->transaction;
1917 struct btrfs_transaction *prev_trans = NULL;
1918 int ret;
1919
1920 /* Stop the commit early if ->aborted is set */
1921 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1922 ret = cur_trans->aborted;
1923 btrfs_end_transaction(trans, root);
1924 return ret;
1925 }
1926
1927 /* make a pass through all the delayed refs we have so far
1928 * any runnings procs may add more while we are here
1929 */
1930 ret = btrfs_run_delayed_refs(trans, root, 0);
1931 if (ret) {
1932 btrfs_end_transaction(trans, root);
1933 return ret;
1934 }
1935
1936 btrfs_trans_release_metadata(trans, root);
1937 trans->block_rsv = NULL;
1938
1939 cur_trans = trans->transaction;
1940
1941 /*
1942 * set the flushing flag so procs in this transaction have to
1943 * start sending their work down.
1944 */
1945 cur_trans->delayed_refs.flushing = 1;
1946 smp_wmb();
1947
1948 if (!list_empty(&trans->new_bgs))
1949 btrfs_create_pending_block_groups(trans, root);
1950
1951 ret = btrfs_run_delayed_refs(trans, root, 0);
1952 if (ret) {
1953 btrfs_end_transaction(trans, root);
1954 return ret;
1955 }
1956
1957 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1958 int run_it = 0;
1959
1960 /* this mutex is also taken before trying to set
1961 * block groups readonly. We need to make sure
1962 * that nobody has set a block group readonly
1963 * after a extents from that block group have been
1964 * allocated for cache files. btrfs_set_block_group_ro
1965 * will wait for the transaction to commit if it
1966 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1967 *
1968 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1969 * only one process starts all the block group IO. It wouldn't
1970 * hurt to have more than one go through, but there's no
1971 * real advantage to it either.
1972 */
1973 mutex_lock(&root->fs_info->ro_block_group_mutex);
1974 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1975 &cur_trans->flags))
1976 run_it = 1;
1977 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1978
1979 if (run_it)
1980 ret = btrfs_start_dirty_block_groups(trans, root);
1981 }
1982 if (ret) {
1983 btrfs_end_transaction(trans, root);
1984 return ret;
1985 }
1986
1987 spin_lock(&root->fs_info->trans_lock);
1988 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1989 spin_unlock(&root->fs_info->trans_lock);
1990 atomic_inc(&cur_trans->use_count);
1991 ret = btrfs_end_transaction(trans, root);
1992
1993 wait_for_commit(root, cur_trans);
1994
1995 if (unlikely(cur_trans->aborted))
1996 ret = cur_trans->aborted;
1997
1998 btrfs_put_transaction(cur_trans);
1999
2000 return ret;
2001 }
2002
2003 cur_trans->state = TRANS_STATE_COMMIT_START;
2004 wake_up(&root->fs_info->transaction_blocked_wait);
2005
2006 if (cur_trans->list.prev != &root->fs_info->trans_list) {
2007 prev_trans = list_entry(cur_trans->list.prev,
2008 struct btrfs_transaction, list);
2009 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2010 atomic_inc(&prev_trans->use_count);
2011 spin_unlock(&root->fs_info->trans_lock);
2012
2013 wait_for_commit(root, prev_trans);
2014 ret = prev_trans->aborted;
2015
2016 btrfs_put_transaction(prev_trans);
2017 if (ret)
2018 goto cleanup_transaction;
2019 } else {
2020 spin_unlock(&root->fs_info->trans_lock);
2021 }
2022 } else {
2023 spin_unlock(&root->fs_info->trans_lock);
2024 }
2025
2026 extwriter_counter_dec(cur_trans, trans->type);
2027
2028 ret = btrfs_start_delalloc_flush(root->fs_info);
2029 if (ret)
2030 goto cleanup_transaction;
2031
2032 ret = btrfs_run_delayed_items(trans, root);
2033 if (ret)
2034 goto cleanup_transaction;
2035
2036 wait_event(cur_trans->writer_wait,
2037 extwriter_counter_read(cur_trans) == 0);
2038
2039 /* some pending stuffs might be added after the previous flush. */
2040 ret = btrfs_run_delayed_items(trans, root);
2041 if (ret)
2042 goto cleanup_transaction;
2043
2044 btrfs_wait_delalloc_flush(root->fs_info);
2045
2046 btrfs_wait_pending_ordered(cur_trans);
2047
2048 btrfs_scrub_pause(root);
2049 /*
2050 * Ok now we need to make sure to block out any other joins while we
2051 * commit the transaction. We could have started a join before setting
2052 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2053 */
2054 spin_lock(&root->fs_info->trans_lock);
2055 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2056 spin_unlock(&root->fs_info->trans_lock);
2057 wait_event(cur_trans->writer_wait,
2058 atomic_read(&cur_trans->num_writers) == 1);
2059
2060 /* ->aborted might be set after the previous check, so check it */
2061 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2062 ret = cur_trans->aborted;
2063 goto scrub_continue;
2064 }
2065 /*
2066 * the reloc mutex makes sure that we stop
2067 * the balancing code from coming in and moving
2068 * extents around in the middle of the commit
2069 */
2070 mutex_lock(&root->fs_info->reloc_mutex);
2071
2072 /*
2073 * We needn't worry about the delayed items because we will
2074 * deal with them in create_pending_snapshot(), which is the
2075 * core function of the snapshot creation.
2076 */
2077 ret = create_pending_snapshots(trans, root->fs_info);
2078 if (ret) {
2079 mutex_unlock(&root->fs_info->reloc_mutex);
2080 goto scrub_continue;
2081 }
2082
2083 /*
2084 * We insert the dir indexes of the snapshots and update the inode
2085 * of the snapshots' parents after the snapshot creation, so there
2086 * are some delayed items which are not dealt with. Now deal with
2087 * them.
2088 *
2089 * We needn't worry that this operation will corrupt the snapshots,
2090 * because all the tree which are snapshoted will be forced to COW
2091 * the nodes and leaves.
2092 */
2093 ret = btrfs_run_delayed_items(trans, root);
2094 if (ret) {
2095 mutex_unlock(&root->fs_info->reloc_mutex);
2096 goto scrub_continue;
2097 }
2098
2099 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2100 if (ret) {
2101 mutex_unlock(&root->fs_info->reloc_mutex);
2102 goto scrub_continue;
2103 }
2104
2105 /* Reocrd old roots for later qgroup accounting */
2106 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2107 if (ret) {
2108 mutex_unlock(&root->fs_info->reloc_mutex);
2109 goto scrub_continue;
2110 }
2111
2112 /*
2113 * make sure none of the code above managed to slip in a
2114 * delayed item
2115 */
2116 btrfs_assert_delayed_root_empty(root);
2117
2118 WARN_ON(cur_trans != trans->transaction);
2119
2120 /* btrfs_commit_tree_roots is responsible for getting the
2121 * various roots consistent with each other. Every pointer
2122 * in the tree of tree roots has to point to the most up to date
2123 * root for every subvolume and other tree. So, we have to keep
2124 * the tree logging code from jumping in and changing any
2125 * of the trees.
2126 *
2127 * At this point in the commit, there can't be any tree-log
2128 * writers, but a little lower down we drop the trans mutex
2129 * and let new people in. By holding the tree_log_mutex
2130 * from now until after the super is written, we avoid races
2131 * with the tree-log code.
2132 */
2133 mutex_lock(&root->fs_info->tree_log_mutex);
2134
2135 ret = commit_fs_roots(trans, root);
2136 if (ret) {
2137 mutex_unlock(&root->fs_info->tree_log_mutex);
2138 mutex_unlock(&root->fs_info->reloc_mutex);
2139 goto scrub_continue;
2140 }
2141
2142 /*
2143 * Since the transaction is done, we can apply the pending changes
2144 * before the next transaction.
2145 */
2146 btrfs_apply_pending_changes(root->fs_info);
2147
2148 /* commit_fs_roots gets rid of all the tree log roots, it is now
2149 * safe to free the root of tree log roots
2150 */
2151 btrfs_free_log_root_tree(trans, root->fs_info);
2152
2153 /*
2154 * Since fs roots are all committed, we can get a quite accurate
2155 * new_roots. So let's do quota accounting.
2156 */
2157 ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2158 if (ret < 0) {
2159 mutex_unlock(&root->fs_info->tree_log_mutex);
2160 mutex_unlock(&root->fs_info->reloc_mutex);
2161 goto scrub_continue;
2162 }
2163
2164 ret = commit_cowonly_roots(trans, root);
2165 if (ret) {
2166 mutex_unlock(&root->fs_info->tree_log_mutex);
2167 mutex_unlock(&root->fs_info->reloc_mutex);
2168 goto scrub_continue;
2169 }
2170
2171 /*
2172 * The tasks which save the space cache and inode cache may also
2173 * update ->aborted, check it.
2174 */
2175 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2176 ret = cur_trans->aborted;
2177 mutex_unlock(&root->fs_info->tree_log_mutex);
2178 mutex_unlock(&root->fs_info->reloc_mutex);
2179 goto scrub_continue;
2180 }
2181
2182 btrfs_prepare_extent_commit(trans, root);
2183
2184 cur_trans = root->fs_info->running_transaction;
2185
2186 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2187 root->fs_info->tree_root->node);
2188 list_add_tail(&root->fs_info->tree_root->dirty_list,
2189 &cur_trans->switch_commits);
2190
2191 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2192 root->fs_info->chunk_root->node);
2193 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2194 &cur_trans->switch_commits);
2195
2196 switch_commit_roots(cur_trans, root->fs_info);
2197
2198 assert_qgroups_uptodate(trans);
2199 ASSERT(list_empty(&cur_trans->dirty_bgs));
2200 ASSERT(list_empty(&cur_trans->io_bgs));
2201 update_super_roots(root);
2202
2203 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2204 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2205 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2206 sizeof(*root->fs_info->super_copy));
2207
2208 btrfs_update_commit_device_size(root->fs_info);
2209 btrfs_update_commit_device_bytes_used(root, cur_trans);
2210
2211 clear_bit(BTRFS_FS_LOG1_ERR, &root->fs_info->flags);
2212 clear_bit(BTRFS_FS_LOG2_ERR, &root->fs_info->flags);
2213
2214 btrfs_trans_release_chunk_metadata(trans);
2215
2216 spin_lock(&root->fs_info->trans_lock);
2217 cur_trans->state = TRANS_STATE_UNBLOCKED;
2218 root->fs_info->running_transaction = NULL;
2219 spin_unlock(&root->fs_info->trans_lock);
2220 mutex_unlock(&root->fs_info->reloc_mutex);
2221
2222 wake_up(&root->fs_info->transaction_wait);
2223
2224 ret = btrfs_write_and_wait_transaction(trans, root);
2225 if (ret) {
2226 btrfs_handle_fs_error(root->fs_info, ret,
2227 "Error while writing out transaction");
2228 mutex_unlock(&root->fs_info->tree_log_mutex);
2229 goto scrub_continue;
2230 }
2231
2232 ret = write_ctree_super(trans, root, 0);
2233 if (ret) {
2234 mutex_unlock(&root->fs_info->tree_log_mutex);
2235 goto scrub_continue;
2236 }
2237
2238 /*
2239 * the super is written, we can safely allow the tree-loggers
2240 * to go about their business
2241 */
2242 mutex_unlock(&root->fs_info->tree_log_mutex);
2243
2244 btrfs_finish_extent_commit(trans, root);
2245
2246 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2247 btrfs_clear_space_info_full(root->fs_info);
2248
2249 root->fs_info->last_trans_committed = cur_trans->transid;
2250 /*
2251 * We needn't acquire the lock here because there is no other task
2252 * which can change it.
2253 */
2254 cur_trans->state = TRANS_STATE_COMPLETED;
2255 wake_up(&cur_trans->commit_wait);
2256
2257 spin_lock(&root->fs_info->trans_lock);
2258 list_del_init(&cur_trans->list);
2259 spin_unlock(&root->fs_info->trans_lock);
2260
2261 btrfs_put_transaction(cur_trans);
2262 btrfs_put_transaction(cur_trans);
2263
2264 if (trans->type & __TRANS_FREEZABLE)
2265 sb_end_intwrite(root->fs_info->sb);
2266
2267 trace_btrfs_transaction_commit(root);
2268
2269 btrfs_scrub_continue(root);
2270
2271 if (current->journal_info == trans)
2272 current->journal_info = NULL;
2273
2274 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2275
2276 /*
2277 * If fs has been frozen, we can not handle delayed iputs, otherwise
2278 * it'll result in deadlock about SB_FREEZE_FS.
2279 */
2280 if (current != root->fs_info->transaction_kthread &&
2281 current != root->fs_info->cleaner_kthread &&
2282 !root->fs_info->fs_frozen)
2283 btrfs_run_delayed_iputs(root);
2284
2285 return ret;
2286
2287 scrub_continue:
2288 btrfs_scrub_continue(root);
2289 cleanup_transaction:
2290 btrfs_trans_release_metadata(trans, root);
2291 btrfs_trans_release_chunk_metadata(trans);
2292 trans->block_rsv = NULL;
2293 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2294 if (current->journal_info == trans)
2295 current->journal_info = NULL;
2296 cleanup_transaction(trans, root, ret);
2297
2298 return ret;
2299 }
2300
2301 /*
2302 * return < 0 if error
2303 * 0 if there are no more dead_roots at the time of call
2304 * 1 there are more to be processed, call me again
2305 *
2306 * The return value indicates there are certainly more snapshots to delete, but
2307 * if there comes a new one during processing, it may return 0. We don't mind,
2308 * because btrfs_commit_super will poke cleaner thread and it will process it a
2309 * few seconds later.
2310 */
btrfs_clean_one_deleted_snapshot(struct btrfs_root * root)2311 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2312 {
2313 int ret;
2314 struct btrfs_fs_info *fs_info = root->fs_info;
2315
2316 spin_lock(&fs_info->trans_lock);
2317 if (list_empty(&fs_info->dead_roots)) {
2318 spin_unlock(&fs_info->trans_lock);
2319 return 0;
2320 }
2321 root = list_first_entry(&fs_info->dead_roots,
2322 struct btrfs_root, root_list);
2323 list_del_init(&root->root_list);
2324 spin_unlock(&fs_info->trans_lock);
2325
2326 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2327
2328 btrfs_kill_all_delayed_nodes(root);
2329
2330 if (btrfs_header_backref_rev(root->node) <
2331 BTRFS_MIXED_BACKREF_REV)
2332 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2333 else
2334 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2335
2336 return (ret < 0) ? 0 : 1;
2337 }
2338
btrfs_apply_pending_changes(struct btrfs_fs_info * fs_info)2339 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2340 {
2341 unsigned long prev;
2342 unsigned long bit;
2343
2344 prev = xchg(&fs_info->pending_changes, 0);
2345 if (!prev)
2346 return;
2347
2348 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2349 if (prev & bit)
2350 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2351 prev &= ~bit;
2352
2353 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2354 if (prev & bit)
2355 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2356 prev &= ~bit;
2357
2358 bit = 1 << BTRFS_PENDING_COMMIT;
2359 if (prev & bit)
2360 btrfs_debug(fs_info, "pending commit done");
2361 prev &= ~bit;
2362
2363 if (prev)
2364 btrfs_warn(fs_info,
2365 "unknown pending changes left 0x%lx, ignoring", prev);
2366 }
2367