1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
37 #include "math.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40
41 #undef SCRAMBLE_DELAYED_REFS
42
43 /*
44 * control flags for do_chunk_alloc's force field
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
56 */
57 enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
61 };
62
63 static int update_block_group(struct btrfs_trans_handle *trans,
64 struct btrfs_root *root, u64 bytenr,
65 u64 num_bytes, int alloc);
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 struct btrfs_root *root,
68 struct btrfs_delayed_ref_node *node, u64 parent,
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
71 struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
84 int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 struct btrfs_root *extent_root, u64 flags,
87 int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_fs_info *fs_info,
91 struct btrfs_space_info *info, u64 bytes,
92 int dump_block_groups);
93 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
94 u64 ram_bytes, u64 num_bytes, int delalloc);
95 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
96 u64 num_bytes, int delalloc);
97 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
98 u64 num_bytes);
99 int btrfs_pin_extent(struct btrfs_root *root,
100 u64 bytenr, u64 num_bytes, int reserved);
101 static int __reserve_metadata_bytes(struct btrfs_root *root,
102 struct btrfs_space_info *space_info,
103 u64 orig_bytes,
104 enum btrfs_reserve_flush_enum flush);
105 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
106 struct btrfs_space_info *space_info,
107 u64 num_bytes);
108 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
109 struct btrfs_space_info *space_info,
110 u64 num_bytes);
111
112 static noinline int
block_group_cache_done(struct btrfs_block_group_cache * cache)113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 smp_mb();
116 return cache->cached == BTRFS_CACHE_FINISHED ||
117 cache->cached == BTRFS_CACHE_ERROR;
118 }
119
block_group_bits(struct btrfs_block_group_cache * cache,u64 bits)120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 return (cache->flags & bits) == bits;
123 }
124
btrfs_get_block_group(struct btrfs_block_group_cache * cache)125 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 atomic_inc(&cache->count);
128 }
129
btrfs_put_block_group(struct btrfs_block_group_cache * cache)130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 if (atomic_dec_and_test(&cache->count)) {
133 WARN_ON(cache->pinned > 0);
134 WARN_ON(cache->reserved > 0);
135 kfree(cache->free_space_ctl);
136 kfree(cache);
137 }
138 }
139
140 /*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group_cache * block_group)144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 struct btrfs_block_group_cache *block_group)
146 {
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178 }
179
180 /*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184 static struct btrfs_block_group_cache *
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187 {
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
216 if (ret) {
217 btrfs_get_block_group(ret);
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224 }
225
add_excluded_extent(struct btrfs_root * root,u64 start,u64 num_bytes)226 static int add_excluded_extent(struct btrfs_root *root,
227 u64 start, u64 num_bytes)
228 {
229 u64 end = start + num_bytes - 1;
230 set_extent_bits(&root->fs_info->freed_extents[0],
231 start, end, EXTENT_UPTODATE);
232 set_extent_bits(&root->fs_info->freed_extents[1],
233 start, end, EXTENT_UPTODATE);
234 return 0;
235 }
236
free_excluded_extents(struct btrfs_root * root,struct btrfs_block_group_cache * cache)237 static void free_excluded_extents(struct btrfs_root *root,
238 struct btrfs_block_group_cache *cache)
239 {
240 u64 start, end;
241
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
245 clear_extent_bits(&root->fs_info->freed_extents[0],
246 start, end, EXTENT_UPTODATE);
247 clear_extent_bits(&root->fs_info->freed_extents[1],
248 start, end, EXTENT_UPTODATE);
249 }
250
exclude_super_stripes(struct btrfs_root * root,struct btrfs_block_group_cache * cache)251 static int exclude_super_stripes(struct btrfs_root *root,
252 struct btrfs_block_group_cache *cache)
253 {
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
262 ret = add_excluded_extent(root, cache->key.objectid,
263 stripe_len);
264 if (ret)
265 return ret;
266 }
267
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
270 ret = btrfs_rmap_block(root->fs_info, cache->key.objectid,
271 bytenr, 0, &logical, &nr, &stripe_len);
272 if (ret)
273 return ret;
274
275 while (nr--) {
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
296 ret = add_excluded_extent(root, start, len);
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
301 }
302
303 kfree(logical);
304 }
305 return 0;
306 }
307
308 static struct btrfs_caching_control *
get_caching_control(struct btrfs_block_group_cache * cache)309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
316 return NULL;
317 }
318
319 ctl = cache->caching_ctl;
320 atomic_inc(&ctl->count);
321 spin_unlock(&cache->lock);
322 return ctl;
323 }
324
put_caching_control(struct btrfs_caching_control * ctl)325 static void put_caching_control(struct btrfs_caching_control *ctl)
326 {
327 if (atomic_dec_and_test(&ctl->count))
328 kfree(ctl);
329 }
330
331 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_root * root,struct btrfs_block_group_cache * block_group)332 static void fragment_free_space(struct btrfs_root *root,
333 struct btrfs_block_group_cache *block_group)
334 {
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 root->nodesize : root->sectorsize;
339 u64 step = chunk << 1;
340
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
343 start += step;
344 if (len < step)
345 len = 0;
346 else
347 len -= step;
348 }
349 }
350 #endif
351
352 /*
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
356 */
add_new_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_fs_info * info,u64 start,u64 end)357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
359 {
360 u64 extent_start, extent_end, size, total_added = 0;
361 int ret;
362
363 while (start < end) {
364 ret = find_first_extent_bit(info->pinned_extents, start,
365 &extent_start, &extent_end,
366 EXTENT_DIRTY | EXTENT_UPTODATE,
367 NULL);
368 if (ret)
369 break;
370
371 if (extent_start <= start) {
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
375 total_added += size;
376 ret = btrfs_add_free_space(block_group, start,
377 size);
378 BUG_ON(ret); /* -ENOMEM or logic error */
379 start = extent_end + 1;
380 } else {
381 break;
382 }
383 }
384
385 if (start < end) {
386 size = end - start;
387 total_added += size;
388 ret = btrfs_add_free_space(block_group, start, size);
389 BUG_ON(ret); /* -ENOMEM or logic error */
390 }
391
392 return total_added;
393 }
394
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
396 {
397 struct btrfs_block_group_cache *block_group;
398 struct btrfs_fs_info *fs_info;
399 struct btrfs_root *extent_root;
400 struct btrfs_path *path;
401 struct extent_buffer *leaf;
402 struct btrfs_key key;
403 u64 total_found = 0;
404 u64 last = 0;
405 u32 nritems;
406 int ret;
407 bool wakeup = true;
408
409 block_group = caching_ctl->block_group;
410 fs_info = block_group->fs_info;
411 extent_root = fs_info->extent_root;
412
413 path = btrfs_alloc_path();
414 if (!path)
415 return -ENOMEM;
416
417 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
418
419 #ifdef CONFIG_BTRFS_DEBUG
420 /*
421 * If we're fragmenting we don't want to make anybody think we can
422 * allocate from this block group until we've had a chance to fragment
423 * the free space.
424 */
425 if (btrfs_should_fragment_free_space(extent_root, block_group))
426 wakeup = false;
427 #endif
428 /*
429 * We don't want to deadlock with somebody trying to allocate a new
430 * extent for the extent root while also trying to search the extent
431 * root to add free space. So we skip locking and search the commit
432 * root, since its read-only
433 */
434 path->skip_locking = 1;
435 path->search_commit_root = 1;
436 path->reada = READA_FORWARD;
437
438 key.objectid = last;
439 key.offset = 0;
440 key.type = BTRFS_EXTENT_ITEM_KEY;
441
442 next:
443 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
444 if (ret < 0)
445 goto out;
446
447 leaf = path->nodes[0];
448 nritems = btrfs_header_nritems(leaf);
449
450 while (1) {
451 if (btrfs_fs_closing(fs_info) > 1) {
452 last = (u64)-1;
453 break;
454 }
455
456 if (path->slots[0] < nritems) {
457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
458 } else {
459 ret = find_next_key(path, 0, &key);
460 if (ret)
461 break;
462
463 if (need_resched() ||
464 rwsem_is_contended(&fs_info->commit_root_sem)) {
465 if (wakeup)
466 caching_ctl->progress = last;
467 btrfs_release_path(path);
468 up_read(&fs_info->commit_root_sem);
469 mutex_unlock(&caching_ctl->mutex);
470 cond_resched();
471 mutex_lock(&caching_ctl->mutex);
472 down_read(&fs_info->commit_root_sem);
473 goto next;
474 }
475
476 ret = btrfs_next_leaf(extent_root, path);
477 if (ret < 0)
478 goto out;
479 if (ret)
480 break;
481 leaf = path->nodes[0];
482 nritems = btrfs_header_nritems(leaf);
483 continue;
484 }
485
486 if (key.objectid < last) {
487 key.objectid = last;
488 key.offset = 0;
489 key.type = BTRFS_EXTENT_ITEM_KEY;
490
491 if (wakeup)
492 caching_ctl->progress = last;
493 btrfs_release_path(path);
494 goto next;
495 }
496
497 if (key.objectid < block_group->key.objectid) {
498 path->slots[0]++;
499 continue;
500 }
501
502 if (key.objectid >= block_group->key.objectid +
503 block_group->key.offset)
504 break;
505
506 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
507 key.type == BTRFS_METADATA_ITEM_KEY) {
508 total_found += add_new_free_space(block_group,
509 fs_info, last,
510 key.objectid);
511 if (key.type == BTRFS_METADATA_ITEM_KEY)
512 last = key.objectid +
513 fs_info->tree_root->nodesize;
514 else
515 last = key.objectid + key.offset;
516
517 if (total_found > CACHING_CTL_WAKE_UP) {
518 total_found = 0;
519 if (wakeup)
520 wake_up(&caching_ctl->wait);
521 }
522 }
523 path->slots[0]++;
524 }
525 ret = 0;
526
527 total_found += add_new_free_space(block_group, fs_info, last,
528 block_group->key.objectid +
529 block_group->key.offset);
530 caching_ctl->progress = (u64)-1;
531
532 out:
533 btrfs_free_path(path);
534 return ret;
535 }
536
caching_thread(struct btrfs_work * work)537 static noinline void caching_thread(struct btrfs_work *work)
538 {
539 struct btrfs_block_group_cache *block_group;
540 struct btrfs_fs_info *fs_info;
541 struct btrfs_caching_control *caching_ctl;
542 struct btrfs_root *extent_root;
543 int ret;
544
545 caching_ctl = container_of(work, struct btrfs_caching_control, work);
546 block_group = caching_ctl->block_group;
547 fs_info = block_group->fs_info;
548 extent_root = fs_info->extent_root;
549
550 mutex_lock(&caching_ctl->mutex);
551 down_read(&fs_info->commit_root_sem);
552
553 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
554 ret = load_free_space_tree(caching_ctl);
555 else
556 ret = load_extent_tree_free(caching_ctl);
557
558 spin_lock(&block_group->lock);
559 block_group->caching_ctl = NULL;
560 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
561 spin_unlock(&block_group->lock);
562
563 #ifdef CONFIG_BTRFS_DEBUG
564 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
565 u64 bytes_used;
566
567 spin_lock(&block_group->space_info->lock);
568 spin_lock(&block_group->lock);
569 bytes_used = block_group->key.offset -
570 btrfs_block_group_used(&block_group->item);
571 block_group->space_info->bytes_used += bytes_used >> 1;
572 spin_unlock(&block_group->lock);
573 spin_unlock(&block_group->space_info->lock);
574 fragment_free_space(extent_root, block_group);
575 }
576 #endif
577
578 caching_ctl->progress = (u64)-1;
579
580 up_read(&fs_info->commit_root_sem);
581 free_excluded_extents(fs_info->extent_root, block_group);
582 mutex_unlock(&caching_ctl->mutex);
583
584 wake_up(&caching_ctl->wait);
585
586 put_caching_control(caching_ctl);
587 btrfs_put_block_group(block_group);
588 }
589
cache_block_group(struct btrfs_block_group_cache * cache,int load_cache_only)590 static int cache_block_group(struct btrfs_block_group_cache *cache,
591 int load_cache_only)
592 {
593 DEFINE_WAIT(wait);
594 struct btrfs_fs_info *fs_info = cache->fs_info;
595 struct btrfs_caching_control *caching_ctl;
596 int ret = 0;
597
598 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
599 if (!caching_ctl)
600 return -ENOMEM;
601
602 INIT_LIST_HEAD(&caching_ctl->list);
603 mutex_init(&caching_ctl->mutex);
604 init_waitqueue_head(&caching_ctl->wait);
605 caching_ctl->block_group = cache;
606 caching_ctl->progress = cache->key.objectid;
607 atomic_set(&caching_ctl->count, 1);
608 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
609 caching_thread, NULL, NULL);
610
611 spin_lock(&cache->lock);
612 /*
613 * This should be a rare occasion, but this could happen I think in the
614 * case where one thread starts to load the space cache info, and then
615 * some other thread starts a transaction commit which tries to do an
616 * allocation while the other thread is still loading the space cache
617 * info. The previous loop should have kept us from choosing this block
618 * group, but if we've moved to the state where we will wait on caching
619 * block groups we need to first check if we're doing a fast load here,
620 * so we can wait for it to finish, otherwise we could end up allocating
621 * from a block group who's cache gets evicted for one reason or
622 * another.
623 */
624 while (cache->cached == BTRFS_CACHE_FAST) {
625 struct btrfs_caching_control *ctl;
626
627 ctl = cache->caching_ctl;
628 atomic_inc(&ctl->count);
629 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
630 spin_unlock(&cache->lock);
631
632 schedule();
633
634 finish_wait(&ctl->wait, &wait);
635 put_caching_control(ctl);
636 spin_lock(&cache->lock);
637 }
638
639 if (cache->cached != BTRFS_CACHE_NO) {
640 spin_unlock(&cache->lock);
641 kfree(caching_ctl);
642 return 0;
643 }
644 WARN_ON(cache->caching_ctl);
645 cache->caching_ctl = caching_ctl;
646 cache->cached = BTRFS_CACHE_FAST;
647 spin_unlock(&cache->lock);
648
649 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
650 mutex_lock(&caching_ctl->mutex);
651 ret = load_free_space_cache(fs_info, cache);
652
653 spin_lock(&cache->lock);
654 if (ret == 1) {
655 cache->caching_ctl = NULL;
656 cache->cached = BTRFS_CACHE_FINISHED;
657 cache->last_byte_to_unpin = (u64)-1;
658 caching_ctl->progress = (u64)-1;
659 } else {
660 if (load_cache_only) {
661 cache->caching_ctl = NULL;
662 cache->cached = BTRFS_CACHE_NO;
663 } else {
664 cache->cached = BTRFS_CACHE_STARTED;
665 cache->has_caching_ctl = 1;
666 }
667 }
668 spin_unlock(&cache->lock);
669 #ifdef CONFIG_BTRFS_DEBUG
670 if (ret == 1 &&
671 btrfs_should_fragment_free_space(fs_info->extent_root,
672 cache)) {
673 u64 bytes_used;
674
675 spin_lock(&cache->space_info->lock);
676 spin_lock(&cache->lock);
677 bytes_used = cache->key.offset -
678 btrfs_block_group_used(&cache->item);
679 cache->space_info->bytes_used += bytes_used >> 1;
680 spin_unlock(&cache->lock);
681 spin_unlock(&cache->space_info->lock);
682 fragment_free_space(fs_info->extent_root, cache);
683 }
684 #endif
685 mutex_unlock(&caching_ctl->mutex);
686
687 wake_up(&caching_ctl->wait);
688 if (ret == 1) {
689 put_caching_control(caching_ctl);
690 free_excluded_extents(fs_info->extent_root, cache);
691 return 0;
692 }
693 } else {
694 /*
695 * We're either using the free space tree or no caching at all.
696 * Set cached to the appropriate value and wakeup any waiters.
697 */
698 spin_lock(&cache->lock);
699 if (load_cache_only) {
700 cache->caching_ctl = NULL;
701 cache->cached = BTRFS_CACHE_NO;
702 } else {
703 cache->cached = BTRFS_CACHE_STARTED;
704 cache->has_caching_ctl = 1;
705 }
706 spin_unlock(&cache->lock);
707 wake_up(&caching_ctl->wait);
708 }
709
710 if (load_cache_only) {
711 put_caching_control(caching_ctl);
712 return 0;
713 }
714
715 down_write(&fs_info->commit_root_sem);
716 atomic_inc(&caching_ctl->count);
717 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
718 up_write(&fs_info->commit_root_sem);
719
720 btrfs_get_block_group(cache);
721
722 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
723
724 return ret;
725 }
726
727 /*
728 * return the block group that starts at or after bytenr
729 */
730 static struct btrfs_block_group_cache *
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)731 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
732 {
733 return block_group_cache_tree_search(info, bytenr, 0);
734 }
735
736 /*
737 * return the block group that contains the given bytenr
738 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)739 struct btrfs_block_group_cache *btrfs_lookup_block_group(
740 struct btrfs_fs_info *info,
741 u64 bytenr)
742 {
743 return block_group_cache_tree_search(info, bytenr, 1);
744 }
745
__find_space_info(struct btrfs_fs_info * info,u64 flags)746 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
747 u64 flags)
748 {
749 struct list_head *head = &info->space_info;
750 struct btrfs_space_info *found;
751
752 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
753
754 rcu_read_lock();
755 list_for_each_entry_rcu(found, head, list) {
756 if (found->flags & flags) {
757 rcu_read_unlock();
758 return found;
759 }
760 }
761 rcu_read_unlock();
762 return NULL;
763 }
764
765 /*
766 * after adding space to the filesystem, we need to clear the full flags
767 * on all the space infos.
768 */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)769 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
770 {
771 struct list_head *head = &info->space_info;
772 struct btrfs_space_info *found;
773
774 rcu_read_lock();
775 list_for_each_entry_rcu(found, head, list)
776 found->full = 0;
777 rcu_read_unlock();
778 }
779
780 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_root * root,u64 start,u64 len)781 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
782 {
783 int ret;
784 struct btrfs_key key;
785 struct btrfs_path *path;
786
787 path = btrfs_alloc_path();
788 if (!path)
789 return -ENOMEM;
790
791 key.objectid = start;
792 key.offset = len;
793 key.type = BTRFS_EXTENT_ITEM_KEY;
794 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
795 0, 0);
796 btrfs_free_path(path);
797 return ret;
798 }
799
800 /*
801 * helper function to lookup reference count and flags of a tree block.
802 *
803 * the head node for delayed ref is used to store the sum of all the
804 * reference count modifications queued up in the rbtree. the head
805 * node may also store the extent flags to set. This way you can check
806 * to see what the reference count and extent flags would be if all of
807 * the delayed refs are not processed.
808 */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)809 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
810 struct btrfs_root *root, u64 bytenr,
811 u64 offset, int metadata, u64 *refs, u64 *flags)
812 {
813 struct btrfs_delayed_ref_head *head;
814 struct btrfs_delayed_ref_root *delayed_refs;
815 struct btrfs_path *path;
816 struct btrfs_extent_item *ei;
817 struct extent_buffer *leaf;
818 struct btrfs_key key;
819 u32 item_size;
820 u64 num_refs;
821 u64 extent_flags;
822 int ret;
823
824 /*
825 * If we don't have skinny metadata, don't bother doing anything
826 * different
827 */
828 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
829 offset = root->nodesize;
830 metadata = 0;
831 }
832
833 path = btrfs_alloc_path();
834 if (!path)
835 return -ENOMEM;
836
837 if (!trans) {
838 path->skip_locking = 1;
839 path->search_commit_root = 1;
840 }
841
842 search_again:
843 key.objectid = bytenr;
844 key.offset = offset;
845 if (metadata)
846 key.type = BTRFS_METADATA_ITEM_KEY;
847 else
848 key.type = BTRFS_EXTENT_ITEM_KEY;
849
850 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
851 &key, path, 0, 0);
852 if (ret < 0)
853 goto out_free;
854
855 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
856 if (path->slots[0]) {
857 path->slots[0]--;
858 btrfs_item_key_to_cpu(path->nodes[0], &key,
859 path->slots[0]);
860 if (key.objectid == bytenr &&
861 key.type == BTRFS_EXTENT_ITEM_KEY &&
862 key.offset == root->nodesize)
863 ret = 0;
864 }
865 }
866
867 if (ret == 0) {
868 leaf = path->nodes[0];
869 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
870 if (item_size >= sizeof(*ei)) {
871 ei = btrfs_item_ptr(leaf, path->slots[0],
872 struct btrfs_extent_item);
873 num_refs = btrfs_extent_refs(leaf, ei);
874 extent_flags = btrfs_extent_flags(leaf, ei);
875 } else {
876 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
877 struct btrfs_extent_item_v0 *ei0;
878 BUG_ON(item_size != sizeof(*ei0));
879 ei0 = btrfs_item_ptr(leaf, path->slots[0],
880 struct btrfs_extent_item_v0);
881 num_refs = btrfs_extent_refs_v0(leaf, ei0);
882 /* FIXME: this isn't correct for data */
883 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
884 #else
885 BUG();
886 #endif
887 }
888 BUG_ON(num_refs == 0);
889 } else {
890 num_refs = 0;
891 extent_flags = 0;
892 ret = 0;
893 }
894
895 if (!trans)
896 goto out;
897
898 delayed_refs = &trans->transaction->delayed_refs;
899 spin_lock(&delayed_refs->lock);
900 head = btrfs_find_delayed_ref_head(trans, bytenr);
901 if (head) {
902 if (!mutex_trylock(&head->mutex)) {
903 atomic_inc(&head->node.refs);
904 spin_unlock(&delayed_refs->lock);
905
906 btrfs_release_path(path);
907
908 /*
909 * Mutex was contended, block until it's released and try
910 * again
911 */
912 mutex_lock(&head->mutex);
913 mutex_unlock(&head->mutex);
914 btrfs_put_delayed_ref(&head->node);
915 goto search_again;
916 }
917 spin_lock(&head->lock);
918 if (head->extent_op && head->extent_op->update_flags)
919 extent_flags |= head->extent_op->flags_to_set;
920 else
921 BUG_ON(num_refs == 0);
922
923 num_refs += head->node.ref_mod;
924 spin_unlock(&head->lock);
925 mutex_unlock(&head->mutex);
926 }
927 spin_unlock(&delayed_refs->lock);
928 out:
929 WARN_ON(num_refs == 0);
930 if (refs)
931 *refs = num_refs;
932 if (flags)
933 *flags = extent_flags;
934 out_free:
935 btrfs_free_path(path);
936 return ret;
937 }
938
939 /*
940 * Back reference rules. Back refs have three main goals:
941 *
942 * 1) differentiate between all holders of references to an extent so that
943 * when a reference is dropped we can make sure it was a valid reference
944 * before freeing the extent.
945 *
946 * 2) Provide enough information to quickly find the holders of an extent
947 * if we notice a given block is corrupted or bad.
948 *
949 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
950 * maintenance. This is actually the same as #2, but with a slightly
951 * different use case.
952 *
953 * There are two kinds of back refs. The implicit back refs is optimized
954 * for pointers in non-shared tree blocks. For a given pointer in a block,
955 * back refs of this kind provide information about the block's owner tree
956 * and the pointer's key. These information allow us to find the block by
957 * b-tree searching. The full back refs is for pointers in tree blocks not
958 * referenced by their owner trees. The location of tree block is recorded
959 * in the back refs. Actually the full back refs is generic, and can be
960 * used in all cases the implicit back refs is used. The major shortcoming
961 * of the full back refs is its overhead. Every time a tree block gets
962 * COWed, we have to update back refs entry for all pointers in it.
963 *
964 * For a newly allocated tree block, we use implicit back refs for
965 * pointers in it. This means most tree related operations only involve
966 * implicit back refs. For a tree block created in old transaction, the
967 * only way to drop a reference to it is COW it. So we can detect the
968 * event that tree block loses its owner tree's reference and do the
969 * back refs conversion.
970 *
971 * When a tree block is COWed through a tree, there are four cases:
972 *
973 * The reference count of the block is one and the tree is the block's
974 * owner tree. Nothing to do in this case.
975 *
976 * The reference count of the block is one and the tree is not the
977 * block's owner tree. In this case, full back refs is used for pointers
978 * in the block. Remove these full back refs, add implicit back refs for
979 * every pointers in the new block.
980 *
981 * The reference count of the block is greater than one and the tree is
982 * the block's owner tree. In this case, implicit back refs is used for
983 * pointers in the block. Add full back refs for every pointers in the
984 * block, increase lower level extents' reference counts. The original
985 * implicit back refs are entailed to the new block.
986 *
987 * The reference count of the block is greater than one and the tree is
988 * not the block's owner tree. Add implicit back refs for every pointer in
989 * the new block, increase lower level extents' reference count.
990 *
991 * Back Reference Key composing:
992 *
993 * The key objectid corresponds to the first byte in the extent,
994 * The key type is used to differentiate between types of back refs.
995 * There are different meanings of the key offset for different types
996 * of back refs.
997 *
998 * File extents can be referenced by:
999 *
1000 * - multiple snapshots, subvolumes, or different generations in one subvol
1001 * - different files inside a single subvolume
1002 * - different offsets inside a file (bookend extents in file.c)
1003 *
1004 * The extent ref structure for the implicit back refs has fields for:
1005 *
1006 * - Objectid of the subvolume root
1007 * - objectid of the file holding the reference
1008 * - original offset in the file
1009 * - how many bookend extents
1010 *
1011 * The key offset for the implicit back refs is hash of the first
1012 * three fields.
1013 *
1014 * The extent ref structure for the full back refs has field for:
1015 *
1016 * - number of pointers in the tree leaf
1017 *
1018 * The key offset for the implicit back refs is the first byte of
1019 * the tree leaf
1020 *
1021 * When a file extent is allocated, The implicit back refs is used.
1022 * the fields are filled in:
1023 *
1024 * (root_key.objectid, inode objectid, offset in file, 1)
1025 *
1026 * When a file extent is removed file truncation, we find the
1027 * corresponding implicit back refs and check the following fields:
1028 *
1029 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1030 *
1031 * Btree extents can be referenced by:
1032 *
1033 * - Different subvolumes
1034 *
1035 * Both the implicit back refs and the full back refs for tree blocks
1036 * only consist of key. The key offset for the implicit back refs is
1037 * objectid of block's owner tree. The key offset for the full back refs
1038 * is the first byte of parent block.
1039 *
1040 * When implicit back refs is used, information about the lowest key and
1041 * level of the tree block are required. These information are stored in
1042 * tree block info structure.
1043 */
1044
1045 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
convert_extent_item_v0(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 owner,u32 extra_size)1046 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1047 struct btrfs_root *root,
1048 struct btrfs_path *path,
1049 u64 owner, u32 extra_size)
1050 {
1051 struct btrfs_extent_item *item;
1052 struct btrfs_extent_item_v0 *ei0;
1053 struct btrfs_extent_ref_v0 *ref0;
1054 struct btrfs_tree_block_info *bi;
1055 struct extent_buffer *leaf;
1056 struct btrfs_key key;
1057 struct btrfs_key found_key;
1058 u32 new_size = sizeof(*item);
1059 u64 refs;
1060 int ret;
1061
1062 leaf = path->nodes[0];
1063 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1064
1065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1066 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1067 struct btrfs_extent_item_v0);
1068 refs = btrfs_extent_refs_v0(leaf, ei0);
1069
1070 if (owner == (u64)-1) {
1071 while (1) {
1072 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073 ret = btrfs_next_leaf(root, path);
1074 if (ret < 0)
1075 return ret;
1076 BUG_ON(ret > 0); /* Corruption */
1077 leaf = path->nodes[0];
1078 }
1079 btrfs_item_key_to_cpu(leaf, &found_key,
1080 path->slots[0]);
1081 BUG_ON(key.objectid != found_key.objectid);
1082 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1083 path->slots[0]++;
1084 continue;
1085 }
1086 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1087 struct btrfs_extent_ref_v0);
1088 owner = btrfs_ref_objectid_v0(leaf, ref0);
1089 break;
1090 }
1091 }
1092 btrfs_release_path(path);
1093
1094 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1095 new_size += sizeof(*bi);
1096
1097 new_size -= sizeof(*ei0);
1098 ret = btrfs_search_slot(trans, root, &key, path,
1099 new_size + extra_size, 1);
1100 if (ret < 0)
1101 return ret;
1102 BUG_ON(ret); /* Corruption */
1103
1104 btrfs_extend_item(root, path, new_size);
1105
1106 leaf = path->nodes[0];
1107 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1108 btrfs_set_extent_refs(leaf, item, refs);
1109 /* FIXME: get real generation */
1110 btrfs_set_extent_generation(leaf, item, 0);
1111 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1112 btrfs_set_extent_flags(leaf, item,
1113 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1114 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1115 bi = (struct btrfs_tree_block_info *)(item + 1);
1116 /* FIXME: get first key of the block */
1117 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1118 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1119 } else {
1120 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1121 }
1122 btrfs_mark_buffer_dirty(leaf);
1123 return 0;
1124 }
1125 #endif
1126
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)1127 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1128 {
1129 u32 high_crc = ~(u32)0;
1130 u32 low_crc = ~(u32)0;
1131 __le64 lenum;
1132
1133 lenum = cpu_to_le64(root_objectid);
1134 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1135 lenum = cpu_to_le64(owner);
1136 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1137 lenum = cpu_to_le64(offset);
1138 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1139
1140 return ((u64)high_crc << 31) ^ (u64)low_crc;
1141 }
1142
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)1143 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1144 struct btrfs_extent_data_ref *ref)
1145 {
1146 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1147 btrfs_extent_data_ref_objectid(leaf, ref),
1148 btrfs_extent_data_ref_offset(leaf, ref));
1149 }
1150
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)1151 static int match_extent_data_ref(struct extent_buffer *leaf,
1152 struct btrfs_extent_data_ref *ref,
1153 u64 root_objectid, u64 owner, u64 offset)
1154 {
1155 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1156 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1157 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1158 return 0;
1159 return 1;
1160 }
1161
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)1162 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1163 struct btrfs_root *root,
1164 struct btrfs_path *path,
1165 u64 bytenr, u64 parent,
1166 u64 root_objectid,
1167 u64 owner, u64 offset)
1168 {
1169 struct btrfs_key key;
1170 struct btrfs_extent_data_ref *ref;
1171 struct extent_buffer *leaf;
1172 u32 nritems;
1173 int ret;
1174 int recow;
1175 int err = -ENOENT;
1176
1177 key.objectid = bytenr;
1178 if (parent) {
1179 key.type = BTRFS_SHARED_DATA_REF_KEY;
1180 key.offset = parent;
1181 } else {
1182 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1183 key.offset = hash_extent_data_ref(root_objectid,
1184 owner, offset);
1185 }
1186 again:
1187 recow = 0;
1188 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1189 if (ret < 0) {
1190 err = ret;
1191 goto fail;
1192 }
1193
1194 if (parent) {
1195 if (!ret)
1196 return 0;
1197 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1198 key.type = BTRFS_EXTENT_REF_V0_KEY;
1199 btrfs_release_path(path);
1200 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201 if (ret < 0) {
1202 err = ret;
1203 goto fail;
1204 }
1205 if (!ret)
1206 return 0;
1207 #endif
1208 goto fail;
1209 }
1210
1211 leaf = path->nodes[0];
1212 nritems = btrfs_header_nritems(leaf);
1213 while (1) {
1214 if (path->slots[0] >= nritems) {
1215 ret = btrfs_next_leaf(root, path);
1216 if (ret < 0)
1217 err = ret;
1218 if (ret)
1219 goto fail;
1220
1221 leaf = path->nodes[0];
1222 nritems = btrfs_header_nritems(leaf);
1223 recow = 1;
1224 }
1225
1226 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1227 if (key.objectid != bytenr ||
1228 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1229 goto fail;
1230
1231 ref = btrfs_item_ptr(leaf, path->slots[0],
1232 struct btrfs_extent_data_ref);
1233
1234 if (match_extent_data_ref(leaf, ref, root_objectid,
1235 owner, offset)) {
1236 if (recow) {
1237 btrfs_release_path(path);
1238 goto again;
1239 }
1240 err = 0;
1241 break;
1242 }
1243 path->slots[0]++;
1244 }
1245 fail:
1246 return err;
1247 }
1248
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1249 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1250 struct btrfs_root *root,
1251 struct btrfs_path *path,
1252 u64 bytenr, u64 parent,
1253 u64 root_objectid, u64 owner,
1254 u64 offset, int refs_to_add)
1255 {
1256 struct btrfs_key key;
1257 struct extent_buffer *leaf;
1258 u32 size;
1259 u32 num_refs;
1260 int ret;
1261
1262 key.objectid = bytenr;
1263 if (parent) {
1264 key.type = BTRFS_SHARED_DATA_REF_KEY;
1265 key.offset = parent;
1266 size = sizeof(struct btrfs_shared_data_ref);
1267 } else {
1268 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1269 key.offset = hash_extent_data_ref(root_objectid,
1270 owner, offset);
1271 size = sizeof(struct btrfs_extent_data_ref);
1272 }
1273
1274 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1275 if (ret && ret != -EEXIST)
1276 goto fail;
1277
1278 leaf = path->nodes[0];
1279 if (parent) {
1280 struct btrfs_shared_data_ref *ref;
1281 ref = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 if (ret == 0) {
1284 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1285 } else {
1286 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1287 num_refs += refs_to_add;
1288 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1289 }
1290 } else {
1291 struct btrfs_extent_data_ref *ref;
1292 while (ret == -EEXIST) {
1293 ref = btrfs_item_ptr(leaf, path->slots[0],
1294 struct btrfs_extent_data_ref);
1295 if (match_extent_data_ref(leaf, ref, root_objectid,
1296 owner, offset))
1297 break;
1298 btrfs_release_path(path);
1299 key.offset++;
1300 ret = btrfs_insert_empty_item(trans, root, path, &key,
1301 size);
1302 if (ret && ret != -EEXIST)
1303 goto fail;
1304
1305 leaf = path->nodes[0];
1306 }
1307 ref = btrfs_item_ptr(leaf, path->slots[0],
1308 struct btrfs_extent_data_ref);
1309 if (ret == 0) {
1310 btrfs_set_extent_data_ref_root(leaf, ref,
1311 root_objectid);
1312 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1313 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1314 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1315 } else {
1316 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1317 num_refs += refs_to_add;
1318 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1319 }
1320 }
1321 btrfs_mark_buffer_dirty(leaf);
1322 ret = 0;
1323 fail:
1324 btrfs_release_path(path);
1325 return ret;
1326 }
1327
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop,int * last_ref)1328 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1329 struct btrfs_root *root,
1330 struct btrfs_path *path,
1331 int refs_to_drop, int *last_ref)
1332 {
1333 struct btrfs_key key;
1334 struct btrfs_extent_data_ref *ref1 = NULL;
1335 struct btrfs_shared_data_ref *ref2 = NULL;
1336 struct extent_buffer *leaf;
1337 u32 num_refs = 0;
1338 int ret = 0;
1339
1340 leaf = path->nodes[0];
1341 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1342
1343 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1344 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1345 struct btrfs_extent_data_ref);
1346 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1347 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1348 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1349 struct btrfs_shared_data_ref);
1350 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1351 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1352 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1353 struct btrfs_extent_ref_v0 *ref0;
1354 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1355 struct btrfs_extent_ref_v0);
1356 num_refs = btrfs_ref_count_v0(leaf, ref0);
1357 #endif
1358 } else {
1359 BUG();
1360 }
1361
1362 BUG_ON(num_refs < refs_to_drop);
1363 num_refs -= refs_to_drop;
1364
1365 if (num_refs == 0) {
1366 ret = btrfs_del_item(trans, root, path);
1367 *last_ref = 1;
1368 } else {
1369 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1370 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1371 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1372 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1373 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1374 else {
1375 struct btrfs_extent_ref_v0 *ref0;
1376 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1377 struct btrfs_extent_ref_v0);
1378 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1379 }
1380 #endif
1381 btrfs_mark_buffer_dirty(leaf);
1382 }
1383 return ret;
1384 }
1385
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)1386 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1387 struct btrfs_extent_inline_ref *iref)
1388 {
1389 struct btrfs_key key;
1390 struct extent_buffer *leaf;
1391 struct btrfs_extent_data_ref *ref1;
1392 struct btrfs_shared_data_ref *ref2;
1393 u32 num_refs = 0;
1394
1395 leaf = path->nodes[0];
1396 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1397 if (iref) {
1398 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1399 BTRFS_EXTENT_DATA_REF_KEY) {
1400 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1401 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1402 } else {
1403 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1404 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1405 }
1406 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1407 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1408 struct btrfs_extent_data_ref);
1409 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1410 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1411 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1412 struct btrfs_shared_data_ref);
1413 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1414 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1415 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1416 struct btrfs_extent_ref_v0 *ref0;
1417 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1418 struct btrfs_extent_ref_v0);
1419 num_refs = btrfs_ref_count_v0(leaf, ref0);
1420 #endif
1421 } else {
1422 WARN_ON(1);
1423 }
1424 return num_refs;
1425 }
1426
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1427 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1428 struct btrfs_root *root,
1429 struct btrfs_path *path,
1430 u64 bytenr, u64 parent,
1431 u64 root_objectid)
1432 {
1433 struct btrfs_key key;
1434 int ret;
1435
1436 key.objectid = bytenr;
1437 if (parent) {
1438 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1439 key.offset = parent;
1440 } else {
1441 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1442 key.offset = root_objectid;
1443 }
1444
1445 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1446 if (ret > 0)
1447 ret = -ENOENT;
1448 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1449 if (ret == -ENOENT && parent) {
1450 btrfs_release_path(path);
1451 key.type = BTRFS_EXTENT_REF_V0_KEY;
1452 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1453 if (ret > 0)
1454 ret = -ENOENT;
1455 }
1456 #endif
1457 return ret;
1458 }
1459
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1460 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1461 struct btrfs_root *root,
1462 struct btrfs_path *path,
1463 u64 bytenr, u64 parent,
1464 u64 root_objectid)
1465 {
1466 struct btrfs_key key;
1467 int ret;
1468
1469 key.objectid = bytenr;
1470 if (parent) {
1471 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1472 key.offset = parent;
1473 } else {
1474 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1475 key.offset = root_objectid;
1476 }
1477
1478 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1479 btrfs_release_path(path);
1480 return ret;
1481 }
1482
extent_ref_type(u64 parent,u64 owner)1483 static inline int extent_ref_type(u64 parent, u64 owner)
1484 {
1485 int type;
1486 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1487 if (parent > 0)
1488 type = BTRFS_SHARED_BLOCK_REF_KEY;
1489 else
1490 type = BTRFS_TREE_BLOCK_REF_KEY;
1491 } else {
1492 if (parent > 0)
1493 type = BTRFS_SHARED_DATA_REF_KEY;
1494 else
1495 type = BTRFS_EXTENT_DATA_REF_KEY;
1496 }
1497 return type;
1498 }
1499
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1500 static int find_next_key(struct btrfs_path *path, int level,
1501 struct btrfs_key *key)
1502
1503 {
1504 for (; level < BTRFS_MAX_LEVEL; level++) {
1505 if (!path->nodes[level])
1506 break;
1507 if (path->slots[level] + 1 >=
1508 btrfs_header_nritems(path->nodes[level]))
1509 continue;
1510 if (level == 0)
1511 btrfs_item_key_to_cpu(path->nodes[level], key,
1512 path->slots[level] + 1);
1513 else
1514 btrfs_node_key_to_cpu(path->nodes[level], key,
1515 path->slots[level] + 1);
1516 return 0;
1517 }
1518 return 1;
1519 }
1520
1521 /*
1522 * look for inline back ref. if back ref is found, *ref_ret is set
1523 * to the address of inline back ref, and 0 is returned.
1524 *
1525 * if back ref isn't found, *ref_ret is set to the address where it
1526 * should be inserted, and -ENOENT is returned.
1527 *
1528 * if insert is true and there are too many inline back refs, the path
1529 * points to the extent item, and -EAGAIN is returned.
1530 *
1531 * NOTE: inline back refs are ordered in the same way that back ref
1532 * items in the tree are ordered.
1533 */
1534 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)1535 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1536 struct btrfs_root *root,
1537 struct btrfs_path *path,
1538 struct btrfs_extent_inline_ref **ref_ret,
1539 u64 bytenr, u64 num_bytes,
1540 u64 parent, u64 root_objectid,
1541 u64 owner, u64 offset, int insert)
1542 {
1543 struct btrfs_key key;
1544 struct extent_buffer *leaf;
1545 struct btrfs_extent_item *ei;
1546 struct btrfs_extent_inline_ref *iref;
1547 u64 flags;
1548 u64 item_size;
1549 unsigned long ptr;
1550 unsigned long end;
1551 int extra_size;
1552 int type;
1553 int want;
1554 int ret;
1555 int err = 0;
1556 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1557 SKINNY_METADATA);
1558
1559 key.objectid = bytenr;
1560 key.type = BTRFS_EXTENT_ITEM_KEY;
1561 key.offset = num_bytes;
1562
1563 want = extent_ref_type(parent, owner);
1564 if (insert) {
1565 extra_size = btrfs_extent_inline_ref_size(want);
1566 path->keep_locks = 1;
1567 } else
1568 extra_size = -1;
1569
1570 /*
1571 * Owner is our parent level, so we can just add one to get the level
1572 * for the block we are interested in.
1573 */
1574 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1575 key.type = BTRFS_METADATA_ITEM_KEY;
1576 key.offset = owner;
1577 }
1578
1579 again:
1580 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1581 if (ret < 0) {
1582 err = ret;
1583 goto out;
1584 }
1585
1586 /*
1587 * We may be a newly converted file system which still has the old fat
1588 * extent entries for metadata, so try and see if we have one of those.
1589 */
1590 if (ret > 0 && skinny_metadata) {
1591 skinny_metadata = false;
1592 if (path->slots[0]) {
1593 path->slots[0]--;
1594 btrfs_item_key_to_cpu(path->nodes[0], &key,
1595 path->slots[0]);
1596 if (key.objectid == bytenr &&
1597 key.type == BTRFS_EXTENT_ITEM_KEY &&
1598 key.offset == num_bytes)
1599 ret = 0;
1600 }
1601 if (ret) {
1602 key.objectid = bytenr;
1603 key.type = BTRFS_EXTENT_ITEM_KEY;
1604 key.offset = num_bytes;
1605 btrfs_release_path(path);
1606 goto again;
1607 }
1608 }
1609
1610 if (ret && !insert) {
1611 err = -ENOENT;
1612 goto out;
1613 } else if (WARN_ON(ret)) {
1614 err = -EIO;
1615 goto out;
1616 }
1617
1618 leaf = path->nodes[0];
1619 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1620 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1621 if (item_size < sizeof(*ei)) {
1622 if (!insert) {
1623 err = -ENOENT;
1624 goto out;
1625 }
1626 ret = convert_extent_item_v0(trans, root, path, owner,
1627 extra_size);
1628 if (ret < 0) {
1629 err = ret;
1630 goto out;
1631 }
1632 leaf = path->nodes[0];
1633 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1634 }
1635 #endif
1636 BUG_ON(item_size < sizeof(*ei));
1637
1638 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1639 flags = btrfs_extent_flags(leaf, ei);
1640
1641 ptr = (unsigned long)(ei + 1);
1642 end = (unsigned long)ei + item_size;
1643
1644 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1645 ptr += sizeof(struct btrfs_tree_block_info);
1646 BUG_ON(ptr > end);
1647 }
1648
1649 err = -ENOENT;
1650 while (1) {
1651 if (ptr >= end) {
1652 WARN_ON(ptr > end);
1653 break;
1654 }
1655 iref = (struct btrfs_extent_inline_ref *)ptr;
1656 type = btrfs_extent_inline_ref_type(leaf, iref);
1657 if (want < type)
1658 break;
1659 if (want > type) {
1660 ptr += btrfs_extent_inline_ref_size(type);
1661 continue;
1662 }
1663
1664 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1665 struct btrfs_extent_data_ref *dref;
1666 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1667 if (match_extent_data_ref(leaf, dref, root_objectid,
1668 owner, offset)) {
1669 err = 0;
1670 break;
1671 }
1672 if (hash_extent_data_ref_item(leaf, dref) <
1673 hash_extent_data_ref(root_objectid, owner, offset))
1674 break;
1675 } else {
1676 u64 ref_offset;
1677 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1678 if (parent > 0) {
1679 if (parent == ref_offset) {
1680 err = 0;
1681 break;
1682 }
1683 if (ref_offset < parent)
1684 break;
1685 } else {
1686 if (root_objectid == ref_offset) {
1687 err = 0;
1688 break;
1689 }
1690 if (ref_offset < root_objectid)
1691 break;
1692 }
1693 }
1694 ptr += btrfs_extent_inline_ref_size(type);
1695 }
1696 if (err == -ENOENT && insert) {
1697 if (item_size + extra_size >=
1698 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1699 err = -EAGAIN;
1700 goto out;
1701 }
1702 /*
1703 * To add new inline back ref, we have to make sure
1704 * there is no corresponding back ref item.
1705 * For simplicity, we just do not add new inline back
1706 * ref if there is any kind of item for this block
1707 */
1708 if (find_next_key(path, 0, &key) == 0 &&
1709 key.objectid == bytenr &&
1710 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1711 err = -EAGAIN;
1712 goto out;
1713 }
1714 }
1715 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1716 out:
1717 if (insert) {
1718 path->keep_locks = 0;
1719 btrfs_unlock_up_safe(path, 1);
1720 }
1721 return err;
1722 }
1723
1724 /*
1725 * helper to add new inline back ref
1726 */
1727 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1728 void setup_inline_extent_backref(struct btrfs_root *root,
1729 struct btrfs_path *path,
1730 struct btrfs_extent_inline_ref *iref,
1731 u64 parent, u64 root_objectid,
1732 u64 owner, u64 offset, int refs_to_add,
1733 struct btrfs_delayed_extent_op *extent_op)
1734 {
1735 struct extent_buffer *leaf;
1736 struct btrfs_extent_item *ei;
1737 unsigned long ptr;
1738 unsigned long end;
1739 unsigned long item_offset;
1740 u64 refs;
1741 int size;
1742 int type;
1743
1744 leaf = path->nodes[0];
1745 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1746 item_offset = (unsigned long)iref - (unsigned long)ei;
1747
1748 type = extent_ref_type(parent, owner);
1749 size = btrfs_extent_inline_ref_size(type);
1750
1751 btrfs_extend_item(root, path, size);
1752
1753 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1754 refs = btrfs_extent_refs(leaf, ei);
1755 refs += refs_to_add;
1756 btrfs_set_extent_refs(leaf, ei, refs);
1757 if (extent_op)
1758 __run_delayed_extent_op(extent_op, leaf, ei);
1759
1760 ptr = (unsigned long)ei + item_offset;
1761 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1762 if (ptr < end - size)
1763 memmove_extent_buffer(leaf, ptr + size, ptr,
1764 end - size - ptr);
1765
1766 iref = (struct btrfs_extent_inline_ref *)ptr;
1767 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1768 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1769 struct btrfs_extent_data_ref *dref;
1770 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1771 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1772 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1773 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1774 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1775 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1776 struct btrfs_shared_data_ref *sref;
1777 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1778 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1779 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1780 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1781 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1782 } else {
1783 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1784 }
1785 btrfs_mark_buffer_dirty(leaf);
1786 }
1787
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1788 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1789 struct btrfs_root *root,
1790 struct btrfs_path *path,
1791 struct btrfs_extent_inline_ref **ref_ret,
1792 u64 bytenr, u64 num_bytes, u64 parent,
1793 u64 root_objectid, u64 owner, u64 offset)
1794 {
1795 int ret;
1796
1797 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1798 bytenr, num_bytes, parent,
1799 root_objectid, owner, offset, 0);
1800 if (ret != -ENOENT)
1801 return ret;
1802
1803 btrfs_release_path(path);
1804 *ref_ret = NULL;
1805
1806 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1807 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1808 root_objectid);
1809 } else {
1810 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1811 root_objectid, owner, offset);
1812 }
1813 return ret;
1814 }
1815
1816 /*
1817 * helper to update/remove inline back ref
1818 */
1819 static noinline_for_stack
update_inline_extent_backref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op,int * last_ref)1820 void update_inline_extent_backref(struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 struct btrfs_extent_inline_ref *iref,
1823 int refs_to_mod,
1824 struct btrfs_delayed_extent_op *extent_op,
1825 int *last_ref)
1826 {
1827 struct extent_buffer *leaf;
1828 struct btrfs_extent_item *ei;
1829 struct btrfs_extent_data_ref *dref = NULL;
1830 struct btrfs_shared_data_ref *sref = NULL;
1831 unsigned long ptr;
1832 unsigned long end;
1833 u32 item_size;
1834 int size;
1835 int type;
1836 u64 refs;
1837
1838 leaf = path->nodes[0];
1839 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1840 refs = btrfs_extent_refs(leaf, ei);
1841 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1842 refs += refs_to_mod;
1843 btrfs_set_extent_refs(leaf, ei, refs);
1844 if (extent_op)
1845 __run_delayed_extent_op(extent_op, leaf, ei);
1846
1847 type = btrfs_extent_inline_ref_type(leaf, iref);
1848
1849 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1850 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1851 refs = btrfs_extent_data_ref_count(leaf, dref);
1852 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1853 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1854 refs = btrfs_shared_data_ref_count(leaf, sref);
1855 } else {
1856 refs = 1;
1857 BUG_ON(refs_to_mod != -1);
1858 }
1859
1860 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1861 refs += refs_to_mod;
1862
1863 if (refs > 0) {
1864 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1865 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1866 else
1867 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1868 } else {
1869 *last_ref = 1;
1870 size = btrfs_extent_inline_ref_size(type);
1871 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1872 ptr = (unsigned long)iref;
1873 end = (unsigned long)ei + item_size;
1874 if (ptr + size < end)
1875 memmove_extent_buffer(leaf, ptr, ptr + size,
1876 end - ptr - size);
1877 item_size -= size;
1878 btrfs_truncate_item(root, path, item_size, 1);
1879 }
1880 btrfs_mark_buffer_dirty(leaf);
1881 }
1882
1883 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1884 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1885 struct btrfs_root *root,
1886 struct btrfs_path *path,
1887 u64 bytenr, u64 num_bytes, u64 parent,
1888 u64 root_objectid, u64 owner,
1889 u64 offset, int refs_to_add,
1890 struct btrfs_delayed_extent_op *extent_op)
1891 {
1892 struct btrfs_extent_inline_ref *iref;
1893 int ret;
1894
1895 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1896 bytenr, num_bytes, parent,
1897 root_objectid, owner, offset, 1);
1898 if (ret == 0) {
1899 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1900 update_inline_extent_backref(root, path, iref,
1901 refs_to_add, extent_op, NULL);
1902 } else if (ret == -ENOENT) {
1903 setup_inline_extent_backref(root, path, iref, parent,
1904 root_objectid, owner, offset,
1905 refs_to_add, extent_op);
1906 ret = 0;
1907 }
1908 return ret;
1909 }
1910
insert_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1911 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1912 struct btrfs_root *root,
1913 struct btrfs_path *path,
1914 u64 bytenr, u64 parent, u64 root_objectid,
1915 u64 owner, u64 offset, int refs_to_add)
1916 {
1917 int ret;
1918 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1919 BUG_ON(refs_to_add != 1);
1920 ret = insert_tree_block_ref(trans, root, path, bytenr,
1921 parent, root_objectid);
1922 } else {
1923 ret = insert_extent_data_ref(trans, root, path, bytenr,
1924 parent, root_objectid,
1925 owner, offset, refs_to_add);
1926 }
1927 return ret;
1928 }
1929
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data,int * last_ref)1930 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1931 struct btrfs_root *root,
1932 struct btrfs_path *path,
1933 struct btrfs_extent_inline_ref *iref,
1934 int refs_to_drop, int is_data, int *last_ref)
1935 {
1936 int ret = 0;
1937
1938 BUG_ON(!is_data && refs_to_drop != 1);
1939 if (iref) {
1940 update_inline_extent_backref(root, path, iref,
1941 -refs_to_drop, NULL, last_ref);
1942 } else if (is_data) {
1943 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1944 last_ref);
1945 } else {
1946 *last_ref = 1;
1947 ret = btrfs_del_item(trans, root, path);
1948 }
1949 return ret;
1950 }
1951
1952 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1953 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1954 u64 *discarded_bytes)
1955 {
1956 int j, ret = 0;
1957 u64 bytes_left, end;
1958 u64 aligned_start = ALIGN(start, 1 << 9);
1959
1960 if (WARN_ON(start != aligned_start)) {
1961 len -= aligned_start - start;
1962 len = round_down(len, 1 << 9);
1963 start = aligned_start;
1964 }
1965
1966 *discarded_bytes = 0;
1967
1968 if (!len)
1969 return 0;
1970
1971 end = start + len;
1972 bytes_left = len;
1973
1974 /* Skip any superblocks on this device. */
1975 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1976 u64 sb_start = btrfs_sb_offset(j);
1977 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1978 u64 size = sb_start - start;
1979
1980 if (!in_range(sb_start, start, bytes_left) &&
1981 !in_range(sb_end, start, bytes_left) &&
1982 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1983 continue;
1984
1985 /*
1986 * Superblock spans beginning of range. Adjust start and
1987 * try again.
1988 */
1989 if (sb_start <= start) {
1990 start += sb_end - start;
1991 if (start > end) {
1992 bytes_left = 0;
1993 break;
1994 }
1995 bytes_left = end - start;
1996 continue;
1997 }
1998
1999 if (size) {
2000 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2001 GFP_NOFS, 0);
2002 if (!ret)
2003 *discarded_bytes += size;
2004 else if (ret != -EOPNOTSUPP)
2005 return ret;
2006 }
2007
2008 start = sb_end;
2009 if (start > end) {
2010 bytes_left = 0;
2011 break;
2012 }
2013 bytes_left = end - start;
2014 }
2015
2016 if (bytes_left) {
2017 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2018 GFP_NOFS, 0);
2019 if (!ret)
2020 *discarded_bytes += bytes_left;
2021 }
2022 return ret;
2023 }
2024
btrfs_discard_extent(struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 * actual_bytes)2025 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2026 u64 num_bytes, u64 *actual_bytes)
2027 {
2028 int ret;
2029 u64 discarded_bytes = 0;
2030 struct btrfs_bio *bbio = NULL;
2031
2032
2033 /*
2034 * Avoid races with device replace and make sure our bbio has devices
2035 * associated to its stripes that don't go away while we are discarding.
2036 */
2037 btrfs_bio_counter_inc_blocked(root->fs_info);
2038 /* Tell the block device(s) that the sectors can be discarded */
2039 ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD,
2040 bytenr, &num_bytes, &bbio, 0);
2041 /* Error condition is -ENOMEM */
2042 if (!ret) {
2043 struct btrfs_bio_stripe *stripe = bbio->stripes;
2044 int i;
2045
2046
2047 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2048 u64 bytes;
2049 if (!stripe->dev->can_discard)
2050 continue;
2051
2052 ret = btrfs_issue_discard(stripe->dev->bdev,
2053 stripe->physical,
2054 stripe->length,
2055 &bytes);
2056 if (!ret)
2057 discarded_bytes += bytes;
2058 else if (ret != -EOPNOTSUPP)
2059 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2060
2061 /*
2062 * Just in case we get back EOPNOTSUPP for some reason,
2063 * just ignore the return value so we don't screw up
2064 * people calling discard_extent.
2065 */
2066 ret = 0;
2067 }
2068 btrfs_put_bbio(bbio);
2069 }
2070 btrfs_bio_counter_dec(root->fs_info);
2071
2072 if (actual_bytes)
2073 *actual_bytes = discarded_bytes;
2074
2075
2076 if (ret == -EOPNOTSUPP)
2077 ret = 0;
2078 return ret;
2079 }
2080
2081 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)2082 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2083 struct btrfs_root *root,
2084 u64 bytenr, u64 num_bytes, u64 parent,
2085 u64 root_objectid, u64 owner, u64 offset)
2086 {
2087 int ret;
2088 struct btrfs_fs_info *fs_info = root->fs_info;
2089
2090 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2091 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2092
2093 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2094 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2095 num_bytes,
2096 parent, root_objectid, (int)owner,
2097 BTRFS_ADD_DELAYED_REF, NULL);
2098 } else {
2099 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2100 num_bytes, parent, root_objectid,
2101 owner, offset, 0,
2102 BTRFS_ADD_DELAYED_REF, NULL);
2103 }
2104 return ret;
2105 }
2106
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)2107 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2108 struct btrfs_root *root,
2109 struct btrfs_delayed_ref_node *node,
2110 u64 parent, u64 root_objectid,
2111 u64 owner, u64 offset, int refs_to_add,
2112 struct btrfs_delayed_extent_op *extent_op)
2113 {
2114 struct btrfs_fs_info *fs_info = root->fs_info;
2115 struct btrfs_path *path;
2116 struct extent_buffer *leaf;
2117 struct btrfs_extent_item *item;
2118 struct btrfs_key key;
2119 u64 bytenr = node->bytenr;
2120 u64 num_bytes = node->num_bytes;
2121 u64 refs;
2122 int ret;
2123
2124 path = btrfs_alloc_path();
2125 if (!path)
2126 return -ENOMEM;
2127
2128 path->reada = READA_FORWARD;
2129 path->leave_spinning = 1;
2130 /* this will setup the path even if it fails to insert the back ref */
2131 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2132 bytenr, num_bytes, parent,
2133 root_objectid, owner, offset,
2134 refs_to_add, extent_op);
2135 if ((ret < 0 && ret != -EAGAIN) || !ret)
2136 goto out;
2137
2138 /*
2139 * Ok we had -EAGAIN which means we didn't have space to insert and
2140 * inline extent ref, so just update the reference count and add a
2141 * normal backref.
2142 */
2143 leaf = path->nodes[0];
2144 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2145 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2146 refs = btrfs_extent_refs(leaf, item);
2147 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2148 if (extent_op)
2149 __run_delayed_extent_op(extent_op, leaf, item);
2150
2151 btrfs_mark_buffer_dirty(leaf);
2152 btrfs_release_path(path);
2153
2154 path->reada = READA_FORWARD;
2155 path->leave_spinning = 1;
2156 /* now insert the actual backref */
2157 ret = insert_extent_backref(trans, root->fs_info->extent_root,
2158 path, bytenr, parent, root_objectid,
2159 owner, offset, refs_to_add);
2160 if (ret)
2161 btrfs_abort_transaction(trans, ret);
2162 out:
2163 btrfs_free_path(path);
2164 return ret;
2165 }
2166
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2167 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2168 struct btrfs_root *root,
2169 struct btrfs_delayed_ref_node *node,
2170 struct btrfs_delayed_extent_op *extent_op,
2171 int insert_reserved)
2172 {
2173 int ret = 0;
2174 struct btrfs_delayed_data_ref *ref;
2175 struct btrfs_key ins;
2176 u64 parent = 0;
2177 u64 ref_root = 0;
2178 u64 flags = 0;
2179
2180 ins.objectid = node->bytenr;
2181 ins.offset = node->num_bytes;
2182 ins.type = BTRFS_EXTENT_ITEM_KEY;
2183
2184 ref = btrfs_delayed_node_to_data_ref(node);
2185 trace_run_delayed_data_ref(root->fs_info, node, ref, node->action);
2186
2187 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2188 parent = ref->parent;
2189 ref_root = ref->root;
2190
2191 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2192 if (extent_op)
2193 flags |= extent_op->flags_to_set;
2194 ret = alloc_reserved_file_extent(trans, root,
2195 parent, ref_root, flags,
2196 ref->objectid, ref->offset,
2197 &ins, node->ref_mod);
2198 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2199 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2200 ref_root, ref->objectid,
2201 ref->offset, node->ref_mod,
2202 extent_op);
2203 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2204 ret = __btrfs_free_extent(trans, root, node, parent,
2205 ref_root, ref->objectid,
2206 ref->offset, node->ref_mod,
2207 extent_op);
2208 } else {
2209 BUG();
2210 }
2211 return ret;
2212 }
2213
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)2214 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2215 struct extent_buffer *leaf,
2216 struct btrfs_extent_item *ei)
2217 {
2218 u64 flags = btrfs_extent_flags(leaf, ei);
2219 if (extent_op->update_flags) {
2220 flags |= extent_op->flags_to_set;
2221 btrfs_set_extent_flags(leaf, ei, flags);
2222 }
2223
2224 if (extent_op->update_key) {
2225 struct btrfs_tree_block_info *bi;
2226 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2227 bi = (struct btrfs_tree_block_info *)(ei + 1);
2228 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2229 }
2230 }
2231
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)2232 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2233 struct btrfs_root *root,
2234 struct btrfs_delayed_ref_node *node,
2235 struct btrfs_delayed_extent_op *extent_op)
2236 {
2237 struct btrfs_key key;
2238 struct btrfs_path *path;
2239 struct btrfs_extent_item *ei;
2240 struct extent_buffer *leaf;
2241 u32 item_size;
2242 int ret;
2243 int err = 0;
2244 int metadata = !extent_op->is_data;
2245
2246 if (trans->aborted)
2247 return 0;
2248
2249 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2250 metadata = 0;
2251
2252 path = btrfs_alloc_path();
2253 if (!path)
2254 return -ENOMEM;
2255
2256 key.objectid = node->bytenr;
2257
2258 if (metadata) {
2259 key.type = BTRFS_METADATA_ITEM_KEY;
2260 key.offset = extent_op->level;
2261 } else {
2262 key.type = BTRFS_EXTENT_ITEM_KEY;
2263 key.offset = node->num_bytes;
2264 }
2265
2266 again:
2267 path->reada = READA_FORWARD;
2268 path->leave_spinning = 1;
2269 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2270 path, 0, 1);
2271 if (ret < 0) {
2272 err = ret;
2273 goto out;
2274 }
2275 if (ret > 0) {
2276 if (metadata) {
2277 if (path->slots[0] > 0) {
2278 path->slots[0]--;
2279 btrfs_item_key_to_cpu(path->nodes[0], &key,
2280 path->slots[0]);
2281 if (key.objectid == node->bytenr &&
2282 key.type == BTRFS_EXTENT_ITEM_KEY &&
2283 key.offset == node->num_bytes)
2284 ret = 0;
2285 }
2286 if (ret > 0) {
2287 btrfs_release_path(path);
2288 metadata = 0;
2289
2290 key.objectid = node->bytenr;
2291 key.offset = node->num_bytes;
2292 key.type = BTRFS_EXTENT_ITEM_KEY;
2293 goto again;
2294 }
2295 } else {
2296 err = -EIO;
2297 goto out;
2298 }
2299 }
2300
2301 leaf = path->nodes[0];
2302 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2303 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2304 if (item_size < sizeof(*ei)) {
2305 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2306 path, (u64)-1, 0);
2307 if (ret < 0) {
2308 err = ret;
2309 goto out;
2310 }
2311 leaf = path->nodes[0];
2312 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2313 }
2314 #endif
2315 BUG_ON(item_size < sizeof(*ei));
2316 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2317 __run_delayed_extent_op(extent_op, leaf, ei);
2318
2319 btrfs_mark_buffer_dirty(leaf);
2320 out:
2321 btrfs_free_path(path);
2322 return err;
2323 }
2324
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2325 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2326 struct btrfs_root *root,
2327 struct btrfs_delayed_ref_node *node,
2328 struct btrfs_delayed_extent_op *extent_op,
2329 int insert_reserved)
2330 {
2331 int ret = 0;
2332 struct btrfs_delayed_tree_ref *ref;
2333 struct btrfs_key ins;
2334 u64 parent = 0;
2335 u64 ref_root = 0;
2336 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2337 SKINNY_METADATA);
2338
2339 ref = btrfs_delayed_node_to_tree_ref(node);
2340 trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action);
2341
2342 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2343 parent = ref->parent;
2344 ref_root = ref->root;
2345
2346 ins.objectid = node->bytenr;
2347 if (skinny_metadata) {
2348 ins.offset = ref->level;
2349 ins.type = BTRFS_METADATA_ITEM_KEY;
2350 } else {
2351 ins.offset = node->num_bytes;
2352 ins.type = BTRFS_EXTENT_ITEM_KEY;
2353 }
2354
2355 if (node->ref_mod != 1) {
2356 btrfs_err(root->fs_info,
2357 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2358 node->bytenr, node->ref_mod, node->action, ref_root,
2359 parent);
2360 return -EIO;
2361 }
2362 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2363 BUG_ON(!extent_op || !extent_op->update_flags);
2364 ret = alloc_reserved_tree_block(trans, root,
2365 parent, ref_root,
2366 extent_op->flags_to_set,
2367 &extent_op->key,
2368 ref->level, &ins);
2369 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2370 ret = __btrfs_inc_extent_ref(trans, root, node,
2371 parent, ref_root,
2372 ref->level, 0, 1,
2373 extent_op);
2374 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2375 ret = __btrfs_free_extent(trans, root, node,
2376 parent, ref_root,
2377 ref->level, 0, 1, extent_op);
2378 } else {
2379 BUG();
2380 }
2381 return ret;
2382 }
2383
2384 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2385 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2386 struct btrfs_root *root,
2387 struct btrfs_delayed_ref_node *node,
2388 struct btrfs_delayed_extent_op *extent_op,
2389 int insert_reserved)
2390 {
2391 int ret = 0;
2392
2393 if (trans->aborted) {
2394 if (insert_reserved)
2395 btrfs_pin_extent(root, node->bytenr,
2396 node->num_bytes, 1);
2397 return 0;
2398 }
2399
2400 if (btrfs_delayed_ref_is_head(node)) {
2401 struct btrfs_delayed_ref_head *head;
2402 /*
2403 * we've hit the end of the chain and we were supposed
2404 * to insert this extent into the tree. But, it got
2405 * deleted before we ever needed to insert it, so all
2406 * we have to do is clean up the accounting
2407 */
2408 BUG_ON(extent_op);
2409 head = btrfs_delayed_node_to_head(node);
2410 trace_run_delayed_ref_head(root->fs_info, node, head,
2411 node->action);
2412
2413 if (insert_reserved) {
2414 btrfs_pin_extent(root, node->bytenr,
2415 node->num_bytes, 1);
2416 if (head->is_data) {
2417 ret = btrfs_del_csums(trans, root,
2418 node->bytenr,
2419 node->num_bytes);
2420 }
2421 }
2422
2423 /* Also free its reserved qgroup space */
2424 btrfs_qgroup_free_delayed_ref(root->fs_info,
2425 head->qgroup_ref_root,
2426 head->qgroup_reserved);
2427 return ret;
2428 }
2429
2430 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2431 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2432 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2433 insert_reserved);
2434 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2435 node->type == BTRFS_SHARED_DATA_REF_KEY)
2436 ret = run_delayed_data_ref(trans, root, node, extent_op,
2437 insert_reserved);
2438 else
2439 BUG();
2440 return ret;
2441 }
2442
2443 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)2444 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2445 {
2446 struct btrfs_delayed_ref_node *ref;
2447
2448 if (list_empty(&head->ref_list))
2449 return NULL;
2450
2451 /*
2452 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2453 * This is to prevent a ref count from going down to zero, which deletes
2454 * the extent item from the extent tree, when there still are references
2455 * to add, which would fail because they would not find the extent item.
2456 */
2457 list_for_each_entry(ref, &head->ref_list, list) {
2458 if (ref->action == BTRFS_ADD_DELAYED_REF)
2459 return ref;
2460 }
2461
2462 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2463 list);
2464 }
2465
2466 /*
2467 * Returns 0 on success or if called with an already aborted transaction.
2468 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2469 */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,unsigned long nr)2470 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2471 struct btrfs_root *root,
2472 unsigned long nr)
2473 {
2474 struct btrfs_delayed_ref_root *delayed_refs;
2475 struct btrfs_delayed_ref_node *ref;
2476 struct btrfs_delayed_ref_head *locked_ref = NULL;
2477 struct btrfs_delayed_extent_op *extent_op;
2478 struct btrfs_fs_info *fs_info = root->fs_info;
2479 ktime_t start = ktime_get();
2480 int ret;
2481 unsigned long count = 0;
2482 unsigned long actual_count = 0;
2483 int must_insert_reserved = 0;
2484
2485 delayed_refs = &trans->transaction->delayed_refs;
2486 while (1) {
2487 if (!locked_ref) {
2488 if (count >= nr)
2489 break;
2490
2491 spin_lock(&delayed_refs->lock);
2492 locked_ref = btrfs_select_ref_head(trans);
2493 if (!locked_ref) {
2494 spin_unlock(&delayed_refs->lock);
2495 break;
2496 }
2497
2498 /* grab the lock that says we are going to process
2499 * all the refs for this head */
2500 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2501 spin_unlock(&delayed_refs->lock);
2502 /*
2503 * we may have dropped the spin lock to get the head
2504 * mutex lock, and that might have given someone else
2505 * time to free the head. If that's true, it has been
2506 * removed from our list and we can move on.
2507 */
2508 if (ret == -EAGAIN) {
2509 locked_ref = NULL;
2510 count++;
2511 continue;
2512 }
2513 }
2514
2515 /*
2516 * We need to try and merge add/drops of the same ref since we
2517 * can run into issues with relocate dropping the implicit ref
2518 * and then it being added back again before the drop can
2519 * finish. If we merged anything we need to re-loop so we can
2520 * get a good ref.
2521 * Or we can get node references of the same type that weren't
2522 * merged when created due to bumps in the tree mod seq, and
2523 * we need to merge them to prevent adding an inline extent
2524 * backref before dropping it (triggering a BUG_ON at
2525 * insert_inline_extent_backref()).
2526 */
2527 spin_lock(&locked_ref->lock);
2528 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2529 locked_ref);
2530
2531 /*
2532 * locked_ref is the head node, so we have to go one
2533 * node back for any delayed ref updates
2534 */
2535 ref = select_delayed_ref(locked_ref);
2536
2537 if (ref && ref->seq &&
2538 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2539 spin_unlock(&locked_ref->lock);
2540 spin_lock(&delayed_refs->lock);
2541 locked_ref->processing = 0;
2542 delayed_refs->num_heads_ready++;
2543 spin_unlock(&delayed_refs->lock);
2544 btrfs_delayed_ref_unlock(locked_ref);
2545 locked_ref = NULL;
2546 cond_resched();
2547 count++;
2548 continue;
2549 }
2550
2551 /*
2552 * record the must insert reserved flag before we
2553 * drop the spin lock.
2554 */
2555 must_insert_reserved = locked_ref->must_insert_reserved;
2556 locked_ref->must_insert_reserved = 0;
2557
2558 extent_op = locked_ref->extent_op;
2559 locked_ref->extent_op = NULL;
2560
2561 if (!ref) {
2562
2563
2564 /* All delayed refs have been processed, Go ahead
2565 * and send the head node to run_one_delayed_ref,
2566 * so that any accounting fixes can happen
2567 */
2568 ref = &locked_ref->node;
2569
2570 if (extent_op && must_insert_reserved) {
2571 btrfs_free_delayed_extent_op(extent_op);
2572 extent_op = NULL;
2573 }
2574
2575 if (extent_op) {
2576 spin_unlock(&locked_ref->lock);
2577 ret = run_delayed_extent_op(trans, root,
2578 ref, extent_op);
2579 btrfs_free_delayed_extent_op(extent_op);
2580
2581 if (ret) {
2582 /*
2583 * Need to reset must_insert_reserved if
2584 * there was an error so the abort stuff
2585 * can cleanup the reserved space
2586 * properly.
2587 */
2588 if (must_insert_reserved)
2589 locked_ref->must_insert_reserved = 1;
2590 spin_lock(&delayed_refs->lock);
2591 locked_ref->processing = 0;
2592 delayed_refs->num_heads_ready++;
2593 spin_unlock(&delayed_refs->lock);
2594 btrfs_debug(fs_info,
2595 "run_delayed_extent_op returned %d",
2596 ret);
2597 btrfs_delayed_ref_unlock(locked_ref);
2598 return ret;
2599 }
2600 continue;
2601 }
2602
2603 /*
2604 * Need to drop our head ref lock and re-acquire the
2605 * delayed ref lock and then re-check to make sure
2606 * nobody got added.
2607 */
2608 spin_unlock(&locked_ref->lock);
2609 spin_lock(&delayed_refs->lock);
2610 spin_lock(&locked_ref->lock);
2611 if (!list_empty(&locked_ref->ref_list) ||
2612 locked_ref->extent_op) {
2613 spin_unlock(&locked_ref->lock);
2614 spin_unlock(&delayed_refs->lock);
2615 continue;
2616 }
2617 ref->in_tree = 0;
2618 delayed_refs->num_heads--;
2619 rb_erase(&locked_ref->href_node,
2620 &delayed_refs->href_root);
2621 spin_unlock(&delayed_refs->lock);
2622 } else {
2623 actual_count++;
2624 ref->in_tree = 0;
2625 list_del(&ref->list);
2626 }
2627 atomic_dec(&delayed_refs->num_entries);
2628
2629 if (!btrfs_delayed_ref_is_head(ref)) {
2630 /*
2631 * when we play the delayed ref, also correct the
2632 * ref_mod on head
2633 */
2634 switch (ref->action) {
2635 case BTRFS_ADD_DELAYED_REF:
2636 case BTRFS_ADD_DELAYED_EXTENT:
2637 locked_ref->node.ref_mod -= ref->ref_mod;
2638 break;
2639 case BTRFS_DROP_DELAYED_REF:
2640 locked_ref->node.ref_mod += ref->ref_mod;
2641 break;
2642 default:
2643 WARN_ON(1);
2644 }
2645 }
2646 spin_unlock(&locked_ref->lock);
2647
2648 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2649 must_insert_reserved);
2650
2651 btrfs_free_delayed_extent_op(extent_op);
2652 if (ret) {
2653 spin_lock(&delayed_refs->lock);
2654 locked_ref->processing = 0;
2655 delayed_refs->num_heads_ready++;
2656 spin_unlock(&delayed_refs->lock);
2657 btrfs_delayed_ref_unlock(locked_ref);
2658 btrfs_put_delayed_ref(ref);
2659 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2660 ret);
2661 return ret;
2662 }
2663
2664 /*
2665 * If this node is a head, that means all the refs in this head
2666 * have been dealt with, and we will pick the next head to deal
2667 * with, so we must unlock the head and drop it from the cluster
2668 * list before we release it.
2669 */
2670 if (btrfs_delayed_ref_is_head(ref)) {
2671 if (locked_ref->is_data &&
2672 locked_ref->total_ref_mod < 0) {
2673 spin_lock(&delayed_refs->lock);
2674 delayed_refs->pending_csums -= ref->num_bytes;
2675 spin_unlock(&delayed_refs->lock);
2676 }
2677 btrfs_delayed_ref_unlock(locked_ref);
2678 locked_ref = NULL;
2679 }
2680 btrfs_put_delayed_ref(ref);
2681 count++;
2682 cond_resched();
2683 }
2684
2685 /*
2686 * We don't want to include ref heads since we can have empty ref heads
2687 * and those will drastically skew our runtime down since we just do
2688 * accounting, no actual extent tree updates.
2689 */
2690 if (actual_count > 0) {
2691 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2692 u64 avg;
2693
2694 /*
2695 * We weigh the current average higher than our current runtime
2696 * to avoid large swings in the average.
2697 */
2698 spin_lock(&delayed_refs->lock);
2699 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2700 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2701 spin_unlock(&delayed_refs->lock);
2702 }
2703 return 0;
2704 }
2705
2706 #ifdef SCRAMBLE_DELAYED_REFS
2707 /*
2708 * Normally delayed refs get processed in ascending bytenr order. This
2709 * correlates in most cases to the order added. To expose dependencies on this
2710 * order, we start to process the tree in the middle instead of the beginning
2711 */
find_middle(struct rb_root * root)2712 static u64 find_middle(struct rb_root *root)
2713 {
2714 struct rb_node *n = root->rb_node;
2715 struct btrfs_delayed_ref_node *entry;
2716 int alt = 1;
2717 u64 middle;
2718 u64 first = 0, last = 0;
2719
2720 n = rb_first(root);
2721 if (n) {
2722 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2723 first = entry->bytenr;
2724 }
2725 n = rb_last(root);
2726 if (n) {
2727 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2728 last = entry->bytenr;
2729 }
2730 n = root->rb_node;
2731
2732 while (n) {
2733 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2734 WARN_ON(!entry->in_tree);
2735
2736 middle = entry->bytenr;
2737
2738 if (alt)
2739 n = n->rb_left;
2740 else
2741 n = n->rb_right;
2742
2743 alt = 1 - alt;
2744 }
2745 return middle;
2746 }
2747 #endif
2748
heads_to_leaves(struct btrfs_root * root,u64 heads)2749 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2750 {
2751 u64 num_bytes;
2752
2753 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2754 sizeof(struct btrfs_extent_inline_ref));
2755 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2756 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2757
2758 /*
2759 * We don't ever fill up leaves all the way so multiply by 2 just to be
2760 * closer to what we're really going to want to use.
2761 */
2762 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2763 }
2764
2765 /*
2766 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2767 * would require to store the csums for that many bytes.
2768 */
btrfs_csum_bytes_to_leaves(struct btrfs_root * root,u64 csum_bytes)2769 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2770 {
2771 u64 csum_size;
2772 u64 num_csums_per_leaf;
2773 u64 num_csums;
2774
2775 csum_size = BTRFS_MAX_ITEM_SIZE(root);
2776 num_csums_per_leaf = div64_u64(csum_size,
2777 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2778 num_csums = div64_u64(csum_bytes, root->sectorsize);
2779 num_csums += num_csums_per_leaf - 1;
2780 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2781 return num_csums;
2782 }
2783
btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root)2784 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2785 struct btrfs_root *root)
2786 {
2787 struct btrfs_block_rsv *global_rsv;
2788 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2789 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2790 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2791 u64 num_bytes, num_dirty_bgs_bytes;
2792 int ret = 0;
2793
2794 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2795 num_heads = heads_to_leaves(root, num_heads);
2796 if (num_heads > 1)
2797 num_bytes += (num_heads - 1) * root->nodesize;
2798 num_bytes <<= 1;
2799 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2800 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2801 num_dirty_bgs);
2802 global_rsv = &root->fs_info->global_block_rsv;
2803
2804 /*
2805 * If we can't allocate any more chunks lets make sure we have _lots_ of
2806 * wiggle room since running delayed refs can create more delayed refs.
2807 */
2808 if (global_rsv->space_info->full) {
2809 num_dirty_bgs_bytes <<= 1;
2810 num_bytes <<= 1;
2811 }
2812
2813 spin_lock(&global_rsv->lock);
2814 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2815 ret = 1;
2816 spin_unlock(&global_rsv->lock);
2817 return ret;
2818 }
2819
btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root)2820 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2821 struct btrfs_root *root)
2822 {
2823 struct btrfs_fs_info *fs_info = root->fs_info;
2824 u64 num_entries =
2825 atomic_read(&trans->transaction->delayed_refs.num_entries);
2826 u64 avg_runtime;
2827 u64 val;
2828
2829 smp_mb();
2830 avg_runtime = fs_info->avg_delayed_ref_runtime;
2831 val = num_entries * avg_runtime;
2832 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2833 return 1;
2834 if (val >= NSEC_PER_SEC / 2)
2835 return 2;
2836
2837 return btrfs_check_space_for_delayed_refs(trans, root);
2838 }
2839
2840 struct async_delayed_refs {
2841 struct btrfs_root *root;
2842 u64 transid;
2843 int count;
2844 int error;
2845 int sync;
2846 struct completion wait;
2847 struct btrfs_work work;
2848 };
2849
delayed_ref_async_start(struct btrfs_work * work)2850 static void delayed_ref_async_start(struct btrfs_work *work)
2851 {
2852 struct async_delayed_refs *async;
2853 struct btrfs_trans_handle *trans;
2854 int ret;
2855
2856 async = container_of(work, struct async_delayed_refs, work);
2857
2858 /* if the commit is already started, we don't need to wait here */
2859 if (btrfs_transaction_blocked(async->root->fs_info))
2860 goto done;
2861
2862 trans = btrfs_join_transaction(async->root);
2863 if (IS_ERR(trans)) {
2864 async->error = PTR_ERR(trans);
2865 goto done;
2866 }
2867
2868 /*
2869 * trans->sync means that when we call end_transaction, we won't
2870 * wait on delayed refs
2871 */
2872 trans->sync = true;
2873
2874 /* Don't bother flushing if we got into a different transaction */
2875 if (trans->transid > async->transid)
2876 goto end;
2877
2878 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2879 if (ret)
2880 async->error = ret;
2881 end:
2882 ret = btrfs_end_transaction(trans, async->root);
2883 if (ret && !async->error)
2884 async->error = ret;
2885 done:
2886 if (async->sync)
2887 complete(&async->wait);
2888 else
2889 kfree(async);
2890 }
2891
btrfs_async_run_delayed_refs(struct btrfs_root * root,unsigned long count,u64 transid,int wait)2892 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2893 unsigned long count, u64 transid, int wait)
2894 {
2895 struct async_delayed_refs *async;
2896 int ret;
2897
2898 async = kmalloc(sizeof(*async), GFP_NOFS);
2899 if (!async)
2900 return -ENOMEM;
2901
2902 async->root = root->fs_info->tree_root;
2903 async->count = count;
2904 async->error = 0;
2905 async->transid = transid;
2906 if (wait)
2907 async->sync = 1;
2908 else
2909 async->sync = 0;
2910 init_completion(&async->wait);
2911
2912 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2913 delayed_ref_async_start, NULL, NULL);
2914
2915 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2916
2917 if (wait) {
2918 wait_for_completion(&async->wait);
2919 ret = async->error;
2920 kfree(async);
2921 return ret;
2922 }
2923 return 0;
2924 }
2925
2926 /*
2927 * this starts processing the delayed reference count updates and
2928 * extent insertions we have queued up so far. count can be
2929 * 0, which means to process everything in the tree at the start
2930 * of the run (but not newly added entries), or it can be some target
2931 * number you'd like to process.
2932 *
2933 * Returns 0 on success or if called with an aborted transaction
2934 * Returns <0 on error and aborts the transaction
2935 */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,unsigned long count)2936 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2937 struct btrfs_root *root, unsigned long count)
2938 {
2939 struct rb_node *node;
2940 struct btrfs_delayed_ref_root *delayed_refs;
2941 struct btrfs_delayed_ref_head *head;
2942 int ret;
2943 int run_all = count == (unsigned long)-1;
2944 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2945
2946 /* We'll clean this up in btrfs_cleanup_transaction */
2947 if (trans->aborted)
2948 return 0;
2949
2950 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &root->fs_info->flags))
2951 return 0;
2952
2953 if (root == root->fs_info->extent_root)
2954 root = root->fs_info->tree_root;
2955
2956 delayed_refs = &trans->transaction->delayed_refs;
2957 if (count == 0)
2958 count = atomic_read(&delayed_refs->num_entries) * 2;
2959
2960 again:
2961 #ifdef SCRAMBLE_DELAYED_REFS
2962 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2963 #endif
2964 trans->can_flush_pending_bgs = false;
2965 ret = __btrfs_run_delayed_refs(trans, root, count);
2966 if (ret < 0) {
2967 btrfs_abort_transaction(trans, ret);
2968 return ret;
2969 }
2970
2971 if (run_all) {
2972 if (!list_empty(&trans->new_bgs))
2973 btrfs_create_pending_block_groups(trans, root);
2974
2975 spin_lock(&delayed_refs->lock);
2976 node = rb_first(&delayed_refs->href_root);
2977 if (!node) {
2978 spin_unlock(&delayed_refs->lock);
2979 goto out;
2980 }
2981
2982 while (node) {
2983 head = rb_entry(node, struct btrfs_delayed_ref_head,
2984 href_node);
2985 if (btrfs_delayed_ref_is_head(&head->node)) {
2986 struct btrfs_delayed_ref_node *ref;
2987
2988 ref = &head->node;
2989 atomic_inc(&ref->refs);
2990
2991 spin_unlock(&delayed_refs->lock);
2992 /*
2993 * Mutex was contended, block until it's
2994 * released and try again
2995 */
2996 mutex_lock(&head->mutex);
2997 mutex_unlock(&head->mutex);
2998
2999 btrfs_put_delayed_ref(ref);
3000 cond_resched();
3001 goto again;
3002 } else {
3003 WARN_ON(1);
3004 }
3005 node = rb_next(node);
3006 }
3007 spin_unlock(&delayed_refs->lock);
3008 cond_resched();
3009 goto again;
3010 }
3011 out:
3012 assert_qgroups_uptodate(trans);
3013 trans->can_flush_pending_bgs = can_flush_pending_bgs;
3014 return 0;
3015 }
3016
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 flags,int level,int is_data)3017 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3018 struct btrfs_root *root,
3019 u64 bytenr, u64 num_bytes, u64 flags,
3020 int level, int is_data)
3021 {
3022 struct btrfs_delayed_extent_op *extent_op;
3023 int ret;
3024
3025 extent_op = btrfs_alloc_delayed_extent_op();
3026 if (!extent_op)
3027 return -ENOMEM;
3028
3029 extent_op->flags_to_set = flags;
3030 extent_op->update_flags = true;
3031 extent_op->update_key = false;
3032 extent_op->is_data = is_data ? true : false;
3033 extent_op->level = level;
3034
3035 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3036 num_bytes, extent_op);
3037 if (ret)
3038 btrfs_free_delayed_extent_op(extent_op);
3039 return ret;
3040 }
3041
check_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)3042 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3043 struct btrfs_root *root,
3044 struct btrfs_path *path,
3045 u64 objectid, u64 offset, u64 bytenr)
3046 {
3047 struct btrfs_delayed_ref_head *head;
3048 struct btrfs_delayed_ref_node *ref;
3049 struct btrfs_delayed_data_ref *data_ref;
3050 struct btrfs_delayed_ref_root *delayed_refs;
3051 int ret = 0;
3052
3053 delayed_refs = &trans->transaction->delayed_refs;
3054 spin_lock(&delayed_refs->lock);
3055 head = btrfs_find_delayed_ref_head(trans, bytenr);
3056 if (!head) {
3057 spin_unlock(&delayed_refs->lock);
3058 return 0;
3059 }
3060
3061 if (!mutex_trylock(&head->mutex)) {
3062 atomic_inc(&head->node.refs);
3063 spin_unlock(&delayed_refs->lock);
3064
3065 btrfs_release_path(path);
3066
3067 /*
3068 * Mutex was contended, block until it's released and let
3069 * caller try again
3070 */
3071 mutex_lock(&head->mutex);
3072 mutex_unlock(&head->mutex);
3073 btrfs_put_delayed_ref(&head->node);
3074 return -EAGAIN;
3075 }
3076 spin_unlock(&delayed_refs->lock);
3077
3078 spin_lock(&head->lock);
3079 list_for_each_entry(ref, &head->ref_list, list) {
3080 /* If it's a shared ref we know a cross reference exists */
3081 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3082 ret = 1;
3083 break;
3084 }
3085
3086 data_ref = btrfs_delayed_node_to_data_ref(ref);
3087
3088 /*
3089 * If our ref doesn't match the one we're currently looking at
3090 * then we have a cross reference.
3091 */
3092 if (data_ref->root != root->root_key.objectid ||
3093 data_ref->objectid != objectid ||
3094 data_ref->offset != offset) {
3095 ret = 1;
3096 break;
3097 }
3098 }
3099 spin_unlock(&head->lock);
3100 mutex_unlock(&head->mutex);
3101 return ret;
3102 }
3103
check_committed_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)3104 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3105 struct btrfs_root *root,
3106 struct btrfs_path *path,
3107 u64 objectid, u64 offset, u64 bytenr)
3108 {
3109 struct btrfs_root *extent_root = root->fs_info->extent_root;
3110 struct extent_buffer *leaf;
3111 struct btrfs_extent_data_ref *ref;
3112 struct btrfs_extent_inline_ref *iref;
3113 struct btrfs_extent_item *ei;
3114 struct btrfs_key key;
3115 u32 item_size;
3116 int ret;
3117
3118 key.objectid = bytenr;
3119 key.offset = (u64)-1;
3120 key.type = BTRFS_EXTENT_ITEM_KEY;
3121
3122 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3123 if (ret < 0)
3124 goto out;
3125 BUG_ON(ret == 0); /* Corruption */
3126
3127 ret = -ENOENT;
3128 if (path->slots[0] == 0)
3129 goto out;
3130
3131 path->slots[0]--;
3132 leaf = path->nodes[0];
3133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3134
3135 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3136 goto out;
3137
3138 ret = 1;
3139 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3140 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3141 if (item_size < sizeof(*ei)) {
3142 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3143 goto out;
3144 }
3145 #endif
3146 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3147
3148 if (item_size != sizeof(*ei) +
3149 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3150 goto out;
3151
3152 if (btrfs_extent_generation(leaf, ei) <=
3153 btrfs_root_last_snapshot(&root->root_item))
3154 goto out;
3155
3156 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3157 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3158 BTRFS_EXTENT_DATA_REF_KEY)
3159 goto out;
3160
3161 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3162 if (btrfs_extent_refs(leaf, ei) !=
3163 btrfs_extent_data_ref_count(leaf, ref) ||
3164 btrfs_extent_data_ref_root(leaf, ref) !=
3165 root->root_key.objectid ||
3166 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3167 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3168 goto out;
3169
3170 ret = 0;
3171 out:
3172 return ret;
3173 }
3174
btrfs_cross_ref_exist(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr)3175 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3176 struct btrfs_root *root,
3177 u64 objectid, u64 offset, u64 bytenr)
3178 {
3179 struct btrfs_path *path;
3180 int ret;
3181 int ret2;
3182
3183 path = btrfs_alloc_path();
3184 if (!path)
3185 return -ENOENT;
3186
3187 do {
3188 ret = check_committed_ref(trans, root, path, objectid,
3189 offset, bytenr);
3190 if (ret && ret != -ENOENT)
3191 goto out;
3192
3193 ret2 = check_delayed_ref(trans, root, path, objectid,
3194 offset, bytenr);
3195 } while (ret2 == -EAGAIN);
3196
3197 if (ret2 && ret2 != -ENOENT) {
3198 ret = ret2;
3199 goto out;
3200 }
3201
3202 if (ret != -ENOENT || ret2 != -ENOENT)
3203 ret = 0;
3204 out:
3205 btrfs_free_path(path);
3206 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3207 WARN_ON(ret > 0);
3208 return ret;
3209 }
3210
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)3211 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3212 struct btrfs_root *root,
3213 struct extent_buffer *buf,
3214 int full_backref, int inc)
3215 {
3216 u64 bytenr;
3217 u64 num_bytes;
3218 u64 parent;
3219 u64 ref_root;
3220 u32 nritems;
3221 struct btrfs_key key;
3222 struct btrfs_file_extent_item *fi;
3223 int i;
3224 int level;
3225 int ret = 0;
3226 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3227 u64, u64, u64, u64, u64, u64);
3228
3229
3230 if (btrfs_is_testing(root->fs_info))
3231 return 0;
3232
3233 ref_root = btrfs_header_owner(buf);
3234 nritems = btrfs_header_nritems(buf);
3235 level = btrfs_header_level(buf);
3236
3237 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3238 return 0;
3239
3240 if (inc)
3241 process_func = btrfs_inc_extent_ref;
3242 else
3243 process_func = btrfs_free_extent;
3244
3245 if (full_backref)
3246 parent = buf->start;
3247 else
3248 parent = 0;
3249
3250 for (i = 0; i < nritems; i++) {
3251 if (level == 0) {
3252 btrfs_item_key_to_cpu(buf, &key, i);
3253 if (key.type != BTRFS_EXTENT_DATA_KEY)
3254 continue;
3255 fi = btrfs_item_ptr(buf, i,
3256 struct btrfs_file_extent_item);
3257 if (btrfs_file_extent_type(buf, fi) ==
3258 BTRFS_FILE_EXTENT_INLINE)
3259 continue;
3260 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3261 if (bytenr == 0)
3262 continue;
3263
3264 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3265 key.offset -= btrfs_file_extent_offset(buf, fi);
3266 ret = process_func(trans, root, bytenr, num_bytes,
3267 parent, ref_root, key.objectid,
3268 key.offset);
3269 if (ret)
3270 goto fail;
3271 } else {
3272 bytenr = btrfs_node_blockptr(buf, i);
3273 num_bytes = root->nodesize;
3274 ret = process_func(trans, root, bytenr, num_bytes,
3275 parent, ref_root, level - 1, 0);
3276 if (ret)
3277 goto fail;
3278 }
3279 }
3280 return 0;
3281 fail:
3282 return ret;
3283 }
3284
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)3285 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3286 struct extent_buffer *buf, int full_backref)
3287 {
3288 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3289 }
3290
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)3291 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3292 struct extent_buffer *buf, int full_backref)
3293 {
3294 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3295 }
3296
write_one_cache_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_block_group_cache * cache)3297 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3298 struct btrfs_root *root,
3299 struct btrfs_path *path,
3300 struct btrfs_block_group_cache *cache)
3301 {
3302 int ret;
3303 struct btrfs_root *extent_root = root->fs_info->extent_root;
3304 unsigned long bi;
3305 struct extent_buffer *leaf;
3306
3307 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3308 if (ret) {
3309 if (ret > 0)
3310 ret = -ENOENT;
3311 goto fail;
3312 }
3313
3314 leaf = path->nodes[0];
3315 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3316 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3317 btrfs_mark_buffer_dirty(leaf);
3318 fail:
3319 btrfs_release_path(path);
3320 return ret;
3321
3322 }
3323
3324 static struct btrfs_block_group_cache *
next_block_group(struct btrfs_root * root,struct btrfs_block_group_cache * cache)3325 next_block_group(struct btrfs_root *root,
3326 struct btrfs_block_group_cache *cache)
3327 {
3328 struct rb_node *node;
3329
3330 spin_lock(&root->fs_info->block_group_cache_lock);
3331
3332 /* If our block group was removed, we need a full search. */
3333 if (RB_EMPTY_NODE(&cache->cache_node)) {
3334 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3335
3336 spin_unlock(&root->fs_info->block_group_cache_lock);
3337 btrfs_put_block_group(cache);
3338 cache = btrfs_lookup_first_block_group(root->fs_info,
3339 next_bytenr);
3340 return cache;
3341 }
3342 node = rb_next(&cache->cache_node);
3343 btrfs_put_block_group(cache);
3344 if (node) {
3345 cache = rb_entry(node, struct btrfs_block_group_cache,
3346 cache_node);
3347 btrfs_get_block_group(cache);
3348 } else
3349 cache = NULL;
3350 spin_unlock(&root->fs_info->block_group_cache_lock);
3351 return cache;
3352 }
3353
cache_save_setup(struct btrfs_block_group_cache * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)3354 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3355 struct btrfs_trans_handle *trans,
3356 struct btrfs_path *path)
3357 {
3358 struct btrfs_root *root = block_group->fs_info->tree_root;
3359 struct inode *inode = NULL;
3360 u64 alloc_hint = 0;
3361 int dcs = BTRFS_DC_ERROR;
3362 u64 num_pages = 0;
3363 int retries = 0;
3364 int ret = 0;
3365
3366 /*
3367 * If this block group is smaller than 100 megs don't bother caching the
3368 * block group.
3369 */
3370 if (block_group->key.offset < (100 * SZ_1M)) {
3371 spin_lock(&block_group->lock);
3372 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3373 spin_unlock(&block_group->lock);
3374 return 0;
3375 }
3376
3377 if (trans->aborted)
3378 return 0;
3379 again:
3380 inode = lookup_free_space_inode(root, block_group, path);
3381 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3382 ret = PTR_ERR(inode);
3383 btrfs_release_path(path);
3384 goto out;
3385 }
3386
3387 if (IS_ERR(inode)) {
3388 BUG_ON(retries);
3389 retries++;
3390
3391 if (block_group->ro)
3392 goto out_free;
3393
3394 ret = create_free_space_inode(root, trans, block_group, path);
3395 if (ret)
3396 goto out_free;
3397 goto again;
3398 }
3399
3400 /*
3401 * We want to set the generation to 0, that way if anything goes wrong
3402 * from here on out we know not to trust this cache when we load up next
3403 * time.
3404 */
3405 BTRFS_I(inode)->generation = 0;
3406 ret = btrfs_update_inode(trans, root, inode);
3407 if (ret) {
3408 /*
3409 * So theoretically we could recover from this, simply set the
3410 * super cache generation to 0 so we know to invalidate the
3411 * cache, but then we'd have to keep track of the block groups
3412 * that fail this way so we know we _have_ to reset this cache
3413 * before the next commit or risk reading stale cache. So to
3414 * limit our exposure to horrible edge cases lets just abort the
3415 * transaction, this only happens in really bad situations
3416 * anyway.
3417 */
3418 btrfs_abort_transaction(trans, ret);
3419 goto out_put;
3420 }
3421 WARN_ON(ret);
3422
3423 /* We've already setup this transaction, go ahead and exit */
3424 if (block_group->cache_generation == trans->transid &&
3425 i_size_read(inode)) {
3426 dcs = BTRFS_DC_SETUP;
3427 goto out_put;
3428 }
3429
3430 if (i_size_read(inode) > 0) {
3431 ret = btrfs_check_trunc_cache_free_space(root,
3432 &root->fs_info->global_block_rsv);
3433 if (ret)
3434 goto out_put;
3435
3436 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3437 if (ret)
3438 goto out_put;
3439 }
3440
3441 spin_lock(&block_group->lock);
3442 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3443 !btrfs_test_opt(root->fs_info, SPACE_CACHE)) {
3444 /*
3445 * don't bother trying to write stuff out _if_
3446 * a) we're not cached,
3447 * b) we're with nospace_cache mount option.
3448 */
3449 dcs = BTRFS_DC_WRITTEN;
3450 spin_unlock(&block_group->lock);
3451 goto out_put;
3452 }
3453 spin_unlock(&block_group->lock);
3454
3455 /*
3456 * We hit an ENOSPC when setting up the cache in this transaction, just
3457 * skip doing the setup, we've already cleared the cache so we're safe.
3458 */
3459 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3460 ret = -ENOSPC;
3461 goto out_put;
3462 }
3463
3464 /*
3465 * Try to preallocate enough space based on how big the block group is.
3466 * Keep in mind this has to include any pinned space which could end up
3467 * taking up quite a bit since it's not folded into the other space
3468 * cache.
3469 */
3470 num_pages = div_u64(block_group->key.offset, SZ_256M);
3471 if (!num_pages)
3472 num_pages = 1;
3473
3474 num_pages *= 16;
3475 num_pages *= PAGE_SIZE;
3476
3477 ret = btrfs_check_data_free_space(inode, 0, num_pages);
3478 if (ret)
3479 goto out_put;
3480
3481 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3482 num_pages, num_pages,
3483 &alloc_hint);
3484 /*
3485 * Our cache requires contiguous chunks so that we don't modify a bunch
3486 * of metadata or split extents when writing the cache out, which means
3487 * we can enospc if we are heavily fragmented in addition to just normal
3488 * out of space conditions. So if we hit this just skip setting up any
3489 * other block groups for this transaction, maybe we'll unpin enough
3490 * space the next time around.
3491 */
3492 if (!ret)
3493 dcs = BTRFS_DC_SETUP;
3494 else if (ret == -ENOSPC)
3495 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3496
3497 out_put:
3498 iput(inode);
3499 out_free:
3500 btrfs_release_path(path);
3501 out:
3502 spin_lock(&block_group->lock);
3503 if (!ret && dcs == BTRFS_DC_SETUP)
3504 block_group->cache_generation = trans->transid;
3505 block_group->disk_cache_state = dcs;
3506 spin_unlock(&block_group->lock);
3507
3508 return ret;
3509 }
3510
btrfs_setup_space_cache(struct btrfs_trans_handle * trans,struct btrfs_root * root)3511 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3512 struct btrfs_root *root)
3513 {
3514 struct btrfs_block_group_cache *cache, *tmp;
3515 struct btrfs_transaction *cur_trans = trans->transaction;
3516 struct btrfs_path *path;
3517
3518 if (list_empty(&cur_trans->dirty_bgs) ||
3519 !btrfs_test_opt(root->fs_info, SPACE_CACHE))
3520 return 0;
3521
3522 path = btrfs_alloc_path();
3523 if (!path)
3524 return -ENOMEM;
3525
3526 /* Could add new block groups, use _safe just in case */
3527 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3528 dirty_list) {
3529 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3530 cache_save_setup(cache, trans, path);
3531 }
3532
3533 btrfs_free_path(path);
3534 return 0;
3535 }
3536
3537 /*
3538 * transaction commit does final block group cache writeback during a
3539 * critical section where nothing is allowed to change the FS. This is
3540 * required in order for the cache to actually match the block group,
3541 * but can introduce a lot of latency into the commit.
3542 *
3543 * So, btrfs_start_dirty_block_groups is here to kick off block group
3544 * cache IO. There's a chance we'll have to redo some of it if the
3545 * block group changes again during the commit, but it greatly reduces
3546 * the commit latency by getting rid of the easy block groups while
3547 * we're still allowing others to join the commit.
3548 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans,struct btrfs_root * root)3549 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3550 struct btrfs_root *root)
3551 {
3552 struct btrfs_block_group_cache *cache;
3553 struct btrfs_transaction *cur_trans = trans->transaction;
3554 int ret = 0;
3555 int should_put;
3556 struct btrfs_path *path = NULL;
3557 LIST_HEAD(dirty);
3558 struct list_head *io = &cur_trans->io_bgs;
3559 int num_started = 0;
3560 int loops = 0;
3561
3562 spin_lock(&cur_trans->dirty_bgs_lock);
3563 if (list_empty(&cur_trans->dirty_bgs)) {
3564 spin_unlock(&cur_trans->dirty_bgs_lock);
3565 return 0;
3566 }
3567 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3568 spin_unlock(&cur_trans->dirty_bgs_lock);
3569
3570 again:
3571 /*
3572 * make sure all the block groups on our dirty list actually
3573 * exist
3574 */
3575 btrfs_create_pending_block_groups(trans, root);
3576
3577 if (!path) {
3578 path = btrfs_alloc_path();
3579 if (!path)
3580 return -ENOMEM;
3581 }
3582
3583 /*
3584 * cache_write_mutex is here only to save us from balance or automatic
3585 * removal of empty block groups deleting this block group while we are
3586 * writing out the cache
3587 */
3588 mutex_lock(&trans->transaction->cache_write_mutex);
3589 while (!list_empty(&dirty)) {
3590 cache = list_first_entry(&dirty,
3591 struct btrfs_block_group_cache,
3592 dirty_list);
3593 /*
3594 * this can happen if something re-dirties a block
3595 * group that is already under IO. Just wait for it to
3596 * finish and then do it all again
3597 */
3598 if (!list_empty(&cache->io_list)) {
3599 list_del_init(&cache->io_list);
3600 btrfs_wait_cache_io(root, trans, cache,
3601 &cache->io_ctl, path,
3602 cache->key.objectid);
3603 btrfs_put_block_group(cache);
3604 }
3605
3606
3607 /*
3608 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3609 * if it should update the cache_state. Don't delete
3610 * until after we wait.
3611 *
3612 * Since we're not running in the commit critical section
3613 * we need the dirty_bgs_lock to protect from update_block_group
3614 */
3615 spin_lock(&cur_trans->dirty_bgs_lock);
3616 list_del_init(&cache->dirty_list);
3617 spin_unlock(&cur_trans->dirty_bgs_lock);
3618
3619 should_put = 1;
3620
3621 cache_save_setup(cache, trans, path);
3622
3623 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3624 cache->io_ctl.inode = NULL;
3625 ret = btrfs_write_out_cache(root, trans, cache, path);
3626 if (ret == 0 && cache->io_ctl.inode) {
3627 num_started++;
3628 should_put = 0;
3629
3630 /*
3631 * the cache_write_mutex is protecting
3632 * the io_list
3633 */
3634 list_add_tail(&cache->io_list, io);
3635 } else {
3636 /*
3637 * if we failed to write the cache, the
3638 * generation will be bad and life goes on
3639 */
3640 ret = 0;
3641 }
3642 }
3643 if (!ret) {
3644 ret = write_one_cache_group(trans, root, path, cache);
3645 /*
3646 * Our block group might still be attached to the list
3647 * of new block groups in the transaction handle of some
3648 * other task (struct btrfs_trans_handle->new_bgs). This
3649 * means its block group item isn't yet in the extent
3650 * tree. If this happens ignore the error, as we will
3651 * try again later in the critical section of the
3652 * transaction commit.
3653 */
3654 if (ret == -ENOENT) {
3655 ret = 0;
3656 spin_lock(&cur_trans->dirty_bgs_lock);
3657 if (list_empty(&cache->dirty_list)) {
3658 list_add_tail(&cache->dirty_list,
3659 &cur_trans->dirty_bgs);
3660 btrfs_get_block_group(cache);
3661 }
3662 spin_unlock(&cur_trans->dirty_bgs_lock);
3663 } else if (ret) {
3664 btrfs_abort_transaction(trans, ret);
3665 }
3666 }
3667
3668 /* if its not on the io list, we need to put the block group */
3669 if (should_put)
3670 btrfs_put_block_group(cache);
3671
3672 if (ret)
3673 break;
3674
3675 /*
3676 * Avoid blocking other tasks for too long. It might even save
3677 * us from writing caches for block groups that are going to be
3678 * removed.
3679 */
3680 mutex_unlock(&trans->transaction->cache_write_mutex);
3681 mutex_lock(&trans->transaction->cache_write_mutex);
3682 }
3683 mutex_unlock(&trans->transaction->cache_write_mutex);
3684
3685 /*
3686 * go through delayed refs for all the stuff we've just kicked off
3687 * and then loop back (just once)
3688 */
3689 ret = btrfs_run_delayed_refs(trans, root, 0);
3690 if (!ret && loops == 0) {
3691 loops++;
3692 spin_lock(&cur_trans->dirty_bgs_lock);
3693 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3694 /*
3695 * dirty_bgs_lock protects us from concurrent block group
3696 * deletes too (not just cache_write_mutex).
3697 */
3698 if (!list_empty(&dirty)) {
3699 spin_unlock(&cur_trans->dirty_bgs_lock);
3700 goto again;
3701 }
3702 spin_unlock(&cur_trans->dirty_bgs_lock);
3703 } else if (ret < 0) {
3704 btrfs_cleanup_dirty_bgs(cur_trans, root);
3705 }
3706
3707 btrfs_free_path(path);
3708 return ret;
3709 }
3710
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans,struct btrfs_root * root)3711 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3712 struct btrfs_root *root)
3713 {
3714 struct btrfs_block_group_cache *cache;
3715 struct btrfs_transaction *cur_trans = trans->transaction;
3716 int ret = 0;
3717 int should_put;
3718 struct btrfs_path *path;
3719 struct list_head *io = &cur_trans->io_bgs;
3720 int num_started = 0;
3721
3722 path = btrfs_alloc_path();
3723 if (!path)
3724 return -ENOMEM;
3725
3726 /*
3727 * Even though we are in the critical section of the transaction commit,
3728 * we can still have concurrent tasks adding elements to this
3729 * transaction's list of dirty block groups. These tasks correspond to
3730 * endio free space workers started when writeback finishes for a
3731 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3732 * allocate new block groups as a result of COWing nodes of the root
3733 * tree when updating the free space inode. The writeback for the space
3734 * caches is triggered by an earlier call to
3735 * btrfs_start_dirty_block_groups() and iterations of the following
3736 * loop.
3737 * Also we want to do the cache_save_setup first and then run the
3738 * delayed refs to make sure we have the best chance at doing this all
3739 * in one shot.
3740 */
3741 spin_lock(&cur_trans->dirty_bgs_lock);
3742 while (!list_empty(&cur_trans->dirty_bgs)) {
3743 cache = list_first_entry(&cur_trans->dirty_bgs,
3744 struct btrfs_block_group_cache,
3745 dirty_list);
3746
3747 /*
3748 * this can happen if cache_save_setup re-dirties a block
3749 * group that is already under IO. Just wait for it to
3750 * finish and then do it all again
3751 */
3752 if (!list_empty(&cache->io_list)) {
3753 spin_unlock(&cur_trans->dirty_bgs_lock);
3754 list_del_init(&cache->io_list);
3755 btrfs_wait_cache_io(root, trans, cache,
3756 &cache->io_ctl, path,
3757 cache->key.objectid);
3758 btrfs_put_block_group(cache);
3759 spin_lock(&cur_trans->dirty_bgs_lock);
3760 }
3761
3762 /*
3763 * don't remove from the dirty list until after we've waited
3764 * on any pending IO
3765 */
3766 list_del_init(&cache->dirty_list);
3767 spin_unlock(&cur_trans->dirty_bgs_lock);
3768 should_put = 1;
3769
3770 cache_save_setup(cache, trans, path);
3771
3772 if (!ret)
3773 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3774
3775 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3776 cache->io_ctl.inode = NULL;
3777 ret = btrfs_write_out_cache(root, trans, cache, path);
3778 if (ret == 0 && cache->io_ctl.inode) {
3779 num_started++;
3780 should_put = 0;
3781 list_add_tail(&cache->io_list, io);
3782 } else {
3783 /*
3784 * if we failed to write the cache, the
3785 * generation will be bad and life goes on
3786 */
3787 ret = 0;
3788 }
3789 }
3790 if (!ret) {
3791 ret = write_one_cache_group(trans, root, path, cache);
3792 /*
3793 * One of the free space endio workers might have
3794 * created a new block group while updating a free space
3795 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3796 * and hasn't released its transaction handle yet, in
3797 * which case the new block group is still attached to
3798 * its transaction handle and its creation has not
3799 * finished yet (no block group item in the extent tree
3800 * yet, etc). If this is the case, wait for all free
3801 * space endio workers to finish and retry. This is a
3802 * a very rare case so no need for a more efficient and
3803 * complex approach.
3804 */
3805 if (ret == -ENOENT) {
3806 wait_event(cur_trans->writer_wait,
3807 atomic_read(&cur_trans->num_writers) == 1);
3808 ret = write_one_cache_group(trans, root, path,
3809 cache);
3810 }
3811 if (ret)
3812 btrfs_abort_transaction(trans, ret);
3813 }
3814
3815 /* if its not on the io list, we need to put the block group */
3816 if (should_put)
3817 btrfs_put_block_group(cache);
3818 spin_lock(&cur_trans->dirty_bgs_lock);
3819 }
3820 spin_unlock(&cur_trans->dirty_bgs_lock);
3821
3822 while (!list_empty(io)) {
3823 cache = list_first_entry(io, struct btrfs_block_group_cache,
3824 io_list);
3825 list_del_init(&cache->io_list);
3826 btrfs_wait_cache_io(root, trans, cache,
3827 &cache->io_ctl, path, cache->key.objectid);
3828 btrfs_put_block_group(cache);
3829 }
3830
3831 btrfs_free_path(path);
3832 return ret;
3833 }
3834
btrfs_extent_readonly(struct btrfs_root * root,u64 bytenr)3835 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3836 {
3837 struct btrfs_block_group_cache *block_group;
3838 int readonly = 0;
3839
3840 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3841 if (!block_group || block_group->ro)
3842 readonly = 1;
3843 if (block_group)
3844 btrfs_put_block_group(block_group);
3845 return readonly;
3846 }
3847
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)3848 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3849 {
3850 struct btrfs_block_group_cache *bg;
3851 bool ret = true;
3852
3853 bg = btrfs_lookup_block_group(fs_info, bytenr);
3854 if (!bg)
3855 return false;
3856
3857 spin_lock(&bg->lock);
3858 if (bg->ro)
3859 ret = false;
3860 else
3861 atomic_inc(&bg->nocow_writers);
3862 spin_unlock(&bg->lock);
3863
3864 /* no put on block group, done by btrfs_dec_nocow_writers */
3865 if (!ret)
3866 btrfs_put_block_group(bg);
3867
3868 return ret;
3869
3870 }
3871
btrfs_dec_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)3872 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3873 {
3874 struct btrfs_block_group_cache *bg;
3875
3876 bg = btrfs_lookup_block_group(fs_info, bytenr);
3877 ASSERT(bg);
3878 if (atomic_dec_and_test(&bg->nocow_writers))
3879 wake_up_atomic_t(&bg->nocow_writers);
3880 /*
3881 * Once for our lookup and once for the lookup done by a previous call
3882 * to btrfs_inc_nocow_writers()
3883 */
3884 btrfs_put_block_group(bg);
3885 btrfs_put_block_group(bg);
3886 }
3887
btrfs_wait_nocow_writers_atomic_t(atomic_t * a)3888 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3889 {
3890 schedule();
3891 return 0;
3892 }
3893
btrfs_wait_nocow_writers(struct btrfs_block_group_cache * bg)3894 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3895 {
3896 wait_on_atomic_t(&bg->nocow_writers,
3897 btrfs_wait_nocow_writers_atomic_t,
3898 TASK_UNINTERRUPTIBLE);
3899 }
3900
alloc_name(u64 flags)3901 static const char *alloc_name(u64 flags)
3902 {
3903 switch (flags) {
3904 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3905 return "mixed";
3906 case BTRFS_BLOCK_GROUP_METADATA:
3907 return "metadata";
3908 case BTRFS_BLOCK_GROUP_DATA:
3909 return "data";
3910 case BTRFS_BLOCK_GROUP_SYSTEM:
3911 return "system";
3912 default:
3913 WARN_ON(1);
3914 return "invalid-combination";
3915 };
3916 }
3917
update_space_info(struct btrfs_fs_info * info,u64 flags,u64 total_bytes,u64 bytes_used,u64 bytes_readonly,struct btrfs_space_info ** space_info)3918 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3919 u64 total_bytes, u64 bytes_used,
3920 u64 bytes_readonly,
3921 struct btrfs_space_info **space_info)
3922 {
3923 struct btrfs_space_info *found;
3924 int i;
3925 int factor;
3926 int ret;
3927
3928 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3929 BTRFS_BLOCK_GROUP_RAID10))
3930 factor = 2;
3931 else
3932 factor = 1;
3933
3934 found = __find_space_info(info, flags);
3935 if (found) {
3936 spin_lock(&found->lock);
3937 found->total_bytes += total_bytes;
3938 found->disk_total += total_bytes * factor;
3939 found->bytes_used += bytes_used;
3940 found->disk_used += bytes_used * factor;
3941 found->bytes_readonly += bytes_readonly;
3942 if (total_bytes > 0)
3943 found->full = 0;
3944 space_info_add_new_bytes(info, found, total_bytes -
3945 bytes_used - bytes_readonly);
3946 spin_unlock(&found->lock);
3947 *space_info = found;
3948 return 0;
3949 }
3950 found = kzalloc(sizeof(*found), GFP_NOFS);
3951 if (!found)
3952 return -ENOMEM;
3953
3954 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3955 if (ret) {
3956 kfree(found);
3957 return ret;
3958 }
3959
3960 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3961 INIT_LIST_HEAD(&found->block_groups[i]);
3962 init_rwsem(&found->groups_sem);
3963 spin_lock_init(&found->lock);
3964 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3965 found->total_bytes = total_bytes;
3966 found->disk_total = total_bytes * factor;
3967 found->bytes_used = bytes_used;
3968 found->disk_used = bytes_used * factor;
3969 found->bytes_pinned = 0;
3970 found->bytes_reserved = 0;
3971 found->bytes_readonly = bytes_readonly;
3972 found->bytes_may_use = 0;
3973 found->full = 0;
3974 found->max_extent_size = 0;
3975 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3976 found->chunk_alloc = 0;
3977 found->flush = 0;
3978 init_waitqueue_head(&found->wait);
3979 INIT_LIST_HEAD(&found->ro_bgs);
3980 INIT_LIST_HEAD(&found->tickets);
3981 INIT_LIST_HEAD(&found->priority_tickets);
3982
3983 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3984 info->space_info_kobj, "%s",
3985 alloc_name(found->flags));
3986 if (ret) {
3987 percpu_counter_destroy(&found->total_bytes_pinned);
3988 kfree(found);
3989 return ret;
3990 }
3991
3992 *space_info = found;
3993 list_add_rcu(&found->list, &info->space_info);
3994 if (flags & BTRFS_BLOCK_GROUP_DATA)
3995 info->data_sinfo = found;
3996
3997 return ret;
3998 }
3999
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)4000 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4001 {
4002 u64 extra_flags = chunk_to_extended(flags) &
4003 BTRFS_EXTENDED_PROFILE_MASK;
4004
4005 write_seqlock(&fs_info->profiles_lock);
4006 if (flags & BTRFS_BLOCK_GROUP_DATA)
4007 fs_info->avail_data_alloc_bits |= extra_flags;
4008 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4009 fs_info->avail_metadata_alloc_bits |= extra_flags;
4010 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4011 fs_info->avail_system_alloc_bits |= extra_flags;
4012 write_sequnlock(&fs_info->profiles_lock);
4013 }
4014
4015 /*
4016 * returns target flags in extended format or 0 if restripe for this
4017 * chunk_type is not in progress
4018 *
4019 * should be called with either volume_mutex or balance_lock held
4020 */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)4021 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4022 {
4023 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4024 u64 target = 0;
4025
4026 if (!bctl)
4027 return 0;
4028
4029 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4030 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4031 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4032 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4033 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4034 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4035 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4036 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4037 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4038 }
4039
4040 return target;
4041 }
4042
4043 /*
4044 * @flags: available profiles in extended format (see ctree.h)
4045 *
4046 * Returns reduced profile in chunk format. If profile changing is in
4047 * progress (either running or paused) picks the target profile (if it's
4048 * already available), otherwise falls back to plain reducing.
4049 */
btrfs_reduce_alloc_profile(struct btrfs_root * root,u64 flags)4050 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
4051 {
4052 u64 num_devices = root->fs_info->fs_devices->rw_devices;
4053 u64 target;
4054 u64 raid_type;
4055 u64 allowed = 0;
4056
4057 /*
4058 * see if restripe for this chunk_type is in progress, if so
4059 * try to reduce to the target profile
4060 */
4061 spin_lock(&root->fs_info->balance_lock);
4062 target = get_restripe_target(root->fs_info, flags);
4063 if (target) {
4064 /* pick target profile only if it's already available */
4065 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4066 spin_unlock(&root->fs_info->balance_lock);
4067 return extended_to_chunk(target);
4068 }
4069 }
4070 spin_unlock(&root->fs_info->balance_lock);
4071
4072 /* First, mask out the RAID levels which aren't possible */
4073 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4074 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4075 allowed |= btrfs_raid_group[raid_type];
4076 }
4077 allowed &= flags;
4078
4079 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4080 allowed = BTRFS_BLOCK_GROUP_RAID6;
4081 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4082 allowed = BTRFS_BLOCK_GROUP_RAID5;
4083 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4084 allowed = BTRFS_BLOCK_GROUP_RAID10;
4085 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4086 allowed = BTRFS_BLOCK_GROUP_RAID1;
4087 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4088 allowed = BTRFS_BLOCK_GROUP_RAID0;
4089
4090 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4091
4092 return extended_to_chunk(flags | allowed);
4093 }
4094
get_alloc_profile(struct btrfs_root * root,u64 orig_flags)4095 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4096 {
4097 unsigned seq;
4098 u64 flags;
4099
4100 do {
4101 flags = orig_flags;
4102 seq = read_seqbegin(&root->fs_info->profiles_lock);
4103
4104 if (flags & BTRFS_BLOCK_GROUP_DATA)
4105 flags |= root->fs_info->avail_data_alloc_bits;
4106 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4107 flags |= root->fs_info->avail_system_alloc_bits;
4108 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4109 flags |= root->fs_info->avail_metadata_alloc_bits;
4110 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
4111
4112 return btrfs_reduce_alloc_profile(root, flags);
4113 }
4114
btrfs_get_alloc_profile(struct btrfs_root * root,int data)4115 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4116 {
4117 u64 flags;
4118 u64 ret;
4119
4120 if (data)
4121 flags = BTRFS_BLOCK_GROUP_DATA;
4122 else if (root == root->fs_info->chunk_root)
4123 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4124 else
4125 flags = BTRFS_BLOCK_GROUP_METADATA;
4126
4127 ret = get_alloc_profile(root, flags);
4128 return ret;
4129 }
4130
btrfs_alloc_data_chunk_ondemand(struct inode * inode,u64 bytes)4131 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4132 {
4133 struct btrfs_space_info *data_sinfo;
4134 struct btrfs_root *root = BTRFS_I(inode)->root;
4135 struct btrfs_fs_info *fs_info = root->fs_info;
4136 u64 used;
4137 int ret = 0;
4138 int need_commit = 2;
4139 int have_pinned_space;
4140
4141 /* make sure bytes are sectorsize aligned */
4142 bytes = ALIGN(bytes, root->sectorsize);
4143
4144 if (btrfs_is_free_space_inode(inode)) {
4145 need_commit = 0;
4146 ASSERT(current->journal_info);
4147 }
4148
4149 data_sinfo = fs_info->data_sinfo;
4150 if (!data_sinfo)
4151 goto alloc;
4152
4153 again:
4154 /* make sure we have enough space to handle the data first */
4155 spin_lock(&data_sinfo->lock);
4156 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4157 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4158 data_sinfo->bytes_may_use;
4159
4160 if (used + bytes > data_sinfo->total_bytes) {
4161 struct btrfs_trans_handle *trans;
4162
4163 /*
4164 * if we don't have enough free bytes in this space then we need
4165 * to alloc a new chunk.
4166 */
4167 if (!data_sinfo->full) {
4168 u64 alloc_target;
4169
4170 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4171 spin_unlock(&data_sinfo->lock);
4172 alloc:
4173 alloc_target = btrfs_get_alloc_profile(root, 1);
4174 /*
4175 * It is ugly that we don't call nolock join
4176 * transaction for the free space inode case here.
4177 * But it is safe because we only do the data space
4178 * reservation for the free space cache in the
4179 * transaction context, the common join transaction
4180 * just increase the counter of the current transaction
4181 * handler, doesn't try to acquire the trans_lock of
4182 * the fs.
4183 */
4184 trans = btrfs_join_transaction(root);
4185 if (IS_ERR(trans))
4186 return PTR_ERR(trans);
4187
4188 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4189 alloc_target,
4190 CHUNK_ALLOC_NO_FORCE);
4191 btrfs_end_transaction(trans, root);
4192 if (ret < 0) {
4193 if (ret != -ENOSPC)
4194 return ret;
4195 else {
4196 have_pinned_space = 1;
4197 goto commit_trans;
4198 }
4199 }
4200
4201 if (!data_sinfo)
4202 data_sinfo = fs_info->data_sinfo;
4203
4204 goto again;
4205 }
4206
4207 /*
4208 * If we don't have enough pinned space to deal with this
4209 * allocation, and no removed chunk in current transaction,
4210 * don't bother committing the transaction.
4211 */
4212 have_pinned_space = percpu_counter_compare(
4213 &data_sinfo->total_bytes_pinned,
4214 used + bytes - data_sinfo->total_bytes);
4215 spin_unlock(&data_sinfo->lock);
4216
4217 /* commit the current transaction and try again */
4218 commit_trans:
4219 if (need_commit &&
4220 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4221 need_commit--;
4222
4223 if (need_commit > 0) {
4224 btrfs_start_delalloc_roots(fs_info, 0, -1);
4225 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4226 }
4227
4228 trans = btrfs_join_transaction(root);
4229 if (IS_ERR(trans))
4230 return PTR_ERR(trans);
4231 if (have_pinned_space >= 0 ||
4232 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4233 &trans->transaction->flags) ||
4234 need_commit > 0) {
4235 ret = btrfs_commit_transaction(trans, root);
4236 if (ret)
4237 return ret;
4238 /*
4239 * The cleaner kthread might still be doing iput
4240 * operations. Wait for it to finish so that
4241 * more space is released.
4242 */
4243 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4244 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4245 goto again;
4246 } else {
4247 btrfs_end_transaction(trans, root);
4248 }
4249 }
4250
4251 trace_btrfs_space_reservation(root->fs_info,
4252 "space_info:enospc",
4253 data_sinfo->flags, bytes, 1);
4254 return -ENOSPC;
4255 }
4256 data_sinfo->bytes_may_use += bytes;
4257 trace_btrfs_space_reservation(root->fs_info, "space_info",
4258 data_sinfo->flags, bytes, 1);
4259 spin_unlock(&data_sinfo->lock);
4260
4261 return ret;
4262 }
4263
4264 /*
4265 * New check_data_free_space() with ability for precious data reservation
4266 * Will replace old btrfs_check_data_free_space(), but for patch split,
4267 * add a new function first and then replace it.
4268 */
btrfs_check_data_free_space(struct inode * inode,u64 start,u64 len)4269 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4270 {
4271 struct btrfs_root *root = BTRFS_I(inode)->root;
4272 int ret;
4273
4274 /* align the range */
4275 len = round_up(start + len, root->sectorsize) -
4276 round_down(start, root->sectorsize);
4277 start = round_down(start, root->sectorsize);
4278
4279 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4280 if (ret < 0)
4281 return ret;
4282
4283 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4284 ret = btrfs_qgroup_reserve_data(inode, start, len);
4285 if (ret)
4286 btrfs_free_reserved_data_space_noquota(inode, start, len);
4287 return ret;
4288 }
4289
4290 /*
4291 * Called if we need to clear a data reservation for this inode
4292 * Normally in a error case.
4293 *
4294 * This one will *NOT* use accurate qgroup reserved space API, just for case
4295 * which we can't sleep and is sure it won't affect qgroup reserved space.
4296 * Like clear_bit_hook().
4297 */
btrfs_free_reserved_data_space_noquota(struct inode * inode,u64 start,u64 len)4298 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4299 u64 len)
4300 {
4301 struct btrfs_root *root = BTRFS_I(inode)->root;
4302 struct btrfs_space_info *data_sinfo;
4303
4304 /* Make sure the range is aligned to sectorsize */
4305 len = round_up(start + len, root->sectorsize) -
4306 round_down(start, root->sectorsize);
4307 start = round_down(start, root->sectorsize);
4308
4309 data_sinfo = root->fs_info->data_sinfo;
4310 spin_lock(&data_sinfo->lock);
4311 if (WARN_ON(data_sinfo->bytes_may_use < len))
4312 data_sinfo->bytes_may_use = 0;
4313 else
4314 data_sinfo->bytes_may_use -= len;
4315 trace_btrfs_space_reservation(root->fs_info, "space_info",
4316 data_sinfo->flags, len, 0);
4317 spin_unlock(&data_sinfo->lock);
4318 }
4319
4320 /*
4321 * Called if we need to clear a data reservation for this inode
4322 * Normally in a error case.
4323 *
4324 * This one will handle the per-inode data rsv map for accurate reserved
4325 * space framework.
4326 */
btrfs_free_reserved_data_space(struct inode * inode,u64 start,u64 len)4327 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4328 {
4329 btrfs_free_reserved_data_space_noquota(inode, start, len);
4330 btrfs_qgroup_free_data(inode, start, len);
4331 }
4332
force_metadata_allocation(struct btrfs_fs_info * info)4333 static void force_metadata_allocation(struct btrfs_fs_info *info)
4334 {
4335 struct list_head *head = &info->space_info;
4336 struct btrfs_space_info *found;
4337
4338 rcu_read_lock();
4339 list_for_each_entry_rcu(found, head, list) {
4340 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4341 found->force_alloc = CHUNK_ALLOC_FORCE;
4342 }
4343 rcu_read_unlock();
4344 }
4345
calc_global_rsv_need_space(struct btrfs_block_rsv * global)4346 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4347 {
4348 return (global->size << 1);
4349 }
4350
should_alloc_chunk(struct btrfs_root * root,struct btrfs_space_info * sinfo,int force)4351 static int should_alloc_chunk(struct btrfs_root *root,
4352 struct btrfs_space_info *sinfo, int force)
4353 {
4354 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4355 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4356 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4357 u64 thresh;
4358
4359 if (force == CHUNK_ALLOC_FORCE)
4360 return 1;
4361
4362 /*
4363 * We need to take into account the global rsv because for all intents
4364 * and purposes it's used space. Don't worry about locking the
4365 * global_rsv, it doesn't change except when the transaction commits.
4366 */
4367 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4368 num_allocated += calc_global_rsv_need_space(global_rsv);
4369
4370 /*
4371 * in limited mode, we want to have some free space up to
4372 * about 1% of the FS size.
4373 */
4374 if (force == CHUNK_ALLOC_LIMITED) {
4375 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4376 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4377
4378 if (num_bytes - num_allocated < thresh)
4379 return 1;
4380 }
4381
4382 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4383 return 0;
4384 return 1;
4385 }
4386
get_profile_num_devs(struct btrfs_root * root,u64 type)4387 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4388 {
4389 u64 num_dev;
4390
4391 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4392 BTRFS_BLOCK_GROUP_RAID0 |
4393 BTRFS_BLOCK_GROUP_RAID5 |
4394 BTRFS_BLOCK_GROUP_RAID6))
4395 num_dev = root->fs_info->fs_devices->rw_devices;
4396 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4397 num_dev = 2;
4398 else
4399 num_dev = 1; /* DUP or single */
4400
4401 return num_dev;
4402 }
4403
4404 /*
4405 * If @is_allocation is true, reserve space in the system space info necessary
4406 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4407 * removing a chunk.
4408 */
check_system_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 type)4409 void check_system_chunk(struct btrfs_trans_handle *trans,
4410 struct btrfs_root *root,
4411 u64 type)
4412 {
4413 struct btrfs_space_info *info;
4414 u64 left;
4415 u64 thresh;
4416 int ret = 0;
4417 u64 num_devs;
4418
4419 /*
4420 * Needed because we can end up allocating a system chunk and for an
4421 * atomic and race free space reservation in the chunk block reserve.
4422 */
4423 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4424
4425 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4426 spin_lock(&info->lock);
4427 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4428 info->bytes_reserved - info->bytes_readonly -
4429 info->bytes_may_use;
4430 spin_unlock(&info->lock);
4431
4432 num_devs = get_profile_num_devs(root, type);
4433
4434 /* num_devs device items to update and 1 chunk item to add or remove */
4435 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4436 btrfs_calc_trans_metadata_size(root, 1);
4437
4438 if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
4439 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4440 left, thresh, type);
4441 dump_space_info(root->fs_info, info, 0, 0);
4442 }
4443
4444 if (left < thresh) {
4445 u64 flags;
4446
4447 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4448 /*
4449 * Ignore failure to create system chunk. We might end up not
4450 * needing it, as we might not need to COW all nodes/leafs from
4451 * the paths we visit in the chunk tree (they were already COWed
4452 * or created in the current transaction for example).
4453 */
4454 ret = btrfs_alloc_chunk(trans, root, flags);
4455 }
4456
4457 if (!ret) {
4458 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4459 &root->fs_info->chunk_block_rsv,
4460 thresh, BTRFS_RESERVE_NO_FLUSH);
4461 if (!ret)
4462 trans->chunk_bytes_reserved += thresh;
4463 }
4464 }
4465
4466 /*
4467 * If force is CHUNK_ALLOC_FORCE:
4468 * - return 1 if it successfully allocates a chunk,
4469 * - return errors including -ENOSPC otherwise.
4470 * If force is NOT CHUNK_ALLOC_FORCE:
4471 * - return 0 if it doesn't need to allocate a new chunk,
4472 * - return 1 if it successfully allocates a chunk,
4473 * - return errors including -ENOSPC otherwise.
4474 */
do_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 flags,int force)4475 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4476 struct btrfs_root *extent_root, u64 flags, int force)
4477 {
4478 struct btrfs_space_info *space_info;
4479 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4480 int wait_for_alloc = 0;
4481 int ret = 0;
4482
4483 /* Don't re-enter if we're already allocating a chunk */
4484 if (trans->allocating_chunk)
4485 return -ENOSPC;
4486
4487 space_info = __find_space_info(extent_root->fs_info, flags);
4488 if (!space_info) {
4489 ret = update_space_info(extent_root->fs_info, flags,
4490 0, 0, 0, &space_info);
4491 BUG_ON(ret); /* -ENOMEM */
4492 }
4493 BUG_ON(!space_info); /* Logic error */
4494
4495 again:
4496 spin_lock(&space_info->lock);
4497 if (force < space_info->force_alloc)
4498 force = space_info->force_alloc;
4499 if (space_info->full) {
4500 if (should_alloc_chunk(extent_root, space_info, force))
4501 ret = -ENOSPC;
4502 else
4503 ret = 0;
4504 spin_unlock(&space_info->lock);
4505 return ret;
4506 }
4507
4508 if (!should_alloc_chunk(extent_root, space_info, force)) {
4509 spin_unlock(&space_info->lock);
4510 return 0;
4511 } else if (space_info->chunk_alloc) {
4512 wait_for_alloc = 1;
4513 } else {
4514 space_info->chunk_alloc = 1;
4515 }
4516
4517 spin_unlock(&space_info->lock);
4518
4519 mutex_lock(&fs_info->chunk_mutex);
4520
4521 /*
4522 * The chunk_mutex is held throughout the entirety of a chunk
4523 * allocation, so once we've acquired the chunk_mutex we know that the
4524 * other guy is done and we need to recheck and see if we should
4525 * allocate.
4526 */
4527 if (wait_for_alloc) {
4528 mutex_unlock(&fs_info->chunk_mutex);
4529 wait_for_alloc = 0;
4530 goto again;
4531 }
4532
4533 trans->allocating_chunk = true;
4534
4535 /*
4536 * If we have mixed data/metadata chunks we want to make sure we keep
4537 * allocating mixed chunks instead of individual chunks.
4538 */
4539 if (btrfs_mixed_space_info(space_info))
4540 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4541
4542 /*
4543 * if we're doing a data chunk, go ahead and make sure that
4544 * we keep a reasonable number of metadata chunks allocated in the
4545 * FS as well.
4546 */
4547 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4548 fs_info->data_chunk_allocations++;
4549 if (!(fs_info->data_chunk_allocations %
4550 fs_info->metadata_ratio))
4551 force_metadata_allocation(fs_info);
4552 }
4553
4554 /*
4555 * Check if we have enough space in SYSTEM chunk because we may need
4556 * to update devices.
4557 */
4558 check_system_chunk(trans, extent_root, flags);
4559
4560 ret = btrfs_alloc_chunk(trans, extent_root, flags);
4561 trans->allocating_chunk = false;
4562
4563 spin_lock(&space_info->lock);
4564 if (ret < 0 && ret != -ENOSPC)
4565 goto out;
4566 if (ret)
4567 space_info->full = 1;
4568 else
4569 ret = 1;
4570
4571 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4572 out:
4573 space_info->chunk_alloc = 0;
4574 spin_unlock(&space_info->lock);
4575 mutex_unlock(&fs_info->chunk_mutex);
4576 /*
4577 * When we allocate a new chunk we reserve space in the chunk block
4578 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4579 * add new nodes/leafs to it if we end up needing to do it when
4580 * inserting the chunk item and updating device items as part of the
4581 * second phase of chunk allocation, performed by
4582 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4583 * large number of new block groups to create in our transaction
4584 * handle's new_bgs list to avoid exhausting the chunk block reserve
4585 * in extreme cases - like having a single transaction create many new
4586 * block groups when starting to write out the free space caches of all
4587 * the block groups that were made dirty during the lifetime of the
4588 * transaction.
4589 */
4590 if (trans->can_flush_pending_bgs &&
4591 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4592 btrfs_create_pending_block_groups(trans, extent_root);
4593 btrfs_trans_release_chunk_metadata(trans);
4594 }
4595 return ret;
4596 }
4597
can_overcommit(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush)4598 static int can_overcommit(struct btrfs_root *root,
4599 struct btrfs_space_info *space_info, u64 bytes,
4600 enum btrfs_reserve_flush_enum flush)
4601 {
4602 struct btrfs_block_rsv *global_rsv;
4603 u64 profile;
4604 u64 space_size;
4605 u64 avail;
4606 u64 used;
4607
4608 /* Don't overcommit when in mixed mode. */
4609 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4610 return 0;
4611
4612 BUG_ON(root->fs_info == NULL);
4613 global_rsv = &root->fs_info->global_block_rsv;
4614 profile = btrfs_get_alloc_profile(root, 0);
4615 used = space_info->bytes_used + space_info->bytes_reserved +
4616 space_info->bytes_pinned + space_info->bytes_readonly;
4617
4618 /*
4619 * We only want to allow over committing if we have lots of actual space
4620 * free, but if we don't have enough space to handle the global reserve
4621 * space then we could end up having a real enospc problem when trying
4622 * to allocate a chunk or some other such important allocation.
4623 */
4624 spin_lock(&global_rsv->lock);
4625 space_size = calc_global_rsv_need_space(global_rsv);
4626 spin_unlock(&global_rsv->lock);
4627 if (used + space_size >= space_info->total_bytes)
4628 return 0;
4629
4630 used += space_info->bytes_may_use;
4631
4632 spin_lock(&root->fs_info->free_chunk_lock);
4633 avail = root->fs_info->free_chunk_space;
4634 spin_unlock(&root->fs_info->free_chunk_lock);
4635
4636 /*
4637 * If we have dup, raid1 or raid10 then only half of the free
4638 * space is actually useable. For raid56, the space info used
4639 * doesn't include the parity drive, so we don't have to
4640 * change the math
4641 */
4642 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4643 BTRFS_BLOCK_GROUP_RAID1 |
4644 BTRFS_BLOCK_GROUP_RAID10))
4645 avail >>= 1;
4646
4647 /*
4648 * If we aren't flushing all things, let us overcommit up to
4649 * 1/2th of the space. If we can flush, don't let us overcommit
4650 * too much, let it overcommit up to 1/8 of the space.
4651 */
4652 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4653 avail >>= 3;
4654 else
4655 avail >>= 1;
4656
4657 if (used + bytes < space_info->total_bytes + avail)
4658 return 1;
4659 return 0;
4660 }
4661
btrfs_writeback_inodes_sb_nr(struct btrfs_root * root,unsigned long nr_pages,int nr_items)4662 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4663 unsigned long nr_pages, int nr_items)
4664 {
4665 struct super_block *sb = root->fs_info->sb;
4666
4667 if (down_read_trylock(&sb->s_umount)) {
4668 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4669 up_read(&sb->s_umount);
4670 } else {
4671 /*
4672 * We needn't worry the filesystem going from r/w to r/o though
4673 * we don't acquire ->s_umount mutex, because the filesystem
4674 * should guarantee the delalloc inodes list be empty after
4675 * the filesystem is readonly(all dirty pages are written to
4676 * the disk).
4677 */
4678 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4679 if (!current->journal_info)
4680 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4681 0, (u64)-1);
4682 }
4683 }
4684
calc_reclaim_items_nr(struct btrfs_root * root,u64 to_reclaim)4685 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4686 {
4687 u64 bytes;
4688 int nr;
4689
4690 bytes = btrfs_calc_trans_metadata_size(root, 1);
4691 nr = (int)div64_u64(to_reclaim, bytes);
4692 if (!nr)
4693 nr = 1;
4694 return nr;
4695 }
4696
4697 #define EXTENT_SIZE_PER_ITEM SZ_256K
4698
4699 /*
4700 * shrink metadata reservation for delalloc
4701 */
shrink_delalloc(struct btrfs_root * root,u64 to_reclaim,u64 orig,bool wait_ordered)4702 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4703 bool wait_ordered)
4704 {
4705 struct btrfs_block_rsv *block_rsv;
4706 struct btrfs_space_info *space_info;
4707 struct btrfs_trans_handle *trans;
4708 u64 delalloc_bytes;
4709 u64 max_reclaim;
4710 long time_left;
4711 unsigned long nr_pages;
4712 int loops;
4713 int items;
4714 enum btrfs_reserve_flush_enum flush;
4715
4716 /* Calc the number of the pages we need flush for space reservation */
4717 items = calc_reclaim_items_nr(root, to_reclaim);
4718 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4719
4720 trans = (struct btrfs_trans_handle *)current->journal_info;
4721 block_rsv = &root->fs_info->delalloc_block_rsv;
4722 space_info = block_rsv->space_info;
4723
4724 delalloc_bytes = percpu_counter_sum_positive(
4725 &root->fs_info->delalloc_bytes);
4726 if (delalloc_bytes == 0) {
4727 if (trans)
4728 return;
4729 if (wait_ordered)
4730 btrfs_wait_ordered_roots(root->fs_info, items,
4731 0, (u64)-1);
4732 return;
4733 }
4734
4735 loops = 0;
4736 while (delalloc_bytes && loops < 3) {
4737 max_reclaim = min(delalloc_bytes, to_reclaim);
4738 nr_pages = max_reclaim >> PAGE_SHIFT;
4739 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4740 /*
4741 * We need to wait for the async pages to actually start before
4742 * we do anything.
4743 */
4744 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4745 if (!max_reclaim)
4746 goto skip_async;
4747
4748 if (max_reclaim <= nr_pages)
4749 max_reclaim = 0;
4750 else
4751 max_reclaim -= nr_pages;
4752
4753 wait_event(root->fs_info->async_submit_wait,
4754 atomic_read(&root->fs_info->async_delalloc_pages) <=
4755 (int)max_reclaim);
4756 skip_async:
4757 if (!trans)
4758 flush = BTRFS_RESERVE_FLUSH_ALL;
4759 else
4760 flush = BTRFS_RESERVE_NO_FLUSH;
4761 spin_lock(&space_info->lock);
4762 if (list_empty(&space_info->tickets) &&
4763 list_empty(&space_info->priority_tickets)) {
4764 spin_unlock(&space_info->lock);
4765 break;
4766 }
4767 spin_unlock(&space_info->lock);
4768
4769 loops++;
4770 if (wait_ordered && !trans) {
4771 btrfs_wait_ordered_roots(root->fs_info, items,
4772 0, (u64)-1);
4773 } else {
4774 time_left = schedule_timeout_killable(1);
4775 if (time_left)
4776 break;
4777 }
4778 delalloc_bytes = percpu_counter_sum_positive(
4779 &root->fs_info->delalloc_bytes);
4780 }
4781 }
4782
4783 /**
4784 * maybe_commit_transaction - possibly commit the transaction if its ok to
4785 * @root - the root we're allocating for
4786 * @bytes - the number of bytes we want to reserve
4787 * @force - force the commit
4788 *
4789 * This will check to make sure that committing the transaction will actually
4790 * get us somewhere and then commit the transaction if it does. Otherwise it
4791 * will return -ENOSPC.
4792 */
may_commit_transaction(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 bytes,int force)4793 static int may_commit_transaction(struct btrfs_root *root,
4794 struct btrfs_space_info *space_info,
4795 u64 bytes, int force)
4796 {
4797 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4798 struct btrfs_trans_handle *trans;
4799
4800 trans = (struct btrfs_trans_handle *)current->journal_info;
4801 if (trans)
4802 return -EAGAIN;
4803
4804 if (force)
4805 goto commit;
4806
4807 /* See if there is enough pinned space to make this reservation */
4808 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4809 bytes) >= 0)
4810 goto commit;
4811
4812 /*
4813 * See if there is some space in the delayed insertion reservation for
4814 * this reservation.
4815 */
4816 if (space_info != delayed_rsv->space_info)
4817 return -ENOSPC;
4818
4819 spin_lock(&delayed_rsv->lock);
4820 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4821 bytes - delayed_rsv->size) >= 0) {
4822 spin_unlock(&delayed_rsv->lock);
4823 return -ENOSPC;
4824 }
4825 spin_unlock(&delayed_rsv->lock);
4826
4827 commit:
4828 trans = btrfs_join_transaction(root);
4829 if (IS_ERR(trans))
4830 return -ENOSPC;
4831
4832 return btrfs_commit_transaction(trans, root);
4833 }
4834
4835 struct reserve_ticket {
4836 u64 bytes;
4837 int error;
4838 struct list_head list;
4839 wait_queue_head_t wait;
4840 };
4841
flush_space(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 num_bytes,u64 orig_bytes,int state)4842 static int flush_space(struct btrfs_root *root,
4843 struct btrfs_space_info *space_info, u64 num_bytes,
4844 u64 orig_bytes, int state)
4845 {
4846 struct btrfs_trans_handle *trans;
4847 int nr;
4848 int ret = 0;
4849
4850 switch (state) {
4851 case FLUSH_DELAYED_ITEMS_NR:
4852 case FLUSH_DELAYED_ITEMS:
4853 if (state == FLUSH_DELAYED_ITEMS_NR)
4854 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4855 else
4856 nr = -1;
4857
4858 trans = btrfs_join_transaction(root);
4859 if (IS_ERR(trans)) {
4860 ret = PTR_ERR(trans);
4861 break;
4862 }
4863 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4864 btrfs_end_transaction(trans, root);
4865 break;
4866 case FLUSH_DELALLOC:
4867 case FLUSH_DELALLOC_WAIT:
4868 shrink_delalloc(root, num_bytes * 2, orig_bytes,
4869 state == FLUSH_DELALLOC_WAIT);
4870 break;
4871 case ALLOC_CHUNK:
4872 trans = btrfs_join_transaction(root);
4873 if (IS_ERR(trans)) {
4874 ret = PTR_ERR(trans);
4875 break;
4876 }
4877 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4878 btrfs_get_alloc_profile(root, 0),
4879 CHUNK_ALLOC_NO_FORCE);
4880 btrfs_end_transaction(trans, root);
4881 if (ret > 0 || ret == -ENOSPC)
4882 ret = 0;
4883 break;
4884 case COMMIT_TRANS:
4885 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4886 break;
4887 default:
4888 ret = -ENOSPC;
4889 break;
4890 }
4891
4892 trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes,
4893 orig_bytes, state, ret);
4894 return ret;
4895 }
4896
4897 static inline u64
btrfs_calc_reclaim_metadata_size(struct btrfs_root * root,struct btrfs_space_info * space_info)4898 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4899 struct btrfs_space_info *space_info)
4900 {
4901 struct reserve_ticket *ticket;
4902 u64 used;
4903 u64 expected;
4904 u64 to_reclaim = 0;
4905
4906 list_for_each_entry(ticket, &space_info->tickets, list)
4907 to_reclaim += ticket->bytes;
4908 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4909 to_reclaim += ticket->bytes;
4910 if (to_reclaim)
4911 return to_reclaim;
4912
4913 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4914 if (can_overcommit(root, space_info, to_reclaim,
4915 BTRFS_RESERVE_FLUSH_ALL))
4916 return 0;
4917
4918 used = space_info->bytes_used + space_info->bytes_reserved +
4919 space_info->bytes_pinned + space_info->bytes_readonly +
4920 space_info->bytes_may_use;
4921 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4922 expected = div_factor_fine(space_info->total_bytes, 95);
4923 else
4924 expected = div_factor_fine(space_info->total_bytes, 90);
4925
4926 if (used > expected)
4927 to_reclaim = used - expected;
4928 else
4929 to_reclaim = 0;
4930 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4931 space_info->bytes_reserved);
4932 return to_reclaim;
4933 }
4934
need_do_async_reclaim(struct btrfs_space_info * space_info,struct btrfs_root * root,u64 used)4935 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4936 struct btrfs_root *root, u64 used)
4937 {
4938 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4939
4940 /* If we're just plain full then async reclaim just slows us down. */
4941 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4942 return 0;
4943
4944 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4945 return 0;
4946
4947 return (used >= thresh && !btrfs_fs_closing(root->fs_info) &&
4948 !test_bit(BTRFS_FS_STATE_REMOUNTING,
4949 &root->fs_info->fs_state));
4950 }
4951
wake_all_tickets(struct list_head * head)4952 static void wake_all_tickets(struct list_head *head)
4953 {
4954 struct reserve_ticket *ticket;
4955
4956 while (!list_empty(head)) {
4957 ticket = list_first_entry(head, struct reserve_ticket, list);
4958 list_del_init(&ticket->list);
4959 ticket->error = -ENOSPC;
4960 wake_up(&ticket->wait);
4961 }
4962 }
4963
4964 /*
4965 * This is for normal flushers, we can wait all goddamned day if we want to. We
4966 * will loop and continuously try to flush as long as we are making progress.
4967 * We count progress as clearing off tickets each time we have to loop.
4968 */
btrfs_async_reclaim_metadata_space(struct work_struct * work)4969 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4970 {
4971 struct btrfs_fs_info *fs_info;
4972 struct btrfs_space_info *space_info;
4973 u64 to_reclaim;
4974 int flush_state;
4975 int commit_cycles = 0;
4976 u64 last_tickets_id;
4977
4978 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4979 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4980
4981 spin_lock(&space_info->lock);
4982 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4983 space_info);
4984 if (!to_reclaim) {
4985 space_info->flush = 0;
4986 spin_unlock(&space_info->lock);
4987 return;
4988 }
4989 last_tickets_id = space_info->tickets_id;
4990 spin_unlock(&space_info->lock);
4991
4992 flush_state = FLUSH_DELAYED_ITEMS_NR;
4993 do {
4994 struct reserve_ticket *ticket;
4995 int ret;
4996
4997 ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
4998 to_reclaim, flush_state);
4999 spin_lock(&space_info->lock);
5000 if (list_empty(&space_info->tickets)) {
5001 space_info->flush = 0;
5002 spin_unlock(&space_info->lock);
5003 return;
5004 }
5005 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5006 space_info);
5007 ticket = list_first_entry(&space_info->tickets,
5008 struct reserve_ticket, list);
5009 if (last_tickets_id == space_info->tickets_id) {
5010 flush_state++;
5011 } else {
5012 last_tickets_id = space_info->tickets_id;
5013 flush_state = FLUSH_DELAYED_ITEMS_NR;
5014 if (commit_cycles)
5015 commit_cycles--;
5016 }
5017
5018 if (flush_state > COMMIT_TRANS) {
5019 commit_cycles++;
5020 if (commit_cycles > 2) {
5021 wake_all_tickets(&space_info->tickets);
5022 space_info->flush = 0;
5023 } else {
5024 flush_state = FLUSH_DELAYED_ITEMS_NR;
5025 }
5026 }
5027 spin_unlock(&space_info->lock);
5028 } while (flush_state <= COMMIT_TRANS);
5029 }
5030
btrfs_init_async_reclaim_work(struct work_struct * work)5031 void btrfs_init_async_reclaim_work(struct work_struct *work)
5032 {
5033 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5034 }
5035
priority_reclaim_metadata_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)5036 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5037 struct btrfs_space_info *space_info,
5038 struct reserve_ticket *ticket)
5039 {
5040 u64 to_reclaim;
5041 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5042
5043 spin_lock(&space_info->lock);
5044 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5045 space_info);
5046 if (!to_reclaim) {
5047 spin_unlock(&space_info->lock);
5048 return;
5049 }
5050 spin_unlock(&space_info->lock);
5051
5052 do {
5053 flush_space(fs_info->fs_root, space_info, to_reclaim,
5054 to_reclaim, flush_state);
5055 flush_state++;
5056 spin_lock(&space_info->lock);
5057 if (ticket->bytes == 0) {
5058 spin_unlock(&space_info->lock);
5059 return;
5060 }
5061 spin_unlock(&space_info->lock);
5062
5063 /*
5064 * Priority flushers can't wait on delalloc without
5065 * deadlocking.
5066 */
5067 if (flush_state == FLUSH_DELALLOC ||
5068 flush_state == FLUSH_DELALLOC_WAIT)
5069 flush_state = ALLOC_CHUNK;
5070 } while (flush_state < COMMIT_TRANS);
5071 }
5072
wait_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,u64 orig_bytes)5073 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5074 struct btrfs_space_info *space_info,
5075 struct reserve_ticket *ticket, u64 orig_bytes)
5076
5077 {
5078 DEFINE_WAIT(wait);
5079 int ret = 0;
5080
5081 spin_lock(&space_info->lock);
5082 while (ticket->bytes > 0 && ticket->error == 0) {
5083 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5084 if (ret) {
5085 ret = -EINTR;
5086 break;
5087 }
5088 spin_unlock(&space_info->lock);
5089
5090 schedule();
5091
5092 finish_wait(&ticket->wait, &wait);
5093 spin_lock(&space_info->lock);
5094 }
5095 if (!ret)
5096 ret = ticket->error;
5097 if (!list_empty(&ticket->list))
5098 list_del_init(&ticket->list);
5099 if (ticket->bytes && ticket->bytes < orig_bytes) {
5100 u64 num_bytes = orig_bytes - ticket->bytes;
5101 space_info->bytes_may_use -= num_bytes;
5102 trace_btrfs_space_reservation(fs_info, "space_info",
5103 space_info->flags, num_bytes, 0);
5104 }
5105 spin_unlock(&space_info->lock);
5106
5107 return ret;
5108 }
5109
5110 /**
5111 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5112 * @root - the root we're allocating for
5113 * @space_info - the space info we want to allocate from
5114 * @orig_bytes - the number of bytes we want
5115 * @flush - whether or not we can flush to make our reservation
5116 *
5117 * This will reserve orig_bytes number of bytes from the space info associated
5118 * with the block_rsv. If there is not enough space it will make an attempt to
5119 * flush out space to make room. It will do this by flushing delalloc if
5120 * possible or committing the transaction. If flush is 0 then no attempts to
5121 * regain reservations will be made and this will fail if there is not enough
5122 * space already.
5123 */
__reserve_metadata_bytes(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)5124 static int __reserve_metadata_bytes(struct btrfs_root *root,
5125 struct btrfs_space_info *space_info,
5126 u64 orig_bytes,
5127 enum btrfs_reserve_flush_enum flush)
5128 {
5129 struct reserve_ticket ticket;
5130 u64 used;
5131 int ret = 0;
5132
5133 ASSERT(orig_bytes);
5134 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5135
5136 spin_lock(&space_info->lock);
5137 ret = -ENOSPC;
5138 used = space_info->bytes_used + space_info->bytes_reserved +
5139 space_info->bytes_pinned + space_info->bytes_readonly +
5140 space_info->bytes_may_use;
5141
5142 /*
5143 * If we have enough space then hooray, make our reservation and carry
5144 * on. If not see if we can overcommit, and if we can, hooray carry on.
5145 * If not things get more complicated.
5146 */
5147 if (used + orig_bytes <= space_info->total_bytes) {
5148 space_info->bytes_may_use += orig_bytes;
5149 trace_btrfs_space_reservation(root->fs_info, "space_info",
5150 space_info->flags, orig_bytes,
5151 1);
5152 ret = 0;
5153 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5154 space_info->bytes_may_use += orig_bytes;
5155 trace_btrfs_space_reservation(root->fs_info, "space_info",
5156 space_info->flags, orig_bytes,
5157 1);
5158 ret = 0;
5159 }
5160
5161 /*
5162 * If we couldn't make a reservation then setup our reservation ticket
5163 * and kick the async worker if it's not already running.
5164 *
5165 * If we are a priority flusher then we just need to add our ticket to
5166 * the list and we will do our own flushing further down.
5167 */
5168 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5169 ticket.bytes = orig_bytes;
5170 ticket.error = 0;
5171 init_waitqueue_head(&ticket.wait);
5172 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5173 list_add_tail(&ticket.list, &space_info->tickets);
5174 if (!space_info->flush) {
5175 space_info->flush = 1;
5176 trace_btrfs_trigger_flush(root->fs_info,
5177 space_info->flags,
5178 orig_bytes, flush,
5179 "enospc");
5180 queue_work(system_unbound_wq,
5181 &root->fs_info->async_reclaim_work);
5182 }
5183 } else {
5184 list_add_tail(&ticket.list,
5185 &space_info->priority_tickets);
5186 }
5187 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5188 used += orig_bytes;
5189 /*
5190 * We will do the space reservation dance during log replay,
5191 * which means we won't have fs_info->fs_root set, so don't do
5192 * the async reclaim as we will panic.
5193 */
5194 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags) &&
5195 need_do_async_reclaim(space_info, root, used) &&
5196 !work_busy(&root->fs_info->async_reclaim_work)) {
5197 trace_btrfs_trigger_flush(root->fs_info,
5198 space_info->flags,
5199 orig_bytes, flush,
5200 "preempt");
5201 queue_work(system_unbound_wq,
5202 &root->fs_info->async_reclaim_work);
5203 }
5204 }
5205 spin_unlock(&space_info->lock);
5206 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5207 return ret;
5208
5209 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5210 return wait_reserve_ticket(root->fs_info, space_info, &ticket,
5211 orig_bytes);
5212
5213 ret = 0;
5214 priority_reclaim_metadata_space(root->fs_info, space_info, &ticket);
5215 spin_lock(&space_info->lock);
5216 if (ticket.bytes) {
5217 if (ticket.bytes < orig_bytes) {
5218 u64 num_bytes = orig_bytes - ticket.bytes;
5219 space_info->bytes_may_use -= num_bytes;
5220 trace_btrfs_space_reservation(root->fs_info,
5221 "space_info", space_info->flags,
5222 num_bytes, 0);
5223
5224 }
5225 list_del_init(&ticket.list);
5226 ret = -ENOSPC;
5227 }
5228 spin_unlock(&space_info->lock);
5229 ASSERT(list_empty(&ticket.list));
5230 return ret;
5231 }
5232
5233 /**
5234 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5235 * @root - the root we're allocating for
5236 * @block_rsv - the block_rsv we're allocating for
5237 * @orig_bytes - the number of bytes we want
5238 * @flush - whether or not we can flush to make our reservation
5239 *
5240 * This will reserve orgi_bytes number of bytes from the space info associated
5241 * with the block_rsv. If there is not enough space it will make an attempt to
5242 * flush out space to make room. It will do this by flushing delalloc if
5243 * possible or committing the transaction. If flush is 0 then no attempts to
5244 * regain reservations will be made and this will fail if there is not enough
5245 * space already.
5246 */
reserve_metadata_bytes(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)5247 static int reserve_metadata_bytes(struct btrfs_root *root,
5248 struct btrfs_block_rsv *block_rsv,
5249 u64 orig_bytes,
5250 enum btrfs_reserve_flush_enum flush)
5251 {
5252 int ret;
5253
5254 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5255 flush);
5256 if (ret == -ENOSPC &&
5257 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5258 struct btrfs_block_rsv *global_rsv =
5259 &root->fs_info->global_block_rsv;
5260
5261 if (block_rsv != global_rsv &&
5262 !block_rsv_use_bytes(global_rsv, orig_bytes))
5263 ret = 0;
5264 }
5265 if (ret == -ENOSPC)
5266 trace_btrfs_space_reservation(root->fs_info,
5267 "space_info:enospc",
5268 block_rsv->space_info->flags,
5269 orig_bytes, 1);
5270 return ret;
5271 }
5272
get_block_rsv(const struct btrfs_trans_handle * trans,const struct btrfs_root * root)5273 static struct btrfs_block_rsv *get_block_rsv(
5274 const struct btrfs_trans_handle *trans,
5275 const struct btrfs_root *root)
5276 {
5277 struct btrfs_block_rsv *block_rsv = NULL;
5278
5279 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5280 (root == root->fs_info->csum_root && trans->adding_csums) ||
5281 (root == root->fs_info->uuid_root))
5282 block_rsv = trans->block_rsv;
5283
5284 if (!block_rsv)
5285 block_rsv = root->block_rsv;
5286
5287 if (!block_rsv)
5288 block_rsv = &root->fs_info->empty_block_rsv;
5289
5290 return block_rsv;
5291 }
5292
block_rsv_use_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes)5293 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5294 u64 num_bytes)
5295 {
5296 int ret = -ENOSPC;
5297 spin_lock(&block_rsv->lock);
5298 if (block_rsv->reserved >= num_bytes) {
5299 block_rsv->reserved -= num_bytes;
5300 if (block_rsv->reserved < block_rsv->size)
5301 block_rsv->full = 0;
5302 ret = 0;
5303 }
5304 spin_unlock(&block_rsv->lock);
5305 return ret;
5306 }
5307
block_rsv_add_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes,int update_size)5308 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5309 u64 num_bytes, int update_size)
5310 {
5311 spin_lock(&block_rsv->lock);
5312 block_rsv->reserved += num_bytes;
5313 if (update_size)
5314 block_rsv->size += num_bytes;
5315 else if (block_rsv->reserved >= block_rsv->size)
5316 block_rsv->full = 1;
5317 spin_unlock(&block_rsv->lock);
5318 }
5319
btrfs_cond_migrate_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * dest,u64 num_bytes,int min_factor)5320 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5321 struct btrfs_block_rsv *dest, u64 num_bytes,
5322 int min_factor)
5323 {
5324 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5325 u64 min_bytes;
5326
5327 if (global_rsv->space_info != dest->space_info)
5328 return -ENOSPC;
5329
5330 spin_lock(&global_rsv->lock);
5331 min_bytes = div_factor(global_rsv->size, min_factor);
5332 if (global_rsv->reserved < min_bytes + num_bytes) {
5333 spin_unlock(&global_rsv->lock);
5334 return -ENOSPC;
5335 }
5336 global_rsv->reserved -= num_bytes;
5337 if (global_rsv->reserved < global_rsv->size)
5338 global_rsv->full = 0;
5339 spin_unlock(&global_rsv->lock);
5340
5341 block_rsv_add_bytes(dest, num_bytes, 1);
5342 return 0;
5343 }
5344
5345 /*
5346 * This is for space we already have accounted in space_info->bytes_may_use, so
5347 * basically when we're returning space from block_rsv's.
5348 */
space_info_add_old_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes)5349 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5350 struct btrfs_space_info *space_info,
5351 u64 num_bytes)
5352 {
5353 struct reserve_ticket *ticket;
5354 struct list_head *head;
5355 u64 used;
5356 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5357 bool check_overcommit = false;
5358
5359 spin_lock(&space_info->lock);
5360 head = &space_info->priority_tickets;
5361
5362 /*
5363 * If we are over our limit then we need to check and see if we can
5364 * overcommit, and if we can't then we just need to free up our space
5365 * and not satisfy any requests.
5366 */
5367 used = space_info->bytes_used + space_info->bytes_reserved +
5368 space_info->bytes_pinned + space_info->bytes_readonly +
5369 space_info->bytes_may_use;
5370 if (used - num_bytes >= space_info->total_bytes)
5371 check_overcommit = true;
5372 again:
5373 while (!list_empty(head) && num_bytes) {
5374 ticket = list_first_entry(head, struct reserve_ticket,
5375 list);
5376 /*
5377 * We use 0 bytes because this space is already reserved, so
5378 * adding the ticket space would be a double count.
5379 */
5380 if (check_overcommit &&
5381 !can_overcommit(fs_info->extent_root, space_info, 0,
5382 flush))
5383 break;
5384 if (num_bytes >= ticket->bytes) {
5385 list_del_init(&ticket->list);
5386 num_bytes -= ticket->bytes;
5387 ticket->bytes = 0;
5388 space_info->tickets_id++;
5389 wake_up(&ticket->wait);
5390 } else {
5391 ticket->bytes -= num_bytes;
5392 num_bytes = 0;
5393 }
5394 }
5395
5396 if (num_bytes && head == &space_info->priority_tickets) {
5397 head = &space_info->tickets;
5398 flush = BTRFS_RESERVE_FLUSH_ALL;
5399 goto again;
5400 }
5401 space_info->bytes_may_use -= num_bytes;
5402 trace_btrfs_space_reservation(fs_info, "space_info",
5403 space_info->flags, num_bytes, 0);
5404 spin_unlock(&space_info->lock);
5405 }
5406
5407 /*
5408 * This is for newly allocated space that isn't accounted in
5409 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5410 * we use this helper.
5411 */
space_info_add_new_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes)5412 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5413 struct btrfs_space_info *space_info,
5414 u64 num_bytes)
5415 {
5416 struct reserve_ticket *ticket;
5417 struct list_head *head = &space_info->priority_tickets;
5418
5419 again:
5420 while (!list_empty(head) && num_bytes) {
5421 ticket = list_first_entry(head, struct reserve_ticket,
5422 list);
5423 if (num_bytes >= ticket->bytes) {
5424 trace_btrfs_space_reservation(fs_info, "space_info",
5425 space_info->flags,
5426 ticket->bytes, 1);
5427 list_del_init(&ticket->list);
5428 num_bytes -= ticket->bytes;
5429 space_info->bytes_may_use += ticket->bytes;
5430 ticket->bytes = 0;
5431 space_info->tickets_id++;
5432 wake_up(&ticket->wait);
5433 } else {
5434 trace_btrfs_space_reservation(fs_info, "space_info",
5435 space_info->flags,
5436 num_bytes, 1);
5437 space_info->bytes_may_use += num_bytes;
5438 ticket->bytes -= num_bytes;
5439 num_bytes = 0;
5440 }
5441 }
5442
5443 if (num_bytes && head == &space_info->priority_tickets) {
5444 head = &space_info->tickets;
5445 goto again;
5446 }
5447 }
5448
block_rsv_release_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,struct btrfs_block_rsv * dest,u64 num_bytes)5449 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5450 struct btrfs_block_rsv *block_rsv,
5451 struct btrfs_block_rsv *dest, u64 num_bytes)
5452 {
5453 struct btrfs_space_info *space_info = block_rsv->space_info;
5454
5455 spin_lock(&block_rsv->lock);
5456 if (num_bytes == (u64)-1)
5457 num_bytes = block_rsv->size;
5458 block_rsv->size -= num_bytes;
5459 if (block_rsv->reserved >= block_rsv->size) {
5460 num_bytes = block_rsv->reserved - block_rsv->size;
5461 block_rsv->reserved = block_rsv->size;
5462 block_rsv->full = 1;
5463 } else {
5464 num_bytes = 0;
5465 }
5466 spin_unlock(&block_rsv->lock);
5467
5468 if (num_bytes > 0) {
5469 if (dest) {
5470 spin_lock(&dest->lock);
5471 if (!dest->full) {
5472 u64 bytes_to_add;
5473
5474 bytes_to_add = dest->size - dest->reserved;
5475 bytes_to_add = min(num_bytes, bytes_to_add);
5476 dest->reserved += bytes_to_add;
5477 if (dest->reserved >= dest->size)
5478 dest->full = 1;
5479 num_bytes -= bytes_to_add;
5480 }
5481 spin_unlock(&dest->lock);
5482 }
5483 if (num_bytes)
5484 space_info_add_old_bytes(fs_info, space_info,
5485 num_bytes);
5486 }
5487 }
5488
btrfs_block_rsv_migrate(struct btrfs_block_rsv * src,struct btrfs_block_rsv * dst,u64 num_bytes,int update_size)5489 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5490 struct btrfs_block_rsv *dst, u64 num_bytes,
5491 int update_size)
5492 {
5493 int ret;
5494
5495 ret = block_rsv_use_bytes(src, num_bytes);
5496 if (ret)
5497 return ret;
5498
5499 block_rsv_add_bytes(dst, num_bytes, update_size);
5500 return 0;
5501 }
5502
btrfs_init_block_rsv(struct btrfs_block_rsv * rsv,unsigned short type)5503 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5504 {
5505 memset(rsv, 0, sizeof(*rsv));
5506 spin_lock_init(&rsv->lock);
5507 rsv->type = type;
5508 }
5509
btrfs_alloc_block_rsv(struct btrfs_root * root,unsigned short type)5510 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5511 unsigned short type)
5512 {
5513 struct btrfs_block_rsv *block_rsv;
5514 struct btrfs_fs_info *fs_info = root->fs_info;
5515
5516 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5517 if (!block_rsv)
5518 return NULL;
5519
5520 btrfs_init_block_rsv(block_rsv, type);
5521 block_rsv->space_info = __find_space_info(fs_info,
5522 BTRFS_BLOCK_GROUP_METADATA);
5523 return block_rsv;
5524 }
5525
btrfs_free_block_rsv(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5526 void btrfs_free_block_rsv(struct btrfs_root *root,
5527 struct btrfs_block_rsv *rsv)
5528 {
5529 if (!rsv)
5530 return;
5531 btrfs_block_rsv_release(root, rsv, (u64)-1);
5532 kfree(rsv);
5533 }
5534
__btrfs_free_block_rsv(struct btrfs_block_rsv * rsv)5535 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5536 {
5537 kfree(rsv);
5538 }
5539
btrfs_block_rsv_add(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 num_bytes,enum btrfs_reserve_flush_enum flush)5540 int btrfs_block_rsv_add(struct btrfs_root *root,
5541 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5542 enum btrfs_reserve_flush_enum flush)
5543 {
5544 int ret;
5545
5546 if (num_bytes == 0)
5547 return 0;
5548
5549 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5550 if (!ret) {
5551 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5552 return 0;
5553 }
5554
5555 return ret;
5556 }
5557
btrfs_block_rsv_check(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,int min_factor)5558 int btrfs_block_rsv_check(struct btrfs_root *root,
5559 struct btrfs_block_rsv *block_rsv, int min_factor)
5560 {
5561 u64 num_bytes = 0;
5562 int ret = -ENOSPC;
5563
5564 if (!block_rsv)
5565 return 0;
5566
5567 spin_lock(&block_rsv->lock);
5568 num_bytes = div_factor(block_rsv->size, min_factor);
5569 if (block_rsv->reserved >= num_bytes)
5570 ret = 0;
5571 spin_unlock(&block_rsv->lock);
5572
5573 return ret;
5574 }
5575
btrfs_block_rsv_refill(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 min_reserved,enum btrfs_reserve_flush_enum flush)5576 int btrfs_block_rsv_refill(struct btrfs_root *root,
5577 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5578 enum btrfs_reserve_flush_enum flush)
5579 {
5580 u64 num_bytes = 0;
5581 int ret = -ENOSPC;
5582
5583 if (!block_rsv)
5584 return 0;
5585
5586 spin_lock(&block_rsv->lock);
5587 num_bytes = min_reserved;
5588 if (block_rsv->reserved >= num_bytes)
5589 ret = 0;
5590 else
5591 num_bytes -= block_rsv->reserved;
5592 spin_unlock(&block_rsv->lock);
5593
5594 if (!ret)
5595 return 0;
5596
5597 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5598 if (!ret) {
5599 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5600 return 0;
5601 }
5602
5603 return ret;
5604 }
5605
btrfs_block_rsv_release(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 num_bytes)5606 void btrfs_block_rsv_release(struct btrfs_root *root,
5607 struct btrfs_block_rsv *block_rsv,
5608 u64 num_bytes)
5609 {
5610 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5611 if (global_rsv == block_rsv ||
5612 block_rsv->space_info != global_rsv->space_info)
5613 global_rsv = NULL;
5614 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5615 num_bytes);
5616 }
5617
update_global_block_rsv(struct btrfs_fs_info * fs_info)5618 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5619 {
5620 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5621 struct btrfs_space_info *sinfo = block_rsv->space_info;
5622 u64 num_bytes;
5623
5624 /*
5625 * The global block rsv is based on the size of the extent tree, the
5626 * checksum tree and the root tree. If the fs is empty we want to set
5627 * it to a minimal amount for safety.
5628 */
5629 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5630 btrfs_root_used(&fs_info->csum_root->root_item) +
5631 btrfs_root_used(&fs_info->tree_root->root_item);
5632 num_bytes = max_t(u64, num_bytes, SZ_16M);
5633
5634 spin_lock(&sinfo->lock);
5635 spin_lock(&block_rsv->lock);
5636
5637 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5638
5639 if (block_rsv->reserved < block_rsv->size) {
5640 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5641 sinfo->bytes_reserved + sinfo->bytes_readonly +
5642 sinfo->bytes_may_use;
5643 if (sinfo->total_bytes > num_bytes) {
5644 num_bytes = sinfo->total_bytes - num_bytes;
5645 num_bytes = min(num_bytes,
5646 block_rsv->size - block_rsv->reserved);
5647 block_rsv->reserved += num_bytes;
5648 sinfo->bytes_may_use += num_bytes;
5649 trace_btrfs_space_reservation(fs_info, "space_info",
5650 sinfo->flags, num_bytes,
5651 1);
5652 }
5653 } else if (block_rsv->reserved > block_rsv->size) {
5654 num_bytes = block_rsv->reserved - block_rsv->size;
5655 sinfo->bytes_may_use -= num_bytes;
5656 trace_btrfs_space_reservation(fs_info, "space_info",
5657 sinfo->flags, num_bytes, 0);
5658 block_rsv->reserved = block_rsv->size;
5659 }
5660
5661 if (block_rsv->reserved == block_rsv->size)
5662 block_rsv->full = 1;
5663 else
5664 block_rsv->full = 0;
5665
5666 spin_unlock(&block_rsv->lock);
5667 spin_unlock(&sinfo->lock);
5668 }
5669
init_global_block_rsv(struct btrfs_fs_info * fs_info)5670 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5671 {
5672 struct btrfs_space_info *space_info;
5673
5674 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5675 fs_info->chunk_block_rsv.space_info = space_info;
5676
5677 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5678 fs_info->global_block_rsv.space_info = space_info;
5679 fs_info->delalloc_block_rsv.space_info = space_info;
5680 fs_info->trans_block_rsv.space_info = space_info;
5681 fs_info->empty_block_rsv.space_info = space_info;
5682 fs_info->delayed_block_rsv.space_info = space_info;
5683
5684 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5685 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5686 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5687 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5688 if (fs_info->quota_root)
5689 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5690 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5691
5692 update_global_block_rsv(fs_info);
5693 }
5694
release_global_block_rsv(struct btrfs_fs_info * fs_info)5695 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5696 {
5697 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5698 (u64)-1);
5699 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5700 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5701 WARN_ON(fs_info->trans_block_rsv.size > 0);
5702 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5703 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5704 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5705 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5706 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5707 }
5708
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root)5709 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5710 struct btrfs_root *root)
5711 {
5712 if (!trans->block_rsv)
5713 return;
5714
5715 if (!trans->bytes_reserved)
5716 return;
5717
5718 trace_btrfs_space_reservation(root->fs_info, "transaction",
5719 trans->transid, trans->bytes_reserved, 0);
5720 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5721 trans->bytes_reserved = 0;
5722 }
5723
5724 /*
5725 * To be called after all the new block groups attached to the transaction
5726 * handle have been created (btrfs_create_pending_block_groups()).
5727 */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)5728 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5729 {
5730 struct btrfs_fs_info *fs_info = trans->fs_info;
5731
5732 if (!trans->chunk_bytes_reserved)
5733 return;
5734
5735 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5736
5737 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5738 trans->chunk_bytes_reserved);
5739 trans->chunk_bytes_reserved = 0;
5740 }
5741
5742 /* Can only return 0 or -ENOSPC */
btrfs_orphan_reserve_metadata(struct btrfs_trans_handle * trans,struct inode * inode)5743 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5744 struct inode *inode)
5745 {
5746 struct btrfs_root *root = BTRFS_I(inode)->root;
5747 /*
5748 * We always use trans->block_rsv here as we will have reserved space
5749 * for our orphan when starting the transaction, using get_block_rsv()
5750 * here will sometimes make us choose the wrong block rsv as we could be
5751 * doing a reloc inode for a non refcounted root.
5752 */
5753 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5754 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5755
5756 /*
5757 * We need to hold space in order to delete our orphan item once we've
5758 * added it, so this takes the reservation so we can release it later
5759 * when we are truly done with the orphan item.
5760 */
5761 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5762 trace_btrfs_space_reservation(root->fs_info, "orphan",
5763 btrfs_ino(inode), num_bytes, 1);
5764 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5765 }
5766
btrfs_orphan_release_metadata(struct inode * inode)5767 void btrfs_orphan_release_metadata(struct inode *inode)
5768 {
5769 struct btrfs_root *root = BTRFS_I(inode)->root;
5770 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5771 trace_btrfs_space_reservation(root->fs_info, "orphan",
5772 btrfs_ino(inode), num_bytes, 0);
5773 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5774 }
5775
5776 /*
5777 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5778 * root: the root of the parent directory
5779 * rsv: block reservation
5780 * items: the number of items that we need do reservation
5781 * qgroup_reserved: used to return the reserved size in qgroup
5782 *
5783 * This function is used to reserve the space for snapshot/subvolume
5784 * creation and deletion. Those operations are different with the
5785 * common file/directory operations, they change two fs/file trees
5786 * and root tree, the number of items that the qgroup reserves is
5787 * different with the free space reservation. So we can not use
5788 * the space reservation mechanism in start_transaction().
5789 */
btrfs_subvolume_reserve_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,int items,u64 * qgroup_reserved,bool use_global_rsv)5790 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5791 struct btrfs_block_rsv *rsv,
5792 int items,
5793 u64 *qgroup_reserved,
5794 bool use_global_rsv)
5795 {
5796 u64 num_bytes;
5797 int ret;
5798 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5799
5800 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) {
5801 /* One for parent inode, two for dir entries */
5802 num_bytes = 3 * root->nodesize;
5803 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5804 if (ret)
5805 return ret;
5806 } else {
5807 num_bytes = 0;
5808 }
5809
5810 *qgroup_reserved = num_bytes;
5811
5812 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5813 rsv->space_info = __find_space_info(root->fs_info,
5814 BTRFS_BLOCK_GROUP_METADATA);
5815 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5816 BTRFS_RESERVE_FLUSH_ALL);
5817
5818 if (ret == -ENOSPC && use_global_rsv)
5819 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5820
5821 if (ret && *qgroup_reserved)
5822 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5823
5824 return ret;
5825 }
5826
btrfs_subvolume_release_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,u64 qgroup_reserved)5827 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5828 struct btrfs_block_rsv *rsv,
5829 u64 qgroup_reserved)
5830 {
5831 btrfs_block_rsv_release(root, rsv, (u64)-1);
5832 }
5833
5834 /**
5835 * drop_outstanding_extent - drop an outstanding extent
5836 * @inode: the inode we're dropping the extent for
5837 * @num_bytes: the number of bytes we're releasing.
5838 *
5839 * This is called when we are freeing up an outstanding extent, either called
5840 * after an error or after an extent is written. This will return the number of
5841 * reserved extents that need to be freed. This must be called with
5842 * BTRFS_I(inode)->lock held.
5843 */
drop_outstanding_extent(struct inode * inode,u64 num_bytes)5844 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5845 {
5846 unsigned drop_inode_space = 0;
5847 unsigned dropped_extents = 0;
5848 unsigned num_extents = 0;
5849
5850 num_extents = (unsigned)div64_u64(num_bytes +
5851 BTRFS_MAX_EXTENT_SIZE - 1,
5852 BTRFS_MAX_EXTENT_SIZE);
5853 ASSERT(num_extents);
5854 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5855 BTRFS_I(inode)->outstanding_extents -= num_extents;
5856
5857 if (BTRFS_I(inode)->outstanding_extents == 0 &&
5858 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5859 &BTRFS_I(inode)->runtime_flags))
5860 drop_inode_space = 1;
5861
5862 /*
5863 * If we have more or the same amount of outstanding extents than we have
5864 * reserved then we need to leave the reserved extents count alone.
5865 */
5866 if (BTRFS_I(inode)->outstanding_extents >=
5867 BTRFS_I(inode)->reserved_extents)
5868 return drop_inode_space;
5869
5870 dropped_extents = BTRFS_I(inode)->reserved_extents -
5871 BTRFS_I(inode)->outstanding_extents;
5872 BTRFS_I(inode)->reserved_extents -= dropped_extents;
5873 return dropped_extents + drop_inode_space;
5874 }
5875
5876 /**
5877 * calc_csum_metadata_size - return the amount of metadata space that must be
5878 * reserved/freed for the given bytes.
5879 * @inode: the inode we're manipulating
5880 * @num_bytes: the number of bytes in question
5881 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5882 *
5883 * This adjusts the number of csum_bytes in the inode and then returns the
5884 * correct amount of metadata that must either be reserved or freed. We
5885 * calculate how many checksums we can fit into one leaf and then divide the
5886 * number of bytes that will need to be checksumed by this value to figure out
5887 * how many checksums will be required. If we are adding bytes then the number
5888 * may go up and we will return the number of additional bytes that must be
5889 * reserved. If it is going down we will return the number of bytes that must
5890 * be freed.
5891 *
5892 * This must be called with BTRFS_I(inode)->lock held.
5893 */
calc_csum_metadata_size(struct inode * inode,u64 num_bytes,int reserve)5894 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5895 int reserve)
5896 {
5897 struct btrfs_root *root = BTRFS_I(inode)->root;
5898 u64 old_csums, num_csums;
5899
5900 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5901 BTRFS_I(inode)->csum_bytes == 0)
5902 return 0;
5903
5904 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5905 if (reserve)
5906 BTRFS_I(inode)->csum_bytes += num_bytes;
5907 else
5908 BTRFS_I(inode)->csum_bytes -= num_bytes;
5909 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5910
5911 /* No change, no need to reserve more */
5912 if (old_csums == num_csums)
5913 return 0;
5914
5915 if (reserve)
5916 return btrfs_calc_trans_metadata_size(root,
5917 num_csums - old_csums);
5918
5919 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5920 }
5921
btrfs_delalloc_reserve_metadata(struct inode * inode,u64 num_bytes)5922 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5923 {
5924 struct btrfs_root *root = BTRFS_I(inode)->root;
5925 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5926 u64 to_reserve = 0;
5927 u64 csum_bytes;
5928 unsigned nr_extents = 0;
5929 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5930 int ret = 0;
5931 bool delalloc_lock = true;
5932 u64 to_free = 0;
5933 unsigned dropped;
5934 bool release_extra = false;
5935
5936 /* If we are a free space inode we need to not flush since we will be in
5937 * the middle of a transaction commit. We also don't need the delalloc
5938 * mutex since we won't race with anybody. We need this mostly to make
5939 * lockdep shut its filthy mouth.
5940 *
5941 * If we have a transaction open (can happen if we call truncate_block
5942 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5943 */
5944 if (btrfs_is_free_space_inode(inode)) {
5945 flush = BTRFS_RESERVE_NO_FLUSH;
5946 delalloc_lock = false;
5947 } else if (current->journal_info) {
5948 flush = BTRFS_RESERVE_FLUSH_LIMIT;
5949 }
5950
5951 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5952 btrfs_transaction_in_commit(root->fs_info))
5953 schedule_timeout(1);
5954
5955 if (delalloc_lock)
5956 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5957
5958 num_bytes = ALIGN(num_bytes, root->sectorsize);
5959
5960 spin_lock(&BTRFS_I(inode)->lock);
5961 nr_extents = (unsigned)div64_u64(num_bytes +
5962 BTRFS_MAX_EXTENT_SIZE - 1,
5963 BTRFS_MAX_EXTENT_SIZE);
5964 BTRFS_I(inode)->outstanding_extents += nr_extents;
5965
5966 nr_extents = 0;
5967 if (BTRFS_I(inode)->outstanding_extents >
5968 BTRFS_I(inode)->reserved_extents)
5969 nr_extents += BTRFS_I(inode)->outstanding_extents -
5970 BTRFS_I(inode)->reserved_extents;
5971
5972 /* We always want to reserve a slot for updating the inode. */
5973 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1);
5974 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5975 csum_bytes = BTRFS_I(inode)->csum_bytes;
5976 spin_unlock(&BTRFS_I(inode)->lock);
5977
5978 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) {
5979 ret = btrfs_qgroup_reserve_meta(root,
5980 nr_extents * root->nodesize);
5981 if (ret)
5982 goto out_fail;
5983 }
5984
5985 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5986 if (unlikely(ret)) {
5987 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5988 goto out_fail;
5989 }
5990
5991 spin_lock(&BTRFS_I(inode)->lock);
5992 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5993 &BTRFS_I(inode)->runtime_flags)) {
5994 to_reserve -= btrfs_calc_trans_metadata_size(root, 1);
5995 release_extra = true;
5996 }
5997 BTRFS_I(inode)->reserved_extents += nr_extents;
5998 spin_unlock(&BTRFS_I(inode)->lock);
5999
6000 if (delalloc_lock)
6001 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6002
6003 if (to_reserve)
6004 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6005 btrfs_ino(inode), to_reserve, 1);
6006 if (release_extra)
6007 btrfs_block_rsv_release(root, block_rsv,
6008 btrfs_calc_trans_metadata_size(root,
6009 1));
6010 return 0;
6011
6012 out_fail:
6013 spin_lock(&BTRFS_I(inode)->lock);
6014 dropped = drop_outstanding_extent(inode, num_bytes);
6015 /*
6016 * If the inodes csum_bytes is the same as the original
6017 * csum_bytes then we know we haven't raced with any free()ers
6018 * so we can just reduce our inodes csum bytes and carry on.
6019 */
6020 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
6021 calc_csum_metadata_size(inode, num_bytes, 0);
6022 } else {
6023 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6024 u64 bytes;
6025
6026 /*
6027 * This is tricky, but first we need to figure out how much we
6028 * freed from any free-ers that occurred during this
6029 * reservation, so we reset ->csum_bytes to the csum_bytes
6030 * before we dropped our lock, and then call the free for the
6031 * number of bytes that were freed while we were trying our
6032 * reservation.
6033 */
6034 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6035 BTRFS_I(inode)->csum_bytes = csum_bytes;
6036 to_free = calc_csum_metadata_size(inode, bytes, 0);
6037
6038
6039 /*
6040 * Now we need to see how much we would have freed had we not
6041 * been making this reservation and our ->csum_bytes were not
6042 * artificially inflated.
6043 */
6044 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6045 bytes = csum_bytes - orig_csum_bytes;
6046 bytes = calc_csum_metadata_size(inode, bytes, 0);
6047
6048 /*
6049 * Now reset ->csum_bytes to what it should be. If bytes is
6050 * more than to_free then we would have freed more space had we
6051 * not had an artificially high ->csum_bytes, so we need to free
6052 * the remainder. If bytes is the same or less then we don't
6053 * need to do anything, the other free-ers did the correct
6054 * thing.
6055 */
6056 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6057 if (bytes > to_free)
6058 to_free = bytes - to_free;
6059 else
6060 to_free = 0;
6061 }
6062 spin_unlock(&BTRFS_I(inode)->lock);
6063 if (dropped)
6064 to_free += btrfs_calc_trans_metadata_size(root, dropped);
6065
6066 if (to_free) {
6067 btrfs_block_rsv_release(root, block_rsv, to_free);
6068 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6069 btrfs_ino(inode), to_free, 0);
6070 }
6071 if (delalloc_lock)
6072 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6073 return ret;
6074 }
6075
6076 /**
6077 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6078 * @inode: the inode to release the reservation for
6079 * @num_bytes: the number of bytes we're releasing
6080 *
6081 * This will release the metadata reservation for an inode. This can be called
6082 * once we complete IO for a given set of bytes to release their metadata
6083 * reservations.
6084 */
btrfs_delalloc_release_metadata(struct inode * inode,u64 num_bytes)6085 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6086 {
6087 struct btrfs_root *root = BTRFS_I(inode)->root;
6088 u64 to_free = 0;
6089 unsigned dropped;
6090
6091 num_bytes = ALIGN(num_bytes, root->sectorsize);
6092 spin_lock(&BTRFS_I(inode)->lock);
6093 dropped = drop_outstanding_extent(inode, num_bytes);
6094
6095 if (num_bytes)
6096 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6097 spin_unlock(&BTRFS_I(inode)->lock);
6098 if (dropped > 0)
6099 to_free += btrfs_calc_trans_metadata_size(root, dropped);
6100
6101 if (btrfs_is_testing(root->fs_info))
6102 return;
6103
6104 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6105 btrfs_ino(inode), to_free, 0);
6106
6107 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
6108 to_free);
6109 }
6110
6111 /**
6112 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6113 * delalloc
6114 * @inode: inode we're writing to
6115 * @start: start range we are writing to
6116 * @len: how long the range we are writing to
6117 *
6118 * This will do the following things
6119 *
6120 * o reserve space in data space info for num bytes
6121 * and reserve precious corresponding qgroup space
6122 * (Done in check_data_free_space)
6123 *
6124 * o reserve space for metadata space, based on the number of outstanding
6125 * extents and how much csums will be needed
6126 * also reserve metadata space in a per root over-reserve method.
6127 * o add to the inodes->delalloc_bytes
6128 * o add it to the fs_info's delalloc inodes list.
6129 * (Above 3 all done in delalloc_reserve_metadata)
6130 *
6131 * Return 0 for success
6132 * Return <0 for error(-ENOSPC or -EQUOT)
6133 */
btrfs_delalloc_reserve_space(struct inode * inode,u64 start,u64 len)6134 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6135 {
6136 int ret;
6137
6138 ret = btrfs_check_data_free_space(inode, start, len);
6139 if (ret < 0)
6140 return ret;
6141 ret = btrfs_delalloc_reserve_metadata(inode, len);
6142 if (ret < 0)
6143 btrfs_free_reserved_data_space(inode, start, len);
6144 return ret;
6145 }
6146
6147 /**
6148 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6149 * @inode: inode we're releasing space for
6150 * @start: start position of the space already reserved
6151 * @len: the len of the space already reserved
6152 *
6153 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6154 * called in the case that we don't need the metadata AND data reservations
6155 * anymore. So if there is an error or we insert an inline extent.
6156 *
6157 * This function will release the metadata space that was not used and will
6158 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6159 * list if there are no delalloc bytes left.
6160 * Also it will handle the qgroup reserved space.
6161 */
btrfs_delalloc_release_space(struct inode * inode,u64 start,u64 len)6162 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6163 {
6164 btrfs_delalloc_release_metadata(inode, len);
6165 btrfs_free_reserved_data_space(inode, start, len);
6166 }
6167
update_block_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,int alloc)6168 static int update_block_group(struct btrfs_trans_handle *trans,
6169 struct btrfs_root *root, u64 bytenr,
6170 u64 num_bytes, int alloc)
6171 {
6172 struct btrfs_block_group_cache *cache = NULL;
6173 struct btrfs_fs_info *info = root->fs_info;
6174 u64 total = num_bytes;
6175 u64 old_val;
6176 u64 byte_in_group;
6177 int factor;
6178
6179 /* block accounting for super block */
6180 spin_lock(&info->delalloc_root_lock);
6181 old_val = btrfs_super_bytes_used(info->super_copy);
6182 if (alloc)
6183 old_val += num_bytes;
6184 else
6185 old_val -= num_bytes;
6186 btrfs_set_super_bytes_used(info->super_copy, old_val);
6187 spin_unlock(&info->delalloc_root_lock);
6188
6189 while (total) {
6190 cache = btrfs_lookup_block_group(info, bytenr);
6191 if (!cache)
6192 return -ENOENT;
6193 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6194 BTRFS_BLOCK_GROUP_RAID1 |
6195 BTRFS_BLOCK_GROUP_RAID10))
6196 factor = 2;
6197 else
6198 factor = 1;
6199 /*
6200 * If this block group has free space cache written out, we
6201 * need to make sure to load it if we are removing space. This
6202 * is because we need the unpinning stage to actually add the
6203 * space back to the block group, otherwise we will leak space.
6204 */
6205 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6206 cache_block_group(cache, 1);
6207
6208 byte_in_group = bytenr - cache->key.objectid;
6209 WARN_ON(byte_in_group > cache->key.offset);
6210
6211 spin_lock(&cache->space_info->lock);
6212 spin_lock(&cache->lock);
6213
6214 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
6215 cache->disk_cache_state < BTRFS_DC_CLEAR)
6216 cache->disk_cache_state = BTRFS_DC_CLEAR;
6217
6218 old_val = btrfs_block_group_used(&cache->item);
6219 num_bytes = min(total, cache->key.offset - byte_in_group);
6220 if (alloc) {
6221 old_val += num_bytes;
6222 btrfs_set_block_group_used(&cache->item, old_val);
6223 cache->reserved -= num_bytes;
6224 cache->space_info->bytes_reserved -= num_bytes;
6225 cache->space_info->bytes_used += num_bytes;
6226 cache->space_info->disk_used += num_bytes * factor;
6227 spin_unlock(&cache->lock);
6228 spin_unlock(&cache->space_info->lock);
6229 } else {
6230 old_val -= num_bytes;
6231 btrfs_set_block_group_used(&cache->item, old_val);
6232 cache->pinned += num_bytes;
6233 cache->space_info->bytes_pinned += num_bytes;
6234 cache->space_info->bytes_used -= num_bytes;
6235 cache->space_info->disk_used -= num_bytes * factor;
6236 spin_unlock(&cache->lock);
6237 spin_unlock(&cache->space_info->lock);
6238
6239 trace_btrfs_space_reservation(root->fs_info, "pinned",
6240 cache->space_info->flags,
6241 num_bytes, 1);
6242 set_extent_dirty(info->pinned_extents,
6243 bytenr, bytenr + num_bytes - 1,
6244 GFP_NOFS | __GFP_NOFAIL);
6245 }
6246
6247 spin_lock(&trans->transaction->dirty_bgs_lock);
6248 if (list_empty(&cache->dirty_list)) {
6249 list_add_tail(&cache->dirty_list,
6250 &trans->transaction->dirty_bgs);
6251 trans->transaction->num_dirty_bgs++;
6252 btrfs_get_block_group(cache);
6253 }
6254 spin_unlock(&trans->transaction->dirty_bgs_lock);
6255
6256 /*
6257 * No longer have used bytes in this block group, queue it for
6258 * deletion. We do this after adding the block group to the
6259 * dirty list to avoid races between cleaner kthread and space
6260 * cache writeout.
6261 */
6262 if (!alloc && old_val == 0) {
6263 spin_lock(&info->unused_bgs_lock);
6264 if (list_empty(&cache->bg_list)) {
6265 btrfs_get_block_group(cache);
6266 list_add_tail(&cache->bg_list,
6267 &info->unused_bgs);
6268 }
6269 spin_unlock(&info->unused_bgs_lock);
6270 }
6271
6272 btrfs_put_block_group(cache);
6273 total -= num_bytes;
6274 bytenr += num_bytes;
6275 }
6276 return 0;
6277 }
6278
first_logical_byte(struct btrfs_root * root,u64 search_start)6279 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6280 {
6281 struct btrfs_block_group_cache *cache;
6282 u64 bytenr;
6283
6284 spin_lock(&root->fs_info->block_group_cache_lock);
6285 bytenr = root->fs_info->first_logical_byte;
6286 spin_unlock(&root->fs_info->block_group_cache_lock);
6287
6288 if (bytenr < (u64)-1)
6289 return bytenr;
6290
6291 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6292 if (!cache)
6293 return 0;
6294
6295 bytenr = cache->key.objectid;
6296 btrfs_put_block_group(cache);
6297
6298 return bytenr;
6299 }
6300
pin_down_extent(struct btrfs_root * root,struct btrfs_block_group_cache * cache,u64 bytenr,u64 num_bytes,int reserved)6301 static int pin_down_extent(struct btrfs_root *root,
6302 struct btrfs_block_group_cache *cache,
6303 u64 bytenr, u64 num_bytes, int reserved)
6304 {
6305 spin_lock(&cache->space_info->lock);
6306 spin_lock(&cache->lock);
6307 cache->pinned += num_bytes;
6308 cache->space_info->bytes_pinned += num_bytes;
6309 if (reserved) {
6310 cache->reserved -= num_bytes;
6311 cache->space_info->bytes_reserved -= num_bytes;
6312 }
6313 spin_unlock(&cache->lock);
6314 spin_unlock(&cache->space_info->lock);
6315
6316 trace_btrfs_space_reservation(root->fs_info, "pinned",
6317 cache->space_info->flags, num_bytes, 1);
6318 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6319 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6320 return 0;
6321 }
6322
6323 /*
6324 * this function must be called within transaction
6325 */
btrfs_pin_extent(struct btrfs_root * root,u64 bytenr,u64 num_bytes,int reserved)6326 int btrfs_pin_extent(struct btrfs_root *root,
6327 u64 bytenr, u64 num_bytes, int reserved)
6328 {
6329 struct btrfs_block_group_cache *cache;
6330
6331 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6332 BUG_ON(!cache); /* Logic error */
6333
6334 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6335
6336 btrfs_put_block_group(cache);
6337 return 0;
6338 }
6339
6340 /*
6341 * this function must be called within transaction
6342 */
btrfs_pin_extent_for_log_replay(struct btrfs_root * root,u64 bytenr,u64 num_bytes)6343 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6344 u64 bytenr, u64 num_bytes)
6345 {
6346 struct btrfs_block_group_cache *cache;
6347 int ret;
6348
6349 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6350 if (!cache)
6351 return -EINVAL;
6352
6353 /*
6354 * pull in the free space cache (if any) so that our pin
6355 * removes the free space from the cache. We have load_only set
6356 * to one because the slow code to read in the free extents does check
6357 * the pinned extents.
6358 */
6359 cache_block_group(cache, 1);
6360
6361 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6362
6363 /* remove us from the free space cache (if we're there at all) */
6364 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6365 btrfs_put_block_group(cache);
6366 return ret;
6367 }
6368
__exclude_logged_extent(struct btrfs_root * root,u64 start,u64 num_bytes)6369 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6370 {
6371 int ret;
6372 struct btrfs_block_group_cache *block_group;
6373 struct btrfs_caching_control *caching_ctl;
6374
6375 block_group = btrfs_lookup_block_group(root->fs_info, start);
6376 if (!block_group)
6377 return -EINVAL;
6378
6379 cache_block_group(block_group, 0);
6380 caching_ctl = get_caching_control(block_group);
6381
6382 if (!caching_ctl) {
6383 /* Logic error */
6384 BUG_ON(!block_group_cache_done(block_group));
6385 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6386 } else {
6387 mutex_lock(&caching_ctl->mutex);
6388
6389 if (start >= caching_ctl->progress) {
6390 ret = add_excluded_extent(root, start, num_bytes);
6391 } else if (start + num_bytes <= caching_ctl->progress) {
6392 ret = btrfs_remove_free_space(block_group,
6393 start, num_bytes);
6394 } else {
6395 num_bytes = caching_ctl->progress - start;
6396 ret = btrfs_remove_free_space(block_group,
6397 start, num_bytes);
6398 if (ret)
6399 goto out_lock;
6400
6401 num_bytes = (start + num_bytes) -
6402 caching_ctl->progress;
6403 start = caching_ctl->progress;
6404 ret = add_excluded_extent(root, start, num_bytes);
6405 }
6406 out_lock:
6407 mutex_unlock(&caching_ctl->mutex);
6408 put_caching_control(caching_ctl);
6409 }
6410 btrfs_put_block_group(block_group);
6411 return ret;
6412 }
6413
btrfs_exclude_logged_extents(struct btrfs_root * log,struct extent_buffer * eb)6414 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6415 struct extent_buffer *eb)
6416 {
6417 struct btrfs_file_extent_item *item;
6418 struct btrfs_key key;
6419 int found_type;
6420 int i;
6421
6422 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6423 return 0;
6424
6425 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6426 btrfs_item_key_to_cpu(eb, &key, i);
6427 if (key.type != BTRFS_EXTENT_DATA_KEY)
6428 continue;
6429 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6430 found_type = btrfs_file_extent_type(eb, item);
6431 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6432 continue;
6433 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6434 continue;
6435 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6436 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6437 __exclude_logged_extent(log, key.objectid, key.offset);
6438 }
6439
6440 return 0;
6441 }
6442
6443 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group_cache * bg)6444 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6445 {
6446 atomic_inc(&bg->reservations);
6447 }
6448
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)6449 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6450 const u64 start)
6451 {
6452 struct btrfs_block_group_cache *bg;
6453
6454 bg = btrfs_lookup_block_group(fs_info, start);
6455 ASSERT(bg);
6456 if (atomic_dec_and_test(&bg->reservations))
6457 wake_up_atomic_t(&bg->reservations);
6458 btrfs_put_block_group(bg);
6459 }
6460
btrfs_wait_bg_reservations_atomic_t(atomic_t * a)6461 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6462 {
6463 schedule();
6464 return 0;
6465 }
6466
btrfs_wait_block_group_reservations(struct btrfs_block_group_cache * bg)6467 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6468 {
6469 struct btrfs_space_info *space_info = bg->space_info;
6470
6471 ASSERT(bg->ro);
6472
6473 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6474 return;
6475
6476 /*
6477 * Our block group is read only but before we set it to read only,
6478 * some task might have had allocated an extent from it already, but it
6479 * has not yet created a respective ordered extent (and added it to a
6480 * root's list of ordered extents).
6481 * Therefore wait for any task currently allocating extents, since the
6482 * block group's reservations counter is incremented while a read lock
6483 * on the groups' semaphore is held and decremented after releasing
6484 * the read access on that semaphore and creating the ordered extent.
6485 */
6486 down_write(&space_info->groups_sem);
6487 up_write(&space_info->groups_sem);
6488
6489 wait_on_atomic_t(&bg->reservations,
6490 btrfs_wait_bg_reservations_atomic_t,
6491 TASK_UNINTERRUPTIBLE);
6492 }
6493
6494 /**
6495 * btrfs_add_reserved_bytes - update the block_group and space info counters
6496 * @cache: The cache we are manipulating
6497 * @ram_bytes: The number of bytes of file content, and will be same to
6498 * @num_bytes except for the compress path.
6499 * @num_bytes: The number of bytes in question
6500 * @delalloc: The blocks are allocated for the delalloc write
6501 *
6502 * This is called by the allocator when it reserves space. Metadata
6503 * reservations should be called with RESERVE_ALLOC so we do the proper
6504 * ENOSPC accounting. For data we handle the reservation through clearing the
6505 * delalloc bits in the io_tree. We have to do this since we could end up
6506 * allocating less disk space for the amount of data we have reserved in the
6507 * case of compression.
6508 *
6509 * If this is a reservation and the block group has become read only we cannot
6510 * make the reservation and return -EAGAIN, otherwise this function always
6511 * succeeds.
6512 */
btrfs_add_reserved_bytes(struct btrfs_block_group_cache * cache,u64 ram_bytes,u64 num_bytes,int delalloc)6513 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6514 u64 ram_bytes, u64 num_bytes, int delalloc)
6515 {
6516 struct btrfs_space_info *space_info = cache->space_info;
6517 int ret = 0;
6518
6519 spin_lock(&space_info->lock);
6520 spin_lock(&cache->lock);
6521 if (cache->ro) {
6522 ret = -EAGAIN;
6523 } else {
6524 cache->reserved += num_bytes;
6525 space_info->bytes_reserved += num_bytes;
6526
6527 trace_btrfs_space_reservation(cache->fs_info,
6528 "space_info", space_info->flags,
6529 ram_bytes, 0);
6530 space_info->bytes_may_use -= ram_bytes;
6531 if (delalloc)
6532 cache->delalloc_bytes += num_bytes;
6533 }
6534 spin_unlock(&cache->lock);
6535 spin_unlock(&space_info->lock);
6536 return ret;
6537 }
6538
6539 /**
6540 * btrfs_free_reserved_bytes - update the block_group and space info counters
6541 * @cache: The cache we are manipulating
6542 * @num_bytes: The number of bytes in question
6543 * @delalloc: The blocks are allocated for the delalloc write
6544 *
6545 * This is called by somebody who is freeing space that was never actually used
6546 * on disk. For example if you reserve some space for a new leaf in transaction
6547 * A and before transaction A commits you free that leaf, you call this with
6548 * reserve set to 0 in order to clear the reservation.
6549 */
6550
btrfs_free_reserved_bytes(struct btrfs_block_group_cache * cache,u64 num_bytes,int delalloc)6551 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6552 u64 num_bytes, int delalloc)
6553 {
6554 struct btrfs_space_info *space_info = cache->space_info;
6555 int ret = 0;
6556
6557 spin_lock(&space_info->lock);
6558 spin_lock(&cache->lock);
6559 if (cache->ro)
6560 space_info->bytes_readonly += num_bytes;
6561 cache->reserved -= num_bytes;
6562 space_info->bytes_reserved -= num_bytes;
6563
6564 if (delalloc)
6565 cache->delalloc_bytes -= num_bytes;
6566 spin_unlock(&cache->lock);
6567 spin_unlock(&space_info->lock);
6568 return ret;
6569 }
btrfs_prepare_extent_commit(struct btrfs_trans_handle * trans,struct btrfs_root * root)6570 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6571 struct btrfs_root *root)
6572 {
6573 struct btrfs_fs_info *fs_info = root->fs_info;
6574 struct btrfs_caching_control *next;
6575 struct btrfs_caching_control *caching_ctl;
6576 struct btrfs_block_group_cache *cache;
6577
6578 down_write(&fs_info->commit_root_sem);
6579
6580 list_for_each_entry_safe(caching_ctl, next,
6581 &fs_info->caching_block_groups, list) {
6582 cache = caching_ctl->block_group;
6583 if (block_group_cache_done(cache)) {
6584 cache->last_byte_to_unpin = (u64)-1;
6585 list_del_init(&caching_ctl->list);
6586 put_caching_control(caching_ctl);
6587 } else {
6588 cache->last_byte_to_unpin = caching_ctl->progress;
6589 }
6590 }
6591
6592 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6593 fs_info->pinned_extents = &fs_info->freed_extents[1];
6594 else
6595 fs_info->pinned_extents = &fs_info->freed_extents[0];
6596
6597 up_write(&fs_info->commit_root_sem);
6598
6599 update_global_block_rsv(fs_info);
6600 }
6601
6602 /*
6603 * Returns the free cluster for the given space info and sets empty_cluster to
6604 * what it should be based on the mount options.
6605 */
6606 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 * empty_cluster)6607 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6608 u64 *empty_cluster)
6609 {
6610 struct btrfs_free_cluster *ret = NULL;
6611 bool ssd = btrfs_test_opt(root->fs_info, SSD);
6612
6613 *empty_cluster = 0;
6614 if (btrfs_mixed_space_info(space_info))
6615 return ret;
6616
6617 if (ssd)
6618 *empty_cluster = SZ_2M;
6619 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6620 ret = &root->fs_info->meta_alloc_cluster;
6621 if (!ssd)
6622 *empty_cluster = SZ_64K;
6623 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6624 ret = &root->fs_info->data_alloc_cluster;
6625 }
6626
6627 return ret;
6628 }
6629
unpin_extent_range(struct btrfs_root * root,u64 start,u64 end,const bool return_free_space)6630 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6631 const bool return_free_space)
6632 {
6633 struct btrfs_fs_info *fs_info = root->fs_info;
6634 struct btrfs_block_group_cache *cache = NULL;
6635 struct btrfs_space_info *space_info;
6636 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6637 struct btrfs_free_cluster *cluster = NULL;
6638 u64 len;
6639 u64 total_unpinned = 0;
6640 u64 empty_cluster = 0;
6641 bool readonly;
6642
6643 while (start <= end) {
6644 readonly = false;
6645 if (!cache ||
6646 start >= cache->key.objectid + cache->key.offset) {
6647 if (cache)
6648 btrfs_put_block_group(cache);
6649 total_unpinned = 0;
6650 cache = btrfs_lookup_block_group(fs_info, start);
6651 BUG_ON(!cache); /* Logic error */
6652
6653 cluster = fetch_cluster_info(root,
6654 cache->space_info,
6655 &empty_cluster);
6656 empty_cluster <<= 1;
6657 }
6658
6659 len = cache->key.objectid + cache->key.offset - start;
6660 len = min(len, end + 1 - start);
6661
6662 if (start < cache->last_byte_to_unpin) {
6663 len = min(len, cache->last_byte_to_unpin - start);
6664 if (return_free_space)
6665 btrfs_add_free_space(cache, start, len);
6666 }
6667
6668 start += len;
6669 total_unpinned += len;
6670 space_info = cache->space_info;
6671
6672 /*
6673 * If this space cluster has been marked as fragmented and we've
6674 * unpinned enough in this block group to potentially allow a
6675 * cluster to be created inside of it go ahead and clear the
6676 * fragmented check.
6677 */
6678 if (cluster && cluster->fragmented &&
6679 total_unpinned > empty_cluster) {
6680 spin_lock(&cluster->lock);
6681 cluster->fragmented = 0;
6682 spin_unlock(&cluster->lock);
6683 }
6684
6685 spin_lock(&space_info->lock);
6686 spin_lock(&cache->lock);
6687 cache->pinned -= len;
6688 space_info->bytes_pinned -= len;
6689
6690 trace_btrfs_space_reservation(fs_info, "pinned",
6691 space_info->flags, len, 0);
6692 space_info->max_extent_size = 0;
6693 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6694 if (cache->ro) {
6695 space_info->bytes_readonly += len;
6696 readonly = true;
6697 }
6698 spin_unlock(&cache->lock);
6699 if (!readonly && return_free_space &&
6700 global_rsv->space_info == space_info) {
6701 u64 to_add = len;
6702 WARN_ON(!return_free_space);
6703 spin_lock(&global_rsv->lock);
6704 if (!global_rsv->full) {
6705 to_add = min(len, global_rsv->size -
6706 global_rsv->reserved);
6707 global_rsv->reserved += to_add;
6708 space_info->bytes_may_use += to_add;
6709 if (global_rsv->reserved >= global_rsv->size)
6710 global_rsv->full = 1;
6711 trace_btrfs_space_reservation(fs_info,
6712 "space_info",
6713 space_info->flags,
6714 to_add, 1);
6715 len -= to_add;
6716 }
6717 spin_unlock(&global_rsv->lock);
6718 /* Add to any tickets we may have */
6719 if (len)
6720 space_info_add_new_bytes(fs_info, space_info,
6721 len);
6722 }
6723 spin_unlock(&space_info->lock);
6724 }
6725
6726 if (cache)
6727 btrfs_put_block_group(cache);
6728 return 0;
6729 }
6730
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans,struct btrfs_root * root)6731 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6732 struct btrfs_root *root)
6733 {
6734 struct btrfs_fs_info *fs_info = root->fs_info;
6735 struct btrfs_block_group_cache *block_group, *tmp;
6736 struct list_head *deleted_bgs;
6737 struct extent_io_tree *unpin;
6738 u64 start;
6739 u64 end;
6740 int ret;
6741
6742 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6743 unpin = &fs_info->freed_extents[1];
6744 else
6745 unpin = &fs_info->freed_extents[0];
6746
6747 while (!trans->aborted) {
6748 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6749 ret = find_first_extent_bit(unpin, 0, &start, &end,
6750 EXTENT_DIRTY, NULL);
6751 if (ret) {
6752 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6753 break;
6754 }
6755
6756 if (btrfs_test_opt(root->fs_info, DISCARD))
6757 ret = btrfs_discard_extent(root, start,
6758 end + 1 - start, NULL);
6759
6760 clear_extent_dirty(unpin, start, end);
6761 unpin_extent_range(root, start, end, true);
6762 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6763 cond_resched();
6764 }
6765
6766 /*
6767 * Transaction is finished. We don't need the lock anymore. We
6768 * do need to clean up the block groups in case of a transaction
6769 * abort.
6770 */
6771 deleted_bgs = &trans->transaction->deleted_bgs;
6772 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6773 u64 trimmed = 0;
6774
6775 ret = -EROFS;
6776 if (!trans->aborted)
6777 ret = btrfs_discard_extent(root,
6778 block_group->key.objectid,
6779 block_group->key.offset,
6780 &trimmed);
6781
6782 list_del_init(&block_group->bg_list);
6783 btrfs_put_block_group_trimming(block_group);
6784 btrfs_put_block_group(block_group);
6785
6786 if (ret) {
6787 const char *errstr = btrfs_decode_error(ret);
6788 btrfs_warn(fs_info,
6789 "Discard failed while removing blockgroup: errno=%d %s\n",
6790 ret, errstr);
6791 }
6792 }
6793
6794 return 0;
6795 }
6796
add_pinned_bytes(struct btrfs_fs_info * fs_info,u64 num_bytes,u64 owner,u64 root_objectid)6797 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6798 u64 owner, u64 root_objectid)
6799 {
6800 struct btrfs_space_info *space_info;
6801 u64 flags;
6802
6803 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6804 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6805 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6806 else
6807 flags = BTRFS_BLOCK_GROUP_METADATA;
6808 } else {
6809 flags = BTRFS_BLOCK_GROUP_DATA;
6810 }
6811
6812 space_info = __find_space_info(fs_info, flags);
6813 BUG_ON(!space_info); /* Logic bug */
6814 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6815 }
6816
6817
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)6818 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6819 struct btrfs_root *root,
6820 struct btrfs_delayed_ref_node *node, u64 parent,
6821 u64 root_objectid, u64 owner_objectid,
6822 u64 owner_offset, int refs_to_drop,
6823 struct btrfs_delayed_extent_op *extent_op)
6824 {
6825 struct btrfs_key key;
6826 struct btrfs_path *path;
6827 struct btrfs_fs_info *info = root->fs_info;
6828 struct btrfs_root *extent_root = info->extent_root;
6829 struct extent_buffer *leaf;
6830 struct btrfs_extent_item *ei;
6831 struct btrfs_extent_inline_ref *iref;
6832 int ret;
6833 int is_data;
6834 int extent_slot = 0;
6835 int found_extent = 0;
6836 int num_to_del = 1;
6837 u32 item_size;
6838 u64 refs;
6839 u64 bytenr = node->bytenr;
6840 u64 num_bytes = node->num_bytes;
6841 int last_ref = 0;
6842 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6843 SKINNY_METADATA);
6844
6845 path = btrfs_alloc_path();
6846 if (!path)
6847 return -ENOMEM;
6848
6849 path->reada = READA_FORWARD;
6850 path->leave_spinning = 1;
6851
6852 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6853 BUG_ON(!is_data && refs_to_drop != 1);
6854
6855 if (is_data)
6856 skinny_metadata = 0;
6857
6858 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6859 bytenr, num_bytes, parent,
6860 root_objectid, owner_objectid,
6861 owner_offset);
6862 if (ret == 0) {
6863 extent_slot = path->slots[0];
6864 while (extent_slot >= 0) {
6865 btrfs_item_key_to_cpu(path->nodes[0], &key,
6866 extent_slot);
6867 if (key.objectid != bytenr)
6868 break;
6869 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6870 key.offset == num_bytes) {
6871 found_extent = 1;
6872 break;
6873 }
6874 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6875 key.offset == owner_objectid) {
6876 found_extent = 1;
6877 break;
6878 }
6879 if (path->slots[0] - extent_slot > 5)
6880 break;
6881 extent_slot--;
6882 }
6883 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6884 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6885 if (found_extent && item_size < sizeof(*ei))
6886 found_extent = 0;
6887 #endif
6888 if (!found_extent) {
6889 BUG_ON(iref);
6890 ret = remove_extent_backref(trans, extent_root, path,
6891 NULL, refs_to_drop,
6892 is_data, &last_ref);
6893 if (ret) {
6894 btrfs_abort_transaction(trans, ret);
6895 goto out;
6896 }
6897 btrfs_release_path(path);
6898 path->leave_spinning = 1;
6899
6900 key.objectid = bytenr;
6901 key.type = BTRFS_EXTENT_ITEM_KEY;
6902 key.offset = num_bytes;
6903
6904 if (!is_data && skinny_metadata) {
6905 key.type = BTRFS_METADATA_ITEM_KEY;
6906 key.offset = owner_objectid;
6907 }
6908
6909 ret = btrfs_search_slot(trans, extent_root,
6910 &key, path, -1, 1);
6911 if (ret > 0 && skinny_metadata && path->slots[0]) {
6912 /*
6913 * Couldn't find our skinny metadata item,
6914 * see if we have ye olde extent item.
6915 */
6916 path->slots[0]--;
6917 btrfs_item_key_to_cpu(path->nodes[0], &key,
6918 path->slots[0]);
6919 if (key.objectid == bytenr &&
6920 key.type == BTRFS_EXTENT_ITEM_KEY &&
6921 key.offset == num_bytes)
6922 ret = 0;
6923 }
6924
6925 if (ret > 0 && skinny_metadata) {
6926 skinny_metadata = false;
6927 key.objectid = bytenr;
6928 key.type = BTRFS_EXTENT_ITEM_KEY;
6929 key.offset = num_bytes;
6930 btrfs_release_path(path);
6931 ret = btrfs_search_slot(trans, extent_root,
6932 &key, path, -1, 1);
6933 }
6934
6935 if (ret) {
6936 btrfs_err(info,
6937 "umm, got %d back from search, was looking for %llu",
6938 ret, bytenr);
6939 if (ret > 0)
6940 btrfs_print_leaf(extent_root,
6941 path->nodes[0]);
6942 }
6943 if (ret < 0) {
6944 btrfs_abort_transaction(trans, ret);
6945 goto out;
6946 }
6947 extent_slot = path->slots[0];
6948 }
6949 } else if (WARN_ON(ret == -ENOENT)) {
6950 btrfs_print_leaf(extent_root, path->nodes[0]);
6951 btrfs_err(info,
6952 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6953 bytenr, parent, root_objectid, owner_objectid,
6954 owner_offset);
6955 btrfs_abort_transaction(trans, ret);
6956 goto out;
6957 } else {
6958 btrfs_abort_transaction(trans, ret);
6959 goto out;
6960 }
6961
6962 leaf = path->nodes[0];
6963 item_size = btrfs_item_size_nr(leaf, extent_slot);
6964 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6965 if (item_size < sizeof(*ei)) {
6966 BUG_ON(found_extent || extent_slot != path->slots[0]);
6967 ret = convert_extent_item_v0(trans, extent_root, path,
6968 owner_objectid, 0);
6969 if (ret < 0) {
6970 btrfs_abort_transaction(trans, ret);
6971 goto out;
6972 }
6973
6974 btrfs_release_path(path);
6975 path->leave_spinning = 1;
6976
6977 key.objectid = bytenr;
6978 key.type = BTRFS_EXTENT_ITEM_KEY;
6979 key.offset = num_bytes;
6980
6981 ret = btrfs_search_slot(trans, extent_root, &key, path,
6982 -1, 1);
6983 if (ret) {
6984 btrfs_err(info,
6985 "umm, got %d back from search, was looking for %llu",
6986 ret, bytenr);
6987 btrfs_print_leaf(extent_root, path->nodes[0]);
6988 }
6989 if (ret < 0) {
6990 btrfs_abort_transaction(trans, ret);
6991 goto out;
6992 }
6993
6994 extent_slot = path->slots[0];
6995 leaf = path->nodes[0];
6996 item_size = btrfs_item_size_nr(leaf, extent_slot);
6997 }
6998 #endif
6999 BUG_ON(item_size < sizeof(*ei));
7000 ei = btrfs_item_ptr(leaf, extent_slot,
7001 struct btrfs_extent_item);
7002 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7003 key.type == BTRFS_EXTENT_ITEM_KEY) {
7004 struct btrfs_tree_block_info *bi;
7005 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7006 bi = (struct btrfs_tree_block_info *)(ei + 1);
7007 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7008 }
7009
7010 refs = btrfs_extent_refs(leaf, ei);
7011 if (refs < refs_to_drop) {
7012 btrfs_err(info,
7013 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7014 refs_to_drop, refs, bytenr);
7015 ret = -EINVAL;
7016 btrfs_abort_transaction(trans, ret);
7017 goto out;
7018 }
7019 refs -= refs_to_drop;
7020
7021 if (refs > 0) {
7022 if (extent_op)
7023 __run_delayed_extent_op(extent_op, leaf, ei);
7024 /*
7025 * In the case of inline back ref, reference count will
7026 * be updated by remove_extent_backref
7027 */
7028 if (iref) {
7029 BUG_ON(!found_extent);
7030 } else {
7031 btrfs_set_extent_refs(leaf, ei, refs);
7032 btrfs_mark_buffer_dirty(leaf);
7033 }
7034 if (found_extent) {
7035 ret = remove_extent_backref(trans, extent_root, path,
7036 iref, refs_to_drop,
7037 is_data, &last_ref);
7038 if (ret) {
7039 btrfs_abort_transaction(trans, ret);
7040 goto out;
7041 }
7042 }
7043 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
7044 root_objectid);
7045 } else {
7046 if (found_extent) {
7047 BUG_ON(is_data && refs_to_drop !=
7048 extent_data_ref_count(path, iref));
7049 if (iref) {
7050 BUG_ON(path->slots[0] != extent_slot);
7051 } else {
7052 BUG_ON(path->slots[0] != extent_slot + 1);
7053 path->slots[0] = extent_slot;
7054 num_to_del = 2;
7055 }
7056 }
7057
7058 last_ref = 1;
7059 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7060 num_to_del);
7061 if (ret) {
7062 btrfs_abort_transaction(trans, ret);
7063 goto out;
7064 }
7065 btrfs_release_path(path);
7066
7067 if (is_data) {
7068 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
7069 if (ret) {
7070 btrfs_abort_transaction(trans, ret);
7071 goto out;
7072 }
7073 }
7074
7075 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
7076 num_bytes);
7077 if (ret) {
7078 btrfs_abort_transaction(trans, ret);
7079 goto out;
7080 }
7081
7082 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
7083 if (ret) {
7084 btrfs_abort_transaction(trans, ret);
7085 goto out;
7086 }
7087 }
7088 btrfs_release_path(path);
7089
7090 out:
7091 btrfs_free_path(path);
7092 return ret;
7093 }
7094
7095 /*
7096 * when we free an block, it is possible (and likely) that we free the last
7097 * delayed ref for that extent as well. This searches the delayed ref tree for
7098 * a given extent, and if there are no other delayed refs to be processed, it
7099 * removes it from the tree.
7100 */
check_ref_cleanup(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr)7101 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7102 struct btrfs_root *root, u64 bytenr)
7103 {
7104 struct btrfs_delayed_ref_head *head;
7105 struct btrfs_delayed_ref_root *delayed_refs;
7106 int ret = 0;
7107
7108 delayed_refs = &trans->transaction->delayed_refs;
7109 spin_lock(&delayed_refs->lock);
7110 head = btrfs_find_delayed_ref_head(trans, bytenr);
7111 if (!head)
7112 goto out_delayed_unlock;
7113
7114 spin_lock(&head->lock);
7115 if (!list_empty(&head->ref_list))
7116 goto out;
7117
7118 if (head->extent_op) {
7119 if (!head->must_insert_reserved)
7120 goto out;
7121 btrfs_free_delayed_extent_op(head->extent_op);
7122 head->extent_op = NULL;
7123 }
7124
7125 /*
7126 * waiting for the lock here would deadlock. If someone else has it
7127 * locked they are already in the process of dropping it anyway
7128 */
7129 if (!mutex_trylock(&head->mutex))
7130 goto out;
7131
7132 /*
7133 * at this point we have a head with no other entries. Go
7134 * ahead and process it.
7135 */
7136 head->node.in_tree = 0;
7137 rb_erase(&head->href_node, &delayed_refs->href_root);
7138
7139 atomic_dec(&delayed_refs->num_entries);
7140
7141 /*
7142 * we don't take a ref on the node because we're removing it from the
7143 * tree, so we just steal the ref the tree was holding.
7144 */
7145 delayed_refs->num_heads--;
7146 if (head->processing == 0)
7147 delayed_refs->num_heads_ready--;
7148 head->processing = 0;
7149 spin_unlock(&head->lock);
7150 spin_unlock(&delayed_refs->lock);
7151
7152 BUG_ON(head->extent_op);
7153 if (head->must_insert_reserved)
7154 ret = 1;
7155
7156 mutex_unlock(&head->mutex);
7157 btrfs_put_delayed_ref(&head->node);
7158 return ret;
7159 out:
7160 spin_unlock(&head->lock);
7161
7162 out_delayed_unlock:
7163 spin_unlock(&delayed_refs->lock);
7164 return 0;
7165 }
7166
btrfs_free_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,u64 parent,int last_ref)7167 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7168 struct btrfs_root *root,
7169 struct extent_buffer *buf,
7170 u64 parent, int last_ref)
7171 {
7172 int pin = 1;
7173 int ret;
7174
7175 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7176 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7177 buf->start, buf->len,
7178 parent, root->root_key.objectid,
7179 btrfs_header_level(buf),
7180 BTRFS_DROP_DELAYED_REF, NULL);
7181 BUG_ON(ret); /* -ENOMEM */
7182 }
7183
7184 if (!last_ref)
7185 return;
7186
7187 if (btrfs_header_generation(buf) == trans->transid) {
7188 struct btrfs_block_group_cache *cache;
7189
7190 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7191 ret = check_ref_cleanup(trans, root, buf->start);
7192 if (!ret)
7193 goto out;
7194 }
7195
7196 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
7197
7198 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7199 pin_down_extent(root, cache, buf->start, buf->len, 1);
7200 btrfs_put_block_group(cache);
7201 goto out;
7202 }
7203
7204 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7205
7206 btrfs_add_free_space(cache, buf->start, buf->len);
7207 btrfs_free_reserved_bytes(cache, buf->len, 0);
7208 btrfs_put_block_group(cache);
7209 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
7210 pin = 0;
7211 }
7212 out:
7213 if (pin)
7214 add_pinned_bytes(root->fs_info, buf->len,
7215 btrfs_header_level(buf),
7216 root->root_key.objectid);
7217
7218 /*
7219 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7220 * anymore.
7221 */
7222 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7223 }
7224
7225 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)7226 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7227 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7228 u64 owner, u64 offset)
7229 {
7230 int ret;
7231 struct btrfs_fs_info *fs_info = root->fs_info;
7232
7233 if (btrfs_is_testing(fs_info))
7234 return 0;
7235
7236 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7237
7238 /*
7239 * tree log blocks never actually go into the extent allocation
7240 * tree, just update pinning info and exit early.
7241 */
7242 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7243 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7244 /* unlocks the pinned mutex */
7245 btrfs_pin_extent(root, bytenr, num_bytes, 1);
7246 ret = 0;
7247 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7248 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7249 num_bytes,
7250 parent, root_objectid, (int)owner,
7251 BTRFS_DROP_DELAYED_REF, NULL);
7252 } else {
7253 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7254 num_bytes,
7255 parent, root_objectid, owner,
7256 offset, 0,
7257 BTRFS_DROP_DELAYED_REF, NULL);
7258 }
7259 return ret;
7260 }
7261
7262 /*
7263 * when we wait for progress in the block group caching, its because
7264 * our allocation attempt failed at least once. So, we must sleep
7265 * and let some progress happen before we try again.
7266 *
7267 * This function will sleep at least once waiting for new free space to
7268 * show up, and then it will check the block group free space numbers
7269 * for our min num_bytes. Another option is to have it go ahead
7270 * and look in the rbtree for a free extent of a given size, but this
7271 * is a good start.
7272 *
7273 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7274 * any of the information in this block group.
7275 */
7276 static noinline void
wait_block_group_cache_progress(struct btrfs_block_group_cache * cache,u64 num_bytes)7277 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7278 u64 num_bytes)
7279 {
7280 struct btrfs_caching_control *caching_ctl;
7281
7282 caching_ctl = get_caching_control(cache);
7283 if (!caching_ctl)
7284 return;
7285
7286 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7287 (cache->free_space_ctl->free_space >= num_bytes));
7288
7289 put_caching_control(caching_ctl);
7290 }
7291
7292 static noinline int
wait_block_group_cache_done(struct btrfs_block_group_cache * cache)7293 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7294 {
7295 struct btrfs_caching_control *caching_ctl;
7296 int ret = 0;
7297
7298 caching_ctl = get_caching_control(cache);
7299 if (!caching_ctl)
7300 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7301
7302 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7303 if (cache->cached == BTRFS_CACHE_ERROR)
7304 ret = -EIO;
7305 put_caching_control(caching_ctl);
7306 return ret;
7307 }
7308
__get_raid_index(u64 flags)7309 int __get_raid_index(u64 flags)
7310 {
7311 if (flags & BTRFS_BLOCK_GROUP_RAID10)
7312 return BTRFS_RAID_RAID10;
7313 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7314 return BTRFS_RAID_RAID1;
7315 else if (flags & BTRFS_BLOCK_GROUP_DUP)
7316 return BTRFS_RAID_DUP;
7317 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7318 return BTRFS_RAID_RAID0;
7319 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7320 return BTRFS_RAID_RAID5;
7321 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7322 return BTRFS_RAID_RAID6;
7323
7324 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7325 }
7326
get_block_group_index(struct btrfs_block_group_cache * cache)7327 int get_block_group_index(struct btrfs_block_group_cache *cache)
7328 {
7329 return __get_raid_index(cache->flags);
7330 }
7331
7332 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7333 [BTRFS_RAID_RAID10] = "raid10",
7334 [BTRFS_RAID_RAID1] = "raid1",
7335 [BTRFS_RAID_DUP] = "dup",
7336 [BTRFS_RAID_RAID0] = "raid0",
7337 [BTRFS_RAID_SINGLE] = "single",
7338 [BTRFS_RAID_RAID5] = "raid5",
7339 [BTRFS_RAID_RAID6] = "raid6",
7340 };
7341
get_raid_name(enum btrfs_raid_types type)7342 static const char *get_raid_name(enum btrfs_raid_types type)
7343 {
7344 if (type >= BTRFS_NR_RAID_TYPES)
7345 return NULL;
7346
7347 return btrfs_raid_type_names[type];
7348 }
7349
7350 enum btrfs_loop_type {
7351 LOOP_CACHING_NOWAIT = 0,
7352 LOOP_CACHING_WAIT = 1,
7353 LOOP_ALLOC_CHUNK = 2,
7354 LOOP_NO_EMPTY_SIZE = 3,
7355 };
7356
7357 static inline void
btrfs_lock_block_group(struct btrfs_block_group_cache * cache,int delalloc)7358 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7359 int delalloc)
7360 {
7361 if (delalloc)
7362 down_read(&cache->data_rwsem);
7363 }
7364
7365 static inline void
btrfs_grab_block_group(struct btrfs_block_group_cache * cache,int delalloc)7366 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7367 int delalloc)
7368 {
7369 btrfs_get_block_group(cache);
7370 if (delalloc)
7371 down_read(&cache->data_rwsem);
7372 }
7373
7374 static struct btrfs_block_group_cache *
btrfs_lock_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,int delalloc)7375 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7376 struct btrfs_free_cluster *cluster,
7377 int delalloc)
7378 {
7379 struct btrfs_block_group_cache *used_bg = NULL;
7380
7381 spin_lock(&cluster->refill_lock);
7382 while (1) {
7383 used_bg = cluster->block_group;
7384 if (!used_bg)
7385 return NULL;
7386
7387 if (used_bg == block_group)
7388 return used_bg;
7389
7390 btrfs_get_block_group(used_bg);
7391
7392 if (!delalloc)
7393 return used_bg;
7394
7395 if (down_read_trylock(&used_bg->data_rwsem))
7396 return used_bg;
7397
7398 spin_unlock(&cluster->refill_lock);
7399
7400 /* We should only have one-level nested. */
7401 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7402
7403 spin_lock(&cluster->refill_lock);
7404 if (used_bg == cluster->block_group)
7405 return used_bg;
7406
7407 up_read(&used_bg->data_rwsem);
7408 btrfs_put_block_group(used_bg);
7409 }
7410 }
7411
7412 static inline void
btrfs_release_block_group(struct btrfs_block_group_cache * cache,int delalloc)7413 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7414 int delalloc)
7415 {
7416 if (delalloc)
7417 up_read(&cache->data_rwsem);
7418 btrfs_put_block_group(cache);
7419 }
7420
7421 /*
7422 * walks the btree of allocated extents and find a hole of a given size.
7423 * The key ins is changed to record the hole:
7424 * ins->objectid == start position
7425 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7426 * ins->offset == the size of the hole.
7427 * Any available blocks before search_start are skipped.
7428 *
7429 * If there is no suitable free space, we will record the max size of
7430 * the free space extent currently.
7431 */
find_free_extent(struct btrfs_root * orig_root,u64 ram_bytes,u64 num_bytes,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,u64 flags,int delalloc)7432 static noinline int find_free_extent(struct btrfs_root *orig_root,
7433 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7434 u64 hint_byte, struct btrfs_key *ins,
7435 u64 flags, int delalloc)
7436 {
7437 int ret = 0;
7438 struct btrfs_root *root = orig_root->fs_info->extent_root;
7439 struct btrfs_free_cluster *last_ptr = NULL;
7440 struct btrfs_block_group_cache *block_group = NULL;
7441 u64 search_start = 0;
7442 u64 max_extent_size = 0;
7443 u64 empty_cluster = 0;
7444 struct btrfs_space_info *space_info;
7445 int loop = 0;
7446 int index = __get_raid_index(flags);
7447 bool failed_cluster_refill = false;
7448 bool failed_alloc = false;
7449 bool use_cluster = true;
7450 bool have_caching_bg = false;
7451 bool orig_have_caching_bg = false;
7452 bool full_search = false;
7453
7454 WARN_ON(num_bytes < root->sectorsize);
7455 ins->type = BTRFS_EXTENT_ITEM_KEY;
7456 ins->objectid = 0;
7457 ins->offset = 0;
7458
7459 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7460
7461 space_info = __find_space_info(root->fs_info, flags);
7462 if (!space_info) {
7463 btrfs_err(root->fs_info, "No space info for %llu", flags);
7464 return -ENOSPC;
7465 }
7466
7467 /*
7468 * If our free space is heavily fragmented we may not be able to make
7469 * big contiguous allocations, so instead of doing the expensive search
7470 * for free space, simply return ENOSPC with our max_extent_size so we
7471 * can go ahead and search for a more manageable chunk.
7472 *
7473 * If our max_extent_size is large enough for our allocation simply
7474 * disable clustering since we will likely not be able to find enough
7475 * space to create a cluster and induce latency trying.
7476 */
7477 if (unlikely(space_info->max_extent_size)) {
7478 spin_lock(&space_info->lock);
7479 if (space_info->max_extent_size &&
7480 num_bytes > space_info->max_extent_size) {
7481 ins->offset = space_info->max_extent_size;
7482 spin_unlock(&space_info->lock);
7483 return -ENOSPC;
7484 } else if (space_info->max_extent_size) {
7485 use_cluster = false;
7486 }
7487 spin_unlock(&space_info->lock);
7488 }
7489
7490 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7491 if (last_ptr) {
7492 spin_lock(&last_ptr->lock);
7493 if (last_ptr->block_group)
7494 hint_byte = last_ptr->window_start;
7495 if (last_ptr->fragmented) {
7496 /*
7497 * We still set window_start so we can keep track of the
7498 * last place we found an allocation to try and save
7499 * some time.
7500 */
7501 hint_byte = last_ptr->window_start;
7502 use_cluster = false;
7503 }
7504 spin_unlock(&last_ptr->lock);
7505 }
7506
7507 search_start = max(search_start, first_logical_byte(root, 0));
7508 search_start = max(search_start, hint_byte);
7509 if (search_start == hint_byte) {
7510 block_group = btrfs_lookup_block_group(root->fs_info,
7511 search_start);
7512 /*
7513 * we don't want to use the block group if it doesn't match our
7514 * allocation bits, or if its not cached.
7515 *
7516 * However if we are re-searching with an ideal block group
7517 * picked out then we don't care that the block group is cached.
7518 */
7519 if (block_group && block_group_bits(block_group, flags) &&
7520 block_group->cached != BTRFS_CACHE_NO) {
7521 down_read(&space_info->groups_sem);
7522 if (list_empty(&block_group->list) ||
7523 block_group->ro) {
7524 /*
7525 * someone is removing this block group,
7526 * we can't jump into the have_block_group
7527 * target because our list pointers are not
7528 * valid
7529 */
7530 btrfs_put_block_group(block_group);
7531 up_read(&space_info->groups_sem);
7532 } else {
7533 index = get_block_group_index(block_group);
7534 btrfs_lock_block_group(block_group, delalloc);
7535 goto have_block_group;
7536 }
7537 } else if (block_group) {
7538 btrfs_put_block_group(block_group);
7539 }
7540 }
7541 search:
7542 have_caching_bg = false;
7543 if (index == 0 || index == __get_raid_index(flags))
7544 full_search = true;
7545 down_read(&space_info->groups_sem);
7546 list_for_each_entry(block_group, &space_info->block_groups[index],
7547 list) {
7548 u64 offset;
7549 int cached;
7550
7551 btrfs_grab_block_group(block_group, delalloc);
7552 search_start = block_group->key.objectid;
7553
7554 /*
7555 * this can happen if we end up cycling through all the
7556 * raid types, but we want to make sure we only allocate
7557 * for the proper type.
7558 */
7559 if (!block_group_bits(block_group, flags)) {
7560 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7561 BTRFS_BLOCK_GROUP_RAID1 |
7562 BTRFS_BLOCK_GROUP_RAID5 |
7563 BTRFS_BLOCK_GROUP_RAID6 |
7564 BTRFS_BLOCK_GROUP_RAID10;
7565
7566 /*
7567 * if they asked for extra copies and this block group
7568 * doesn't provide them, bail. This does allow us to
7569 * fill raid0 from raid1.
7570 */
7571 if ((flags & extra) && !(block_group->flags & extra))
7572 goto loop;
7573 }
7574
7575 have_block_group:
7576 cached = block_group_cache_done(block_group);
7577 if (unlikely(!cached)) {
7578 have_caching_bg = true;
7579 ret = cache_block_group(block_group, 0);
7580 BUG_ON(ret < 0);
7581 ret = 0;
7582 }
7583
7584 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7585 goto loop;
7586 if (unlikely(block_group->ro))
7587 goto loop;
7588
7589 /*
7590 * Ok we want to try and use the cluster allocator, so
7591 * lets look there
7592 */
7593 if (last_ptr && use_cluster) {
7594 struct btrfs_block_group_cache *used_block_group;
7595 unsigned long aligned_cluster;
7596 /*
7597 * the refill lock keeps out other
7598 * people trying to start a new cluster
7599 */
7600 used_block_group = btrfs_lock_cluster(block_group,
7601 last_ptr,
7602 delalloc);
7603 if (!used_block_group)
7604 goto refill_cluster;
7605
7606 if (used_block_group != block_group &&
7607 (used_block_group->ro ||
7608 !block_group_bits(used_block_group, flags)))
7609 goto release_cluster;
7610
7611 offset = btrfs_alloc_from_cluster(used_block_group,
7612 last_ptr,
7613 num_bytes,
7614 used_block_group->key.objectid,
7615 &max_extent_size);
7616 if (offset) {
7617 /* we have a block, we're done */
7618 spin_unlock(&last_ptr->refill_lock);
7619 trace_btrfs_reserve_extent_cluster(root,
7620 used_block_group,
7621 search_start, num_bytes);
7622 if (used_block_group != block_group) {
7623 btrfs_release_block_group(block_group,
7624 delalloc);
7625 block_group = used_block_group;
7626 }
7627 goto checks;
7628 }
7629
7630 WARN_ON(last_ptr->block_group != used_block_group);
7631 release_cluster:
7632 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7633 * set up a new clusters, so lets just skip it
7634 * and let the allocator find whatever block
7635 * it can find. If we reach this point, we
7636 * will have tried the cluster allocator
7637 * plenty of times and not have found
7638 * anything, so we are likely way too
7639 * fragmented for the clustering stuff to find
7640 * anything.
7641 *
7642 * However, if the cluster is taken from the
7643 * current block group, release the cluster
7644 * first, so that we stand a better chance of
7645 * succeeding in the unclustered
7646 * allocation. */
7647 if (loop >= LOOP_NO_EMPTY_SIZE &&
7648 used_block_group != block_group) {
7649 spin_unlock(&last_ptr->refill_lock);
7650 btrfs_release_block_group(used_block_group,
7651 delalloc);
7652 goto unclustered_alloc;
7653 }
7654
7655 /*
7656 * this cluster didn't work out, free it and
7657 * start over
7658 */
7659 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7660
7661 if (used_block_group != block_group)
7662 btrfs_release_block_group(used_block_group,
7663 delalloc);
7664 refill_cluster:
7665 if (loop >= LOOP_NO_EMPTY_SIZE) {
7666 spin_unlock(&last_ptr->refill_lock);
7667 goto unclustered_alloc;
7668 }
7669
7670 aligned_cluster = max_t(unsigned long,
7671 empty_cluster + empty_size,
7672 block_group->full_stripe_len);
7673
7674 /* allocate a cluster in this block group */
7675 ret = btrfs_find_space_cluster(root, block_group,
7676 last_ptr, search_start,
7677 num_bytes,
7678 aligned_cluster);
7679 if (ret == 0) {
7680 /*
7681 * now pull our allocation out of this
7682 * cluster
7683 */
7684 offset = btrfs_alloc_from_cluster(block_group,
7685 last_ptr,
7686 num_bytes,
7687 search_start,
7688 &max_extent_size);
7689 if (offset) {
7690 /* we found one, proceed */
7691 spin_unlock(&last_ptr->refill_lock);
7692 trace_btrfs_reserve_extent_cluster(root,
7693 block_group, search_start,
7694 num_bytes);
7695 goto checks;
7696 }
7697 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7698 && !failed_cluster_refill) {
7699 spin_unlock(&last_ptr->refill_lock);
7700
7701 failed_cluster_refill = true;
7702 wait_block_group_cache_progress(block_group,
7703 num_bytes + empty_cluster + empty_size);
7704 goto have_block_group;
7705 }
7706
7707 /*
7708 * at this point we either didn't find a cluster
7709 * or we weren't able to allocate a block from our
7710 * cluster. Free the cluster we've been trying
7711 * to use, and go to the next block group
7712 */
7713 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7714 spin_unlock(&last_ptr->refill_lock);
7715 goto loop;
7716 }
7717
7718 unclustered_alloc:
7719 /*
7720 * We are doing an unclustered alloc, set the fragmented flag so
7721 * we don't bother trying to setup a cluster again until we get
7722 * more space.
7723 */
7724 if (unlikely(last_ptr)) {
7725 spin_lock(&last_ptr->lock);
7726 last_ptr->fragmented = 1;
7727 spin_unlock(&last_ptr->lock);
7728 }
7729 spin_lock(&block_group->free_space_ctl->tree_lock);
7730 if (cached &&
7731 block_group->free_space_ctl->free_space <
7732 num_bytes + empty_cluster + empty_size) {
7733 if (block_group->free_space_ctl->free_space >
7734 max_extent_size)
7735 max_extent_size =
7736 block_group->free_space_ctl->free_space;
7737 spin_unlock(&block_group->free_space_ctl->tree_lock);
7738 goto loop;
7739 }
7740 spin_unlock(&block_group->free_space_ctl->tree_lock);
7741
7742 offset = btrfs_find_space_for_alloc(block_group, search_start,
7743 num_bytes, empty_size,
7744 &max_extent_size);
7745 /*
7746 * If we didn't find a chunk, and we haven't failed on this
7747 * block group before, and this block group is in the middle of
7748 * caching and we are ok with waiting, then go ahead and wait
7749 * for progress to be made, and set failed_alloc to true.
7750 *
7751 * If failed_alloc is true then we've already waited on this
7752 * block group once and should move on to the next block group.
7753 */
7754 if (!offset && !failed_alloc && !cached &&
7755 loop > LOOP_CACHING_NOWAIT) {
7756 wait_block_group_cache_progress(block_group,
7757 num_bytes + empty_size);
7758 failed_alloc = true;
7759 goto have_block_group;
7760 } else if (!offset) {
7761 goto loop;
7762 }
7763 checks:
7764 search_start = ALIGN(offset, root->stripesize);
7765
7766 /* move on to the next group */
7767 if (search_start + num_bytes >
7768 block_group->key.objectid + block_group->key.offset) {
7769 btrfs_add_free_space(block_group, offset, num_bytes);
7770 goto loop;
7771 }
7772
7773 if (offset < search_start)
7774 btrfs_add_free_space(block_group, offset,
7775 search_start - offset);
7776 BUG_ON(offset > search_start);
7777
7778 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7779 num_bytes, delalloc);
7780 if (ret == -EAGAIN) {
7781 btrfs_add_free_space(block_group, offset, num_bytes);
7782 goto loop;
7783 }
7784 btrfs_inc_block_group_reservations(block_group);
7785
7786 /* we are all good, lets return */
7787 ins->objectid = search_start;
7788 ins->offset = num_bytes;
7789
7790 trace_btrfs_reserve_extent(orig_root, block_group,
7791 search_start, num_bytes);
7792 btrfs_release_block_group(block_group, delalloc);
7793 break;
7794 loop:
7795 failed_cluster_refill = false;
7796 failed_alloc = false;
7797 BUG_ON(index != get_block_group_index(block_group));
7798 btrfs_release_block_group(block_group, delalloc);
7799 }
7800 up_read(&space_info->groups_sem);
7801
7802 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7803 && !orig_have_caching_bg)
7804 orig_have_caching_bg = true;
7805
7806 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7807 goto search;
7808
7809 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7810 goto search;
7811
7812 /*
7813 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7814 * caching kthreads as we move along
7815 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7816 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7817 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7818 * again
7819 */
7820 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7821 index = 0;
7822 if (loop == LOOP_CACHING_NOWAIT) {
7823 /*
7824 * We want to skip the LOOP_CACHING_WAIT step if we
7825 * don't have any uncached bgs and we've already done a
7826 * full search through.
7827 */
7828 if (orig_have_caching_bg || !full_search)
7829 loop = LOOP_CACHING_WAIT;
7830 else
7831 loop = LOOP_ALLOC_CHUNK;
7832 } else {
7833 loop++;
7834 }
7835
7836 if (loop == LOOP_ALLOC_CHUNK) {
7837 struct btrfs_trans_handle *trans;
7838 int exist = 0;
7839
7840 trans = current->journal_info;
7841 if (trans)
7842 exist = 1;
7843 else
7844 trans = btrfs_join_transaction(root);
7845
7846 if (IS_ERR(trans)) {
7847 ret = PTR_ERR(trans);
7848 goto out;
7849 }
7850
7851 ret = do_chunk_alloc(trans, root, flags,
7852 CHUNK_ALLOC_FORCE);
7853
7854 /*
7855 * If we can't allocate a new chunk we've already looped
7856 * through at least once, move on to the NO_EMPTY_SIZE
7857 * case.
7858 */
7859 if (ret == -ENOSPC)
7860 loop = LOOP_NO_EMPTY_SIZE;
7861
7862 /*
7863 * Do not bail out on ENOSPC since we
7864 * can do more things.
7865 */
7866 if (ret < 0 && ret != -ENOSPC)
7867 btrfs_abort_transaction(trans, ret);
7868 else
7869 ret = 0;
7870 if (!exist)
7871 btrfs_end_transaction(trans, root);
7872 if (ret)
7873 goto out;
7874 }
7875
7876 if (loop == LOOP_NO_EMPTY_SIZE) {
7877 /*
7878 * Don't loop again if we already have no empty_size and
7879 * no empty_cluster.
7880 */
7881 if (empty_size == 0 &&
7882 empty_cluster == 0) {
7883 ret = -ENOSPC;
7884 goto out;
7885 }
7886 empty_size = 0;
7887 empty_cluster = 0;
7888 }
7889
7890 goto search;
7891 } else if (!ins->objectid) {
7892 ret = -ENOSPC;
7893 } else if (ins->objectid) {
7894 if (!use_cluster && last_ptr) {
7895 spin_lock(&last_ptr->lock);
7896 last_ptr->window_start = ins->objectid;
7897 spin_unlock(&last_ptr->lock);
7898 }
7899 ret = 0;
7900 }
7901 out:
7902 if (ret == -ENOSPC) {
7903 spin_lock(&space_info->lock);
7904 space_info->max_extent_size = max_extent_size;
7905 spin_unlock(&space_info->lock);
7906 ins->offset = max_extent_size;
7907 }
7908 return ret;
7909 }
7910
dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info,u64 bytes,int dump_block_groups)7911 static void dump_space_info(struct btrfs_fs_info *fs_info,
7912 struct btrfs_space_info *info, u64 bytes,
7913 int dump_block_groups)
7914 {
7915 struct btrfs_block_group_cache *cache;
7916 int index = 0;
7917
7918 spin_lock(&info->lock);
7919 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7920 info->flags,
7921 info->total_bytes - info->bytes_used - info->bytes_pinned -
7922 info->bytes_reserved - info->bytes_readonly -
7923 info->bytes_may_use, (info->full) ? "" : "not ");
7924 btrfs_info(fs_info,
7925 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7926 info->total_bytes, info->bytes_used, info->bytes_pinned,
7927 info->bytes_reserved, info->bytes_may_use,
7928 info->bytes_readonly);
7929 spin_unlock(&info->lock);
7930
7931 if (!dump_block_groups)
7932 return;
7933
7934 down_read(&info->groups_sem);
7935 again:
7936 list_for_each_entry(cache, &info->block_groups[index], list) {
7937 spin_lock(&cache->lock);
7938 btrfs_info(fs_info,
7939 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7940 cache->key.objectid, cache->key.offset,
7941 btrfs_block_group_used(&cache->item), cache->pinned,
7942 cache->reserved, cache->ro ? "[readonly]" : "");
7943 btrfs_dump_free_space(cache, bytes);
7944 spin_unlock(&cache->lock);
7945 }
7946 if (++index < BTRFS_NR_RAID_TYPES)
7947 goto again;
7948 up_read(&info->groups_sem);
7949 }
7950
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)7951 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7952 u64 num_bytes, u64 min_alloc_size,
7953 u64 empty_size, u64 hint_byte,
7954 struct btrfs_key *ins, int is_data, int delalloc)
7955 {
7956 struct btrfs_fs_info *fs_info = root->fs_info;
7957 bool final_tried = num_bytes == min_alloc_size;
7958 u64 flags;
7959 int ret;
7960
7961 flags = btrfs_get_alloc_profile(root, is_data);
7962 again:
7963 WARN_ON(num_bytes < root->sectorsize);
7964 ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
7965 hint_byte, ins, flags, delalloc);
7966 if (!ret && !is_data) {
7967 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7968 } else if (ret == -ENOSPC) {
7969 if (!final_tried && ins->offset) {
7970 num_bytes = min(num_bytes >> 1, ins->offset);
7971 num_bytes = round_down(num_bytes, root->sectorsize);
7972 num_bytes = max(num_bytes, min_alloc_size);
7973 ram_bytes = num_bytes;
7974 if (num_bytes == min_alloc_size)
7975 final_tried = true;
7976 goto again;
7977 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7978 struct btrfs_space_info *sinfo;
7979
7980 sinfo = __find_space_info(fs_info, flags);
7981 btrfs_err(root->fs_info,
7982 "allocation failed flags %llu, wanted %llu",
7983 flags, num_bytes);
7984 if (sinfo)
7985 dump_space_info(fs_info, sinfo, num_bytes, 1);
7986 }
7987 }
7988
7989 return ret;
7990 }
7991
__btrfs_free_reserved_extent(struct btrfs_root * root,u64 start,u64 len,int pin,int delalloc)7992 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7993 u64 start, u64 len,
7994 int pin, int delalloc)
7995 {
7996 struct btrfs_block_group_cache *cache;
7997 int ret = 0;
7998
7999 cache = btrfs_lookup_block_group(root->fs_info, start);
8000 if (!cache) {
8001 btrfs_err(root->fs_info, "Unable to find block group for %llu",
8002 start);
8003 return -ENOSPC;
8004 }
8005
8006 if (pin)
8007 pin_down_extent(root, cache, start, len, 1);
8008 else {
8009 if (btrfs_test_opt(root->fs_info, DISCARD))
8010 ret = btrfs_discard_extent(root, start, len, NULL);
8011 btrfs_add_free_space(cache, start, len);
8012 btrfs_free_reserved_bytes(cache, len, delalloc);
8013 trace_btrfs_reserved_extent_free(root, start, len);
8014 }
8015
8016 btrfs_put_block_group(cache);
8017 return ret;
8018 }
8019
btrfs_free_reserved_extent(struct btrfs_root * root,u64 start,u64 len,int delalloc)8020 int btrfs_free_reserved_extent(struct btrfs_root *root,
8021 u64 start, u64 len, int delalloc)
8022 {
8023 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
8024 }
8025
btrfs_free_and_pin_reserved_extent(struct btrfs_root * root,u64 start,u64 len)8026 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
8027 u64 start, u64 len)
8028 {
8029 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
8030 }
8031
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)8032 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8033 struct btrfs_root *root,
8034 u64 parent, u64 root_objectid,
8035 u64 flags, u64 owner, u64 offset,
8036 struct btrfs_key *ins, int ref_mod)
8037 {
8038 int ret;
8039 struct btrfs_fs_info *fs_info = root->fs_info;
8040 struct btrfs_extent_item *extent_item;
8041 struct btrfs_extent_inline_ref *iref;
8042 struct btrfs_path *path;
8043 struct extent_buffer *leaf;
8044 int type;
8045 u32 size;
8046
8047 if (parent > 0)
8048 type = BTRFS_SHARED_DATA_REF_KEY;
8049 else
8050 type = BTRFS_EXTENT_DATA_REF_KEY;
8051
8052 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8053
8054 path = btrfs_alloc_path();
8055 if (!path)
8056 return -ENOMEM;
8057
8058 path->leave_spinning = 1;
8059 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8060 ins, size);
8061 if (ret) {
8062 btrfs_free_path(path);
8063 return ret;
8064 }
8065
8066 leaf = path->nodes[0];
8067 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8068 struct btrfs_extent_item);
8069 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8070 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8071 btrfs_set_extent_flags(leaf, extent_item,
8072 flags | BTRFS_EXTENT_FLAG_DATA);
8073
8074 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8075 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8076 if (parent > 0) {
8077 struct btrfs_shared_data_ref *ref;
8078 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8079 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8080 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8081 } else {
8082 struct btrfs_extent_data_ref *ref;
8083 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8084 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8085 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8086 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8087 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8088 }
8089
8090 btrfs_mark_buffer_dirty(path->nodes[0]);
8091 btrfs_free_path(path);
8092
8093 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8094 ins->offset);
8095 if (ret)
8096 return ret;
8097
8098 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
8099 if (ret) { /* -ENOENT, logic error */
8100 btrfs_err(fs_info, "update block group failed for %llu %llu",
8101 ins->objectid, ins->offset);
8102 BUG();
8103 }
8104 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
8105 return ret;
8106 }
8107
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,u64 flags,struct btrfs_disk_key * key,int level,struct btrfs_key * ins)8108 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8109 struct btrfs_root *root,
8110 u64 parent, u64 root_objectid,
8111 u64 flags, struct btrfs_disk_key *key,
8112 int level, struct btrfs_key *ins)
8113 {
8114 int ret;
8115 struct btrfs_fs_info *fs_info = root->fs_info;
8116 struct btrfs_extent_item *extent_item;
8117 struct btrfs_tree_block_info *block_info;
8118 struct btrfs_extent_inline_ref *iref;
8119 struct btrfs_path *path;
8120 struct extent_buffer *leaf;
8121 u32 size = sizeof(*extent_item) + sizeof(*iref);
8122 u64 num_bytes = ins->offset;
8123 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8124 SKINNY_METADATA);
8125
8126 if (!skinny_metadata)
8127 size += sizeof(*block_info);
8128
8129 path = btrfs_alloc_path();
8130 if (!path) {
8131 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8132 root->nodesize);
8133 return -ENOMEM;
8134 }
8135
8136 path->leave_spinning = 1;
8137 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8138 ins, size);
8139 if (ret) {
8140 btrfs_free_path(path);
8141 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8142 root->nodesize);
8143 return ret;
8144 }
8145
8146 leaf = path->nodes[0];
8147 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8148 struct btrfs_extent_item);
8149 btrfs_set_extent_refs(leaf, extent_item, 1);
8150 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8151 btrfs_set_extent_flags(leaf, extent_item,
8152 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8153
8154 if (skinny_metadata) {
8155 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8156 num_bytes = root->nodesize;
8157 } else {
8158 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8159 btrfs_set_tree_block_key(leaf, block_info, key);
8160 btrfs_set_tree_block_level(leaf, block_info, level);
8161 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8162 }
8163
8164 if (parent > 0) {
8165 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8166 btrfs_set_extent_inline_ref_type(leaf, iref,
8167 BTRFS_SHARED_BLOCK_REF_KEY);
8168 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8169 } else {
8170 btrfs_set_extent_inline_ref_type(leaf, iref,
8171 BTRFS_TREE_BLOCK_REF_KEY);
8172 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8173 }
8174
8175 btrfs_mark_buffer_dirty(leaf);
8176 btrfs_free_path(path);
8177
8178 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8179 num_bytes);
8180 if (ret)
8181 return ret;
8182
8183 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
8184 1);
8185 if (ret) { /* -ENOENT, logic error */
8186 btrfs_err(fs_info, "update block group failed for %llu %llu",
8187 ins->objectid, ins->offset);
8188 BUG();
8189 }
8190
8191 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
8192 return ret;
8193 }
8194
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 root_objectid,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)8195 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8196 struct btrfs_root *root,
8197 u64 root_objectid, u64 owner,
8198 u64 offset, u64 ram_bytes,
8199 struct btrfs_key *ins)
8200 {
8201 int ret;
8202
8203 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8204
8205 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
8206 ins->offset, 0,
8207 root_objectid, owner, offset,
8208 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
8209 NULL);
8210 return ret;
8211 }
8212
8213 /*
8214 * this is used by the tree logging recovery code. It records that
8215 * an extent has been allocated and makes sure to clear the free
8216 * space cache bits as well
8217 */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)8218 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8219 struct btrfs_root *root,
8220 u64 root_objectid, u64 owner, u64 offset,
8221 struct btrfs_key *ins)
8222 {
8223 int ret;
8224 struct btrfs_block_group_cache *block_group;
8225 struct btrfs_space_info *space_info;
8226
8227 /*
8228 * Mixed block groups will exclude before processing the log so we only
8229 * need to do the exclude dance if this fs isn't mixed.
8230 */
8231 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8232 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
8233 if (ret)
8234 return ret;
8235 }
8236
8237 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8238 if (!block_group)
8239 return -EINVAL;
8240
8241 space_info = block_group->space_info;
8242 spin_lock(&space_info->lock);
8243 spin_lock(&block_group->lock);
8244 space_info->bytes_reserved += ins->offset;
8245 block_group->reserved += ins->offset;
8246 spin_unlock(&block_group->lock);
8247 spin_unlock(&space_info->lock);
8248
8249 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8250 0, owner, offset, ins, 1);
8251 btrfs_put_block_group(block_group);
8252 return ret;
8253 }
8254
8255 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level)8256 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8257 u64 bytenr, int level)
8258 {
8259 struct extent_buffer *buf;
8260
8261 buf = btrfs_find_create_tree_block(root, bytenr);
8262 if (IS_ERR(buf))
8263 return buf;
8264
8265 btrfs_set_header_generation(buf, trans->transid);
8266 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8267 btrfs_tree_lock(buf);
8268 clean_tree_block(trans, root->fs_info, buf);
8269 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8270
8271 btrfs_set_lock_blocking(buf);
8272 set_extent_buffer_uptodate(buf);
8273
8274 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8275 buf->log_index = root->log_transid % 2;
8276 /*
8277 * we allow two log transactions at a time, use different
8278 * EXENT bit to differentiate dirty pages.
8279 */
8280 if (buf->log_index == 0)
8281 set_extent_dirty(&root->dirty_log_pages, buf->start,
8282 buf->start + buf->len - 1, GFP_NOFS);
8283 else
8284 set_extent_new(&root->dirty_log_pages, buf->start,
8285 buf->start + buf->len - 1);
8286 } else {
8287 buf->log_index = -1;
8288 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8289 buf->start + buf->len - 1, GFP_NOFS);
8290 }
8291 trans->dirty = true;
8292 /* this returns a buffer locked for blocking */
8293 return buf;
8294 }
8295
8296 static struct btrfs_block_rsv *
use_block_rsv(struct btrfs_trans_handle * trans,struct btrfs_root * root,u32 blocksize)8297 use_block_rsv(struct btrfs_trans_handle *trans,
8298 struct btrfs_root *root, u32 blocksize)
8299 {
8300 struct btrfs_block_rsv *block_rsv;
8301 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
8302 int ret;
8303 bool global_updated = false;
8304
8305 block_rsv = get_block_rsv(trans, root);
8306
8307 if (unlikely(block_rsv->size == 0))
8308 goto try_reserve;
8309 again:
8310 ret = block_rsv_use_bytes(block_rsv, blocksize);
8311 if (!ret)
8312 return block_rsv;
8313
8314 if (block_rsv->failfast)
8315 return ERR_PTR(ret);
8316
8317 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8318 global_updated = true;
8319 update_global_block_rsv(root->fs_info);
8320 goto again;
8321 }
8322
8323 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
8324 static DEFINE_RATELIMIT_STATE(_rs,
8325 DEFAULT_RATELIMIT_INTERVAL * 10,
8326 /*DEFAULT_RATELIMIT_BURST*/ 1);
8327 if (__ratelimit(&_rs))
8328 WARN(1, KERN_DEBUG
8329 "BTRFS: block rsv returned %d\n", ret);
8330 }
8331 try_reserve:
8332 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8333 BTRFS_RESERVE_NO_FLUSH);
8334 if (!ret)
8335 return block_rsv;
8336 /*
8337 * If we couldn't reserve metadata bytes try and use some from
8338 * the global reserve if its space type is the same as the global
8339 * reservation.
8340 */
8341 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8342 block_rsv->space_info == global_rsv->space_info) {
8343 ret = block_rsv_use_bytes(global_rsv, blocksize);
8344 if (!ret)
8345 return global_rsv;
8346 }
8347 return ERR_PTR(ret);
8348 }
8349
unuse_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u32 blocksize)8350 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8351 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8352 {
8353 block_rsv_add_bytes(block_rsv, blocksize, 0);
8354 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8355 }
8356
8357 /*
8358 * finds a free extent and does all the dirty work required for allocation
8359 * returns the tree buffer or an ERR_PTR on error.
8360 */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size)8361 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8362 struct btrfs_root *root,
8363 u64 parent, u64 root_objectid,
8364 struct btrfs_disk_key *key, int level,
8365 u64 hint, u64 empty_size)
8366 {
8367 struct btrfs_key ins;
8368 struct btrfs_block_rsv *block_rsv;
8369 struct extent_buffer *buf;
8370 struct btrfs_delayed_extent_op *extent_op;
8371 u64 flags = 0;
8372 int ret;
8373 u32 blocksize = root->nodesize;
8374 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8375 SKINNY_METADATA);
8376
8377 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8378 if (btrfs_is_testing(root->fs_info)) {
8379 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8380 level);
8381 if (!IS_ERR(buf))
8382 root->alloc_bytenr += blocksize;
8383 return buf;
8384 }
8385 #endif
8386
8387 block_rsv = use_block_rsv(trans, root, blocksize);
8388 if (IS_ERR(block_rsv))
8389 return ERR_CAST(block_rsv);
8390
8391 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8392 empty_size, hint, &ins, 0, 0);
8393 if (ret)
8394 goto out_unuse;
8395
8396 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8397 if (IS_ERR(buf)) {
8398 ret = PTR_ERR(buf);
8399 goto out_free_reserved;
8400 }
8401
8402 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8403 if (parent == 0)
8404 parent = ins.objectid;
8405 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8406 } else
8407 BUG_ON(parent > 0);
8408
8409 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8410 extent_op = btrfs_alloc_delayed_extent_op();
8411 if (!extent_op) {
8412 ret = -ENOMEM;
8413 goto out_free_buf;
8414 }
8415 if (key)
8416 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8417 else
8418 memset(&extent_op->key, 0, sizeof(extent_op->key));
8419 extent_op->flags_to_set = flags;
8420 extent_op->update_key = skinny_metadata ? false : true;
8421 extent_op->update_flags = true;
8422 extent_op->is_data = false;
8423 extent_op->level = level;
8424
8425 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8426 ins.objectid, ins.offset,
8427 parent, root_objectid, level,
8428 BTRFS_ADD_DELAYED_EXTENT,
8429 extent_op);
8430 if (ret)
8431 goto out_free_delayed;
8432 }
8433 return buf;
8434
8435 out_free_delayed:
8436 btrfs_free_delayed_extent_op(extent_op);
8437 out_free_buf:
8438 free_extent_buffer(buf);
8439 out_free_reserved:
8440 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8441 out_unuse:
8442 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8443 return ERR_PTR(ret);
8444 }
8445
8446 struct walk_control {
8447 u64 refs[BTRFS_MAX_LEVEL];
8448 u64 flags[BTRFS_MAX_LEVEL];
8449 struct btrfs_key update_progress;
8450 int stage;
8451 int level;
8452 int shared_level;
8453 int update_ref;
8454 int keep_locks;
8455 int reada_slot;
8456 int reada_count;
8457 int for_reloc;
8458 };
8459
8460 #define DROP_REFERENCE 1
8461 #define UPDATE_BACKREF 2
8462
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)8463 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8464 struct btrfs_root *root,
8465 struct walk_control *wc,
8466 struct btrfs_path *path)
8467 {
8468 u64 bytenr;
8469 u64 generation;
8470 u64 refs;
8471 u64 flags;
8472 u32 nritems;
8473 struct btrfs_key key;
8474 struct extent_buffer *eb;
8475 int ret;
8476 int slot;
8477 int nread = 0;
8478
8479 if (path->slots[wc->level] < wc->reada_slot) {
8480 wc->reada_count = wc->reada_count * 2 / 3;
8481 wc->reada_count = max(wc->reada_count, 2);
8482 } else {
8483 wc->reada_count = wc->reada_count * 3 / 2;
8484 wc->reada_count = min_t(int, wc->reada_count,
8485 BTRFS_NODEPTRS_PER_BLOCK(root));
8486 }
8487
8488 eb = path->nodes[wc->level];
8489 nritems = btrfs_header_nritems(eb);
8490
8491 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8492 if (nread >= wc->reada_count)
8493 break;
8494
8495 cond_resched();
8496 bytenr = btrfs_node_blockptr(eb, slot);
8497 generation = btrfs_node_ptr_generation(eb, slot);
8498
8499 if (slot == path->slots[wc->level])
8500 goto reada;
8501
8502 if (wc->stage == UPDATE_BACKREF &&
8503 generation <= root->root_key.offset)
8504 continue;
8505
8506 /* We don't lock the tree block, it's OK to be racy here */
8507 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8508 wc->level - 1, 1, &refs,
8509 &flags);
8510 /* We don't care about errors in readahead. */
8511 if (ret < 0)
8512 continue;
8513 BUG_ON(refs == 0);
8514
8515 if (wc->stage == DROP_REFERENCE) {
8516 if (refs == 1)
8517 goto reada;
8518
8519 if (wc->level == 1 &&
8520 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8521 continue;
8522 if (!wc->update_ref ||
8523 generation <= root->root_key.offset)
8524 continue;
8525 btrfs_node_key_to_cpu(eb, &key, slot);
8526 ret = btrfs_comp_cpu_keys(&key,
8527 &wc->update_progress);
8528 if (ret < 0)
8529 continue;
8530 } else {
8531 if (wc->level == 1 &&
8532 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8533 continue;
8534 }
8535 reada:
8536 readahead_tree_block(root, bytenr);
8537 nread++;
8538 }
8539 wc->reada_slot = slot;
8540 }
8541
account_leaf_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * eb)8542 static int account_leaf_items(struct btrfs_trans_handle *trans,
8543 struct btrfs_root *root,
8544 struct extent_buffer *eb)
8545 {
8546 int nr = btrfs_header_nritems(eb);
8547 int i, extent_type, ret;
8548 struct btrfs_key key;
8549 struct btrfs_file_extent_item *fi;
8550 u64 bytenr, num_bytes;
8551
8552 /* We can be called directly from walk_up_proc() */
8553 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags))
8554 return 0;
8555
8556 for (i = 0; i < nr; i++) {
8557 btrfs_item_key_to_cpu(eb, &key, i);
8558
8559 if (key.type != BTRFS_EXTENT_DATA_KEY)
8560 continue;
8561
8562 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8563 /* filter out non qgroup-accountable extents */
8564 extent_type = btrfs_file_extent_type(eb, fi);
8565
8566 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8567 continue;
8568
8569 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8570 if (!bytenr)
8571 continue;
8572
8573 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8574
8575 ret = btrfs_qgroup_insert_dirty_extent(trans, root->fs_info,
8576 bytenr, num_bytes, GFP_NOFS);
8577 if (ret)
8578 return ret;
8579 }
8580 return 0;
8581 }
8582
8583 /*
8584 * Walk up the tree from the bottom, freeing leaves and any interior
8585 * nodes which have had all slots visited. If a node (leaf or
8586 * interior) is freed, the node above it will have it's slot
8587 * incremented. The root node will never be freed.
8588 *
8589 * At the end of this function, we should have a path which has all
8590 * slots incremented to the next position for a search. If we need to
8591 * read a new node it will be NULL and the node above it will have the
8592 * correct slot selected for a later read.
8593 *
8594 * If we increment the root nodes slot counter past the number of
8595 * elements, 1 is returned to signal completion of the search.
8596 */
adjust_slots_upwards(struct btrfs_root * root,struct btrfs_path * path,int root_level)8597 static int adjust_slots_upwards(struct btrfs_root *root,
8598 struct btrfs_path *path, int root_level)
8599 {
8600 int level = 0;
8601 int nr, slot;
8602 struct extent_buffer *eb;
8603
8604 if (root_level == 0)
8605 return 1;
8606
8607 while (level <= root_level) {
8608 eb = path->nodes[level];
8609 nr = btrfs_header_nritems(eb);
8610 path->slots[level]++;
8611 slot = path->slots[level];
8612 if (slot >= nr || level == 0) {
8613 /*
8614 * Don't free the root - we will detect this
8615 * condition after our loop and return a
8616 * positive value for caller to stop walking the tree.
8617 */
8618 if (level != root_level) {
8619 btrfs_tree_unlock_rw(eb, path->locks[level]);
8620 path->locks[level] = 0;
8621
8622 free_extent_buffer(eb);
8623 path->nodes[level] = NULL;
8624 path->slots[level] = 0;
8625 }
8626 } else {
8627 /*
8628 * We have a valid slot to walk back down
8629 * from. Stop here so caller can process these
8630 * new nodes.
8631 */
8632 break;
8633 }
8634
8635 level++;
8636 }
8637
8638 eb = path->nodes[root_level];
8639 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8640 return 1;
8641
8642 return 0;
8643 }
8644
8645 /*
8646 * root_eb is the subtree root and is locked before this function is called.
8647 */
account_shared_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * root_eb,u64 root_gen,int root_level)8648 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8649 struct btrfs_root *root,
8650 struct extent_buffer *root_eb,
8651 u64 root_gen,
8652 int root_level)
8653 {
8654 int ret = 0;
8655 int level;
8656 struct extent_buffer *eb = root_eb;
8657 struct btrfs_path *path = NULL;
8658
8659 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8660 BUG_ON(root_eb == NULL);
8661
8662 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags))
8663 return 0;
8664
8665 if (!extent_buffer_uptodate(root_eb)) {
8666 ret = btrfs_read_buffer(root_eb, root_gen);
8667 if (ret)
8668 goto out;
8669 }
8670
8671 if (root_level == 0) {
8672 ret = account_leaf_items(trans, root, root_eb);
8673 goto out;
8674 }
8675
8676 path = btrfs_alloc_path();
8677 if (!path)
8678 return -ENOMEM;
8679
8680 /*
8681 * Walk down the tree. Missing extent blocks are filled in as
8682 * we go. Metadata is accounted every time we read a new
8683 * extent block.
8684 *
8685 * When we reach a leaf, we account for file extent items in it,
8686 * walk back up the tree (adjusting slot pointers as we go)
8687 * and restart the search process.
8688 */
8689 extent_buffer_get(root_eb); /* For path */
8690 path->nodes[root_level] = root_eb;
8691 path->slots[root_level] = 0;
8692 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8693 walk_down:
8694 level = root_level;
8695 while (level >= 0) {
8696 if (path->nodes[level] == NULL) {
8697 int parent_slot;
8698 u64 child_gen;
8699 u64 child_bytenr;
8700
8701 /* We need to get child blockptr/gen from
8702 * parent before we can read it. */
8703 eb = path->nodes[level + 1];
8704 parent_slot = path->slots[level + 1];
8705 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8706 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8707
8708 eb = read_tree_block(root, child_bytenr, child_gen);
8709 if (IS_ERR(eb)) {
8710 ret = PTR_ERR(eb);
8711 goto out;
8712 } else if (!extent_buffer_uptodate(eb)) {
8713 free_extent_buffer(eb);
8714 ret = -EIO;
8715 goto out;
8716 }
8717
8718 path->nodes[level] = eb;
8719 path->slots[level] = 0;
8720
8721 btrfs_tree_read_lock(eb);
8722 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8723 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8724
8725 ret = btrfs_qgroup_insert_dirty_extent(trans,
8726 root->fs_info, child_bytenr,
8727 root->nodesize, GFP_NOFS);
8728 if (ret)
8729 goto out;
8730 }
8731
8732 if (level == 0) {
8733 ret = account_leaf_items(trans, root, path->nodes[level]);
8734 if (ret)
8735 goto out;
8736
8737 /* Nonzero return here means we completed our search */
8738 ret = adjust_slots_upwards(root, path, root_level);
8739 if (ret)
8740 break;
8741
8742 /* Restart search with new slots */
8743 goto walk_down;
8744 }
8745
8746 level--;
8747 }
8748
8749 ret = 0;
8750 out:
8751 btrfs_free_path(path);
8752
8753 return ret;
8754 }
8755
8756 /*
8757 * helper to process tree block while walking down the tree.
8758 *
8759 * when wc->stage == UPDATE_BACKREF, this function updates
8760 * back refs for pointers in the block.
8761 *
8762 * NOTE: return value 1 means we should stop walking down.
8763 */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)8764 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8765 struct btrfs_root *root,
8766 struct btrfs_path *path,
8767 struct walk_control *wc, int lookup_info)
8768 {
8769 int level = wc->level;
8770 struct extent_buffer *eb = path->nodes[level];
8771 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8772 int ret;
8773
8774 if (wc->stage == UPDATE_BACKREF &&
8775 btrfs_header_owner(eb) != root->root_key.objectid)
8776 return 1;
8777
8778 /*
8779 * when reference count of tree block is 1, it won't increase
8780 * again. once full backref flag is set, we never clear it.
8781 */
8782 if (lookup_info &&
8783 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8784 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8785 BUG_ON(!path->locks[level]);
8786 ret = btrfs_lookup_extent_info(trans, root,
8787 eb->start, level, 1,
8788 &wc->refs[level],
8789 &wc->flags[level]);
8790 BUG_ON(ret == -ENOMEM);
8791 if (ret)
8792 return ret;
8793 BUG_ON(wc->refs[level] == 0);
8794 }
8795
8796 if (wc->stage == DROP_REFERENCE) {
8797 if (wc->refs[level] > 1)
8798 return 1;
8799
8800 if (path->locks[level] && !wc->keep_locks) {
8801 btrfs_tree_unlock_rw(eb, path->locks[level]);
8802 path->locks[level] = 0;
8803 }
8804 return 0;
8805 }
8806
8807 /* wc->stage == UPDATE_BACKREF */
8808 if (!(wc->flags[level] & flag)) {
8809 BUG_ON(!path->locks[level]);
8810 ret = btrfs_inc_ref(trans, root, eb, 1);
8811 BUG_ON(ret); /* -ENOMEM */
8812 ret = btrfs_dec_ref(trans, root, eb, 0);
8813 BUG_ON(ret); /* -ENOMEM */
8814 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8815 eb->len, flag,
8816 btrfs_header_level(eb), 0);
8817 BUG_ON(ret); /* -ENOMEM */
8818 wc->flags[level] |= flag;
8819 }
8820
8821 /*
8822 * the block is shared by multiple trees, so it's not good to
8823 * keep the tree lock
8824 */
8825 if (path->locks[level] && level > 0) {
8826 btrfs_tree_unlock_rw(eb, path->locks[level]);
8827 path->locks[level] = 0;
8828 }
8829 return 0;
8830 }
8831
8832 /*
8833 * helper to process tree block pointer.
8834 *
8835 * when wc->stage == DROP_REFERENCE, this function checks
8836 * reference count of the block pointed to. if the block
8837 * is shared and we need update back refs for the subtree
8838 * rooted at the block, this function changes wc->stage to
8839 * UPDATE_BACKREF. if the block is shared and there is no
8840 * need to update back, this function drops the reference
8841 * to the block.
8842 *
8843 * NOTE: return value 1 means we should stop walking down.
8844 */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)8845 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8846 struct btrfs_root *root,
8847 struct btrfs_path *path,
8848 struct walk_control *wc, int *lookup_info)
8849 {
8850 u64 bytenr;
8851 u64 generation;
8852 u64 parent;
8853 u32 blocksize;
8854 struct btrfs_key key;
8855 struct extent_buffer *next;
8856 int level = wc->level;
8857 int reada = 0;
8858 int ret = 0;
8859 bool need_account = false;
8860
8861 generation = btrfs_node_ptr_generation(path->nodes[level],
8862 path->slots[level]);
8863 /*
8864 * if the lower level block was created before the snapshot
8865 * was created, we know there is no need to update back refs
8866 * for the subtree
8867 */
8868 if (wc->stage == UPDATE_BACKREF &&
8869 generation <= root->root_key.offset) {
8870 *lookup_info = 1;
8871 return 1;
8872 }
8873
8874 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8875 blocksize = root->nodesize;
8876
8877 next = btrfs_find_tree_block(root->fs_info, bytenr);
8878 if (!next) {
8879 next = btrfs_find_create_tree_block(root, bytenr);
8880 if (IS_ERR(next))
8881 return PTR_ERR(next);
8882
8883 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8884 level - 1);
8885 reada = 1;
8886 }
8887 btrfs_tree_lock(next);
8888 btrfs_set_lock_blocking(next);
8889
8890 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8891 &wc->refs[level - 1],
8892 &wc->flags[level - 1]);
8893 if (ret < 0)
8894 goto out_unlock;
8895
8896 if (unlikely(wc->refs[level - 1] == 0)) {
8897 btrfs_err(root->fs_info, "Missing references.");
8898 ret = -EIO;
8899 goto out_unlock;
8900 }
8901 *lookup_info = 0;
8902
8903 if (wc->stage == DROP_REFERENCE) {
8904 if (wc->refs[level - 1] > 1) {
8905 need_account = true;
8906 if (level == 1 &&
8907 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8908 goto skip;
8909
8910 if (!wc->update_ref ||
8911 generation <= root->root_key.offset)
8912 goto skip;
8913
8914 btrfs_node_key_to_cpu(path->nodes[level], &key,
8915 path->slots[level]);
8916 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8917 if (ret < 0)
8918 goto skip;
8919
8920 wc->stage = UPDATE_BACKREF;
8921 wc->shared_level = level - 1;
8922 }
8923 } else {
8924 if (level == 1 &&
8925 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8926 goto skip;
8927 }
8928
8929 if (!btrfs_buffer_uptodate(next, generation, 0)) {
8930 btrfs_tree_unlock(next);
8931 free_extent_buffer(next);
8932 next = NULL;
8933 *lookup_info = 1;
8934 }
8935
8936 if (!next) {
8937 if (reada && level == 1)
8938 reada_walk_down(trans, root, wc, path);
8939 next = read_tree_block(root, bytenr, generation);
8940 if (IS_ERR(next)) {
8941 return PTR_ERR(next);
8942 } else if (!extent_buffer_uptodate(next)) {
8943 free_extent_buffer(next);
8944 return -EIO;
8945 }
8946 btrfs_tree_lock(next);
8947 btrfs_set_lock_blocking(next);
8948 }
8949
8950 level--;
8951 ASSERT(level == btrfs_header_level(next));
8952 if (level != btrfs_header_level(next)) {
8953 btrfs_err(root->fs_info, "mismatched level");
8954 ret = -EIO;
8955 goto out_unlock;
8956 }
8957 path->nodes[level] = next;
8958 path->slots[level] = 0;
8959 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8960 wc->level = level;
8961 if (wc->level == 1)
8962 wc->reada_slot = 0;
8963 return 0;
8964 skip:
8965 wc->refs[level - 1] = 0;
8966 wc->flags[level - 1] = 0;
8967 if (wc->stage == DROP_REFERENCE) {
8968 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8969 parent = path->nodes[level]->start;
8970 } else {
8971 ASSERT(root->root_key.objectid ==
8972 btrfs_header_owner(path->nodes[level]));
8973 if (root->root_key.objectid !=
8974 btrfs_header_owner(path->nodes[level])) {
8975 btrfs_err(root->fs_info,
8976 "mismatched block owner");
8977 ret = -EIO;
8978 goto out_unlock;
8979 }
8980 parent = 0;
8981 }
8982
8983 if (need_account) {
8984 ret = account_shared_subtree(trans, root, next,
8985 generation, level - 1);
8986 if (ret) {
8987 btrfs_err_rl(root->fs_info,
8988 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8989 ret);
8990 }
8991 }
8992 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8993 root->root_key.objectid, level - 1, 0);
8994 if (ret)
8995 goto out_unlock;
8996 }
8997
8998 *lookup_info = 1;
8999 ret = 1;
9000
9001 out_unlock:
9002 btrfs_tree_unlock(next);
9003 free_extent_buffer(next);
9004
9005 return ret;
9006 }
9007
9008 /*
9009 * helper to process tree block while walking up the tree.
9010 *
9011 * when wc->stage == DROP_REFERENCE, this function drops
9012 * reference count on the block.
9013 *
9014 * when wc->stage == UPDATE_BACKREF, this function changes
9015 * wc->stage back to DROP_REFERENCE if we changed wc->stage
9016 * to UPDATE_BACKREF previously while processing the block.
9017 *
9018 * NOTE: return value 1 means we should stop walking up.
9019 */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)9020 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9021 struct btrfs_root *root,
9022 struct btrfs_path *path,
9023 struct walk_control *wc)
9024 {
9025 int ret;
9026 int level = wc->level;
9027 struct extent_buffer *eb = path->nodes[level];
9028 u64 parent = 0;
9029
9030 if (wc->stage == UPDATE_BACKREF) {
9031 BUG_ON(wc->shared_level < level);
9032 if (level < wc->shared_level)
9033 goto out;
9034
9035 ret = find_next_key(path, level + 1, &wc->update_progress);
9036 if (ret > 0)
9037 wc->update_ref = 0;
9038
9039 wc->stage = DROP_REFERENCE;
9040 wc->shared_level = -1;
9041 path->slots[level] = 0;
9042
9043 /*
9044 * check reference count again if the block isn't locked.
9045 * we should start walking down the tree again if reference
9046 * count is one.
9047 */
9048 if (!path->locks[level]) {
9049 BUG_ON(level == 0);
9050 btrfs_tree_lock(eb);
9051 btrfs_set_lock_blocking(eb);
9052 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9053
9054 ret = btrfs_lookup_extent_info(trans, root,
9055 eb->start, level, 1,
9056 &wc->refs[level],
9057 &wc->flags[level]);
9058 if (ret < 0) {
9059 btrfs_tree_unlock_rw(eb, path->locks[level]);
9060 path->locks[level] = 0;
9061 return ret;
9062 }
9063 BUG_ON(wc->refs[level] == 0);
9064 if (wc->refs[level] == 1) {
9065 btrfs_tree_unlock_rw(eb, path->locks[level]);
9066 path->locks[level] = 0;
9067 return 1;
9068 }
9069 }
9070 }
9071
9072 /* wc->stage == DROP_REFERENCE */
9073 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
9074
9075 if (wc->refs[level] == 1) {
9076 if (level == 0) {
9077 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9078 ret = btrfs_dec_ref(trans, root, eb, 1);
9079 else
9080 ret = btrfs_dec_ref(trans, root, eb, 0);
9081 BUG_ON(ret); /* -ENOMEM */
9082 ret = account_leaf_items(trans, root, eb);
9083 if (ret) {
9084 btrfs_err_rl(root->fs_info,
9085 "error %d accounting leaf items. Quota is out of sync, rescan required.",
9086 ret);
9087 }
9088 }
9089 /* make block locked assertion in clean_tree_block happy */
9090 if (!path->locks[level] &&
9091 btrfs_header_generation(eb) == trans->transid) {
9092 btrfs_tree_lock(eb);
9093 btrfs_set_lock_blocking(eb);
9094 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9095 }
9096 clean_tree_block(trans, root->fs_info, eb);
9097 }
9098
9099 if (eb == root->node) {
9100 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9101 parent = eb->start;
9102 else
9103 BUG_ON(root->root_key.objectid !=
9104 btrfs_header_owner(eb));
9105 } else {
9106 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9107 parent = path->nodes[level + 1]->start;
9108 else
9109 BUG_ON(root->root_key.objectid !=
9110 btrfs_header_owner(path->nodes[level + 1]));
9111 }
9112
9113 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9114 out:
9115 wc->refs[level] = 0;
9116 wc->flags[level] = 0;
9117 return 0;
9118 }
9119
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)9120 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9121 struct btrfs_root *root,
9122 struct btrfs_path *path,
9123 struct walk_control *wc)
9124 {
9125 int level = wc->level;
9126 int lookup_info = 1;
9127 int ret;
9128
9129 while (level >= 0) {
9130 ret = walk_down_proc(trans, root, path, wc, lookup_info);
9131 if (ret > 0)
9132 break;
9133
9134 if (level == 0)
9135 break;
9136
9137 if (path->slots[level] >=
9138 btrfs_header_nritems(path->nodes[level]))
9139 break;
9140
9141 ret = do_walk_down(trans, root, path, wc, &lookup_info);
9142 if (ret > 0) {
9143 path->slots[level]++;
9144 continue;
9145 } else if (ret < 0)
9146 return ret;
9147 level = wc->level;
9148 }
9149 return 0;
9150 }
9151
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)9152 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9153 struct btrfs_root *root,
9154 struct btrfs_path *path,
9155 struct walk_control *wc, int max_level)
9156 {
9157 int level = wc->level;
9158 int ret;
9159
9160 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9161 while (level < max_level && path->nodes[level]) {
9162 wc->level = level;
9163 if (path->slots[level] + 1 <
9164 btrfs_header_nritems(path->nodes[level])) {
9165 path->slots[level]++;
9166 return 0;
9167 } else {
9168 ret = walk_up_proc(trans, root, path, wc);
9169 if (ret > 0)
9170 return 0;
9171
9172 if (path->locks[level]) {
9173 btrfs_tree_unlock_rw(path->nodes[level],
9174 path->locks[level]);
9175 path->locks[level] = 0;
9176 }
9177 free_extent_buffer(path->nodes[level]);
9178 path->nodes[level] = NULL;
9179 level++;
9180 }
9181 }
9182 return 1;
9183 }
9184
9185 /*
9186 * drop a subvolume tree.
9187 *
9188 * this function traverses the tree freeing any blocks that only
9189 * referenced by the tree.
9190 *
9191 * when a shared tree block is found. this function decreases its
9192 * reference count by one. if update_ref is true, this function
9193 * also make sure backrefs for the shared block and all lower level
9194 * blocks are properly updated.
9195 *
9196 * If called with for_reloc == 0, may exit early with -EAGAIN
9197 */
btrfs_drop_snapshot(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,int update_ref,int for_reloc)9198 int btrfs_drop_snapshot(struct btrfs_root *root,
9199 struct btrfs_block_rsv *block_rsv, int update_ref,
9200 int for_reloc)
9201 {
9202 struct btrfs_fs_info *fs_info = root->fs_info;
9203 struct btrfs_path *path;
9204 struct btrfs_trans_handle *trans;
9205 struct btrfs_root *tree_root = fs_info->tree_root;
9206 struct btrfs_root_item *root_item = &root->root_item;
9207 struct walk_control *wc;
9208 struct btrfs_key key;
9209 int err = 0;
9210 int ret;
9211 int level;
9212 bool root_dropped = false;
9213
9214 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9215
9216 path = btrfs_alloc_path();
9217 if (!path) {
9218 err = -ENOMEM;
9219 goto out;
9220 }
9221
9222 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9223 if (!wc) {
9224 btrfs_free_path(path);
9225 err = -ENOMEM;
9226 goto out;
9227 }
9228
9229 trans = btrfs_start_transaction(tree_root, 0);
9230 if (IS_ERR(trans)) {
9231 err = PTR_ERR(trans);
9232 goto out_free;
9233 }
9234
9235 if (block_rsv)
9236 trans->block_rsv = block_rsv;
9237
9238 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9239 level = btrfs_header_level(root->node);
9240 path->nodes[level] = btrfs_lock_root_node(root);
9241 btrfs_set_lock_blocking(path->nodes[level]);
9242 path->slots[level] = 0;
9243 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9244 memset(&wc->update_progress, 0,
9245 sizeof(wc->update_progress));
9246 } else {
9247 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9248 memcpy(&wc->update_progress, &key,
9249 sizeof(wc->update_progress));
9250
9251 level = root_item->drop_level;
9252 BUG_ON(level == 0);
9253 path->lowest_level = level;
9254 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9255 path->lowest_level = 0;
9256 if (ret < 0) {
9257 err = ret;
9258 goto out_end_trans;
9259 }
9260 WARN_ON(ret > 0);
9261
9262 /*
9263 * unlock our path, this is safe because only this
9264 * function is allowed to delete this snapshot
9265 */
9266 btrfs_unlock_up_safe(path, 0);
9267
9268 level = btrfs_header_level(root->node);
9269 while (1) {
9270 btrfs_tree_lock(path->nodes[level]);
9271 btrfs_set_lock_blocking(path->nodes[level]);
9272 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9273
9274 ret = btrfs_lookup_extent_info(trans, root,
9275 path->nodes[level]->start,
9276 level, 1, &wc->refs[level],
9277 &wc->flags[level]);
9278 if (ret < 0) {
9279 err = ret;
9280 goto out_end_trans;
9281 }
9282 BUG_ON(wc->refs[level] == 0);
9283
9284 if (level == root_item->drop_level)
9285 break;
9286
9287 btrfs_tree_unlock(path->nodes[level]);
9288 path->locks[level] = 0;
9289 WARN_ON(wc->refs[level] != 1);
9290 level--;
9291 }
9292 }
9293
9294 wc->level = level;
9295 wc->shared_level = -1;
9296 wc->stage = DROP_REFERENCE;
9297 wc->update_ref = update_ref;
9298 wc->keep_locks = 0;
9299 wc->for_reloc = for_reloc;
9300 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9301
9302 while (1) {
9303
9304 ret = walk_down_tree(trans, root, path, wc);
9305 if (ret < 0) {
9306 err = ret;
9307 break;
9308 }
9309
9310 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9311 if (ret < 0) {
9312 err = ret;
9313 break;
9314 }
9315
9316 if (ret > 0) {
9317 BUG_ON(wc->stage != DROP_REFERENCE);
9318 break;
9319 }
9320
9321 if (wc->stage == DROP_REFERENCE) {
9322 level = wc->level;
9323 btrfs_node_key(path->nodes[level],
9324 &root_item->drop_progress,
9325 path->slots[level]);
9326 root_item->drop_level = level;
9327 }
9328
9329 BUG_ON(wc->level == 0);
9330 if (btrfs_should_end_transaction(trans, tree_root) ||
9331 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
9332 ret = btrfs_update_root(trans, tree_root,
9333 &root->root_key,
9334 root_item);
9335 if (ret) {
9336 btrfs_abort_transaction(trans, ret);
9337 err = ret;
9338 goto out_end_trans;
9339 }
9340
9341 btrfs_end_transaction_throttle(trans, tree_root);
9342 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
9343 btrfs_debug(fs_info,
9344 "drop snapshot early exit");
9345 err = -EAGAIN;
9346 goto out_free;
9347 }
9348
9349 trans = btrfs_start_transaction(tree_root, 0);
9350 if (IS_ERR(trans)) {
9351 err = PTR_ERR(trans);
9352 goto out_free;
9353 }
9354 if (block_rsv)
9355 trans->block_rsv = block_rsv;
9356 }
9357 }
9358 btrfs_release_path(path);
9359 if (err)
9360 goto out_end_trans;
9361
9362 ret = btrfs_del_root(trans, tree_root, &root->root_key);
9363 if (ret) {
9364 btrfs_abort_transaction(trans, ret);
9365 err = ret;
9366 goto out_end_trans;
9367 }
9368
9369 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9370 ret = btrfs_find_root(tree_root, &root->root_key, path,
9371 NULL, NULL);
9372 if (ret < 0) {
9373 btrfs_abort_transaction(trans, ret);
9374 err = ret;
9375 goto out_end_trans;
9376 } else if (ret > 0) {
9377 /* if we fail to delete the orphan item this time
9378 * around, it'll get picked up the next time.
9379 *
9380 * The most common failure here is just -ENOENT.
9381 */
9382 btrfs_del_orphan_item(trans, tree_root,
9383 root->root_key.objectid);
9384 }
9385 }
9386
9387 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9388 btrfs_add_dropped_root(trans, root);
9389 } else {
9390 free_extent_buffer(root->node);
9391 free_extent_buffer(root->commit_root);
9392 btrfs_put_fs_root(root);
9393 }
9394 root_dropped = true;
9395 out_end_trans:
9396 btrfs_end_transaction_throttle(trans, tree_root);
9397 out_free:
9398 kfree(wc);
9399 btrfs_free_path(path);
9400 out:
9401 /*
9402 * So if we need to stop dropping the snapshot for whatever reason we
9403 * need to make sure to add it back to the dead root list so that we
9404 * keep trying to do the work later. This also cleans up roots if we
9405 * don't have it in the radix (like when we recover after a power fail
9406 * or unmount) so we don't leak memory.
9407 */
9408 if (!for_reloc && root_dropped == false)
9409 btrfs_add_dead_root(root);
9410 if (err && err != -EAGAIN)
9411 btrfs_handle_fs_error(fs_info, err, NULL);
9412 return err;
9413 }
9414
9415 /*
9416 * drop subtree rooted at tree block 'node'.
9417 *
9418 * NOTE: this function will unlock and release tree block 'node'
9419 * only used by relocation code
9420 */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)9421 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9422 struct btrfs_root *root,
9423 struct extent_buffer *node,
9424 struct extent_buffer *parent)
9425 {
9426 struct btrfs_path *path;
9427 struct walk_control *wc;
9428 int level;
9429 int parent_level;
9430 int ret = 0;
9431 int wret;
9432
9433 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9434
9435 path = btrfs_alloc_path();
9436 if (!path)
9437 return -ENOMEM;
9438
9439 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9440 if (!wc) {
9441 btrfs_free_path(path);
9442 return -ENOMEM;
9443 }
9444
9445 btrfs_assert_tree_locked(parent);
9446 parent_level = btrfs_header_level(parent);
9447 extent_buffer_get(parent);
9448 path->nodes[parent_level] = parent;
9449 path->slots[parent_level] = btrfs_header_nritems(parent);
9450
9451 btrfs_assert_tree_locked(node);
9452 level = btrfs_header_level(node);
9453 path->nodes[level] = node;
9454 path->slots[level] = 0;
9455 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9456
9457 wc->refs[parent_level] = 1;
9458 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9459 wc->level = level;
9460 wc->shared_level = -1;
9461 wc->stage = DROP_REFERENCE;
9462 wc->update_ref = 0;
9463 wc->keep_locks = 1;
9464 wc->for_reloc = 1;
9465 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9466
9467 while (1) {
9468 wret = walk_down_tree(trans, root, path, wc);
9469 if (wret < 0) {
9470 ret = wret;
9471 break;
9472 }
9473
9474 wret = walk_up_tree(trans, root, path, wc, parent_level);
9475 if (wret < 0)
9476 ret = wret;
9477 if (wret != 0)
9478 break;
9479 }
9480
9481 kfree(wc);
9482 btrfs_free_path(path);
9483 return ret;
9484 }
9485
update_block_group_flags(struct btrfs_root * root,u64 flags)9486 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9487 {
9488 u64 num_devices;
9489 u64 stripped;
9490
9491 /*
9492 * if restripe for this chunk_type is on pick target profile and
9493 * return, otherwise do the usual balance
9494 */
9495 stripped = get_restripe_target(root->fs_info, flags);
9496 if (stripped)
9497 return extended_to_chunk(stripped);
9498
9499 num_devices = root->fs_info->fs_devices->rw_devices;
9500
9501 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9502 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9503 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9504
9505 if (num_devices == 1) {
9506 stripped |= BTRFS_BLOCK_GROUP_DUP;
9507 stripped = flags & ~stripped;
9508
9509 /* turn raid0 into single device chunks */
9510 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9511 return stripped;
9512
9513 /* turn mirroring into duplication */
9514 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9515 BTRFS_BLOCK_GROUP_RAID10))
9516 return stripped | BTRFS_BLOCK_GROUP_DUP;
9517 } else {
9518 /* they already had raid on here, just return */
9519 if (flags & stripped)
9520 return flags;
9521
9522 stripped |= BTRFS_BLOCK_GROUP_DUP;
9523 stripped = flags & ~stripped;
9524
9525 /* switch duplicated blocks with raid1 */
9526 if (flags & BTRFS_BLOCK_GROUP_DUP)
9527 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9528
9529 /* this is drive concat, leave it alone */
9530 }
9531
9532 return flags;
9533 }
9534
inc_block_group_ro(struct btrfs_block_group_cache * cache,int force)9535 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9536 {
9537 struct btrfs_space_info *sinfo = cache->space_info;
9538 u64 num_bytes;
9539 u64 min_allocable_bytes;
9540 int ret = -ENOSPC;
9541
9542 /*
9543 * We need some metadata space and system metadata space for
9544 * allocating chunks in some corner cases until we force to set
9545 * it to be readonly.
9546 */
9547 if ((sinfo->flags &
9548 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9549 !force)
9550 min_allocable_bytes = SZ_1M;
9551 else
9552 min_allocable_bytes = 0;
9553
9554 spin_lock(&sinfo->lock);
9555 spin_lock(&cache->lock);
9556
9557 if (cache->ro) {
9558 cache->ro++;
9559 ret = 0;
9560 goto out;
9561 }
9562
9563 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9564 cache->bytes_super - btrfs_block_group_used(&cache->item);
9565
9566 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9567 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9568 min_allocable_bytes <= sinfo->total_bytes) {
9569 sinfo->bytes_readonly += num_bytes;
9570 cache->ro++;
9571 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9572 ret = 0;
9573 }
9574 out:
9575 spin_unlock(&cache->lock);
9576 spin_unlock(&sinfo->lock);
9577 return ret;
9578 }
9579
btrfs_inc_block_group_ro(struct btrfs_root * root,struct btrfs_block_group_cache * cache)9580 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9581 struct btrfs_block_group_cache *cache)
9582
9583 {
9584 struct btrfs_trans_handle *trans;
9585 u64 alloc_flags;
9586 int ret;
9587
9588 again:
9589 trans = btrfs_join_transaction(root);
9590 if (IS_ERR(trans))
9591 return PTR_ERR(trans);
9592
9593 /*
9594 * we're not allowed to set block groups readonly after the dirty
9595 * block groups cache has started writing. If it already started,
9596 * back off and let this transaction commit
9597 */
9598 mutex_lock(&root->fs_info->ro_block_group_mutex);
9599 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9600 u64 transid = trans->transid;
9601
9602 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9603 btrfs_end_transaction(trans, root);
9604
9605 ret = btrfs_wait_for_commit(root, transid);
9606 if (ret)
9607 return ret;
9608 goto again;
9609 }
9610
9611 /*
9612 * if we are changing raid levels, try to allocate a corresponding
9613 * block group with the new raid level.
9614 */
9615 alloc_flags = update_block_group_flags(root, cache->flags);
9616 if (alloc_flags != cache->flags) {
9617 ret = do_chunk_alloc(trans, root, alloc_flags,
9618 CHUNK_ALLOC_FORCE);
9619 /*
9620 * ENOSPC is allowed here, we may have enough space
9621 * already allocated at the new raid level to
9622 * carry on
9623 */
9624 if (ret == -ENOSPC)
9625 ret = 0;
9626 if (ret < 0)
9627 goto out;
9628 }
9629
9630 ret = inc_block_group_ro(cache, 0);
9631 if (!ret)
9632 goto out;
9633 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9634 ret = do_chunk_alloc(trans, root, alloc_flags,
9635 CHUNK_ALLOC_FORCE);
9636 if (ret < 0)
9637 goto out;
9638 ret = inc_block_group_ro(cache, 0);
9639 out:
9640 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9641 alloc_flags = update_block_group_flags(root, cache->flags);
9642 lock_chunks(root->fs_info->chunk_root);
9643 check_system_chunk(trans, root, alloc_flags);
9644 unlock_chunks(root->fs_info->chunk_root);
9645 }
9646 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9647
9648 btrfs_end_transaction(trans, root);
9649 return ret;
9650 }
9651
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 type)9652 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9653 struct btrfs_root *root, u64 type)
9654 {
9655 u64 alloc_flags = get_alloc_profile(root, type);
9656 return do_chunk_alloc(trans, root, alloc_flags,
9657 CHUNK_ALLOC_FORCE);
9658 }
9659
9660 /*
9661 * helper to account the unused space of all the readonly block group in the
9662 * space_info. takes mirrors into account.
9663 */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)9664 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9665 {
9666 struct btrfs_block_group_cache *block_group;
9667 u64 free_bytes = 0;
9668 int factor;
9669
9670 /* It's df, we don't care if it's racy */
9671 if (list_empty(&sinfo->ro_bgs))
9672 return 0;
9673
9674 spin_lock(&sinfo->lock);
9675 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9676 spin_lock(&block_group->lock);
9677
9678 if (!block_group->ro) {
9679 spin_unlock(&block_group->lock);
9680 continue;
9681 }
9682
9683 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9684 BTRFS_BLOCK_GROUP_RAID10 |
9685 BTRFS_BLOCK_GROUP_DUP))
9686 factor = 2;
9687 else
9688 factor = 1;
9689
9690 free_bytes += (block_group->key.offset -
9691 btrfs_block_group_used(&block_group->item)) *
9692 factor;
9693
9694 spin_unlock(&block_group->lock);
9695 }
9696 spin_unlock(&sinfo->lock);
9697
9698 return free_bytes;
9699 }
9700
btrfs_dec_block_group_ro(struct btrfs_root * root,struct btrfs_block_group_cache * cache)9701 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9702 struct btrfs_block_group_cache *cache)
9703 {
9704 struct btrfs_space_info *sinfo = cache->space_info;
9705 u64 num_bytes;
9706
9707 BUG_ON(!cache->ro);
9708
9709 spin_lock(&sinfo->lock);
9710 spin_lock(&cache->lock);
9711 if (!--cache->ro) {
9712 num_bytes = cache->key.offset - cache->reserved -
9713 cache->pinned - cache->bytes_super -
9714 btrfs_block_group_used(&cache->item);
9715 sinfo->bytes_readonly -= num_bytes;
9716 list_del_init(&cache->ro_list);
9717 }
9718 spin_unlock(&cache->lock);
9719 spin_unlock(&sinfo->lock);
9720 }
9721
9722 /*
9723 * checks to see if its even possible to relocate this block group.
9724 *
9725 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9726 * ok to go ahead and try.
9727 */
btrfs_can_relocate(struct btrfs_root * root,u64 bytenr)9728 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9729 {
9730 struct btrfs_block_group_cache *block_group;
9731 struct btrfs_space_info *space_info;
9732 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9733 struct btrfs_device *device;
9734 struct btrfs_trans_handle *trans;
9735 u64 min_free;
9736 u64 dev_min = 1;
9737 u64 dev_nr = 0;
9738 u64 target;
9739 int debug;
9740 int index;
9741 int full = 0;
9742 int ret = 0;
9743
9744 debug = btrfs_test_opt(root->fs_info, ENOSPC_DEBUG);
9745
9746 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9747
9748 /* odd, couldn't find the block group, leave it alone */
9749 if (!block_group) {
9750 if (debug)
9751 btrfs_warn(root->fs_info,
9752 "can't find block group for bytenr %llu",
9753 bytenr);
9754 return -1;
9755 }
9756
9757 min_free = btrfs_block_group_used(&block_group->item);
9758
9759 /* no bytes used, we're good */
9760 if (!min_free)
9761 goto out;
9762
9763 space_info = block_group->space_info;
9764 spin_lock(&space_info->lock);
9765
9766 full = space_info->full;
9767
9768 /*
9769 * if this is the last block group we have in this space, we can't
9770 * relocate it unless we're able to allocate a new chunk below.
9771 *
9772 * Otherwise, we need to make sure we have room in the space to handle
9773 * all of the extents from this block group. If we can, we're good
9774 */
9775 if ((space_info->total_bytes != block_group->key.offset) &&
9776 (space_info->bytes_used + space_info->bytes_reserved +
9777 space_info->bytes_pinned + space_info->bytes_readonly +
9778 min_free < space_info->total_bytes)) {
9779 spin_unlock(&space_info->lock);
9780 goto out;
9781 }
9782 spin_unlock(&space_info->lock);
9783
9784 /*
9785 * ok we don't have enough space, but maybe we have free space on our
9786 * devices to allocate new chunks for relocation, so loop through our
9787 * alloc devices and guess if we have enough space. if this block
9788 * group is going to be restriped, run checks against the target
9789 * profile instead of the current one.
9790 */
9791 ret = -1;
9792
9793 /*
9794 * index:
9795 * 0: raid10
9796 * 1: raid1
9797 * 2: dup
9798 * 3: raid0
9799 * 4: single
9800 */
9801 target = get_restripe_target(root->fs_info, block_group->flags);
9802 if (target) {
9803 index = __get_raid_index(extended_to_chunk(target));
9804 } else {
9805 /*
9806 * this is just a balance, so if we were marked as full
9807 * we know there is no space for a new chunk
9808 */
9809 if (full) {
9810 if (debug)
9811 btrfs_warn(root->fs_info,
9812 "no space to alloc new chunk for block group %llu",
9813 block_group->key.objectid);
9814 goto out;
9815 }
9816
9817 index = get_block_group_index(block_group);
9818 }
9819
9820 if (index == BTRFS_RAID_RAID10) {
9821 dev_min = 4;
9822 /* Divide by 2 */
9823 min_free >>= 1;
9824 } else if (index == BTRFS_RAID_RAID1) {
9825 dev_min = 2;
9826 } else if (index == BTRFS_RAID_DUP) {
9827 /* Multiply by 2 */
9828 min_free <<= 1;
9829 } else if (index == BTRFS_RAID_RAID0) {
9830 dev_min = fs_devices->rw_devices;
9831 min_free = div64_u64(min_free, dev_min);
9832 }
9833
9834 /* We need to do this so that we can look at pending chunks */
9835 trans = btrfs_join_transaction(root);
9836 if (IS_ERR(trans)) {
9837 ret = PTR_ERR(trans);
9838 goto out;
9839 }
9840
9841 mutex_lock(&root->fs_info->chunk_mutex);
9842 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9843 u64 dev_offset;
9844
9845 /*
9846 * check to make sure we can actually find a chunk with enough
9847 * space to fit our block group in.
9848 */
9849 if (device->total_bytes > device->bytes_used + min_free &&
9850 !device->is_tgtdev_for_dev_replace) {
9851 ret = find_free_dev_extent(trans, device, min_free,
9852 &dev_offset, NULL);
9853 if (!ret)
9854 dev_nr++;
9855
9856 if (dev_nr >= dev_min)
9857 break;
9858
9859 ret = -1;
9860 }
9861 }
9862 if (debug && ret == -1)
9863 btrfs_warn(root->fs_info,
9864 "no space to allocate a new chunk for block group %llu",
9865 block_group->key.objectid);
9866 mutex_unlock(&root->fs_info->chunk_mutex);
9867 btrfs_end_transaction(trans, root);
9868 out:
9869 btrfs_put_block_group(block_group);
9870 return ret;
9871 }
9872
find_first_block_group(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key)9873 static int find_first_block_group(struct btrfs_root *root,
9874 struct btrfs_path *path, struct btrfs_key *key)
9875 {
9876 int ret = 0;
9877 struct btrfs_key found_key;
9878 struct extent_buffer *leaf;
9879 int slot;
9880
9881 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9882 if (ret < 0)
9883 goto out;
9884
9885 while (1) {
9886 slot = path->slots[0];
9887 leaf = path->nodes[0];
9888 if (slot >= btrfs_header_nritems(leaf)) {
9889 ret = btrfs_next_leaf(root, path);
9890 if (ret == 0)
9891 continue;
9892 if (ret < 0)
9893 goto out;
9894 break;
9895 }
9896 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9897
9898 if (found_key.objectid >= key->objectid &&
9899 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9900 struct extent_map_tree *em_tree;
9901 struct extent_map *em;
9902
9903 em_tree = &root->fs_info->mapping_tree.map_tree;
9904 read_lock(&em_tree->lock);
9905 em = lookup_extent_mapping(em_tree, found_key.objectid,
9906 found_key.offset);
9907 read_unlock(&em_tree->lock);
9908 if (!em) {
9909 btrfs_err(root->fs_info,
9910 "logical %llu len %llu found bg but no related chunk",
9911 found_key.objectid, found_key.offset);
9912 ret = -ENOENT;
9913 } else {
9914 ret = 0;
9915 }
9916 free_extent_map(em);
9917 goto out;
9918 }
9919 path->slots[0]++;
9920 }
9921 out:
9922 return ret;
9923 }
9924
btrfs_put_block_group_cache(struct btrfs_fs_info * info)9925 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9926 {
9927 struct btrfs_block_group_cache *block_group;
9928 u64 last = 0;
9929
9930 while (1) {
9931 struct inode *inode;
9932
9933 block_group = btrfs_lookup_first_block_group(info, last);
9934 while (block_group) {
9935 spin_lock(&block_group->lock);
9936 if (block_group->iref)
9937 break;
9938 spin_unlock(&block_group->lock);
9939 block_group = next_block_group(info->tree_root,
9940 block_group);
9941 }
9942 if (!block_group) {
9943 if (last == 0)
9944 break;
9945 last = 0;
9946 continue;
9947 }
9948
9949 inode = block_group->inode;
9950 block_group->iref = 0;
9951 block_group->inode = NULL;
9952 spin_unlock(&block_group->lock);
9953 ASSERT(block_group->io_ctl.inode == NULL);
9954 iput(inode);
9955 last = block_group->key.objectid + block_group->key.offset;
9956 btrfs_put_block_group(block_group);
9957 }
9958 }
9959
btrfs_free_block_groups(struct btrfs_fs_info * info)9960 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9961 {
9962 struct btrfs_block_group_cache *block_group;
9963 struct btrfs_space_info *space_info;
9964 struct btrfs_caching_control *caching_ctl;
9965 struct rb_node *n;
9966
9967 down_write(&info->commit_root_sem);
9968 while (!list_empty(&info->caching_block_groups)) {
9969 caching_ctl = list_entry(info->caching_block_groups.next,
9970 struct btrfs_caching_control, list);
9971 list_del(&caching_ctl->list);
9972 put_caching_control(caching_ctl);
9973 }
9974 up_write(&info->commit_root_sem);
9975
9976 spin_lock(&info->unused_bgs_lock);
9977 while (!list_empty(&info->unused_bgs)) {
9978 block_group = list_first_entry(&info->unused_bgs,
9979 struct btrfs_block_group_cache,
9980 bg_list);
9981 list_del_init(&block_group->bg_list);
9982 btrfs_put_block_group(block_group);
9983 }
9984 spin_unlock(&info->unused_bgs_lock);
9985
9986 spin_lock(&info->block_group_cache_lock);
9987 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9988 block_group = rb_entry(n, struct btrfs_block_group_cache,
9989 cache_node);
9990 rb_erase(&block_group->cache_node,
9991 &info->block_group_cache_tree);
9992 RB_CLEAR_NODE(&block_group->cache_node);
9993 spin_unlock(&info->block_group_cache_lock);
9994
9995 down_write(&block_group->space_info->groups_sem);
9996 list_del(&block_group->list);
9997 up_write(&block_group->space_info->groups_sem);
9998
9999 if (block_group->cached == BTRFS_CACHE_STARTED)
10000 wait_block_group_cache_done(block_group);
10001
10002 /*
10003 * We haven't cached this block group, which means we could
10004 * possibly have excluded extents on this block group.
10005 */
10006 if (block_group->cached == BTRFS_CACHE_NO ||
10007 block_group->cached == BTRFS_CACHE_ERROR)
10008 free_excluded_extents(info->extent_root, block_group);
10009
10010 btrfs_remove_free_space_cache(block_group);
10011 ASSERT(list_empty(&block_group->dirty_list));
10012 ASSERT(list_empty(&block_group->io_list));
10013 ASSERT(list_empty(&block_group->bg_list));
10014 ASSERT(atomic_read(&block_group->count) == 1);
10015 btrfs_put_block_group(block_group);
10016
10017 spin_lock(&info->block_group_cache_lock);
10018 }
10019 spin_unlock(&info->block_group_cache_lock);
10020
10021 /* now that all the block groups are freed, go through and
10022 * free all the space_info structs. This is only called during
10023 * the final stages of unmount, and so we know nobody is
10024 * using them. We call synchronize_rcu() once before we start,
10025 * just to be on the safe side.
10026 */
10027 synchronize_rcu();
10028
10029 release_global_block_rsv(info);
10030
10031 while (!list_empty(&info->space_info)) {
10032 int i;
10033
10034 space_info = list_entry(info->space_info.next,
10035 struct btrfs_space_info,
10036 list);
10037
10038 /*
10039 * Do not hide this behind enospc_debug, this is actually
10040 * important and indicates a real bug if this happens.
10041 */
10042 if (WARN_ON(space_info->bytes_pinned > 0 ||
10043 space_info->bytes_reserved > 0 ||
10044 space_info->bytes_may_use > 0))
10045 dump_space_info(info, space_info, 0, 0);
10046 list_del(&space_info->list);
10047 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10048 struct kobject *kobj;
10049 kobj = space_info->block_group_kobjs[i];
10050 space_info->block_group_kobjs[i] = NULL;
10051 if (kobj) {
10052 kobject_del(kobj);
10053 kobject_put(kobj);
10054 }
10055 }
10056 kobject_del(&space_info->kobj);
10057 kobject_put(&space_info->kobj);
10058 }
10059 return 0;
10060 }
10061
__link_block_group(struct btrfs_space_info * space_info,struct btrfs_block_group_cache * cache)10062 static void __link_block_group(struct btrfs_space_info *space_info,
10063 struct btrfs_block_group_cache *cache)
10064 {
10065 int index = get_block_group_index(cache);
10066 bool first = false;
10067
10068 down_write(&space_info->groups_sem);
10069 if (list_empty(&space_info->block_groups[index]))
10070 first = true;
10071 list_add_tail(&cache->list, &space_info->block_groups[index]);
10072 up_write(&space_info->groups_sem);
10073
10074 if (first) {
10075 struct raid_kobject *rkobj;
10076 int ret;
10077
10078 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10079 if (!rkobj)
10080 goto out_err;
10081 rkobj->raid_type = index;
10082 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10083 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10084 "%s", get_raid_name(index));
10085 if (ret) {
10086 kobject_put(&rkobj->kobj);
10087 goto out_err;
10088 }
10089 space_info->block_group_kobjs[index] = &rkobj->kobj;
10090 }
10091
10092 return;
10093 out_err:
10094 btrfs_warn(cache->fs_info,
10095 "failed to add kobject for block cache, ignoring");
10096 }
10097
10098 static struct btrfs_block_group_cache *
btrfs_create_block_group_cache(struct btrfs_root * root,u64 start,u64 size)10099 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
10100 {
10101 struct btrfs_block_group_cache *cache;
10102
10103 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10104 if (!cache)
10105 return NULL;
10106
10107 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10108 GFP_NOFS);
10109 if (!cache->free_space_ctl) {
10110 kfree(cache);
10111 return NULL;
10112 }
10113
10114 cache->key.objectid = start;
10115 cache->key.offset = size;
10116 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10117
10118 cache->sectorsize = root->sectorsize;
10119 cache->fs_info = root->fs_info;
10120 cache->full_stripe_len = btrfs_full_stripe_len(root,
10121 &root->fs_info->mapping_tree,
10122 start);
10123 set_free_space_tree_thresholds(cache);
10124
10125 atomic_set(&cache->count, 1);
10126 spin_lock_init(&cache->lock);
10127 init_rwsem(&cache->data_rwsem);
10128 INIT_LIST_HEAD(&cache->list);
10129 INIT_LIST_HEAD(&cache->cluster_list);
10130 INIT_LIST_HEAD(&cache->bg_list);
10131 INIT_LIST_HEAD(&cache->ro_list);
10132 INIT_LIST_HEAD(&cache->dirty_list);
10133 INIT_LIST_HEAD(&cache->io_list);
10134 btrfs_init_free_space_ctl(cache);
10135 atomic_set(&cache->trimming, 0);
10136 mutex_init(&cache->free_space_lock);
10137
10138 return cache;
10139 }
10140
btrfs_read_block_groups(struct btrfs_root * root)10141 int btrfs_read_block_groups(struct btrfs_root *root)
10142 {
10143 struct btrfs_path *path;
10144 int ret;
10145 struct btrfs_block_group_cache *cache;
10146 struct btrfs_fs_info *info = root->fs_info;
10147 struct btrfs_space_info *space_info;
10148 struct btrfs_key key;
10149 struct btrfs_key found_key;
10150 struct extent_buffer *leaf;
10151 int need_clear = 0;
10152 u64 cache_gen;
10153 u64 feature;
10154 int mixed;
10155
10156 feature = btrfs_super_incompat_flags(info->super_copy);
10157 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10158
10159 root = info->extent_root;
10160 key.objectid = 0;
10161 key.offset = 0;
10162 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10163 path = btrfs_alloc_path();
10164 if (!path)
10165 return -ENOMEM;
10166 path->reada = READA_FORWARD;
10167
10168 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
10169 if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
10170 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
10171 need_clear = 1;
10172 if (btrfs_test_opt(root->fs_info, CLEAR_CACHE))
10173 need_clear = 1;
10174
10175 while (1) {
10176 ret = find_first_block_group(root, path, &key);
10177 if (ret > 0)
10178 break;
10179 if (ret != 0)
10180 goto error;
10181
10182 leaf = path->nodes[0];
10183 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10184
10185 cache = btrfs_create_block_group_cache(root, found_key.objectid,
10186 found_key.offset);
10187 if (!cache) {
10188 ret = -ENOMEM;
10189 goto error;
10190 }
10191
10192 if (need_clear) {
10193 /*
10194 * When we mount with old space cache, we need to
10195 * set BTRFS_DC_CLEAR and set dirty flag.
10196 *
10197 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10198 * truncate the old free space cache inode and
10199 * setup a new one.
10200 * b) Setting 'dirty flag' makes sure that we flush
10201 * the new space cache info onto disk.
10202 */
10203 if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
10204 cache->disk_cache_state = BTRFS_DC_CLEAR;
10205 }
10206
10207 read_extent_buffer(leaf, &cache->item,
10208 btrfs_item_ptr_offset(leaf, path->slots[0]),
10209 sizeof(cache->item));
10210 cache->flags = btrfs_block_group_flags(&cache->item);
10211 if (!mixed &&
10212 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10213 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10214 btrfs_err(info,
10215 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10216 cache->key.objectid);
10217 ret = -EINVAL;
10218 goto error;
10219 }
10220
10221 key.objectid = found_key.objectid + found_key.offset;
10222 btrfs_release_path(path);
10223
10224 /*
10225 * We need to exclude the super stripes now so that the space
10226 * info has super bytes accounted for, otherwise we'll think
10227 * we have more space than we actually do.
10228 */
10229 ret = exclude_super_stripes(root, cache);
10230 if (ret) {
10231 /*
10232 * We may have excluded something, so call this just in
10233 * case.
10234 */
10235 free_excluded_extents(root, cache);
10236 btrfs_put_block_group(cache);
10237 goto error;
10238 }
10239
10240 /*
10241 * check for two cases, either we are full, and therefore
10242 * don't need to bother with the caching work since we won't
10243 * find any space, or we are empty, and we can just add all
10244 * the space in and be done with it. This saves us _alot_ of
10245 * time, particularly in the full case.
10246 */
10247 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10248 cache->last_byte_to_unpin = (u64)-1;
10249 cache->cached = BTRFS_CACHE_FINISHED;
10250 free_excluded_extents(root, cache);
10251 } else if (btrfs_block_group_used(&cache->item) == 0) {
10252 cache->last_byte_to_unpin = (u64)-1;
10253 cache->cached = BTRFS_CACHE_FINISHED;
10254 add_new_free_space(cache, root->fs_info,
10255 found_key.objectid,
10256 found_key.objectid +
10257 found_key.offset);
10258 free_excluded_extents(root, cache);
10259 }
10260
10261 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10262 if (ret) {
10263 btrfs_remove_free_space_cache(cache);
10264 btrfs_put_block_group(cache);
10265 goto error;
10266 }
10267
10268 trace_btrfs_add_block_group(root->fs_info, cache, 0);
10269 ret = update_space_info(info, cache->flags, found_key.offset,
10270 btrfs_block_group_used(&cache->item),
10271 cache->bytes_super, &space_info);
10272 if (ret) {
10273 btrfs_remove_free_space_cache(cache);
10274 spin_lock(&info->block_group_cache_lock);
10275 rb_erase(&cache->cache_node,
10276 &info->block_group_cache_tree);
10277 RB_CLEAR_NODE(&cache->cache_node);
10278 spin_unlock(&info->block_group_cache_lock);
10279 btrfs_put_block_group(cache);
10280 goto error;
10281 }
10282
10283 cache->space_info = space_info;
10284
10285 __link_block_group(space_info, cache);
10286
10287 set_avail_alloc_bits(root->fs_info, cache->flags);
10288 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
10289 inc_block_group_ro(cache, 1);
10290 } else if (btrfs_block_group_used(&cache->item) == 0) {
10291 spin_lock(&info->unused_bgs_lock);
10292 /* Should always be true but just in case. */
10293 if (list_empty(&cache->bg_list)) {
10294 btrfs_get_block_group(cache);
10295 list_add_tail(&cache->bg_list,
10296 &info->unused_bgs);
10297 }
10298 spin_unlock(&info->unused_bgs_lock);
10299 }
10300 }
10301
10302 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10303 if (!(get_alloc_profile(root, space_info->flags) &
10304 (BTRFS_BLOCK_GROUP_RAID10 |
10305 BTRFS_BLOCK_GROUP_RAID1 |
10306 BTRFS_BLOCK_GROUP_RAID5 |
10307 BTRFS_BLOCK_GROUP_RAID6 |
10308 BTRFS_BLOCK_GROUP_DUP)))
10309 continue;
10310 /*
10311 * avoid allocating from un-mirrored block group if there are
10312 * mirrored block groups.
10313 */
10314 list_for_each_entry(cache,
10315 &space_info->block_groups[BTRFS_RAID_RAID0],
10316 list)
10317 inc_block_group_ro(cache, 1);
10318 list_for_each_entry(cache,
10319 &space_info->block_groups[BTRFS_RAID_SINGLE],
10320 list)
10321 inc_block_group_ro(cache, 1);
10322 }
10323
10324 init_global_block_rsv(info);
10325 ret = 0;
10326 error:
10327 btrfs_free_path(path);
10328 return ret;
10329 }
10330
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans,struct btrfs_root * root)10331 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10332 struct btrfs_root *root)
10333 {
10334 struct btrfs_block_group_cache *block_group, *tmp;
10335 struct btrfs_root *extent_root = root->fs_info->extent_root;
10336 struct btrfs_block_group_item item;
10337 struct btrfs_key key;
10338 int ret = 0;
10339 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10340
10341 trans->can_flush_pending_bgs = false;
10342 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10343 if (ret)
10344 goto next;
10345
10346 spin_lock(&block_group->lock);
10347 memcpy(&item, &block_group->item, sizeof(item));
10348 memcpy(&key, &block_group->key, sizeof(key));
10349 spin_unlock(&block_group->lock);
10350
10351 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10352 sizeof(item));
10353 if (ret)
10354 btrfs_abort_transaction(trans, ret);
10355 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10356 key.objectid, key.offset);
10357 if (ret)
10358 btrfs_abort_transaction(trans, ret);
10359 add_block_group_free_space(trans, root->fs_info, block_group);
10360 /* already aborted the transaction if it failed. */
10361 next:
10362 list_del_init(&block_group->bg_list);
10363 }
10364 trans->can_flush_pending_bgs = can_flush_pending_bgs;
10365 }
10366
btrfs_make_block_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytes_used,u64 type,u64 chunk_objectid,u64 chunk_offset,u64 size)10367 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10368 struct btrfs_root *root, u64 bytes_used,
10369 u64 type, u64 chunk_objectid, u64 chunk_offset,
10370 u64 size)
10371 {
10372 int ret;
10373 struct btrfs_root *extent_root;
10374 struct btrfs_block_group_cache *cache;
10375 extent_root = root->fs_info->extent_root;
10376
10377 btrfs_set_log_full_commit(root->fs_info, trans);
10378
10379 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10380 if (!cache)
10381 return -ENOMEM;
10382
10383 btrfs_set_block_group_used(&cache->item, bytes_used);
10384 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10385 btrfs_set_block_group_flags(&cache->item, type);
10386
10387 cache->flags = type;
10388 cache->last_byte_to_unpin = (u64)-1;
10389 cache->cached = BTRFS_CACHE_FINISHED;
10390 cache->needs_free_space = 1;
10391 ret = exclude_super_stripes(root, cache);
10392 if (ret) {
10393 /*
10394 * We may have excluded something, so call this just in
10395 * case.
10396 */
10397 free_excluded_extents(root, cache);
10398 btrfs_put_block_group(cache);
10399 return ret;
10400 }
10401
10402 add_new_free_space(cache, root->fs_info, chunk_offset,
10403 chunk_offset + size);
10404
10405 free_excluded_extents(root, cache);
10406
10407 #ifdef CONFIG_BTRFS_DEBUG
10408 if (btrfs_should_fragment_free_space(root, cache)) {
10409 u64 new_bytes_used = size - bytes_used;
10410
10411 bytes_used += new_bytes_used >> 1;
10412 fragment_free_space(root, cache);
10413 }
10414 #endif
10415 /*
10416 * Call to ensure the corresponding space_info object is created and
10417 * assigned to our block group, but don't update its counters just yet.
10418 * We want our bg to be added to the rbtree with its ->space_info set.
10419 */
10420 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
10421 &cache->space_info);
10422 if (ret) {
10423 btrfs_remove_free_space_cache(cache);
10424 btrfs_put_block_group(cache);
10425 return ret;
10426 }
10427
10428 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10429 if (ret) {
10430 btrfs_remove_free_space_cache(cache);
10431 btrfs_put_block_group(cache);
10432 return ret;
10433 }
10434
10435 /*
10436 * Now that our block group has its ->space_info set and is inserted in
10437 * the rbtree, update the space info's counters.
10438 */
10439 trace_btrfs_add_block_group(root->fs_info, cache, 1);
10440 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10441 cache->bytes_super, &cache->space_info);
10442 if (ret) {
10443 btrfs_remove_free_space_cache(cache);
10444 spin_lock(&root->fs_info->block_group_cache_lock);
10445 rb_erase(&cache->cache_node,
10446 &root->fs_info->block_group_cache_tree);
10447 RB_CLEAR_NODE(&cache->cache_node);
10448 spin_unlock(&root->fs_info->block_group_cache_lock);
10449 btrfs_put_block_group(cache);
10450 return ret;
10451 }
10452 update_global_block_rsv(root->fs_info);
10453
10454 __link_block_group(cache->space_info, cache);
10455
10456 list_add_tail(&cache->bg_list, &trans->new_bgs);
10457
10458 set_avail_alloc_bits(extent_root->fs_info, type);
10459 return 0;
10460 }
10461
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)10462 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10463 {
10464 u64 extra_flags = chunk_to_extended(flags) &
10465 BTRFS_EXTENDED_PROFILE_MASK;
10466
10467 write_seqlock(&fs_info->profiles_lock);
10468 if (flags & BTRFS_BLOCK_GROUP_DATA)
10469 fs_info->avail_data_alloc_bits &= ~extra_flags;
10470 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10471 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10472 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10473 fs_info->avail_system_alloc_bits &= ~extra_flags;
10474 write_sequnlock(&fs_info->profiles_lock);
10475 }
10476
btrfs_remove_block_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 group_start,struct extent_map * em)10477 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10478 struct btrfs_root *root, u64 group_start,
10479 struct extent_map *em)
10480 {
10481 struct btrfs_path *path;
10482 struct btrfs_block_group_cache *block_group;
10483 struct btrfs_free_cluster *cluster;
10484 struct btrfs_root *tree_root = root->fs_info->tree_root;
10485 struct btrfs_key key;
10486 struct inode *inode;
10487 struct kobject *kobj = NULL;
10488 int ret;
10489 int index;
10490 int factor;
10491 struct btrfs_caching_control *caching_ctl = NULL;
10492 bool remove_em;
10493
10494 root = root->fs_info->extent_root;
10495
10496 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10497 BUG_ON(!block_group);
10498 BUG_ON(!block_group->ro);
10499
10500 /*
10501 * Free the reserved super bytes from this block group before
10502 * remove it.
10503 */
10504 free_excluded_extents(root, block_group);
10505
10506 memcpy(&key, &block_group->key, sizeof(key));
10507 index = get_block_group_index(block_group);
10508 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10509 BTRFS_BLOCK_GROUP_RAID1 |
10510 BTRFS_BLOCK_GROUP_RAID10))
10511 factor = 2;
10512 else
10513 factor = 1;
10514
10515 /* make sure this block group isn't part of an allocation cluster */
10516 cluster = &root->fs_info->data_alloc_cluster;
10517 spin_lock(&cluster->refill_lock);
10518 btrfs_return_cluster_to_free_space(block_group, cluster);
10519 spin_unlock(&cluster->refill_lock);
10520
10521 /*
10522 * make sure this block group isn't part of a metadata
10523 * allocation cluster
10524 */
10525 cluster = &root->fs_info->meta_alloc_cluster;
10526 spin_lock(&cluster->refill_lock);
10527 btrfs_return_cluster_to_free_space(block_group, cluster);
10528 spin_unlock(&cluster->refill_lock);
10529
10530 path = btrfs_alloc_path();
10531 if (!path) {
10532 ret = -ENOMEM;
10533 goto out;
10534 }
10535
10536 /*
10537 * get the inode first so any iput calls done for the io_list
10538 * aren't the final iput (no unlinks allowed now)
10539 */
10540 inode = lookup_free_space_inode(tree_root, block_group, path);
10541
10542 mutex_lock(&trans->transaction->cache_write_mutex);
10543 /*
10544 * make sure our free spache cache IO is done before remove the
10545 * free space inode
10546 */
10547 spin_lock(&trans->transaction->dirty_bgs_lock);
10548 if (!list_empty(&block_group->io_list)) {
10549 list_del_init(&block_group->io_list);
10550
10551 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10552
10553 spin_unlock(&trans->transaction->dirty_bgs_lock);
10554 btrfs_wait_cache_io(root, trans, block_group,
10555 &block_group->io_ctl, path,
10556 block_group->key.objectid);
10557 btrfs_put_block_group(block_group);
10558 spin_lock(&trans->transaction->dirty_bgs_lock);
10559 }
10560
10561 if (!list_empty(&block_group->dirty_list)) {
10562 list_del_init(&block_group->dirty_list);
10563 btrfs_put_block_group(block_group);
10564 }
10565 spin_unlock(&trans->transaction->dirty_bgs_lock);
10566 mutex_unlock(&trans->transaction->cache_write_mutex);
10567
10568 if (!IS_ERR(inode)) {
10569 ret = btrfs_orphan_add(trans, inode);
10570 if (ret) {
10571 btrfs_add_delayed_iput(inode);
10572 goto out;
10573 }
10574 clear_nlink(inode);
10575 /* One for the block groups ref */
10576 spin_lock(&block_group->lock);
10577 if (block_group->iref) {
10578 block_group->iref = 0;
10579 block_group->inode = NULL;
10580 spin_unlock(&block_group->lock);
10581 iput(inode);
10582 } else {
10583 spin_unlock(&block_group->lock);
10584 }
10585 /* One for our lookup ref */
10586 btrfs_add_delayed_iput(inode);
10587 }
10588
10589 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10590 key.offset = block_group->key.objectid;
10591 key.type = 0;
10592
10593 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10594 if (ret < 0)
10595 goto out;
10596 if (ret > 0)
10597 btrfs_release_path(path);
10598 if (ret == 0) {
10599 ret = btrfs_del_item(trans, tree_root, path);
10600 if (ret)
10601 goto out;
10602 btrfs_release_path(path);
10603 }
10604
10605 spin_lock(&root->fs_info->block_group_cache_lock);
10606 rb_erase(&block_group->cache_node,
10607 &root->fs_info->block_group_cache_tree);
10608 RB_CLEAR_NODE(&block_group->cache_node);
10609
10610 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10611 root->fs_info->first_logical_byte = (u64)-1;
10612 spin_unlock(&root->fs_info->block_group_cache_lock);
10613
10614 down_write(&block_group->space_info->groups_sem);
10615 /*
10616 * we must use list_del_init so people can check to see if they
10617 * are still on the list after taking the semaphore
10618 */
10619 list_del_init(&block_group->list);
10620 if (list_empty(&block_group->space_info->block_groups[index])) {
10621 kobj = block_group->space_info->block_group_kobjs[index];
10622 block_group->space_info->block_group_kobjs[index] = NULL;
10623 clear_avail_alloc_bits(root->fs_info, block_group->flags);
10624 }
10625 up_write(&block_group->space_info->groups_sem);
10626 if (kobj) {
10627 kobject_del(kobj);
10628 kobject_put(kobj);
10629 }
10630
10631 if (block_group->has_caching_ctl)
10632 caching_ctl = get_caching_control(block_group);
10633 if (block_group->cached == BTRFS_CACHE_STARTED)
10634 wait_block_group_cache_done(block_group);
10635 if (block_group->has_caching_ctl) {
10636 down_write(&root->fs_info->commit_root_sem);
10637 if (!caching_ctl) {
10638 struct btrfs_caching_control *ctl;
10639
10640 list_for_each_entry(ctl,
10641 &root->fs_info->caching_block_groups, list)
10642 if (ctl->block_group == block_group) {
10643 caching_ctl = ctl;
10644 atomic_inc(&caching_ctl->count);
10645 break;
10646 }
10647 }
10648 if (caching_ctl)
10649 list_del_init(&caching_ctl->list);
10650 up_write(&root->fs_info->commit_root_sem);
10651 if (caching_ctl) {
10652 /* Once for the caching bgs list and once for us. */
10653 put_caching_control(caching_ctl);
10654 put_caching_control(caching_ctl);
10655 }
10656 }
10657
10658 spin_lock(&trans->transaction->dirty_bgs_lock);
10659 if (!list_empty(&block_group->dirty_list)) {
10660 WARN_ON(1);
10661 }
10662 if (!list_empty(&block_group->io_list)) {
10663 WARN_ON(1);
10664 }
10665 spin_unlock(&trans->transaction->dirty_bgs_lock);
10666 btrfs_remove_free_space_cache(block_group);
10667
10668 spin_lock(&block_group->space_info->lock);
10669 list_del_init(&block_group->ro_list);
10670
10671 if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
10672 WARN_ON(block_group->space_info->total_bytes
10673 < block_group->key.offset);
10674 WARN_ON(block_group->space_info->bytes_readonly
10675 < block_group->key.offset);
10676 WARN_ON(block_group->space_info->disk_total
10677 < block_group->key.offset * factor);
10678 }
10679 block_group->space_info->total_bytes -= block_group->key.offset;
10680 block_group->space_info->bytes_readonly -= block_group->key.offset;
10681 block_group->space_info->disk_total -= block_group->key.offset * factor;
10682
10683 spin_unlock(&block_group->space_info->lock);
10684
10685 memcpy(&key, &block_group->key, sizeof(key));
10686
10687 lock_chunks(root);
10688 if (!list_empty(&em->list)) {
10689 /* We're in the transaction->pending_chunks list. */
10690 free_extent_map(em);
10691 }
10692 spin_lock(&block_group->lock);
10693 block_group->removed = 1;
10694 /*
10695 * At this point trimming can't start on this block group, because we
10696 * removed the block group from the tree fs_info->block_group_cache_tree
10697 * so no one can't find it anymore and even if someone already got this
10698 * block group before we removed it from the rbtree, they have already
10699 * incremented block_group->trimming - if they didn't, they won't find
10700 * any free space entries because we already removed them all when we
10701 * called btrfs_remove_free_space_cache().
10702 *
10703 * And we must not remove the extent map from the fs_info->mapping_tree
10704 * to prevent the same logical address range and physical device space
10705 * ranges from being reused for a new block group. This is because our
10706 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10707 * completely transactionless, so while it is trimming a range the
10708 * currently running transaction might finish and a new one start,
10709 * allowing for new block groups to be created that can reuse the same
10710 * physical device locations unless we take this special care.
10711 *
10712 * There may also be an implicit trim operation if the file system
10713 * is mounted with -odiscard. The same protections must remain
10714 * in place until the extents have been discarded completely when
10715 * the transaction commit has completed.
10716 */
10717 remove_em = (atomic_read(&block_group->trimming) == 0);
10718 /*
10719 * Make sure a trimmer task always sees the em in the pinned_chunks list
10720 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10721 * before checking block_group->removed).
10722 */
10723 if (!remove_em) {
10724 /*
10725 * Our em might be in trans->transaction->pending_chunks which
10726 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10727 * and so is the fs_info->pinned_chunks list.
10728 *
10729 * So at this point we must be holding the chunk_mutex to avoid
10730 * any races with chunk allocation (more specifically at
10731 * volumes.c:contains_pending_extent()), to ensure it always
10732 * sees the em, either in the pending_chunks list or in the
10733 * pinned_chunks list.
10734 */
10735 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10736 }
10737 spin_unlock(&block_group->lock);
10738
10739 if (remove_em) {
10740 struct extent_map_tree *em_tree;
10741
10742 em_tree = &root->fs_info->mapping_tree.map_tree;
10743 write_lock(&em_tree->lock);
10744 /*
10745 * The em might be in the pending_chunks list, so make sure the
10746 * chunk mutex is locked, since remove_extent_mapping() will
10747 * delete us from that list.
10748 */
10749 remove_extent_mapping(em_tree, em);
10750 write_unlock(&em_tree->lock);
10751 /* once for the tree */
10752 free_extent_map(em);
10753 }
10754
10755 unlock_chunks(root);
10756
10757 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10758 if (ret)
10759 goto out;
10760
10761 btrfs_put_block_group(block_group);
10762 btrfs_put_block_group(block_group);
10763
10764 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10765 if (ret > 0)
10766 ret = -EIO;
10767 if (ret < 0)
10768 goto out;
10769
10770 ret = btrfs_del_item(trans, root, path);
10771 out:
10772 btrfs_free_path(path);
10773 return ret;
10774 }
10775
10776 struct btrfs_trans_handle *
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)10777 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10778 const u64 chunk_offset)
10779 {
10780 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10781 struct extent_map *em;
10782 struct map_lookup *map;
10783 unsigned int num_items;
10784
10785 read_lock(&em_tree->lock);
10786 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10787 read_unlock(&em_tree->lock);
10788 ASSERT(em && em->start == chunk_offset);
10789
10790 /*
10791 * We need to reserve 3 + N units from the metadata space info in order
10792 * to remove a block group (done at btrfs_remove_chunk() and at
10793 * btrfs_remove_block_group()), which are used for:
10794 *
10795 * 1 unit for adding the free space inode's orphan (located in the tree
10796 * of tree roots).
10797 * 1 unit for deleting the block group item (located in the extent
10798 * tree).
10799 * 1 unit for deleting the free space item (located in tree of tree
10800 * roots).
10801 * N units for deleting N device extent items corresponding to each
10802 * stripe (located in the device tree).
10803 *
10804 * In order to remove a block group we also need to reserve units in the
10805 * system space info in order to update the chunk tree (update one or
10806 * more device items and remove one chunk item), but this is done at
10807 * btrfs_remove_chunk() through a call to check_system_chunk().
10808 */
10809 map = em->map_lookup;
10810 num_items = 3 + map->num_stripes;
10811 free_extent_map(em);
10812
10813 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10814 num_items, 1);
10815 }
10816
10817 /*
10818 * Process the unused_bgs list and remove any that don't have any allocated
10819 * space inside of them.
10820 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)10821 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10822 {
10823 struct btrfs_block_group_cache *block_group;
10824 struct btrfs_space_info *space_info;
10825 struct btrfs_root *root = fs_info->extent_root;
10826 struct btrfs_trans_handle *trans;
10827 int ret = 0;
10828
10829 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10830 return;
10831
10832 spin_lock(&fs_info->unused_bgs_lock);
10833 while (!list_empty(&fs_info->unused_bgs)) {
10834 u64 start, end;
10835 int trimming;
10836
10837 block_group = list_first_entry(&fs_info->unused_bgs,
10838 struct btrfs_block_group_cache,
10839 bg_list);
10840 list_del_init(&block_group->bg_list);
10841
10842 space_info = block_group->space_info;
10843
10844 if (ret || btrfs_mixed_space_info(space_info)) {
10845 btrfs_put_block_group(block_group);
10846 continue;
10847 }
10848 spin_unlock(&fs_info->unused_bgs_lock);
10849
10850 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10851
10852 /* Don't want to race with allocators so take the groups_sem */
10853 down_write(&space_info->groups_sem);
10854 spin_lock(&block_group->lock);
10855 if (block_group->reserved ||
10856 btrfs_block_group_used(&block_group->item) ||
10857 block_group->ro ||
10858 list_is_singular(&block_group->list)) {
10859 /*
10860 * We want to bail if we made new allocations or have
10861 * outstanding allocations in this block group. We do
10862 * the ro check in case balance is currently acting on
10863 * this block group.
10864 */
10865 spin_unlock(&block_group->lock);
10866 up_write(&space_info->groups_sem);
10867 goto next;
10868 }
10869 spin_unlock(&block_group->lock);
10870
10871 /* We don't want to force the issue, only flip if it's ok. */
10872 ret = inc_block_group_ro(block_group, 0);
10873 up_write(&space_info->groups_sem);
10874 if (ret < 0) {
10875 ret = 0;
10876 goto next;
10877 }
10878
10879 /*
10880 * Want to do this before we do anything else so we can recover
10881 * properly if we fail to join the transaction.
10882 */
10883 trans = btrfs_start_trans_remove_block_group(fs_info,
10884 block_group->key.objectid);
10885 if (IS_ERR(trans)) {
10886 btrfs_dec_block_group_ro(root, block_group);
10887 ret = PTR_ERR(trans);
10888 goto next;
10889 }
10890
10891 /*
10892 * We could have pending pinned extents for this block group,
10893 * just delete them, we don't care about them anymore.
10894 */
10895 start = block_group->key.objectid;
10896 end = start + block_group->key.offset - 1;
10897 /*
10898 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10899 * btrfs_finish_extent_commit(). If we are at transaction N,
10900 * another task might be running finish_extent_commit() for the
10901 * previous transaction N - 1, and have seen a range belonging
10902 * to the block group in freed_extents[] before we were able to
10903 * clear the whole block group range from freed_extents[]. This
10904 * means that task can lookup for the block group after we
10905 * unpinned it from freed_extents[] and removed it, leading to
10906 * a BUG_ON() at btrfs_unpin_extent_range().
10907 */
10908 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10909 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10910 EXTENT_DIRTY);
10911 if (ret) {
10912 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10913 btrfs_dec_block_group_ro(root, block_group);
10914 goto end_trans;
10915 }
10916 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10917 EXTENT_DIRTY);
10918 if (ret) {
10919 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10920 btrfs_dec_block_group_ro(root, block_group);
10921 goto end_trans;
10922 }
10923 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10924
10925 /* Reset pinned so btrfs_put_block_group doesn't complain */
10926 spin_lock(&space_info->lock);
10927 spin_lock(&block_group->lock);
10928
10929 space_info->bytes_pinned -= block_group->pinned;
10930 space_info->bytes_readonly += block_group->pinned;
10931 percpu_counter_add(&space_info->total_bytes_pinned,
10932 -block_group->pinned);
10933 block_group->pinned = 0;
10934
10935 spin_unlock(&block_group->lock);
10936 spin_unlock(&space_info->lock);
10937
10938 /* DISCARD can flip during remount */
10939 trimming = btrfs_test_opt(root->fs_info, DISCARD);
10940
10941 /* Implicit trim during transaction commit. */
10942 if (trimming)
10943 btrfs_get_block_group_trimming(block_group);
10944
10945 /*
10946 * Btrfs_remove_chunk will abort the transaction if things go
10947 * horribly wrong.
10948 */
10949 ret = btrfs_remove_chunk(trans, root,
10950 block_group->key.objectid);
10951
10952 if (ret) {
10953 if (trimming)
10954 btrfs_put_block_group_trimming(block_group);
10955 goto end_trans;
10956 }
10957
10958 /*
10959 * If we're not mounted with -odiscard, we can just forget
10960 * about this block group. Otherwise we'll need to wait
10961 * until transaction commit to do the actual discard.
10962 */
10963 if (trimming) {
10964 spin_lock(&fs_info->unused_bgs_lock);
10965 /*
10966 * A concurrent scrub might have added us to the list
10967 * fs_info->unused_bgs, so use a list_move operation
10968 * to add the block group to the deleted_bgs list.
10969 */
10970 list_move(&block_group->bg_list,
10971 &trans->transaction->deleted_bgs);
10972 spin_unlock(&fs_info->unused_bgs_lock);
10973 btrfs_get_block_group(block_group);
10974 }
10975 end_trans:
10976 btrfs_end_transaction(trans, root);
10977 next:
10978 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10979 btrfs_put_block_group(block_group);
10980 spin_lock(&fs_info->unused_bgs_lock);
10981 }
10982 spin_unlock(&fs_info->unused_bgs_lock);
10983 }
10984
btrfs_init_space_info(struct btrfs_fs_info * fs_info)10985 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10986 {
10987 struct btrfs_space_info *space_info;
10988 struct btrfs_super_block *disk_super;
10989 u64 features;
10990 u64 flags;
10991 int mixed = 0;
10992 int ret;
10993
10994 disk_super = fs_info->super_copy;
10995 if (!btrfs_super_root(disk_super))
10996 return -EINVAL;
10997
10998 features = btrfs_super_incompat_flags(disk_super);
10999 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
11000 mixed = 1;
11001
11002 flags = BTRFS_BLOCK_GROUP_SYSTEM;
11003 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
11004 if (ret)
11005 goto out;
11006
11007 if (mixed) {
11008 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
11009 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
11010 } else {
11011 flags = BTRFS_BLOCK_GROUP_METADATA;
11012 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
11013 if (ret)
11014 goto out;
11015
11016 flags = BTRFS_BLOCK_GROUP_DATA;
11017 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
11018 }
11019 out:
11020 return ret;
11021 }
11022
btrfs_error_unpin_extent_range(struct btrfs_root * root,u64 start,u64 end)11023 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
11024 {
11025 return unpin_extent_range(root, start, end, false);
11026 }
11027
11028 /*
11029 * It used to be that old block groups would be left around forever.
11030 * Iterating over them would be enough to trim unused space. Since we
11031 * now automatically remove them, we also need to iterate over unallocated
11032 * space.
11033 *
11034 * We don't want a transaction for this since the discard may take a
11035 * substantial amount of time. We don't require that a transaction be
11036 * running, but we do need to take a running transaction into account
11037 * to ensure that we're not discarding chunks that were released in
11038 * the current transaction.
11039 *
11040 * Holding the chunks lock will prevent other threads from allocating
11041 * or releasing chunks, but it won't prevent a running transaction
11042 * from committing and releasing the memory that the pending chunks
11043 * list head uses. For that, we need to take a reference to the
11044 * transaction.
11045 */
btrfs_trim_free_extents(struct btrfs_device * device,u64 minlen,u64 * trimmed)11046 static int btrfs_trim_free_extents(struct btrfs_device *device,
11047 u64 minlen, u64 *trimmed)
11048 {
11049 u64 start = 0, len = 0;
11050 int ret;
11051
11052 *trimmed = 0;
11053
11054 /* Not writeable = nothing to do. */
11055 if (!device->writeable)
11056 return 0;
11057
11058 /* No free space = nothing to do. */
11059 if (device->total_bytes <= device->bytes_used)
11060 return 0;
11061
11062 ret = 0;
11063
11064 while (1) {
11065 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
11066 struct btrfs_transaction *trans;
11067 u64 bytes;
11068
11069 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11070 if (ret)
11071 return ret;
11072
11073 down_read(&fs_info->commit_root_sem);
11074
11075 spin_lock(&fs_info->trans_lock);
11076 trans = fs_info->running_transaction;
11077 if (trans)
11078 atomic_inc(&trans->use_count);
11079 spin_unlock(&fs_info->trans_lock);
11080
11081 ret = find_free_dev_extent_start(trans, device, minlen, start,
11082 &start, &len);
11083 if (trans)
11084 btrfs_put_transaction(trans);
11085
11086 if (ret) {
11087 up_read(&fs_info->commit_root_sem);
11088 mutex_unlock(&fs_info->chunk_mutex);
11089 if (ret == -ENOSPC)
11090 ret = 0;
11091 break;
11092 }
11093
11094 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11095 up_read(&fs_info->commit_root_sem);
11096 mutex_unlock(&fs_info->chunk_mutex);
11097
11098 if (ret)
11099 break;
11100
11101 start += len;
11102 *trimmed += bytes;
11103
11104 if (fatal_signal_pending(current)) {
11105 ret = -ERESTARTSYS;
11106 break;
11107 }
11108
11109 cond_resched();
11110 }
11111
11112 return ret;
11113 }
11114
btrfs_trim_fs(struct btrfs_root * root,struct fstrim_range * range)11115 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
11116 {
11117 struct btrfs_fs_info *fs_info = root->fs_info;
11118 struct btrfs_block_group_cache *cache = NULL;
11119 struct btrfs_device *device;
11120 struct list_head *devices;
11121 u64 group_trimmed;
11122 u64 start;
11123 u64 end;
11124 u64 trimmed = 0;
11125 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
11126 int ret = 0;
11127
11128 /*
11129 * try to trim all FS space, our block group may start from non-zero.
11130 */
11131 if (range->len == total_bytes)
11132 cache = btrfs_lookup_first_block_group(fs_info, range->start);
11133 else
11134 cache = btrfs_lookup_block_group(fs_info, range->start);
11135
11136 while (cache) {
11137 if (cache->key.objectid >= (range->start + range->len)) {
11138 btrfs_put_block_group(cache);
11139 break;
11140 }
11141
11142 start = max(range->start, cache->key.objectid);
11143 end = min(range->start + range->len,
11144 cache->key.objectid + cache->key.offset);
11145
11146 if (end - start >= range->minlen) {
11147 if (!block_group_cache_done(cache)) {
11148 ret = cache_block_group(cache, 0);
11149 if (ret) {
11150 btrfs_put_block_group(cache);
11151 break;
11152 }
11153 ret = wait_block_group_cache_done(cache);
11154 if (ret) {
11155 btrfs_put_block_group(cache);
11156 break;
11157 }
11158 }
11159 ret = btrfs_trim_block_group(cache,
11160 &group_trimmed,
11161 start,
11162 end,
11163 range->minlen);
11164
11165 trimmed += group_trimmed;
11166 if (ret) {
11167 btrfs_put_block_group(cache);
11168 break;
11169 }
11170 }
11171
11172 cache = next_block_group(fs_info->tree_root, cache);
11173 }
11174
11175 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
11176 devices = &root->fs_info->fs_devices->alloc_list;
11177 list_for_each_entry(device, devices, dev_alloc_list) {
11178 ret = btrfs_trim_free_extents(device, range->minlen,
11179 &group_trimmed);
11180 if (ret)
11181 break;
11182
11183 trimmed += group_trimmed;
11184 }
11185 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
11186
11187 range->len = trimmed;
11188 return ret;
11189 }
11190
11191 /*
11192 * btrfs_{start,end}_write_no_snapshoting() are similar to
11193 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11194 * data into the page cache through nocow before the subvolume is snapshoted,
11195 * but flush the data into disk after the snapshot creation, or to prevent
11196 * operations while snapshoting is ongoing and that cause the snapshot to be
11197 * inconsistent (writes followed by expanding truncates for example).
11198 */
btrfs_end_write_no_snapshoting(struct btrfs_root * root)11199 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
11200 {
11201 percpu_counter_dec(&root->subv_writers->counter);
11202 /*
11203 * Make sure counter is updated before we wake up waiters.
11204 */
11205 smp_mb();
11206 if (waitqueue_active(&root->subv_writers->wait))
11207 wake_up(&root->subv_writers->wait);
11208 }
11209
btrfs_start_write_no_snapshoting(struct btrfs_root * root)11210 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
11211 {
11212 if (atomic_read(&root->will_be_snapshoted))
11213 return 0;
11214
11215 percpu_counter_inc(&root->subv_writers->counter);
11216 /*
11217 * Make sure counter is updated before we check for snapshot creation.
11218 */
11219 smp_mb();
11220 if (atomic_read(&root->will_be_snapshoted)) {
11221 btrfs_end_write_no_snapshoting(root);
11222 return 0;
11223 }
11224 return 1;
11225 }
11226
wait_snapshoting_atomic_t(atomic_t * a)11227 static int wait_snapshoting_atomic_t(atomic_t *a)
11228 {
11229 schedule();
11230 return 0;
11231 }
11232
btrfs_wait_for_snapshot_creation(struct btrfs_root * root)11233 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11234 {
11235 while (true) {
11236 int ret;
11237
11238 ret = btrfs_start_write_no_snapshoting(root);
11239 if (ret)
11240 break;
11241 wait_on_atomic_t(&root->will_be_snapshoted,
11242 wait_snapshoting_atomic_t,
11243 TASK_UNINTERRUPTIBLE);
11244 }
11245 }
11246