• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   * Copyright (C) 2007 Oracle.  All rights reserved.
3   *
4   * This program is free software; you can redistribute it and/or
5   * modify it under the terms of the GNU General Public
6   * License v2 as published by the Free Software Foundation.
7   *
8   * This program is distributed in the hope that it will be useful,
9   * but WITHOUT ANY WARRANTY; without even the implied warranty of
10   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11   * General Public License for more details.
12   *
13   * You should have received a copy of the GNU General Public
14   * License along with this program; if not, write to the
15   * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16   * Boston, MA 021110-1307, USA.
17   */
18  
19  #include <linux/fs.h>
20  #include <linux/slab.h>
21  #include <linux/sched.h>
22  #include <linux/writeback.h>
23  #include <linux/pagemap.h>
24  #include <linux/blkdev.h>
25  #include <linux/uuid.h>
26  #include "ctree.h"
27  #include "disk-io.h"
28  #include "transaction.h"
29  #include "locking.h"
30  #include "tree-log.h"
31  #include "inode-map.h"
32  #include "volumes.h"
33  #include "dev-replace.h"
34  #include "qgroup.h"
35  
36  #define BTRFS_ROOT_TRANS_TAG 0
37  
38  static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39  	[TRANS_STATE_RUNNING]		= 0U,
40  	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41  					   __TRANS_START),
42  	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43  					   __TRANS_START |
44  					   __TRANS_ATTACH),
45  	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46  					   __TRANS_START |
47  					   __TRANS_ATTACH |
48  					   __TRANS_JOIN),
49  	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50  					   __TRANS_START |
51  					   __TRANS_ATTACH |
52  					   __TRANS_JOIN |
53  					   __TRANS_JOIN_NOLOCK),
54  	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55  					   __TRANS_START |
56  					   __TRANS_ATTACH |
57  					   __TRANS_JOIN |
58  					   __TRANS_JOIN_NOLOCK),
59  };
60  
btrfs_put_transaction(struct btrfs_transaction * transaction)61  void btrfs_put_transaction(struct btrfs_transaction *transaction)
62  {
63  	WARN_ON(atomic_read(&transaction->use_count) == 0);
64  	if (atomic_dec_and_test(&transaction->use_count)) {
65  		BUG_ON(!list_empty(&transaction->list));
66  		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67  		if (transaction->delayed_refs.pending_csums)
68  			btrfs_err(transaction->fs_info,
69  				  "pending csums is %llu",
70  				  transaction->delayed_refs.pending_csums);
71  		while (!list_empty(&transaction->pending_chunks)) {
72  			struct extent_map *em;
73  
74  			em = list_first_entry(&transaction->pending_chunks,
75  					      struct extent_map, list);
76  			list_del_init(&em->list);
77  			free_extent_map(em);
78  		}
79  		/*
80  		 * If any block groups are found in ->deleted_bgs then it's
81  		 * because the transaction was aborted and a commit did not
82  		 * happen (things failed before writing the new superblock
83  		 * and calling btrfs_finish_extent_commit()), so we can not
84  		 * discard the physical locations of the block groups.
85  		 */
86  		while (!list_empty(&transaction->deleted_bgs)) {
87  			struct btrfs_block_group_cache *cache;
88  
89  			cache = list_first_entry(&transaction->deleted_bgs,
90  						 struct btrfs_block_group_cache,
91  						 bg_list);
92  			list_del_init(&cache->bg_list);
93  			btrfs_put_block_group_trimming(cache);
94  			btrfs_put_block_group(cache);
95  		}
96  		kmem_cache_free(btrfs_transaction_cachep, transaction);
97  	}
98  }
99  
clear_btree_io_tree(struct extent_io_tree * tree)100  static void clear_btree_io_tree(struct extent_io_tree *tree)
101  {
102  	spin_lock(&tree->lock);
103  	/*
104  	 * Do a single barrier for the waitqueue_active check here, the state
105  	 * of the waitqueue should not change once clear_btree_io_tree is
106  	 * called.
107  	 */
108  	smp_mb();
109  	while (!RB_EMPTY_ROOT(&tree->state)) {
110  		struct rb_node *node;
111  		struct extent_state *state;
112  
113  		node = rb_first(&tree->state);
114  		state = rb_entry(node, struct extent_state, rb_node);
115  		rb_erase(&state->rb_node, &tree->state);
116  		RB_CLEAR_NODE(&state->rb_node);
117  		/*
118  		 * btree io trees aren't supposed to have tasks waiting for
119  		 * changes in the flags of extent states ever.
120  		 */
121  		ASSERT(!waitqueue_active(&state->wq));
122  		free_extent_state(state);
123  
124  		cond_resched_lock(&tree->lock);
125  	}
126  	spin_unlock(&tree->lock);
127  }
128  
switch_commit_roots(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)129  static noinline void switch_commit_roots(struct btrfs_transaction *trans,
130  					 struct btrfs_fs_info *fs_info)
131  {
132  	struct btrfs_root *root, *tmp;
133  
134  	down_write(&fs_info->commit_root_sem);
135  	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
136  				 dirty_list) {
137  		list_del_init(&root->dirty_list);
138  		free_extent_buffer(root->commit_root);
139  		root->commit_root = btrfs_root_node(root);
140  		if (is_fstree(root->objectid))
141  			btrfs_unpin_free_ino(root);
142  		clear_btree_io_tree(&root->dirty_log_pages);
143  	}
144  
145  	/* We can free old roots now. */
146  	spin_lock(&trans->dropped_roots_lock);
147  	while (!list_empty(&trans->dropped_roots)) {
148  		root = list_first_entry(&trans->dropped_roots,
149  					struct btrfs_root, root_list);
150  		list_del_init(&root->root_list);
151  		spin_unlock(&trans->dropped_roots_lock);
152  		btrfs_drop_and_free_fs_root(fs_info, root);
153  		spin_lock(&trans->dropped_roots_lock);
154  	}
155  	spin_unlock(&trans->dropped_roots_lock);
156  	up_write(&fs_info->commit_root_sem);
157  }
158  
extwriter_counter_inc(struct btrfs_transaction * trans,unsigned int type)159  static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
160  					 unsigned int type)
161  {
162  	if (type & TRANS_EXTWRITERS)
163  		atomic_inc(&trans->num_extwriters);
164  }
165  
extwriter_counter_dec(struct btrfs_transaction * trans,unsigned int type)166  static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
167  					 unsigned int type)
168  {
169  	if (type & TRANS_EXTWRITERS)
170  		atomic_dec(&trans->num_extwriters);
171  }
172  
extwriter_counter_init(struct btrfs_transaction * trans,unsigned int type)173  static inline void extwriter_counter_init(struct btrfs_transaction *trans,
174  					  unsigned int type)
175  {
176  	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
177  }
178  
extwriter_counter_read(struct btrfs_transaction * trans)179  static inline int extwriter_counter_read(struct btrfs_transaction *trans)
180  {
181  	return atomic_read(&trans->num_extwriters);
182  }
183  
184  /*
185   * either allocate a new transaction or hop into the existing one
186   */
join_transaction(struct btrfs_root * root,unsigned int type)187  static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
188  {
189  	struct btrfs_transaction *cur_trans;
190  	struct btrfs_fs_info *fs_info = root->fs_info;
191  
192  	spin_lock(&fs_info->trans_lock);
193  loop:
194  	/* The file system has been taken offline. No new transactions. */
195  	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
196  		spin_unlock(&fs_info->trans_lock);
197  		return -EROFS;
198  	}
199  
200  	cur_trans = fs_info->running_transaction;
201  	if (cur_trans) {
202  		if (cur_trans->aborted) {
203  			spin_unlock(&fs_info->trans_lock);
204  			return cur_trans->aborted;
205  		}
206  		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
207  			spin_unlock(&fs_info->trans_lock);
208  			return -EBUSY;
209  		}
210  		atomic_inc(&cur_trans->use_count);
211  		atomic_inc(&cur_trans->num_writers);
212  		extwriter_counter_inc(cur_trans, type);
213  		spin_unlock(&fs_info->trans_lock);
214  		return 0;
215  	}
216  	spin_unlock(&fs_info->trans_lock);
217  
218  	/*
219  	 * If we are ATTACH, we just want to catch the current transaction,
220  	 * and commit it. If there is no transaction, just return ENOENT.
221  	 */
222  	if (type == TRANS_ATTACH)
223  		return -ENOENT;
224  
225  	/*
226  	 * JOIN_NOLOCK only happens during the transaction commit, so
227  	 * it is impossible that ->running_transaction is NULL
228  	 */
229  	BUG_ON(type == TRANS_JOIN_NOLOCK);
230  
231  	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
232  	if (!cur_trans)
233  		return -ENOMEM;
234  
235  	spin_lock(&fs_info->trans_lock);
236  	if (fs_info->running_transaction) {
237  		/*
238  		 * someone started a transaction after we unlocked.  Make sure
239  		 * to redo the checks above
240  		 */
241  		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
242  		goto loop;
243  	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
244  		spin_unlock(&fs_info->trans_lock);
245  		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
246  		return -EROFS;
247  	}
248  
249  	cur_trans->fs_info = fs_info;
250  	atomic_set(&cur_trans->num_writers, 1);
251  	extwriter_counter_init(cur_trans, type);
252  	init_waitqueue_head(&cur_trans->writer_wait);
253  	init_waitqueue_head(&cur_trans->commit_wait);
254  	init_waitqueue_head(&cur_trans->pending_wait);
255  	cur_trans->state = TRANS_STATE_RUNNING;
256  	/*
257  	 * One for this trans handle, one so it will live on until we
258  	 * commit the transaction.
259  	 */
260  	atomic_set(&cur_trans->use_count, 2);
261  	atomic_set(&cur_trans->pending_ordered, 0);
262  	cur_trans->flags = 0;
263  	cur_trans->start_time = get_seconds();
264  
265  	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
266  
267  	cur_trans->delayed_refs.href_root = RB_ROOT;
268  	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
269  	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
270  
271  	/*
272  	 * although the tree mod log is per file system and not per transaction,
273  	 * the log must never go across transaction boundaries.
274  	 */
275  	smp_mb();
276  	if (!list_empty(&fs_info->tree_mod_seq_list))
277  		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
278  	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
279  		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
280  	atomic64_set(&fs_info->tree_mod_seq, 0);
281  
282  	spin_lock_init(&cur_trans->delayed_refs.lock);
283  
284  	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285  	INIT_LIST_HEAD(&cur_trans->pending_chunks);
286  	INIT_LIST_HEAD(&cur_trans->switch_commits);
287  	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288  	INIT_LIST_HEAD(&cur_trans->io_bgs);
289  	INIT_LIST_HEAD(&cur_trans->dropped_roots);
290  	mutex_init(&cur_trans->cache_write_mutex);
291  	cur_trans->num_dirty_bgs = 0;
292  	spin_lock_init(&cur_trans->dirty_bgs_lock);
293  	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294  	spin_lock_init(&cur_trans->dropped_roots_lock);
295  	list_add_tail(&cur_trans->list, &fs_info->trans_list);
296  	extent_io_tree_init(&cur_trans->dirty_pages,
297  			     fs_info->btree_inode->i_mapping);
298  	fs_info->generation++;
299  	cur_trans->transid = fs_info->generation;
300  	fs_info->running_transaction = cur_trans;
301  	cur_trans->aborted = 0;
302  	spin_unlock(&fs_info->trans_lock);
303  
304  	return 0;
305  }
306  
307  /*
308   * this does all the record keeping required to make sure that a reference
309   * counted root is properly recorded in a given transaction.  This is required
310   * to make sure the old root from before we joined the transaction is deleted
311   * when the transaction commits
312   */
record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,int force)313  static int record_root_in_trans(struct btrfs_trans_handle *trans,
314  			       struct btrfs_root *root,
315  			       int force)
316  {
317  	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
318  	    root->last_trans < trans->transid) || force) {
319  		WARN_ON(root == root->fs_info->extent_root);
320  		WARN_ON(root->commit_root != root->node);
321  
322  		/*
323  		 * see below for IN_TRANS_SETUP usage rules
324  		 * we have the reloc mutex held now, so there
325  		 * is only one writer in this function
326  		 */
327  		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
328  
329  		/* make sure readers find IN_TRANS_SETUP before
330  		 * they find our root->last_trans update
331  		 */
332  		smp_wmb();
333  
334  		spin_lock(&root->fs_info->fs_roots_radix_lock);
335  		if (root->last_trans == trans->transid && !force) {
336  			spin_unlock(&root->fs_info->fs_roots_radix_lock);
337  			return 0;
338  		}
339  		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
340  			   (unsigned long)root->root_key.objectid,
341  			   BTRFS_ROOT_TRANS_TAG);
342  		spin_unlock(&root->fs_info->fs_roots_radix_lock);
343  		root->last_trans = trans->transid;
344  
345  		/* this is pretty tricky.  We don't want to
346  		 * take the relocation lock in btrfs_record_root_in_trans
347  		 * unless we're really doing the first setup for this root in
348  		 * this transaction.
349  		 *
350  		 * Normally we'd use root->last_trans as a flag to decide
351  		 * if we want to take the expensive mutex.
352  		 *
353  		 * But, we have to set root->last_trans before we
354  		 * init the relocation root, otherwise, we trip over warnings
355  		 * in ctree.c.  The solution used here is to flag ourselves
356  		 * with root IN_TRANS_SETUP.  When this is 1, we're still
357  		 * fixing up the reloc trees and everyone must wait.
358  		 *
359  		 * When this is zero, they can trust root->last_trans and fly
360  		 * through btrfs_record_root_in_trans without having to take the
361  		 * lock.  smp_wmb() makes sure that all the writes above are
362  		 * done before we pop in the zero below
363  		 */
364  		btrfs_init_reloc_root(trans, root);
365  		smp_mb__before_atomic();
366  		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
367  	}
368  	return 0;
369  }
370  
371  
btrfs_add_dropped_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)372  void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
373  			    struct btrfs_root *root)
374  {
375  	struct btrfs_transaction *cur_trans = trans->transaction;
376  
377  	/* Add ourselves to the transaction dropped list */
378  	spin_lock(&cur_trans->dropped_roots_lock);
379  	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
380  	spin_unlock(&cur_trans->dropped_roots_lock);
381  
382  	/* Make sure we don't try to update the root at commit time */
383  	spin_lock(&root->fs_info->fs_roots_radix_lock);
384  	radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
385  			     (unsigned long)root->root_key.objectid,
386  			     BTRFS_ROOT_TRANS_TAG);
387  	spin_unlock(&root->fs_info->fs_roots_radix_lock);
388  }
389  
btrfs_record_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root)390  int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
391  			       struct btrfs_root *root)
392  {
393  	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
394  		return 0;
395  
396  	/*
397  	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
398  	 * and barriers
399  	 */
400  	smp_rmb();
401  	if (root->last_trans == trans->transid &&
402  	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
403  		return 0;
404  
405  	mutex_lock(&root->fs_info->reloc_mutex);
406  	record_root_in_trans(trans, root, 0);
407  	mutex_unlock(&root->fs_info->reloc_mutex);
408  
409  	return 0;
410  }
411  
is_transaction_blocked(struct btrfs_transaction * trans)412  static inline int is_transaction_blocked(struct btrfs_transaction *trans)
413  {
414  	return (trans->state >= TRANS_STATE_BLOCKED &&
415  		trans->state < TRANS_STATE_UNBLOCKED &&
416  		!trans->aborted);
417  }
418  
419  /* wait for commit against the current transaction to become unblocked
420   * when this is done, it is safe to start a new transaction, but the current
421   * transaction might not be fully on disk.
422   */
wait_current_trans(struct btrfs_root * root)423  static void wait_current_trans(struct btrfs_root *root)
424  {
425  	struct btrfs_transaction *cur_trans;
426  
427  	spin_lock(&root->fs_info->trans_lock);
428  	cur_trans = root->fs_info->running_transaction;
429  	if (cur_trans && is_transaction_blocked(cur_trans)) {
430  		atomic_inc(&cur_trans->use_count);
431  		spin_unlock(&root->fs_info->trans_lock);
432  
433  		wait_event(root->fs_info->transaction_wait,
434  			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
435  			   cur_trans->aborted);
436  		btrfs_put_transaction(cur_trans);
437  	} else {
438  		spin_unlock(&root->fs_info->trans_lock);
439  	}
440  }
441  
may_wait_transaction(struct btrfs_root * root,int type)442  static int may_wait_transaction(struct btrfs_root *root, int type)
443  {
444  	if (test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags))
445  		return 0;
446  
447  	if (type == TRANS_USERSPACE)
448  		return 1;
449  
450  	if (type == TRANS_START &&
451  	    !atomic_read(&root->fs_info->open_ioctl_trans))
452  		return 1;
453  
454  	return 0;
455  }
456  
need_reserve_reloc_root(struct btrfs_root * root)457  static inline bool need_reserve_reloc_root(struct btrfs_root *root)
458  {
459  	if (!root->fs_info->reloc_ctl ||
460  	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
461  	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
462  	    root->reloc_root)
463  		return false;
464  
465  	return true;
466  }
467  
468  static struct btrfs_trans_handle *
start_transaction(struct btrfs_root * root,unsigned int num_items,unsigned int type,enum btrfs_reserve_flush_enum flush)469  start_transaction(struct btrfs_root *root, unsigned int num_items,
470  		  unsigned int type, enum btrfs_reserve_flush_enum flush)
471  {
472  	struct btrfs_trans_handle *h;
473  	struct btrfs_transaction *cur_trans;
474  	u64 num_bytes = 0;
475  	u64 qgroup_reserved = 0;
476  	bool reloc_reserved = false;
477  	int ret;
478  
479  	/* Send isn't supposed to start transactions. */
480  	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
481  
482  	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
483  		return ERR_PTR(-EROFS);
484  
485  	if (current->journal_info) {
486  		WARN_ON(type & TRANS_EXTWRITERS);
487  		h = current->journal_info;
488  		h->use_count++;
489  		WARN_ON(h->use_count > 2);
490  		h->orig_rsv = h->block_rsv;
491  		h->block_rsv = NULL;
492  		goto got_it;
493  	}
494  
495  	/*
496  	 * Do the reservation before we join the transaction so we can do all
497  	 * the appropriate flushing if need be.
498  	 */
499  	if (num_items > 0 && root != root->fs_info->chunk_root) {
500  		qgroup_reserved = num_items * root->nodesize;
501  		ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
502  		if (ret)
503  			return ERR_PTR(ret);
504  
505  		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
506  		/*
507  		 * Do the reservation for the relocation root creation
508  		 */
509  		if (need_reserve_reloc_root(root)) {
510  			num_bytes += root->nodesize;
511  			reloc_reserved = true;
512  		}
513  
514  		ret = btrfs_block_rsv_add(root,
515  					  &root->fs_info->trans_block_rsv,
516  					  num_bytes, flush);
517  		if (ret)
518  			goto reserve_fail;
519  	}
520  again:
521  	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
522  	if (!h) {
523  		ret = -ENOMEM;
524  		goto alloc_fail;
525  	}
526  
527  	/*
528  	 * If we are JOIN_NOLOCK we're already committing a transaction and
529  	 * waiting on this guy, so we don't need to do the sb_start_intwrite
530  	 * because we're already holding a ref.  We need this because we could
531  	 * have raced in and did an fsync() on a file which can kick a commit
532  	 * and then we deadlock with somebody doing a freeze.
533  	 *
534  	 * If we are ATTACH, it means we just want to catch the current
535  	 * transaction and commit it, so we needn't do sb_start_intwrite().
536  	 */
537  	if (type & __TRANS_FREEZABLE)
538  		sb_start_intwrite(root->fs_info->sb);
539  
540  	if (may_wait_transaction(root, type))
541  		wait_current_trans(root);
542  
543  	do {
544  		ret = join_transaction(root, type);
545  		if (ret == -EBUSY) {
546  			wait_current_trans(root);
547  			if (unlikely(type == TRANS_ATTACH))
548  				ret = -ENOENT;
549  		}
550  	} while (ret == -EBUSY);
551  
552  	if (ret < 0)
553  		goto join_fail;
554  
555  	cur_trans = root->fs_info->running_transaction;
556  
557  	h->transid = cur_trans->transid;
558  	h->transaction = cur_trans;
559  	h->root = root;
560  	h->use_count = 1;
561  	h->fs_info = root->fs_info;
562  
563  	h->type = type;
564  	h->can_flush_pending_bgs = true;
565  	INIT_LIST_HEAD(&h->qgroup_ref_list);
566  	INIT_LIST_HEAD(&h->new_bgs);
567  
568  	smp_mb();
569  	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
570  	    may_wait_transaction(root, type)) {
571  		current->journal_info = h;
572  		btrfs_commit_transaction(h, root);
573  		goto again;
574  	}
575  
576  	if (num_bytes) {
577  		trace_btrfs_space_reservation(root->fs_info, "transaction",
578  					      h->transid, num_bytes, 1);
579  		h->block_rsv = &root->fs_info->trans_block_rsv;
580  		h->bytes_reserved = num_bytes;
581  		h->reloc_reserved = reloc_reserved;
582  	}
583  
584  got_it:
585  	btrfs_record_root_in_trans(h, root);
586  
587  	if (!current->journal_info && type != TRANS_USERSPACE)
588  		current->journal_info = h;
589  	return h;
590  
591  join_fail:
592  	if (type & __TRANS_FREEZABLE)
593  		sb_end_intwrite(root->fs_info->sb);
594  	kmem_cache_free(btrfs_trans_handle_cachep, h);
595  alloc_fail:
596  	if (num_bytes)
597  		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
598  					num_bytes);
599  reserve_fail:
600  	btrfs_qgroup_free_meta(root, qgroup_reserved);
601  	return ERR_PTR(ret);
602  }
603  
btrfs_start_transaction(struct btrfs_root * root,unsigned int num_items)604  struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
605  						   unsigned int num_items)
606  {
607  	return start_transaction(root, num_items, TRANS_START,
608  				 BTRFS_RESERVE_FLUSH_ALL);
609  }
btrfs_start_transaction_fallback_global_rsv(struct btrfs_root * root,unsigned int num_items,int min_factor)610  struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
611  					struct btrfs_root *root,
612  					unsigned int num_items,
613  					int min_factor)
614  {
615  	struct btrfs_trans_handle *trans;
616  	u64 num_bytes;
617  	int ret;
618  
619  	trans = btrfs_start_transaction(root, num_items);
620  	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
621  		return trans;
622  
623  	trans = btrfs_start_transaction(root, 0);
624  	if (IS_ERR(trans))
625  		return trans;
626  
627  	num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
628  	ret = btrfs_cond_migrate_bytes(root->fs_info,
629  				       &root->fs_info->trans_block_rsv,
630  				       num_bytes,
631  				       min_factor);
632  	if (ret) {
633  		btrfs_end_transaction(trans, root);
634  		return ERR_PTR(ret);
635  	}
636  
637  	trans->block_rsv = &root->fs_info->trans_block_rsv;
638  	trans->bytes_reserved = num_bytes;
639  	trace_btrfs_space_reservation(root->fs_info, "transaction",
640  				      trans->transid, num_bytes, 1);
641  
642  	return trans;
643  }
644  
btrfs_start_transaction_lflush(struct btrfs_root * root,unsigned int num_items)645  struct btrfs_trans_handle *btrfs_start_transaction_lflush(
646  					struct btrfs_root *root,
647  					unsigned int num_items)
648  {
649  	return start_transaction(root, num_items, TRANS_START,
650  				 BTRFS_RESERVE_FLUSH_LIMIT);
651  }
652  
btrfs_join_transaction(struct btrfs_root * root)653  struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
654  {
655  	return start_transaction(root, 0, TRANS_JOIN,
656  				 BTRFS_RESERVE_NO_FLUSH);
657  }
658  
btrfs_join_transaction_nolock(struct btrfs_root * root)659  struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
660  {
661  	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
662  				 BTRFS_RESERVE_NO_FLUSH);
663  }
664  
btrfs_start_ioctl_transaction(struct btrfs_root * root)665  struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
666  {
667  	return start_transaction(root, 0, TRANS_USERSPACE,
668  				 BTRFS_RESERVE_NO_FLUSH);
669  }
670  
671  /*
672   * btrfs_attach_transaction() - catch the running transaction
673   *
674   * It is used when we want to commit the current the transaction, but
675   * don't want to start a new one.
676   *
677   * Note: If this function return -ENOENT, it just means there is no
678   * running transaction. But it is possible that the inactive transaction
679   * is still in the memory, not fully on disk. If you hope there is no
680   * inactive transaction in the fs when -ENOENT is returned, you should
681   * invoke
682   *     btrfs_attach_transaction_barrier()
683   */
btrfs_attach_transaction(struct btrfs_root * root)684  struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
685  {
686  	return start_transaction(root, 0, TRANS_ATTACH,
687  				 BTRFS_RESERVE_NO_FLUSH);
688  }
689  
690  /*
691   * btrfs_attach_transaction_barrier() - catch the running transaction
692   *
693   * It is similar to the above function, the differentia is this one
694   * will wait for all the inactive transactions until they fully
695   * complete.
696   */
697  struct btrfs_trans_handle *
btrfs_attach_transaction_barrier(struct btrfs_root * root)698  btrfs_attach_transaction_barrier(struct btrfs_root *root)
699  {
700  	struct btrfs_trans_handle *trans;
701  
702  	trans = start_transaction(root, 0, TRANS_ATTACH,
703  				  BTRFS_RESERVE_NO_FLUSH);
704  	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
705  		btrfs_wait_for_commit(root, 0);
706  
707  	return trans;
708  }
709  
710  /* wait for a transaction commit to be fully complete */
wait_for_commit(struct btrfs_root * root,struct btrfs_transaction * commit)711  static noinline void wait_for_commit(struct btrfs_root *root,
712  				    struct btrfs_transaction *commit)
713  {
714  	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
715  }
716  
btrfs_wait_for_commit(struct btrfs_root * root,u64 transid)717  int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
718  {
719  	struct btrfs_transaction *cur_trans = NULL, *t;
720  	int ret = 0;
721  
722  	if (transid) {
723  		if (transid <= root->fs_info->last_trans_committed)
724  			goto out;
725  
726  		/* find specified transaction */
727  		spin_lock(&root->fs_info->trans_lock);
728  		list_for_each_entry(t, &root->fs_info->trans_list, list) {
729  			if (t->transid == transid) {
730  				cur_trans = t;
731  				atomic_inc(&cur_trans->use_count);
732  				ret = 0;
733  				break;
734  			}
735  			if (t->transid > transid) {
736  				ret = 0;
737  				break;
738  			}
739  		}
740  		spin_unlock(&root->fs_info->trans_lock);
741  
742  		/*
743  		 * The specified transaction doesn't exist, or we
744  		 * raced with btrfs_commit_transaction
745  		 */
746  		if (!cur_trans) {
747  			if (transid > root->fs_info->last_trans_committed)
748  				ret = -EINVAL;
749  			goto out;
750  		}
751  	} else {
752  		/* find newest transaction that is committing | committed */
753  		spin_lock(&root->fs_info->trans_lock);
754  		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
755  					    list) {
756  			if (t->state >= TRANS_STATE_COMMIT_START) {
757  				if (t->state == TRANS_STATE_COMPLETED)
758  					break;
759  				cur_trans = t;
760  				atomic_inc(&cur_trans->use_count);
761  				break;
762  			}
763  		}
764  		spin_unlock(&root->fs_info->trans_lock);
765  		if (!cur_trans)
766  			goto out;  /* nothing committing|committed */
767  	}
768  
769  	wait_for_commit(root, cur_trans);
770  	btrfs_put_transaction(cur_trans);
771  out:
772  	return ret;
773  }
774  
btrfs_throttle(struct btrfs_root * root)775  void btrfs_throttle(struct btrfs_root *root)
776  {
777  	if (!atomic_read(&root->fs_info->open_ioctl_trans))
778  		wait_current_trans(root);
779  }
780  
should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)781  static int should_end_transaction(struct btrfs_trans_handle *trans,
782  				  struct btrfs_root *root)
783  {
784  	if (root->fs_info->global_block_rsv.space_info->full &&
785  	    btrfs_check_space_for_delayed_refs(trans, root))
786  		return 1;
787  
788  	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
789  }
790  
btrfs_should_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)791  int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
792  				 struct btrfs_root *root)
793  {
794  	struct btrfs_transaction *cur_trans = trans->transaction;
795  	int updates;
796  	int err;
797  
798  	smp_mb();
799  	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
800  	    cur_trans->delayed_refs.flushing)
801  		return 1;
802  
803  	updates = trans->delayed_ref_updates;
804  	trans->delayed_ref_updates = 0;
805  	if (updates) {
806  		err = btrfs_run_delayed_refs(trans, root, updates * 2);
807  		if (err) /* Error code will also eval true */
808  			return err;
809  	}
810  
811  	return should_end_transaction(trans, root);
812  }
813  
__btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root,int throttle)814  static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
815  			  struct btrfs_root *root, int throttle)
816  {
817  	struct btrfs_transaction *cur_trans = trans->transaction;
818  	struct btrfs_fs_info *info = root->fs_info;
819  	u64 transid = trans->transid;
820  	unsigned long cur = trans->delayed_ref_updates;
821  	int lock = (trans->type != TRANS_JOIN_NOLOCK);
822  	int err = 0;
823  	int must_run_delayed_refs = 0;
824  
825  	if (trans->use_count > 1) {
826  		trans->use_count--;
827  		trans->block_rsv = trans->orig_rsv;
828  		return 0;
829  	}
830  
831  	btrfs_trans_release_metadata(trans, root);
832  	trans->block_rsv = NULL;
833  
834  	if (!list_empty(&trans->new_bgs))
835  		btrfs_create_pending_block_groups(trans, root);
836  
837  	trans->delayed_ref_updates = 0;
838  	if (!trans->sync) {
839  		must_run_delayed_refs =
840  			btrfs_should_throttle_delayed_refs(trans, root);
841  		cur = max_t(unsigned long, cur, 32);
842  
843  		/*
844  		 * don't make the caller wait if they are from a NOLOCK
845  		 * or ATTACH transaction, it will deadlock with commit
846  		 */
847  		if (must_run_delayed_refs == 1 &&
848  		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
849  			must_run_delayed_refs = 2;
850  	}
851  
852  	btrfs_trans_release_metadata(trans, root);
853  	trans->block_rsv = NULL;
854  
855  	if (!list_empty(&trans->new_bgs))
856  		btrfs_create_pending_block_groups(trans, root);
857  
858  	btrfs_trans_release_chunk_metadata(trans);
859  
860  	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
861  	    should_end_transaction(trans, root) &&
862  	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
863  		spin_lock(&info->trans_lock);
864  		if (cur_trans->state == TRANS_STATE_RUNNING)
865  			cur_trans->state = TRANS_STATE_BLOCKED;
866  		spin_unlock(&info->trans_lock);
867  	}
868  
869  	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
870  		if (throttle)
871  			return btrfs_commit_transaction(trans, root);
872  		else
873  			wake_up_process(info->transaction_kthread);
874  	}
875  
876  	if (trans->type & __TRANS_FREEZABLE)
877  		sb_end_intwrite(root->fs_info->sb);
878  
879  	WARN_ON(cur_trans != info->running_transaction);
880  	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
881  	atomic_dec(&cur_trans->num_writers);
882  	extwriter_counter_dec(cur_trans, trans->type);
883  
884  	/*
885  	 * Make sure counter is updated before we wake up waiters.
886  	 */
887  	smp_mb();
888  	if (waitqueue_active(&cur_trans->writer_wait))
889  		wake_up(&cur_trans->writer_wait);
890  	btrfs_put_transaction(cur_trans);
891  
892  	if (current->journal_info == trans)
893  		current->journal_info = NULL;
894  
895  	if (throttle)
896  		btrfs_run_delayed_iputs(root);
897  
898  	if (trans->aborted ||
899  	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
900  		wake_up_process(info->transaction_kthread);
901  		err = -EIO;
902  	}
903  	assert_qgroups_uptodate(trans);
904  
905  	kmem_cache_free(btrfs_trans_handle_cachep, trans);
906  	if (must_run_delayed_refs) {
907  		btrfs_async_run_delayed_refs(root, cur, transid,
908  					     must_run_delayed_refs == 1);
909  	}
910  	return err;
911  }
912  
btrfs_end_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)913  int btrfs_end_transaction(struct btrfs_trans_handle *trans,
914  			  struct btrfs_root *root)
915  {
916  	return __btrfs_end_transaction(trans, root, 0);
917  }
918  
btrfs_end_transaction_throttle(struct btrfs_trans_handle * trans,struct btrfs_root * root)919  int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
920  				   struct btrfs_root *root)
921  {
922  	return __btrfs_end_transaction(trans, root, 1);
923  }
924  
925  /*
926   * when btree blocks are allocated, they have some corresponding bits set for
927   * them in one of two extent_io trees.  This is used to make sure all of
928   * those extents are sent to disk but does not wait on them
929   */
btrfs_write_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)930  int btrfs_write_marked_extents(struct btrfs_root *root,
931  			       struct extent_io_tree *dirty_pages, int mark)
932  {
933  	int err = 0;
934  	int werr = 0;
935  	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
936  	struct extent_state *cached_state = NULL;
937  	u64 start = 0;
938  	u64 end;
939  
940  	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
941  				      mark, &cached_state)) {
942  		bool wait_writeback = false;
943  
944  		err = convert_extent_bit(dirty_pages, start, end,
945  					 EXTENT_NEED_WAIT,
946  					 mark, &cached_state);
947  		/*
948  		 * convert_extent_bit can return -ENOMEM, which is most of the
949  		 * time a temporary error. So when it happens, ignore the error
950  		 * and wait for writeback of this range to finish - because we
951  		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
952  		 * to btrfs_wait_marked_extents() would not know that writeback
953  		 * for this range started and therefore wouldn't wait for it to
954  		 * finish - we don't want to commit a superblock that points to
955  		 * btree nodes/leafs for which writeback hasn't finished yet
956  		 * (and without errors).
957  		 * We cleanup any entries left in the io tree when committing
958  		 * the transaction (through clear_btree_io_tree()).
959  		 */
960  		if (err == -ENOMEM) {
961  			err = 0;
962  			wait_writeback = true;
963  		}
964  		if (!err)
965  			err = filemap_fdatawrite_range(mapping, start, end);
966  		if (err)
967  			werr = err;
968  		else if (wait_writeback)
969  			werr = filemap_fdatawait_range(mapping, start, end);
970  		free_extent_state(cached_state);
971  		cached_state = NULL;
972  		cond_resched();
973  		start = end + 1;
974  	}
975  	return werr;
976  }
977  
978  /*
979   * when btree blocks are allocated, they have some corresponding bits set for
980   * them in one of two extent_io trees.  This is used to make sure all of
981   * those extents are on disk for transaction or log commit.  We wait
982   * on all the pages and clear them from the dirty pages state tree
983   */
btrfs_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)984  int btrfs_wait_marked_extents(struct btrfs_root *root,
985  			      struct extent_io_tree *dirty_pages, int mark)
986  {
987  	int err = 0;
988  	int werr = 0;
989  	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
990  	struct extent_state *cached_state = NULL;
991  	u64 start = 0;
992  	u64 end;
993  	bool errors = false;
994  
995  	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
996  				      EXTENT_NEED_WAIT, &cached_state)) {
997  		/*
998  		 * Ignore -ENOMEM errors returned by clear_extent_bit().
999  		 * When committing the transaction, we'll remove any entries
1000  		 * left in the io tree. For a log commit, we don't remove them
1001  		 * after committing the log because the tree can be accessed
1002  		 * concurrently - we do it only at transaction commit time when
1003  		 * it's safe to do it (through clear_btree_io_tree()).
1004  		 */
1005  		err = clear_extent_bit(dirty_pages, start, end,
1006  				       EXTENT_NEED_WAIT,
1007  				       0, 0, &cached_state, GFP_NOFS);
1008  		if (err == -ENOMEM)
1009  			err = 0;
1010  		if (!err)
1011  			err = filemap_fdatawait_range(mapping, start, end);
1012  		if (err)
1013  			werr = err;
1014  		free_extent_state(cached_state);
1015  		cached_state = NULL;
1016  		cond_resched();
1017  		start = end + 1;
1018  	}
1019  	if (err)
1020  		werr = err;
1021  
1022  	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1023  		if ((mark & EXTENT_DIRTY) &&
1024  		    test_and_clear_bit(BTRFS_FS_LOG1_ERR,
1025  				       &root->fs_info->flags))
1026  			errors = true;
1027  
1028  		if ((mark & EXTENT_NEW) &&
1029  		    test_and_clear_bit(BTRFS_FS_LOG2_ERR,
1030  				       &root->fs_info->flags))
1031  			errors = true;
1032  	} else {
1033  		if (test_and_clear_bit(BTRFS_FS_BTREE_ERR,
1034  				       &root->fs_info->flags))
1035  			errors = true;
1036  	}
1037  
1038  	if (errors && !werr)
1039  		werr = -EIO;
1040  
1041  	return werr;
1042  }
1043  
1044  /*
1045   * when btree blocks are allocated, they have some corresponding bits set for
1046   * them in one of two extent_io trees.  This is used to make sure all of
1047   * those extents are on disk for transaction or log commit
1048   */
btrfs_write_and_wait_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)1049  static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1050  				struct extent_io_tree *dirty_pages, int mark)
1051  {
1052  	int ret;
1053  	int ret2;
1054  	struct blk_plug plug;
1055  
1056  	blk_start_plug(&plug);
1057  	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1058  	blk_finish_plug(&plug);
1059  	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1060  
1061  	if (ret)
1062  		return ret;
1063  	if (ret2)
1064  		return ret2;
1065  	return 0;
1066  }
1067  
btrfs_write_and_wait_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)1068  static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1069  				     struct btrfs_root *root)
1070  {
1071  	int ret;
1072  
1073  	ret = btrfs_write_and_wait_marked_extents(root,
1074  					   &trans->transaction->dirty_pages,
1075  					   EXTENT_DIRTY);
1076  	clear_btree_io_tree(&trans->transaction->dirty_pages);
1077  
1078  	return ret;
1079  }
1080  
1081  /*
1082   * this is used to update the root pointer in the tree of tree roots.
1083   *
1084   * But, in the case of the extent allocation tree, updating the root
1085   * pointer may allocate blocks which may change the root of the extent
1086   * allocation tree.
1087   *
1088   * So, this loops and repeats and makes sure the cowonly root didn't
1089   * change while the root pointer was being updated in the metadata.
1090   */
update_cowonly_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)1091  static int update_cowonly_root(struct btrfs_trans_handle *trans,
1092  			       struct btrfs_root *root)
1093  {
1094  	int ret;
1095  	u64 old_root_bytenr;
1096  	u64 old_root_used;
1097  	struct btrfs_root *tree_root = root->fs_info->tree_root;
1098  
1099  	old_root_used = btrfs_root_used(&root->root_item);
1100  
1101  	while (1) {
1102  		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1103  		if (old_root_bytenr == root->node->start &&
1104  		    old_root_used == btrfs_root_used(&root->root_item))
1105  			break;
1106  
1107  		btrfs_set_root_node(&root->root_item, root->node);
1108  		ret = btrfs_update_root(trans, tree_root,
1109  					&root->root_key,
1110  					&root->root_item);
1111  		if (ret)
1112  			return ret;
1113  
1114  		old_root_used = btrfs_root_used(&root->root_item);
1115  	}
1116  
1117  	return 0;
1118  }
1119  
1120  /*
1121   * update all the cowonly tree roots on disk
1122   *
1123   * The error handling in this function may not be obvious. Any of the
1124   * failures will cause the file system to go offline. We still need
1125   * to clean up the delayed refs.
1126   */
commit_cowonly_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)1127  static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1128  					 struct btrfs_root *root)
1129  {
1130  	struct btrfs_fs_info *fs_info = root->fs_info;
1131  	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1132  	struct list_head *io_bgs = &trans->transaction->io_bgs;
1133  	struct list_head *next;
1134  	struct extent_buffer *eb;
1135  	int ret;
1136  
1137  	eb = btrfs_lock_root_node(fs_info->tree_root);
1138  	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1139  			      0, &eb);
1140  	btrfs_tree_unlock(eb);
1141  	free_extent_buffer(eb);
1142  
1143  	if (ret)
1144  		return ret;
1145  
1146  	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1147  	if (ret)
1148  		return ret;
1149  
1150  	ret = btrfs_run_dev_stats(trans, root->fs_info);
1151  	if (ret)
1152  		return ret;
1153  	ret = btrfs_run_dev_replace(trans, root->fs_info);
1154  	if (ret)
1155  		return ret;
1156  	ret = btrfs_run_qgroups(trans, root->fs_info);
1157  	if (ret)
1158  		return ret;
1159  
1160  	ret = btrfs_setup_space_cache(trans, root);
1161  	if (ret)
1162  		return ret;
1163  
1164  	/* run_qgroups might have added some more refs */
1165  	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1166  	if (ret)
1167  		return ret;
1168  again:
1169  	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1170  		next = fs_info->dirty_cowonly_roots.next;
1171  		list_del_init(next);
1172  		root = list_entry(next, struct btrfs_root, dirty_list);
1173  		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1174  
1175  		if (root != fs_info->extent_root)
1176  			list_add_tail(&root->dirty_list,
1177  				      &trans->transaction->switch_commits);
1178  		ret = update_cowonly_root(trans, root);
1179  		if (ret)
1180  			return ret;
1181  		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1182  		if (ret)
1183  			return ret;
1184  	}
1185  
1186  	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1187  		ret = btrfs_write_dirty_block_groups(trans, root);
1188  		if (ret)
1189  			return ret;
1190  		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1191  		if (ret)
1192  			return ret;
1193  	}
1194  
1195  	if (!list_empty(&fs_info->dirty_cowonly_roots))
1196  		goto again;
1197  
1198  	list_add_tail(&fs_info->extent_root->dirty_list,
1199  		      &trans->transaction->switch_commits);
1200  	btrfs_after_dev_replace_commit(fs_info);
1201  
1202  	return 0;
1203  }
1204  
1205  /*
1206   * dead roots are old snapshots that need to be deleted.  This allocates
1207   * a dirty root struct and adds it into the list of dead roots that need to
1208   * be deleted
1209   */
btrfs_add_dead_root(struct btrfs_root * root)1210  void btrfs_add_dead_root(struct btrfs_root *root)
1211  {
1212  	spin_lock(&root->fs_info->trans_lock);
1213  	if (list_empty(&root->root_list))
1214  		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1215  	spin_unlock(&root->fs_info->trans_lock);
1216  }
1217  
1218  /*
1219   * update all the cowonly tree roots on disk
1220   */
commit_fs_roots(struct btrfs_trans_handle * trans,struct btrfs_root * root)1221  static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1222  				    struct btrfs_root *root)
1223  {
1224  	struct btrfs_root *gang[8];
1225  	struct btrfs_fs_info *fs_info = root->fs_info;
1226  	int i;
1227  	int ret;
1228  	int err = 0;
1229  
1230  	spin_lock(&fs_info->fs_roots_radix_lock);
1231  	while (1) {
1232  		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1233  						 (void **)gang, 0,
1234  						 ARRAY_SIZE(gang),
1235  						 BTRFS_ROOT_TRANS_TAG);
1236  		if (ret == 0)
1237  			break;
1238  		for (i = 0; i < ret; i++) {
1239  			root = gang[i];
1240  			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1241  					(unsigned long)root->root_key.objectid,
1242  					BTRFS_ROOT_TRANS_TAG);
1243  			spin_unlock(&fs_info->fs_roots_radix_lock);
1244  
1245  			btrfs_free_log(trans, root);
1246  			btrfs_update_reloc_root(trans, root);
1247  			btrfs_orphan_commit_root(trans, root);
1248  
1249  			btrfs_save_ino_cache(root, trans);
1250  
1251  			/* see comments in should_cow_block() */
1252  			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1253  			smp_mb__after_atomic();
1254  
1255  			if (root->commit_root != root->node) {
1256  				list_add_tail(&root->dirty_list,
1257  					&trans->transaction->switch_commits);
1258  				btrfs_set_root_node(&root->root_item,
1259  						    root->node);
1260  			}
1261  
1262  			err = btrfs_update_root(trans, fs_info->tree_root,
1263  						&root->root_key,
1264  						&root->root_item);
1265  			spin_lock(&fs_info->fs_roots_radix_lock);
1266  			if (err)
1267  				break;
1268  			btrfs_qgroup_free_meta_all(root);
1269  		}
1270  	}
1271  	spin_unlock(&fs_info->fs_roots_radix_lock);
1272  	return err;
1273  }
1274  
1275  /*
1276   * defrag a given btree.
1277   * Every leaf in the btree is read and defragged.
1278   */
btrfs_defrag_root(struct btrfs_root * root)1279  int btrfs_defrag_root(struct btrfs_root *root)
1280  {
1281  	struct btrfs_fs_info *info = root->fs_info;
1282  	struct btrfs_trans_handle *trans;
1283  	int ret;
1284  
1285  	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1286  		return 0;
1287  
1288  	while (1) {
1289  		trans = btrfs_start_transaction(root, 0);
1290  		if (IS_ERR(trans))
1291  			return PTR_ERR(trans);
1292  
1293  		ret = btrfs_defrag_leaves(trans, root);
1294  
1295  		btrfs_end_transaction(trans, root);
1296  		btrfs_btree_balance_dirty(info->tree_root);
1297  		cond_resched();
1298  
1299  		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1300  			break;
1301  
1302  		if (btrfs_defrag_cancelled(info)) {
1303  			btrfs_debug(info, "defrag_root cancelled");
1304  			ret = -EAGAIN;
1305  			break;
1306  		}
1307  	}
1308  	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1309  	return ret;
1310  }
1311  
1312  /*
1313   * Do all special snapshot related qgroup dirty hack.
1314   *
1315   * Will do all needed qgroup inherit and dirty hack like switch commit
1316   * roots inside one transaction and write all btree into disk, to make
1317   * qgroup works.
1318   */
qgroup_account_snapshot(struct btrfs_trans_handle * trans,struct btrfs_root * src,struct btrfs_root * parent,struct btrfs_qgroup_inherit * inherit,u64 dst_objectid)1319  static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1320  				   struct btrfs_root *src,
1321  				   struct btrfs_root *parent,
1322  				   struct btrfs_qgroup_inherit *inherit,
1323  				   u64 dst_objectid)
1324  {
1325  	struct btrfs_fs_info *fs_info = src->fs_info;
1326  	int ret;
1327  
1328  	/*
1329  	 * Save some performance in the case that qgroups are not
1330  	 * enabled. If this check races with the ioctl, rescan will
1331  	 * kick in anyway.
1332  	 */
1333  	mutex_lock(&fs_info->qgroup_ioctl_lock);
1334  	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
1335  		mutex_unlock(&fs_info->qgroup_ioctl_lock);
1336  		return 0;
1337  	}
1338  	mutex_unlock(&fs_info->qgroup_ioctl_lock);
1339  
1340  	/*
1341  	 * We are going to commit transaction, see btrfs_commit_transaction()
1342  	 * comment for reason locking tree_log_mutex
1343  	 */
1344  	mutex_lock(&fs_info->tree_log_mutex);
1345  
1346  	ret = commit_fs_roots(trans, src);
1347  	if (ret)
1348  		goto out;
1349  	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1350  	if (ret < 0)
1351  		goto out;
1352  	ret = btrfs_qgroup_account_extents(trans, fs_info);
1353  	if (ret < 0)
1354  		goto out;
1355  
1356  	/* Now qgroup are all updated, we can inherit it to new qgroups */
1357  	ret = btrfs_qgroup_inherit(trans, fs_info,
1358  				   src->root_key.objectid, dst_objectid,
1359  				   inherit);
1360  	if (ret < 0)
1361  		goto out;
1362  
1363  	/*
1364  	 * Now we do a simplified commit transaction, which will:
1365  	 * 1) commit all subvolume and extent tree
1366  	 *    To ensure all subvolume and extent tree have a valid
1367  	 *    commit_root to accounting later insert_dir_item()
1368  	 * 2) write all btree blocks onto disk
1369  	 *    This is to make sure later btree modification will be cowed
1370  	 *    Or commit_root can be populated and cause wrong qgroup numbers
1371  	 * In this simplified commit, we don't really care about other trees
1372  	 * like chunk and root tree, as they won't affect qgroup.
1373  	 * And we don't write super to avoid half committed status.
1374  	 */
1375  	ret = commit_cowonly_roots(trans, src);
1376  	if (ret)
1377  		goto out;
1378  	switch_commit_roots(trans->transaction, fs_info);
1379  	ret = btrfs_write_and_wait_transaction(trans, src);
1380  	if (ret)
1381  		btrfs_handle_fs_error(fs_info, ret,
1382  			"Error while writing out transaction for qgroup");
1383  
1384  out:
1385  	mutex_unlock(&fs_info->tree_log_mutex);
1386  
1387  	/*
1388  	 * Force parent root to be updated, as we recorded it before so its
1389  	 * last_trans == cur_transid.
1390  	 * Or it won't be committed again onto disk after later
1391  	 * insert_dir_item()
1392  	 */
1393  	if (!ret)
1394  		record_root_in_trans(trans, parent, 1);
1395  	return ret;
1396  }
1397  
1398  /*
1399   * new snapshots need to be created at a very specific time in the
1400   * transaction commit.  This does the actual creation.
1401   *
1402   * Note:
1403   * If the error which may affect the commitment of the current transaction
1404   * happens, we should return the error number. If the error which just affect
1405   * the creation of the pending snapshots, just return 0.
1406   */
create_pending_snapshot(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,struct btrfs_pending_snapshot * pending)1407  static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1408  				   struct btrfs_fs_info *fs_info,
1409  				   struct btrfs_pending_snapshot *pending)
1410  {
1411  	struct btrfs_key key;
1412  	struct btrfs_root_item *new_root_item;
1413  	struct btrfs_root *tree_root = fs_info->tree_root;
1414  	struct btrfs_root *root = pending->root;
1415  	struct btrfs_root *parent_root;
1416  	struct btrfs_block_rsv *rsv;
1417  	struct inode *parent_inode;
1418  	struct btrfs_path *path;
1419  	struct btrfs_dir_item *dir_item;
1420  	struct dentry *dentry;
1421  	struct extent_buffer *tmp;
1422  	struct extent_buffer *old;
1423  	struct timespec cur_time;
1424  	int ret = 0;
1425  	u64 to_reserve = 0;
1426  	u64 index = 0;
1427  	u64 objectid;
1428  	u64 root_flags;
1429  	uuid_le new_uuid;
1430  
1431  	ASSERT(pending->path);
1432  	path = pending->path;
1433  
1434  	ASSERT(pending->root_item);
1435  	new_root_item = pending->root_item;
1436  
1437  	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1438  	if (pending->error)
1439  		goto no_free_objectid;
1440  
1441  	/*
1442  	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1443  	 * accounted by later btrfs_qgroup_inherit().
1444  	 */
1445  	btrfs_set_skip_qgroup(trans, objectid);
1446  
1447  	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1448  
1449  	if (to_reserve > 0) {
1450  		pending->error = btrfs_block_rsv_add(root,
1451  						     &pending->block_rsv,
1452  						     to_reserve,
1453  						     BTRFS_RESERVE_NO_FLUSH);
1454  		if (pending->error)
1455  			goto clear_skip_qgroup;
1456  	}
1457  
1458  	key.objectid = objectid;
1459  	key.offset = (u64)-1;
1460  	key.type = BTRFS_ROOT_ITEM_KEY;
1461  
1462  	rsv = trans->block_rsv;
1463  	trans->block_rsv = &pending->block_rsv;
1464  	trans->bytes_reserved = trans->block_rsv->reserved;
1465  	trace_btrfs_space_reservation(root->fs_info, "transaction",
1466  				      trans->transid,
1467  				      trans->bytes_reserved, 1);
1468  	dentry = pending->dentry;
1469  	parent_inode = pending->dir;
1470  	parent_root = BTRFS_I(parent_inode)->root;
1471  	record_root_in_trans(trans, parent_root, 0);
1472  
1473  	cur_time = current_time(parent_inode);
1474  
1475  	/*
1476  	 * insert the directory item
1477  	 */
1478  	ret = btrfs_set_inode_index(parent_inode, &index);
1479  	BUG_ON(ret); /* -ENOMEM */
1480  
1481  	/* check if there is a file/dir which has the same name. */
1482  	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1483  					 btrfs_ino(parent_inode),
1484  					 dentry->d_name.name,
1485  					 dentry->d_name.len, 0);
1486  	if (dir_item != NULL && !IS_ERR(dir_item)) {
1487  		pending->error = -EEXIST;
1488  		goto dir_item_existed;
1489  	} else if (IS_ERR(dir_item)) {
1490  		ret = PTR_ERR(dir_item);
1491  		btrfs_abort_transaction(trans, ret);
1492  		goto fail;
1493  	}
1494  	btrfs_release_path(path);
1495  
1496  	/*
1497  	 * pull in the delayed directory update
1498  	 * and the delayed inode item
1499  	 * otherwise we corrupt the FS during
1500  	 * snapshot
1501  	 */
1502  	ret = btrfs_run_delayed_items(trans, root);
1503  	if (ret) {	/* Transaction aborted */
1504  		btrfs_abort_transaction(trans, ret);
1505  		goto fail;
1506  	}
1507  
1508  	record_root_in_trans(trans, root, 0);
1509  	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1510  	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1511  	btrfs_check_and_init_root_item(new_root_item);
1512  
1513  	root_flags = btrfs_root_flags(new_root_item);
1514  	if (pending->readonly)
1515  		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1516  	else
1517  		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1518  	btrfs_set_root_flags(new_root_item, root_flags);
1519  
1520  	btrfs_set_root_generation_v2(new_root_item,
1521  			trans->transid);
1522  	uuid_le_gen(&new_uuid);
1523  	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1524  	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1525  			BTRFS_UUID_SIZE);
1526  	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1527  		memset(new_root_item->received_uuid, 0,
1528  		       sizeof(new_root_item->received_uuid));
1529  		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1530  		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1531  		btrfs_set_root_stransid(new_root_item, 0);
1532  		btrfs_set_root_rtransid(new_root_item, 0);
1533  	}
1534  	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1535  	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1536  	btrfs_set_root_otransid(new_root_item, trans->transid);
1537  
1538  	old = btrfs_lock_root_node(root);
1539  	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1540  	if (ret) {
1541  		btrfs_tree_unlock(old);
1542  		free_extent_buffer(old);
1543  		btrfs_abort_transaction(trans, ret);
1544  		goto fail;
1545  	}
1546  
1547  	btrfs_set_lock_blocking(old);
1548  
1549  	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1550  	/* clean up in any case */
1551  	btrfs_tree_unlock(old);
1552  	free_extent_buffer(old);
1553  	if (ret) {
1554  		btrfs_abort_transaction(trans, ret);
1555  		goto fail;
1556  	}
1557  	/* see comments in should_cow_block() */
1558  	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1559  	smp_wmb();
1560  
1561  	btrfs_set_root_node(new_root_item, tmp);
1562  	/* record when the snapshot was created in key.offset */
1563  	key.offset = trans->transid;
1564  	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1565  	btrfs_tree_unlock(tmp);
1566  	free_extent_buffer(tmp);
1567  	if (ret) {
1568  		btrfs_abort_transaction(trans, ret);
1569  		goto fail;
1570  	}
1571  
1572  	/*
1573  	 * insert root back/forward references
1574  	 */
1575  	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1576  				 parent_root->root_key.objectid,
1577  				 btrfs_ino(parent_inode), index,
1578  				 dentry->d_name.name, dentry->d_name.len);
1579  	if (ret) {
1580  		btrfs_abort_transaction(trans, ret);
1581  		goto fail;
1582  	}
1583  
1584  	key.offset = (u64)-1;
1585  	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1586  	if (IS_ERR(pending->snap)) {
1587  		ret = PTR_ERR(pending->snap);
1588  		btrfs_abort_transaction(trans, ret);
1589  		goto fail;
1590  	}
1591  
1592  	ret = btrfs_reloc_post_snapshot(trans, pending);
1593  	if (ret) {
1594  		btrfs_abort_transaction(trans, ret);
1595  		goto fail;
1596  	}
1597  
1598  	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1599  	if (ret) {
1600  		btrfs_abort_transaction(trans, ret);
1601  		goto fail;
1602  	}
1603  
1604  	/*
1605  	 * Do special qgroup accounting for snapshot, as we do some qgroup
1606  	 * snapshot hack to do fast snapshot.
1607  	 * To co-operate with that hack, we do hack again.
1608  	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1609  	 */
1610  	ret = qgroup_account_snapshot(trans, root, parent_root,
1611  				      pending->inherit, objectid);
1612  	if (ret < 0)
1613  		goto fail;
1614  
1615  	ret = btrfs_insert_dir_item(trans, parent_root,
1616  				    dentry->d_name.name, dentry->d_name.len,
1617  				    parent_inode, &key,
1618  				    BTRFS_FT_DIR, index);
1619  	/* We have check then name at the beginning, so it is impossible. */
1620  	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1621  	if (ret) {
1622  		btrfs_abort_transaction(trans, ret);
1623  		goto fail;
1624  	}
1625  
1626  	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1627  					 dentry->d_name.len * 2);
1628  	parent_inode->i_mtime = parent_inode->i_ctime =
1629  		current_time(parent_inode);
1630  	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1631  	if (ret) {
1632  		btrfs_abort_transaction(trans, ret);
1633  		goto fail;
1634  	}
1635  	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1636  				  BTRFS_UUID_KEY_SUBVOL, objectid);
1637  	if (ret) {
1638  		btrfs_abort_transaction(trans, ret);
1639  		goto fail;
1640  	}
1641  	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1642  		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1643  					  new_root_item->received_uuid,
1644  					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1645  					  objectid);
1646  		if (ret && ret != -EEXIST) {
1647  			btrfs_abort_transaction(trans, ret);
1648  			goto fail;
1649  		}
1650  	}
1651  
1652  	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1653  	if (ret) {
1654  		btrfs_abort_transaction(trans, ret);
1655  		goto fail;
1656  	}
1657  
1658  fail:
1659  	pending->error = ret;
1660  dir_item_existed:
1661  	trans->block_rsv = rsv;
1662  	trans->bytes_reserved = 0;
1663  clear_skip_qgroup:
1664  	btrfs_clear_skip_qgroup(trans);
1665  no_free_objectid:
1666  	kfree(new_root_item);
1667  	pending->root_item = NULL;
1668  	btrfs_free_path(path);
1669  	pending->path = NULL;
1670  
1671  	return ret;
1672  }
1673  
1674  /*
1675   * create all the snapshots we've scheduled for creation
1676   */
create_pending_snapshots(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1677  static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1678  					     struct btrfs_fs_info *fs_info)
1679  {
1680  	struct btrfs_pending_snapshot *pending, *next;
1681  	struct list_head *head = &trans->transaction->pending_snapshots;
1682  	int ret = 0;
1683  
1684  	list_for_each_entry_safe(pending, next, head, list) {
1685  		list_del(&pending->list);
1686  		ret = create_pending_snapshot(trans, fs_info, pending);
1687  		if (ret)
1688  			break;
1689  	}
1690  	return ret;
1691  }
1692  
update_super_roots(struct btrfs_root * root)1693  static void update_super_roots(struct btrfs_root *root)
1694  {
1695  	struct btrfs_root_item *root_item;
1696  	struct btrfs_super_block *super;
1697  
1698  	super = root->fs_info->super_copy;
1699  
1700  	root_item = &root->fs_info->chunk_root->root_item;
1701  	super->chunk_root = root_item->bytenr;
1702  	super->chunk_root_generation = root_item->generation;
1703  	super->chunk_root_level = root_item->level;
1704  
1705  	root_item = &root->fs_info->tree_root->root_item;
1706  	super->root = root_item->bytenr;
1707  	super->generation = root_item->generation;
1708  	super->root_level = root_item->level;
1709  	if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
1710  		super->cache_generation = root_item->generation;
1711  	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &root->fs_info->flags))
1712  		super->uuid_tree_generation = root_item->generation;
1713  }
1714  
btrfs_transaction_in_commit(struct btrfs_fs_info * info)1715  int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1716  {
1717  	struct btrfs_transaction *trans;
1718  	int ret = 0;
1719  
1720  	spin_lock(&info->trans_lock);
1721  	trans = info->running_transaction;
1722  	if (trans)
1723  		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1724  	spin_unlock(&info->trans_lock);
1725  	return ret;
1726  }
1727  
btrfs_transaction_blocked(struct btrfs_fs_info * info)1728  int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1729  {
1730  	struct btrfs_transaction *trans;
1731  	int ret = 0;
1732  
1733  	spin_lock(&info->trans_lock);
1734  	trans = info->running_transaction;
1735  	if (trans)
1736  		ret = is_transaction_blocked(trans);
1737  	spin_unlock(&info->trans_lock);
1738  	return ret;
1739  }
1740  
1741  /*
1742   * wait for the current transaction commit to start and block subsequent
1743   * transaction joins
1744   */
wait_current_trans_commit_start(struct btrfs_root * root,struct btrfs_transaction * trans)1745  static void wait_current_trans_commit_start(struct btrfs_root *root,
1746  					    struct btrfs_transaction *trans)
1747  {
1748  	wait_event(root->fs_info->transaction_blocked_wait,
1749  		   trans->state >= TRANS_STATE_COMMIT_START ||
1750  		   trans->aborted);
1751  }
1752  
1753  /*
1754   * wait for the current transaction to start and then become unblocked.
1755   * caller holds ref.
1756   */
wait_current_trans_commit_start_and_unblock(struct btrfs_root * root,struct btrfs_transaction * trans)1757  static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1758  					 struct btrfs_transaction *trans)
1759  {
1760  	wait_event(root->fs_info->transaction_wait,
1761  		   trans->state >= TRANS_STATE_UNBLOCKED ||
1762  		   trans->aborted);
1763  }
1764  
1765  /*
1766   * commit transactions asynchronously. once btrfs_commit_transaction_async
1767   * returns, any subsequent transaction will not be allowed to join.
1768   */
1769  struct btrfs_async_commit {
1770  	struct btrfs_trans_handle *newtrans;
1771  	struct btrfs_root *root;
1772  	struct work_struct work;
1773  };
1774  
do_async_commit(struct work_struct * work)1775  static void do_async_commit(struct work_struct *work)
1776  {
1777  	struct btrfs_async_commit *ac =
1778  		container_of(work, struct btrfs_async_commit, work);
1779  
1780  	/*
1781  	 * We've got freeze protection passed with the transaction.
1782  	 * Tell lockdep about it.
1783  	 */
1784  	if (ac->newtrans->type & __TRANS_FREEZABLE)
1785  		__sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1786  
1787  	current->journal_info = ac->newtrans;
1788  
1789  	btrfs_commit_transaction(ac->newtrans, ac->root);
1790  	kfree(ac);
1791  }
1792  
btrfs_commit_transaction_async(struct btrfs_trans_handle * trans,struct btrfs_root * root,int wait_for_unblock)1793  int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1794  				   struct btrfs_root *root,
1795  				   int wait_for_unblock)
1796  {
1797  	struct btrfs_async_commit *ac;
1798  	struct btrfs_transaction *cur_trans;
1799  
1800  	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1801  	if (!ac)
1802  		return -ENOMEM;
1803  
1804  	INIT_WORK(&ac->work, do_async_commit);
1805  	ac->root = root;
1806  	ac->newtrans = btrfs_join_transaction(root);
1807  	if (IS_ERR(ac->newtrans)) {
1808  		int err = PTR_ERR(ac->newtrans);
1809  		kfree(ac);
1810  		return err;
1811  	}
1812  
1813  	/* take transaction reference */
1814  	cur_trans = trans->transaction;
1815  	atomic_inc(&cur_trans->use_count);
1816  
1817  	btrfs_end_transaction(trans, root);
1818  
1819  	/*
1820  	 * Tell lockdep we've released the freeze rwsem, since the
1821  	 * async commit thread will be the one to unlock it.
1822  	 */
1823  	if (ac->newtrans->type & __TRANS_FREEZABLE)
1824  		__sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1825  
1826  	schedule_work(&ac->work);
1827  
1828  	/* wait for transaction to start and unblock */
1829  	if (wait_for_unblock)
1830  		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1831  	else
1832  		wait_current_trans_commit_start(root, cur_trans);
1833  
1834  	if (current->journal_info == trans)
1835  		current->journal_info = NULL;
1836  
1837  	btrfs_put_transaction(cur_trans);
1838  	return 0;
1839  }
1840  
1841  
cleanup_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root,int err)1842  static void cleanup_transaction(struct btrfs_trans_handle *trans,
1843  				struct btrfs_root *root, int err)
1844  {
1845  	struct btrfs_transaction *cur_trans = trans->transaction;
1846  	DEFINE_WAIT(wait);
1847  
1848  	WARN_ON(trans->use_count > 1);
1849  
1850  	btrfs_abort_transaction(trans, err);
1851  
1852  	spin_lock(&root->fs_info->trans_lock);
1853  
1854  	/*
1855  	 * If the transaction is removed from the list, it means this
1856  	 * transaction has been committed successfully, so it is impossible
1857  	 * to call the cleanup function.
1858  	 */
1859  	BUG_ON(list_empty(&cur_trans->list));
1860  
1861  	list_del_init(&cur_trans->list);
1862  	if (cur_trans == root->fs_info->running_transaction) {
1863  		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1864  		spin_unlock(&root->fs_info->trans_lock);
1865  		wait_event(cur_trans->writer_wait,
1866  			   atomic_read(&cur_trans->num_writers) == 1);
1867  
1868  		spin_lock(&root->fs_info->trans_lock);
1869  	}
1870  	spin_unlock(&root->fs_info->trans_lock);
1871  
1872  	btrfs_cleanup_one_transaction(trans->transaction, root);
1873  
1874  	spin_lock(&root->fs_info->trans_lock);
1875  	if (cur_trans == root->fs_info->running_transaction)
1876  		root->fs_info->running_transaction = NULL;
1877  	spin_unlock(&root->fs_info->trans_lock);
1878  
1879  	if (trans->type & __TRANS_FREEZABLE)
1880  		sb_end_intwrite(root->fs_info->sb);
1881  	btrfs_put_transaction(cur_trans);
1882  	btrfs_put_transaction(cur_trans);
1883  
1884  	trace_btrfs_transaction_commit(root);
1885  
1886  	if (current->journal_info == trans)
1887  		current->journal_info = NULL;
1888  	btrfs_scrub_cancel(root->fs_info);
1889  
1890  	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1891  }
1892  
btrfs_start_delalloc_flush(struct btrfs_fs_info * fs_info)1893  static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1894  {
1895  	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1896  		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1897  	return 0;
1898  }
1899  
btrfs_wait_delalloc_flush(struct btrfs_fs_info * fs_info)1900  static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1901  {
1902  	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1903  		btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1904  }
1905  
1906  static inline void
btrfs_wait_pending_ordered(struct btrfs_transaction * cur_trans)1907  btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1908  {
1909  	wait_event(cur_trans->pending_wait,
1910  		   atomic_read(&cur_trans->pending_ordered) == 0);
1911  }
1912  
btrfs_commit_transaction(struct btrfs_trans_handle * trans,struct btrfs_root * root)1913  int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1914  			     struct btrfs_root *root)
1915  {
1916  	struct btrfs_transaction *cur_trans = trans->transaction;
1917  	struct btrfs_transaction *prev_trans = NULL;
1918  	int ret;
1919  
1920  	/* Stop the commit early if ->aborted is set */
1921  	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1922  		ret = cur_trans->aborted;
1923  		btrfs_end_transaction(trans, root);
1924  		return ret;
1925  	}
1926  
1927  	/* make a pass through all the delayed refs we have so far
1928  	 * any runnings procs may add more while we are here
1929  	 */
1930  	ret = btrfs_run_delayed_refs(trans, root, 0);
1931  	if (ret) {
1932  		btrfs_end_transaction(trans, root);
1933  		return ret;
1934  	}
1935  
1936  	btrfs_trans_release_metadata(trans, root);
1937  	trans->block_rsv = NULL;
1938  
1939  	cur_trans = trans->transaction;
1940  
1941  	/*
1942  	 * set the flushing flag so procs in this transaction have to
1943  	 * start sending their work down.
1944  	 */
1945  	cur_trans->delayed_refs.flushing = 1;
1946  	smp_wmb();
1947  
1948  	if (!list_empty(&trans->new_bgs))
1949  		btrfs_create_pending_block_groups(trans, root);
1950  
1951  	ret = btrfs_run_delayed_refs(trans, root, 0);
1952  	if (ret) {
1953  		btrfs_end_transaction(trans, root);
1954  		return ret;
1955  	}
1956  
1957  	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1958  		int run_it = 0;
1959  
1960  		/* this mutex is also taken before trying to set
1961  		 * block groups readonly.  We need to make sure
1962  		 * that nobody has set a block group readonly
1963  		 * after a extents from that block group have been
1964  		 * allocated for cache files.  btrfs_set_block_group_ro
1965  		 * will wait for the transaction to commit if it
1966  		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1967  		 *
1968  		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1969  		 * only one process starts all the block group IO.  It wouldn't
1970  		 * hurt to have more than one go through, but there's no
1971  		 * real advantage to it either.
1972  		 */
1973  		mutex_lock(&root->fs_info->ro_block_group_mutex);
1974  		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1975  				      &cur_trans->flags))
1976  			run_it = 1;
1977  		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1978  
1979  		if (run_it)
1980  			ret = btrfs_start_dirty_block_groups(trans, root);
1981  	}
1982  	if (ret) {
1983  		btrfs_end_transaction(trans, root);
1984  		return ret;
1985  	}
1986  
1987  	spin_lock(&root->fs_info->trans_lock);
1988  	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1989  		spin_unlock(&root->fs_info->trans_lock);
1990  		atomic_inc(&cur_trans->use_count);
1991  		ret = btrfs_end_transaction(trans, root);
1992  
1993  		wait_for_commit(root, cur_trans);
1994  
1995  		if (unlikely(cur_trans->aborted))
1996  			ret = cur_trans->aborted;
1997  
1998  		btrfs_put_transaction(cur_trans);
1999  
2000  		return ret;
2001  	}
2002  
2003  	cur_trans->state = TRANS_STATE_COMMIT_START;
2004  	wake_up(&root->fs_info->transaction_blocked_wait);
2005  
2006  	if (cur_trans->list.prev != &root->fs_info->trans_list) {
2007  		prev_trans = list_entry(cur_trans->list.prev,
2008  					struct btrfs_transaction, list);
2009  		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2010  			atomic_inc(&prev_trans->use_count);
2011  			spin_unlock(&root->fs_info->trans_lock);
2012  
2013  			wait_for_commit(root, prev_trans);
2014  			ret = prev_trans->aborted;
2015  
2016  			btrfs_put_transaction(prev_trans);
2017  			if (ret)
2018  				goto cleanup_transaction;
2019  		} else {
2020  			spin_unlock(&root->fs_info->trans_lock);
2021  		}
2022  	} else {
2023  		spin_unlock(&root->fs_info->trans_lock);
2024  	}
2025  
2026  	extwriter_counter_dec(cur_trans, trans->type);
2027  
2028  	ret = btrfs_start_delalloc_flush(root->fs_info);
2029  	if (ret)
2030  		goto cleanup_transaction;
2031  
2032  	ret = btrfs_run_delayed_items(trans, root);
2033  	if (ret)
2034  		goto cleanup_transaction;
2035  
2036  	wait_event(cur_trans->writer_wait,
2037  		   extwriter_counter_read(cur_trans) == 0);
2038  
2039  	/* some pending stuffs might be added after the previous flush. */
2040  	ret = btrfs_run_delayed_items(trans, root);
2041  	if (ret)
2042  		goto cleanup_transaction;
2043  
2044  	btrfs_wait_delalloc_flush(root->fs_info);
2045  
2046  	btrfs_wait_pending_ordered(cur_trans);
2047  
2048  	btrfs_scrub_pause(root);
2049  	/*
2050  	 * Ok now we need to make sure to block out any other joins while we
2051  	 * commit the transaction.  We could have started a join before setting
2052  	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2053  	 */
2054  	spin_lock(&root->fs_info->trans_lock);
2055  	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2056  	spin_unlock(&root->fs_info->trans_lock);
2057  	wait_event(cur_trans->writer_wait,
2058  		   atomic_read(&cur_trans->num_writers) == 1);
2059  
2060  	/* ->aborted might be set after the previous check, so check it */
2061  	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2062  		ret = cur_trans->aborted;
2063  		goto scrub_continue;
2064  	}
2065  	/*
2066  	 * the reloc mutex makes sure that we stop
2067  	 * the balancing code from coming in and moving
2068  	 * extents around in the middle of the commit
2069  	 */
2070  	mutex_lock(&root->fs_info->reloc_mutex);
2071  
2072  	/*
2073  	 * We needn't worry about the delayed items because we will
2074  	 * deal with them in create_pending_snapshot(), which is the
2075  	 * core function of the snapshot creation.
2076  	 */
2077  	ret = create_pending_snapshots(trans, root->fs_info);
2078  	if (ret) {
2079  		mutex_unlock(&root->fs_info->reloc_mutex);
2080  		goto scrub_continue;
2081  	}
2082  
2083  	/*
2084  	 * We insert the dir indexes of the snapshots and update the inode
2085  	 * of the snapshots' parents after the snapshot creation, so there
2086  	 * are some delayed items which are not dealt with. Now deal with
2087  	 * them.
2088  	 *
2089  	 * We needn't worry that this operation will corrupt the snapshots,
2090  	 * because all the tree which are snapshoted will be forced to COW
2091  	 * the nodes and leaves.
2092  	 */
2093  	ret = btrfs_run_delayed_items(trans, root);
2094  	if (ret) {
2095  		mutex_unlock(&root->fs_info->reloc_mutex);
2096  		goto scrub_continue;
2097  	}
2098  
2099  	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2100  	if (ret) {
2101  		mutex_unlock(&root->fs_info->reloc_mutex);
2102  		goto scrub_continue;
2103  	}
2104  
2105  	/* Reocrd old roots for later qgroup accounting */
2106  	ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2107  	if (ret) {
2108  		mutex_unlock(&root->fs_info->reloc_mutex);
2109  		goto scrub_continue;
2110  	}
2111  
2112  	/*
2113  	 * make sure none of the code above managed to slip in a
2114  	 * delayed item
2115  	 */
2116  	btrfs_assert_delayed_root_empty(root);
2117  
2118  	WARN_ON(cur_trans != trans->transaction);
2119  
2120  	/* btrfs_commit_tree_roots is responsible for getting the
2121  	 * various roots consistent with each other.  Every pointer
2122  	 * in the tree of tree roots has to point to the most up to date
2123  	 * root for every subvolume and other tree.  So, we have to keep
2124  	 * the tree logging code from jumping in and changing any
2125  	 * of the trees.
2126  	 *
2127  	 * At this point in the commit, there can't be any tree-log
2128  	 * writers, but a little lower down we drop the trans mutex
2129  	 * and let new people in.  By holding the tree_log_mutex
2130  	 * from now until after the super is written, we avoid races
2131  	 * with the tree-log code.
2132  	 */
2133  	mutex_lock(&root->fs_info->tree_log_mutex);
2134  
2135  	ret = commit_fs_roots(trans, root);
2136  	if (ret) {
2137  		mutex_unlock(&root->fs_info->tree_log_mutex);
2138  		mutex_unlock(&root->fs_info->reloc_mutex);
2139  		goto scrub_continue;
2140  	}
2141  
2142  	/*
2143  	 * Since the transaction is done, we can apply the pending changes
2144  	 * before the next transaction.
2145  	 */
2146  	btrfs_apply_pending_changes(root->fs_info);
2147  
2148  	/* commit_fs_roots gets rid of all the tree log roots, it is now
2149  	 * safe to free the root of tree log roots
2150  	 */
2151  	btrfs_free_log_root_tree(trans, root->fs_info);
2152  
2153  	/*
2154  	 * Since fs roots are all committed, we can get a quite accurate
2155  	 * new_roots. So let's do quota accounting.
2156  	 */
2157  	ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2158  	if (ret < 0) {
2159  		mutex_unlock(&root->fs_info->tree_log_mutex);
2160  		mutex_unlock(&root->fs_info->reloc_mutex);
2161  		goto scrub_continue;
2162  	}
2163  
2164  	ret = commit_cowonly_roots(trans, root);
2165  	if (ret) {
2166  		mutex_unlock(&root->fs_info->tree_log_mutex);
2167  		mutex_unlock(&root->fs_info->reloc_mutex);
2168  		goto scrub_continue;
2169  	}
2170  
2171  	/*
2172  	 * The tasks which save the space cache and inode cache may also
2173  	 * update ->aborted, check it.
2174  	 */
2175  	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2176  		ret = cur_trans->aborted;
2177  		mutex_unlock(&root->fs_info->tree_log_mutex);
2178  		mutex_unlock(&root->fs_info->reloc_mutex);
2179  		goto scrub_continue;
2180  	}
2181  
2182  	btrfs_prepare_extent_commit(trans, root);
2183  
2184  	cur_trans = root->fs_info->running_transaction;
2185  
2186  	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2187  			    root->fs_info->tree_root->node);
2188  	list_add_tail(&root->fs_info->tree_root->dirty_list,
2189  		      &cur_trans->switch_commits);
2190  
2191  	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2192  			    root->fs_info->chunk_root->node);
2193  	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2194  		      &cur_trans->switch_commits);
2195  
2196  	switch_commit_roots(cur_trans, root->fs_info);
2197  
2198  	assert_qgroups_uptodate(trans);
2199  	ASSERT(list_empty(&cur_trans->dirty_bgs));
2200  	ASSERT(list_empty(&cur_trans->io_bgs));
2201  	update_super_roots(root);
2202  
2203  	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2204  	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2205  	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2206  	       sizeof(*root->fs_info->super_copy));
2207  
2208  	btrfs_update_commit_device_size(root->fs_info);
2209  	btrfs_update_commit_device_bytes_used(root, cur_trans);
2210  
2211  	clear_bit(BTRFS_FS_LOG1_ERR, &root->fs_info->flags);
2212  	clear_bit(BTRFS_FS_LOG2_ERR, &root->fs_info->flags);
2213  
2214  	btrfs_trans_release_chunk_metadata(trans);
2215  
2216  	spin_lock(&root->fs_info->trans_lock);
2217  	cur_trans->state = TRANS_STATE_UNBLOCKED;
2218  	root->fs_info->running_transaction = NULL;
2219  	spin_unlock(&root->fs_info->trans_lock);
2220  	mutex_unlock(&root->fs_info->reloc_mutex);
2221  
2222  	wake_up(&root->fs_info->transaction_wait);
2223  
2224  	ret = btrfs_write_and_wait_transaction(trans, root);
2225  	if (ret) {
2226  		btrfs_handle_fs_error(root->fs_info, ret,
2227  			    "Error while writing out transaction");
2228  		mutex_unlock(&root->fs_info->tree_log_mutex);
2229  		goto scrub_continue;
2230  	}
2231  
2232  	ret = write_ctree_super(trans, root, 0);
2233  	if (ret) {
2234  		mutex_unlock(&root->fs_info->tree_log_mutex);
2235  		goto scrub_continue;
2236  	}
2237  
2238  	/*
2239  	 * the super is written, we can safely allow the tree-loggers
2240  	 * to go about their business
2241  	 */
2242  	mutex_unlock(&root->fs_info->tree_log_mutex);
2243  
2244  	btrfs_finish_extent_commit(trans, root);
2245  
2246  	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2247  		btrfs_clear_space_info_full(root->fs_info);
2248  
2249  	root->fs_info->last_trans_committed = cur_trans->transid;
2250  	/*
2251  	 * We needn't acquire the lock here because there is no other task
2252  	 * which can change it.
2253  	 */
2254  	cur_trans->state = TRANS_STATE_COMPLETED;
2255  	wake_up(&cur_trans->commit_wait);
2256  
2257  	spin_lock(&root->fs_info->trans_lock);
2258  	list_del_init(&cur_trans->list);
2259  	spin_unlock(&root->fs_info->trans_lock);
2260  
2261  	btrfs_put_transaction(cur_trans);
2262  	btrfs_put_transaction(cur_trans);
2263  
2264  	if (trans->type & __TRANS_FREEZABLE)
2265  		sb_end_intwrite(root->fs_info->sb);
2266  
2267  	trace_btrfs_transaction_commit(root);
2268  
2269  	btrfs_scrub_continue(root);
2270  
2271  	if (current->journal_info == trans)
2272  		current->journal_info = NULL;
2273  
2274  	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2275  
2276  	/*
2277  	 * If fs has been frozen, we can not handle delayed iputs, otherwise
2278  	 * it'll result in deadlock about SB_FREEZE_FS.
2279  	 */
2280  	if (current != root->fs_info->transaction_kthread &&
2281  	    current != root->fs_info->cleaner_kthread &&
2282  	    !root->fs_info->fs_frozen)
2283  		btrfs_run_delayed_iputs(root);
2284  
2285  	return ret;
2286  
2287  scrub_continue:
2288  	btrfs_scrub_continue(root);
2289  cleanup_transaction:
2290  	btrfs_trans_release_metadata(trans, root);
2291  	btrfs_trans_release_chunk_metadata(trans);
2292  	trans->block_rsv = NULL;
2293  	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2294  	if (current->journal_info == trans)
2295  		current->journal_info = NULL;
2296  	cleanup_transaction(trans, root, ret);
2297  
2298  	return ret;
2299  }
2300  
2301  /*
2302   * return < 0 if error
2303   * 0 if there are no more dead_roots at the time of call
2304   * 1 there are more to be processed, call me again
2305   *
2306   * The return value indicates there are certainly more snapshots to delete, but
2307   * if there comes a new one during processing, it may return 0. We don't mind,
2308   * because btrfs_commit_super will poke cleaner thread and it will process it a
2309   * few seconds later.
2310   */
btrfs_clean_one_deleted_snapshot(struct btrfs_root * root)2311  int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2312  {
2313  	int ret;
2314  	struct btrfs_fs_info *fs_info = root->fs_info;
2315  
2316  	spin_lock(&fs_info->trans_lock);
2317  	if (list_empty(&fs_info->dead_roots)) {
2318  		spin_unlock(&fs_info->trans_lock);
2319  		return 0;
2320  	}
2321  	root = list_first_entry(&fs_info->dead_roots,
2322  			struct btrfs_root, root_list);
2323  	list_del_init(&root->root_list);
2324  	spin_unlock(&fs_info->trans_lock);
2325  
2326  	btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2327  
2328  	btrfs_kill_all_delayed_nodes(root);
2329  
2330  	if (btrfs_header_backref_rev(root->node) <
2331  			BTRFS_MIXED_BACKREF_REV)
2332  		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2333  	else
2334  		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2335  
2336  	return (ret < 0) ? 0 : 1;
2337  }
2338  
btrfs_apply_pending_changes(struct btrfs_fs_info * fs_info)2339  void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2340  {
2341  	unsigned long prev;
2342  	unsigned long bit;
2343  
2344  	prev = xchg(&fs_info->pending_changes, 0);
2345  	if (!prev)
2346  		return;
2347  
2348  	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2349  	if (prev & bit)
2350  		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2351  	prev &= ~bit;
2352  
2353  	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2354  	if (prev & bit)
2355  		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2356  	prev &= ~bit;
2357  
2358  	bit = 1 << BTRFS_PENDING_COMMIT;
2359  	if (prev & bit)
2360  		btrfs_debug(fs_info, "pending commit done");
2361  	prev &= ~bit;
2362  
2363  	if (prev)
2364  		btrfs_warn(fs_info,
2365  			"unknown pending changes left 0x%lx, ignoring", prev);
2366  }
2367