• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
28 #include "hash.h"
29 #include "tree-log.h"
30 #include "disk-io.h"
31 #include "print-tree.h"
32 #include "volumes.h"
33 #include "raid56.h"
34 #include "locking.h"
35 #include "free-space-cache.h"
36 #include "free-space-tree.h"
37 #include "math.h"
38 #include "sysfs.h"
39 #include "qgroup.h"
40 
41 #undef SCRAMBLE_DELAYED_REFS
42 
43 /*
44  * control flags for do_chunk_alloc's force field
45  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46  * if we really need one.
47  *
48  * CHUNK_ALLOC_LIMITED means to only try and allocate one
49  * if we have very few chunks already allocated.  This is
50  * used as part of the clustering code to help make sure
51  * we have a good pool of storage to cluster in, without
52  * filling the FS with empty chunks
53  *
54  * CHUNK_ALLOC_FORCE means it must try to allocate one
55  *
56  */
57 enum {
58 	CHUNK_ALLOC_NO_FORCE = 0,
59 	CHUNK_ALLOC_LIMITED = 1,
60 	CHUNK_ALLOC_FORCE = 2,
61 };
62 
63 static int update_block_group(struct btrfs_trans_handle *trans,
64 			      struct btrfs_root *root, u64 bytenr,
65 			      u64 num_bytes, int alloc);
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67 				struct btrfs_root *root,
68 				struct btrfs_delayed_ref_node *node, u64 parent,
69 				u64 root_objectid, u64 owner_objectid,
70 				u64 owner_offset, int refs_to_drop,
71 				struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 				    struct extent_buffer *leaf,
74 				    struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76 				      struct btrfs_root *root,
77 				      u64 parent, u64 root_objectid,
78 				      u64 flags, u64 owner, u64 offset,
79 				      struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81 				     struct btrfs_root *root,
82 				     u64 parent, u64 root_objectid,
83 				     u64 flags, struct btrfs_disk_key *key,
84 				     int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86 			  struct btrfs_root *extent_root, u64 flags,
87 			  int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89 			 struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_fs_info *fs_info,
91 			    struct btrfs_space_info *info, u64 bytes,
92 			    int dump_block_groups);
93 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
94 				    u64 ram_bytes, u64 num_bytes, int delalloc);
95 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
96 				     u64 num_bytes, int delalloc);
97 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
98 			       u64 num_bytes);
99 int btrfs_pin_extent(struct btrfs_root *root,
100 		     u64 bytenr, u64 num_bytes, int reserved);
101 static int __reserve_metadata_bytes(struct btrfs_root *root,
102 				    struct btrfs_space_info *space_info,
103 				    u64 orig_bytes,
104 				    enum btrfs_reserve_flush_enum flush);
105 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
106 				     struct btrfs_space_info *space_info,
107 				     u64 num_bytes);
108 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
109 				     struct btrfs_space_info *space_info,
110 				     u64 num_bytes);
111 
112 static noinline int
block_group_cache_done(struct btrfs_block_group_cache * cache)113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115 	smp_mb();
116 	return cache->cached == BTRFS_CACHE_FINISHED ||
117 		cache->cached == BTRFS_CACHE_ERROR;
118 }
119 
block_group_bits(struct btrfs_block_group_cache * cache,u64 bits)120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122 	return (cache->flags & bits) == bits;
123 }
124 
btrfs_get_block_group(struct btrfs_block_group_cache * cache)125 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127 	atomic_inc(&cache->count);
128 }
129 
btrfs_put_block_group(struct btrfs_block_group_cache * cache)130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132 	if (atomic_dec_and_test(&cache->count)) {
133 		WARN_ON(cache->pinned > 0);
134 		WARN_ON(cache->reserved > 0);
135 		kfree(cache->free_space_ctl);
136 		kfree(cache);
137 	}
138 }
139 
140 /*
141  * this adds the block group to the fs_info rb tree for the block group
142  * cache
143  */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group_cache * block_group)144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145 				struct btrfs_block_group_cache *block_group)
146 {
147 	struct rb_node **p;
148 	struct rb_node *parent = NULL;
149 	struct btrfs_block_group_cache *cache;
150 
151 	spin_lock(&info->block_group_cache_lock);
152 	p = &info->block_group_cache_tree.rb_node;
153 
154 	while (*p) {
155 		parent = *p;
156 		cache = rb_entry(parent, struct btrfs_block_group_cache,
157 				 cache_node);
158 		if (block_group->key.objectid < cache->key.objectid) {
159 			p = &(*p)->rb_left;
160 		} else if (block_group->key.objectid > cache->key.objectid) {
161 			p = &(*p)->rb_right;
162 		} else {
163 			spin_unlock(&info->block_group_cache_lock);
164 			return -EEXIST;
165 		}
166 	}
167 
168 	rb_link_node(&block_group->cache_node, parent, p);
169 	rb_insert_color(&block_group->cache_node,
170 			&info->block_group_cache_tree);
171 
172 	if (info->first_logical_byte > block_group->key.objectid)
173 		info->first_logical_byte = block_group->key.objectid;
174 
175 	spin_unlock(&info->block_group_cache_lock);
176 
177 	return 0;
178 }
179 
180 /*
181  * This will return the block group at or after bytenr if contains is 0, else
182  * it will return the block group that contains the bytenr
183  */
184 static struct btrfs_block_group_cache *
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 			      int contains)
187 {
188 	struct btrfs_block_group_cache *cache, *ret = NULL;
189 	struct rb_node *n;
190 	u64 end, start;
191 
192 	spin_lock(&info->block_group_cache_lock);
193 	n = info->block_group_cache_tree.rb_node;
194 
195 	while (n) {
196 		cache = rb_entry(n, struct btrfs_block_group_cache,
197 				 cache_node);
198 		end = cache->key.objectid + cache->key.offset - 1;
199 		start = cache->key.objectid;
200 
201 		if (bytenr < start) {
202 			if (!contains && (!ret || start < ret->key.objectid))
203 				ret = cache;
204 			n = n->rb_left;
205 		} else if (bytenr > start) {
206 			if (contains && bytenr <= end) {
207 				ret = cache;
208 				break;
209 			}
210 			n = n->rb_right;
211 		} else {
212 			ret = cache;
213 			break;
214 		}
215 	}
216 	if (ret) {
217 		btrfs_get_block_group(ret);
218 		if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 			info->first_logical_byte = ret->key.objectid;
220 	}
221 	spin_unlock(&info->block_group_cache_lock);
222 
223 	return ret;
224 }
225 
add_excluded_extent(struct btrfs_root * root,u64 start,u64 num_bytes)226 static int add_excluded_extent(struct btrfs_root *root,
227 			       u64 start, u64 num_bytes)
228 {
229 	u64 end = start + num_bytes - 1;
230 	set_extent_bits(&root->fs_info->freed_extents[0],
231 			start, end, EXTENT_UPTODATE);
232 	set_extent_bits(&root->fs_info->freed_extents[1],
233 			start, end, EXTENT_UPTODATE);
234 	return 0;
235 }
236 
free_excluded_extents(struct btrfs_root * root,struct btrfs_block_group_cache * cache)237 static void free_excluded_extents(struct btrfs_root *root,
238 				  struct btrfs_block_group_cache *cache)
239 {
240 	u64 start, end;
241 
242 	start = cache->key.objectid;
243 	end = start + cache->key.offset - 1;
244 
245 	clear_extent_bits(&root->fs_info->freed_extents[0],
246 			  start, end, EXTENT_UPTODATE);
247 	clear_extent_bits(&root->fs_info->freed_extents[1],
248 			  start, end, EXTENT_UPTODATE);
249 }
250 
exclude_super_stripes(struct btrfs_root * root,struct btrfs_block_group_cache * cache)251 static int exclude_super_stripes(struct btrfs_root *root,
252 				 struct btrfs_block_group_cache *cache)
253 {
254 	u64 bytenr;
255 	u64 *logical;
256 	int stripe_len;
257 	int i, nr, ret;
258 
259 	if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 		stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 		cache->bytes_super += stripe_len;
262 		ret = add_excluded_extent(root, cache->key.objectid,
263 					  stripe_len);
264 		if (ret)
265 			return ret;
266 	}
267 
268 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 		bytenr = btrfs_sb_offset(i);
270 		ret = btrfs_rmap_block(root->fs_info, cache->key.objectid,
271 				       bytenr, 0, &logical, &nr, &stripe_len);
272 		if (ret)
273 			return ret;
274 
275 		while (nr--) {
276 			u64 start, len;
277 
278 			if (logical[nr] > cache->key.objectid +
279 			    cache->key.offset)
280 				continue;
281 
282 			if (logical[nr] + stripe_len <= cache->key.objectid)
283 				continue;
284 
285 			start = logical[nr];
286 			if (start < cache->key.objectid) {
287 				start = cache->key.objectid;
288 				len = (logical[nr] + stripe_len) - start;
289 			} else {
290 				len = min_t(u64, stripe_len,
291 					    cache->key.objectid +
292 					    cache->key.offset - start);
293 			}
294 
295 			cache->bytes_super += len;
296 			ret = add_excluded_extent(root, start, len);
297 			if (ret) {
298 				kfree(logical);
299 				return ret;
300 			}
301 		}
302 
303 		kfree(logical);
304 	}
305 	return 0;
306 }
307 
308 static struct btrfs_caching_control *
get_caching_control(struct btrfs_block_group_cache * cache)309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311 	struct btrfs_caching_control *ctl;
312 
313 	spin_lock(&cache->lock);
314 	if (!cache->caching_ctl) {
315 		spin_unlock(&cache->lock);
316 		return NULL;
317 	}
318 
319 	ctl = cache->caching_ctl;
320 	atomic_inc(&ctl->count);
321 	spin_unlock(&cache->lock);
322 	return ctl;
323 }
324 
put_caching_control(struct btrfs_caching_control * ctl)325 static void put_caching_control(struct btrfs_caching_control *ctl)
326 {
327 	if (atomic_dec_and_test(&ctl->count))
328 		kfree(ctl);
329 }
330 
331 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_root * root,struct btrfs_block_group_cache * block_group)332 static void fragment_free_space(struct btrfs_root *root,
333 				struct btrfs_block_group_cache *block_group)
334 {
335 	u64 start = block_group->key.objectid;
336 	u64 len = block_group->key.offset;
337 	u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338 		root->nodesize : root->sectorsize;
339 	u64 step = chunk << 1;
340 
341 	while (len > chunk) {
342 		btrfs_remove_free_space(block_group, start, chunk);
343 		start += step;
344 		if (len < step)
345 			len = 0;
346 		else
347 			len -= step;
348 	}
349 }
350 #endif
351 
352 /*
353  * this is only called by cache_block_group, since we could have freed extents
354  * we need to check the pinned_extents for any extents that can't be used yet
355  * since their free space will be released as soon as the transaction commits.
356  */
add_new_free_space(struct btrfs_block_group_cache * block_group,struct btrfs_fs_info * info,u64 start,u64 end)357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 		       struct btrfs_fs_info *info, u64 start, u64 end)
359 {
360 	u64 extent_start, extent_end, size, total_added = 0;
361 	int ret;
362 
363 	while (start < end) {
364 		ret = find_first_extent_bit(info->pinned_extents, start,
365 					    &extent_start, &extent_end,
366 					    EXTENT_DIRTY | EXTENT_UPTODATE,
367 					    NULL);
368 		if (ret)
369 			break;
370 
371 		if (extent_start <= start) {
372 			start = extent_end + 1;
373 		} else if (extent_start > start && extent_start < end) {
374 			size = extent_start - start;
375 			total_added += size;
376 			ret = btrfs_add_free_space(block_group, start,
377 						   size);
378 			BUG_ON(ret); /* -ENOMEM or logic error */
379 			start = extent_end + 1;
380 		} else {
381 			break;
382 		}
383 	}
384 
385 	if (start < end) {
386 		size = end - start;
387 		total_added += size;
388 		ret = btrfs_add_free_space(block_group, start, size);
389 		BUG_ON(ret); /* -ENOMEM or logic error */
390 	}
391 
392 	return total_added;
393 }
394 
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
396 {
397 	struct btrfs_block_group_cache *block_group;
398 	struct btrfs_fs_info *fs_info;
399 	struct btrfs_root *extent_root;
400 	struct btrfs_path *path;
401 	struct extent_buffer *leaf;
402 	struct btrfs_key key;
403 	u64 total_found = 0;
404 	u64 last = 0;
405 	u32 nritems;
406 	int ret;
407 	bool wakeup = true;
408 
409 	block_group = caching_ctl->block_group;
410 	fs_info = block_group->fs_info;
411 	extent_root = fs_info->extent_root;
412 
413 	path = btrfs_alloc_path();
414 	if (!path)
415 		return -ENOMEM;
416 
417 	last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
418 
419 #ifdef CONFIG_BTRFS_DEBUG
420 	/*
421 	 * If we're fragmenting we don't want to make anybody think we can
422 	 * allocate from this block group until we've had a chance to fragment
423 	 * the free space.
424 	 */
425 	if (btrfs_should_fragment_free_space(extent_root, block_group))
426 		wakeup = false;
427 #endif
428 	/*
429 	 * We don't want to deadlock with somebody trying to allocate a new
430 	 * extent for the extent root while also trying to search the extent
431 	 * root to add free space.  So we skip locking and search the commit
432 	 * root, since its read-only
433 	 */
434 	path->skip_locking = 1;
435 	path->search_commit_root = 1;
436 	path->reada = READA_FORWARD;
437 
438 	key.objectid = last;
439 	key.offset = 0;
440 	key.type = BTRFS_EXTENT_ITEM_KEY;
441 
442 next:
443 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
444 	if (ret < 0)
445 		goto out;
446 
447 	leaf = path->nodes[0];
448 	nritems = btrfs_header_nritems(leaf);
449 
450 	while (1) {
451 		if (btrfs_fs_closing(fs_info) > 1) {
452 			last = (u64)-1;
453 			break;
454 		}
455 
456 		if (path->slots[0] < nritems) {
457 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
458 		} else {
459 			ret = find_next_key(path, 0, &key);
460 			if (ret)
461 				break;
462 
463 			if (need_resched() ||
464 			    rwsem_is_contended(&fs_info->commit_root_sem)) {
465 				if (wakeup)
466 					caching_ctl->progress = last;
467 				btrfs_release_path(path);
468 				up_read(&fs_info->commit_root_sem);
469 				mutex_unlock(&caching_ctl->mutex);
470 				cond_resched();
471 				mutex_lock(&caching_ctl->mutex);
472 				down_read(&fs_info->commit_root_sem);
473 				goto next;
474 			}
475 
476 			ret = btrfs_next_leaf(extent_root, path);
477 			if (ret < 0)
478 				goto out;
479 			if (ret)
480 				break;
481 			leaf = path->nodes[0];
482 			nritems = btrfs_header_nritems(leaf);
483 			continue;
484 		}
485 
486 		if (key.objectid < last) {
487 			key.objectid = last;
488 			key.offset = 0;
489 			key.type = BTRFS_EXTENT_ITEM_KEY;
490 
491 			if (wakeup)
492 				caching_ctl->progress = last;
493 			btrfs_release_path(path);
494 			goto next;
495 		}
496 
497 		if (key.objectid < block_group->key.objectid) {
498 			path->slots[0]++;
499 			continue;
500 		}
501 
502 		if (key.objectid >= block_group->key.objectid +
503 		    block_group->key.offset)
504 			break;
505 
506 		if (key.type == BTRFS_EXTENT_ITEM_KEY ||
507 		    key.type == BTRFS_METADATA_ITEM_KEY) {
508 			total_found += add_new_free_space(block_group,
509 							  fs_info, last,
510 							  key.objectid);
511 			if (key.type == BTRFS_METADATA_ITEM_KEY)
512 				last = key.objectid +
513 					fs_info->tree_root->nodesize;
514 			else
515 				last = key.objectid + key.offset;
516 
517 			if (total_found > CACHING_CTL_WAKE_UP) {
518 				total_found = 0;
519 				if (wakeup)
520 					wake_up(&caching_ctl->wait);
521 			}
522 		}
523 		path->slots[0]++;
524 	}
525 	ret = 0;
526 
527 	total_found += add_new_free_space(block_group, fs_info, last,
528 					  block_group->key.objectid +
529 					  block_group->key.offset);
530 	caching_ctl->progress = (u64)-1;
531 
532 out:
533 	btrfs_free_path(path);
534 	return ret;
535 }
536 
caching_thread(struct btrfs_work * work)537 static noinline void caching_thread(struct btrfs_work *work)
538 {
539 	struct btrfs_block_group_cache *block_group;
540 	struct btrfs_fs_info *fs_info;
541 	struct btrfs_caching_control *caching_ctl;
542 	struct btrfs_root *extent_root;
543 	int ret;
544 
545 	caching_ctl = container_of(work, struct btrfs_caching_control, work);
546 	block_group = caching_ctl->block_group;
547 	fs_info = block_group->fs_info;
548 	extent_root = fs_info->extent_root;
549 
550 	mutex_lock(&caching_ctl->mutex);
551 	down_read(&fs_info->commit_root_sem);
552 
553 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
554 		ret = load_free_space_tree(caching_ctl);
555 	else
556 		ret = load_extent_tree_free(caching_ctl);
557 
558 	spin_lock(&block_group->lock);
559 	block_group->caching_ctl = NULL;
560 	block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
561 	spin_unlock(&block_group->lock);
562 
563 #ifdef CONFIG_BTRFS_DEBUG
564 	if (btrfs_should_fragment_free_space(extent_root, block_group)) {
565 		u64 bytes_used;
566 
567 		spin_lock(&block_group->space_info->lock);
568 		spin_lock(&block_group->lock);
569 		bytes_used = block_group->key.offset -
570 			btrfs_block_group_used(&block_group->item);
571 		block_group->space_info->bytes_used += bytes_used >> 1;
572 		spin_unlock(&block_group->lock);
573 		spin_unlock(&block_group->space_info->lock);
574 		fragment_free_space(extent_root, block_group);
575 	}
576 #endif
577 
578 	caching_ctl->progress = (u64)-1;
579 
580 	up_read(&fs_info->commit_root_sem);
581 	free_excluded_extents(fs_info->extent_root, block_group);
582 	mutex_unlock(&caching_ctl->mutex);
583 
584 	wake_up(&caching_ctl->wait);
585 
586 	put_caching_control(caching_ctl);
587 	btrfs_put_block_group(block_group);
588 }
589 
cache_block_group(struct btrfs_block_group_cache * cache,int load_cache_only)590 static int cache_block_group(struct btrfs_block_group_cache *cache,
591 			     int load_cache_only)
592 {
593 	DEFINE_WAIT(wait);
594 	struct btrfs_fs_info *fs_info = cache->fs_info;
595 	struct btrfs_caching_control *caching_ctl;
596 	int ret = 0;
597 
598 	caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
599 	if (!caching_ctl)
600 		return -ENOMEM;
601 
602 	INIT_LIST_HEAD(&caching_ctl->list);
603 	mutex_init(&caching_ctl->mutex);
604 	init_waitqueue_head(&caching_ctl->wait);
605 	caching_ctl->block_group = cache;
606 	caching_ctl->progress = cache->key.objectid;
607 	atomic_set(&caching_ctl->count, 1);
608 	btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
609 			caching_thread, NULL, NULL);
610 
611 	spin_lock(&cache->lock);
612 	/*
613 	 * This should be a rare occasion, but this could happen I think in the
614 	 * case where one thread starts to load the space cache info, and then
615 	 * some other thread starts a transaction commit which tries to do an
616 	 * allocation while the other thread is still loading the space cache
617 	 * info.  The previous loop should have kept us from choosing this block
618 	 * group, but if we've moved to the state where we will wait on caching
619 	 * block groups we need to first check if we're doing a fast load here,
620 	 * so we can wait for it to finish, otherwise we could end up allocating
621 	 * from a block group who's cache gets evicted for one reason or
622 	 * another.
623 	 */
624 	while (cache->cached == BTRFS_CACHE_FAST) {
625 		struct btrfs_caching_control *ctl;
626 
627 		ctl = cache->caching_ctl;
628 		atomic_inc(&ctl->count);
629 		prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
630 		spin_unlock(&cache->lock);
631 
632 		schedule();
633 
634 		finish_wait(&ctl->wait, &wait);
635 		put_caching_control(ctl);
636 		spin_lock(&cache->lock);
637 	}
638 
639 	if (cache->cached != BTRFS_CACHE_NO) {
640 		spin_unlock(&cache->lock);
641 		kfree(caching_ctl);
642 		return 0;
643 	}
644 	WARN_ON(cache->caching_ctl);
645 	cache->caching_ctl = caching_ctl;
646 	cache->cached = BTRFS_CACHE_FAST;
647 	spin_unlock(&cache->lock);
648 
649 	if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
650 		mutex_lock(&caching_ctl->mutex);
651 		ret = load_free_space_cache(fs_info, cache);
652 
653 		spin_lock(&cache->lock);
654 		if (ret == 1) {
655 			cache->caching_ctl = NULL;
656 			cache->cached = BTRFS_CACHE_FINISHED;
657 			cache->last_byte_to_unpin = (u64)-1;
658 			caching_ctl->progress = (u64)-1;
659 		} else {
660 			if (load_cache_only) {
661 				cache->caching_ctl = NULL;
662 				cache->cached = BTRFS_CACHE_NO;
663 			} else {
664 				cache->cached = BTRFS_CACHE_STARTED;
665 				cache->has_caching_ctl = 1;
666 			}
667 		}
668 		spin_unlock(&cache->lock);
669 #ifdef CONFIG_BTRFS_DEBUG
670 		if (ret == 1 &&
671 		    btrfs_should_fragment_free_space(fs_info->extent_root,
672 						     cache)) {
673 			u64 bytes_used;
674 
675 			spin_lock(&cache->space_info->lock);
676 			spin_lock(&cache->lock);
677 			bytes_used = cache->key.offset -
678 				btrfs_block_group_used(&cache->item);
679 			cache->space_info->bytes_used += bytes_used >> 1;
680 			spin_unlock(&cache->lock);
681 			spin_unlock(&cache->space_info->lock);
682 			fragment_free_space(fs_info->extent_root, cache);
683 		}
684 #endif
685 		mutex_unlock(&caching_ctl->mutex);
686 
687 		wake_up(&caching_ctl->wait);
688 		if (ret == 1) {
689 			put_caching_control(caching_ctl);
690 			free_excluded_extents(fs_info->extent_root, cache);
691 			return 0;
692 		}
693 	} else {
694 		/*
695 		 * We're either using the free space tree or no caching at all.
696 		 * Set cached to the appropriate value and wakeup any waiters.
697 		 */
698 		spin_lock(&cache->lock);
699 		if (load_cache_only) {
700 			cache->caching_ctl = NULL;
701 			cache->cached = BTRFS_CACHE_NO;
702 		} else {
703 			cache->cached = BTRFS_CACHE_STARTED;
704 			cache->has_caching_ctl = 1;
705 		}
706 		spin_unlock(&cache->lock);
707 		wake_up(&caching_ctl->wait);
708 	}
709 
710 	if (load_cache_only) {
711 		put_caching_control(caching_ctl);
712 		return 0;
713 	}
714 
715 	down_write(&fs_info->commit_root_sem);
716 	atomic_inc(&caching_ctl->count);
717 	list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
718 	up_write(&fs_info->commit_root_sem);
719 
720 	btrfs_get_block_group(cache);
721 
722 	btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
723 
724 	return ret;
725 }
726 
727 /*
728  * return the block group that starts at or after bytenr
729  */
730 static struct btrfs_block_group_cache *
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)731 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
732 {
733 	return block_group_cache_tree_search(info, bytenr, 0);
734 }
735 
736 /*
737  * return the block group that contains the given bytenr
738  */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)739 struct btrfs_block_group_cache *btrfs_lookup_block_group(
740 						 struct btrfs_fs_info *info,
741 						 u64 bytenr)
742 {
743 	return block_group_cache_tree_search(info, bytenr, 1);
744 }
745 
__find_space_info(struct btrfs_fs_info * info,u64 flags)746 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
747 						  u64 flags)
748 {
749 	struct list_head *head = &info->space_info;
750 	struct btrfs_space_info *found;
751 
752 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
753 
754 	rcu_read_lock();
755 	list_for_each_entry_rcu(found, head, list) {
756 		if (found->flags & flags) {
757 			rcu_read_unlock();
758 			return found;
759 		}
760 	}
761 	rcu_read_unlock();
762 	return NULL;
763 }
764 
765 /*
766  * after adding space to the filesystem, we need to clear the full flags
767  * on all the space infos.
768  */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)769 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
770 {
771 	struct list_head *head = &info->space_info;
772 	struct btrfs_space_info *found;
773 
774 	rcu_read_lock();
775 	list_for_each_entry_rcu(found, head, list)
776 		found->full = 0;
777 	rcu_read_unlock();
778 }
779 
780 /* simple helper to search for an existing data extent at a given offset */
btrfs_lookup_data_extent(struct btrfs_root * root,u64 start,u64 len)781 int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
782 {
783 	int ret;
784 	struct btrfs_key key;
785 	struct btrfs_path *path;
786 
787 	path = btrfs_alloc_path();
788 	if (!path)
789 		return -ENOMEM;
790 
791 	key.objectid = start;
792 	key.offset = len;
793 	key.type = BTRFS_EXTENT_ITEM_KEY;
794 	ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
795 				0, 0);
796 	btrfs_free_path(path);
797 	return ret;
798 }
799 
800 /*
801  * helper function to lookup reference count and flags of a tree block.
802  *
803  * the head node for delayed ref is used to store the sum of all the
804  * reference count modifications queued up in the rbtree. the head
805  * node may also store the extent flags to set. This way you can check
806  * to see what the reference count and extent flags would be if all of
807  * the delayed refs are not processed.
808  */
btrfs_lookup_extent_info(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 offset,int metadata,u64 * refs,u64 * flags)809 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
810 			     struct btrfs_root *root, u64 bytenr,
811 			     u64 offset, int metadata, u64 *refs, u64 *flags)
812 {
813 	struct btrfs_delayed_ref_head *head;
814 	struct btrfs_delayed_ref_root *delayed_refs;
815 	struct btrfs_path *path;
816 	struct btrfs_extent_item *ei;
817 	struct extent_buffer *leaf;
818 	struct btrfs_key key;
819 	u32 item_size;
820 	u64 num_refs;
821 	u64 extent_flags;
822 	int ret;
823 
824 	/*
825 	 * If we don't have skinny metadata, don't bother doing anything
826 	 * different
827 	 */
828 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
829 		offset = root->nodesize;
830 		metadata = 0;
831 	}
832 
833 	path = btrfs_alloc_path();
834 	if (!path)
835 		return -ENOMEM;
836 
837 	if (!trans) {
838 		path->skip_locking = 1;
839 		path->search_commit_root = 1;
840 	}
841 
842 search_again:
843 	key.objectid = bytenr;
844 	key.offset = offset;
845 	if (metadata)
846 		key.type = BTRFS_METADATA_ITEM_KEY;
847 	else
848 		key.type = BTRFS_EXTENT_ITEM_KEY;
849 
850 	ret = btrfs_search_slot(trans, root->fs_info->extent_root,
851 				&key, path, 0, 0);
852 	if (ret < 0)
853 		goto out_free;
854 
855 	if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
856 		if (path->slots[0]) {
857 			path->slots[0]--;
858 			btrfs_item_key_to_cpu(path->nodes[0], &key,
859 					      path->slots[0]);
860 			if (key.objectid == bytenr &&
861 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
862 			    key.offset == root->nodesize)
863 				ret = 0;
864 		}
865 	}
866 
867 	if (ret == 0) {
868 		leaf = path->nodes[0];
869 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
870 		if (item_size >= sizeof(*ei)) {
871 			ei = btrfs_item_ptr(leaf, path->slots[0],
872 					    struct btrfs_extent_item);
873 			num_refs = btrfs_extent_refs(leaf, ei);
874 			extent_flags = btrfs_extent_flags(leaf, ei);
875 		} else {
876 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
877 			struct btrfs_extent_item_v0 *ei0;
878 			BUG_ON(item_size != sizeof(*ei0));
879 			ei0 = btrfs_item_ptr(leaf, path->slots[0],
880 					     struct btrfs_extent_item_v0);
881 			num_refs = btrfs_extent_refs_v0(leaf, ei0);
882 			/* FIXME: this isn't correct for data */
883 			extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
884 #else
885 			BUG();
886 #endif
887 		}
888 		BUG_ON(num_refs == 0);
889 	} else {
890 		num_refs = 0;
891 		extent_flags = 0;
892 		ret = 0;
893 	}
894 
895 	if (!trans)
896 		goto out;
897 
898 	delayed_refs = &trans->transaction->delayed_refs;
899 	spin_lock(&delayed_refs->lock);
900 	head = btrfs_find_delayed_ref_head(trans, bytenr);
901 	if (head) {
902 		if (!mutex_trylock(&head->mutex)) {
903 			atomic_inc(&head->node.refs);
904 			spin_unlock(&delayed_refs->lock);
905 
906 			btrfs_release_path(path);
907 
908 			/*
909 			 * Mutex was contended, block until it's released and try
910 			 * again
911 			 */
912 			mutex_lock(&head->mutex);
913 			mutex_unlock(&head->mutex);
914 			btrfs_put_delayed_ref(&head->node);
915 			goto search_again;
916 		}
917 		spin_lock(&head->lock);
918 		if (head->extent_op && head->extent_op->update_flags)
919 			extent_flags |= head->extent_op->flags_to_set;
920 		else
921 			BUG_ON(num_refs == 0);
922 
923 		num_refs += head->node.ref_mod;
924 		spin_unlock(&head->lock);
925 		mutex_unlock(&head->mutex);
926 	}
927 	spin_unlock(&delayed_refs->lock);
928 out:
929 	WARN_ON(num_refs == 0);
930 	if (refs)
931 		*refs = num_refs;
932 	if (flags)
933 		*flags = extent_flags;
934 out_free:
935 	btrfs_free_path(path);
936 	return ret;
937 }
938 
939 /*
940  * Back reference rules.  Back refs have three main goals:
941  *
942  * 1) differentiate between all holders of references to an extent so that
943  *    when a reference is dropped we can make sure it was a valid reference
944  *    before freeing the extent.
945  *
946  * 2) Provide enough information to quickly find the holders of an extent
947  *    if we notice a given block is corrupted or bad.
948  *
949  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
950  *    maintenance.  This is actually the same as #2, but with a slightly
951  *    different use case.
952  *
953  * There are two kinds of back refs. The implicit back refs is optimized
954  * for pointers in non-shared tree blocks. For a given pointer in a block,
955  * back refs of this kind provide information about the block's owner tree
956  * and the pointer's key. These information allow us to find the block by
957  * b-tree searching. The full back refs is for pointers in tree blocks not
958  * referenced by their owner trees. The location of tree block is recorded
959  * in the back refs. Actually the full back refs is generic, and can be
960  * used in all cases the implicit back refs is used. The major shortcoming
961  * of the full back refs is its overhead. Every time a tree block gets
962  * COWed, we have to update back refs entry for all pointers in it.
963  *
964  * For a newly allocated tree block, we use implicit back refs for
965  * pointers in it. This means most tree related operations only involve
966  * implicit back refs. For a tree block created in old transaction, the
967  * only way to drop a reference to it is COW it. So we can detect the
968  * event that tree block loses its owner tree's reference and do the
969  * back refs conversion.
970  *
971  * When a tree block is COWed through a tree, there are four cases:
972  *
973  * The reference count of the block is one and the tree is the block's
974  * owner tree. Nothing to do in this case.
975  *
976  * The reference count of the block is one and the tree is not the
977  * block's owner tree. In this case, full back refs is used for pointers
978  * in the block. Remove these full back refs, add implicit back refs for
979  * every pointers in the new block.
980  *
981  * The reference count of the block is greater than one and the tree is
982  * the block's owner tree. In this case, implicit back refs is used for
983  * pointers in the block. Add full back refs for every pointers in the
984  * block, increase lower level extents' reference counts. The original
985  * implicit back refs are entailed to the new block.
986  *
987  * The reference count of the block is greater than one and the tree is
988  * not the block's owner tree. Add implicit back refs for every pointer in
989  * the new block, increase lower level extents' reference count.
990  *
991  * Back Reference Key composing:
992  *
993  * The key objectid corresponds to the first byte in the extent,
994  * The key type is used to differentiate between types of back refs.
995  * There are different meanings of the key offset for different types
996  * of back refs.
997  *
998  * File extents can be referenced by:
999  *
1000  * - multiple snapshots, subvolumes, or different generations in one subvol
1001  * - different files inside a single subvolume
1002  * - different offsets inside a file (bookend extents in file.c)
1003  *
1004  * The extent ref structure for the implicit back refs has fields for:
1005  *
1006  * - Objectid of the subvolume root
1007  * - objectid of the file holding the reference
1008  * - original offset in the file
1009  * - how many bookend extents
1010  *
1011  * The key offset for the implicit back refs is hash of the first
1012  * three fields.
1013  *
1014  * The extent ref structure for the full back refs has field for:
1015  *
1016  * - number of pointers in the tree leaf
1017  *
1018  * The key offset for the implicit back refs is the first byte of
1019  * the tree leaf
1020  *
1021  * When a file extent is allocated, The implicit back refs is used.
1022  * the fields are filled in:
1023  *
1024  *     (root_key.objectid, inode objectid, offset in file, 1)
1025  *
1026  * When a file extent is removed file truncation, we find the
1027  * corresponding implicit back refs and check the following fields:
1028  *
1029  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1030  *
1031  * Btree extents can be referenced by:
1032  *
1033  * - Different subvolumes
1034  *
1035  * Both the implicit back refs and the full back refs for tree blocks
1036  * only consist of key. The key offset for the implicit back refs is
1037  * objectid of block's owner tree. The key offset for the full back refs
1038  * is the first byte of parent block.
1039  *
1040  * When implicit back refs is used, information about the lowest key and
1041  * level of the tree block are required. These information are stored in
1042  * tree block info structure.
1043  */
1044 
1045 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
convert_extent_item_v0(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 owner,u32 extra_size)1046 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1047 				  struct btrfs_root *root,
1048 				  struct btrfs_path *path,
1049 				  u64 owner, u32 extra_size)
1050 {
1051 	struct btrfs_extent_item *item;
1052 	struct btrfs_extent_item_v0 *ei0;
1053 	struct btrfs_extent_ref_v0 *ref0;
1054 	struct btrfs_tree_block_info *bi;
1055 	struct extent_buffer *leaf;
1056 	struct btrfs_key key;
1057 	struct btrfs_key found_key;
1058 	u32 new_size = sizeof(*item);
1059 	u64 refs;
1060 	int ret;
1061 
1062 	leaf = path->nodes[0];
1063 	BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1064 
1065 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1066 	ei0 = btrfs_item_ptr(leaf, path->slots[0],
1067 			     struct btrfs_extent_item_v0);
1068 	refs = btrfs_extent_refs_v0(leaf, ei0);
1069 
1070 	if (owner == (u64)-1) {
1071 		while (1) {
1072 			if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073 				ret = btrfs_next_leaf(root, path);
1074 				if (ret < 0)
1075 					return ret;
1076 				BUG_ON(ret > 0); /* Corruption */
1077 				leaf = path->nodes[0];
1078 			}
1079 			btrfs_item_key_to_cpu(leaf, &found_key,
1080 					      path->slots[0]);
1081 			BUG_ON(key.objectid != found_key.objectid);
1082 			if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1083 				path->slots[0]++;
1084 				continue;
1085 			}
1086 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1087 					      struct btrfs_extent_ref_v0);
1088 			owner = btrfs_ref_objectid_v0(leaf, ref0);
1089 			break;
1090 		}
1091 	}
1092 	btrfs_release_path(path);
1093 
1094 	if (owner < BTRFS_FIRST_FREE_OBJECTID)
1095 		new_size += sizeof(*bi);
1096 
1097 	new_size -= sizeof(*ei0);
1098 	ret = btrfs_search_slot(trans, root, &key, path,
1099 				new_size + extra_size, 1);
1100 	if (ret < 0)
1101 		return ret;
1102 	BUG_ON(ret); /* Corruption */
1103 
1104 	btrfs_extend_item(root, path, new_size);
1105 
1106 	leaf = path->nodes[0];
1107 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1108 	btrfs_set_extent_refs(leaf, item, refs);
1109 	/* FIXME: get real generation */
1110 	btrfs_set_extent_generation(leaf, item, 0);
1111 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1112 		btrfs_set_extent_flags(leaf, item,
1113 				       BTRFS_EXTENT_FLAG_TREE_BLOCK |
1114 				       BTRFS_BLOCK_FLAG_FULL_BACKREF);
1115 		bi = (struct btrfs_tree_block_info *)(item + 1);
1116 		/* FIXME: get first key of the block */
1117 		memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1118 		btrfs_set_tree_block_level(leaf, bi, (int)owner);
1119 	} else {
1120 		btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1121 	}
1122 	btrfs_mark_buffer_dirty(leaf);
1123 	return 0;
1124 }
1125 #endif
1126 
hash_extent_data_ref(u64 root_objectid,u64 owner,u64 offset)1127 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1128 {
1129 	u32 high_crc = ~(u32)0;
1130 	u32 low_crc = ~(u32)0;
1131 	__le64 lenum;
1132 
1133 	lenum = cpu_to_le64(root_objectid);
1134 	high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1135 	lenum = cpu_to_le64(owner);
1136 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1137 	lenum = cpu_to_le64(offset);
1138 	low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1139 
1140 	return ((u64)high_crc << 31) ^ (u64)low_crc;
1141 }
1142 
hash_extent_data_ref_item(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref)1143 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1144 				     struct btrfs_extent_data_ref *ref)
1145 {
1146 	return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1147 				    btrfs_extent_data_ref_objectid(leaf, ref),
1148 				    btrfs_extent_data_ref_offset(leaf, ref));
1149 }
1150 
match_extent_data_ref(struct extent_buffer * leaf,struct btrfs_extent_data_ref * ref,u64 root_objectid,u64 owner,u64 offset)1151 static int match_extent_data_ref(struct extent_buffer *leaf,
1152 				 struct btrfs_extent_data_ref *ref,
1153 				 u64 root_objectid, u64 owner, u64 offset)
1154 {
1155 	if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1156 	    btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1157 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
1158 		return 0;
1159 	return 1;
1160 }
1161 
lookup_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset)1162 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1163 					   struct btrfs_root *root,
1164 					   struct btrfs_path *path,
1165 					   u64 bytenr, u64 parent,
1166 					   u64 root_objectid,
1167 					   u64 owner, u64 offset)
1168 {
1169 	struct btrfs_key key;
1170 	struct btrfs_extent_data_ref *ref;
1171 	struct extent_buffer *leaf;
1172 	u32 nritems;
1173 	int ret;
1174 	int recow;
1175 	int err = -ENOENT;
1176 
1177 	key.objectid = bytenr;
1178 	if (parent) {
1179 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1180 		key.offset = parent;
1181 	} else {
1182 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1183 		key.offset = hash_extent_data_ref(root_objectid,
1184 						  owner, offset);
1185 	}
1186 again:
1187 	recow = 0;
1188 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1189 	if (ret < 0) {
1190 		err = ret;
1191 		goto fail;
1192 	}
1193 
1194 	if (parent) {
1195 		if (!ret)
1196 			return 0;
1197 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1198 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1199 		btrfs_release_path(path);
1200 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1201 		if (ret < 0) {
1202 			err = ret;
1203 			goto fail;
1204 		}
1205 		if (!ret)
1206 			return 0;
1207 #endif
1208 		goto fail;
1209 	}
1210 
1211 	leaf = path->nodes[0];
1212 	nritems = btrfs_header_nritems(leaf);
1213 	while (1) {
1214 		if (path->slots[0] >= nritems) {
1215 			ret = btrfs_next_leaf(root, path);
1216 			if (ret < 0)
1217 				err = ret;
1218 			if (ret)
1219 				goto fail;
1220 
1221 			leaf = path->nodes[0];
1222 			nritems = btrfs_header_nritems(leaf);
1223 			recow = 1;
1224 		}
1225 
1226 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1227 		if (key.objectid != bytenr ||
1228 		    key.type != BTRFS_EXTENT_DATA_REF_KEY)
1229 			goto fail;
1230 
1231 		ref = btrfs_item_ptr(leaf, path->slots[0],
1232 				     struct btrfs_extent_data_ref);
1233 
1234 		if (match_extent_data_ref(leaf, ref, root_objectid,
1235 					  owner, offset)) {
1236 			if (recow) {
1237 				btrfs_release_path(path);
1238 				goto again;
1239 			}
1240 			err = 0;
1241 			break;
1242 		}
1243 		path->slots[0]++;
1244 	}
1245 fail:
1246 	return err;
1247 }
1248 
insert_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1249 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1250 					   struct btrfs_root *root,
1251 					   struct btrfs_path *path,
1252 					   u64 bytenr, u64 parent,
1253 					   u64 root_objectid, u64 owner,
1254 					   u64 offset, int refs_to_add)
1255 {
1256 	struct btrfs_key key;
1257 	struct extent_buffer *leaf;
1258 	u32 size;
1259 	u32 num_refs;
1260 	int ret;
1261 
1262 	key.objectid = bytenr;
1263 	if (parent) {
1264 		key.type = BTRFS_SHARED_DATA_REF_KEY;
1265 		key.offset = parent;
1266 		size = sizeof(struct btrfs_shared_data_ref);
1267 	} else {
1268 		key.type = BTRFS_EXTENT_DATA_REF_KEY;
1269 		key.offset = hash_extent_data_ref(root_objectid,
1270 						  owner, offset);
1271 		size = sizeof(struct btrfs_extent_data_ref);
1272 	}
1273 
1274 	ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1275 	if (ret && ret != -EEXIST)
1276 		goto fail;
1277 
1278 	leaf = path->nodes[0];
1279 	if (parent) {
1280 		struct btrfs_shared_data_ref *ref;
1281 		ref = btrfs_item_ptr(leaf, path->slots[0],
1282 				     struct btrfs_shared_data_ref);
1283 		if (ret == 0) {
1284 			btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1285 		} else {
1286 			num_refs = btrfs_shared_data_ref_count(leaf, ref);
1287 			num_refs += refs_to_add;
1288 			btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1289 		}
1290 	} else {
1291 		struct btrfs_extent_data_ref *ref;
1292 		while (ret == -EEXIST) {
1293 			ref = btrfs_item_ptr(leaf, path->slots[0],
1294 					     struct btrfs_extent_data_ref);
1295 			if (match_extent_data_ref(leaf, ref, root_objectid,
1296 						  owner, offset))
1297 				break;
1298 			btrfs_release_path(path);
1299 			key.offset++;
1300 			ret = btrfs_insert_empty_item(trans, root, path, &key,
1301 						      size);
1302 			if (ret && ret != -EEXIST)
1303 				goto fail;
1304 
1305 			leaf = path->nodes[0];
1306 		}
1307 		ref = btrfs_item_ptr(leaf, path->slots[0],
1308 				     struct btrfs_extent_data_ref);
1309 		if (ret == 0) {
1310 			btrfs_set_extent_data_ref_root(leaf, ref,
1311 						       root_objectid);
1312 			btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1313 			btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1314 			btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1315 		} else {
1316 			num_refs = btrfs_extent_data_ref_count(leaf, ref);
1317 			num_refs += refs_to_add;
1318 			btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1319 		}
1320 	}
1321 	btrfs_mark_buffer_dirty(leaf);
1322 	ret = 0;
1323 fail:
1324 	btrfs_release_path(path);
1325 	return ret;
1326 }
1327 
remove_extent_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int refs_to_drop,int * last_ref)1328 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1329 					   struct btrfs_root *root,
1330 					   struct btrfs_path *path,
1331 					   int refs_to_drop, int *last_ref)
1332 {
1333 	struct btrfs_key key;
1334 	struct btrfs_extent_data_ref *ref1 = NULL;
1335 	struct btrfs_shared_data_ref *ref2 = NULL;
1336 	struct extent_buffer *leaf;
1337 	u32 num_refs = 0;
1338 	int ret = 0;
1339 
1340 	leaf = path->nodes[0];
1341 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1342 
1343 	if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1344 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1345 				      struct btrfs_extent_data_ref);
1346 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1347 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1348 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1349 				      struct btrfs_shared_data_ref);
1350 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1351 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1352 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1353 		struct btrfs_extent_ref_v0 *ref0;
1354 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1355 				      struct btrfs_extent_ref_v0);
1356 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1357 #endif
1358 	} else {
1359 		BUG();
1360 	}
1361 
1362 	BUG_ON(num_refs < refs_to_drop);
1363 	num_refs -= refs_to_drop;
1364 
1365 	if (num_refs == 0) {
1366 		ret = btrfs_del_item(trans, root, path);
1367 		*last_ref = 1;
1368 	} else {
1369 		if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1370 			btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1371 		else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1372 			btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1373 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1374 		else {
1375 			struct btrfs_extent_ref_v0 *ref0;
1376 			ref0 = btrfs_item_ptr(leaf, path->slots[0],
1377 					struct btrfs_extent_ref_v0);
1378 			btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1379 		}
1380 #endif
1381 		btrfs_mark_buffer_dirty(leaf);
1382 	}
1383 	return ret;
1384 }
1385 
extent_data_ref_count(struct btrfs_path * path,struct btrfs_extent_inline_ref * iref)1386 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1387 					  struct btrfs_extent_inline_ref *iref)
1388 {
1389 	struct btrfs_key key;
1390 	struct extent_buffer *leaf;
1391 	struct btrfs_extent_data_ref *ref1;
1392 	struct btrfs_shared_data_ref *ref2;
1393 	u32 num_refs = 0;
1394 
1395 	leaf = path->nodes[0];
1396 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1397 	if (iref) {
1398 		if (btrfs_extent_inline_ref_type(leaf, iref) ==
1399 		    BTRFS_EXTENT_DATA_REF_KEY) {
1400 			ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1401 			num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1402 		} else {
1403 			ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1404 			num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1405 		}
1406 	} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1407 		ref1 = btrfs_item_ptr(leaf, path->slots[0],
1408 				      struct btrfs_extent_data_ref);
1409 		num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1410 	} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1411 		ref2 = btrfs_item_ptr(leaf, path->slots[0],
1412 				      struct btrfs_shared_data_ref);
1413 		num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1414 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1415 	} else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1416 		struct btrfs_extent_ref_v0 *ref0;
1417 		ref0 = btrfs_item_ptr(leaf, path->slots[0],
1418 				      struct btrfs_extent_ref_v0);
1419 		num_refs = btrfs_ref_count_v0(leaf, ref0);
1420 #endif
1421 	} else {
1422 		WARN_ON(1);
1423 	}
1424 	return num_refs;
1425 }
1426 
lookup_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1427 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1428 					  struct btrfs_root *root,
1429 					  struct btrfs_path *path,
1430 					  u64 bytenr, u64 parent,
1431 					  u64 root_objectid)
1432 {
1433 	struct btrfs_key key;
1434 	int ret;
1435 
1436 	key.objectid = bytenr;
1437 	if (parent) {
1438 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1439 		key.offset = parent;
1440 	} else {
1441 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1442 		key.offset = root_objectid;
1443 	}
1444 
1445 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1446 	if (ret > 0)
1447 		ret = -ENOENT;
1448 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1449 	if (ret == -ENOENT && parent) {
1450 		btrfs_release_path(path);
1451 		key.type = BTRFS_EXTENT_REF_V0_KEY;
1452 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1453 		if (ret > 0)
1454 			ret = -ENOENT;
1455 	}
1456 #endif
1457 	return ret;
1458 }
1459 
insert_tree_block_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid)1460 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1461 					  struct btrfs_root *root,
1462 					  struct btrfs_path *path,
1463 					  u64 bytenr, u64 parent,
1464 					  u64 root_objectid)
1465 {
1466 	struct btrfs_key key;
1467 	int ret;
1468 
1469 	key.objectid = bytenr;
1470 	if (parent) {
1471 		key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1472 		key.offset = parent;
1473 	} else {
1474 		key.type = BTRFS_TREE_BLOCK_REF_KEY;
1475 		key.offset = root_objectid;
1476 	}
1477 
1478 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1479 	btrfs_release_path(path);
1480 	return ret;
1481 }
1482 
extent_ref_type(u64 parent,u64 owner)1483 static inline int extent_ref_type(u64 parent, u64 owner)
1484 {
1485 	int type;
1486 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1487 		if (parent > 0)
1488 			type = BTRFS_SHARED_BLOCK_REF_KEY;
1489 		else
1490 			type = BTRFS_TREE_BLOCK_REF_KEY;
1491 	} else {
1492 		if (parent > 0)
1493 			type = BTRFS_SHARED_DATA_REF_KEY;
1494 		else
1495 			type = BTRFS_EXTENT_DATA_REF_KEY;
1496 	}
1497 	return type;
1498 }
1499 
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1500 static int find_next_key(struct btrfs_path *path, int level,
1501 			 struct btrfs_key *key)
1502 
1503 {
1504 	for (; level < BTRFS_MAX_LEVEL; level++) {
1505 		if (!path->nodes[level])
1506 			break;
1507 		if (path->slots[level] + 1 >=
1508 		    btrfs_header_nritems(path->nodes[level]))
1509 			continue;
1510 		if (level == 0)
1511 			btrfs_item_key_to_cpu(path->nodes[level], key,
1512 					      path->slots[level] + 1);
1513 		else
1514 			btrfs_node_key_to_cpu(path->nodes[level], key,
1515 					      path->slots[level] + 1);
1516 		return 0;
1517 	}
1518 	return 1;
1519 }
1520 
1521 /*
1522  * look for inline back ref. if back ref is found, *ref_ret is set
1523  * to the address of inline back ref, and 0 is returned.
1524  *
1525  * if back ref isn't found, *ref_ret is set to the address where it
1526  * should be inserted, and -ENOENT is returned.
1527  *
1528  * if insert is true and there are too many inline back refs, the path
1529  * points to the extent item, and -EAGAIN is returned.
1530  *
1531  * NOTE: inline back refs are ordered in the same way that back ref
1532  *	 items in the tree are ordered.
1533  */
1534 static noinline_for_stack
lookup_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int insert)1535 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1536 				 struct btrfs_root *root,
1537 				 struct btrfs_path *path,
1538 				 struct btrfs_extent_inline_ref **ref_ret,
1539 				 u64 bytenr, u64 num_bytes,
1540 				 u64 parent, u64 root_objectid,
1541 				 u64 owner, u64 offset, int insert)
1542 {
1543 	struct btrfs_key key;
1544 	struct extent_buffer *leaf;
1545 	struct btrfs_extent_item *ei;
1546 	struct btrfs_extent_inline_ref *iref;
1547 	u64 flags;
1548 	u64 item_size;
1549 	unsigned long ptr;
1550 	unsigned long end;
1551 	int extra_size;
1552 	int type;
1553 	int want;
1554 	int ret;
1555 	int err = 0;
1556 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1557 						 SKINNY_METADATA);
1558 
1559 	key.objectid = bytenr;
1560 	key.type = BTRFS_EXTENT_ITEM_KEY;
1561 	key.offset = num_bytes;
1562 
1563 	want = extent_ref_type(parent, owner);
1564 	if (insert) {
1565 		extra_size = btrfs_extent_inline_ref_size(want);
1566 		path->keep_locks = 1;
1567 	} else
1568 		extra_size = -1;
1569 
1570 	/*
1571 	 * Owner is our parent level, so we can just add one to get the level
1572 	 * for the block we are interested in.
1573 	 */
1574 	if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1575 		key.type = BTRFS_METADATA_ITEM_KEY;
1576 		key.offset = owner;
1577 	}
1578 
1579 again:
1580 	ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1581 	if (ret < 0) {
1582 		err = ret;
1583 		goto out;
1584 	}
1585 
1586 	/*
1587 	 * We may be a newly converted file system which still has the old fat
1588 	 * extent entries for metadata, so try and see if we have one of those.
1589 	 */
1590 	if (ret > 0 && skinny_metadata) {
1591 		skinny_metadata = false;
1592 		if (path->slots[0]) {
1593 			path->slots[0]--;
1594 			btrfs_item_key_to_cpu(path->nodes[0], &key,
1595 					      path->slots[0]);
1596 			if (key.objectid == bytenr &&
1597 			    key.type == BTRFS_EXTENT_ITEM_KEY &&
1598 			    key.offset == num_bytes)
1599 				ret = 0;
1600 		}
1601 		if (ret) {
1602 			key.objectid = bytenr;
1603 			key.type = BTRFS_EXTENT_ITEM_KEY;
1604 			key.offset = num_bytes;
1605 			btrfs_release_path(path);
1606 			goto again;
1607 		}
1608 	}
1609 
1610 	if (ret && !insert) {
1611 		err = -ENOENT;
1612 		goto out;
1613 	} else if (WARN_ON(ret)) {
1614 		err = -EIO;
1615 		goto out;
1616 	}
1617 
1618 	leaf = path->nodes[0];
1619 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1620 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1621 	if (item_size < sizeof(*ei)) {
1622 		if (!insert) {
1623 			err = -ENOENT;
1624 			goto out;
1625 		}
1626 		ret = convert_extent_item_v0(trans, root, path, owner,
1627 					     extra_size);
1628 		if (ret < 0) {
1629 			err = ret;
1630 			goto out;
1631 		}
1632 		leaf = path->nodes[0];
1633 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1634 	}
1635 #endif
1636 	BUG_ON(item_size < sizeof(*ei));
1637 
1638 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1639 	flags = btrfs_extent_flags(leaf, ei);
1640 
1641 	ptr = (unsigned long)(ei + 1);
1642 	end = (unsigned long)ei + item_size;
1643 
1644 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1645 		ptr += sizeof(struct btrfs_tree_block_info);
1646 		BUG_ON(ptr > end);
1647 	}
1648 
1649 	err = -ENOENT;
1650 	while (1) {
1651 		if (ptr >= end) {
1652 			WARN_ON(ptr > end);
1653 			break;
1654 		}
1655 		iref = (struct btrfs_extent_inline_ref *)ptr;
1656 		type = btrfs_extent_inline_ref_type(leaf, iref);
1657 		if (want < type)
1658 			break;
1659 		if (want > type) {
1660 			ptr += btrfs_extent_inline_ref_size(type);
1661 			continue;
1662 		}
1663 
1664 		if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1665 			struct btrfs_extent_data_ref *dref;
1666 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1667 			if (match_extent_data_ref(leaf, dref, root_objectid,
1668 						  owner, offset)) {
1669 				err = 0;
1670 				break;
1671 			}
1672 			if (hash_extent_data_ref_item(leaf, dref) <
1673 			    hash_extent_data_ref(root_objectid, owner, offset))
1674 				break;
1675 		} else {
1676 			u64 ref_offset;
1677 			ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1678 			if (parent > 0) {
1679 				if (parent == ref_offset) {
1680 					err = 0;
1681 					break;
1682 				}
1683 				if (ref_offset < parent)
1684 					break;
1685 			} else {
1686 				if (root_objectid == ref_offset) {
1687 					err = 0;
1688 					break;
1689 				}
1690 				if (ref_offset < root_objectid)
1691 					break;
1692 			}
1693 		}
1694 		ptr += btrfs_extent_inline_ref_size(type);
1695 	}
1696 	if (err == -ENOENT && insert) {
1697 		if (item_size + extra_size >=
1698 		    BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1699 			err = -EAGAIN;
1700 			goto out;
1701 		}
1702 		/*
1703 		 * To add new inline back ref, we have to make sure
1704 		 * there is no corresponding back ref item.
1705 		 * For simplicity, we just do not add new inline back
1706 		 * ref if there is any kind of item for this block
1707 		 */
1708 		if (find_next_key(path, 0, &key) == 0 &&
1709 		    key.objectid == bytenr &&
1710 		    key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1711 			err = -EAGAIN;
1712 			goto out;
1713 		}
1714 	}
1715 	*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1716 out:
1717 	if (insert) {
1718 		path->keep_locks = 0;
1719 		btrfs_unlock_up_safe(path, 1);
1720 	}
1721 	return err;
1722 }
1723 
1724 /*
1725  * helper to add new inline back ref
1726  */
1727 static noinline_for_stack
setup_inline_extent_backref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1728 void setup_inline_extent_backref(struct btrfs_root *root,
1729 				 struct btrfs_path *path,
1730 				 struct btrfs_extent_inline_ref *iref,
1731 				 u64 parent, u64 root_objectid,
1732 				 u64 owner, u64 offset, int refs_to_add,
1733 				 struct btrfs_delayed_extent_op *extent_op)
1734 {
1735 	struct extent_buffer *leaf;
1736 	struct btrfs_extent_item *ei;
1737 	unsigned long ptr;
1738 	unsigned long end;
1739 	unsigned long item_offset;
1740 	u64 refs;
1741 	int size;
1742 	int type;
1743 
1744 	leaf = path->nodes[0];
1745 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1746 	item_offset = (unsigned long)iref - (unsigned long)ei;
1747 
1748 	type = extent_ref_type(parent, owner);
1749 	size = btrfs_extent_inline_ref_size(type);
1750 
1751 	btrfs_extend_item(root, path, size);
1752 
1753 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1754 	refs = btrfs_extent_refs(leaf, ei);
1755 	refs += refs_to_add;
1756 	btrfs_set_extent_refs(leaf, ei, refs);
1757 	if (extent_op)
1758 		__run_delayed_extent_op(extent_op, leaf, ei);
1759 
1760 	ptr = (unsigned long)ei + item_offset;
1761 	end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1762 	if (ptr < end - size)
1763 		memmove_extent_buffer(leaf, ptr + size, ptr,
1764 				      end - size - ptr);
1765 
1766 	iref = (struct btrfs_extent_inline_ref *)ptr;
1767 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
1768 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1769 		struct btrfs_extent_data_ref *dref;
1770 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1771 		btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1772 		btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1773 		btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1774 		btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1775 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1776 		struct btrfs_shared_data_ref *sref;
1777 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1778 		btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1779 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1780 	} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1781 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1782 	} else {
1783 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1784 	}
1785 	btrfs_mark_buffer_dirty(leaf);
1786 }
1787 
lookup_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref ** ref_ret,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)1788 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1789 				 struct btrfs_root *root,
1790 				 struct btrfs_path *path,
1791 				 struct btrfs_extent_inline_ref **ref_ret,
1792 				 u64 bytenr, u64 num_bytes, u64 parent,
1793 				 u64 root_objectid, u64 owner, u64 offset)
1794 {
1795 	int ret;
1796 
1797 	ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1798 					   bytenr, num_bytes, parent,
1799 					   root_objectid, owner, offset, 0);
1800 	if (ret != -ENOENT)
1801 		return ret;
1802 
1803 	btrfs_release_path(path);
1804 	*ref_ret = NULL;
1805 
1806 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1807 		ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1808 					    root_objectid);
1809 	} else {
1810 		ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1811 					     root_objectid, owner, offset);
1812 	}
1813 	return ret;
1814 }
1815 
1816 /*
1817  * helper to update/remove inline back ref
1818  */
1819 static noinline_for_stack
update_inline_extent_backref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_mod,struct btrfs_delayed_extent_op * extent_op,int * last_ref)1820 void update_inline_extent_backref(struct btrfs_root *root,
1821 				  struct btrfs_path *path,
1822 				  struct btrfs_extent_inline_ref *iref,
1823 				  int refs_to_mod,
1824 				  struct btrfs_delayed_extent_op *extent_op,
1825 				  int *last_ref)
1826 {
1827 	struct extent_buffer *leaf;
1828 	struct btrfs_extent_item *ei;
1829 	struct btrfs_extent_data_ref *dref = NULL;
1830 	struct btrfs_shared_data_ref *sref = NULL;
1831 	unsigned long ptr;
1832 	unsigned long end;
1833 	u32 item_size;
1834 	int size;
1835 	int type;
1836 	u64 refs;
1837 
1838 	leaf = path->nodes[0];
1839 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1840 	refs = btrfs_extent_refs(leaf, ei);
1841 	WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1842 	refs += refs_to_mod;
1843 	btrfs_set_extent_refs(leaf, ei, refs);
1844 	if (extent_op)
1845 		__run_delayed_extent_op(extent_op, leaf, ei);
1846 
1847 	type = btrfs_extent_inline_ref_type(leaf, iref);
1848 
1849 	if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1850 		dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1851 		refs = btrfs_extent_data_ref_count(leaf, dref);
1852 	} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1853 		sref = (struct btrfs_shared_data_ref *)(iref + 1);
1854 		refs = btrfs_shared_data_ref_count(leaf, sref);
1855 	} else {
1856 		refs = 1;
1857 		BUG_ON(refs_to_mod != -1);
1858 	}
1859 
1860 	BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1861 	refs += refs_to_mod;
1862 
1863 	if (refs > 0) {
1864 		if (type == BTRFS_EXTENT_DATA_REF_KEY)
1865 			btrfs_set_extent_data_ref_count(leaf, dref, refs);
1866 		else
1867 			btrfs_set_shared_data_ref_count(leaf, sref, refs);
1868 	} else {
1869 		*last_ref = 1;
1870 		size =  btrfs_extent_inline_ref_size(type);
1871 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1872 		ptr = (unsigned long)iref;
1873 		end = (unsigned long)ei + item_size;
1874 		if (ptr + size < end)
1875 			memmove_extent_buffer(leaf, ptr, ptr + size,
1876 					      end - ptr - size);
1877 		item_size -= size;
1878 		btrfs_truncate_item(root, path, item_size, 1);
1879 	}
1880 	btrfs_mark_buffer_dirty(leaf);
1881 }
1882 
1883 static noinline_for_stack
insert_inline_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)1884 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1885 				 struct btrfs_root *root,
1886 				 struct btrfs_path *path,
1887 				 u64 bytenr, u64 num_bytes, u64 parent,
1888 				 u64 root_objectid, u64 owner,
1889 				 u64 offset, int refs_to_add,
1890 				 struct btrfs_delayed_extent_op *extent_op)
1891 {
1892 	struct btrfs_extent_inline_ref *iref;
1893 	int ret;
1894 
1895 	ret = lookup_inline_extent_backref(trans, root, path, &iref,
1896 					   bytenr, num_bytes, parent,
1897 					   root_objectid, owner, offset, 1);
1898 	if (ret == 0) {
1899 		BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1900 		update_inline_extent_backref(root, path, iref,
1901 					     refs_to_add, extent_op, NULL);
1902 	} else if (ret == -ENOENT) {
1903 		setup_inline_extent_backref(root, path, iref, parent,
1904 					    root_objectid, owner, offset,
1905 					    refs_to_add, extent_op);
1906 		ret = 0;
1907 	}
1908 	return ret;
1909 }
1910 
insert_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 bytenr,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add)1911 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1912 				 struct btrfs_root *root,
1913 				 struct btrfs_path *path,
1914 				 u64 bytenr, u64 parent, u64 root_objectid,
1915 				 u64 owner, u64 offset, int refs_to_add)
1916 {
1917 	int ret;
1918 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1919 		BUG_ON(refs_to_add != 1);
1920 		ret = insert_tree_block_ref(trans, root, path, bytenr,
1921 					    parent, root_objectid);
1922 	} else {
1923 		ret = insert_extent_data_ref(trans, root, path, bytenr,
1924 					     parent, root_objectid,
1925 					     owner, offset, refs_to_add);
1926 	}
1927 	return ret;
1928 }
1929 
remove_extent_backref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_extent_inline_ref * iref,int refs_to_drop,int is_data,int * last_ref)1930 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1931 				 struct btrfs_root *root,
1932 				 struct btrfs_path *path,
1933 				 struct btrfs_extent_inline_ref *iref,
1934 				 int refs_to_drop, int is_data, int *last_ref)
1935 {
1936 	int ret = 0;
1937 
1938 	BUG_ON(!is_data && refs_to_drop != 1);
1939 	if (iref) {
1940 		update_inline_extent_backref(root, path, iref,
1941 					     -refs_to_drop, NULL, last_ref);
1942 	} else if (is_data) {
1943 		ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1944 					     last_ref);
1945 	} else {
1946 		*last_ref = 1;
1947 		ret = btrfs_del_item(trans, root, path);
1948 	}
1949 	return ret;
1950 }
1951 
1952 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
btrfs_issue_discard(struct block_device * bdev,u64 start,u64 len,u64 * discarded_bytes)1953 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1954 			       u64 *discarded_bytes)
1955 {
1956 	int j, ret = 0;
1957 	u64 bytes_left, end;
1958 	u64 aligned_start = ALIGN(start, 1 << 9);
1959 
1960 	if (WARN_ON(start != aligned_start)) {
1961 		len -= aligned_start - start;
1962 		len = round_down(len, 1 << 9);
1963 		start = aligned_start;
1964 	}
1965 
1966 	*discarded_bytes = 0;
1967 
1968 	if (!len)
1969 		return 0;
1970 
1971 	end = start + len;
1972 	bytes_left = len;
1973 
1974 	/* Skip any superblocks on this device. */
1975 	for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1976 		u64 sb_start = btrfs_sb_offset(j);
1977 		u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1978 		u64 size = sb_start - start;
1979 
1980 		if (!in_range(sb_start, start, bytes_left) &&
1981 		    !in_range(sb_end, start, bytes_left) &&
1982 		    !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1983 			continue;
1984 
1985 		/*
1986 		 * Superblock spans beginning of range.  Adjust start and
1987 		 * try again.
1988 		 */
1989 		if (sb_start <= start) {
1990 			start += sb_end - start;
1991 			if (start > end) {
1992 				bytes_left = 0;
1993 				break;
1994 			}
1995 			bytes_left = end - start;
1996 			continue;
1997 		}
1998 
1999 		if (size) {
2000 			ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2001 						   GFP_NOFS, 0);
2002 			if (!ret)
2003 				*discarded_bytes += size;
2004 			else if (ret != -EOPNOTSUPP)
2005 				return ret;
2006 		}
2007 
2008 		start = sb_end;
2009 		if (start > end) {
2010 			bytes_left = 0;
2011 			break;
2012 		}
2013 		bytes_left = end - start;
2014 	}
2015 
2016 	if (bytes_left) {
2017 		ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2018 					   GFP_NOFS, 0);
2019 		if (!ret)
2020 			*discarded_bytes += bytes_left;
2021 	}
2022 	return ret;
2023 }
2024 
btrfs_discard_extent(struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 * actual_bytes)2025 int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2026 			 u64 num_bytes, u64 *actual_bytes)
2027 {
2028 	int ret;
2029 	u64 discarded_bytes = 0;
2030 	struct btrfs_bio *bbio = NULL;
2031 
2032 
2033 	/*
2034 	 * Avoid races with device replace and make sure our bbio has devices
2035 	 * associated to its stripes that don't go away while we are discarding.
2036 	 */
2037 	btrfs_bio_counter_inc_blocked(root->fs_info);
2038 	/* Tell the block device(s) that the sectors can be discarded */
2039 	ret = btrfs_map_block(root->fs_info, REQ_OP_DISCARD,
2040 			      bytenr, &num_bytes, &bbio, 0);
2041 	/* Error condition is -ENOMEM */
2042 	if (!ret) {
2043 		struct btrfs_bio_stripe *stripe = bbio->stripes;
2044 		int i;
2045 
2046 
2047 		for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2048 			u64 bytes;
2049 			if (!stripe->dev->can_discard)
2050 				continue;
2051 
2052 			ret = btrfs_issue_discard(stripe->dev->bdev,
2053 						  stripe->physical,
2054 						  stripe->length,
2055 						  &bytes);
2056 			if (!ret)
2057 				discarded_bytes += bytes;
2058 			else if (ret != -EOPNOTSUPP)
2059 				break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2060 
2061 			/*
2062 			 * Just in case we get back EOPNOTSUPP for some reason,
2063 			 * just ignore the return value so we don't screw up
2064 			 * people calling discard_extent.
2065 			 */
2066 			ret = 0;
2067 		}
2068 		btrfs_put_bbio(bbio);
2069 	}
2070 	btrfs_bio_counter_dec(root->fs_info);
2071 
2072 	if (actual_bytes)
2073 		*actual_bytes = discarded_bytes;
2074 
2075 
2076 	if (ret == -EOPNOTSUPP)
2077 		ret = 0;
2078 	return ret;
2079 }
2080 
2081 /* Can return -ENOMEM */
btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)2082 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2083 			 struct btrfs_root *root,
2084 			 u64 bytenr, u64 num_bytes, u64 parent,
2085 			 u64 root_objectid, u64 owner, u64 offset)
2086 {
2087 	int ret;
2088 	struct btrfs_fs_info *fs_info = root->fs_info;
2089 
2090 	BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2091 	       root_objectid == BTRFS_TREE_LOG_OBJECTID);
2092 
2093 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2094 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2095 					num_bytes,
2096 					parent, root_objectid, (int)owner,
2097 					BTRFS_ADD_DELAYED_REF, NULL);
2098 	} else {
2099 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2100 					num_bytes, parent, root_objectid,
2101 					owner, offset, 0,
2102 					BTRFS_ADD_DELAYED_REF, NULL);
2103 	}
2104 	return ret;
2105 }
2106 
__btrfs_inc_extent_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner,u64 offset,int refs_to_add,struct btrfs_delayed_extent_op * extent_op)2107 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2108 				  struct btrfs_root *root,
2109 				  struct btrfs_delayed_ref_node *node,
2110 				  u64 parent, u64 root_objectid,
2111 				  u64 owner, u64 offset, int refs_to_add,
2112 				  struct btrfs_delayed_extent_op *extent_op)
2113 {
2114 	struct btrfs_fs_info *fs_info = root->fs_info;
2115 	struct btrfs_path *path;
2116 	struct extent_buffer *leaf;
2117 	struct btrfs_extent_item *item;
2118 	struct btrfs_key key;
2119 	u64 bytenr = node->bytenr;
2120 	u64 num_bytes = node->num_bytes;
2121 	u64 refs;
2122 	int ret;
2123 
2124 	path = btrfs_alloc_path();
2125 	if (!path)
2126 		return -ENOMEM;
2127 
2128 	path->reada = READA_FORWARD;
2129 	path->leave_spinning = 1;
2130 	/* this will setup the path even if it fails to insert the back ref */
2131 	ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2132 					   bytenr, num_bytes, parent,
2133 					   root_objectid, owner, offset,
2134 					   refs_to_add, extent_op);
2135 	if ((ret < 0 && ret != -EAGAIN) || !ret)
2136 		goto out;
2137 
2138 	/*
2139 	 * Ok we had -EAGAIN which means we didn't have space to insert and
2140 	 * inline extent ref, so just update the reference count and add a
2141 	 * normal backref.
2142 	 */
2143 	leaf = path->nodes[0];
2144 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2145 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2146 	refs = btrfs_extent_refs(leaf, item);
2147 	btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2148 	if (extent_op)
2149 		__run_delayed_extent_op(extent_op, leaf, item);
2150 
2151 	btrfs_mark_buffer_dirty(leaf);
2152 	btrfs_release_path(path);
2153 
2154 	path->reada = READA_FORWARD;
2155 	path->leave_spinning = 1;
2156 	/* now insert the actual backref */
2157 	ret = insert_extent_backref(trans, root->fs_info->extent_root,
2158 				    path, bytenr, parent, root_objectid,
2159 				    owner, offset, refs_to_add);
2160 	if (ret)
2161 		btrfs_abort_transaction(trans, ret);
2162 out:
2163 	btrfs_free_path(path);
2164 	return ret;
2165 }
2166 
run_delayed_data_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2167 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2168 				struct btrfs_root *root,
2169 				struct btrfs_delayed_ref_node *node,
2170 				struct btrfs_delayed_extent_op *extent_op,
2171 				int insert_reserved)
2172 {
2173 	int ret = 0;
2174 	struct btrfs_delayed_data_ref *ref;
2175 	struct btrfs_key ins;
2176 	u64 parent = 0;
2177 	u64 ref_root = 0;
2178 	u64 flags = 0;
2179 
2180 	ins.objectid = node->bytenr;
2181 	ins.offset = node->num_bytes;
2182 	ins.type = BTRFS_EXTENT_ITEM_KEY;
2183 
2184 	ref = btrfs_delayed_node_to_data_ref(node);
2185 	trace_run_delayed_data_ref(root->fs_info, node, ref, node->action);
2186 
2187 	if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2188 		parent = ref->parent;
2189 	ref_root = ref->root;
2190 
2191 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2192 		if (extent_op)
2193 			flags |= extent_op->flags_to_set;
2194 		ret = alloc_reserved_file_extent(trans, root,
2195 						 parent, ref_root, flags,
2196 						 ref->objectid, ref->offset,
2197 						 &ins, node->ref_mod);
2198 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2199 		ret = __btrfs_inc_extent_ref(trans, root, node, parent,
2200 					     ref_root, ref->objectid,
2201 					     ref->offset, node->ref_mod,
2202 					     extent_op);
2203 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2204 		ret = __btrfs_free_extent(trans, root, node, parent,
2205 					  ref_root, ref->objectid,
2206 					  ref->offset, node->ref_mod,
2207 					  extent_op);
2208 	} else {
2209 		BUG();
2210 	}
2211 	return ret;
2212 }
2213 
__run_delayed_extent_op(struct btrfs_delayed_extent_op * extent_op,struct extent_buffer * leaf,struct btrfs_extent_item * ei)2214 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2215 				    struct extent_buffer *leaf,
2216 				    struct btrfs_extent_item *ei)
2217 {
2218 	u64 flags = btrfs_extent_flags(leaf, ei);
2219 	if (extent_op->update_flags) {
2220 		flags |= extent_op->flags_to_set;
2221 		btrfs_set_extent_flags(leaf, ei, flags);
2222 	}
2223 
2224 	if (extent_op->update_key) {
2225 		struct btrfs_tree_block_info *bi;
2226 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2227 		bi = (struct btrfs_tree_block_info *)(ei + 1);
2228 		btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2229 	}
2230 }
2231 
run_delayed_extent_op(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op)2232 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2233 				 struct btrfs_root *root,
2234 				 struct btrfs_delayed_ref_node *node,
2235 				 struct btrfs_delayed_extent_op *extent_op)
2236 {
2237 	struct btrfs_key key;
2238 	struct btrfs_path *path;
2239 	struct btrfs_extent_item *ei;
2240 	struct extent_buffer *leaf;
2241 	u32 item_size;
2242 	int ret;
2243 	int err = 0;
2244 	int metadata = !extent_op->is_data;
2245 
2246 	if (trans->aborted)
2247 		return 0;
2248 
2249 	if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2250 		metadata = 0;
2251 
2252 	path = btrfs_alloc_path();
2253 	if (!path)
2254 		return -ENOMEM;
2255 
2256 	key.objectid = node->bytenr;
2257 
2258 	if (metadata) {
2259 		key.type = BTRFS_METADATA_ITEM_KEY;
2260 		key.offset = extent_op->level;
2261 	} else {
2262 		key.type = BTRFS_EXTENT_ITEM_KEY;
2263 		key.offset = node->num_bytes;
2264 	}
2265 
2266 again:
2267 	path->reada = READA_FORWARD;
2268 	path->leave_spinning = 1;
2269 	ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2270 				path, 0, 1);
2271 	if (ret < 0) {
2272 		err = ret;
2273 		goto out;
2274 	}
2275 	if (ret > 0) {
2276 		if (metadata) {
2277 			if (path->slots[0] > 0) {
2278 				path->slots[0]--;
2279 				btrfs_item_key_to_cpu(path->nodes[0], &key,
2280 						      path->slots[0]);
2281 				if (key.objectid == node->bytenr &&
2282 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
2283 				    key.offset == node->num_bytes)
2284 					ret = 0;
2285 			}
2286 			if (ret > 0) {
2287 				btrfs_release_path(path);
2288 				metadata = 0;
2289 
2290 				key.objectid = node->bytenr;
2291 				key.offset = node->num_bytes;
2292 				key.type = BTRFS_EXTENT_ITEM_KEY;
2293 				goto again;
2294 			}
2295 		} else {
2296 			err = -EIO;
2297 			goto out;
2298 		}
2299 	}
2300 
2301 	leaf = path->nodes[0];
2302 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2303 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2304 	if (item_size < sizeof(*ei)) {
2305 		ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2306 					     path, (u64)-1, 0);
2307 		if (ret < 0) {
2308 			err = ret;
2309 			goto out;
2310 		}
2311 		leaf = path->nodes[0];
2312 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2313 	}
2314 #endif
2315 	BUG_ON(item_size < sizeof(*ei));
2316 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2317 	__run_delayed_extent_op(extent_op, leaf, ei);
2318 
2319 	btrfs_mark_buffer_dirty(leaf);
2320 out:
2321 	btrfs_free_path(path);
2322 	return err;
2323 }
2324 
run_delayed_tree_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2325 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2326 				struct btrfs_root *root,
2327 				struct btrfs_delayed_ref_node *node,
2328 				struct btrfs_delayed_extent_op *extent_op,
2329 				int insert_reserved)
2330 {
2331 	int ret = 0;
2332 	struct btrfs_delayed_tree_ref *ref;
2333 	struct btrfs_key ins;
2334 	u64 parent = 0;
2335 	u64 ref_root = 0;
2336 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2337 						 SKINNY_METADATA);
2338 
2339 	ref = btrfs_delayed_node_to_tree_ref(node);
2340 	trace_run_delayed_tree_ref(root->fs_info, node, ref, node->action);
2341 
2342 	if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2343 		parent = ref->parent;
2344 	ref_root = ref->root;
2345 
2346 	ins.objectid = node->bytenr;
2347 	if (skinny_metadata) {
2348 		ins.offset = ref->level;
2349 		ins.type = BTRFS_METADATA_ITEM_KEY;
2350 	} else {
2351 		ins.offset = node->num_bytes;
2352 		ins.type = BTRFS_EXTENT_ITEM_KEY;
2353 	}
2354 
2355 	if (node->ref_mod != 1) {
2356 		btrfs_err(root->fs_info,
2357 	"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2358 			  node->bytenr, node->ref_mod, node->action, ref_root,
2359 			  parent);
2360 		return -EIO;
2361 	}
2362 	if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2363 		BUG_ON(!extent_op || !extent_op->update_flags);
2364 		ret = alloc_reserved_tree_block(trans, root,
2365 						parent, ref_root,
2366 						extent_op->flags_to_set,
2367 						&extent_op->key,
2368 						ref->level, &ins);
2369 	} else if (node->action == BTRFS_ADD_DELAYED_REF) {
2370 		ret = __btrfs_inc_extent_ref(trans, root, node,
2371 					     parent, ref_root,
2372 					     ref->level, 0, 1,
2373 					     extent_op);
2374 	} else if (node->action == BTRFS_DROP_DELAYED_REF) {
2375 		ret = __btrfs_free_extent(trans, root, node,
2376 					  parent, ref_root,
2377 					  ref->level, 0, 1, extent_op);
2378 	} else {
2379 		BUG();
2380 	}
2381 	return ret;
2382 }
2383 
2384 /* helper function to actually process a single delayed ref entry */
run_one_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,struct btrfs_delayed_extent_op * extent_op,int insert_reserved)2385 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2386 			       struct btrfs_root *root,
2387 			       struct btrfs_delayed_ref_node *node,
2388 			       struct btrfs_delayed_extent_op *extent_op,
2389 			       int insert_reserved)
2390 {
2391 	int ret = 0;
2392 
2393 	if (trans->aborted) {
2394 		if (insert_reserved)
2395 			btrfs_pin_extent(root, node->bytenr,
2396 					 node->num_bytes, 1);
2397 		return 0;
2398 	}
2399 
2400 	if (btrfs_delayed_ref_is_head(node)) {
2401 		struct btrfs_delayed_ref_head *head;
2402 		/*
2403 		 * we've hit the end of the chain and we were supposed
2404 		 * to insert this extent into the tree.  But, it got
2405 		 * deleted before we ever needed to insert it, so all
2406 		 * we have to do is clean up the accounting
2407 		 */
2408 		BUG_ON(extent_op);
2409 		head = btrfs_delayed_node_to_head(node);
2410 		trace_run_delayed_ref_head(root->fs_info, node, head,
2411 					   node->action);
2412 
2413 		if (insert_reserved) {
2414 			btrfs_pin_extent(root, node->bytenr,
2415 					 node->num_bytes, 1);
2416 			if (head->is_data) {
2417 				ret = btrfs_del_csums(trans, root,
2418 						      node->bytenr,
2419 						      node->num_bytes);
2420 			}
2421 		}
2422 
2423 		/* Also free its reserved qgroup space */
2424 		btrfs_qgroup_free_delayed_ref(root->fs_info,
2425 					      head->qgroup_ref_root,
2426 					      head->qgroup_reserved);
2427 		return ret;
2428 	}
2429 
2430 	if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2431 	    node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2432 		ret = run_delayed_tree_ref(trans, root, node, extent_op,
2433 					   insert_reserved);
2434 	else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2435 		 node->type == BTRFS_SHARED_DATA_REF_KEY)
2436 		ret = run_delayed_data_ref(trans, root, node, extent_op,
2437 					   insert_reserved);
2438 	else
2439 		BUG();
2440 	return ret;
2441 }
2442 
2443 static inline struct btrfs_delayed_ref_node *
select_delayed_ref(struct btrfs_delayed_ref_head * head)2444 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2445 {
2446 	struct btrfs_delayed_ref_node *ref;
2447 
2448 	if (list_empty(&head->ref_list))
2449 		return NULL;
2450 
2451 	/*
2452 	 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2453 	 * This is to prevent a ref count from going down to zero, which deletes
2454 	 * the extent item from the extent tree, when there still are references
2455 	 * to add, which would fail because they would not find the extent item.
2456 	 */
2457 	list_for_each_entry(ref, &head->ref_list, list) {
2458 		if (ref->action == BTRFS_ADD_DELAYED_REF)
2459 			return ref;
2460 	}
2461 
2462 	return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2463 			  list);
2464 }
2465 
2466 /*
2467  * Returns 0 on success or if called with an already aborted transaction.
2468  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2469  */
__btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,unsigned long nr)2470 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2471 					     struct btrfs_root *root,
2472 					     unsigned long nr)
2473 {
2474 	struct btrfs_delayed_ref_root *delayed_refs;
2475 	struct btrfs_delayed_ref_node *ref;
2476 	struct btrfs_delayed_ref_head *locked_ref = NULL;
2477 	struct btrfs_delayed_extent_op *extent_op;
2478 	struct btrfs_fs_info *fs_info = root->fs_info;
2479 	ktime_t start = ktime_get();
2480 	int ret;
2481 	unsigned long count = 0;
2482 	unsigned long actual_count = 0;
2483 	int must_insert_reserved = 0;
2484 
2485 	delayed_refs = &trans->transaction->delayed_refs;
2486 	while (1) {
2487 		if (!locked_ref) {
2488 			if (count >= nr)
2489 				break;
2490 
2491 			spin_lock(&delayed_refs->lock);
2492 			locked_ref = btrfs_select_ref_head(trans);
2493 			if (!locked_ref) {
2494 				spin_unlock(&delayed_refs->lock);
2495 				break;
2496 			}
2497 
2498 			/* grab the lock that says we are going to process
2499 			 * all the refs for this head */
2500 			ret = btrfs_delayed_ref_lock(trans, locked_ref);
2501 			spin_unlock(&delayed_refs->lock);
2502 			/*
2503 			 * we may have dropped the spin lock to get the head
2504 			 * mutex lock, and that might have given someone else
2505 			 * time to free the head.  If that's true, it has been
2506 			 * removed from our list and we can move on.
2507 			 */
2508 			if (ret == -EAGAIN) {
2509 				locked_ref = NULL;
2510 				count++;
2511 				continue;
2512 			}
2513 		}
2514 
2515 		/*
2516 		 * We need to try and merge add/drops of the same ref since we
2517 		 * can run into issues with relocate dropping the implicit ref
2518 		 * and then it being added back again before the drop can
2519 		 * finish.  If we merged anything we need to re-loop so we can
2520 		 * get a good ref.
2521 		 * Or we can get node references of the same type that weren't
2522 		 * merged when created due to bumps in the tree mod seq, and
2523 		 * we need to merge them to prevent adding an inline extent
2524 		 * backref before dropping it (triggering a BUG_ON at
2525 		 * insert_inline_extent_backref()).
2526 		 */
2527 		spin_lock(&locked_ref->lock);
2528 		btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2529 					 locked_ref);
2530 
2531 		/*
2532 		 * locked_ref is the head node, so we have to go one
2533 		 * node back for any delayed ref updates
2534 		 */
2535 		ref = select_delayed_ref(locked_ref);
2536 
2537 		if (ref && ref->seq &&
2538 		    btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2539 			spin_unlock(&locked_ref->lock);
2540 			spin_lock(&delayed_refs->lock);
2541 			locked_ref->processing = 0;
2542 			delayed_refs->num_heads_ready++;
2543 			spin_unlock(&delayed_refs->lock);
2544 			btrfs_delayed_ref_unlock(locked_ref);
2545 			locked_ref = NULL;
2546 			cond_resched();
2547 			count++;
2548 			continue;
2549 		}
2550 
2551 		/*
2552 		 * record the must insert reserved flag before we
2553 		 * drop the spin lock.
2554 		 */
2555 		must_insert_reserved = locked_ref->must_insert_reserved;
2556 		locked_ref->must_insert_reserved = 0;
2557 
2558 		extent_op = locked_ref->extent_op;
2559 		locked_ref->extent_op = NULL;
2560 
2561 		if (!ref) {
2562 
2563 
2564 			/* All delayed refs have been processed, Go ahead
2565 			 * and send the head node to run_one_delayed_ref,
2566 			 * so that any accounting fixes can happen
2567 			 */
2568 			ref = &locked_ref->node;
2569 
2570 			if (extent_op && must_insert_reserved) {
2571 				btrfs_free_delayed_extent_op(extent_op);
2572 				extent_op = NULL;
2573 			}
2574 
2575 			if (extent_op) {
2576 				spin_unlock(&locked_ref->lock);
2577 				ret = run_delayed_extent_op(trans, root,
2578 							    ref, extent_op);
2579 				btrfs_free_delayed_extent_op(extent_op);
2580 
2581 				if (ret) {
2582 					/*
2583 					 * Need to reset must_insert_reserved if
2584 					 * there was an error so the abort stuff
2585 					 * can cleanup the reserved space
2586 					 * properly.
2587 					 */
2588 					if (must_insert_reserved)
2589 						locked_ref->must_insert_reserved = 1;
2590 					spin_lock(&delayed_refs->lock);
2591 					locked_ref->processing = 0;
2592 					delayed_refs->num_heads_ready++;
2593 					spin_unlock(&delayed_refs->lock);
2594 					btrfs_debug(fs_info,
2595 						    "run_delayed_extent_op returned %d",
2596 						    ret);
2597 					btrfs_delayed_ref_unlock(locked_ref);
2598 					return ret;
2599 				}
2600 				continue;
2601 			}
2602 
2603 			/*
2604 			 * Need to drop our head ref lock and re-acquire the
2605 			 * delayed ref lock and then re-check to make sure
2606 			 * nobody got added.
2607 			 */
2608 			spin_unlock(&locked_ref->lock);
2609 			spin_lock(&delayed_refs->lock);
2610 			spin_lock(&locked_ref->lock);
2611 			if (!list_empty(&locked_ref->ref_list) ||
2612 			    locked_ref->extent_op) {
2613 				spin_unlock(&locked_ref->lock);
2614 				spin_unlock(&delayed_refs->lock);
2615 				continue;
2616 			}
2617 			ref->in_tree = 0;
2618 			delayed_refs->num_heads--;
2619 			rb_erase(&locked_ref->href_node,
2620 				 &delayed_refs->href_root);
2621 			spin_unlock(&delayed_refs->lock);
2622 		} else {
2623 			actual_count++;
2624 			ref->in_tree = 0;
2625 			list_del(&ref->list);
2626 		}
2627 		atomic_dec(&delayed_refs->num_entries);
2628 
2629 		if (!btrfs_delayed_ref_is_head(ref)) {
2630 			/*
2631 			 * when we play the delayed ref, also correct the
2632 			 * ref_mod on head
2633 			 */
2634 			switch (ref->action) {
2635 			case BTRFS_ADD_DELAYED_REF:
2636 			case BTRFS_ADD_DELAYED_EXTENT:
2637 				locked_ref->node.ref_mod -= ref->ref_mod;
2638 				break;
2639 			case BTRFS_DROP_DELAYED_REF:
2640 				locked_ref->node.ref_mod += ref->ref_mod;
2641 				break;
2642 			default:
2643 				WARN_ON(1);
2644 			}
2645 		}
2646 		spin_unlock(&locked_ref->lock);
2647 
2648 		ret = run_one_delayed_ref(trans, root, ref, extent_op,
2649 					  must_insert_reserved);
2650 
2651 		btrfs_free_delayed_extent_op(extent_op);
2652 		if (ret) {
2653 			spin_lock(&delayed_refs->lock);
2654 			locked_ref->processing = 0;
2655 			delayed_refs->num_heads_ready++;
2656 			spin_unlock(&delayed_refs->lock);
2657 			btrfs_delayed_ref_unlock(locked_ref);
2658 			btrfs_put_delayed_ref(ref);
2659 			btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2660 				    ret);
2661 			return ret;
2662 		}
2663 
2664 		/*
2665 		 * If this node is a head, that means all the refs in this head
2666 		 * have been dealt with, and we will pick the next head to deal
2667 		 * with, so we must unlock the head and drop it from the cluster
2668 		 * list before we release it.
2669 		 */
2670 		if (btrfs_delayed_ref_is_head(ref)) {
2671 			if (locked_ref->is_data &&
2672 			    locked_ref->total_ref_mod < 0) {
2673 				spin_lock(&delayed_refs->lock);
2674 				delayed_refs->pending_csums -= ref->num_bytes;
2675 				spin_unlock(&delayed_refs->lock);
2676 			}
2677 			btrfs_delayed_ref_unlock(locked_ref);
2678 			locked_ref = NULL;
2679 		}
2680 		btrfs_put_delayed_ref(ref);
2681 		count++;
2682 		cond_resched();
2683 	}
2684 
2685 	/*
2686 	 * We don't want to include ref heads since we can have empty ref heads
2687 	 * and those will drastically skew our runtime down since we just do
2688 	 * accounting, no actual extent tree updates.
2689 	 */
2690 	if (actual_count > 0) {
2691 		u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2692 		u64 avg;
2693 
2694 		/*
2695 		 * We weigh the current average higher than our current runtime
2696 		 * to avoid large swings in the average.
2697 		 */
2698 		spin_lock(&delayed_refs->lock);
2699 		avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2700 		fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */
2701 		spin_unlock(&delayed_refs->lock);
2702 	}
2703 	return 0;
2704 }
2705 
2706 #ifdef SCRAMBLE_DELAYED_REFS
2707 /*
2708  * Normally delayed refs get processed in ascending bytenr order. This
2709  * correlates in most cases to the order added. To expose dependencies on this
2710  * order, we start to process the tree in the middle instead of the beginning
2711  */
find_middle(struct rb_root * root)2712 static u64 find_middle(struct rb_root *root)
2713 {
2714 	struct rb_node *n = root->rb_node;
2715 	struct btrfs_delayed_ref_node *entry;
2716 	int alt = 1;
2717 	u64 middle;
2718 	u64 first = 0, last = 0;
2719 
2720 	n = rb_first(root);
2721 	if (n) {
2722 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2723 		first = entry->bytenr;
2724 	}
2725 	n = rb_last(root);
2726 	if (n) {
2727 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2728 		last = entry->bytenr;
2729 	}
2730 	n = root->rb_node;
2731 
2732 	while (n) {
2733 		entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2734 		WARN_ON(!entry->in_tree);
2735 
2736 		middle = entry->bytenr;
2737 
2738 		if (alt)
2739 			n = n->rb_left;
2740 		else
2741 			n = n->rb_right;
2742 
2743 		alt = 1 - alt;
2744 	}
2745 	return middle;
2746 }
2747 #endif
2748 
heads_to_leaves(struct btrfs_root * root,u64 heads)2749 static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2750 {
2751 	u64 num_bytes;
2752 
2753 	num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2754 			     sizeof(struct btrfs_extent_inline_ref));
2755 	if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2756 		num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2757 
2758 	/*
2759 	 * We don't ever fill up leaves all the way so multiply by 2 just to be
2760 	 * closer to what we're really going to want to use.
2761 	 */
2762 	return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
2763 }
2764 
2765 /*
2766  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2767  * would require to store the csums for that many bytes.
2768  */
btrfs_csum_bytes_to_leaves(struct btrfs_root * root,u64 csum_bytes)2769 u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
2770 {
2771 	u64 csum_size;
2772 	u64 num_csums_per_leaf;
2773 	u64 num_csums;
2774 
2775 	csum_size = BTRFS_MAX_ITEM_SIZE(root);
2776 	num_csums_per_leaf = div64_u64(csum_size,
2777 			(u64)btrfs_super_csum_size(root->fs_info->super_copy));
2778 	num_csums = div64_u64(csum_bytes, root->sectorsize);
2779 	num_csums += num_csums_per_leaf - 1;
2780 	num_csums = div64_u64(num_csums, num_csums_per_leaf);
2781 	return num_csums;
2782 }
2783 
btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root)2784 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2785 				       struct btrfs_root *root)
2786 {
2787 	struct btrfs_block_rsv *global_rsv;
2788 	u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2789 	u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2790 	u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2791 	u64 num_bytes, num_dirty_bgs_bytes;
2792 	int ret = 0;
2793 
2794 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2795 	num_heads = heads_to_leaves(root, num_heads);
2796 	if (num_heads > 1)
2797 		num_bytes += (num_heads - 1) * root->nodesize;
2798 	num_bytes <<= 1;
2799 	num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
2800 	num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2801 							     num_dirty_bgs);
2802 	global_rsv = &root->fs_info->global_block_rsv;
2803 
2804 	/*
2805 	 * If we can't allocate any more chunks lets make sure we have _lots_ of
2806 	 * wiggle room since running delayed refs can create more delayed refs.
2807 	 */
2808 	if (global_rsv->space_info->full) {
2809 		num_dirty_bgs_bytes <<= 1;
2810 		num_bytes <<= 1;
2811 	}
2812 
2813 	spin_lock(&global_rsv->lock);
2814 	if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2815 		ret = 1;
2816 	spin_unlock(&global_rsv->lock);
2817 	return ret;
2818 }
2819 
btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root)2820 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2821 				       struct btrfs_root *root)
2822 {
2823 	struct btrfs_fs_info *fs_info = root->fs_info;
2824 	u64 num_entries =
2825 		atomic_read(&trans->transaction->delayed_refs.num_entries);
2826 	u64 avg_runtime;
2827 	u64 val;
2828 
2829 	smp_mb();
2830 	avg_runtime = fs_info->avg_delayed_ref_runtime;
2831 	val = num_entries * avg_runtime;
2832 	if (num_entries * avg_runtime >= NSEC_PER_SEC)
2833 		return 1;
2834 	if (val >= NSEC_PER_SEC / 2)
2835 		return 2;
2836 
2837 	return btrfs_check_space_for_delayed_refs(trans, root);
2838 }
2839 
2840 struct async_delayed_refs {
2841 	struct btrfs_root *root;
2842 	u64 transid;
2843 	int count;
2844 	int error;
2845 	int sync;
2846 	struct completion wait;
2847 	struct btrfs_work work;
2848 };
2849 
delayed_ref_async_start(struct btrfs_work * work)2850 static void delayed_ref_async_start(struct btrfs_work *work)
2851 {
2852 	struct async_delayed_refs *async;
2853 	struct btrfs_trans_handle *trans;
2854 	int ret;
2855 
2856 	async = container_of(work, struct async_delayed_refs, work);
2857 
2858 	/* if the commit is already started, we don't need to wait here */
2859 	if (btrfs_transaction_blocked(async->root->fs_info))
2860 		goto done;
2861 
2862 	trans = btrfs_join_transaction(async->root);
2863 	if (IS_ERR(trans)) {
2864 		async->error = PTR_ERR(trans);
2865 		goto done;
2866 	}
2867 
2868 	/*
2869 	 * trans->sync means that when we call end_transaction, we won't
2870 	 * wait on delayed refs
2871 	 */
2872 	trans->sync = true;
2873 
2874 	/* Don't bother flushing if we got into a different transaction */
2875 	if (trans->transid > async->transid)
2876 		goto end;
2877 
2878 	ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2879 	if (ret)
2880 		async->error = ret;
2881 end:
2882 	ret = btrfs_end_transaction(trans, async->root);
2883 	if (ret && !async->error)
2884 		async->error = ret;
2885 done:
2886 	if (async->sync)
2887 		complete(&async->wait);
2888 	else
2889 		kfree(async);
2890 }
2891 
btrfs_async_run_delayed_refs(struct btrfs_root * root,unsigned long count,u64 transid,int wait)2892 int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2893 				 unsigned long count, u64 transid, int wait)
2894 {
2895 	struct async_delayed_refs *async;
2896 	int ret;
2897 
2898 	async = kmalloc(sizeof(*async), GFP_NOFS);
2899 	if (!async)
2900 		return -ENOMEM;
2901 
2902 	async->root = root->fs_info->tree_root;
2903 	async->count = count;
2904 	async->error = 0;
2905 	async->transid = transid;
2906 	if (wait)
2907 		async->sync = 1;
2908 	else
2909 		async->sync = 0;
2910 	init_completion(&async->wait);
2911 
2912 	btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2913 			delayed_ref_async_start, NULL, NULL);
2914 
2915 	btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2916 
2917 	if (wait) {
2918 		wait_for_completion(&async->wait);
2919 		ret = async->error;
2920 		kfree(async);
2921 		return ret;
2922 	}
2923 	return 0;
2924 }
2925 
2926 /*
2927  * this starts processing the delayed reference count updates and
2928  * extent insertions we have queued up so far.  count can be
2929  * 0, which means to process everything in the tree at the start
2930  * of the run (but not newly added entries), or it can be some target
2931  * number you'd like to process.
2932  *
2933  * Returns 0 on success or if called with an aborted transaction
2934  * Returns <0 on error and aborts the transaction
2935  */
btrfs_run_delayed_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,unsigned long count)2936 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2937 			   struct btrfs_root *root, unsigned long count)
2938 {
2939 	struct rb_node *node;
2940 	struct btrfs_delayed_ref_root *delayed_refs;
2941 	struct btrfs_delayed_ref_head *head;
2942 	int ret;
2943 	int run_all = count == (unsigned long)-1;
2944 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
2945 
2946 	/* We'll clean this up in btrfs_cleanup_transaction */
2947 	if (trans->aborted)
2948 		return 0;
2949 
2950 	if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &root->fs_info->flags))
2951 		return 0;
2952 
2953 	if (root == root->fs_info->extent_root)
2954 		root = root->fs_info->tree_root;
2955 
2956 	delayed_refs = &trans->transaction->delayed_refs;
2957 	if (count == 0)
2958 		count = atomic_read(&delayed_refs->num_entries) * 2;
2959 
2960 again:
2961 #ifdef SCRAMBLE_DELAYED_REFS
2962 	delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2963 #endif
2964 	trans->can_flush_pending_bgs = false;
2965 	ret = __btrfs_run_delayed_refs(trans, root, count);
2966 	if (ret < 0) {
2967 		btrfs_abort_transaction(trans, ret);
2968 		return ret;
2969 	}
2970 
2971 	if (run_all) {
2972 		if (!list_empty(&trans->new_bgs))
2973 			btrfs_create_pending_block_groups(trans, root);
2974 
2975 		spin_lock(&delayed_refs->lock);
2976 		node = rb_first(&delayed_refs->href_root);
2977 		if (!node) {
2978 			spin_unlock(&delayed_refs->lock);
2979 			goto out;
2980 		}
2981 
2982 		while (node) {
2983 			head = rb_entry(node, struct btrfs_delayed_ref_head,
2984 					href_node);
2985 			if (btrfs_delayed_ref_is_head(&head->node)) {
2986 				struct btrfs_delayed_ref_node *ref;
2987 
2988 				ref = &head->node;
2989 				atomic_inc(&ref->refs);
2990 
2991 				spin_unlock(&delayed_refs->lock);
2992 				/*
2993 				 * Mutex was contended, block until it's
2994 				 * released and try again
2995 				 */
2996 				mutex_lock(&head->mutex);
2997 				mutex_unlock(&head->mutex);
2998 
2999 				btrfs_put_delayed_ref(ref);
3000 				cond_resched();
3001 				goto again;
3002 			} else {
3003 				WARN_ON(1);
3004 			}
3005 			node = rb_next(node);
3006 		}
3007 		spin_unlock(&delayed_refs->lock);
3008 		cond_resched();
3009 		goto again;
3010 	}
3011 out:
3012 	assert_qgroups_uptodate(trans);
3013 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
3014 	return 0;
3015 }
3016 
btrfs_set_disk_extent_flags(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 flags,int level,int is_data)3017 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3018 				struct btrfs_root *root,
3019 				u64 bytenr, u64 num_bytes, u64 flags,
3020 				int level, int is_data)
3021 {
3022 	struct btrfs_delayed_extent_op *extent_op;
3023 	int ret;
3024 
3025 	extent_op = btrfs_alloc_delayed_extent_op();
3026 	if (!extent_op)
3027 		return -ENOMEM;
3028 
3029 	extent_op->flags_to_set = flags;
3030 	extent_op->update_flags = true;
3031 	extent_op->update_key = false;
3032 	extent_op->is_data = is_data ? true : false;
3033 	extent_op->level = level;
3034 
3035 	ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3036 					  num_bytes, extent_op);
3037 	if (ret)
3038 		btrfs_free_delayed_extent_op(extent_op);
3039 	return ret;
3040 }
3041 
check_delayed_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)3042 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3043 				      struct btrfs_root *root,
3044 				      struct btrfs_path *path,
3045 				      u64 objectid, u64 offset, u64 bytenr)
3046 {
3047 	struct btrfs_delayed_ref_head *head;
3048 	struct btrfs_delayed_ref_node *ref;
3049 	struct btrfs_delayed_data_ref *data_ref;
3050 	struct btrfs_delayed_ref_root *delayed_refs;
3051 	int ret = 0;
3052 
3053 	delayed_refs = &trans->transaction->delayed_refs;
3054 	spin_lock(&delayed_refs->lock);
3055 	head = btrfs_find_delayed_ref_head(trans, bytenr);
3056 	if (!head) {
3057 		spin_unlock(&delayed_refs->lock);
3058 		return 0;
3059 	}
3060 
3061 	if (!mutex_trylock(&head->mutex)) {
3062 		atomic_inc(&head->node.refs);
3063 		spin_unlock(&delayed_refs->lock);
3064 
3065 		btrfs_release_path(path);
3066 
3067 		/*
3068 		 * Mutex was contended, block until it's released and let
3069 		 * caller try again
3070 		 */
3071 		mutex_lock(&head->mutex);
3072 		mutex_unlock(&head->mutex);
3073 		btrfs_put_delayed_ref(&head->node);
3074 		return -EAGAIN;
3075 	}
3076 	spin_unlock(&delayed_refs->lock);
3077 
3078 	spin_lock(&head->lock);
3079 	list_for_each_entry(ref, &head->ref_list, list) {
3080 		/* If it's a shared ref we know a cross reference exists */
3081 		if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3082 			ret = 1;
3083 			break;
3084 		}
3085 
3086 		data_ref = btrfs_delayed_node_to_data_ref(ref);
3087 
3088 		/*
3089 		 * If our ref doesn't match the one we're currently looking at
3090 		 * then we have a cross reference.
3091 		 */
3092 		if (data_ref->root != root->root_key.objectid ||
3093 		    data_ref->objectid != objectid ||
3094 		    data_ref->offset != offset) {
3095 			ret = 1;
3096 			break;
3097 		}
3098 	}
3099 	spin_unlock(&head->lock);
3100 	mutex_unlock(&head->mutex);
3101 	return ret;
3102 }
3103 
check_committed_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid,u64 offset,u64 bytenr)3104 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3105 					struct btrfs_root *root,
3106 					struct btrfs_path *path,
3107 					u64 objectid, u64 offset, u64 bytenr)
3108 {
3109 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3110 	struct extent_buffer *leaf;
3111 	struct btrfs_extent_data_ref *ref;
3112 	struct btrfs_extent_inline_ref *iref;
3113 	struct btrfs_extent_item *ei;
3114 	struct btrfs_key key;
3115 	u32 item_size;
3116 	int ret;
3117 
3118 	key.objectid = bytenr;
3119 	key.offset = (u64)-1;
3120 	key.type = BTRFS_EXTENT_ITEM_KEY;
3121 
3122 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3123 	if (ret < 0)
3124 		goto out;
3125 	BUG_ON(ret == 0); /* Corruption */
3126 
3127 	ret = -ENOENT;
3128 	if (path->slots[0] == 0)
3129 		goto out;
3130 
3131 	path->slots[0]--;
3132 	leaf = path->nodes[0];
3133 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3134 
3135 	if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3136 		goto out;
3137 
3138 	ret = 1;
3139 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3140 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3141 	if (item_size < sizeof(*ei)) {
3142 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3143 		goto out;
3144 	}
3145 #endif
3146 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3147 
3148 	if (item_size != sizeof(*ei) +
3149 	    btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3150 		goto out;
3151 
3152 	if (btrfs_extent_generation(leaf, ei) <=
3153 	    btrfs_root_last_snapshot(&root->root_item))
3154 		goto out;
3155 
3156 	iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3157 	if (btrfs_extent_inline_ref_type(leaf, iref) !=
3158 	    BTRFS_EXTENT_DATA_REF_KEY)
3159 		goto out;
3160 
3161 	ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3162 	if (btrfs_extent_refs(leaf, ei) !=
3163 	    btrfs_extent_data_ref_count(leaf, ref) ||
3164 	    btrfs_extent_data_ref_root(leaf, ref) !=
3165 	    root->root_key.objectid ||
3166 	    btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3167 	    btrfs_extent_data_ref_offset(leaf, ref) != offset)
3168 		goto out;
3169 
3170 	ret = 0;
3171 out:
3172 	return ret;
3173 }
3174 
btrfs_cross_ref_exist(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid,u64 offset,u64 bytenr)3175 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3176 			  struct btrfs_root *root,
3177 			  u64 objectid, u64 offset, u64 bytenr)
3178 {
3179 	struct btrfs_path *path;
3180 	int ret;
3181 	int ret2;
3182 
3183 	path = btrfs_alloc_path();
3184 	if (!path)
3185 		return -ENOENT;
3186 
3187 	do {
3188 		ret = check_committed_ref(trans, root, path, objectid,
3189 					  offset, bytenr);
3190 		if (ret && ret != -ENOENT)
3191 			goto out;
3192 
3193 		ret2 = check_delayed_ref(trans, root, path, objectid,
3194 					 offset, bytenr);
3195 	} while (ret2 == -EAGAIN);
3196 
3197 	if (ret2 && ret2 != -ENOENT) {
3198 		ret = ret2;
3199 		goto out;
3200 	}
3201 
3202 	if (ret != -ENOENT || ret2 != -ENOENT)
3203 		ret = 0;
3204 out:
3205 	btrfs_free_path(path);
3206 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3207 		WARN_ON(ret > 0);
3208 	return ret;
3209 }
3210 
__btrfs_mod_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref,int inc)3211 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3212 			   struct btrfs_root *root,
3213 			   struct extent_buffer *buf,
3214 			   int full_backref, int inc)
3215 {
3216 	u64 bytenr;
3217 	u64 num_bytes;
3218 	u64 parent;
3219 	u64 ref_root;
3220 	u32 nritems;
3221 	struct btrfs_key key;
3222 	struct btrfs_file_extent_item *fi;
3223 	int i;
3224 	int level;
3225 	int ret = 0;
3226 	int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
3227 			    u64, u64, u64, u64, u64, u64);
3228 
3229 
3230 	if (btrfs_is_testing(root->fs_info))
3231 		return 0;
3232 
3233 	ref_root = btrfs_header_owner(buf);
3234 	nritems = btrfs_header_nritems(buf);
3235 	level = btrfs_header_level(buf);
3236 
3237 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3238 		return 0;
3239 
3240 	if (inc)
3241 		process_func = btrfs_inc_extent_ref;
3242 	else
3243 		process_func = btrfs_free_extent;
3244 
3245 	if (full_backref)
3246 		parent = buf->start;
3247 	else
3248 		parent = 0;
3249 
3250 	for (i = 0; i < nritems; i++) {
3251 		if (level == 0) {
3252 			btrfs_item_key_to_cpu(buf, &key, i);
3253 			if (key.type != BTRFS_EXTENT_DATA_KEY)
3254 				continue;
3255 			fi = btrfs_item_ptr(buf, i,
3256 					    struct btrfs_file_extent_item);
3257 			if (btrfs_file_extent_type(buf, fi) ==
3258 			    BTRFS_FILE_EXTENT_INLINE)
3259 				continue;
3260 			bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3261 			if (bytenr == 0)
3262 				continue;
3263 
3264 			num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3265 			key.offset -= btrfs_file_extent_offset(buf, fi);
3266 			ret = process_func(trans, root, bytenr, num_bytes,
3267 					   parent, ref_root, key.objectid,
3268 					   key.offset);
3269 			if (ret)
3270 				goto fail;
3271 		} else {
3272 			bytenr = btrfs_node_blockptr(buf, i);
3273 			num_bytes = root->nodesize;
3274 			ret = process_func(trans, root, bytenr, num_bytes,
3275 					   parent, ref_root, level - 1, 0);
3276 			if (ret)
3277 				goto fail;
3278 		}
3279 	}
3280 	return 0;
3281 fail:
3282 	return ret;
3283 }
3284 
btrfs_inc_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)3285 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3286 		  struct extent_buffer *buf, int full_backref)
3287 {
3288 	return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3289 }
3290 
btrfs_dec_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,int full_backref)3291 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3292 		  struct extent_buffer *buf, int full_backref)
3293 {
3294 	return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3295 }
3296 
write_one_cache_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_block_group_cache * cache)3297 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3298 				 struct btrfs_root *root,
3299 				 struct btrfs_path *path,
3300 				 struct btrfs_block_group_cache *cache)
3301 {
3302 	int ret;
3303 	struct btrfs_root *extent_root = root->fs_info->extent_root;
3304 	unsigned long bi;
3305 	struct extent_buffer *leaf;
3306 
3307 	ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3308 	if (ret) {
3309 		if (ret > 0)
3310 			ret = -ENOENT;
3311 		goto fail;
3312 	}
3313 
3314 	leaf = path->nodes[0];
3315 	bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3316 	write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3317 	btrfs_mark_buffer_dirty(leaf);
3318 fail:
3319 	btrfs_release_path(path);
3320 	return ret;
3321 
3322 }
3323 
3324 static struct btrfs_block_group_cache *
next_block_group(struct btrfs_root * root,struct btrfs_block_group_cache * cache)3325 next_block_group(struct btrfs_root *root,
3326 		 struct btrfs_block_group_cache *cache)
3327 {
3328 	struct rb_node *node;
3329 
3330 	spin_lock(&root->fs_info->block_group_cache_lock);
3331 
3332 	/* If our block group was removed, we need a full search. */
3333 	if (RB_EMPTY_NODE(&cache->cache_node)) {
3334 		const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3335 
3336 		spin_unlock(&root->fs_info->block_group_cache_lock);
3337 		btrfs_put_block_group(cache);
3338 		cache = btrfs_lookup_first_block_group(root->fs_info,
3339 						       next_bytenr);
3340 		return cache;
3341 	}
3342 	node = rb_next(&cache->cache_node);
3343 	btrfs_put_block_group(cache);
3344 	if (node) {
3345 		cache = rb_entry(node, struct btrfs_block_group_cache,
3346 				 cache_node);
3347 		btrfs_get_block_group(cache);
3348 	} else
3349 		cache = NULL;
3350 	spin_unlock(&root->fs_info->block_group_cache_lock);
3351 	return cache;
3352 }
3353 
cache_save_setup(struct btrfs_block_group_cache * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)3354 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3355 			    struct btrfs_trans_handle *trans,
3356 			    struct btrfs_path *path)
3357 {
3358 	struct btrfs_root *root = block_group->fs_info->tree_root;
3359 	struct inode *inode = NULL;
3360 	u64 alloc_hint = 0;
3361 	int dcs = BTRFS_DC_ERROR;
3362 	u64 num_pages = 0;
3363 	int retries = 0;
3364 	int ret = 0;
3365 
3366 	/*
3367 	 * If this block group is smaller than 100 megs don't bother caching the
3368 	 * block group.
3369 	 */
3370 	if (block_group->key.offset < (100 * SZ_1M)) {
3371 		spin_lock(&block_group->lock);
3372 		block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3373 		spin_unlock(&block_group->lock);
3374 		return 0;
3375 	}
3376 
3377 	if (trans->aborted)
3378 		return 0;
3379 again:
3380 	inode = lookup_free_space_inode(root, block_group, path);
3381 	if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3382 		ret = PTR_ERR(inode);
3383 		btrfs_release_path(path);
3384 		goto out;
3385 	}
3386 
3387 	if (IS_ERR(inode)) {
3388 		BUG_ON(retries);
3389 		retries++;
3390 
3391 		if (block_group->ro)
3392 			goto out_free;
3393 
3394 		ret = create_free_space_inode(root, trans, block_group, path);
3395 		if (ret)
3396 			goto out_free;
3397 		goto again;
3398 	}
3399 
3400 	/*
3401 	 * We want to set the generation to 0, that way if anything goes wrong
3402 	 * from here on out we know not to trust this cache when we load up next
3403 	 * time.
3404 	 */
3405 	BTRFS_I(inode)->generation = 0;
3406 	ret = btrfs_update_inode(trans, root, inode);
3407 	if (ret) {
3408 		/*
3409 		 * So theoretically we could recover from this, simply set the
3410 		 * super cache generation to 0 so we know to invalidate the
3411 		 * cache, but then we'd have to keep track of the block groups
3412 		 * that fail this way so we know we _have_ to reset this cache
3413 		 * before the next commit or risk reading stale cache.  So to
3414 		 * limit our exposure to horrible edge cases lets just abort the
3415 		 * transaction, this only happens in really bad situations
3416 		 * anyway.
3417 		 */
3418 		btrfs_abort_transaction(trans, ret);
3419 		goto out_put;
3420 	}
3421 	WARN_ON(ret);
3422 
3423 	/* We've already setup this transaction, go ahead and exit */
3424 	if (block_group->cache_generation == trans->transid &&
3425 	    i_size_read(inode)) {
3426 		dcs = BTRFS_DC_SETUP;
3427 		goto out_put;
3428 	}
3429 
3430 	if (i_size_read(inode) > 0) {
3431 		ret = btrfs_check_trunc_cache_free_space(root,
3432 					&root->fs_info->global_block_rsv);
3433 		if (ret)
3434 			goto out_put;
3435 
3436 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
3437 		if (ret)
3438 			goto out_put;
3439 	}
3440 
3441 	spin_lock(&block_group->lock);
3442 	if (block_group->cached != BTRFS_CACHE_FINISHED ||
3443 	    !btrfs_test_opt(root->fs_info, SPACE_CACHE)) {
3444 		/*
3445 		 * don't bother trying to write stuff out _if_
3446 		 * a) we're not cached,
3447 		 * b) we're with nospace_cache mount option.
3448 		 */
3449 		dcs = BTRFS_DC_WRITTEN;
3450 		spin_unlock(&block_group->lock);
3451 		goto out_put;
3452 	}
3453 	spin_unlock(&block_group->lock);
3454 
3455 	/*
3456 	 * We hit an ENOSPC when setting up the cache in this transaction, just
3457 	 * skip doing the setup, we've already cleared the cache so we're safe.
3458 	 */
3459 	if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3460 		ret = -ENOSPC;
3461 		goto out_put;
3462 	}
3463 
3464 	/*
3465 	 * Try to preallocate enough space based on how big the block group is.
3466 	 * Keep in mind this has to include any pinned space which could end up
3467 	 * taking up quite a bit since it's not folded into the other space
3468 	 * cache.
3469 	 */
3470 	num_pages = div_u64(block_group->key.offset, SZ_256M);
3471 	if (!num_pages)
3472 		num_pages = 1;
3473 
3474 	num_pages *= 16;
3475 	num_pages *= PAGE_SIZE;
3476 
3477 	ret = btrfs_check_data_free_space(inode, 0, num_pages);
3478 	if (ret)
3479 		goto out_put;
3480 
3481 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3482 					      num_pages, num_pages,
3483 					      &alloc_hint);
3484 	/*
3485 	 * Our cache requires contiguous chunks so that we don't modify a bunch
3486 	 * of metadata or split extents when writing the cache out, which means
3487 	 * we can enospc if we are heavily fragmented in addition to just normal
3488 	 * out of space conditions.  So if we hit this just skip setting up any
3489 	 * other block groups for this transaction, maybe we'll unpin enough
3490 	 * space the next time around.
3491 	 */
3492 	if (!ret)
3493 		dcs = BTRFS_DC_SETUP;
3494 	else if (ret == -ENOSPC)
3495 		set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3496 
3497 out_put:
3498 	iput(inode);
3499 out_free:
3500 	btrfs_release_path(path);
3501 out:
3502 	spin_lock(&block_group->lock);
3503 	if (!ret && dcs == BTRFS_DC_SETUP)
3504 		block_group->cache_generation = trans->transid;
3505 	block_group->disk_cache_state = dcs;
3506 	spin_unlock(&block_group->lock);
3507 
3508 	return ret;
3509 }
3510 
btrfs_setup_space_cache(struct btrfs_trans_handle * trans,struct btrfs_root * root)3511 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3512 			    struct btrfs_root *root)
3513 {
3514 	struct btrfs_block_group_cache *cache, *tmp;
3515 	struct btrfs_transaction *cur_trans = trans->transaction;
3516 	struct btrfs_path *path;
3517 
3518 	if (list_empty(&cur_trans->dirty_bgs) ||
3519 	    !btrfs_test_opt(root->fs_info, SPACE_CACHE))
3520 		return 0;
3521 
3522 	path = btrfs_alloc_path();
3523 	if (!path)
3524 		return -ENOMEM;
3525 
3526 	/* Could add new block groups, use _safe just in case */
3527 	list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3528 				 dirty_list) {
3529 		if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3530 			cache_save_setup(cache, trans, path);
3531 	}
3532 
3533 	btrfs_free_path(path);
3534 	return 0;
3535 }
3536 
3537 /*
3538  * transaction commit does final block group cache writeback during a
3539  * critical section where nothing is allowed to change the FS.  This is
3540  * required in order for the cache to actually match the block group,
3541  * but can introduce a lot of latency into the commit.
3542  *
3543  * So, btrfs_start_dirty_block_groups is here to kick off block group
3544  * cache IO.  There's a chance we'll have to redo some of it if the
3545  * block group changes again during the commit, but it greatly reduces
3546  * the commit latency by getting rid of the easy block groups while
3547  * we're still allowing others to join the commit.
3548  */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans,struct btrfs_root * root)3549 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3550 				   struct btrfs_root *root)
3551 {
3552 	struct btrfs_block_group_cache *cache;
3553 	struct btrfs_transaction *cur_trans = trans->transaction;
3554 	int ret = 0;
3555 	int should_put;
3556 	struct btrfs_path *path = NULL;
3557 	LIST_HEAD(dirty);
3558 	struct list_head *io = &cur_trans->io_bgs;
3559 	int num_started = 0;
3560 	int loops = 0;
3561 
3562 	spin_lock(&cur_trans->dirty_bgs_lock);
3563 	if (list_empty(&cur_trans->dirty_bgs)) {
3564 		spin_unlock(&cur_trans->dirty_bgs_lock);
3565 		return 0;
3566 	}
3567 	list_splice_init(&cur_trans->dirty_bgs, &dirty);
3568 	spin_unlock(&cur_trans->dirty_bgs_lock);
3569 
3570 again:
3571 	/*
3572 	 * make sure all the block groups on our dirty list actually
3573 	 * exist
3574 	 */
3575 	btrfs_create_pending_block_groups(trans, root);
3576 
3577 	if (!path) {
3578 		path = btrfs_alloc_path();
3579 		if (!path)
3580 			return -ENOMEM;
3581 	}
3582 
3583 	/*
3584 	 * cache_write_mutex is here only to save us from balance or automatic
3585 	 * removal of empty block groups deleting this block group while we are
3586 	 * writing out the cache
3587 	 */
3588 	mutex_lock(&trans->transaction->cache_write_mutex);
3589 	while (!list_empty(&dirty)) {
3590 		cache = list_first_entry(&dirty,
3591 					 struct btrfs_block_group_cache,
3592 					 dirty_list);
3593 		/*
3594 		 * this can happen if something re-dirties a block
3595 		 * group that is already under IO.  Just wait for it to
3596 		 * finish and then do it all again
3597 		 */
3598 		if (!list_empty(&cache->io_list)) {
3599 			list_del_init(&cache->io_list);
3600 			btrfs_wait_cache_io(root, trans, cache,
3601 					    &cache->io_ctl, path,
3602 					    cache->key.objectid);
3603 			btrfs_put_block_group(cache);
3604 		}
3605 
3606 
3607 		/*
3608 		 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3609 		 * if it should update the cache_state.  Don't delete
3610 		 * until after we wait.
3611 		 *
3612 		 * Since we're not running in the commit critical section
3613 		 * we need the dirty_bgs_lock to protect from update_block_group
3614 		 */
3615 		spin_lock(&cur_trans->dirty_bgs_lock);
3616 		list_del_init(&cache->dirty_list);
3617 		spin_unlock(&cur_trans->dirty_bgs_lock);
3618 
3619 		should_put = 1;
3620 
3621 		cache_save_setup(cache, trans, path);
3622 
3623 		if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3624 			cache->io_ctl.inode = NULL;
3625 			ret = btrfs_write_out_cache(root, trans, cache, path);
3626 			if (ret == 0 && cache->io_ctl.inode) {
3627 				num_started++;
3628 				should_put = 0;
3629 
3630 				/*
3631 				 * the cache_write_mutex is protecting
3632 				 * the io_list
3633 				 */
3634 				list_add_tail(&cache->io_list, io);
3635 			} else {
3636 				/*
3637 				 * if we failed to write the cache, the
3638 				 * generation will be bad and life goes on
3639 				 */
3640 				ret = 0;
3641 			}
3642 		}
3643 		if (!ret) {
3644 			ret = write_one_cache_group(trans, root, path, cache);
3645 			/*
3646 			 * Our block group might still be attached to the list
3647 			 * of new block groups in the transaction handle of some
3648 			 * other task (struct btrfs_trans_handle->new_bgs). This
3649 			 * means its block group item isn't yet in the extent
3650 			 * tree. If this happens ignore the error, as we will
3651 			 * try again later in the critical section of the
3652 			 * transaction commit.
3653 			 */
3654 			if (ret == -ENOENT) {
3655 				ret = 0;
3656 				spin_lock(&cur_trans->dirty_bgs_lock);
3657 				if (list_empty(&cache->dirty_list)) {
3658 					list_add_tail(&cache->dirty_list,
3659 						      &cur_trans->dirty_bgs);
3660 					btrfs_get_block_group(cache);
3661 				}
3662 				spin_unlock(&cur_trans->dirty_bgs_lock);
3663 			} else if (ret) {
3664 				btrfs_abort_transaction(trans, ret);
3665 			}
3666 		}
3667 
3668 		/* if its not on the io list, we need to put the block group */
3669 		if (should_put)
3670 			btrfs_put_block_group(cache);
3671 
3672 		if (ret)
3673 			break;
3674 
3675 		/*
3676 		 * Avoid blocking other tasks for too long. It might even save
3677 		 * us from writing caches for block groups that are going to be
3678 		 * removed.
3679 		 */
3680 		mutex_unlock(&trans->transaction->cache_write_mutex);
3681 		mutex_lock(&trans->transaction->cache_write_mutex);
3682 	}
3683 	mutex_unlock(&trans->transaction->cache_write_mutex);
3684 
3685 	/*
3686 	 * go through delayed refs for all the stuff we've just kicked off
3687 	 * and then loop back (just once)
3688 	 */
3689 	ret = btrfs_run_delayed_refs(trans, root, 0);
3690 	if (!ret && loops == 0) {
3691 		loops++;
3692 		spin_lock(&cur_trans->dirty_bgs_lock);
3693 		list_splice_init(&cur_trans->dirty_bgs, &dirty);
3694 		/*
3695 		 * dirty_bgs_lock protects us from concurrent block group
3696 		 * deletes too (not just cache_write_mutex).
3697 		 */
3698 		if (!list_empty(&dirty)) {
3699 			spin_unlock(&cur_trans->dirty_bgs_lock);
3700 			goto again;
3701 		}
3702 		spin_unlock(&cur_trans->dirty_bgs_lock);
3703 	} else if (ret < 0) {
3704 		btrfs_cleanup_dirty_bgs(cur_trans, root);
3705 	}
3706 
3707 	btrfs_free_path(path);
3708 	return ret;
3709 }
3710 
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans,struct btrfs_root * root)3711 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3712 				   struct btrfs_root *root)
3713 {
3714 	struct btrfs_block_group_cache *cache;
3715 	struct btrfs_transaction *cur_trans = trans->transaction;
3716 	int ret = 0;
3717 	int should_put;
3718 	struct btrfs_path *path;
3719 	struct list_head *io = &cur_trans->io_bgs;
3720 	int num_started = 0;
3721 
3722 	path = btrfs_alloc_path();
3723 	if (!path)
3724 		return -ENOMEM;
3725 
3726 	/*
3727 	 * Even though we are in the critical section of the transaction commit,
3728 	 * we can still have concurrent tasks adding elements to this
3729 	 * transaction's list of dirty block groups. These tasks correspond to
3730 	 * endio free space workers started when writeback finishes for a
3731 	 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3732 	 * allocate new block groups as a result of COWing nodes of the root
3733 	 * tree when updating the free space inode. The writeback for the space
3734 	 * caches is triggered by an earlier call to
3735 	 * btrfs_start_dirty_block_groups() and iterations of the following
3736 	 * loop.
3737 	 * Also we want to do the cache_save_setup first and then run the
3738 	 * delayed refs to make sure we have the best chance at doing this all
3739 	 * in one shot.
3740 	 */
3741 	spin_lock(&cur_trans->dirty_bgs_lock);
3742 	while (!list_empty(&cur_trans->dirty_bgs)) {
3743 		cache = list_first_entry(&cur_trans->dirty_bgs,
3744 					 struct btrfs_block_group_cache,
3745 					 dirty_list);
3746 
3747 		/*
3748 		 * this can happen if cache_save_setup re-dirties a block
3749 		 * group that is already under IO.  Just wait for it to
3750 		 * finish and then do it all again
3751 		 */
3752 		if (!list_empty(&cache->io_list)) {
3753 			spin_unlock(&cur_trans->dirty_bgs_lock);
3754 			list_del_init(&cache->io_list);
3755 			btrfs_wait_cache_io(root, trans, cache,
3756 					    &cache->io_ctl, path,
3757 					    cache->key.objectid);
3758 			btrfs_put_block_group(cache);
3759 			spin_lock(&cur_trans->dirty_bgs_lock);
3760 		}
3761 
3762 		/*
3763 		 * don't remove from the dirty list until after we've waited
3764 		 * on any pending IO
3765 		 */
3766 		list_del_init(&cache->dirty_list);
3767 		spin_unlock(&cur_trans->dirty_bgs_lock);
3768 		should_put = 1;
3769 
3770 		cache_save_setup(cache, trans, path);
3771 
3772 		if (!ret)
3773 			ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3774 
3775 		if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3776 			cache->io_ctl.inode = NULL;
3777 			ret = btrfs_write_out_cache(root, trans, cache, path);
3778 			if (ret == 0 && cache->io_ctl.inode) {
3779 				num_started++;
3780 				should_put = 0;
3781 				list_add_tail(&cache->io_list, io);
3782 			} else {
3783 				/*
3784 				 * if we failed to write the cache, the
3785 				 * generation will be bad and life goes on
3786 				 */
3787 				ret = 0;
3788 			}
3789 		}
3790 		if (!ret) {
3791 			ret = write_one_cache_group(trans, root, path, cache);
3792 			/*
3793 			 * One of the free space endio workers might have
3794 			 * created a new block group while updating a free space
3795 			 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3796 			 * and hasn't released its transaction handle yet, in
3797 			 * which case the new block group is still attached to
3798 			 * its transaction handle and its creation has not
3799 			 * finished yet (no block group item in the extent tree
3800 			 * yet, etc). If this is the case, wait for all free
3801 			 * space endio workers to finish and retry. This is a
3802 			 * a very rare case so no need for a more efficient and
3803 			 * complex approach.
3804 			 */
3805 			if (ret == -ENOENT) {
3806 				wait_event(cur_trans->writer_wait,
3807 				   atomic_read(&cur_trans->num_writers) == 1);
3808 				ret = write_one_cache_group(trans, root, path,
3809 							    cache);
3810 			}
3811 			if (ret)
3812 				btrfs_abort_transaction(trans, ret);
3813 		}
3814 
3815 		/* if its not on the io list, we need to put the block group */
3816 		if (should_put)
3817 			btrfs_put_block_group(cache);
3818 		spin_lock(&cur_trans->dirty_bgs_lock);
3819 	}
3820 	spin_unlock(&cur_trans->dirty_bgs_lock);
3821 
3822 	while (!list_empty(io)) {
3823 		cache = list_first_entry(io, struct btrfs_block_group_cache,
3824 					 io_list);
3825 		list_del_init(&cache->io_list);
3826 		btrfs_wait_cache_io(root, trans, cache,
3827 				    &cache->io_ctl, path, cache->key.objectid);
3828 		btrfs_put_block_group(cache);
3829 	}
3830 
3831 	btrfs_free_path(path);
3832 	return ret;
3833 }
3834 
btrfs_extent_readonly(struct btrfs_root * root,u64 bytenr)3835 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3836 {
3837 	struct btrfs_block_group_cache *block_group;
3838 	int readonly = 0;
3839 
3840 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3841 	if (!block_group || block_group->ro)
3842 		readonly = 1;
3843 	if (block_group)
3844 		btrfs_put_block_group(block_group);
3845 	return readonly;
3846 }
3847 
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)3848 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3849 {
3850 	struct btrfs_block_group_cache *bg;
3851 	bool ret = true;
3852 
3853 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3854 	if (!bg)
3855 		return false;
3856 
3857 	spin_lock(&bg->lock);
3858 	if (bg->ro)
3859 		ret = false;
3860 	else
3861 		atomic_inc(&bg->nocow_writers);
3862 	spin_unlock(&bg->lock);
3863 
3864 	/* no put on block group, done by btrfs_dec_nocow_writers */
3865 	if (!ret)
3866 		btrfs_put_block_group(bg);
3867 
3868 	return ret;
3869 
3870 }
3871 
btrfs_dec_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)3872 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3873 {
3874 	struct btrfs_block_group_cache *bg;
3875 
3876 	bg = btrfs_lookup_block_group(fs_info, bytenr);
3877 	ASSERT(bg);
3878 	if (atomic_dec_and_test(&bg->nocow_writers))
3879 		wake_up_atomic_t(&bg->nocow_writers);
3880 	/*
3881 	 * Once for our lookup and once for the lookup done by a previous call
3882 	 * to btrfs_inc_nocow_writers()
3883 	 */
3884 	btrfs_put_block_group(bg);
3885 	btrfs_put_block_group(bg);
3886 }
3887 
btrfs_wait_nocow_writers_atomic_t(atomic_t * a)3888 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3889 {
3890 	schedule();
3891 	return 0;
3892 }
3893 
btrfs_wait_nocow_writers(struct btrfs_block_group_cache * bg)3894 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3895 {
3896 	wait_on_atomic_t(&bg->nocow_writers,
3897 			 btrfs_wait_nocow_writers_atomic_t,
3898 			 TASK_UNINTERRUPTIBLE);
3899 }
3900 
alloc_name(u64 flags)3901 static const char *alloc_name(u64 flags)
3902 {
3903 	switch (flags) {
3904 	case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3905 		return "mixed";
3906 	case BTRFS_BLOCK_GROUP_METADATA:
3907 		return "metadata";
3908 	case BTRFS_BLOCK_GROUP_DATA:
3909 		return "data";
3910 	case BTRFS_BLOCK_GROUP_SYSTEM:
3911 		return "system";
3912 	default:
3913 		WARN_ON(1);
3914 		return "invalid-combination";
3915 	};
3916 }
3917 
update_space_info(struct btrfs_fs_info * info,u64 flags,u64 total_bytes,u64 bytes_used,u64 bytes_readonly,struct btrfs_space_info ** space_info)3918 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3919 			     u64 total_bytes, u64 bytes_used,
3920 			     u64 bytes_readonly,
3921 			     struct btrfs_space_info **space_info)
3922 {
3923 	struct btrfs_space_info *found;
3924 	int i;
3925 	int factor;
3926 	int ret;
3927 
3928 	if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3929 		     BTRFS_BLOCK_GROUP_RAID10))
3930 		factor = 2;
3931 	else
3932 		factor = 1;
3933 
3934 	found = __find_space_info(info, flags);
3935 	if (found) {
3936 		spin_lock(&found->lock);
3937 		found->total_bytes += total_bytes;
3938 		found->disk_total += total_bytes * factor;
3939 		found->bytes_used += bytes_used;
3940 		found->disk_used += bytes_used * factor;
3941 		found->bytes_readonly += bytes_readonly;
3942 		if (total_bytes > 0)
3943 			found->full = 0;
3944 		space_info_add_new_bytes(info, found, total_bytes -
3945 					 bytes_used - bytes_readonly);
3946 		spin_unlock(&found->lock);
3947 		*space_info = found;
3948 		return 0;
3949 	}
3950 	found = kzalloc(sizeof(*found), GFP_NOFS);
3951 	if (!found)
3952 		return -ENOMEM;
3953 
3954 	ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
3955 	if (ret) {
3956 		kfree(found);
3957 		return ret;
3958 	}
3959 
3960 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3961 		INIT_LIST_HEAD(&found->block_groups[i]);
3962 	init_rwsem(&found->groups_sem);
3963 	spin_lock_init(&found->lock);
3964 	found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3965 	found->total_bytes = total_bytes;
3966 	found->disk_total = total_bytes * factor;
3967 	found->bytes_used = bytes_used;
3968 	found->disk_used = bytes_used * factor;
3969 	found->bytes_pinned = 0;
3970 	found->bytes_reserved = 0;
3971 	found->bytes_readonly = bytes_readonly;
3972 	found->bytes_may_use = 0;
3973 	found->full = 0;
3974 	found->max_extent_size = 0;
3975 	found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3976 	found->chunk_alloc = 0;
3977 	found->flush = 0;
3978 	init_waitqueue_head(&found->wait);
3979 	INIT_LIST_HEAD(&found->ro_bgs);
3980 	INIT_LIST_HEAD(&found->tickets);
3981 	INIT_LIST_HEAD(&found->priority_tickets);
3982 
3983 	ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3984 				    info->space_info_kobj, "%s",
3985 				    alloc_name(found->flags));
3986 	if (ret) {
3987 		percpu_counter_destroy(&found->total_bytes_pinned);
3988 		kfree(found);
3989 		return ret;
3990 	}
3991 
3992 	*space_info = found;
3993 	list_add_rcu(&found->list, &info->space_info);
3994 	if (flags & BTRFS_BLOCK_GROUP_DATA)
3995 		info->data_sinfo = found;
3996 
3997 	return ret;
3998 }
3999 
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)4000 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4001 {
4002 	u64 extra_flags = chunk_to_extended(flags) &
4003 				BTRFS_EXTENDED_PROFILE_MASK;
4004 
4005 	write_seqlock(&fs_info->profiles_lock);
4006 	if (flags & BTRFS_BLOCK_GROUP_DATA)
4007 		fs_info->avail_data_alloc_bits |= extra_flags;
4008 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
4009 		fs_info->avail_metadata_alloc_bits |= extra_flags;
4010 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4011 		fs_info->avail_system_alloc_bits |= extra_flags;
4012 	write_sequnlock(&fs_info->profiles_lock);
4013 }
4014 
4015 /*
4016  * returns target flags in extended format or 0 if restripe for this
4017  * chunk_type is not in progress
4018  *
4019  * should be called with either volume_mutex or balance_lock held
4020  */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)4021 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4022 {
4023 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4024 	u64 target = 0;
4025 
4026 	if (!bctl)
4027 		return 0;
4028 
4029 	if (flags & BTRFS_BLOCK_GROUP_DATA &&
4030 	    bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4031 		target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4032 	} else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4033 		   bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4034 		target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4035 	} else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4036 		   bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4037 		target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4038 	}
4039 
4040 	return target;
4041 }
4042 
4043 /*
4044  * @flags: available profiles in extended format (see ctree.h)
4045  *
4046  * Returns reduced profile in chunk format.  If profile changing is in
4047  * progress (either running or paused) picks the target profile (if it's
4048  * already available), otherwise falls back to plain reducing.
4049  */
btrfs_reduce_alloc_profile(struct btrfs_root * root,u64 flags)4050 static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
4051 {
4052 	u64 num_devices = root->fs_info->fs_devices->rw_devices;
4053 	u64 target;
4054 	u64 raid_type;
4055 	u64 allowed = 0;
4056 
4057 	/*
4058 	 * see if restripe for this chunk_type is in progress, if so
4059 	 * try to reduce to the target profile
4060 	 */
4061 	spin_lock(&root->fs_info->balance_lock);
4062 	target = get_restripe_target(root->fs_info, flags);
4063 	if (target) {
4064 		/* pick target profile only if it's already available */
4065 		if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4066 			spin_unlock(&root->fs_info->balance_lock);
4067 			return extended_to_chunk(target);
4068 		}
4069 	}
4070 	spin_unlock(&root->fs_info->balance_lock);
4071 
4072 	/* First, mask out the RAID levels which aren't possible */
4073 	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4074 		if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4075 			allowed |= btrfs_raid_group[raid_type];
4076 	}
4077 	allowed &= flags;
4078 
4079 	if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4080 		allowed = BTRFS_BLOCK_GROUP_RAID6;
4081 	else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4082 		allowed = BTRFS_BLOCK_GROUP_RAID5;
4083 	else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4084 		allowed = BTRFS_BLOCK_GROUP_RAID10;
4085 	else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4086 		allowed = BTRFS_BLOCK_GROUP_RAID1;
4087 	else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4088 		allowed = BTRFS_BLOCK_GROUP_RAID0;
4089 
4090 	flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4091 
4092 	return extended_to_chunk(flags | allowed);
4093 }
4094 
get_alloc_profile(struct btrfs_root * root,u64 orig_flags)4095 static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
4096 {
4097 	unsigned seq;
4098 	u64 flags;
4099 
4100 	do {
4101 		flags = orig_flags;
4102 		seq = read_seqbegin(&root->fs_info->profiles_lock);
4103 
4104 		if (flags & BTRFS_BLOCK_GROUP_DATA)
4105 			flags |= root->fs_info->avail_data_alloc_bits;
4106 		else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4107 			flags |= root->fs_info->avail_system_alloc_bits;
4108 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4109 			flags |= root->fs_info->avail_metadata_alloc_bits;
4110 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
4111 
4112 	return btrfs_reduce_alloc_profile(root, flags);
4113 }
4114 
btrfs_get_alloc_profile(struct btrfs_root * root,int data)4115 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
4116 {
4117 	u64 flags;
4118 	u64 ret;
4119 
4120 	if (data)
4121 		flags = BTRFS_BLOCK_GROUP_DATA;
4122 	else if (root == root->fs_info->chunk_root)
4123 		flags = BTRFS_BLOCK_GROUP_SYSTEM;
4124 	else
4125 		flags = BTRFS_BLOCK_GROUP_METADATA;
4126 
4127 	ret = get_alloc_profile(root, flags);
4128 	return ret;
4129 }
4130 
btrfs_alloc_data_chunk_ondemand(struct inode * inode,u64 bytes)4131 int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
4132 {
4133 	struct btrfs_space_info *data_sinfo;
4134 	struct btrfs_root *root = BTRFS_I(inode)->root;
4135 	struct btrfs_fs_info *fs_info = root->fs_info;
4136 	u64 used;
4137 	int ret = 0;
4138 	int need_commit = 2;
4139 	int have_pinned_space;
4140 
4141 	/* make sure bytes are sectorsize aligned */
4142 	bytes = ALIGN(bytes, root->sectorsize);
4143 
4144 	if (btrfs_is_free_space_inode(inode)) {
4145 		need_commit = 0;
4146 		ASSERT(current->journal_info);
4147 	}
4148 
4149 	data_sinfo = fs_info->data_sinfo;
4150 	if (!data_sinfo)
4151 		goto alloc;
4152 
4153 again:
4154 	/* make sure we have enough space to handle the data first */
4155 	spin_lock(&data_sinfo->lock);
4156 	used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4157 		data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4158 		data_sinfo->bytes_may_use;
4159 
4160 	if (used + bytes > data_sinfo->total_bytes) {
4161 		struct btrfs_trans_handle *trans;
4162 
4163 		/*
4164 		 * if we don't have enough free bytes in this space then we need
4165 		 * to alloc a new chunk.
4166 		 */
4167 		if (!data_sinfo->full) {
4168 			u64 alloc_target;
4169 
4170 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4171 			spin_unlock(&data_sinfo->lock);
4172 alloc:
4173 			alloc_target = btrfs_get_alloc_profile(root, 1);
4174 			/*
4175 			 * It is ugly that we don't call nolock join
4176 			 * transaction for the free space inode case here.
4177 			 * But it is safe because we only do the data space
4178 			 * reservation for the free space cache in the
4179 			 * transaction context, the common join transaction
4180 			 * just increase the counter of the current transaction
4181 			 * handler, doesn't try to acquire the trans_lock of
4182 			 * the fs.
4183 			 */
4184 			trans = btrfs_join_transaction(root);
4185 			if (IS_ERR(trans))
4186 				return PTR_ERR(trans);
4187 
4188 			ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4189 					     alloc_target,
4190 					     CHUNK_ALLOC_NO_FORCE);
4191 			btrfs_end_transaction(trans, root);
4192 			if (ret < 0) {
4193 				if (ret != -ENOSPC)
4194 					return ret;
4195 				else {
4196 					have_pinned_space = 1;
4197 					goto commit_trans;
4198 				}
4199 			}
4200 
4201 			if (!data_sinfo)
4202 				data_sinfo = fs_info->data_sinfo;
4203 
4204 			goto again;
4205 		}
4206 
4207 		/*
4208 		 * If we don't have enough pinned space to deal with this
4209 		 * allocation, and no removed chunk in current transaction,
4210 		 * don't bother committing the transaction.
4211 		 */
4212 		have_pinned_space = percpu_counter_compare(
4213 			&data_sinfo->total_bytes_pinned,
4214 			used + bytes - data_sinfo->total_bytes);
4215 		spin_unlock(&data_sinfo->lock);
4216 
4217 		/* commit the current transaction and try again */
4218 commit_trans:
4219 		if (need_commit &&
4220 		    !atomic_read(&root->fs_info->open_ioctl_trans)) {
4221 			need_commit--;
4222 
4223 			if (need_commit > 0) {
4224 				btrfs_start_delalloc_roots(fs_info, 0, -1);
4225 				btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
4226 			}
4227 
4228 			trans = btrfs_join_transaction(root);
4229 			if (IS_ERR(trans))
4230 				return PTR_ERR(trans);
4231 			if (have_pinned_space >= 0 ||
4232 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4233 				     &trans->transaction->flags) ||
4234 			    need_commit > 0) {
4235 				ret = btrfs_commit_transaction(trans, root);
4236 				if (ret)
4237 					return ret;
4238 				/*
4239 				 * The cleaner kthread might still be doing iput
4240 				 * operations. Wait for it to finish so that
4241 				 * more space is released.
4242 				 */
4243 				mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4244 				mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
4245 				goto again;
4246 			} else {
4247 				btrfs_end_transaction(trans, root);
4248 			}
4249 		}
4250 
4251 		trace_btrfs_space_reservation(root->fs_info,
4252 					      "space_info:enospc",
4253 					      data_sinfo->flags, bytes, 1);
4254 		return -ENOSPC;
4255 	}
4256 	data_sinfo->bytes_may_use += bytes;
4257 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4258 				      data_sinfo->flags, bytes, 1);
4259 	spin_unlock(&data_sinfo->lock);
4260 
4261 	return ret;
4262 }
4263 
4264 /*
4265  * New check_data_free_space() with ability for precious data reservation
4266  * Will replace old btrfs_check_data_free_space(), but for patch split,
4267  * add a new function first and then replace it.
4268  */
btrfs_check_data_free_space(struct inode * inode,u64 start,u64 len)4269 int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4270 {
4271 	struct btrfs_root *root = BTRFS_I(inode)->root;
4272 	int ret;
4273 
4274 	/* align the range */
4275 	len = round_up(start + len, root->sectorsize) -
4276 	      round_down(start, root->sectorsize);
4277 	start = round_down(start, root->sectorsize);
4278 
4279 	ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4280 	if (ret < 0)
4281 		return ret;
4282 
4283 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4284 	ret = btrfs_qgroup_reserve_data(inode, start, len);
4285 	if (ret)
4286 		btrfs_free_reserved_data_space_noquota(inode, start, len);
4287 	return ret;
4288 }
4289 
4290 /*
4291  * Called if we need to clear a data reservation for this inode
4292  * Normally in a error case.
4293  *
4294  * This one will *NOT* use accurate qgroup reserved space API, just for case
4295  * which we can't sleep and is sure it won't affect qgroup reserved space.
4296  * Like clear_bit_hook().
4297  */
btrfs_free_reserved_data_space_noquota(struct inode * inode,u64 start,u64 len)4298 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4299 					    u64 len)
4300 {
4301 	struct btrfs_root *root = BTRFS_I(inode)->root;
4302 	struct btrfs_space_info *data_sinfo;
4303 
4304 	/* Make sure the range is aligned to sectorsize */
4305 	len = round_up(start + len, root->sectorsize) -
4306 	      round_down(start, root->sectorsize);
4307 	start = round_down(start, root->sectorsize);
4308 
4309 	data_sinfo = root->fs_info->data_sinfo;
4310 	spin_lock(&data_sinfo->lock);
4311 	if (WARN_ON(data_sinfo->bytes_may_use < len))
4312 		data_sinfo->bytes_may_use = 0;
4313 	else
4314 		data_sinfo->bytes_may_use -= len;
4315 	trace_btrfs_space_reservation(root->fs_info, "space_info",
4316 				      data_sinfo->flags, len, 0);
4317 	spin_unlock(&data_sinfo->lock);
4318 }
4319 
4320 /*
4321  * Called if we need to clear a data reservation for this inode
4322  * Normally in a error case.
4323  *
4324  * This one will handle the per-inode data rsv map for accurate reserved
4325  * space framework.
4326  */
btrfs_free_reserved_data_space(struct inode * inode,u64 start,u64 len)4327 void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4328 {
4329 	btrfs_free_reserved_data_space_noquota(inode, start, len);
4330 	btrfs_qgroup_free_data(inode, start, len);
4331 }
4332 
force_metadata_allocation(struct btrfs_fs_info * info)4333 static void force_metadata_allocation(struct btrfs_fs_info *info)
4334 {
4335 	struct list_head *head = &info->space_info;
4336 	struct btrfs_space_info *found;
4337 
4338 	rcu_read_lock();
4339 	list_for_each_entry_rcu(found, head, list) {
4340 		if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4341 			found->force_alloc = CHUNK_ALLOC_FORCE;
4342 	}
4343 	rcu_read_unlock();
4344 }
4345 
calc_global_rsv_need_space(struct btrfs_block_rsv * global)4346 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4347 {
4348 	return (global->size << 1);
4349 }
4350 
should_alloc_chunk(struct btrfs_root * root,struct btrfs_space_info * sinfo,int force)4351 static int should_alloc_chunk(struct btrfs_root *root,
4352 			      struct btrfs_space_info *sinfo, int force)
4353 {
4354 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4355 	u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
4356 	u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
4357 	u64 thresh;
4358 
4359 	if (force == CHUNK_ALLOC_FORCE)
4360 		return 1;
4361 
4362 	/*
4363 	 * We need to take into account the global rsv because for all intents
4364 	 * and purposes it's used space.  Don't worry about locking the
4365 	 * global_rsv, it doesn't change except when the transaction commits.
4366 	 */
4367 	if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4368 		num_allocated += calc_global_rsv_need_space(global_rsv);
4369 
4370 	/*
4371 	 * in limited mode, we want to have some free space up to
4372 	 * about 1% of the FS size.
4373 	 */
4374 	if (force == CHUNK_ALLOC_LIMITED) {
4375 		thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
4376 		thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4377 
4378 		if (num_bytes - num_allocated < thresh)
4379 			return 1;
4380 	}
4381 
4382 	if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
4383 		return 0;
4384 	return 1;
4385 }
4386 
get_profile_num_devs(struct btrfs_root * root,u64 type)4387 static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
4388 {
4389 	u64 num_dev;
4390 
4391 	if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4392 		    BTRFS_BLOCK_GROUP_RAID0 |
4393 		    BTRFS_BLOCK_GROUP_RAID5 |
4394 		    BTRFS_BLOCK_GROUP_RAID6))
4395 		num_dev = root->fs_info->fs_devices->rw_devices;
4396 	else if (type & BTRFS_BLOCK_GROUP_RAID1)
4397 		num_dev = 2;
4398 	else
4399 		num_dev = 1;	/* DUP or single */
4400 
4401 	return num_dev;
4402 }
4403 
4404 /*
4405  * If @is_allocation is true, reserve space in the system space info necessary
4406  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4407  * removing a chunk.
4408  */
check_system_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 type)4409 void check_system_chunk(struct btrfs_trans_handle *trans,
4410 			struct btrfs_root *root,
4411 			u64 type)
4412 {
4413 	struct btrfs_space_info *info;
4414 	u64 left;
4415 	u64 thresh;
4416 	int ret = 0;
4417 	u64 num_devs;
4418 
4419 	/*
4420 	 * Needed because we can end up allocating a system chunk and for an
4421 	 * atomic and race free space reservation in the chunk block reserve.
4422 	 */
4423 	ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
4424 
4425 	info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4426 	spin_lock(&info->lock);
4427 	left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4428 		info->bytes_reserved - info->bytes_readonly -
4429 		info->bytes_may_use;
4430 	spin_unlock(&info->lock);
4431 
4432 	num_devs = get_profile_num_devs(root, type);
4433 
4434 	/* num_devs device items to update and 1 chunk item to add or remove */
4435 	thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4436 		btrfs_calc_trans_metadata_size(root, 1);
4437 
4438 	if (left < thresh && btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
4439 		btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4440 			left, thresh, type);
4441 		dump_space_info(root->fs_info, info, 0, 0);
4442 	}
4443 
4444 	if (left < thresh) {
4445 		u64 flags;
4446 
4447 		flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4448 		/*
4449 		 * Ignore failure to create system chunk. We might end up not
4450 		 * needing it, as we might not need to COW all nodes/leafs from
4451 		 * the paths we visit in the chunk tree (they were already COWed
4452 		 * or created in the current transaction for example).
4453 		 */
4454 		ret = btrfs_alloc_chunk(trans, root, flags);
4455 	}
4456 
4457 	if (!ret) {
4458 		ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4459 					  &root->fs_info->chunk_block_rsv,
4460 					  thresh, BTRFS_RESERVE_NO_FLUSH);
4461 		if (!ret)
4462 			trans->chunk_bytes_reserved += thresh;
4463 	}
4464 }
4465 
4466 /*
4467  * If force is CHUNK_ALLOC_FORCE:
4468  *    - return 1 if it successfully allocates a chunk,
4469  *    - return errors including -ENOSPC otherwise.
4470  * If force is NOT CHUNK_ALLOC_FORCE:
4471  *    - return 0 if it doesn't need to allocate a new chunk,
4472  *    - return 1 if it successfully allocates a chunk,
4473  *    - return errors including -ENOSPC otherwise.
4474  */
do_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 flags,int force)4475 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4476 			  struct btrfs_root *extent_root, u64 flags, int force)
4477 {
4478 	struct btrfs_space_info *space_info;
4479 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4480 	int wait_for_alloc = 0;
4481 	int ret = 0;
4482 
4483 	/* Don't re-enter if we're already allocating a chunk */
4484 	if (trans->allocating_chunk)
4485 		return -ENOSPC;
4486 
4487 	space_info = __find_space_info(extent_root->fs_info, flags);
4488 	if (!space_info) {
4489 		ret = update_space_info(extent_root->fs_info, flags,
4490 					0, 0, 0, &space_info);
4491 		BUG_ON(ret); /* -ENOMEM */
4492 	}
4493 	BUG_ON(!space_info); /* Logic error */
4494 
4495 again:
4496 	spin_lock(&space_info->lock);
4497 	if (force < space_info->force_alloc)
4498 		force = space_info->force_alloc;
4499 	if (space_info->full) {
4500 		if (should_alloc_chunk(extent_root, space_info, force))
4501 			ret = -ENOSPC;
4502 		else
4503 			ret = 0;
4504 		spin_unlock(&space_info->lock);
4505 		return ret;
4506 	}
4507 
4508 	if (!should_alloc_chunk(extent_root, space_info, force)) {
4509 		spin_unlock(&space_info->lock);
4510 		return 0;
4511 	} else if (space_info->chunk_alloc) {
4512 		wait_for_alloc = 1;
4513 	} else {
4514 		space_info->chunk_alloc = 1;
4515 	}
4516 
4517 	spin_unlock(&space_info->lock);
4518 
4519 	mutex_lock(&fs_info->chunk_mutex);
4520 
4521 	/*
4522 	 * The chunk_mutex is held throughout the entirety of a chunk
4523 	 * allocation, so once we've acquired the chunk_mutex we know that the
4524 	 * other guy is done and we need to recheck and see if we should
4525 	 * allocate.
4526 	 */
4527 	if (wait_for_alloc) {
4528 		mutex_unlock(&fs_info->chunk_mutex);
4529 		wait_for_alloc = 0;
4530 		goto again;
4531 	}
4532 
4533 	trans->allocating_chunk = true;
4534 
4535 	/*
4536 	 * If we have mixed data/metadata chunks we want to make sure we keep
4537 	 * allocating mixed chunks instead of individual chunks.
4538 	 */
4539 	if (btrfs_mixed_space_info(space_info))
4540 		flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4541 
4542 	/*
4543 	 * if we're doing a data chunk, go ahead and make sure that
4544 	 * we keep a reasonable number of metadata chunks allocated in the
4545 	 * FS as well.
4546 	 */
4547 	if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4548 		fs_info->data_chunk_allocations++;
4549 		if (!(fs_info->data_chunk_allocations %
4550 		      fs_info->metadata_ratio))
4551 			force_metadata_allocation(fs_info);
4552 	}
4553 
4554 	/*
4555 	 * Check if we have enough space in SYSTEM chunk because we may need
4556 	 * to update devices.
4557 	 */
4558 	check_system_chunk(trans, extent_root, flags);
4559 
4560 	ret = btrfs_alloc_chunk(trans, extent_root, flags);
4561 	trans->allocating_chunk = false;
4562 
4563 	spin_lock(&space_info->lock);
4564 	if (ret < 0 && ret != -ENOSPC)
4565 		goto out;
4566 	if (ret)
4567 		space_info->full = 1;
4568 	else
4569 		ret = 1;
4570 
4571 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4572 out:
4573 	space_info->chunk_alloc = 0;
4574 	spin_unlock(&space_info->lock);
4575 	mutex_unlock(&fs_info->chunk_mutex);
4576 	/*
4577 	 * When we allocate a new chunk we reserve space in the chunk block
4578 	 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4579 	 * add new nodes/leafs to it if we end up needing to do it when
4580 	 * inserting the chunk item and updating device items as part of the
4581 	 * second phase of chunk allocation, performed by
4582 	 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4583 	 * large number of new block groups to create in our transaction
4584 	 * handle's new_bgs list to avoid exhausting the chunk block reserve
4585 	 * in extreme cases - like having a single transaction create many new
4586 	 * block groups when starting to write out the free space caches of all
4587 	 * the block groups that were made dirty during the lifetime of the
4588 	 * transaction.
4589 	 */
4590 	if (trans->can_flush_pending_bgs &&
4591 	    trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4592 		btrfs_create_pending_block_groups(trans, extent_root);
4593 		btrfs_trans_release_chunk_metadata(trans);
4594 	}
4595 	return ret;
4596 }
4597 
can_overcommit(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush)4598 static int can_overcommit(struct btrfs_root *root,
4599 			  struct btrfs_space_info *space_info, u64 bytes,
4600 			  enum btrfs_reserve_flush_enum flush)
4601 {
4602 	struct btrfs_block_rsv *global_rsv;
4603 	u64 profile;
4604 	u64 space_size;
4605 	u64 avail;
4606 	u64 used;
4607 
4608 	/* Don't overcommit when in mixed mode. */
4609 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4610 		return 0;
4611 
4612 	BUG_ON(root->fs_info == NULL);
4613 	global_rsv = &root->fs_info->global_block_rsv;
4614 	profile = btrfs_get_alloc_profile(root, 0);
4615 	used = space_info->bytes_used + space_info->bytes_reserved +
4616 		space_info->bytes_pinned + space_info->bytes_readonly;
4617 
4618 	/*
4619 	 * We only want to allow over committing if we have lots of actual space
4620 	 * free, but if we don't have enough space to handle the global reserve
4621 	 * space then we could end up having a real enospc problem when trying
4622 	 * to allocate a chunk or some other such important allocation.
4623 	 */
4624 	spin_lock(&global_rsv->lock);
4625 	space_size = calc_global_rsv_need_space(global_rsv);
4626 	spin_unlock(&global_rsv->lock);
4627 	if (used + space_size >= space_info->total_bytes)
4628 		return 0;
4629 
4630 	used += space_info->bytes_may_use;
4631 
4632 	spin_lock(&root->fs_info->free_chunk_lock);
4633 	avail = root->fs_info->free_chunk_space;
4634 	spin_unlock(&root->fs_info->free_chunk_lock);
4635 
4636 	/*
4637 	 * If we have dup, raid1 or raid10 then only half of the free
4638 	 * space is actually useable.  For raid56, the space info used
4639 	 * doesn't include the parity drive, so we don't have to
4640 	 * change the math
4641 	 */
4642 	if (profile & (BTRFS_BLOCK_GROUP_DUP |
4643 		       BTRFS_BLOCK_GROUP_RAID1 |
4644 		       BTRFS_BLOCK_GROUP_RAID10))
4645 		avail >>= 1;
4646 
4647 	/*
4648 	 * If we aren't flushing all things, let us overcommit up to
4649 	 * 1/2th of the space. If we can flush, don't let us overcommit
4650 	 * too much, let it overcommit up to 1/8 of the space.
4651 	 */
4652 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
4653 		avail >>= 3;
4654 	else
4655 		avail >>= 1;
4656 
4657 	if (used + bytes < space_info->total_bytes + avail)
4658 		return 1;
4659 	return 0;
4660 }
4661 
btrfs_writeback_inodes_sb_nr(struct btrfs_root * root,unsigned long nr_pages,int nr_items)4662 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
4663 					 unsigned long nr_pages, int nr_items)
4664 {
4665 	struct super_block *sb = root->fs_info->sb;
4666 
4667 	if (down_read_trylock(&sb->s_umount)) {
4668 		writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4669 		up_read(&sb->s_umount);
4670 	} else {
4671 		/*
4672 		 * We needn't worry the filesystem going from r/w to r/o though
4673 		 * we don't acquire ->s_umount mutex, because the filesystem
4674 		 * should guarantee the delalloc inodes list be empty after
4675 		 * the filesystem is readonly(all dirty pages are written to
4676 		 * the disk).
4677 		 */
4678 		btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
4679 		if (!current->journal_info)
4680 			btrfs_wait_ordered_roots(root->fs_info, nr_items,
4681 						 0, (u64)-1);
4682 	}
4683 }
4684 
calc_reclaim_items_nr(struct btrfs_root * root,u64 to_reclaim)4685 static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4686 {
4687 	u64 bytes;
4688 	int nr;
4689 
4690 	bytes = btrfs_calc_trans_metadata_size(root, 1);
4691 	nr = (int)div64_u64(to_reclaim, bytes);
4692 	if (!nr)
4693 		nr = 1;
4694 	return nr;
4695 }
4696 
4697 #define EXTENT_SIZE_PER_ITEM	SZ_256K
4698 
4699 /*
4700  * shrink metadata reservation for delalloc
4701  */
shrink_delalloc(struct btrfs_root * root,u64 to_reclaim,u64 orig,bool wait_ordered)4702 static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4703 			    bool wait_ordered)
4704 {
4705 	struct btrfs_block_rsv *block_rsv;
4706 	struct btrfs_space_info *space_info;
4707 	struct btrfs_trans_handle *trans;
4708 	u64 delalloc_bytes;
4709 	u64 max_reclaim;
4710 	long time_left;
4711 	unsigned long nr_pages;
4712 	int loops;
4713 	int items;
4714 	enum btrfs_reserve_flush_enum flush;
4715 
4716 	/* Calc the number of the pages we need flush for space reservation */
4717 	items = calc_reclaim_items_nr(root, to_reclaim);
4718 	to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
4719 
4720 	trans = (struct btrfs_trans_handle *)current->journal_info;
4721 	block_rsv = &root->fs_info->delalloc_block_rsv;
4722 	space_info = block_rsv->space_info;
4723 
4724 	delalloc_bytes = percpu_counter_sum_positive(
4725 						&root->fs_info->delalloc_bytes);
4726 	if (delalloc_bytes == 0) {
4727 		if (trans)
4728 			return;
4729 		if (wait_ordered)
4730 			btrfs_wait_ordered_roots(root->fs_info, items,
4731 						 0, (u64)-1);
4732 		return;
4733 	}
4734 
4735 	loops = 0;
4736 	while (delalloc_bytes && loops < 3) {
4737 		max_reclaim = min(delalloc_bytes, to_reclaim);
4738 		nr_pages = max_reclaim >> PAGE_SHIFT;
4739 		btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
4740 		/*
4741 		 * We need to wait for the async pages to actually start before
4742 		 * we do anything.
4743 		 */
4744 		max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4745 		if (!max_reclaim)
4746 			goto skip_async;
4747 
4748 		if (max_reclaim <= nr_pages)
4749 			max_reclaim = 0;
4750 		else
4751 			max_reclaim -= nr_pages;
4752 
4753 		wait_event(root->fs_info->async_submit_wait,
4754 			   atomic_read(&root->fs_info->async_delalloc_pages) <=
4755 			   (int)max_reclaim);
4756 skip_async:
4757 		if (!trans)
4758 			flush = BTRFS_RESERVE_FLUSH_ALL;
4759 		else
4760 			flush = BTRFS_RESERVE_NO_FLUSH;
4761 		spin_lock(&space_info->lock);
4762 		if (list_empty(&space_info->tickets) &&
4763 		    list_empty(&space_info->priority_tickets)) {
4764 			spin_unlock(&space_info->lock);
4765 			break;
4766 		}
4767 		spin_unlock(&space_info->lock);
4768 
4769 		loops++;
4770 		if (wait_ordered && !trans) {
4771 			btrfs_wait_ordered_roots(root->fs_info, items,
4772 						 0, (u64)-1);
4773 		} else {
4774 			time_left = schedule_timeout_killable(1);
4775 			if (time_left)
4776 				break;
4777 		}
4778 		delalloc_bytes = percpu_counter_sum_positive(
4779 						&root->fs_info->delalloc_bytes);
4780 	}
4781 }
4782 
4783 /**
4784  * maybe_commit_transaction - possibly commit the transaction if its ok to
4785  * @root - the root we're allocating for
4786  * @bytes - the number of bytes we want to reserve
4787  * @force - force the commit
4788  *
4789  * This will check to make sure that committing the transaction will actually
4790  * get us somewhere and then commit the transaction if it does.  Otherwise it
4791  * will return -ENOSPC.
4792  */
may_commit_transaction(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 bytes,int force)4793 static int may_commit_transaction(struct btrfs_root *root,
4794 				  struct btrfs_space_info *space_info,
4795 				  u64 bytes, int force)
4796 {
4797 	struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4798 	struct btrfs_trans_handle *trans;
4799 
4800 	trans = (struct btrfs_trans_handle *)current->journal_info;
4801 	if (trans)
4802 		return -EAGAIN;
4803 
4804 	if (force)
4805 		goto commit;
4806 
4807 	/* See if there is enough pinned space to make this reservation */
4808 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4809 				   bytes) >= 0)
4810 		goto commit;
4811 
4812 	/*
4813 	 * See if there is some space in the delayed insertion reservation for
4814 	 * this reservation.
4815 	 */
4816 	if (space_info != delayed_rsv->space_info)
4817 		return -ENOSPC;
4818 
4819 	spin_lock(&delayed_rsv->lock);
4820 	if (percpu_counter_compare(&space_info->total_bytes_pinned,
4821 				   bytes - delayed_rsv->size) >= 0) {
4822 		spin_unlock(&delayed_rsv->lock);
4823 		return -ENOSPC;
4824 	}
4825 	spin_unlock(&delayed_rsv->lock);
4826 
4827 commit:
4828 	trans = btrfs_join_transaction(root);
4829 	if (IS_ERR(trans))
4830 		return -ENOSPC;
4831 
4832 	return btrfs_commit_transaction(trans, root);
4833 }
4834 
4835 struct reserve_ticket {
4836 	u64 bytes;
4837 	int error;
4838 	struct list_head list;
4839 	wait_queue_head_t wait;
4840 };
4841 
flush_space(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 num_bytes,u64 orig_bytes,int state)4842 static int flush_space(struct btrfs_root *root,
4843 		       struct btrfs_space_info *space_info, u64 num_bytes,
4844 		       u64 orig_bytes, int state)
4845 {
4846 	struct btrfs_trans_handle *trans;
4847 	int nr;
4848 	int ret = 0;
4849 
4850 	switch (state) {
4851 	case FLUSH_DELAYED_ITEMS_NR:
4852 	case FLUSH_DELAYED_ITEMS:
4853 		if (state == FLUSH_DELAYED_ITEMS_NR)
4854 			nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4855 		else
4856 			nr = -1;
4857 
4858 		trans = btrfs_join_transaction(root);
4859 		if (IS_ERR(trans)) {
4860 			ret = PTR_ERR(trans);
4861 			break;
4862 		}
4863 		ret = btrfs_run_delayed_items_nr(trans, root, nr);
4864 		btrfs_end_transaction(trans, root);
4865 		break;
4866 	case FLUSH_DELALLOC:
4867 	case FLUSH_DELALLOC_WAIT:
4868 		shrink_delalloc(root, num_bytes * 2, orig_bytes,
4869 				state == FLUSH_DELALLOC_WAIT);
4870 		break;
4871 	case ALLOC_CHUNK:
4872 		trans = btrfs_join_transaction(root);
4873 		if (IS_ERR(trans)) {
4874 			ret = PTR_ERR(trans);
4875 			break;
4876 		}
4877 		ret = do_chunk_alloc(trans, root->fs_info->extent_root,
4878 				     btrfs_get_alloc_profile(root, 0),
4879 				     CHUNK_ALLOC_NO_FORCE);
4880 		btrfs_end_transaction(trans, root);
4881 		if (ret > 0 || ret == -ENOSPC)
4882 			ret = 0;
4883 		break;
4884 	case COMMIT_TRANS:
4885 		ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4886 		break;
4887 	default:
4888 		ret = -ENOSPC;
4889 		break;
4890 	}
4891 
4892 	trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes,
4893 				orig_bytes, state, ret);
4894 	return ret;
4895 }
4896 
4897 static inline u64
btrfs_calc_reclaim_metadata_size(struct btrfs_root * root,struct btrfs_space_info * space_info)4898 btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4899 				 struct btrfs_space_info *space_info)
4900 {
4901 	struct reserve_ticket *ticket;
4902 	u64 used;
4903 	u64 expected;
4904 	u64 to_reclaim = 0;
4905 
4906 	list_for_each_entry(ticket, &space_info->tickets, list)
4907 		to_reclaim += ticket->bytes;
4908 	list_for_each_entry(ticket, &space_info->priority_tickets, list)
4909 		to_reclaim += ticket->bytes;
4910 	if (to_reclaim)
4911 		return to_reclaim;
4912 
4913 	to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
4914 	if (can_overcommit(root, space_info, to_reclaim,
4915 			   BTRFS_RESERVE_FLUSH_ALL))
4916 		return 0;
4917 
4918 	used = space_info->bytes_used + space_info->bytes_reserved +
4919 	       space_info->bytes_pinned + space_info->bytes_readonly +
4920 	       space_info->bytes_may_use;
4921 	if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
4922 		expected = div_factor_fine(space_info->total_bytes, 95);
4923 	else
4924 		expected = div_factor_fine(space_info->total_bytes, 90);
4925 
4926 	if (used > expected)
4927 		to_reclaim = used - expected;
4928 	else
4929 		to_reclaim = 0;
4930 	to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4931 				     space_info->bytes_reserved);
4932 	return to_reclaim;
4933 }
4934 
need_do_async_reclaim(struct btrfs_space_info * space_info,struct btrfs_root * root,u64 used)4935 static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4936 					struct btrfs_root *root, u64 used)
4937 {
4938 	u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4939 
4940 	/* If we're just plain full then async reclaim just slows us down. */
4941 	if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
4942 		return 0;
4943 
4944 	if (!btrfs_calc_reclaim_metadata_size(root, space_info))
4945 		return 0;
4946 
4947 	return (used >= thresh && !btrfs_fs_closing(root->fs_info) &&
4948 		!test_bit(BTRFS_FS_STATE_REMOUNTING,
4949 			  &root->fs_info->fs_state));
4950 }
4951 
wake_all_tickets(struct list_head * head)4952 static void wake_all_tickets(struct list_head *head)
4953 {
4954 	struct reserve_ticket *ticket;
4955 
4956 	while (!list_empty(head)) {
4957 		ticket = list_first_entry(head, struct reserve_ticket, list);
4958 		list_del_init(&ticket->list);
4959 		ticket->error = -ENOSPC;
4960 		wake_up(&ticket->wait);
4961 	}
4962 }
4963 
4964 /*
4965  * This is for normal flushers, we can wait all goddamned day if we want to.  We
4966  * will loop and continuously try to flush as long as we are making progress.
4967  * We count progress as clearing off tickets each time we have to loop.
4968  */
btrfs_async_reclaim_metadata_space(struct work_struct * work)4969 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4970 {
4971 	struct btrfs_fs_info *fs_info;
4972 	struct btrfs_space_info *space_info;
4973 	u64 to_reclaim;
4974 	int flush_state;
4975 	int commit_cycles = 0;
4976 	u64 last_tickets_id;
4977 
4978 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4979 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4980 
4981 	spin_lock(&space_info->lock);
4982 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4983 						      space_info);
4984 	if (!to_reclaim) {
4985 		space_info->flush = 0;
4986 		spin_unlock(&space_info->lock);
4987 		return;
4988 	}
4989 	last_tickets_id = space_info->tickets_id;
4990 	spin_unlock(&space_info->lock);
4991 
4992 	flush_state = FLUSH_DELAYED_ITEMS_NR;
4993 	do {
4994 		struct reserve_ticket *ticket;
4995 		int ret;
4996 
4997 		ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
4998 			    to_reclaim, flush_state);
4999 		spin_lock(&space_info->lock);
5000 		if (list_empty(&space_info->tickets)) {
5001 			space_info->flush = 0;
5002 			spin_unlock(&space_info->lock);
5003 			return;
5004 		}
5005 		to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5006 							      space_info);
5007 		ticket = list_first_entry(&space_info->tickets,
5008 					  struct reserve_ticket, list);
5009 		if (last_tickets_id == space_info->tickets_id) {
5010 			flush_state++;
5011 		} else {
5012 			last_tickets_id = space_info->tickets_id;
5013 			flush_state = FLUSH_DELAYED_ITEMS_NR;
5014 			if (commit_cycles)
5015 				commit_cycles--;
5016 		}
5017 
5018 		if (flush_state > COMMIT_TRANS) {
5019 			commit_cycles++;
5020 			if (commit_cycles > 2) {
5021 				wake_all_tickets(&space_info->tickets);
5022 				space_info->flush = 0;
5023 			} else {
5024 				flush_state = FLUSH_DELAYED_ITEMS_NR;
5025 			}
5026 		}
5027 		spin_unlock(&space_info->lock);
5028 	} while (flush_state <= COMMIT_TRANS);
5029 }
5030 
btrfs_init_async_reclaim_work(struct work_struct * work)5031 void btrfs_init_async_reclaim_work(struct work_struct *work)
5032 {
5033 	INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5034 }
5035 
priority_reclaim_metadata_space(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket)5036 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5037 					    struct btrfs_space_info *space_info,
5038 					    struct reserve_ticket *ticket)
5039 {
5040 	u64 to_reclaim;
5041 	int flush_state = FLUSH_DELAYED_ITEMS_NR;
5042 
5043 	spin_lock(&space_info->lock);
5044 	to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5045 						      space_info);
5046 	if (!to_reclaim) {
5047 		spin_unlock(&space_info->lock);
5048 		return;
5049 	}
5050 	spin_unlock(&space_info->lock);
5051 
5052 	do {
5053 		flush_space(fs_info->fs_root, space_info, to_reclaim,
5054 			    to_reclaim, flush_state);
5055 		flush_state++;
5056 		spin_lock(&space_info->lock);
5057 		if (ticket->bytes == 0) {
5058 			spin_unlock(&space_info->lock);
5059 			return;
5060 		}
5061 		spin_unlock(&space_info->lock);
5062 
5063 		/*
5064 		 * Priority flushers can't wait on delalloc without
5065 		 * deadlocking.
5066 		 */
5067 		if (flush_state == FLUSH_DELALLOC ||
5068 		    flush_state == FLUSH_DELALLOC_WAIT)
5069 			flush_state = ALLOC_CHUNK;
5070 	} while (flush_state < COMMIT_TRANS);
5071 }
5072 
wait_reserve_ticket(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,struct reserve_ticket * ticket,u64 orig_bytes)5073 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5074 			       struct btrfs_space_info *space_info,
5075 			       struct reserve_ticket *ticket, u64 orig_bytes)
5076 
5077 {
5078 	DEFINE_WAIT(wait);
5079 	int ret = 0;
5080 
5081 	spin_lock(&space_info->lock);
5082 	while (ticket->bytes > 0 && ticket->error == 0) {
5083 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5084 		if (ret) {
5085 			ret = -EINTR;
5086 			break;
5087 		}
5088 		spin_unlock(&space_info->lock);
5089 
5090 		schedule();
5091 
5092 		finish_wait(&ticket->wait, &wait);
5093 		spin_lock(&space_info->lock);
5094 	}
5095 	if (!ret)
5096 		ret = ticket->error;
5097 	if (!list_empty(&ticket->list))
5098 		list_del_init(&ticket->list);
5099 	if (ticket->bytes && ticket->bytes < orig_bytes) {
5100 		u64 num_bytes = orig_bytes - ticket->bytes;
5101 		space_info->bytes_may_use -= num_bytes;
5102 		trace_btrfs_space_reservation(fs_info, "space_info",
5103 					      space_info->flags, num_bytes, 0);
5104 	}
5105 	spin_unlock(&space_info->lock);
5106 
5107 	return ret;
5108 }
5109 
5110 /**
5111  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5112  * @root - the root we're allocating for
5113  * @space_info - the space info we want to allocate from
5114  * @orig_bytes - the number of bytes we want
5115  * @flush - whether or not we can flush to make our reservation
5116  *
5117  * This will reserve orig_bytes number of bytes from the space info associated
5118  * with the block_rsv.  If there is not enough space it will make an attempt to
5119  * flush out space to make room.  It will do this by flushing delalloc if
5120  * possible or committing the transaction.  If flush is 0 then no attempts to
5121  * regain reservations will be made and this will fail if there is not enough
5122  * space already.
5123  */
__reserve_metadata_bytes(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)5124 static int __reserve_metadata_bytes(struct btrfs_root *root,
5125 				    struct btrfs_space_info *space_info,
5126 				    u64 orig_bytes,
5127 				    enum btrfs_reserve_flush_enum flush)
5128 {
5129 	struct reserve_ticket ticket;
5130 	u64 used;
5131 	int ret = 0;
5132 
5133 	ASSERT(orig_bytes);
5134 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5135 
5136 	spin_lock(&space_info->lock);
5137 	ret = -ENOSPC;
5138 	used = space_info->bytes_used + space_info->bytes_reserved +
5139 		space_info->bytes_pinned + space_info->bytes_readonly +
5140 		space_info->bytes_may_use;
5141 
5142 	/*
5143 	 * If we have enough space then hooray, make our reservation and carry
5144 	 * on.  If not see if we can overcommit, and if we can, hooray carry on.
5145 	 * If not things get more complicated.
5146 	 */
5147 	if (used + orig_bytes <= space_info->total_bytes) {
5148 		space_info->bytes_may_use += orig_bytes;
5149 		trace_btrfs_space_reservation(root->fs_info, "space_info",
5150 					      space_info->flags, orig_bytes,
5151 					      1);
5152 		ret = 0;
5153 	} else if (can_overcommit(root, space_info, orig_bytes, flush)) {
5154 		space_info->bytes_may_use += orig_bytes;
5155 		trace_btrfs_space_reservation(root->fs_info, "space_info",
5156 					      space_info->flags, orig_bytes,
5157 					      1);
5158 		ret = 0;
5159 	}
5160 
5161 	/*
5162 	 * If we couldn't make a reservation then setup our reservation ticket
5163 	 * and kick the async worker if it's not already running.
5164 	 *
5165 	 * If we are a priority flusher then we just need to add our ticket to
5166 	 * the list and we will do our own flushing further down.
5167 	 */
5168 	if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5169 		ticket.bytes = orig_bytes;
5170 		ticket.error = 0;
5171 		init_waitqueue_head(&ticket.wait);
5172 		if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5173 			list_add_tail(&ticket.list, &space_info->tickets);
5174 			if (!space_info->flush) {
5175 				space_info->flush = 1;
5176 				trace_btrfs_trigger_flush(root->fs_info,
5177 							  space_info->flags,
5178 							  orig_bytes, flush,
5179 							  "enospc");
5180 				queue_work(system_unbound_wq,
5181 					   &root->fs_info->async_reclaim_work);
5182 			}
5183 		} else {
5184 			list_add_tail(&ticket.list,
5185 				      &space_info->priority_tickets);
5186 		}
5187 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5188 		used += orig_bytes;
5189 		/*
5190 		 * We will do the space reservation dance during log replay,
5191 		 * which means we won't have fs_info->fs_root set, so don't do
5192 		 * the async reclaim as we will panic.
5193 		 */
5194 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags) &&
5195 		    need_do_async_reclaim(space_info, root, used) &&
5196 		    !work_busy(&root->fs_info->async_reclaim_work)) {
5197 			trace_btrfs_trigger_flush(root->fs_info,
5198 						  space_info->flags,
5199 						  orig_bytes, flush,
5200 						  "preempt");
5201 			queue_work(system_unbound_wq,
5202 				   &root->fs_info->async_reclaim_work);
5203 		}
5204 	}
5205 	spin_unlock(&space_info->lock);
5206 	if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5207 		return ret;
5208 
5209 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
5210 		return wait_reserve_ticket(root->fs_info, space_info, &ticket,
5211 					   orig_bytes);
5212 
5213 	ret = 0;
5214 	priority_reclaim_metadata_space(root->fs_info, space_info, &ticket);
5215 	spin_lock(&space_info->lock);
5216 	if (ticket.bytes) {
5217 		if (ticket.bytes < orig_bytes) {
5218 			u64 num_bytes = orig_bytes - ticket.bytes;
5219 			space_info->bytes_may_use -= num_bytes;
5220 			trace_btrfs_space_reservation(root->fs_info,
5221 					"space_info", space_info->flags,
5222 					num_bytes, 0);
5223 
5224 		}
5225 		list_del_init(&ticket.list);
5226 		ret = -ENOSPC;
5227 	}
5228 	spin_unlock(&space_info->lock);
5229 	ASSERT(list_empty(&ticket.list));
5230 	return ret;
5231 }
5232 
5233 /**
5234  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5235  * @root - the root we're allocating for
5236  * @block_rsv - the block_rsv we're allocating for
5237  * @orig_bytes - the number of bytes we want
5238  * @flush - whether or not we can flush to make our reservation
5239  *
5240  * This will reserve orgi_bytes number of bytes from the space info associated
5241  * with the block_rsv.  If there is not enough space it will make an attempt to
5242  * flush out space to make room.  It will do this by flushing delalloc if
5243  * possible or committing the transaction.  If flush is 0 then no attempts to
5244  * regain reservations will be made and this will fail if there is not enough
5245  * space already.
5246  */
reserve_metadata_bytes(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)5247 static int reserve_metadata_bytes(struct btrfs_root *root,
5248 				  struct btrfs_block_rsv *block_rsv,
5249 				  u64 orig_bytes,
5250 				  enum btrfs_reserve_flush_enum flush)
5251 {
5252 	int ret;
5253 
5254 	ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5255 				       flush);
5256 	if (ret == -ENOSPC &&
5257 	    unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5258 		struct btrfs_block_rsv *global_rsv =
5259 			&root->fs_info->global_block_rsv;
5260 
5261 		if (block_rsv != global_rsv &&
5262 		    !block_rsv_use_bytes(global_rsv, orig_bytes))
5263 			ret = 0;
5264 	}
5265 	if (ret == -ENOSPC)
5266 		trace_btrfs_space_reservation(root->fs_info,
5267 					      "space_info:enospc",
5268 					      block_rsv->space_info->flags,
5269 					      orig_bytes, 1);
5270 	return ret;
5271 }
5272 
get_block_rsv(const struct btrfs_trans_handle * trans,const struct btrfs_root * root)5273 static struct btrfs_block_rsv *get_block_rsv(
5274 					const struct btrfs_trans_handle *trans,
5275 					const struct btrfs_root *root)
5276 {
5277 	struct btrfs_block_rsv *block_rsv = NULL;
5278 
5279 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5280 	    (root == root->fs_info->csum_root && trans->adding_csums) ||
5281 	     (root == root->fs_info->uuid_root))
5282 		block_rsv = trans->block_rsv;
5283 
5284 	if (!block_rsv)
5285 		block_rsv = root->block_rsv;
5286 
5287 	if (!block_rsv)
5288 		block_rsv = &root->fs_info->empty_block_rsv;
5289 
5290 	return block_rsv;
5291 }
5292 
block_rsv_use_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes)5293 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5294 			       u64 num_bytes)
5295 {
5296 	int ret = -ENOSPC;
5297 	spin_lock(&block_rsv->lock);
5298 	if (block_rsv->reserved >= num_bytes) {
5299 		block_rsv->reserved -= num_bytes;
5300 		if (block_rsv->reserved < block_rsv->size)
5301 			block_rsv->full = 0;
5302 		ret = 0;
5303 	}
5304 	spin_unlock(&block_rsv->lock);
5305 	return ret;
5306 }
5307 
block_rsv_add_bytes(struct btrfs_block_rsv * block_rsv,u64 num_bytes,int update_size)5308 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5309 				u64 num_bytes, int update_size)
5310 {
5311 	spin_lock(&block_rsv->lock);
5312 	block_rsv->reserved += num_bytes;
5313 	if (update_size)
5314 		block_rsv->size += num_bytes;
5315 	else if (block_rsv->reserved >= block_rsv->size)
5316 		block_rsv->full = 1;
5317 	spin_unlock(&block_rsv->lock);
5318 }
5319 
btrfs_cond_migrate_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * dest,u64 num_bytes,int min_factor)5320 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5321 			     struct btrfs_block_rsv *dest, u64 num_bytes,
5322 			     int min_factor)
5323 {
5324 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5325 	u64 min_bytes;
5326 
5327 	if (global_rsv->space_info != dest->space_info)
5328 		return -ENOSPC;
5329 
5330 	spin_lock(&global_rsv->lock);
5331 	min_bytes = div_factor(global_rsv->size, min_factor);
5332 	if (global_rsv->reserved < min_bytes + num_bytes) {
5333 		spin_unlock(&global_rsv->lock);
5334 		return -ENOSPC;
5335 	}
5336 	global_rsv->reserved -= num_bytes;
5337 	if (global_rsv->reserved < global_rsv->size)
5338 		global_rsv->full = 0;
5339 	spin_unlock(&global_rsv->lock);
5340 
5341 	block_rsv_add_bytes(dest, num_bytes, 1);
5342 	return 0;
5343 }
5344 
5345 /*
5346  * This is for space we already have accounted in space_info->bytes_may_use, so
5347  * basically when we're returning space from block_rsv's.
5348  */
space_info_add_old_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes)5349 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5350 				     struct btrfs_space_info *space_info,
5351 				     u64 num_bytes)
5352 {
5353 	struct reserve_ticket *ticket;
5354 	struct list_head *head;
5355 	u64 used;
5356 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5357 	bool check_overcommit = false;
5358 
5359 	spin_lock(&space_info->lock);
5360 	head = &space_info->priority_tickets;
5361 
5362 	/*
5363 	 * If we are over our limit then we need to check and see if we can
5364 	 * overcommit, and if we can't then we just need to free up our space
5365 	 * and not satisfy any requests.
5366 	 */
5367 	used = space_info->bytes_used + space_info->bytes_reserved +
5368 		space_info->bytes_pinned + space_info->bytes_readonly +
5369 		space_info->bytes_may_use;
5370 	if (used - num_bytes >= space_info->total_bytes)
5371 		check_overcommit = true;
5372 again:
5373 	while (!list_empty(head) && num_bytes) {
5374 		ticket = list_first_entry(head, struct reserve_ticket,
5375 					  list);
5376 		/*
5377 		 * We use 0 bytes because this space is already reserved, so
5378 		 * adding the ticket space would be a double count.
5379 		 */
5380 		if (check_overcommit &&
5381 		    !can_overcommit(fs_info->extent_root, space_info, 0,
5382 				    flush))
5383 			break;
5384 		if (num_bytes >= ticket->bytes) {
5385 			list_del_init(&ticket->list);
5386 			num_bytes -= ticket->bytes;
5387 			ticket->bytes = 0;
5388 			space_info->tickets_id++;
5389 			wake_up(&ticket->wait);
5390 		} else {
5391 			ticket->bytes -= num_bytes;
5392 			num_bytes = 0;
5393 		}
5394 	}
5395 
5396 	if (num_bytes && head == &space_info->priority_tickets) {
5397 		head = &space_info->tickets;
5398 		flush = BTRFS_RESERVE_FLUSH_ALL;
5399 		goto again;
5400 	}
5401 	space_info->bytes_may_use -= num_bytes;
5402 	trace_btrfs_space_reservation(fs_info, "space_info",
5403 				      space_info->flags, num_bytes, 0);
5404 	spin_unlock(&space_info->lock);
5405 }
5406 
5407 /*
5408  * This is for newly allocated space that isn't accounted in
5409  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5410  * we use this helper.
5411  */
space_info_add_new_bytes(struct btrfs_fs_info * fs_info,struct btrfs_space_info * space_info,u64 num_bytes)5412 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5413 				     struct btrfs_space_info *space_info,
5414 				     u64 num_bytes)
5415 {
5416 	struct reserve_ticket *ticket;
5417 	struct list_head *head = &space_info->priority_tickets;
5418 
5419 again:
5420 	while (!list_empty(head) && num_bytes) {
5421 		ticket = list_first_entry(head, struct reserve_ticket,
5422 					  list);
5423 		if (num_bytes >= ticket->bytes) {
5424 			trace_btrfs_space_reservation(fs_info, "space_info",
5425 						      space_info->flags,
5426 						      ticket->bytes, 1);
5427 			list_del_init(&ticket->list);
5428 			num_bytes -= ticket->bytes;
5429 			space_info->bytes_may_use += ticket->bytes;
5430 			ticket->bytes = 0;
5431 			space_info->tickets_id++;
5432 			wake_up(&ticket->wait);
5433 		} else {
5434 			trace_btrfs_space_reservation(fs_info, "space_info",
5435 						      space_info->flags,
5436 						      num_bytes, 1);
5437 			space_info->bytes_may_use += num_bytes;
5438 			ticket->bytes -= num_bytes;
5439 			num_bytes = 0;
5440 		}
5441 	}
5442 
5443 	if (num_bytes && head == &space_info->priority_tickets) {
5444 		head = &space_info->tickets;
5445 		goto again;
5446 	}
5447 }
5448 
block_rsv_release_bytes(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,struct btrfs_block_rsv * dest,u64 num_bytes)5449 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5450 				    struct btrfs_block_rsv *block_rsv,
5451 				    struct btrfs_block_rsv *dest, u64 num_bytes)
5452 {
5453 	struct btrfs_space_info *space_info = block_rsv->space_info;
5454 
5455 	spin_lock(&block_rsv->lock);
5456 	if (num_bytes == (u64)-1)
5457 		num_bytes = block_rsv->size;
5458 	block_rsv->size -= num_bytes;
5459 	if (block_rsv->reserved >= block_rsv->size) {
5460 		num_bytes = block_rsv->reserved - block_rsv->size;
5461 		block_rsv->reserved = block_rsv->size;
5462 		block_rsv->full = 1;
5463 	} else {
5464 		num_bytes = 0;
5465 	}
5466 	spin_unlock(&block_rsv->lock);
5467 
5468 	if (num_bytes > 0) {
5469 		if (dest) {
5470 			spin_lock(&dest->lock);
5471 			if (!dest->full) {
5472 				u64 bytes_to_add;
5473 
5474 				bytes_to_add = dest->size - dest->reserved;
5475 				bytes_to_add = min(num_bytes, bytes_to_add);
5476 				dest->reserved += bytes_to_add;
5477 				if (dest->reserved >= dest->size)
5478 					dest->full = 1;
5479 				num_bytes -= bytes_to_add;
5480 			}
5481 			spin_unlock(&dest->lock);
5482 		}
5483 		if (num_bytes)
5484 			space_info_add_old_bytes(fs_info, space_info,
5485 						 num_bytes);
5486 	}
5487 }
5488 
btrfs_block_rsv_migrate(struct btrfs_block_rsv * src,struct btrfs_block_rsv * dst,u64 num_bytes,int update_size)5489 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5490 			    struct btrfs_block_rsv *dst, u64 num_bytes,
5491 			    int update_size)
5492 {
5493 	int ret;
5494 
5495 	ret = block_rsv_use_bytes(src, num_bytes);
5496 	if (ret)
5497 		return ret;
5498 
5499 	block_rsv_add_bytes(dst, num_bytes, update_size);
5500 	return 0;
5501 }
5502 
btrfs_init_block_rsv(struct btrfs_block_rsv * rsv,unsigned short type)5503 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5504 {
5505 	memset(rsv, 0, sizeof(*rsv));
5506 	spin_lock_init(&rsv->lock);
5507 	rsv->type = type;
5508 }
5509 
btrfs_alloc_block_rsv(struct btrfs_root * root,unsigned short type)5510 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5511 					      unsigned short type)
5512 {
5513 	struct btrfs_block_rsv *block_rsv;
5514 	struct btrfs_fs_info *fs_info = root->fs_info;
5515 
5516 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5517 	if (!block_rsv)
5518 		return NULL;
5519 
5520 	btrfs_init_block_rsv(block_rsv, type);
5521 	block_rsv->space_info = __find_space_info(fs_info,
5522 						  BTRFS_BLOCK_GROUP_METADATA);
5523 	return block_rsv;
5524 }
5525 
btrfs_free_block_rsv(struct btrfs_root * root,struct btrfs_block_rsv * rsv)5526 void btrfs_free_block_rsv(struct btrfs_root *root,
5527 			  struct btrfs_block_rsv *rsv)
5528 {
5529 	if (!rsv)
5530 		return;
5531 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5532 	kfree(rsv);
5533 }
5534 
__btrfs_free_block_rsv(struct btrfs_block_rsv * rsv)5535 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5536 {
5537 	kfree(rsv);
5538 }
5539 
btrfs_block_rsv_add(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 num_bytes,enum btrfs_reserve_flush_enum flush)5540 int btrfs_block_rsv_add(struct btrfs_root *root,
5541 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5542 			enum btrfs_reserve_flush_enum flush)
5543 {
5544 	int ret;
5545 
5546 	if (num_bytes == 0)
5547 		return 0;
5548 
5549 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5550 	if (!ret) {
5551 		block_rsv_add_bytes(block_rsv, num_bytes, 1);
5552 		return 0;
5553 	}
5554 
5555 	return ret;
5556 }
5557 
btrfs_block_rsv_check(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,int min_factor)5558 int btrfs_block_rsv_check(struct btrfs_root *root,
5559 			  struct btrfs_block_rsv *block_rsv, int min_factor)
5560 {
5561 	u64 num_bytes = 0;
5562 	int ret = -ENOSPC;
5563 
5564 	if (!block_rsv)
5565 		return 0;
5566 
5567 	spin_lock(&block_rsv->lock);
5568 	num_bytes = div_factor(block_rsv->size, min_factor);
5569 	if (block_rsv->reserved >= num_bytes)
5570 		ret = 0;
5571 	spin_unlock(&block_rsv->lock);
5572 
5573 	return ret;
5574 }
5575 
btrfs_block_rsv_refill(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 min_reserved,enum btrfs_reserve_flush_enum flush)5576 int btrfs_block_rsv_refill(struct btrfs_root *root,
5577 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5578 			   enum btrfs_reserve_flush_enum flush)
5579 {
5580 	u64 num_bytes = 0;
5581 	int ret = -ENOSPC;
5582 
5583 	if (!block_rsv)
5584 		return 0;
5585 
5586 	spin_lock(&block_rsv->lock);
5587 	num_bytes = min_reserved;
5588 	if (block_rsv->reserved >= num_bytes)
5589 		ret = 0;
5590 	else
5591 		num_bytes -= block_rsv->reserved;
5592 	spin_unlock(&block_rsv->lock);
5593 
5594 	if (!ret)
5595 		return 0;
5596 
5597 	ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5598 	if (!ret) {
5599 		block_rsv_add_bytes(block_rsv, num_bytes, 0);
5600 		return 0;
5601 	}
5602 
5603 	return ret;
5604 }
5605 
btrfs_block_rsv_release(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,u64 num_bytes)5606 void btrfs_block_rsv_release(struct btrfs_root *root,
5607 			     struct btrfs_block_rsv *block_rsv,
5608 			     u64 num_bytes)
5609 {
5610 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5611 	if (global_rsv == block_rsv ||
5612 	    block_rsv->space_info != global_rsv->space_info)
5613 		global_rsv = NULL;
5614 	block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5615 				num_bytes);
5616 }
5617 
update_global_block_rsv(struct btrfs_fs_info * fs_info)5618 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5619 {
5620 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5621 	struct btrfs_space_info *sinfo = block_rsv->space_info;
5622 	u64 num_bytes;
5623 
5624 	/*
5625 	 * The global block rsv is based on the size of the extent tree, the
5626 	 * checksum tree and the root tree.  If the fs is empty we want to set
5627 	 * it to a minimal amount for safety.
5628 	 */
5629 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5630 		btrfs_root_used(&fs_info->csum_root->root_item) +
5631 		btrfs_root_used(&fs_info->tree_root->root_item);
5632 	num_bytes = max_t(u64, num_bytes, SZ_16M);
5633 
5634 	spin_lock(&sinfo->lock);
5635 	spin_lock(&block_rsv->lock);
5636 
5637 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5638 
5639 	if (block_rsv->reserved < block_rsv->size) {
5640 		num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5641 			sinfo->bytes_reserved + sinfo->bytes_readonly +
5642 			sinfo->bytes_may_use;
5643 		if (sinfo->total_bytes > num_bytes) {
5644 			num_bytes = sinfo->total_bytes - num_bytes;
5645 			num_bytes = min(num_bytes,
5646 					block_rsv->size - block_rsv->reserved);
5647 			block_rsv->reserved += num_bytes;
5648 			sinfo->bytes_may_use += num_bytes;
5649 			trace_btrfs_space_reservation(fs_info, "space_info",
5650 						      sinfo->flags, num_bytes,
5651 						      1);
5652 		}
5653 	} else if (block_rsv->reserved > block_rsv->size) {
5654 		num_bytes = block_rsv->reserved - block_rsv->size;
5655 		sinfo->bytes_may_use -= num_bytes;
5656 		trace_btrfs_space_reservation(fs_info, "space_info",
5657 				      sinfo->flags, num_bytes, 0);
5658 		block_rsv->reserved = block_rsv->size;
5659 	}
5660 
5661 	if (block_rsv->reserved == block_rsv->size)
5662 		block_rsv->full = 1;
5663 	else
5664 		block_rsv->full = 0;
5665 
5666 	spin_unlock(&block_rsv->lock);
5667 	spin_unlock(&sinfo->lock);
5668 }
5669 
init_global_block_rsv(struct btrfs_fs_info * fs_info)5670 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5671 {
5672 	struct btrfs_space_info *space_info;
5673 
5674 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5675 	fs_info->chunk_block_rsv.space_info = space_info;
5676 
5677 	space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5678 	fs_info->global_block_rsv.space_info = space_info;
5679 	fs_info->delalloc_block_rsv.space_info = space_info;
5680 	fs_info->trans_block_rsv.space_info = space_info;
5681 	fs_info->empty_block_rsv.space_info = space_info;
5682 	fs_info->delayed_block_rsv.space_info = space_info;
5683 
5684 	fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5685 	fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5686 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5687 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5688 	if (fs_info->quota_root)
5689 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5690 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5691 
5692 	update_global_block_rsv(fs_info);
5693 }
5694 
release_global_block_rsv(struct btrfs_fs_info * fs_info)5695 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5696 {
5697 	block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5698 				(u64)-1);
5699 	WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5700 	WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5701 	WARN_ON(fs_info->trans_block_rsv.size > 0);
5702 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5703 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
5704 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5705 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
5706 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5707 }
5708 
btrfs_trans_release_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root)5709 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5710 				  struct btrfs_root *root)
5711 {
5712 	if (!trans->block_rsv)
5713 		return;
5714 
5715 	if (!trans->bytes_reserved)
5716 		return;
5717 
5718 	trace_btrfs_space_reservation(root->fs_info, "transaction",
5719 				      trans->transid, trans->bytes_reserved, 0);
5720 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
5721 	trans->bytes_reserved = 0;
5722 }
5723 
5724 /*
5725  * To be called after all the new block groups attached to the transaction
5726  * handle have been created (btrfs_create_pending_block_groups()).
5727  */
btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle * trans)5728 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5729 {
5730 	struct btrfs_fs_info *fs_info = trans->fs_info;
5731 
5732 	if (!trans->chunk_bytes_reserved)
5733 		return;
5734 
5735 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5736 
5737 	block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5738 				trans->chunk_bytes_reserved);
5739 	trans->chunk_bytes_reserved = 0;
5740 }
5741 
5742 /* Can only return 0 or -ENOSPC */
btrfs_orphan_reserve_metadata(struct btrfs_trans_handle * trans,struct inode * inode)5743 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5744 				  struct inode *inode)
5745 {
5746 	struct btrfs_root *root = BTRFS_I(inode)->root;
5747 	/*
5748 	 * We always use trans->block_rsv here as we will have reserved space
5749 	 * for our orphan when starting the transaction, using get_block_rsv()
5750 	 * here will sometimes make us choose the wrong block rsv as we could be
5751 	 * doing a reloc inode for a non refcounted root.
5752 	 */
5753 	struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5754 	struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5755 
5756 	/*
5757 	 * We need to hold space in order to delete our orphan item once we've
5758 	 * added it, so this takes the reservation so we can release it later
5759 	 * when we are truly done with the orphan item.
5760 	 */
5761 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5762 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5763 				      btrfs_ino(inode), num_bytes, 1);
5764 	return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5765 }
5766 
btrfs_orphan_release_metadata(struct inode * inode)5767 void btrfs_orphan_release_metadata(struct inode *inode)
5768 {
5769 	struct btrfs_root *root = BTRFS_I(inode)->root;
5770 	u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
5771 	trace_btrfs_space_reservation(root->fs_info, "orphan",
5772 				      btrfs_ino(inode), num_bytes, 0);
5773 	btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5774 }
5775 
5776 /*
5777  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5778  * root: the root of the parent directory
5779  * rsv: block reservation
5780  * items: the number of items that we need do reservation
5781  * qgroup_reserved: used to return the reserved size in qgroup
5782  *
5783  * This function is used to reserve the space for snapshot/subvolume
5784  * creation and deletion. Those operations are different with the
5785  * common file/directory operations, they change two fs/file trees
5786  * and root tree, the number of items that the qgroup reserves is
5787  * different with the free space reservation. So we can not use
5788  * the space reservation mechanism in start_transaction().
5789  */
btrfs_subvolume_reserve_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,int items,u64 * qgroup_reserved,bool use_global_rsv)5790 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5791 				     struct btrfs_block_rsv *rsv,
5792 				     int items,
5793 				     u64 *qgroup_reserved,
5794 				     bool use_global_rsv)
5795 {
5796 	u64 num_bytes;
5797 	int ret;
5798 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5799 
5800 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) {
5801 		/* One for parent inode, two for dir entries */
5802 		num_bytes = 3 * root->nodesize;
5803 		ret = btrfs_qgroup_reserve_meta(root, num_bytes);
5804 		if (ret)
5805 			return ret;
5806 	} else {
5807 		num_bytes = 0;
5808 	}
5809 
5810 	*qgroup_reserved = num_bytes;
5811 
5812 	num_bytes = btrfs_calc_trans_metadata_size(root, items);
5813 	rsv->space_info = __find_space_info(root->fs_info,
5814 					    BTRFS_BLOCK_GROUP_METADATA);
5815 	ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5816 				  BTRFS_RESERVE_FLUSH_ALL);
5817 
5818 	if (ret == -ENOSPC && use_global_rsv)
5819 		ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5820 
5821 	if (ret && *qgroup_reserved)
5822 		btrfs_qgroup_free_meta(root, *qgroup_reserved);
5823 
5824 	return ret;
5825 }
5826 
btrfs_subvolume_release_metadata(struct btrfs_root * root,struct btrfs_block_rsv * rsv,u64 qgroup_reserved)5827 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5828 				      struct btrfs_block_rsv *rsv,
5829 				      u64 qgroup_reserved)
5830 {
5831 	btrfs_block_rsv_release(root, rsv, (u64)-1);
5832 }
5833 
5834 /**
5835  * drop_outstanding_extent - drop an outstanding extent
5836  * @inode: the inode we're dropping the extent for
5837  * @num_bytes: the number of bytes we're releasing.
5838  *
5839  * This is called when we are freeing up an outstanding extent, either called
5840  * after an error or after an extent is written.  This will return the number of
5841  * reserved extents that need to be freed.  This must be called with
5842  * BTRFS_I(inode)->lock held.
5843  */
drop_outstanding_extent(struct inode * inode,u64 num_bytes)5844 static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
5845 {
5846 	unsigned drop_inode_space = 0;
5847 	unsigned dropped_extents = 0;
5848 	unsigned num_extents = 0;
5849 
5850 	num_extents = (unsigned)div64_u64(num_bytes +
5851 					  BTRFS_MAX_EXTENT_SIZE - 1,
5852 					  BTRFS_MAX_EXTENT_SIZE);
5853 	ASSERT(num_extents);
5854 	ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5855 	BTRFS_I(inode)->outstanding_extents -= num_extents;
5856 
5857 	if (BTRFS_I(inode)->outstanding_extents == 0 &&
5858 	    test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5859 			       &BTRFS_I(inode)->runtime_flags))
5860 		drop_inode_space = 1;
5861 
5862 	/*
5863 	 * If we have more or the same amount of outstanding extents than we have
5864 	 * reserved then we need to leave the reserved extents count alone.
5865 	 */
5866 	if (BTRFS_I(inode)->outstanding_extents >=
5867 	    BTRFS_I(inode)->reserved_extents)
5868 		return drop_inode_space;
5869 
5870 	dropped_extents = BTRFS_I(inode)->reserved_extents -
5871 		BTRFS_I(inode)->outstanding_extents;
5872 	BTRFS_I(inode)->reserved_extents -= dropped_extents;
5873 	return dropped_extents + drop_inode_space;
5874 }
5875 
5876 /**
5877  * calc_csum_metadata_size - return the amount of metadata space that must be
5878  *	reserved/freed for the given bytes.
5879  * @inode: the inode we're manipulating
5880  * @num_bytes: the number of bytes in question
5881  * @reserve: 1 if we are reserving space, 0 if we are freeing space
5882  *
5883  * This adjusts the number of csum_bytes in the inode and then returns the
5884  * correct amount of metadata that must either be reserved or freed.  We
5885  * calculate how many checksums we can fit into one leaf and then divide the
5886  * number of bytes that will need to be checksumed by this value to figure out
5887  * how many checksums will be required.  If we are adding bytes then the number
5888  * may go up and we will return the number of additional bytes that must be
5889  * reserved.  If it is going down we will return the number of bytes that must
5890  * be freed.
5891  *
5892  * This must be called with BTRFS_I(inode)->lock held.
5893  */
calc_csum_metadata_size(struct inode * inode,u64 num_bytes,int reserve)5894 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5895 				   int reserve)
5896 {
5897 	struct btrfs_root *root = BTRFS_I(inode)->root;
5898 	u64 old_csums, num_csums;
5899 
5900 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5901 	    BTRFS_I(inode)->csum_bytes == 0)
5902 		return 0;
5903 
5904 	old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5905 	if (reserve)
5906 		BTRFS_I(inode)->csum_bytes += num_bytes;
5907 	else
5908 		BTRFS_I(inode)->csum_bytes -= num_bytes;
5909 	num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
5910 
5911 	/* No change, no need to reserve more */
5912 	if (old_csums == num_csums)
5913 		return 0;
5914 
5915 	if (reserve)
5916 		return btrfs_calc_trans_metadata_size(root,
5917 						      num_csums - old_csums);
5918 
5919 	return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
5920 }
5921 
btrfs_delalloc_reserve_metadata(struct inode * inode,u64 num_bytes)5922 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5923 {
5924 	struct btrfs_root *root = BTRFS_I(inode)->root;
5925 	struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
5926 	u64 to_reserve = 0;
5927 	u64 csum_bytes;
5928 	unsigned nr_extents = 0;
5929 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
5930 	int ret = 0;
5931 	bool delalloc_lock = true;
5932 	u64 to_free = 0;
5933 	unsigned dropped;
5934 	bool release_extra = false;
5935 
5936 	/* If we are a free space inode we need to not flush since we will be in
5937 	 * the middle of a transaction commit.  We also don't need the delalloc
5938 	 * mutex since we won't race with anybody.  We need this mostly to make
5939 	 * lockdep shut its filthy mouth.
5940 	 *
5941 	 * If we have a transaction open (can happen if we call truncate_block
5942 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
5943 	 */
5944 	if (btrfs_is_free_space_inode(inode)) {
5945 		flush = BTRFS_RESERVE_NO_FLUSH;
5946 		delalloc_lock = false;
5947 	} else if (current->journal_info) {
5948 		flush = BTRFS_RESERVE_FLUSH_LIMIT;
5949 	}
5950 
5951 	if (flush != BTRFS_RESERVE_NO_FLUSH &&
5952 	    btrfs_transaction_in_commit(root->fs_info))
5953 		schedule_timeout(1);
5954 
5955 	if (delalloc_lock)
5956 		mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5957 
5958 	num_bytes = ALIGN(num_bytes, root->sectorsize);
5959 
5960 	spin_lock(&BTRFS_I(inode)->lock);
5961 	nr_extents = (unsigned)div64_u64(num_bytes +
5962 					 BTRFS_MAX_EXTENT_SIZE - 1,
5963 					 BTRFS_MAX_EXTENT_SIZE);
5964 	BTRFS_I(inode)->outstanding_extents += nr_extents;
5965 
5966 	nr_extents = 0;
5967 	if (BTRFS_I(inode)->outstanding_extents >
5968 	    BTRFS_I(inode)->reserved_extents)
5969 		nr_extents += BTRFS_I(inode)->outstanding_extents -
5970 			BTRFS_I(inode)->reserved_extents;
5971 
5972 	/* We always want to reserve a slot for updating the inode. */
5973 	to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1);
5974 	to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
5975 	csum_bytes = BTRFS_I(inode)->csum_bytes;
5976 	spin_unlock(&BTRFS_I(inode)->lock);
5977 
5978 	if (test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags)) {
5979 		ret = btrfs_qgroup_reserve_meta(root,
5980 				nr_extents * root->nodesize);
5981 		if (ret)
5982 			goto out_fail;
5983 	}
5984 
5985 	ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
5986 	if (unlikely(ret)) {
5987 		btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
5988 		goto out_fail;
5989 	}
5990 
5991 	spin_lock(&BTRFS_I(inode)->lock);
5992 	if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5993 			     &BTRFS_I(inode)->runtime_flags)) {
5994 		to_reserve -= btrfs_calc_trans_metadata_size(root, 1);
5995 		release_extra = true;
5996 	}
5997 	BTRFS_I(inode)->reserved_extents += nr_extents;
5998 	spin_unlock(&BTRFS_I(inode)->lock);
5999 
6000 	if (delalloc_lock)
6001 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6002 
6003 	if (to_reserve)
6004 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
6005 					      btrfs_ino(inode), to_reserve, 1);
6006 	if (release_extra)
6007 		btrfs_block_rsv_release(root, block_rsv,
6008 					btrfs_calc_trans_metadata_size(root,
6009 								       1));
6010 	return 0;
6011 
6012 out_fail:
6013 	spin_lock(&BTRFS_I(inode)->lock);
6014 	dropped = drop_outstanding_extent(inode, num_bytes);
6015 	/*
6016 	 * If the inodes csum_bytes is the same as the original
6017 	 * csum_bytes then we know we haven't raced with any free()ers
6018 	 * so we can just reduce our inodes csum bytes and carry on.
6019 	 */
6020 	if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
6021 		calc_csum_metadata_size(inode, num_bytes, 0);
6022 	} else {
6023 		u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6024 		u64 bytes;
6025 
6026 		/*
6027 		 * This is tricky, but first we need to figure out how much we
6028 		 * freed from any free-ers that occurred during this
6029 		 * reservation, so we reset ->csum_bytes to the csum_bytes
6030 		 * before we dropped our lock, and then call the free for the
6031 		 * number of bytes that were freed while we were trying our
6032 		 * reservation.
6033 		 */
6034 		bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6035 		BTRFS_I(inode)->csum_bytes = csum_bytes;
6036 		to_free = calc_csum_metadata_size(inode, bytes, 0);
6037 
6038 
6039 		/*
6040 		 * Now we need to see how much we would have freed had we not
6041 		 * been making this reservation and our ->csum_bytes were not
6042 		 * artificially inflated.
6043 		 */
6044 		BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6045 		bytes = csum_bytes - orig_csum_bytes;
6046 		bytes = calc_csum_metadata_size(inode, bytes, 0);
6047 
6048 		/*
6049 		 * Now reset ->csum_bytes to what it should be.  If bytes is
6050 		 * more than to_free then we would have freed more space had we
6051 		 * not had an artificially high ->csum_bytes, so we need to free
6052 		 * the remainder.  If bytes is the same or less then we don't
6053 		 * need to do anything, the other free-ers did the correct
6054 		 * thing.
6055 		 */
6056 		BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6057 		if (bytes > to_free)
6058 			to_free = bytes - to_free;
6059 		else
6060 			to_free = 0;
6061 	}
6062 	spin_unlock(&BTRFS_I(inode)->lock);
6063 	if (dropped)
6064 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
6065 
6066 	if (to_free) {
6067 		btrfs_block_rsv_release(root, block_rsv, to_free);
6068 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
6069 					      btrfs_ino(inode), to_free, 0);
6070 	}
6071 	if (delalloc_lock)
6072 		mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6073 	return ret;
6074 }
6075 
6076 /**
6077  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6078  * @inode: the inode to release the reservation for
6079  * @num_bytes: the number of bytes we're releasing
6080  *
6081  * This will release the metadata reservation for an inode.  This can be called
6082  * once we complete IO for a given set of bytes to release their metadata
6083  * reservations.
6084  */
btrfs_delalloc_release_metadata(struct inode * inode,u64 num_bytes)6085 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6086 {
6087 	struct btrfs_root *root = BTRFS_I(inode)->root;
6088 	u64 to_free = 0;
6089 	unsigned dropped;
6090 
6091 	num_bytes = ALIGN(num_bytes, root->sectorsize);
6092 	spin_lock(&BTRFS_I(inode)->lock);
6093 	dropped = drop_outstanding_extent(inode, num_bytes);
6094 
6095 	if (num_bytes)
6096 		to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6097 	spin_unlock(&BTRFS_I(inode)->lock);
6098 	if (dropped > 0)
6099 		to_free += btrfs_calc_trans_metadata_size(root, dropped);
6100 
6101 	if (btrfs_is_testing(root->fs_info))
6102 		return;
6103 
6104 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
6105 				      btrfs_ino(inode), to_free, 0);
6106 
6107 	btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
6108 				to_free);
6109 }
6110 
6111 /**
6112  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6113  * delalloc
6114  * @inode: inode we're writing to
6115  * @start: start range we are writing to
6116  * @len: how long the range we are writing to
6117  *
6118  * This will do the following things
6119  *
6120  * o reserve space in data space info for num bytes
6121  *   and reserve precious corresponding qgroup space
6122  *   (Done in check_data_free_space)
6123  *
6124  * o reserve space for metadata space, based on the number of outstanding
6125  *   extents and how much csums will be needed
6126  *   also reserve metadata space in a per root over-reserve method.
6127  * o add to the inodes->delalloc_bytes
6128  * o add it to the fs_info's delalloc inodes list.
6129  *   (Above 3 all done in delalloc_reserve_metadata)
6130  *
6131  * Return 0 for success
6132  * Return <0 for error(-ENOSPC or -EQUOT)
6133  */
btrfs_delalloc_reserve_space(struct inode * inode,u64 start,u64 len)6134 int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
6135 {
6136 	int ret;
6137 
6138 	ret = btrfs_check_data_free_space(inode, start, len);
6139 	if (ret < 0)
6140 		return ret;
6141 	ret = btrfs_delalloc_reserve_metadata(inode, len);
6142 	if (ret < 0)
6143 		btrfs_free_reserved_data_space(inode, start, len);
6144 	return ret;
6145 }
6146 
6147 /**
6148  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6149  * @inode: inode we're releasing space for
6150  * @start: start position of the space already reserved
6151  * @len: the len of the space already reserved
6152  *
6153  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
6154  * called in the case that we don't need the metadata AND data reservations
6155  * anymore.  So if there is an error or we insert an inline extent.
6156  *
6157  * This function will release the metadata space that was not used and will
6158  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6159  * list if there are no delalloc bytes left.
6160  * Also it will handle the qgroup reserved space.
6161  */
btrfs_delalloc_release_space(struct inode * inode,u64 start,u64 len)6162 void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
6163 {
6164 	btrfs_delalloc_release_metadata(inode, len);
6165 	btrfs_free_reserved_data_space(inode, start, len);
6166 }
6167 
update_block_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,int alloc)6168 static int update_block_group(struct btrfs_trans_handle *trans,
6169 			      struct btrfs_root *root, u64 bytenr,
6170 			      u64 num_bytes, int alloc)
6171 {
6172 	struct btrfs_block_group_cache *cache = NULL;
6173 	struct btrfs_fs_info *info = root->fs_info;
6174 	u64 total = num_bytes;
6175 	u64 old_val;
6176 	u64 byte_in_group;
6177 	int factor;
6178 
6179 	/* block accounting for super block */
6180 	spin_lock(&info->delalloc_root_lock);
6181 	old_val = btrfs_super_bytes_used(info->super_copy);
6182 	if (alloc)
6183 		old_val += num_bytes;
6184 	else
6185 		old_val -= num_bytes;
6186 	btrfs_set_super_bytes_used(info->super_copy, old_val);
6187 	spin_unlock(&info->delalloc_root_lock);
6188 
6189 	while (total) {
6190 		cache = btrfs_lookup_block_group(info, bytenr);
6191 		if (!cache)
6192 			return -ENOENT;
6193 		if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6194 				    BTRFS_BLOCK_GROUP_RAID1 |
6195 				    BTRFS_BLOCK_GROUP_RAID10))
6196 			factor = 2;
6197 		else
6198 			factor = 1;
6199 		/*
6200 		 * If this block group has free space cache written out, we
6201 		 * need to make sure to load it if we are removing space.  This
6202 		 * is because we need the unpinning stage to actually add the
6203 		 * space back to the block group, otherwise we will leak space.
6204 		 */
6205 		if (!alloc && cache->cached == BTRFS_CACHE_NO)
6206 			cache_block_group(cache, 1);
6207 
6208 		byte_in_group = bytenr - cache->key.objectid;
6209 		WARN_ON(byte_in_group > cache->key.offset);
6210 
6211 		spin_lock(&cache->space_info->lock);
6212 		spin_lock(&cache->lock);
6213 
6214 		if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
6215 		    cache->disk_cache_state < BTRFS_DC_CLEAR)
6216 			cache->disk_cache_state = BTRFS_DC_CLEAR;
6217 
6218 		old_val = btrfs_block_group_used(&cache->item);
6219 		num_bytes = min(total, cache->key.offset - byte_in_group);
6220 		if (alloc) {
6221 			old_val += num_bytes;
6222 			btrfs_set_block_group_used(&cache->item, old_val);
6223 			cache->reserved -= num_bytes;
6224 			cache->space_info->bytes_reserved -= num_bytes;
6225 			cache->space_info->bytes_used += num_bytes;
6226 			cache->space_info->disk_used += num_bytes * factor;
6227 			spin_unlock(&cache->lock);
6228 			spin_unlock(&cache->space_info->lock);
6229 		} else {
6230 			old_val -= num_bytes;
6231 			btrfs_set_block_group_used(&cache->item, old_val);
6232 			cache->pinned += num_bytes;
6233 			cache->space_info->bytes_pinned += num_bytes;
6234 			cache->space_info->bytes_used -= num_bytes;
6235 			cache->space_info->disk_used -= num_bytes * factor;
6236 			spin_unlock(&cache->lock);
6237 			spin_unlock(&cache->space_info->lock);
6238 
6239 			trace_btrfs_space_reservation(root->fs_info, "pinned",
6240 						      cache->space_info->flags,
6241 						      num_bytes, 1);
6242 			set_extent_dirty(info->pinned_extents,
6243 					 bytenr, bytenr + num_bytes - 1,
6244 					 GFP_NOFS | __GFP_NOFAIL);
6245 		}
6246 
6247 		spin_lock(&trans->transaction->dirty_bgs_lock);
6248 		if (list_empty(&cache->dirty_list)) {
6249 			list_add_tail(&cache->dirty_list,
6250 				      &trans->transaction->dirty_bgs);
6251 				trans->transaction->num_dirty_bgs++;
6252 			btrfs_get_block_group(cache);
6253 		}
6254 		spin_unlock(&trans->transaction->dirty_bgs_lock);
6255 
6256 		/*
6257 		 * No longer have used bytes in this block group, queue it for
6258 		 * deletion. We do this after adding the block group to the
6259 		 * dirty list to avoid races between cleaner kthread and space
6260 		 * cache writeout.
6261 		 */
6262 		if (!alloc && old_val == 0) {
6263 			spin_lock(&info->unused_bgs_lock);
6264 			if (list_empty(&cache->bg_list)) {
6265 				btrfs_get_block_group(cache);
6266 				list_add_tail(&cache->bg_list,
6267 					      &info->unused_bgs);
6268 			}
6269 			spin_unlock(&info->unused_bgs_lock);
6270 		}
6271 
6272 		btrfs_put_block_group(cache);
6273 		total -= num_bytes;
6274 		bytenr += num_bytes;
6275 	}
6276 	return 0;
6277 }
6278 
first_logical_byte(struct btrfs_root * root,u64 search_start)6279 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6280 {
6281 	struct btrfs_block_group_cache *cache;
6282 	u64 bytenr;
6283 
6284 	spin_lock(&root->fs_info->block_group_cache_lock);
6285 	bytenr = root->fs_info->first_logical_byte;
6286 	spin_unlock(&root->fs_info->block_group_cache_lock);
6287 
6288 	if (bytenr < (u64)-1)
6289 		return bytenr;
6290 
6291 	cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6292 	if (!cache)
6293 		return 0;
6294 
6295 	bytenr = cache->key.objectid;
6296 	btrfs_put_block_group(cache);
6297 
6298 	return bytenr;
6299 }
6300 
pin_down_extent(struct btrfs_root * root,struct btrfs_block_group_cache * cache,u64 bytenr,u64 num_bytes,int reserved)6301 static int pin_down_extent(struct btrfs_root *root,
6302 			   struct btrfs_block_group_cache *cache,
6303 			   u64 bytenr, u64 num_bytes, int reserved)
6304 {
6305 	spin_lock(&cache->space_info->lock);
6306 	spin_lock(&cache->lock);
6307 	cache->pinned += num_bytes;
6308 	cache->space_info->bytes_pinned += num_bytes;
6309 	if (reserved) {
6310 		cache->reserved -= num_bytes;
6311 		cache->space_info->bytes_reserved -= num_bytes;
6312 	}
6313 	spin_unlock(&cache->lock);
6314 	spin_unlock(&cache->space_info->lock);
6315 
6316 	trace_btrfs_space_reservation(root->fs_info, "pinned",
6317 				      cache->space_info->flags, num_bytes, 1);
6318 	set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6319 			 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6320 	return 0;
6321 }
6322 
6323 /*
6324  * this function must be called within transaction
6325  */
btrfs_pin_extent(struct btrfs_root * root,u64 bytenr,u64 num_bytes,int reserved)6326 int btrfs_pin_extent(struct btrfs_root *root,
6327 		     u64 bytenr, u64 num_bytes, int reserved)
6328 {
6329 	struct btrfs_block_group_cache *cache;
6330 
6331 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6332 	BUG_ON(!cache); /* Logic error */
6333 
6334 	pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6335 
6336 	btrfs_put_block_group(cache);
6337 	return 0;
6338 }
6339 
6340 /*
6341  * this function must be called within transaction
6342  */
btrfs_pin_extent_for_log_replay(struct btrfs_root * root,u64 bytenr,u64 num_bytes)6343 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
6344 				    u64 bytenr, u64 num_bytes)
6345 {
6346 	struct btrfs_block_group_cache *cache;
6347 	int ret;
6348 
6349 	cache = btrfs_lookup_block_group(root->fs_info, bytenr);
6350 	if (!cache)
6351 		return -EINVAL;
6352 
6353 	/*
6354 	 * pull in the free space cache (if any) so that our pin
6355 	 * removes the free space from the cache.  We have load_only set
6356 	 * to one because the slow code to read in the free extents does check
6357 	 * the pinned extents.
6358 	 */
6359 	cache_block_group(cache, 1);
6360 
6361 	pin_down_extent(root, cache, bytenr, num_bytes, 0);
6362 
6363 	/* remove us from the free space cache (if we're there at all) */
6364 	ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6365 	btrfs_put_block_group(cache);
6366 	return ret;
6367 }
6368 
__exclude_logged_extent(struct btrfs_root * root,u64 start,u64 num_bytes)6369 static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6370 {
6371 	int ret;
6372 	struct btrfs_block_group_cache *block_group;
6373 	struct btrfs_caching_control *caching_ctl;
6374 
6375 	block_group = btrfs_lookup_block_group(root->fs_info, start);
6376 	if (!block_group)
6377 		return -EINVAL;
6378 
6379 	cache_block_group(block_group, 0);
6380 	caching_ctl = get_caching_control(block_group);
6381 
6382 	if (!caching_ctl) {
6383 		/* Logic error */
6384 		BUG_ON(!block_group_cache_done(block_group));
6385 		ret = btrfs_remove_free_space(block_group, start, num_bytes);
6386 	} else {
6387 		mutex_lock(&caching_ctl->mutex);
6388 
6389 		if (start >= caching_ctl->progress) {
6390 			ret = add_excluded_extent(root, start, num_bytes);
6391 		} else if (start + num_bytes <= caching_ctl->progress) {
6392 			ret = btrfs_remove_free_space(block_group,
6393 						      start, num_bytes);
6394 		} else {
6395 			num_bytes = caching_ctl->progress - start;
6396 			ret = btrfs_remove_free_space(block_group,
6397 						      start, num_bytes);
6398 			if (ret)
6399 				goto out_lock;
6400 
6401 			num_bytes = (start + num_bytes) -
6402 				caching_ctl->progress;
6403 			start = caching_ctl->progress;
6404 			ret = add_excluded_extent(root, start, num_bytes);
6405 		}
6406 out_lock:
6407 		mutex_unlock(&caching_ctl->mutex);
6408 		put_caching_control(caching_ctl);
6409 	}
6410 	btrfs_put_block_group(block_group);
6411 	return ret;
6412 }
6413 
btrfs_exclude_logged_extents(struct btrfs_root * log,struct extent_buffer * eb)6414 int btrfs_exclude_logged_extents(struct btrfs_root *log,
6415 				 struct extent_buffer *eb)
6416 {
6417 	struct btrfs_file_extent_item *item;
6418 	struct btrfs_key key;
6419 	int found_type;
6420 	int i;
6421 
6422 	if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6423 		return 0;
6424 
6425 	for (i = 0; i < btrfs_header_nritems(eb); i++) {
6426 		btrfs_item_key_to_cpu(eb, &key, i);
6427 		if (key.type != BTRFS_EXTENT_DATA_KEY)
6428 			continue;
6429 		item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6430 		found_type = btrfs_file_extent_type(eb, item);
6431 		if (found_type == BTRFS_FILE_EXTENT_INLINE)
6432 			continue;
6433 		if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6434 			continue;
6435 		key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6436 		key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6437 		__exclude_logged_extent(log, key.objectid, key.offset);
6438 	}
6439 
6440 	return 0;
6441 }
6442 
6443 static void
btrfs_inc_block_group_reservations(struct btrfs_block_group_cache * bg)6444 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6445 {
6446 	atomic_inc(&bg->reservations);
6447 }
6448 
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)6449 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6450 					const u64 start)
6451 {
6452 	struct btrfs_block_group_cache *bg;
6453 
6454 	bg = btrfs_lookup_block_group(fs_info, start);
6455 	ASSERT(bg);
6456 	if (atomic_dec_and_test(&bg->reservations))
6457 		wake_up_atomic_t(&bg->reservations);
6458 	btrfs_put_block_group(bg);
6459 }
6460 
btrfs_wait_bg_reservations_atomic_t(atomic_t * a)6461 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6462 {
6463 	schedule();
6464 	return 0;
6465 }
6466 
btrfs_wait_block_group_reservations(struct btrfs_block_group_cache * bg)6467 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6468 {
6469 	struct btrfs_space_info *space_info = bg->space_info;
6470 
6471 	ASSERT(bg->ro);
6472 
6473 	if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6474 		return;
6475 
6476 	/*
6477 	 * Our block group is read only but before we set it to read only,
6478 	 * some task might have had allocated an extent from it already, but it
6479 	 * has not yet created a respective ordered extent (and added it to a
6480 	 * root's list of ordered extents).
6481 	 * Therefore wait for any task currently allocating extents, since the
6482 	 * block group's reservations counter is incremented while a read lock
6483 	 * on the groups' semaphore is held and decremented after releasing
6484 	 * the read access on that semaphore and creating the ordered extent.
6485 	 */
6486 	down_write(&space_info->groups_sem);
6487 	up_write(&space_info->groups_sem);
6488 
6489 	wait_on_atomic_t(&bg->reservations,
6490 			 btrfs_wait_bg_reservations_atomic_t,
6491 			 TASK_UNINTERRUPTIBLE);
6492 }
6493 
6494 /**
6495  * btrfs_add_reserved_bytes - update the block_group and space info counters
6496  * @cache:	The cache we are manipulating
6497  * @ram_bytes:  The number of bytes of file content, and will be same to
6498  *              @num_bytes except for the compress path.
6499  * @num_bytes:	The number of bytes in question
6500  * @delalloc:   The blocks are allocated for the delalloc write
6501  *
6502  * This is called by the allocator when it reserves space. Metadata
6503  * reservations should be called with RESERVE_ALLOC so we do the proper
6504  * ENOSPC accounting.  For data we handle the reservation through clearing the
6505  * delalloc bits in the io_tree.  We have to do this since we could end up
6506  * allocating less disk space for the amount of data we have reserved in the
6507  * case of compression.
6508  *
6509  * If this is a reservation and the block group has become read only we cannot
6510  * make the reservation and return -EAGAIN, otherwise this function always
6511  * succeeds.
6512  */
btrfs_add_reserved_bytes(struct btrfs_block_group_cache * cache,u64 ram_bytes,u64 num_bytes,int delalloc)6513 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6514 				    u64 ram_bytes, u64 num_bytes, int delalloc)
6515 {
6516 	struct btrfs_space_info *space_info = cache->space_info;
6517 	int ret = 0;
6518 
6519 	spin_lock(&space_info->lock);
6520 	spin_lock(&cache->lock);
6521 	if (cache->ro) {
6522 		ret = -EAGAIN;
6523 	} else {
6524 		cache->reserved += num_bytes;
6525 		space_info->bytes_reserved += num_bytes;
6526 
6527 		trace_btrfs_space_reservation(cache->fs_info,
6528 				"space_info", space_info->flags,
6529 				ram_bytes, 0);
6530 		space_info->bytes_may_use -= ram_bytes;
6531 		if (delalloc)
6532 			cache->delalloc_bytes += num_bytes;
6533 	}
6534 	spin_unlock(&cache->lock);
6535 	spin_unlock(&space_info->lock);
6536 	return ret;
6537 }
6538 
6539 /**
6540  * btrfs_free_reserved_bytes - update the block_group and space info counters
6541  * @cache:      The cache we are manipulating
6542  * @num_bytes:  The number of bytes in question
6543  * @delalloc:   The blocks are allocated for the delalloc write
6544  *
6545  * This is called by somebody who is freeing space that was never actually used
6546  * on disk.  For example if you reserve some space for a new leaf in transaction
6547  * A and before transaction A commits you free that leaf, you call this with
6548  * reserve set to 0 in order to clear the reservation.
6549  */
6550 
btrfs_free_reserved_bytes(struct btrfs_block_group_cache * cache,u64 num_bytes,int delalloc)6551 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6552 				     u64 num_bytes, int delalloc)
6553 {
6554 	struct btrfs_space_info *space_info = cache->space_info;
6555 	int ret = 0;
6556 
6557 	spin_lock(&space_info->lock);
6558 	spin_lock(&cache->lock);
6559 	if (cache->ro)
6560 		space_info->bytes_readonly += num_bytes;
6561 	cache->reserved -= num_bytes;
6562 	space_info->bytes_reserved -= num_bytes;
6563 
6564 	if (delalloc)
6565 		cache->delalloc_bytes -= num_bytes;
6566 	spin_unlock(&cache->lock);
6567 	spin_unlock(&space_info->lock);
6568 	return ret;
6569 }
btrfs_prepare_extent_commit(struct btrfs_trans_handle * trans,struct btrfs_root * root)6570 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
6571 				struct btrfs_root *root)
6572 {
6573 	struct btrfs_fs_info *fs_info = root->fs_info;
6574 	struct btrfs_caching_control *next;
6575 	struct btrfs_caching_control *caching_ctl;
6576 	struct btrfs_block_group_cache *cache;
6577 
6578 	down_write(&fs_info->commit_root_sem);
6579 
6580 	list_for_each_entry_safe(caching_ctl, next,
6581 				 &fs_info->caching_block_groups, list) {
6582 		cache = caching_ctl->block_group;
6583 		if (block_group_cache_done(cache)) {
6584 			cache->last_byte_to_unpin = (u64)-1;
6585 			list_del_init(&caching_ctl->list);
6586 			put_caching_control(caching_ctl);
6587 		} else {
6588 			cache->last_byte_to_unpin = caching_ctl->progress;
6589 		}
6590 	}
6591 
6592 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6593 		fs_info->pinned_extents = &fs_info->freed_extents[1];
6594 	else
6595 		fs_info->pinned_extents = &fs_info->freed_extents[0];
6596 
6597 	up_write(&fs_info->commit_root_sem);
6598 
6599 	update_global_block_rsv(fs_info);
6600 }
6601 
6602 /*
6603  * Returns the free cluster for the given space info and sets empty_cluster to
6604  * what it should be based on the mount options.
6605  */
6606 static struct btrfs_free_cluster *
fetch_cluster_info(struct btrfs_root * root,struct btrfs_space_info * space_info,u64 * empty_cluster)6607 fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6608 		   u64 *empty_cluster)
6609 {
6610 	struct btrfs_free_cluster *ret = NULL;
6611 	bool ssd = btrfs_test_opt(root->fs_info, SSD);
6612 
6613 	*empty_cluster = 0;
6614 	if (btrfs_mixed_space_info(space_info))
6615 		return ret;
6616 
6617 	if (ssd)
6618 		*empty_cluster = SZ_2M;
6619 	if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6620 		ret = &root->fs_info->meta_alloc_cluster;
6621 		if (!ssd)
6622 			*empty_cluster = SZ_64K;
6623 	} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6624 		ret = &root->fs_info->data_alloc_cluster;
6625 	}
6626 
6627 	return ret;
6628 }
6629 
unpin_extent_range(struct btrfs_root * root,u64 start,u64 end,const bool return_free_space)6630 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6631 			      const bool return_free_space)
6632 {
6633 	struct btrfs_fs_info *fs_info = root->fs_info;
6634 	struct btrfs_block_group_cache *cache = NULL;
6635 	struct btrfs_space_info *space_info;
6636 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6637 	struct btrfs_free_cluster *cluster = NULL;
6638 	u64 len;
6639 	u64 total_unpinned = 0;
6640 	u64 empty_cluster = 0;
6641 	bool readonly;
6642 
6643 	while (start <= end) {
6644 		readonly = false;
6645 		if (!cache ||
6646 		    start >= cache->key.objectid + cache->key.offset) {
6647 			if (cache)
6648 				btrfs_put_block_group(cache);
6649 			total_unpinned = 0;
6650 			cache = btrfs_lookup_block_group(fs_info, start);
6651 			BUG_ON(!cache); /* Logic error */
6652 
6653 			cluster = fetch_cluster_info(root,
6654 						     cache->space_info,
6655 						     &empty_cluster);
6656 			empty_cluster <<= 1;
6657 		}
6658 
6659 		len = cache->key.objectid + cache->key.offset - start;
6660 		len = min(len, end + 1 - start);
6661 
6662 		if (start < cache->last_byte_to_unpin) {
6663 			len = min(len, cache->last_byte_to_unpin - start);
6664 			if (return_free_space)
6665 				btrfs_add_free_space(cache, start, len);
6666 		}
6667 
6668 		start += len;
6669 		total_unpinned += len;
6670 		space_info = cache->space_info;
6671 
6672 		/*
6673 		 * If this space cluster has been marked as fragmented and we've
6674 		 * unpinned enough in this block group to potentially allow a
6675 		 * cluster to be created inside of it go ahead and clear the
6676 		 * fragmented check.
6677 		 */
6678 		if (cluster && cluster->fragmented &&
6679 		    total_unpinned > empty_cluster) {
6680 			spin_lock(&cluster->lock);
6681 			cluster->fragmented = 0;
6682 			spin_unlock(&cluster->lock);
6683 		}
6684 
6685 		spin_lock(&space_info->lock);
6686 		spin_lock(&cache->lock);
6687 		cache->pinned -= len;
6688 		space_info->bytes_pinned -= len;
6689 
6690 		trace_btrfs_space_reservation(fs_info, "pinned",
6691 					      space_info->flags, len, 0);
6692 		space_info->max_extent_size = 0;
6693 		percpu_counter_add(&space_info->total_bytes_pinned, -len);
6694 		if (cache->ro) {
6695 			space_info->bytes_readonly += len;
6696 			readonly = true;
6697 		}
6698 		spin_unlock(&cache->lock);
6699 		if (!readonly && return_free_space &&
6700 		    global_rsv->space_info == space_info) {
6701 			u64 to_add = len;
6702 			WARN_ON(!return_free_space);
6703 			spin_lock(&global_rsv->lock);
6704 			if (!global_rsv->full) {
6705 				to_add = min(len, global_rsv->size -
6706 					     global_rsv->reserved);
6707 				global_rsv->reserved += to_add;
6708 				space_info->bytes_may_use += to_add;
6709 				if (global_rsv->reserved >= global_rsv->size)
6710 					global_rsv->full = 1;
6711 				trace_btrfs_space_reservation(fs_info,
6712 							      "space_info",
6713 							      space_info->flags,
6714 							      to_add, 1);
6715 				len -= to_add;
6716 			}
6717 			spin_unlock(&global_rsv->lock);
6718 			/* Add to any tickets we may have */
6719 			if (len)
6720 				space_info_add_new_bytes(fs_info, space_info,
6721 							 len);
6722 		}
6723 		spin_unlock(&space_info->lock);
6724 	}
6725 
6726 	if (cache)
6727 		btrfs_put_block_group(cache);
6728 	return 0;
6729 }
6730 
btrfs_finish_extent_commit(struct btrfs_trans_handle * trans,struct btrfs_root * root)6731 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6732 			       struct btrfs_root *root)
6733 {
6734 	struct btrfs_fs_info *fs_info = root->fs_info;
6735 	struct btrfs_block_group_cache *block_group, *tmp;
6736 	struct list_head *deleted_bgs;
6737 	struct extent_io_tree *unpin;
6738 	u64 start;
6739 	u64 end;
6740 	int ret;
6741 
6742 	if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6743 		unpin = &fs_info->freed_extents[1];
6744 	else
6745 		unpin = &fs_info->freed_extents[0];
6746 
6747 	while (!trans->aborted) {
6748 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
6749 		ret = find_first_extent_bit(unpin, 0, &start, &end,
6750 					    EXTENT_DIRTY, NULL);
6751 		if (ret) {
6752 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6753 			break;
6754 		}
6755 
6756 		if (btrfs_test_opt(root->fs_info, DISCARD))
6757 			ret = btrfs_discard_extent(root, start,
6758 						   end + 1 - start, NULL);
6759 
6760 		clear_extent_dirty(unpin, start, end);
6761 		unpin_extent_range(root, start, end, true);
6762 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6763 		cond_resched();
6764 	}
6765 
6766 	/*
6767 	 * Transaction is finished.  We don't need the lock anymore.  We
6768 	 * do need to clean up the block groups in case of a transaction
6769 	 * abort.
6770 	 */
6771 	deleted_bgs = &trans->transaction->deleted_bgs;
6772 	list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6773 		u64 trimmed = 0;
6774 
6775 		ret = -EROFS;
6776 		if (!trans->aborted)
6777 			ret = btrfs_discard_extent(root,
6778 						   block_group->key.objectid,
6779 						   block_group->key.offset,
6780 						   &trimmed);
6781 
6782 		list_del_init(&block_group->bg_list);
6783 		btrfs_put_block_group_trimming(block_group);
6784 		btrfs_put_block_group(block_group);
6785 
6786 		if (ret) {
6787 			const char *errstr = btrfs_decode_error(ret);
6788 			btrfs_warn(fs_info,
6789 				   "Discard failed while removing blockgroup: errno=%d %s\n",
6790 				   ret, errstr);
6791 		}
6792 	}
6793 
6794 	return 0;
6795 }
6796 
add_pinned_bytes(struct btrfs_fs_info * fs_info,u64 num_bytes,u64 owner,u64 root_objectid)6797 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6798 			     u64 owner, u64 root_objectid)
6799 {
6800 	struct btrfs_space_info *space_info;
6801 	u64 flags;
6802 
6803 	if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6804 		if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6805 			flags = BTRFS_BLOCK_GROUP_SYSTEM;
6806 		else
6807 			flags = BTRFS_BLOCK_GROUP_METADATA;
6808 	} else {
6809 		flags = BTRFS_BLOCK_GROUP_DATA;
6810 	}
6811 
6812 	space_info = __find_space_info(fs_info, flags);
6813 	BUG_ON(!space_info); /* Logic bug */
6814 	percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6815 }
6816 
6817 
__btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_ref_node * node,u64 parent,u64 root_objectid,u64 owner_objectid,u64 owner_offset,int refs_to_drop,struct btrfs_delayed_extent_op * extent_op)6818 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6819 				struct btrfs_root *root,
6820 				struct btrfs_delayed_ref_node *node, u64 parent,
6821 				u64 root_objectid, u64 owner_objectid,
6822 				u64 owner_offset, int refs_to_drop,
6823 				struct btrfs_delayed_extent_op *extent_op)
6824 {
6825 	struct btrfs_key key;
6826 	struct btrfs_path *path;
6827 	struct btrfs_fs_info *info = root->fs_info;
6828 	struct btrfs_root *extent_root = info->extent_root;
6829 	struct extent_buffer *leaf;
6830 	struct btrfs_extent_item *ei;
6831 	struct btrfs_extent_inline_ref *iref;
6832 	int ret;
6833 	int is_data;
6834 	int extent_slot = 0;
6835 	int found_extent = 0;
6836 	int num_to_del = 1;
6837 	u32 item_size;
6838 	u64 refs;
6839 	u64 bytenr = node->bytenr;
6840 	u64 num_bytes = node->num_bytes;
6841 	int last_ref = 0;
6842 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6843 						 SKINNY_METADATA);
6844 
6845 	path = btrfs_alloc_path();
6846 	if (!path)
6847 		return -ENOMEM;
6848 
6849 	path->reada = READA_FORWARD;
6850 	path->leave_spinning = 1;
6851 
6852 	is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6853 	BUG_ON(!is_data && refs_to_drop != 1);
6854 
6855 	if (is_data)
6856 		skinny_metadata = 0;
6857 
6858 	ret = lookup_extent_backref(trans, extent_root, path, &iref,
6859 				    bytenr, num_bytes, parent,
6860 				    root_objectid, owner_objectid,
6861 				    owner_offset);
6862 	if (ret == 0) {
6863 		extent_slot = path->slots[0];
6864 		while (extent_slot >= 0) {
6865 			btrfs_item_key_to_cpu(path->nodes[0], &key,
6866 					      extent_slot);
6867 			if (key.objectid != bytenr)
6868 				break;
6869 			if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6870 			    key.offset == num_bytes) {
6871 				found_extent = 1;
6872 				break;
6873 			}
6874 			if (key.type == BTRFS_METADATA_ITEM_KEY &&
6875 			    key.offset == owner_objectid) {
6876 				found_extent = 1;
6877 				break;
6878 			}
6879 			if (path->slots[0] - extent_slot > 5)
6880 				break;
6881 			extent_slot--;
6882 		}
6883 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6884 		item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6885 		if (found_extent && item_size < sizeof(*ei))
6886 			found_extent = 0;
6887 #endif
6888 		if (!found_extent) {
6889 			BUG_ON(iref);
6890 			ret = remove_extent_backref(trans, extent_root, path,
6891 						    NULL, refs_to_drop,
6892 						    is_data, &last_ref);
6893 			if (ret) {
6894 				btrfs_abort_transaction(trans, ret);
6895 				goto out;
6896 			}
6897 			btrfs_release_path(path);
6898 			path->leave_spinning = 1;
6899 
6900 			key.objectid = bytenr;
6901 			key.type = BTRFS_EXTENT_ITEM_KEY;
6902 			key.offset = num_bytes;
6903 
6904 			if (!is_data && skinny_metadata) {
6905 				key.type = BTRFS_METADATA_ITEM_KEY;
6906 				key.offset = owner_objectid;
6907 			}
6908 
6909 			ret = btrfs_search_slot(trans, extent_root,
6910 						&key, path, -1, 1);
6911 			if (ret > 0 && skinny_metadata && path->slots[0]) {
6912 				/*
6913 				 * Couldn't find our skinny metadata item,
6914 				 * see if we have ye olde extent item.
6915 				 */
6916 				path->slots[0]--;
6917 				btrfs_item_key_to_cpu(path->nodes[0], &key,
6918 						      path->slots[0]);
6919 				if (key.objectid == bytenr &&
6920 				    key.type == BTRFS_EXTENT_ITEM_KEY &&
6921 				    key.offset == num_bytes)
6922 					ret = 0;
6923 			}
6924 
6925 			if (ret > 0 && skinny_metadata) {
6926 				skinny_metadata = false;
6927 				key.objectid = bytenr;
6928 				key.type = BTRFS_EXTENT_ITEM_KEY;
6929 				key.offset = num_bytes;
6930 				btrfs_release_path(path);
6931 				ret = btrfs_search_slot(trans, extent_root,
6932 							&key, path, -1, 1);
6933 			}
6934 
6935 			if (ret) {
6936 				btrfs_err(info,
6937 					  "umm, got %d back from search, was looking for %llu",
6938 					  ret, bytenr);
6939 				if (ret > 0)
6940 					btrfs_print_leaf(extent_root,
6941 							 path->nodes[0]);
6942 			}
6943 			if (ret < 0) {
6944 				btrfs_abort_transaction(trans, ret);
6945 				goto out;
6946 			}
6947 			extent_slot = path->slots[0];
6948 		}
6949 	} else if (WARN_ON(ret == -ENOENT)) {
6950 		btrfs_print_leaf(extent_root, path->nodes[0]);
6951 		btrfs_err(info,
6952 			"unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6953 			bytenr, parent, root_objectid, owner_objectid,
6954 			owner_offset);
6955 		btrfs_abort_transaction(trans, ret);
6956 		goto out;
6957 	} else {
6958 		btrfs_abort_transaction(trans, ret);
6959 		goto out;
6960 	}
6961 
6962 	leaf = path->nodes[0];
6963 	item_size = btrfs_item_size_nr(leaf, extent_slot);
6964 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6965 	if (item_size < sizeof(*ei)) {
6966 		BUG_ON(found_extent || extent_slot != path->slots[0]);
6967 		ret = convert_extent_item_v0(trans, extent_root, path,
6968 					     owner_objectid, 0);
6969 		if (ret < 0) {
6970 			btrfs_abort_transaction(trans, ret);
6971 			goto out;
6972 		}
6973 
6974 		btrfs_release_path(path);
6975 		path->leave_spinning = 1;
6976 
6977 		key.objectid = bytenr;
6978 		key.type = BTRFS_EXTENT_ITEM_KEY;
6979 		key.offset = num_bytes;
6980 
6981 		ret = btrfs_search_slot(trans, extent_root, &key, path,
6982 					-1, 1);
6983 		if (ret) {
6984 			btrfs_err(info,
6985 				  "umm, got %d back from search, was looking for %llu",
6986 				ret, bytenr);
6987 			btrfs_print_leaf(extent_root, path->nodes[0]);
6988 		}
6989 		if (ret < 0) {
6990 			btrfs_abort_transaction(trans, ret);
6991 			goto out;
6992 		}
6993 
6994 		extent_slot = path->slots[0];
6995 		leaf = path->nodes[0];
6996 		item_size = btrfs_item_size_nr(leaf, extent_slot);
6997 	}
6998 #endif
6999 	BUG_ON(item_size < sizeof(*ei));
7000 	ei = btrfs_item_ptr(leaf, extent_slot,
7001 			    struct btrfs_extent_item);
7002 	if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7003 	    key.type == BTRFS_EXTENT_ITEM_KEY) {
7004 		struct btrfs_tree_block_info *bi;
7005 		BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7006 		bi = (struct btrfs_tree_block_info *)(ei + 1);
7007 		WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7008 	}
7009 
7010 	refs = btrfs_extent_refs(leaf, ei);
7011 	if (refs < refs_to_drop) {
7012 		btrfs_err(info,
7013 			  "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7014 			  refs_to_drop, refs, bytenr);
7015 		ret = -EINVAL;
7016 		btrfs_abort_transaction(trans, ret);
7017 		goto out;
7018 	}
7019 	refs -= refs_to_drop;
7020 
7021 	if (refs > 0) {
7022 		if (extent_op)
7023 			__run_delayed_extent_op(extent_op, leaf, ei);
7024 		/*
7025 		 * In the case of inline back ref, reference count will
7026 		 * be updated by remove_extent_backref
7027 		 */
7028 		if (iref) {
7029 			BUG_ON(!found_extent);
7030 		} else {
7031 			btrfs_set_extent_refs(leaf, ei, refs);
7032 			btrfs_mark_buffer_dirty(leaf);
7033 		}
7034 		if (found_extent) {
7035 			ret = remove_extent_backref(trans, extent_root, path,
7036 						    iref, refs_to_drop,
7037 						    is_data, &last_ref);
7038 			if (ret) {
7039 				btrfs_abort_transaction(trans, ret);
7040 				goto out;
7041 			}
7042 		}
7043 		add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
7044 				 root_objectid);
7045 	} else {
7046 		if (found_extent) {
7047 			BUG_ON(is_data && refs_to_drop !=
7048 			       extent_data_ref_count(path, iref));
7049 			if (iref) {
7050 				BUG_ON(path->slots[0] != extent_slot);
7051 			} else {
7052 				BUG_ON(path->slots[0] != extent_slot + 1);
7053 				path->slots[0] = extent_slot;
7054 				num_to_del = 2;
7055 			}
7056 		}
7057 
7058 		last_ref = 1;
7059 		ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7060 				      num_to_del);
7061 		if (ret) {
7062 			btrfs_abort_transaction(trans, ret);
7063 			goto out;
7064 		}
7065 		btrfs_release_path(path);
7066 
7067 		if (is_data) {
7068 			ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
7069 			if (ret) {
7070 				btrfs_abort_transaction(trans, ret);
7071 				goto out;
7072 			}
7073 		}
7074 
7075 		ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
7076 					     num_bytes);
7077 		if (ret) {
7078 			btrfs_abort_transaction(trans, ret);
7079 			goto out;
7080 		}
7081 
7082 		ret = update_block_group(trans, root, bytenr, num_bytes, 0);
7083 		if (ret) {
7084 			btrfs_abort_transaction(trans, ret);
7085 			goto out;
7086 		}
7087 	}
7088 	btrfs_release_path(path);
7089 
7090 out:
7091 	btrfs_free_path(path);
7092 	return ret;
7093 }
7094 
7095 /*
7096  * when we free an block, it is possible (and likely) that we free the last
7097  * delayed ref for that extent as well.  This searches the delayed ref tree for
7098  * a given extent, and if there are no other delayed refs to be processed, it
7099  * removes it from the tree.
7100  */
check_ref_cleanup(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr)7101 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7102 				      struct btrfs_root *root, u64 bytenr)
7103 {
7104 	struct btrfs_delayed_ref_head *head;
7105 	struct btrfs_delayed_ref_root *delayed_refs;
7106 	int ret = 0;
7107 
7108 	delayed_refs = &trans->transaction->delayed_refs;
7109 	spin_lock(&delayed_refs->lock);
7110 	head = btrfs_find_delayed_ref_head(trans, bytenr);
7111 	if (!head)
7112 		goto out_delayed_unlock;
7113 
7114 	spin_lock(&head->lock);
7115 	if (!list_empty(&head->ref_list))
7116 		goto out;
7117 
7118 	if (head->extent_op) {
7119 		if (!head->must_insert_reserved)
7120 			goto out;
7121 		btrfs_free_delayed_extent_op(head->extent_op);
7122 		head->extent_op = NULL;
7123 	}
7124 
7125 	/*
7126 	 * waiting for the lock here would deadlock.  If someone else has it
7127 	 * locked they are already in the process of dropping it anyway
7128 	 */
7129 	if (!mutex_trylock(&head->mutex))
7130 		goto out;
7131 
7132 	/*
7133 	 * at this point we have a head with no other entries.  Go
7134 	 * ahead and process it.
7135 	 */
7136 	head->node.in_tree = 0;
7137 	rb_erase(&head->href_node, &delayed_refs->href_root);
7138 
7139 	atomic_dec(&delayed_refs->num_entries);
7140 
7141 	/*
7142 	 * we don't take a ref on the node because we're removing it from the
7143 	 * tree, so we just steal the ref the tree was holding.
7144 	 */
7145 	delayed_refs->num_heads--;
7146 	if (head->processing == 0)
7147 		delayed_refs->num_heads_ready--;
7148 	head->processing = 0;
7149 	spin_unlock(&head->lock);
7150 	spin_unlock(&delayed_refs->lock);
7151 
7152 	BUG_ON(head->extent_op);
7153 	if (head->must_insert_reserved)
7154 		ret = 1;
7155 
7156 	mutex_unlock(&head->mutex);
7157 	btrfs_put_delayed_ref(&head->node);
7158 	return ret;
7159 out:
7160 	spin_unlock(&head->lock);
7161 
7162 out_delayed_unlock:
7163 	spin_unlock(&delayed_refs->lock);
7164 	return 0;
7165 }
7166 
btrfs_free_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf,u64 parent,int last_ref)7167 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7168 			   struct btrfs_root *root,
7169 			   struct extent_buffer *buf,
7170 			   u64 parent, int last_ref)
7171 {
7172 	int pin = 1;
7173 	int ret;
7174 
7175 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7176 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7177 					buf->start, buf->len,
7178 					parent, root->root_key.objectid,
7179 					btrfs_header_level(buf),
7180 					BTRFS_DROP_DELAYED_REF, NULL);
7181 		BUG_ON(ret); /* -ENOMEM */
7182 	}
7183 
7184 	if (!last_ref)
7185 		return;
7186 
7187 	if (btrfs_header_generation(buf) == trans->transid) {
7188 		struct btrfs_block_group_cache *cache;
7189 
7190 		if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7191 			ret = check_ref_cleanup(trans, root, buf->start);
7192 			if (!ret)
7193 				goto out;
7194 		}
7195 
7196 		cache = btrfs_lookup_block_group(root->fs_info, buf->start);
7197 
7198 		if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7199 			pin_down_extent(root, cache, buf->start, buf->len, 1);
7200 			btrfs_put_block_group(cache);
7201 			goto out;
7202 		}
7203 
7204 		WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7205 
7206 		btrfs_add_free_space(cache, buf->start, buf->len);
7207 		btrfs_free_reserved_bytes(cache, buf->len, 0);
7208 		btrfs_put_block_group(cache);
7209 		trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
7210 		pin = 0;
7211 	}
7212 out:
7213 	if (pin)
7214 		add_pinned_bytes(root->fs_info, buf->len,
7215 				 btrfs_header_level(buf),
7216 				 root->root_key.objectid);
7217 
7218 	/*
7219 	 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7220 	 * anymore.
7221 	 */
7222 	clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7223 }
7224 
7225 /* Can return -ENOMEM */
btrfs_free_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,u64 num_bytes,u64 parent,u64 root_objectid,u64 owner,u64 offset)7226 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7227 		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7228 		      u64 owner, u64 offset)
7229 {
7230 	int ret;
7231 	struct btrfs_fs_info *fs_info = root->fs_info;
7232 
7233 	if (btrfs_is_testing(fs_info))
7234 		return 0;
7235 
7236 	add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7237 
7238 	/*
7239 	 * tree log blocks never actually go into the extent allocation
7240 	 * tree, just update pinning info and exit early.
7241 	 */
7242 	if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7243 		WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7244 		/* unlocks the pinned mutex */
7245 		btrfs_pin_extent(root, bytenr, num_bytes, 1);
7246 		ret = 0;
7247 	} else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7248 		ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7249 					num_bytes,
7250 					parent, root_objectid, (int)owner,
7251 					BTRFS_DROP_DELAYED_REF, NULL);
7252 	} else {
7253 		ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7254 						num_bytes,
7255 						parent, root_objectid, owner,
7256 						offset, 0,
7257 						BTRFS_DROP_DELAYED_REF, NULL);
7258 	}
7259 	return ret;
7260 }
7261 
7262 /*
7263  * when we wait for progress in the block group caching, its because
7264  * our allocation attempt failed at least once.  So, we must sleep
7265  * and let some progress happen before we try again.
7266  *
7267  * This function will sleep at least once waiting for new free space to
7268  * show up, and then it will check the block group free space numbers
7269  * for our min num_bytes.  Another option is to have it go ahead
7270  * and look in the rbtree for a free extent of a given size, but this
7271  * is a good start.
7272  *
7273  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7274  * any of the information in this block group.
7275  */
7276 static noinline void
wait_block_group_cache_progress(struct btrfs_block_group_cache * cache,u64 num_bytes)7277 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7278 				u64 num_bytes)
7279 {
7280 	struct btrfs_caching_control *caching_ctl;
7281 
7282 	caching_ctl = get_caching_control(cache);
7283 	if (!caching_ctl)
7284 		return;
7285 
7286 	wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7287 		   (cache->free_space_ctl->free_space >= num_bytes));
7288 
7289 	put_caching_control(caching_ctl);
7290 }
7291 
7292 static noinline int
wait_block_group_cache_done(struct btrfs_block_group_cache * cache)7293 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7294 {
7295 	struct btrfs_caching_control *caching_ctl;
7296 	int ret = 0;
7297 
7298 	caching_ctl = get_caching_control(cache);
7299 	if (!caching_ctl)
7300 		return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7301 
7302 	wait_event(caching_ctl->wait, block_group_cache_done(cache));
7303 	if (cache->cached == BTRFS_CACHE_ERROR)
7304 		ret = -EIO;
7305 	put_caching_control(caching_ctl);
7306 	return ret;
7307 }
7308 
__get_raid_index(u64 flags)7309 int __get_raid_index(u64 flags)
7310 {
7311 	if (flags & BTRFS_BLOCK_GROUP_RAID10)
7312 		return BTRFS_RAID_RAID10;
7313 	else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7314 		return BTRFS_RAID_RAID1;
7315 	else if (flags & BTRFS_BLOCK_GROUP_DUP)
7316 		return BTRFS_RAID_DUP;
7317 	else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7318 		return BTRFS_RAID_RAID0;
7319 	else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7320 		return BTRFS_RAID_RAID5;
7321 	else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7322 		return BTRFS_RAID_RAID6;
7323 
7324 	return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7325 }
7326 
get_block_group_index(struct btrfs_block_group_cache * cache)7327 int get_block_group_index(struct btrfs_block_group_cache *cache)
7328 {
7329 	return __get_raid_index(cache->flags);
7330 }
7331 
7332 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7333 	[BTRFS_RAID_RAID10]	= "raid10",
7334 	[BTRFS_RAID_RAID1]	= "raid1",
7335 	[BTRFS_RAID_DUP]	= "dup",
7336 	[BTRFS_RAID_RAID0]	= "raid0",
7337 	[BTRFS_RAID_SINGLE]	= "single",
7338 	[BTRFS_RAID_RAID5]	= "raid5",
7339 	[BTRFS_RAID_RAID6]	= "raid6",
7340 };
7341 
get_raid_name(enum btrfs_raid_types type)7342 static const char *get_raid_name(enum btrfs_raid_types type)
7343 {
7344 	if (type >= BTRFS_NR_RAID_TYPES)
7345 		return NULL;
7346 
7347 	return btrfs_raid_type_names[type];
7348 }
7349 
7350 enum btrfs_loop_type {
7351 	LOOP_CACHING_NOWAIT = 0,
7352 	LOOP_CACHING_WAIT = 1,
7353 	LOOP_ALLOC_CHUNK = 2,
7354 	LOOP_NO_EMPTY_SIZE = 3,
7355 };
7356 
7357 static inline void
btrfs_lock_block_group(struct btrfs_block_group_cache * cache,int delalloc)7358 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7359 		       int delalloc)
7360 {
7361 	if (delalloc)
7362 		down_read(&cache->data_rwsem);
7363 }
7364 
7365 static inline void
btrfs_grab_block_group(struct btrfs_block_group_cache * cache,int delalloc)7366 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7367 		       int delalloc)
7368 {
7369 	btrfs_get_block_group(cache);
7370 	if (delalloc)
7371 		down_read(&cache->data_rwsem);
7372 }
7373 
7374 static struct btrfs_block_group_cache *
btrfs_lock_cluster(struct btrfs_block_group_cache * block_group,struct btrfs_free_cluster * cluster,int delalloc)7375 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7376 		   struct btrfs_free_cluster *cluster,
7377 		   int delalloc)
7378 {
7379 	struct btrfs_block_group_cache *used_bg = NULL;
7380 
7381 	spin_lock(&cluster->refill_lock);
7382 	while (1) {
7383 		used_bg = cluster->block_group;
7384 		if (!used_bg)
7385 			return NULL;
7386 
7387 		if (used_bg == block_group)
7388 			return used_bg;
7389 
7390 		btrfs_get_block_group(used_bg);
7391 
7392 		if (!delalloc)
7393 			return used_bg;
7394 
7395 		if (down_read_trylock(&used_bg->data_rwsem))
7396 			return used_bg;
7397 
7398 		spin_unlock(&cluster->refill_lock);
7399 
7400 		/* We should only have one-level nested. */
7401 		down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7402 
7403 		spin_lock(&cluster->refill_lock);
7404 		if (used_bg == cluster->block_group)
7405 			return used_bg;
7406 
7407 		up_read(&used_bg->data_rwsem);
7408 		btrfs_put_block_group(used_bg);
7409 	}
7410 }
7411 
7412 static inline void
btrfs_release_block_group(struct btrfs_block_group_cache * cache,int delalloc)7413 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7414 			 int delalloc)
7415 {
7416 	if (delalloc)
7417 		up_read(&cache->data_rwsem);
7418 	btrfs_put_block_group(cache);
7419 }
7420 
7421 /*
7422  * walks the btree of allocated extents and find a hole of a given size.
7423  * The key ins is changed to record the hole:
7424  * ins->objectid == start position
7425  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7426  * ins->offset == the size of the hole.
7427  * Any available blocks before search_start are skipped.
7428  *
7429  * If there is no suitable free space, we will record the max size of
7430  * the free space extent currently.
7431  */
find_free_extent(struct btrfs_root * orig_root,u64 ram_bytes,u64 num_bytes,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,u64 flags,int delalloc)7432 static noinline int find_free_extent(struct btrfs_root *orig_root,
7433 				u64 ram_bytes, u64 num_bytes, u64 empty_size,
7434 				u64 hint_byte, struct btrfs_key *ins,
7435 				u64 flags, int delalloc)
7436 {
7437 	int ret = 0;
7438 	struct btrfs_root *root = orig_root->fs_info->extent_root;
7439 	struct btrfs_free_cluster *last_ptr = NULL;
7440 	struct btrfs_block_group_cache *block_group = NULL;
7441 	u64 search_start = 0;
7442 	u64 max_extent_size = 0;
7443 	u64 empty_cluster = 0;
7444 	struct btrfs_space_info *space_info;
7445 	int loop = 0;
7446 	int index = __get_raid_index(flags);
7447 	bool failed_cluster_refill = false;
7448 	bool failed_alloc = false;
7449 	bool use_cluster = true;
7450 	bool have_caching_bg = false;
7451 	bool orig_have_caching_bg = false;
7452 	bool full_search = false;
7453 
7454 	WARN_ON(num_bytes < root->sectorsize);
7455 	ins->type = BTRFS_EXTENT_ITEM_KEY;
7456 	ins->objectid = 0;
7457 	ins->offset = 0;
7458 
7459 	trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
7460 
7461 	space_info = __find_space_info(root->fs_info, flags);
7462 	if (!space_info) {
7463 		btrfs_err(root->fs_info, "No space info for %llu", flags);
7464 		return -ENOSPC;
7465 	}
7466 
7467 	/*
7468 	 * If our free space is heavily fragmented we may not be able to make
7469 	 * big contiguous allocations, so instead of doing the expensive search
7470 	 * for free space, simply return ENOSPC with our max_extent_size so we
7471 	 * can go ahead and search for a more manageable chunk.
7472 	 *
7473 	 * If our max_extent_size is large enough for our allocation simply
7474 	 * disable clustering since we will likely not be able to find enough
7475 	 * space to create a cluster and induce latency trying.
7476 	 */
7477 	if (unlikely(space_info->max_extent_size)) {
7478 		spin_lock(&space_info->lock);
7479 		if (space_info->max_extent_size &&
7480 		    num_bytes > space_info->max_extent_size) {
7481 			ins->offset = space_info->max_extent_size;
7482 			spin_unlock(&space_info->lock);
7483 			return -ENOSPC;
7484 		} else if (space_info->max_extent_size) {
7485 			use_cluster = false;
7486 		}
7487 		spin_unlock(&space_info->lock);
7488 	}
7489 
7490 	last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
7491 	if (last_ptr) {
7492 		spin_lock(&last_ptr->lock);
7493 		if (last_ptr->block_group)
7494 			hint_byte = last_ptr->window_start;
7495 		if (last_ptr->fragmented) {
7496 			/*
7497 			 * We still set window_start so we can keep track of the
7498 			 * last place we found an allocation to try and save
7499 			 * some time.
7500 			 */
7501 			hint_byte = last_ptr->window_start;
7502 			use_cluster = false;
7503 		}
7504 		spin_unlock(&last_ptr->lock);
7505 	}
7506 
7507 	search_start = max(search_start, first_logical_byte(root, 0));
7508 	search_start = max(search_start, hint_byte);
7509 	if (search_start == hint_byte) {
7510 		block_group = btrfs_lookup_block_group(root->fs_info,
7511 						       search_start);
7512 		/*
7513 		 * we don't want to use the block group if it doesn't match our
7514 		 * allocation bits, or if its not cached.
7515 		 *
7516 		 * However if we are re-searching with an ideal block group
7517 		 * picked out then we don't care that the block group is cached.
7518 		 */
7519 		if (block_group && block_group_bits(block_group, flags) &&
7520 		    block_group->cached != BTRFS_CACHE_NO) {
7521 			down_read(&space_info->groups_sem);
7522 			if (list_empty(&block_group->list) ||
7523 			    block_group->ro) {
7524 				/*
7525 				 * someone is removing this block group,
7526 				 * we can't jump into the have_block_group
7527 				 * target because our list pointers are not
7528 				 * valid
7529 				 */
7530 				btrfs_put_block_group(block_group);
7531 				up_read(&space_info->groups_sem);
7532 			} else {
7533 				index = get_block_group_index(block_group);
7534 				btrfs_lock_block_group(block_group, delalloc);
7535 				goto have_block_group;
7536 			}
7537 		} else if (block_group) {
7538 			btrfs_put_block_group(block_group);
7539 		}
7540 	}
7541 search:
7542 	have_caching_bg = false;
7543 	if (index == 0 || index == __get_raid_index(flags))
7544 		full_search = true;
7545 	down_read(&space_info->groups_sem);
7546 	list_for_each_entry(block_group, &space_info->block_groups[index],
7547 			    list) {
7548 		u64 offset;
7549 		int cached;
7550 
7551 		btrfs_grab_block_group(block_group, delalloc);
7552 		search_start = block_group->key.objectid;
7553 
7554 		/*
7555 		 * this can happen if we end up cycling through all the
7556 		 * raid types, but we want to make sure we only allocate
7557 		 * for the proper type.
7558 		 */
7559 		if (!block_group_bits(block_group, flags)) {
7560 		    u64 extra = BTRFS_BLOCK_GROUP_DUP |
7561 				BTRFS_BLOCK_GROUP_RAID1 |
7562 				BTRFS_BLOCK_GROUP_RAID5 |
7563 				BTRFS_BLOCK_GROUP_RAID6 |
7564 				BTRFS_BLOCK_GROUP_RAID10;
7565 
7566 			/*
7567 			 * if they asked for extra copies and this block group
7568 			 * doesn't provide them, bail.  This does allow us to
7569 			 * fill raid0 from raid1.
7570 			 */
7571 			if ((flags & extra) && !(block_group->flags & extra))
7572 				goto loop;
7573 		}
7574 
7575 have_block_group:
7576 		cached = block_group_cache_done(block_group);
7577 		if (unlikely(!cached)) {
7578 			have_caching_bg = true;
7579 			ret = cache_block_group(block_group, 0);
7580 			BUG_ON(ret < 0);
7581 			ret = 0;
7582 		}
7583 
7584 		if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7585 			goto loop;
7586 		if (unlikely(block_group->ro))
7587 			goto loop;
7588 
7589 		/*
7590 		 * Ok we want to try and use the cluster allocator, so
7591 		 * lets look there
7592 		 */
7593 		if (last_ptr && use_cluster) {
7594 			struct btrfs_block_group_cache *used_block_group;
7595 			unsigned long aligned_cluster;
7596 			/*
7597 			 * the refill lock keeps out other
7598 			 * people trying to start a new cluster
7599 			 */
7600 			used_block_group = btrfs_lock_cluster(block_group,
7601 							      last_ptr,
7602 							      delalloc);
7603 			if (!used_block_group)
7604 				goto refill_cluster;
7605 
7606 			if (used_block_group != block_group &&
7607 			    (used_block_group->ro ||
7608 			     !block_group_bits(used_block_group, flags)))
7609 				goto release_cluster;
7610 
7611 			offset = btrfs_alloc_from_cluster(used_block_group,
7612 						last_ptr,
7613 						num_bytes,
7614 						used_block_group->key.objectid,
7615 						&max_extent_size);
7616 			if (offset) {
7617 				/* we have a block, we're done */
7618 				spin_unlock(&last_ptr->refill_lock);
7619 				trace_btrfs_reserve_extent_cluster(root,
7620 						used_block_group,
7621 						search_start, num_bytes);
7622 				if (used_block_group != block_group) {
7623 					btrfs_release_block_group(block_group,
7624 								  delalloc);
7625 					block_group = used_block_group;
7626 				}
7627 				goto checks;
7628 			}
7629 
7630 			WARN_ON(last_ptr->block_group != used_block_group);
7631 release_cluster:
7632 			/* If we are on LOOP_NO_EMPTY_SIZE, we can't
7633 			 * set up a new clusters, so lets just skip it
7634 			 * and let the allocator find whatever block
7635 			 * it can find.  If we reach this point, we
7636 			 * will have tried the cluster allocator
7637 			 * plenty of times and not have found
7638 			 * anything, so we are likely way too
7639 			 * fragmented for the clustering stuff to find
7640 			 * anything.
7641 			 *
7642 			 * However, if the cluster is taken from the
7643 			 * current block group, release the cluster
7644 			 * first, so that we stand a better chance of
7645 			 * succeeding in the unclustered
7646 			 * allocation.  */
7647 			if (loop >= LOOP_NO_EMPTY_SIZE &&
7648 			    used_block_group != block_group) {
7649 				spin_unlock(&last_ptr->refill_lock);
7650 				btrfs_release_block_group(used_block_group,
7651 							  delalloc);
7652 				goto unclustered_alloc;
7653 			}
7654 
7655 			/*
7656 			 * this cluster didn't work out, free it and
7657 			 * start over
7658 			 */
7659 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7660 
7661 			if (used_block_group != block_group)
7662 				btrfs_release_block_group(used_block_group,
7663 							  delalloc);
7664 refill_cluster:
7665 			if (loop >= LOOP_NO_EMPTY_SIZE) {
7666 				spin_unlock(&last_ptr->refill_lock);
7667 				goto unclustered_alloc;
7668 			}
7669 
7670 			aligned_cluster = max_t(unsigned long,
7671 						empty_cluster + empty_size,
7672 					      block_group->full_stripe_len);
7673 
7674 			/* allocate a cluster in this block group */
7675 			ret = btrfs_find_space_cluster(root, block_group,
7676 						       last_ptr, search_start,
7677 						       num_bytes,
7678 						       aligned_cluster);
7679 			if (ret == 0) {
7680 				/*
7681 				 * now pull our allocation out of this
7682 				 * cluster
7683 				 */
7684 				offset = btrfs_alloc_from_cluster(block_group,
7685 							last_ptr,
7686 							num_bytes,
7687 							search_start,
7688 							&max_extent_size);
7689 				if (offset) {
7690 					/* we found one, proceed */
7691 					spin_unlock(&last_ptr->refill_lock);
7692 					trace_btrfs_reserve_extent_cluster(root,
7693 						block_group, search_start,
7694 						num_bytes);
7695 					goto checks;
7696 				}
7697 			} else if (!cached && loop > LOOP_CACHING_NOWAIT
7698 				   && !failed_cluster_refill) {
7699 				spin_unlock(&last_ptr->refill_lock);
7700 
7701 				failed_cluster_refill = true;
7702 				wait_block_group_cache_progress(block_group,
7703 				       num_bytes + empty_cluster + empty_size);
7704 				goto have_block_group;
7705 			}
7706 
7707 			/*
7708 			 * at this point we either didn't find a cluster
7709 			 * or we weren't able to allocate a block from our
7710 			 * cluster.  Free the cluster we've been trying
7711 			 * to use, and go to the next block group
7712 			 */
7713 			btrfs_return_cluster_to_free_space(NULL, last_ptr);
7714 			spin_unlock(&last_ptr->refill_lock);
7715 			goto loop;
7716 		}
7717 
7718 unclustered_alloc:
7719 		/*
7720 		 * We are doing an unclustered alloc, set the fragmented flag so
7721 		 * we don't bother trying to setup a cluster again until we get
7722 		 * more space.
7723 		 */
7724 		if (unlikely(last_ptr)) {
7725 			spin_lock(&last_ptr->lock);
7726 			last_ptr->fragmented = 1;
7727 			spin_unlock(&last_ptr->lock);
7728 		}
7729 		spin_lock(&block_group->free_space_ctl->tree_lock);
7730 		if (cached &&
7731 		    block_group->free_space_ctl->free_space <
7732 		    num_bytes + empty_cluster + empty_size) {
7733 			if (block_group->free_space_ctl->free_space >
7734 			    max_extent_size)
7735 				max_extent_size =
7736 					block_group->free_space_ctl->free_space;
7737 			spin_unlock(&block_group->free_space_ctl->tree_lock);
7738 			goto loop;
7739 		}
7740 		spin_unlock(&block_group->free_space_ctl->tree_lock);
7741 
7742 		offset = btrfs_find_space_for_alloc(block_group, search_start,
7743 						    num_bytes, empty_size,
7744 						    &max_extent_size);
7745 		/*
7746 		 * If we didn't find a chunk, and we haven't failed on this
7747 		 * block group before, and this block group is in the middle of
7748 		 * caching and we are ok with waiting, then go ahead and wait
7749 		 * for progress to be made, and set failed_alloc to true.
7750 		 *
7751 		 * If failed_alloc is true then we've already waited on this
7752 		 * block group once and should move on to the next block group.
7753 		 */
7754 		if (!offset && !failed_alloc && !cached &&
7755 		    loop > LOOP_CACHING_NOWAIT) {
7756 			wait_block_group_cache_progress(block_group,
7757 						num_bytes + empty_size);
7758 			failed_alloc = true;
7759 			goto have_block_group;
7760 		} else if (!offset) {
7761 			goto loop;
7762 		}
7763 checks:
7764 		search_start = ALIGN(offset, root->stripesize);
7765 
7766 		/* move on to the next group */
7767 		if (search_start + num_bytes >
7768 		    block_group->key.objectid + block_group->key.offset) {
7769 			btrfs_add_free_space(block_group, offset, num_bytes);
7770 			goto loop;
7771 		}
7772 
7773 		if (offset < search_start)
7774 			btrfs_add_free_space(block_group, offset,
7775 					     search_start - offset);
7776 		BUG_ON(offset > search_start);
7777 
7778 		ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7779 				num_bytes, delalloc);
7780 		if (ret == -EAGAIN) {
7781 			btrfs_add_free_space(block_group, offset, num_bytes);
7782 			goto loop;
7783 		}
7784 		btrfs_inc_block_group_reservations(block_group);
7785 
7786 		/* we are all good, lets return */
7787 		ins->objectid = search_start;
7788 		ins->offset = num_bytes;
7789 
7790 		trace_btrfs_reserve_extent(orig_root, block_group,
7791 					   search_start, num_bytes);
7792 		btrfs_release_block_group(block_group, delalloc);
7793 		break;
7794 loop:
7795 		failed_cluster_refill = false;
7796 		failed_alloc = false;
7797 		BUG_ON(index != get_block_group_index(block_group));
7798 		btrfs_release_block_group(block_group, delalloc);
7799 	}
7800 	up_read(&space_info->groups_sem);
7801 
7802 	if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7803 		&& !orig_have_caching_bg)
7804 		orig_have_caching_bg = true;
7805 
7806 	if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7807 		goto search;
7808 
7809 	if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7810 		goto search;
7811 
7812 	/*
7813 	 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7814 	 *			caching kthreads as we move along
7815 	 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7816 	 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7817 	 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7818 	 *			again
7819 	 */
7820 	if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7821 		index = 0;
7822 		if (loop == LOOP_CACHING_NOWAIT) {
7823 			/*
7824 			 * We want to skip the LOOP_CACHING_WAIT step if we
7825 			 * don't have any uncached bgs and we've already done a
7826 			 * full search through.
7827 			 */
7828 			if (orig_have_caching_bg || !full_search)
7829 				loop = LOOP_CACHING_WAIT;
7830 			else
7831 				loop = LOOP_ALLOC_CHUNK;
7832 		} else {
7833 			loop++;
7834 		}
7835 
7836 		if (loop == LOOP_ALLOC_CHUNK) {
7837 			struct btrfs_trans_handle *trans;
7838 			int exist = 0;
7839 
7840 			trans = current->journal_info;
7841 			if (trans)
7842 				exist = 1;
7843 			else
7844 				trans = btrfs_join_transaction(root);
7845 
7846 			if (IS_ERR(trans)) {
7847 				ret = PTR_ERR(trans);
7848 				goto out;
7849 			}
7850 
7851 			ret = do_chunk_alloc(trans, root, flags,
7852 					     CHUNK_ALLOC_FORCE);
7853 
7854 			/*
7855 			 * If we can't allocate a new chunk we've already looped
7856 			 * through at least once, move on to the NO_EMPTY_SIZE
7857 			 * case.
7858 			 */
7859 			if (ret == -ENOSPC)
7860 				loop = LOOP_NO_EMPTY_SIZE;
7861 
7862 			/*
7863 			 * Do not bail out on ENOSPC since we
7864 			 * can do more things.
7865 			 */
7866 			if (ret < 0 && ret != -ENOSPC)
7867 				btrfs_abort_transaction(trans, ret);
7868 			else
7869 				ret = 0;
7870 			if (!exist)
7871 				btrfs_end_transaction(trans, root);
7872 			if (ret)
7873 				goto out;
7874 		}
7875 
7876 		if (loop == LOOP_NO_EMPTY_SIZE) {
7877 			/*
7878 			 * Don't loop again if we already have no empty_size and
7879 			 * no empty_cluster.
7880 			 */
7881 			if (empty_size == 0 &&
7882 			    empty_cluster == 0) {
7883 				ret = -ENOSPC;
7884 				goto out;
7885 			}
7886 			empty_size = 0;
7887 			empty_cluster = 0;
7888 		}
7889 
7890 		goto search;
7891 	} else if (!ins->objectid) {
7892 		ret = -ENOSPC;
7893 	} else if (ins->objectid) {
7894 		if (!use_cluster && last_ptr) {
7895 			spin_lock(&last_ptr->lock);
7896 			last_ptr->window_start = ins->objectid;
7897 			spin_unlock(&last_ptr->lock);
7898 		}
7899 		ret = 0;
7900 	}
7901 out:
7902 	if (ret == -ENOSPC) {
7903 		spin_lock(&space_info->lock);
7904 		space_info->max_extent_size = max_extent_size;
7905 		spin_unlock(&space_info->lock);
7906 		ins->offset = max_extent_size;
7907 	}
7908 	return ret;
7909 }
7910 
dump_space_info(struct btrfs_fs_info * fs_info,struct btrfs_space_info * info,u64 bytes,int dump_block_groups)7911 static void dump_space_info(struct btrfs_fs_info *fs_info,
7912 			    struct btrfs_space_info *info, u64 bytes,
7913 			    int dump_block_groups)
7914 {
7915 	struct btrfs_block_group_cache *cache;
7916 	int index = 0;
7917 
7918 	spin_lock(&info->lock);
7919 	btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7920 		   info->flags,
7921 		   info->total_bytes - info->bytes_used - info->bytes_pinned -
7922 		   info->bytes_reserved - info->bytes_readonly -
7923 		   info->bytes_may_use, (info->full) ? "" : "not ");
7924 	btrfs_info(fs_info,
7925 		"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7926 		info->total_bytes, info->bytes_used, info->bytes_pinned,
7927 		info->bytes_reserved, info->bytes_may_use,
7928 		info->bytes_readonly);
7929 	spin_unlock(&info->lock);
7930 
7931 	if (!dump_block_groups)
7932 		return;
7933 
7934 	down_read(&info->groups_sem);
7935 again:
7936 	list_for_each_entry(cache, &info->block_groups[index], list) {
7937 		spin_lock(&cache->lock);
7938 		btrfs_info(fs_info,
7939 			"block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7940 			cache->key.objectid, cache->key.offset,
7941 			btrfs_block_group_used(&cache->item), cache->pinned,
7942 			cache->reserved, cache->ro ? "[readonly]" : "");
7943 		btrfs_dump_free_space(cache, bytes);
7944 		spin_unlock(&cache->lock);
7945 	}
7946 	if (++index < BTRFS_NR_RAID_TYPES)
7947 		goto again;
7948 	up_read(&info->groups_sem);
7949 }
7950 
btrfs_reserve_extent(struct btrfs_root * root,u64 ram_bytes,u64 num_bytes,u64 min_alloc_size,u64 empty_size,u64 hint_byte,struct btrfs_key * ins,int is_data,int delalloc)7951 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7952 			 u64 num_bytes, u64 min_alloc_size,
7953 			 u64 empty_size, u64 hint_byte,
7954 			 struct btrfs_key *ins, int is_data, int delalloc)
7955 {
7956 	struct btrfs_fs_info *fs_info = root->fs_info;
7957 	bool final_tried = num_bytes == min_alloc_size;
7958 	u64 flags;
7959 	int ret;
7960 
7961 	flags = btrfs_get_alloc_profile(root, is_data);
7962 again:
7963 	WARN_ON(num_bytes < root->sectorsize);
7964 	ret = find_free_extent(root, ram_bytes, num_bytes, empty_size,
7965 			       hint_byte, ins, flags, delalloc);
7966 	if (!ret && !is_data) {
7967 		btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7968 	} else if (ret == -ENOSPC) {
7969 		if (!final_tried && ins->offset) {
7970 			num_bytes = min(num_bytes >> 1, ins->offset);
7971 			num_bytes = round_down(num_bytes, root->sectorsize);
7972 			num_bytes = max(num_bytes, min_alloc_size);
7973 			ram_bytes = num_bytes;
7974 			if (num_bytes == min_alloc_size)
7975 				final_tried = true;
7976 			goto again;
7977 		} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7978 			struct btrfs_space_info *sinfo;
7979 
7980 			sinfo = __find_space_info(fs_info, flags);
7981 			btrfs_err(root->fs_info,
7982 				  "allocation failed flags %llu, wanted %llu",
7983 				  flags, num_bytes);
7984 			if (sinfo)
7985 				dump_space_info(fs_info, sinfo, num_bytes, 1);
7986 		}
7987 	}
7988 
7989 	return ret;
7990 }
7991 
__btrfs_free_reserved_extent(struct btrfs_root * root,u64 start,u64 len,int pin,int delalloc)7992 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
7993 					u64 start, u64 len,
7994 					int pin, int delalloc)
7995 {
7996 	struct btrfs_block_group_cache *cache;
7997 	int ret = 0;
7998 
7999 	cache = btrfs_lookup_block_group(root->fs_info, start);
8000 	if (!cache) {
8001 		btrfs_err(root->fs_info, "Unable to find block group for %llu",
8002 			start);
8003 		return -ENOSPC;
8004 	}
8005 
8006 	if (pin)
8007 		pin_down_extent(root, cache, start, len, 1);
8008 	else {
8009 		if (btrfs_test_opt(root->fs_info, DISCARD))
8010 			ret = btrfs_discard_extent(root, start, len, NULL);
8011 		btrfs_add_free_space(cache, start, len);
8012 		btrfs_free_reserved_bytes(cache, len, delalloc);
8013 		trace_btrfs_reserved_extent_free(root, start, len);
8014 	}
8015 
8016 	btrfs_put_block_group(cache);
8017 	return ret;
8018 }
8019 
btrfs_free_reserved_extent(struct btrfs_root * root,u64 start,u64 len,int delalloc)8020 int btrfs_free_reserved_extent(struct btrfs_root *root,
8021 			       u64 start, u64 len, int delalloc)
8022 {
8023 	return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
8024 }
8025 
btrfs_free_and_pin_reserved_extent(struct btrfs_root * root,u64 start,u64 len)8026 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
8027 				       u64 start, u64 len)
8028 {
8029 	return __btrfs_free_reserved_extent(root, start, len, 1, 0);
8030 }
8031 
alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,u64 flags,u64 owner,u64 offset,struct btrfs_key * ins,int ref_mod)8032 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8033 				      struct btrfs_root *root,
8034 				      u64 parent, u64 root_objectid,
8035 				      u64 flags, u64 owner, u64 offset,
8036 				      struct btrfs_key *ins, int ref_mod)
8037 {
8038 	int ret;
8039 	struct btrfs_fs_info *fs_info = root->fs_info;
8040 	struct btrfs_extent_item *extent_item;
8041 	struct btrfs_extent_inline_ref *iref;
8042 	struct btrfs_path *path;
8043 	struct extent_buffer *leaf;
8044 	int type;
8045 	u32 size;
8046 
8047 	if (parent > 0)
8048 		type = BTRFS_SHARED_DATA_REF_KEY;
8049 	else
8050 		type = BTRFS_EXTENT_DATA_REF_KEY;
8051 
8052 	size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8053 
8054 	path = btrfs_alloc_path();
8055 	if (!path)
8056 		return -ENOMEM;
8057 
8058 	path->leave_spinning = 1;
8059 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8060 				      ins, size);
8061 	if (ret) {
8062 		btrfs_free_path(path);
8063 		return ret;
8064 	}
8065 
8066 	leaf = path->nodes[0];
8067 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8068 				     struct btrfs_extent_item);
8069 	btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8070 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8071 	btrfs_set_extent_flags(leaf, extent_item,
8072 			       flags | BTRFS_EXTENT_FLAG_DATA);
8073 
8074 	iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8075 	btrfs_set_extent_inline_ref_type(leaf, iref, type);
8076 	if (parent > 0) {
8077 		struct btrfs_shared_data_ref *ref;
8078 		ref = (struct btrfs_shared_data_ref *)(iref + 1);
8079 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8080 		btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8081 	} else {
8082 		struct btrfs_extent_data_ref *ref;
8083 		ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8084 		btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8085 		btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8086 		btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8087 		btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8088 	}
8089 
8090 	btrfs_mark_buffer_dirty(path->nodes[0]);
8091 	btrfs_free_path(path);
8092 
8093 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8094 					  ins->offset);
8095 	if (ret)
8096 		return ret;
8097 
8098 	ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
8099 	if (ret) { /* -ENOENT, logic error */
8100 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8101 			ins->objectid, ins->offset);
8102 		BUG();
8103 	}
8104 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
8105 	return ret;
8106 }
8107 
alloc_reserved_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,u64 flags,struct btrfs_disk_key * key,int level,struct btrfs_key * ins)8108 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8109 				     struct btrfs_root *root,
8110 				     u64 parent, u64 root_objectid,
8111 				     u64 flags, struct btrfs_disk_key *key,
8112 				     int level, struct btrfs_key *ins)
8113 {
8114 	int ret;
8115 	struct btrfs_fs_info *fs_info = root->fs_info;
8116 	struct btrfs_extent_item *extent_item;
8117 	struct btrfs_tree_block_info *block_info;
8118 	struct btrfs_extent_inline_ref *iref;
8119 	struct btrfs_path *path;
8120 	struct extent_buffer *leaf;
8121 	u32 size = sizeof(*extent_item) + sizeof(*iref);
8122 	u64 num_bytes = ins->offset;
8123 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8124 						 SKINNY_METADATA);
8125 
8126 	if (!skinny_metadata)
8127 		size += sizeof(*block_info);
8128 
8129 	path = btrfs_alloc_path();
8130 	if (!path) {
8131 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8132 						   root->nodesize);
8133 		return -ENOMEM;
8134 	}
8135 
8136 	path->leave_spinning = 1;
8137 	ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8138 				      ins, size);
8139 	if (ret) {
8140 		btrfs_free_path(path);
8141 		btrfs_free_and_pin_reserved_extent(root, ins->objectid,
8142 						   root->nodesize);
8143 		return ret;
8144 	}
8145 
8146 	leaf = path->nodes[0];
8147 	extent_item = btrfs_item_ptr(leaf, path->slots[0],
8148 				     struct btrfs_extent_item);
8149 	btrfs_set_extent_refs(leaf, extent_item, 1);
8150 	btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8151 	btrfs_set_extent_flags(leaf, extent_item,
8152 			       flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8153 
8154 	if (skinny_metadata) {
8155 		iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8156 		num_bytes = root->nodesize;
8157 	} else {
8158 		block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8159 		btrfs_set_tree_block_key(leaf, block_info, key);
8160 		btrfs_set_tree_block_level(leaf, block_info, level);
8161 		iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8162 	}
8163 
8164 	if (parent > 0) {
8165 		BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8166 		btrfs_set_extent_inline_ref_type(leaf, iref,
8167 						 BTRFS_SHARED_BLOCK_REF_KEY);
8168 		btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8169 	} else {
8170 		btrfs_set_extent_inline_ref_type(leaf, iref,
8171 						 BTRFS_TREE_BLOCK_REF_KEY);
8172 		btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8173 	}
8174 
8175 	btrfs_mark_buffer_dirty(leaf);
8176 	btrfs_free_path(path);
8177 
8178 	ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8179 					  num_bytes);
8180 	if (ret)
8181 		return ret;
8182 
8183 	ret = update_block_group(trans, root, ins->objectid, root->nodesize,
8184 				 1);
8185 	if (ret) { /* -ENOENT, logic error */
8186 		btrfs_err(fs_info, "update block group failed for %llu %llu",
8187 			ins->objectid, ins->offset);
8188 		BUG();
8189 	}
8190 
8191 	trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
8192 	return ret;
8193 }
8194 
btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 root_objectid,u64 owner,u64 offset,u64 ram_bytes,struct btrfs_key * ins)8195 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8196 				     struct btrfs_root *root,
8197 				     u64 root_objectid, u64 owner,
8198 				     u64 offset, u64 ram_bytes,
8199 				     struct btrfs_key *ins)
8200 {
8201 	int ret;
8202 
8203 	BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8204 
8205 	ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
8206 					 ins->offset, 0,
8207 					 root_objectid, owner, offset,
8208 					 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
8209 					 NULL);
8210 	return ret;
8211 }
8212 
8213 /*
8214  * this is used by the tree logging recovery code.  It records that
8215  * an extent has been allocated and makes sure to clear the free
8216  * space cache bits as well
8217  */
btrfs_alloc_logged_file_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 root_objectid,u64 owner,u64 offset,struct btrfs_key * ins)8218 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8219 				   struct btrfs_root *root,
8220 				   u64 root_objectid, u64 owner, u64 offset,
8221 				   struct btrfs_key *ins)
8222 {
8223 	int ret;
8224 	struct btrfs_block_group_cache *block_group;
8225 	struct btrfs_space_info *space_info;
8226 
8227 	/*
8228 	 * Mixed block groups will exclude before processing the log so we only
8229 	 * need to do the exclude dance if this fs isn't mixed.
8230 	 */
8231 	if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8232 		ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
8233 		if (ret)
8234 			return ret;
8235 	}
8236 
8237 	block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8238 	if (!block_group)
8239 		return -EINVAL;
8240 
8241 	space_info = block_group->space_info;
8242 	spin_lock(&space_info->lock);
8243 	spin_lock(&block_group->lock);
8244 	space_info->bytes_reserved += ins->offset;
8245 	block_group->reserved += ins->offset;
8246 	spin_unlock(&block_group->lock);
8247 	spin_unlock(&space_info->lock);
8248 
8249 	ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8250 					 0, owner, offset, ins, 1);
8251 	btrfs_put_block_group(block_group);
8252 	return ret;
8253 }
8254 
8255 static struct extent_buffer *
btrfs_init_new_buffer(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytenr,int level)8256 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8257 		      u64 bytenr, int level)
8258 {
8259 	struct extent_buffer *buf;
8260 
8261 	buf = btrfs_find_create_tree_block(root, bytenr);
8262 	if (IS_ERR(buf))
8263 		return buf;
8264 
8265 	btrfs_set_header_generation(buf, trans->transid);
8266 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8267 	btrfs_tree_lock(buf);
8268 	clean_tree_block(trans, root->fs_info, buf);
8269 	clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8270 
8271 	btrfs_set_lock_blocking(buf);
8272 	set_extent_buffer_uptodate(buf);
8273 
8274 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8275 		buf->log_index = root->log_transid % 2;
8276 		/*
8277 		 * we allow two log transactions at a time, use different
8278 		 * EXENT bit to differentiate dirty pages.
8279 		 */
8280 		if (buf->log_index == 0)
8281 			set_extent_dirty(&root->dirty_log_pages, buf->start,
8282 					buf->start + buf->len - 1, GFP_NOFS);
8283 		else
8284 			set_extent_new(&root->dirty_log_pages, buf->start,
8285 					buf->start + buf->len - 1);
8286 	} else {
8287 		buf->log_index = -1;
8288 		set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8289 			 buf->start + buf->len - 1, GFP_NOFS);
8290 	}
8291 	trans->dirty = true;
8292 	/* this returns a buffer locked for blocking */
8293 	return buf;
8294 }
8295 
8296 static struct btrfs_block_rsv *
use_block_rsv(struct btrfs_trans_handle * trans,struct btrfs_root * root,u32 blocksize)8297 use_block_rsv(struct btrfs_trans_handle *trans,
8298 	      struct btrfs_root *root, u32 blocksize)
8299 {
8300 	struct btrfs_block_rsv *block_rsv;
8301 	struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
8302 	int ret;
8303 	bool global_updated = false;
8304 
8305 	block_rsv = get_block_rsv(trans, root);
8306 
8307 	if (unlikely(block_rsv->size == 0))
8308 		goto try_reserve;
8309 again:
8310 	ret = block_rsv_use_bytes(block_rsv, blocksize);
8311 	if (!ret)
8312 		return block_rsv;
8313 
8314 	if (block_rsv->failfast)
8315 		return ERR_PTR(ret);
8316 
8317 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8318 		global_updated = true;
8319 		update_global_block_rsv(root->fs_info);
8320 		goto again;
8321 	}
8322 
8323 	if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
8324 		static DEFINE_RATELIMIT_STATE(_rs,
8325 				DEFAULT_RATELIMIT_INTERVAL * 10,
8326 				/*DEFAULT_RATELIMIT_BURST*/ 1);
8327 		if (__ratelimit(&_rs))
8328 			WARN(1, KERN_DEBUG
8329 				"BTRFS: block rsv returned %d\n", ret);
8330 	}
8331 try_reserve:
8332 	ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8333 				     BTRFS_RESERVE_NO_FLUSH);
8334 	if (!ret)
8335 		return block_rsv;
8336 	/*
8337 	 * If we couldn't reserve metadata bytes try and use some from
8338 	 * the global reserve if its space type is the same as the global
8339 	 * reservation.
8340 	 */
8341 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8342 	    block_rsv->space_info == global_rsv->space_info) {
8343 		ret = block_rsv_use_bytes(global_rsv, blocksize);
8344 		if (!ret)
8345 			return global_rsv;
8346 	}
8347 	return ERR_PTR(ret);
8348 }
8349 
unuse_block_rsv(struct btrfs_fs_info * fs_info,struct btrfs_block_rsv * block_rsv,u32 blocksize)8350 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8351 			    struct btrfs_block_rsv *block_rsv, u32 blocksize)
8352 {
8353 	block_rsv_add_bytes(block_rsv, blocksize, 0);
8354 	block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8355 }
8356 
8357 /*
8358  * finds a free extent and does all the dirty work required for allocation
8359  * returns the tree buffer or an ERR_PTR on error.
8360  */
btrfs_alloc_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 parent,u64 root_objectid,struct btrfs_disk_key * key,int level,u64 hint,u64 empty_size)8361 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8362 					struct btrfs_root *root,
8363 					u64 parent, u64 root_objectid,
8364 					struct btrfs_disk_key *key, int level,
8365 					u64 hint, u64 empty_size)
8366 {
8367 	struct btrfs_key ins;
8368 	struct btrfs_block_rsv *block_rsv;
8369 	struct extent_buffer *buf;
8370 	struct btrfs_delayed_extent_op *extent_op;
8371 	u64 flags = 0;
8372 	int ret;
8373 	u32 blocksize = root->nodesize;
8374 	bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8375 						 SKINNY_METADATA);
8376 
8377 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8378 	if (btrfs_is_testing(root->fs_info)) {
8379 		buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8380 					    level);
8381 		if (!IS_ERR(buf))
8382 			root->alloc_bytenr += blocksize;
8383 		return buf;
8384 	}
8385 #endif
8386 
8387 	block_rsv = use_block_rsv(trans, root, blocksize);
8388 	if (IS_ERR(block_rsv))
8389 		return ERR_CAST(block_rsv);
8390 
8391 	ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8392 				   empty_size, hint, &ins, 0, 0);
8393 	if (ret)
8394 		goto out_unuse;
8395 
8396 	buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8397 	if (IS_ERR(buf)) {
8398 		ret = PTR_ERR(buf);
8399 		goto out_free_reserved;
8400 	}
8401 
8402 	if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8403 		if (parent == 0)
8404 			parent = ins.objectid;
8405 		flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8406 	} else
8407 		BUG_ON(parent > 0);
8408 
8409 	if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8410 		extent_op = btrfs_alloc_delayed_extent_op();
8411 		if (!extent_op) {
8412 			ret = -ENOMEM;
8413 			goto out_free_buf;
8414 		}
8415 		if (key)
8416 			memcpy(&extent_op->key, key, sizeof(extent_op->key));
8417 		else
8418 			memset(&extent_op->key, 0, sizeof(extent_op->key));
8419 		extent_op->flags_to_set = flags;
8420 		extent_op->update_key = skinny_metadata ? false : true;
8421 		extent_op->update_flags = true;
8422 		extent_op->is_data = false;
8423 		extent_op->level = level;
8424 
8425 		ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
8426 						 ins.objectid, ins.offset,
8427 						 parent, root_objectid, level,
8428 						 BTRFS_ADD_DELAYED_EXTENT,
8429 						 extent_op);
8430 		if (ret)
8431 			goto out_free_delayed;
8432 	}
8433 	return buf;
8434 
8435 out_free_delayed:
8436 	btrfs_free_delayed_extent_op(extent_op);
8437 out_free_buf:
8438 	free_extent_buffer(buf);
8439 out_free_reserved:
8440 	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8441 out_unuse:
8442 	unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8443 	return ERR_PTR(ret);
8444 }
8445 
8446 struct walk_control {
8447 	u64 refs[BTRFS_MAX_LEVEL];
8448 	u64 flags[BTRFS_MAX_LEVEL];
8449 	struct btrfs_key update_progress;
8450 	int stage;
8451 	int level;
8452 	int shared_level;
8453 	int update_ref;
8454 	int keep_locks;
8455 	int reada_slot;
8456 	int reada_count;
8457 	int for_reloc;
8458 };
8459 
8460 #define DROP_REFERENCE	1
8461 #define UPDATE_BACKREF	2
8462 
reada_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct walk_control * wc,struct btrfs_path * path)8463 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8464 				     struct btrfs_root *root,
8465 				     struct walk_control *wc,
8466 				     struct btrfs_path *path)
8467 {
8468 	u64 bytenr;
8469 	u64 generation;
8470 	u64 refs;
8471 	u64 flags;
8472 	u32 nritems;
8473 	struct btrfs_key key;
8474 	struct extent_buffer *eb;
8475 	int ret;
8476 	int slot;
8477 	int nread = 0;
8478 
8479 	if (path->slots[wc->level] < wc->reada_slot) {
8480 		wc->reada_count = wc->reada_count * 2 / 3;
8481 		wc->reada_count = max(wc->reada_count, 2);
8482 	} else {
8483 		wc->reada_count = wc->reada_count * 3 / 2;
8484 		wc->reada_count = min_t(int, wc->reada_count,
8485 					BTRFS_NODEPTRS_PER_BLOCK(root));
8486 	}
8487 
8488 	eb = path->nodes[wc->level];
8489 	nritems = btrfs_header_nritems(eb);
8490 
8491 	for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8492 		if (nread >= wc->reada_count)
8493 			break;
8494 
8495 		cond_resched();
8496 		bytenr = btrfs_node_blockptr(eb, slot);
8497 		generation = btrfs_node_ptr_generation(eb, slot);
8498 
8499 		if (slot == path->slots[wc->level])
8500 			goto reada;
8501 
8502 		if (wc->stage == UPDATE_BACKREF &&
8503 		    generation <= root->root_key.offset)
8504 			continue;
8505 
8506 		/* We don't lock the tree block, it's OK to be racy here */
8507 		ret = btrfs_lookup_extent_info(trans, root, bytenr,
8508 					       wc->level - 1, 1, &refs,
8509 					       &flags);
8510 		/* We don't care about errors in readahead. */
8511 		if (ret < 0)
8512 			continue;
8513 		BUG_ON(refs == 0);
8514 
8515 		if (wc->stage == DROP_REFERENCE) {
8516 			if (refs == 1)
8517 				goto reada;
8518 
8519 			if (wc->level == 1 &&
8520 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8521 				continue;
8522 			if (!wc->update_ref ||
8523 			    generation <= root->root_key.offset)
8524 				continue;
8525 			btrfs_node_key_to_cpu(eb, &key, slot);
8526 			ret = btrfs_comp_cpu_keys(&key,
8527 						  &wc->update_progress);
8528 			if (ret < 0)
8529 				continue;
8530 		} else {
8531 			if (wc->level == 1 &&
8532 			    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8533 				continue;
8534 		}
8535 reada:
8536 		readahead_tree_block(root, bytenr);
8537 		nread++;
8538 	}
8539 	wc->reada_slot = slot;
8540 }
8541 
account_leaf_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * eb)8542 static int account_leaf_items(struct btrfs_trans_handle *trans,
8543 			      struct btrfs_root *root,
8544 			      struct extent_buffer *eb)
8545 {
8546 	int nr = btrfs_header_nritems(eb);
8547 	int i, extent_type, ret;
8548 	struct btrfs_key key;
8549 	struct btrfs_file_extent_item *fi;
8550 	u64 bytenr, num_bytes;
8551 
8552 	/* We can be called directly from walk_up_proc() */
8553 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags))
8554 		return 0;
8555 
8556 	for (i = 0; i < nr; i++) {
8557 		btrfs_item_key_to_cpu(eb, &key, i);
8558 
8559 		if (key.type != BTRFS_EXTENT_DATA_KEY)
8560 			continue;
8561 
8562 		fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8563 		/* filter out non qgroup-accountable extents  */
8564 		extent_type = btrfs_file_extent_type(eb, fi);
8565 
8566 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8567 			continue;
8568 
8569 		bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8570 		if (!bytenr)
8571 			continue;
8572 
8573 		num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
8574 
8575 		ret = btrfs_qgroup_insert_dirty_extent(trans, root->fs_info,
8576 				bytenr, num_bytes, GFP_NOFS);
8577 		if (ret)
8578 			return ret;
8579 	}
8580 	return 0;
8581 }
8582 
8583 /*
8584  * Walk up the tree from the bottom, freeing leaves and any interior
8585  * nodes which have had all slots visited. If a node (leaf or
8586  * interior) is freed, the node above it will have it's slot
8587  * incremented. The root node will never be freed.
8588  *
8589  * At the end of this function, we should have a path which has all
8590  * slots incremented to the next position for a search. If we need to
8591  * read a new node it will be NULL and the node above it will have the
8592  * correct slot selected for a later read.
8593  *
8594  * If we increment the root nodes slot counter past the number of
8595  * elements, 1 is returned to signal completion of the search.
8596  */
adjust_slots_upwards(struct btrfs_root * root,struct btrfs_path * path,int root_level)8597 static int adjust_slots_upwards(struct btrfs_root *root,
8598 				struct btrfs_path *path, int root_level)
8599 {
8600 	int level = 0;
8601 	int nr, slot;
8602 	struct extent_buffer *eb;
8603 
8604 	if (root_level == 0)
8605 		return 1;
8606 
8607 	while (level <= root_level) {
8608 		eb = path->nodes[level];
8609 		nr = btrfs_header_nritems(eb);
8610 		path->slots[level]++;
8611 		slot = path->slots[level];
8612 		if (slot >= nr || level == 0) {
8613 			/*
8614 			 * Don't free the root -  we will detect this
8615 			 * condition after our loop and return a
8616 			 * positive value for caller to stop walking the tree.
8617 			 */
8618 			if (level != root_level) {
8619 				btrfs_tree_unlock_rw(eb, path->locks[level]);
8620 				path->locks[level] = 0;
8621 
8622 				free_extent_buffer(eb);
8623 				path->nodes[level] = NULL;
8624 				path->slots[level] = 0;
8625 			}
8626 		} else {
8627 			/*
8628 			 * We have a valid slot to walk back down
8629 			 * from. Stop here so caller can process these
8630 			 * new nodes.
8631 			 */
8632 			break;
8633 		}
8634 
8635 		level++;
8636 	}
8637 
8638 	eb = path->nodes[root_level];
8639 	if (path->slots[root_level] >= btrfs_header_nritems(eb))
8640 		return 1;
8641 
8642 	return 0;
8643 }
8644 
8645 /*
8646  * root_eb is the subtree root and is locked before this function is called.
8647  */
account_shared_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * root_eb,u64 root_gen,int root_level)8648 static int account_shared_subtree(struct btrfs_trans_handle *trans,
8649 				  struct btrfs_root *root,
8650 				  struct extent_buffer *root_eb,
8651 				  u64 root_gen,
8652 				  int root_level)
8653 {
8654 	int ret = 0;
8655 	int level;
8656 	struct extent_buffer *eb = root_eb;
8657 	struct btrfs_path *path = NULL;
8658 
8659 	BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8660 	BUG_ON(root_eb == NULL);
8661 
8662 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &root->fs_info->flags))
8663 		return 0;
8664 
8665 	if (!extent_buffer_uptodate(root_eb)) {
8666 		ret = btrfs_read_buffer(root_eb, root_gen);
8667 		if (ret)
8668 			goto out;
8669 	}
8670 
8671 	if (root_level == 0) {
8672 		ret = account_leaf_items(trans, root, root_eb);
8673 		goto out;
8674 	}
8675 
8676 	path = btrfs_alloc_path();
8677 	if (!path)
8678 		return -ENOMEM;
8679 
8680 	/*
8681 	 * Walk down the tree.  Missing extent blocks are filled in as
8682 	 * we go. Metadata is accounted every time we read a new
8683 	 * extent block.
8684 	 *
8685 	 * When we reach a leaf, we account for file extent items in it,
8686 	 * walk back up the tree (adjusting slot pointers as we go)
8687 	 * and restart the search process.
8688 	 */
8689 	extent_buffer_get(root_eb); /* For path */
8690 	path->nodes[root_level] = root_eb;
8691 	path->slots[root_level] = 0;
8692 	path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8693 walk_down:
8694 	level = root_level;
8695 	while (level >= 0) {
8696 		if (path->nodes[level] == NULL) {
8697 			int parent_slot;
8698 			u64 child_gen;
8699 			u64 child_bytenr;
8700 
8701 			/* We need to get child blockptr/gen from
8702 			 * parent before we can read it. */
8703 			eb = path->nodes[level + 1];
8704 			parent_slot = path->slots[level + 1];
8705 			child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8706 			child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8707 
8708 			eb = read_tree_block(root, child_bytenr, child_gen);
8709 			if (IS_ERR(eb)) {
8710 				ret = PTR_ERR(eb);
8711 				goto out;
8712 			} else if (!extent_buffer_uptodate(eb)) {
8713 				free_extent_buffer(eb);
8714 				ret = -EIO;
8715 				goto out;
8716 			}
8717 
8718 			path->nodes[level] = eb;
8719 			path->slots[level] = 0;
8720 
8721 			btrfs_tree_read_lock(eb);
8722 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8723 			path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
8724 
8725 			ret = btrfs_qgroup_insert_dirty_extent(trans,
8726 					root->fs_info, child_bytenr,
8727 					root->nodesize, GFP_NOFS);
8728 			if (ret)
8729 				goto out;
8730 		}
8731 
8732 		if (level == 0) {
8733 			ret = account_leaf_items(trans, root, path->nodes[level]);
8734 			if (ret)
8735 				goto out;
8736 
8737 			/* Nonzero return here means we completed our search */
8738 			ret = adjust_slots_upwards(root, path, root_level);
8739 			if (ret)
8740 				break;
8741 
8742 			/* Restart search with new slots */
8743 			goto walk_down;
8744 		}
8745 
8746 		level--;
8747 	}
8748 
8749 	ret = 0;
8750 out:
8751 	btrfs_free_path(path);
8752 
8753 	return ret;
8754 }
8755 
8756 /*
8757  * helper to process tree block while walking down the tree.
8758  *
8759  * when wc->stage == UPDATE_BACKREF, this function updates
8760  * back refs for pointers in the block.
8761  *
8762  * NOTE: return value 1 means we should stop walking down.
8763  */
walk_down_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int lookup_info)8764 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8765 				   struct btrfs_root *root,
8766 				   struct btrfs_path *path,
8767 				   struct walk_control *wc, int lookup_info)
8768 {
8769 	int level = wc->level;
8770 	struct extent_buffer *eb = path->nodes[level];
8771 	u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8772 	int ret;
8773 
8774 	if (wc->stage == UPDATE_BACKREF &&
8775 	    btrfs_header_owner(eb) != root->root_key.objectid)
8776 		return 1;
8777 
8778 	/*
8779 	 * when reference count of tree block is 1, it won't increase
8780 	 * again. once full backref flag is set, we never clear it.
8781 	 */
8782 	if (lookup_info &&
8783 	    ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8784 	     (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8785 		BUG_ON(!path->locks[level]);
8786 		ret = btrfs_lookup_extent_info(trans, root,
8787 					       eb->start, level, 1,
8788 					       &wc->refs[level],
8789 					       &wc->flags[level]);
8790 		BUG_ON(ret == -ENOMEM);
8791 		if (ret)
8792 			return ret;
8793 		BUG_ON(wc->refs[level] == 0);
8794 	}
8795 
8796 	if (wc->stage == DROP_REFERENCE) {
8797 		if (wc->refs[level] > 1)
8798 			return 1;
8799 
8800 		if (path->locks[level] && !wc->keep_locks) {
8801 			btrfs_tree_unlock_rw(eb, path->locks[level]);
8802 			path->locks[level] = 0;
8803 		}
8804 		return 0;
8805 	}
8806 
8807 	/* wc->stage == UPDATE_BACKREF */
8808 	if (!(wc->flags[level] & flag)) {
8809 		BUG_ON(!path->locks[level]);
8810 		ret = btrfs_inc_ref(trans, root, eb, 1);
8811 		BUG_ON(ret); /* -ENOMEM */
8812 		ret = btrfs_dec_ref(trans, root, eb, 0);
8813 		BUG_ON(ret); /* -ENOMEM */
8814 		ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
8815 						  eb->len, flag,
8816 						  btrfs_header_level(eb), 0);
8817 		BUG_ON(ret); /* -ENOMEM */
8818 		wc->flags[level] |= flag;
8819 	}
8820 
8821 	/*
8822 	 * the block is shared by multiple trees, so it's not good to
8823 	 * keep the tree lock
8824 	 */
8825 	if (path->locks[level] && level > 0) {
8826 		btrfs_tree_unlock_rw(eb, path->locks[level]);
8827 		path->locks[level] = 0;
8828 	}
8829 	return 0;
8830 }
8831 
8832 /*
8833  * helper to process tree block pointer.
8834  *
8835  * when wc->stage == DROP_REFERENCE, this function checks
8836  * reference count of the block pointed to. if the block
8837  * is shared and we need update back refs for the subtree
8838  * rooted at the block, this function changes wc->stage to
8839  * UPDATE_BACKREF. if the block is shared and there is no
8840  * need to update back, this function drops the reference
8841  * to the block.
8842  *
8843  * NOTE: return value 1 means we should stop walking down.
8844  */
do_walk_down(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int * lookup_info)8845 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8846 				 struct btrfs_root *root,
8847 				 struct btrfs_path *path,
8848 				 struct walk_control *wc, int *lookup_info)
8849 {
8850 	u64 bytenr;
8851 	u64 generation;
8852 	u64 parent;
8853 	u32 blocksize;
8854 	struct btrfs_key key;
8855 	struct extent_buffer *next;
8856 	int level = wc->level;
8857 	int reada = 0;
8858 	int ret = 0;
8859 	bool need_account = false;
8860 
8861 	generation = btrfs_node_ptr_generation(path->nodes[level],
8862 					       path->slots[level]);
8863 	/*
8864 	 * if the lower level block was created before the snapshot
8865 	 * was created, we know there is no need to update back refs
8866 	 * for the subtree
8867 	 */
8868 	if (wc->stage == UPDATE_BACKREF &&
8869 	    generation <= root->root_key.offset) {
8870 		*lookup_info = 1;
8871 		return 1;
8872 	}
8873 
8874 	bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8875 	blocksize = root->nodesize;
8876 
8877 	next = btrfs_find_tree_block(root->fs_info, bytenr);
8878 	if (!next) {
8879 		next = btrfs_find_create_tree_block(root, bytenr);
8880 		if (IS_ERR(next))
8881 			return PTR_ERR(next);
8882 
8883 		btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8884 					       level - 1);
8885 		reada = 1;
8886 	}
8887 	btrfs_tree_lock(next);
8888 	btrfs_set_lock_blocking(next);
8889 
8890 	ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
8891 				       &wc->refs[level - 1],
8892 				       &wc->flags[level - 1]);
8893 	if (ret < 0)
8894 		goto out_unlock;
8895 
8896 	if (unlikely(wc->refs[level - 1] == 0)) {
8897 		btrfs_err(root->fs_info, "Missing references.");
8898 		ret = -EIO;
8899 		goto out_unlock;
8900 	}
8901 	*lookup_info = 0;
8902 
8903 	if (wc->stage == DROP_REFERENCE) {
8904 		if (wc->refs[level - 1] > 1) {
8905 			need_account = true;
8906 			if (level == 1 &&
8907 			    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8908 				goto skip;
8909 
8910 			if (!wc->update_ref ||
8911 			    generation <= root->root_key.offset)
8912 				goto skip;
8913 
8914 			btrfs_node_key_to_cpu(path->nodes[level], &key,
8915 					      path->slots[level]);
8916 			ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8917 			if (ret < 0)
8918 				goto skip;
8919 
8920 			wc->stage = UPDATE_BACKREF;
8921 			wc->shared_level = level - 1;
8922 		}
8923 	} else {
8924 		if (level == 1 &&
8925 		    (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8926 			goto skip;
8927 	}
8928 
8929 	if (!btrfs_buffer_uptodate(next, generation, 0)) {
8930 		btrfs_tree_unlock(next);
8931 		free_extent_buffer(next);
8932 		next = NULL;
8933 		*lookup_info = 1;
8934 	}
8935 
8936 	if (!next) {
8937 		if (reada && level == 1)
8938 			reada_walk_down(trans, root, wc, path);
8939 		next = read_tree_block(root, bytenr, generation);
8940 		if (IS_ERR(next)) {
8941 			return PTR_ERR(next);
8942 		} else if (!extent_buffer_uptodate(next)) {
8943 			free_extent_buffer(next);
8944 			return -EIO;
8945 		}
8946 		btrfs_tree_lock(next);
8947 		btrfs_set_lock_blocking(next);
8948 	}
8949 
8950 	level--;
8951 	ASSERT(level == btrfs_header_level(next));
8952 	if (level != btrfs_header_level(next)) {
8953 		btrfs_err(root->fs_info, "mismatched level");
8954 		ret = -EIO;
8955 		goto out_unlock;
8956 	}
8957 	path->nodes[level] = next;
8958 	path->slots[level] = 0;
8959 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8960 	wc->level = level;
8961 	if (wc->level == 1)
8962 		wc->reada_slot = 0;
8963 	return 0;
8964 skip:
8965 	wc->refs[level - 1] = 0;
8966 	wc->flags[level - 1] = 0;
8967 	if (wc->stage == DROP_REFERENCE) {
8968 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8969 			parent = path->nodes[level]->start;
8970 		} else {
8971 			ASSERT(root->root_key.objectid ==
8972 			       btrfs_header_owner(path->nodes[level]));
8973 			if (root->root_key.objectid !=
8974 			    btrfs_header_owner(path->nodes[level])) {
8975 				btrfs_err(root->fs_info,
8976 						"mismatched block owner");
8977 				ret = -EIO;
8978 				goto out_unlock;
8979 			}
8980 			parent = 0;
8981 		}
8982 
8983 		if (need_account) {
8984 			ret = account_shared_subtree(trans, root, next,
8985 						     generation, level - 1);
8986 			if (ret) {
8987 				btrfs_err_rl(root->fs_info,
8988 					     "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8989 					     ret);
8990 			}
8991 		}
8992 		ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
8993 				root->root_key.objectid, level - 1, 0);
8994 		if (ret)
8995 			goto out_unlock;
8996 	}
8997 
8998 	*lookup_info = 1;
8999 	ret = 1;
9000 
9001 out_unlock:
9002 	btrfs_tree_unlock(next);
9003 	free_extent_buffer(next);
9004 
9005 	return ret;
9006 }
9007 
9008 /*
9009  * helper to process tree block while walking up the tree.
9010  *
9011  * when wc->stage == DROP_REFERENCE, this function drops
9012  * reference count on the block.
9013  *
9014  * when wc->stage == UPDATE_BACKREF, this function changes
9015  * wc->stage back to DROP_REFERENCE if we changed wc->stage
9016  * to UPDATE_BACKREF previously while processing the block.
9017  *
9018  * NOTE: return value 1 means we should stop walking up.
9019  */
walk_up_proc(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)9020 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9021 				 struct btrfs_root *root,
9022 				 struct btrfs_path *path,
9023 				 struct walk_control *wc)
9024 {
9025 	int ret;
9026 	int level = wc->level;
9027 	struct extent_buffer *eb = path->nodes[level];
9028 	u64 parent = 0;
9029 
9030 	if (wc->stage == UPDATE_BACKREF) {
9031 		BUG_ON(wc->shared_level < level);
9032 		if (level < wc->shared_level)
9033 			goto out;
9034 
9035 		ret = find_next_key(path, level + 1, &wc->update_progress);
9036 		if (ret > 0)
9037 			wc->update_ref = 0;
9038 
9039 		wc->stage = DROP_REFERENCE;
9040 		wc->shared_level = -1;
9041 		path->slots[level] = 0;
9042 
9043 		/*
9044 		 * check reference count again if the block isn't locked.
9045 		 * we should start walking down the tree again if reference
9046 		 * count is one.
9047 		 */
9048 		if (!path->locks[level]) {
9049 			BUG_ON(level == 0);
9050 			btrfs_tree_lock(eb);
9051 			btrfs_set_lock_blocking(eb);
9052 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9053 
9054 			ret = btrfs_lookup_extent_info(trans, root,
9055 						       eb->start, level, 1,
9056 						       &wc->refs[level],
9057 						       &wc->flags[level]);
9058 			if (ret < 0) {
9059 				btrfs_tree_unlock_rw(eb, path->locks[level]);
9060 				path->locks[level] = 0;
9061 				return ret;
9062 			}
9063 			BUG_ON(wc->refs[level] == 0);
9064 			if (wc->refs[level] == 1) {
9065 				btrfs_tree_unlock_rw(eb, path->locks[level]);
9066 				path->locks[level] = 0;
9067 				return 1;
9068 			}
9069 		}
9070 	}
9071 
9072 	/* wc->stage == DROP_REFERENCE */
9073 	BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
9074 
9075 	if (wc->refs[level] == 1) {
9076 		if (level == 0) {
9077 			if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9078 				ret = btrfs_dec_ref(trans, root, eb, 1);
9079 			else
9080 				ret = btrfs_dec_ref(trans, root, eb, 0);
9081 			BUG_ON(ret); /* -ENOMEM */
9082 			ret = account_leaf_items(trans, root, eb);
9083 			if (ret) {
9084 				btrfs_err_rl(root->fs_info,
9085 					     "error %d accounting leaf items. Quota is out of sync, rescan required.",
9086 					     ret);
9087 			}
9088 		}
9089 		/* make block locked assertion in clean_tree_block happy */
9090 		if (!path->locks[level] &&
9091 		    btrfs_header_generation(eb) == trans->transid) {
9092 			btrfs_tree_lock(eb);
9093 			btrfs_set_lock_blocking(eb);
9094 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9095 		}
9096 		clean_tree_block(trans, root->fs_info, eb);
9097 	}
9098 
9099 	if (eb == root->node) {
9100 		if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9101 			parent = eb->start;
9102 		else
9103 			BUG_ON(root->root_key.objectid !=
9104 			       btrfs_header_owner(eb));
9105 	} else {
9106 		if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9107 			parent = path->nodes[level + 1]->start;
9108 		else
9109 			BUG_ON(root->root_key.objectid !=
9110 			       btrfs_header_owner(path->nodes[level + 1]));
9111 	}
9112 
9113 	btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9114 out:
9115 	wc->refs[level] = 0;
9116 	wc->flags[level] = 0;
9117 	return 0;
9118 }
9119 
walk_down_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc)9120 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9121 				   struct btrfs_root *root,
9122 				   struct btrfs_path *path,
9123 				   struct walk_control *wc)
9124 {
9125 	int level = wc->level;
9126 	int lookup_info = 1;
9127 	int ret;
9128 
9129 	while (level >= 0) {
9130 		ret = walk_down_proc(trans, root, path, wc, lookup_info);
9131 		if (ret > 0)
9132 			break;
9133 
9134 		if (level == 0)
9135 			break;
9136 
9137 		if (path->slots[level] >=
9138 		    btrfs_header_nritems(path->nodes[level]))
9139 			break;
9140 
9141 		ret = do_walk_down(trans, root, path, wc, &lookup_info);
9142 		if (ret > 0) {
9143 			path->slots[level]++;
9144 			continue;
9145 		} else if (ret < 0)
9146 			return ret;
9147 		level = wc->level;
9148 	}
9149 	return 0;
9150 }
9151 
walk_up_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct walk_control * wc,int max_level)9152 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9153 				 struct btrfs_root *root,
9154 				 struct btrfs_path *path,
9155 				 struct walk_control *wc, int max_level)
9156 {
9157 	int level = wc->level;
9158 	int ret;
9159 
9160 	path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9161 	while (level < max_level && path->nodes[level]) {
9162 		wc->level = level;
9163 		if (path->slots[level] + 1 <
9164 		    btrfs_header_nritems(path->nodes[level])) {
9165 			path->slots[level]++;
9166 			return 0;
9167 		} else {
9168 			ret = walk_up_proc(trans, root, path, wc);
9169 			if (ret > 0)
9170 				return 0;
9171 
9172 			if (path->locks[level]) {
9173 				btrfs_tree_unlock_rw(path->nodes[level],
9174 						     path->locks[level]);
9175 				path->locks[level] = 0;
9176 			}
9177 			free_extent_buffer(path->nodes[level]);
9178 			path->nodes[level] = NULL;
9179 			level++;
9180 		}
9181 	}
9182 	return 1;
9183 }
9184 
9185 /*
9186  * drop a subvolume tree.
9187  *
9188  * this function traverses the tree freeing any blocks that only
9189  * referenced by the tree.
9190  *
9191  * when a shared tree block is found. this function decreases its
9192  * reference count by one. if update_ref is true, this function
9193  * also make sure backrefs for the shared block and all lower level
9194  * blocks are properly updated.
9195  *
9196  * If called with for_reloc == 0, may exit early with -EAGAIN
9197  */
btrfs_drop_snapshot(struct btrfs_root * root,struct btrfs_block_rsv * block_rsv,int update_ref,int for_reloc)9198 int btrfs_drop_snapshot(struct btrfs_root *root,
9199 			 struct btrfs_block_rsv *block_rsv, int update_ref,
9200 			 int for_reloc)
9201 {
9202 	struct btrfs_fs_info *fs_info = root->fs_info;
9203 	struct btrfs_path *path;
9204 	struct btrfs_trans_handle *trans;
9205 	struct btrfs_root *tree_root = fs_info->tree_root;
9206 	struct btrfs_root_item *root_item = &root->root_item;
9207 	struct walk_control *wc;
9208 	struct btrfs_key key;
9209 	int err = 0;
9210 	int ret;
9211 	int level;
9212 	bool root_dropped = false;
9213 
9214 	btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9215 
9216 	path = btrfs_alloc_path();
9217 	if (!path) {
9218 		err = -ENOMEM;
9219 		goto out;
9220 	}
9221 
9222 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9223 	if (!wc) {
9224 		btrfs_free_path(path);
9225 		err = -ENOMEM;
9226 		goto out;
9227 	}
9228 
9229 	trans = btrfs_start_transaction(tree_root, 0);
9230 	if (IS_ERR(trans)) {
9231 		err = PTR_ERR(trans);
9232 		goto out_free;
9233 	}
9234 
9235 	if (block_rsv)
9236 		trans->block_rsv = block_rsv;
9237 
9238 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9239 		level = btrfs_header_level(root->node);
9240 		path->nodes[level] = btrfs_lock_root_node(root);
9241 		btrfs_set_lock_blocking(path->nodes[level]);
9242 		path->slots[level] = 0;
9243 		path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9244 		memset(&wc->update_progress, 0,
9245 		       sizeof(wc->update_progress));
9246 	} else {
9247 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9248 		memcpy(&wc->update_progress, &key,
9249 		       sizeof(wc->update_progress));
9250 
9251 		level = root_item->drop_level;
9252 		BUG_ON(level == 0);
9253 		path->lowest_level = level;
9254 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9255 		path->lowest_level = 0;
9256 		if (ret < 0) {
9257 			err = ret;
9258 			goto out_end_trans;
9259 		}
9260 		WARN_ON(ret > 0);
9261 
9262 		/*
9263 		 * unlock our path, this is safe because only this
9264 		 * function is allowed to delete this snapshot
9265 		 */
9266 		btrfs_unlock_up_safe(path, 0);
9267 
9268 		level = btrfs_header_level(root->node);
9269 		while (1) {
9270 			btrfs_tree_lock(path->nodes[level]);
9271 			btrfs_set_lock_blocking(path->nodes[level]);
9272 			path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9273 
9274 			ret = btrfs_lookup_extent_info(trans, root,
9275 						path->nodes[level]->start,
9276 						level, 1, &wc->refs[level],
9277 						&wc->flags[level]);
9278 			if (ret < 0) {
9279 				err = ret;
9280 				goto out_end_trans;
9281 			}
9282 			BUG_ON(wc->refs[level] == 0);
9283 
9284 			if (level == root_item->drop_level)
9285 				break;
9286 
9287 			btrfs_tree_unlock(path->nodes[level]);
9288 			path->locks[level] = 0;
9289 			WARN_ON(wc->refs[level] != 1);
9290 			level--;
9291 		}
9292 	}
9293 
9294 	wc->level = level;
9295 	wc->shared_level = -1;
9296 	wc->stage = DROP_REFERENCE;
9297 	wc->update_ref = update_ref;
9298 	wc->keep_locks = 0;
9299 	wc->for_reloc = for_reloc;
9300 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9301 
9302 	while (1) {
9303 
9304 		ret = walk_down_tree(trans, root, path, wc);
9305 		if (ret < 0) {
9306 			err = ret;
9307 			break;
9308 		}
9309 
9310 		ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9311 		if (ret < 0) {
9312 			err = ret;
9313 			break;
9314 		}
9315 
9316 		if (ret > 0) {
9317 			BUG_ON(wc->stage != DROP_REFERENCE);
9318 			break;
9319 		}
9320 
9321 		if (wc->stage == DROP_REFERENCE) {
9322 			level = wc->level;
9323 			btrfs_node_key(path->nodes[level],
9324 				       &root_item->drop_progress,
9325 				       path->slots[level]);
9326 			root_item->drop_level = level;
9327 		}
9328 
9329 		BUG_ON(wc->level == 0);
9330 		if (btrfs_should_end_transaction(trans, tree_root) ||
9331 		    (!for_reloc && btrfs_need_cleaner_sleep(root))) {
9332 			ret = btrfs_update_root(trans, tree_root,
9333 						&root->root_key,
9334 						root_item);
9335 			if (ret) {
9336 				btrfs_abort_transaction(trans, ret);
9337 				err = ret;
9338 				goto out_end_trans;
9339 			}
9340 
9341 			btrfs_end_transaction_throttle(trans, tree_root);
9342 			if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
9343 				btrfs_debug(fs_info,
9344 					    "drop snapshot early exit");
9345 				err = -EAGAIN;
9346 				goto out_free;
9347 			}
9348 
9349 			trans = btrfs_start_transaction(tree_root, 0);
9350 			if (IS_ERR(trans)) {
9351 				err = PTR_ERR(trans);
9352 				goto out_free;
9353 			}
9354 			if (block_rsv)
9355 				trans->block_rsv = block_rsv;
9356 		}
9357 	}
9358 	btrfs_release_path(path);
9359 	if (err)
9360 		goto out_end_trans;
9361 
9362 	ret = btrfs_del_root(trans, tree_root, &root->root_key);
9363 	if (ret) {
9364 		btrfs_abort_transaction(trans, ret);
9365 		err = ret;
9366 		goto out_end_trans;
9367 	}
9368 
9369 	if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9370 		ret = btrfs_find_root(tree_root, &root->root_key, path,
9371 				      NULL, NULL);
9372 		if (ret < 0) {
9373 			btrfs_abort_transaction(trans, ret);
9374 			err = ret;
9375 			goto out_end_trans;
9376 		} else if (ret > 0) {
9377 			/* if we fail to delete the orphan item this time
9378 			 * around, it'll get picked up the next time.
9379 			 *
9380 			 * The most common failure here is just -ENOENT.
9381 			 */
9382 			btrfs_del_orphan_item(trans, tree_root,
9383 					      root->root_key.objectid);
9384 		}
9385 	}
9386 
9387 	if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9388 		btrfs_add_dropped_root(trans, root);
9389 	} else {
9390 		free_extent_buffer(root->node);
9391 		free_extent_buffer(root->commit_root);
9392 		btrfs_put_fs_root(root);
9393 	}
9394 	root_dropped = true;
9395 out_end_trans:
9396 	btrfs_end_transaction_throttle(trans, tree_root);
9397 out_free:
9398 	kfree(wc);
9399 	btrfs_free_path(path);
9400 out:
9401 	/*
9402 	 * So if we need to stop dropping the snapshot for whatever reason we
9403 	 * need to make sure to add it back to the dead root list so that we
9404 	 * keep trying to do the work later.  This also cleans up roots if we
9405 	 * don't have it in the radix (like when we recover after a power fail
9406 	 * or unmount) so we don't leak memory.
9407 	 */
9408 	if (!for_reloc && root_dropped == false)
9409 		btrfs_add_dead_root(root);
9410 	if (err && err != -EAGAIN)
9411 		btrfs_handle_fs_error(fs_info, err, NULL);
9412 	return err;
9413 }
9414 
9415 /*
9416  * drop subtree rooted at tree block 'node'.
9417  *
9418  * NOTE: this function will unlock and release tree block 'node'
9419  * only used by relocation code
9420  */
btrfs_drop_subtree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * node,struct extent_buffer * parent)9421 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9422 			struct btrfs_root *root,
9423 			struct extent_buffer *node,
9424 			struct extent_buffer *parent)
9425 {
9426 	struct btrfs_path *path;
9427 	struct walk_control *wc;
9428 	int level;
9429 	int parent_level;
9430 	int ret = 0;
9431 	int wret;
9432 
9433 	BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9434 
9435 	path = btrfs_alloc_path();
9436 	if (!path)
9437 		return -ENOMEM;
9438 
9439 	wc = kzalloc(sizeof(*wc), GFP_NOFS);
9440 	if (!wc) {
9441 		btrfs_free_path(path);
9442 		return -ENOMEM;
9443 	}
9444 
9445 	btrfs_assert_tree_locked(parent);
9446 	parent_level = btrfs_header_level(parent);
9447 	extent_buffer_get(parent);
9448 	path->nodes[parent_level] = parent;
9449 	path->slots[parent_level] = btrfs_header_nritems(parent);
9450 
9451 	btrfs_assert_tree_locked(node);
9452 	level = btrfs_header_level(node);
9453 	path->nodes[level] = node;
9454 	path->slots[level] = 0;
9455 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9456 
9457 	wc->refs[parent_level] = 1;
9458 	wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9459 	wc->level = level;
9460 	wc->shared_level = -1;
9461 	wc->stage = DROP_REFERENCE;
9462 	wc->update_ref = 0;
9463 	wc->keep_locks = 1;
9464 	wc->for_reloc = 1;
9465 	wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
9466 
9467 	while (1) {
9468 		wret = walk_down_tree(trans, root, path, wc);
9469 		if (wret < 0) {
9470 			ret = wret;
9471 			break;
9472 		}
9473 
9474 		wret = walk_up_tree(trans, root, path, wc, parent_level);
9475 		if (wret < 0)
9476 			ret = wret;
9477 		if (wret != 0)
9478 			break;
9479 	}
9480 
9481 	kfree(wc);
9482 	btrfs_free_path(path);
9483 	return ret;
9484 }
9485 
update_block_group_flags(struct btrfs_root * root,u64 flags)9486 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9487 {
9488 	u64 num_devices;
9489 	u64 stripped;
9490 
9491 	/*
9492 	 * if restripe for this chunk_type is on pick target profile and
9493 	 * return, otherwise do the usual balance
9494 	 */
9495 	stripped = get_restripe_target(root->fs_info, flags);
9496 	if (stripped)
9497 		return extended_to_chunk(stripped);
9498 
9499 	num_devices = root->fs_info->fs_devices->rw_devices;
9500 
9501 	stripped = BTRFS_BLOCK_GROUP_RAID0 |
9502 		BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9503 		BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9504 
9505 	if (num_devices == 1) {
9506 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9507 		stripped = flags & ~stripped;
9508 
9509 		/* turn raid0 into single device chunks */
9510 		if (flags & BTRFS_BLOCK_GROUP_RAID0)
9511 			return stripped;
9512 
9513 		/* turn mirroring into duplication */
9514 		if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9515 			     BTRFS_BLOCK_GROUP_RAID10))
9516 			return stripped | BTRFS_BLOCK_GROUP_DUP;
9517 	} else {
9518 		/* they already had raid on here, just return */
9519 		if (flags & stripped)
9520 			return flags;
9521 
9522 		stripped |= BTRFS_BLOCK_GROUP_DUP;
9523 		stripped = flags & ~stripped;
9524 
9525 		/* switch duplicated blocks with raid1 */
9526 		if (flags & BTRFS_BLOCK_GROUP_DUP)
9527 			return stripped | BTRFS_BLOCK_GROUP_RAID1;
9528 
9529 		/* this is drive concat, leave it alone */
9530 	}
9531 
9532 	return flags;
9533 }
9534 
inc_block_group_ro(struct btrfs_block_group_cache * cache,int force)9535 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9536 {
9537 	struct btrfs_space_info *sinfo = cache->space_info;
9538 	u64 num_bytes;
9539 	u64 min_allocable_bytes;
9540 	int ret = -ENOSPC;
9541 
9542 	/*
9543 	 * We need some metadata space and system metadata space for
9544 	 * allocating chunks in some corner cases until we force to set
9545 	 * it to be readonly.
9546 	 */
9547 	if ((sinfo->flags &
9548 	     (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9549 	    !force)
9550 		min_allocable_bytes = SZ_1M;
9551 	else
9552 		min_allocable_bytes = 0;
9553 
9554 	spin_lock(&sinfo->lock);
9555 	spin_lock(&cache->lock);
9556 
9557 	if (cache->ro) {
9558 		cache->ro++;
9559 		ret = 0;
9560 		goto out;
9561 	}
9562 
9563 	num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9564 		    cache->bytes_super - btrfs_block_group_used(&cache->item);
9565 
9566 	if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
9567 	    sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9568 	    min_allocable_bytes <= sinfo->total_bytes) {
9569 		sinfo->bytes_readonly += num_bytes;
9570 		cache->ro++;
9571 		list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9572 		ret = 0;
9573 	}
9574 out:
9575 	spin_unlock(&cache->lock);
9576 	spin_unlock(&sinfo->lock);
9577 	return ret;
9578 }
9579 
btrfs_inc_block_group_ro(struct btrfs_root * root,struct btrfs_block_group_cache * cache)9580 int btrfs_inc_block_group_ro(struct btrfs_root *root,
9581 			     struct btrfs_block_group_cache *cache)
9582 
9583 {
9584 	struct btrfs_trans_handle *trans;
9585 	u64 alloc_flags;
9586 	int ret;
9587 
9588 again:
9589 	trans = btrfs_join_transaction(root);
9590 	if (IS_ERR(trans))
9591 		return PTR_ERR(trans);
9592 
9593 	/*
9594 	 * we're not allowed to set block groups readonly after the dirty
9595 	 * block groups cache has started writing.  If it already started,
9596 	 * back off and let this transaction commit
9597 	 */
9598 	mutex_lock(&root->fs_info->ro_block_group_mutex);
9599 	if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9600 		u64 transid = trans->transid;
9601 
9602 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
9603 		btrfs_end_transaction(trans, root);
9604 
9605 		ret = btrfs_wait_for_commit(root, transid);
9606 		if (ret)
9607 			return ret;
9608 		goto again;
9609 	}
9610 
9611 	/*
9612 	 * if we are changing raid levels, try to allocate a corresponding
9613 	 * block group with the new raid level.
9614 	 */
9615 	alloc_flags = update_block_group_flags(root, cache->flags);
9616 	if (alloc_flags != cache->flags) {
9617 		ret = do_chunk_alloc(trans, root, alloc_flags,
9618 				     CHUNK_ALLOC_FORCE);
9619 		/*
9620 		 * ENOSPC is allowed here, we may have enough space
9621 		 * already allocated at the new raid level to
9622 		 * carry on
9623 		 */
9624 		if (ret == -ENOSPC)
9625 			ret = 0;
9626 		if (ret < 0)
9627 			goto out;
9628 	}
9629 
9630 	ret = inc_block_group_ro(cache, 0);
9631 	if (!ret)
9632 		goto out;
9633 	alloc_flags = get_alloc_profile(root, cache->space_info->flags);
9634 	ret = do_chunk_alloc(trans, root, alloc_flags,
9635 			     CHUNK_ALLOC_FORCE);
9636 	if (ret < 0)
9637 		goto out;
9638 	ret = inc_block_group_ro(cache, 0);
9639 out:
9640 	if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9641 		alloc_flags = update_block_group_flags(root, cache->flags);
9642 		lock_chunks(root->fs_info->chunk_root);
9643 		check_system_chunk(trans, root, alloc_flags);
9644 		unlock_chunks(root->fs_info->chunk_root);
9645 	}
9646 	mutex_unlock(&root->fs_info->ro_block_group_mutex);
9647 
9648 	btrfs_end_transaction(trans, root);
9649 	return ret;
9650 }
9651 
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 type)9652 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9653 			    struct btrfs_root *root, u64 type)
9654 {
9655 	u64 alloc_flags = get_alloc_profile(root, type);
9656 	return do_chunk_alloc(trans, root, alloc_flags,
9657 			      CHUNK_ALLOC_FORCE);
9658 }
9659 
9660 /*
9661  * helper to account the unused space of all the readonly block group in the
9662  * space_info. takes mirrors into account.
9663  */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)9664 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9665 {
9666 	struct btrfs_block_group_cache *block_group;
9667 	u64 free_bytes = 0;
9668 	int factor;
9669 
9670 	/* It's df, we don't care if it's racy */
9671 	if (list_empty(&sinfo->ro_bgs))
9672 		return 0;
9673 
9674 	spin_lock(&sinfo->lock);
9675 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9676 		spin_lock(&block_group->lock);
9677 
9678 		if (!block_group->ro) {
9679 			spin_unlock(&block_group->lock);
9680 			continue;
9681 		}
9682 
9683 		if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9684 					  BTRFS_BLOCK_GROUP_RAID10 |
9685 					  BTRFS_BLOCK_GROUP_DUP))
9686 			factor = 2;
9687 		else
9688 			factor = 1;
9689 
9690 		free_bytes += (block_group->key.offset -
9691 			       btrfs_block_group_used(&block_group->item)) *
9692 			       factor;
9693 
9694 		spin_unlock(&block_group->lock);
9695 	}
9696 	spin_unlock(&sinfo->lock);
9697 
9698 	return free_bytes;
9699 }
9700 
btrfs_dec_block_group_ro(struct btrfs_root * root,struct btrfs_block_group_cache * cache)9701 void btrfs_dec_block_group_ro(struct btrfs_root *root,
9702 			      struct btrfs_block_group_cache *cache)
9703 {
9704 	struct btrfs_space_info *sinfo = cache->space_info;
9705 	u64 num_bytes;
9706 
9707 	BUG_ON(!cache->ro);
9708 
9709 	spin_lock(&sinfo->lock);
9710 	spin_lock(&cache->lock);
9711 	if (!--cache->ro) {
9712 		num_bytes = cache->key.offset - cache->reserved -
9713 			    cache->pinned - cache->bytes_super -
9714 			    btrfs_block_group_used(&cache->item);
9715 		sinfo->bytes_readonly -= num_bytes;
9716 		list_del_init(&cache->ro_list);
9717 	}
9718 	spin_unlock(&cache->lock);
9719 	spin_unlock(&sinfo->lock);
9720 }
9721 
9722 /*
9723  * checks to see if its even possible to relocate this block group.
9724  *
9725  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9726  * ok to go ahead and try.
9727  */
btrfs_can_relocate(struct btrfs_root * root,u64 bytenr)9728 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
9729 {
9730 	struct btrfs_block_group_cache *block_group;
9731 	struct btrfs_space_info *space_info;
9732 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9733 	struct btrfs_device *device;
9734 	struct btrfs_trans_handle *trans;
9735 	u64 min_free;
9736 	u64 dev_min = 1;
9737 	u64 dev_nr = 0;
9738 	u64 target;
9739 	int debug;
9740 	int index;
9741 	int full = 0;
9742 	int ret = 0;
9743 
9744 	debug = btrfs_test_opt(root->fs_info, ENOSPC_DEBUG);
9745 
9746 	block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
9747 
9748 	/* odd, couldn't find the block group, leave it alone */
9749 	if (!block_group) {
9750 		if (debug)
9751 			btrfs_warn(root->fs_info,
9752 				   "can't find block group for bytenr %llu",
9753 				   bytenr);
9754 		return -1;
9755 	}
9756 
9757 	min_free = btrfs_block_group_used(&block_group->item);
9758 
9759 	/* no bytes used, we're good */
9760 	if (!min_free)
9761 		goto out;
9762 
9763 	space_info = block_group->space_info;
9764 	spin_lock(&space_info->lock);
9765 
9766 	full = space_info->full;
9767 
9768 	/*
9769 	 * if this is the last block group we have in this space, we can't
9770 	 * relocate it unless we're able to allocate a new chunk below.
9771 	 *
9772 	 * Otherwise, we need to make sure we have room in the space to handle
9773 	 * all of the extents from this block group.  If we can, we're good
9774 	 */
9775 	if ((space_info->total_bytes != block_group->key.offset) &&
9776 	    (space_info->bytes_used + space_info->bytes_reserved +
9777 	     space_info->bytes_pinned + space_info->bytes_readonly +
9778 	     min_free < space_info->total_bytes)) {
9779 		spin_unlock(&space_info->lock);
9780 		goto out;
9781 	}
9782 	spin_unlock(&space_info->lock);
9783 
9784 	/*
9785 	 * ok we don't have enough space, but maybe we have free space on our
9786 	 * devices to allocate new chunks for relocation, so loop through our
9787 	 * alloc devices and guess if we have enough space.  if this block
9788 	 * group is going to be restriped, run checks against the target
9789 	 * profile instead of the current one.
9790 	 */
9791 	ret = -1;
9792 
9793 	/*
9794 	 * index:
9795 	 *      0: raid10
9796 	 *      1: raid1
9797 	 *      2: dup
9798 	 *      3: raid0
9799 	 *      4: single
9800 	 */
9801 	target = get_restripe_target(root->fs_info, block_group->flags);
9802 	if (target) {
9803 		index = __get_raid_index(extended_to_chunk(target));
9804 	} else {
9805 		/*
9806 		 * this is just a balance, so if we were marked as full
9807 		 * we know there is no space for a new chunk
9808 		 */
9809 		if (full) {
9810 			if (debug)
9811 				btrfs_warn(root->fs_info,
9812 					"no space to alloc new chunk for block group %llu",
9813 					block_group->key.objectid);
9814 			goto out;
9815 		}
9816 
9817 		index = get_block_group_index(block_group);
9818 	}
9819 
9820 	if (index == BTRFS_RAID_RAID10) {
9821 		dev_min = 4;
9822 		/* Divide by 2 */
9823 		min_free >>= 1;
9824 	} else if (index == BTRFS_RAID_RAID1) {
9825 		dev_min = 2;
9826 	} else if (index == BTRFS_RAID_DUP) {
9827 		/* Multiply by 2 */
9828 		min_free <<= 1;
9829 	} else if (index == BTRFS_RAID_RAID0) {
9830 		dev_min = fs_devices->rw_devices;
9831 		min_free = div64_u64(min_free, dev_min);
9832 	}
9833 
9834 	/* We need to do this so that we can look at pending chunks */
9835 	trans = btrfs_join_transaction(root);
9836 	if (IS_ERR(trans)) {
9837 		ret = PTR_ERR(trans);
9838 		goto out;
9839 	}
9840 
9841 	mutex_lock(&root->fs_info->chunk_mutex);
9842 	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9843 		u64 dev_offset;
9844 
9845 		/*
9846 		 * check to make sure we can actually find a chunk with enough
9847 		 * space to fit our block group in.
9848 		 */
9849 		if (device->total_bytes > device->bytes_used + min_free &&
9850 		    !device->is_tgtdev_for_dev_replace) {
9851 			ret = find_free_dev_extent(trans, device, min_free,
9852 						   &dev_offset, NULL);
9853 			if (!ret)
9854 				dev_nr++;
9855 
9856 			if (dev_nr >= dev_min)
9857 				break;
9858 
9859 			ret = -1;
9860 		}
9861 	}
9862 	if (debug && ret == -1)
9863 		btrfs_warn(root->fs_info,
9864 			"no space to allocate a new chunk for block group %llu",
9865 			block_group->key.objectid);
9866 	mutex_unlock(&root->fs_info->chunk_mutex);
9867 	btrfs_end_transaction(trans, root);
9868 out:
9869 	btrfs_put_block_group(block_group);
9870 	return ret;
9871 }
9872 
find_first_block_group(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key)9873 static int find_first_block_group(struct btrfs_root *root,
9874 		struct btrfs_path *path, struct btrfs_key *key)
9875 {
9876 	int ret = 0;
9877 	struct btrfs_key found_key;
9878 	struct extent_buffer *leaf;
9879 	int slot;
9880 
9881 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9882 	if (ret < 0)
9883 		goto out;
9884 
9885 	while (1) {
9886 		slot = path->slots[0];
9887 		leaf = path->nodes[0];
9888 		if (slot >= btrfs_header_nritems(leaf)) {
9889 			ret = btrfs_next_leaf(root, path);
9890 			if (ret == 0)
9891 				continue;
9892 			if (ret < 0)
9893 				goto out;
9894 			break;
9895 		}
9896 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
9897 
9898 		if (found_key.objectid >= key->objectid &&
9899 		    found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9900 			struct extent_map_tree *em_tree;
9901 			struct extent_map *em;
9902 
9903 			em_tree = &root->fs_info->mapping_tree.map_tree;
9904 			read_lock(&em_tree->lock);
9905 			em = lookup_extent_mapping(em_tree, found_key.objectid,
9906 						   found_key.offset);
9907 			read_unlock(&em_tree->lock);
9908 			if (!em) {
9909 				btrfs_err(root->fs_info,
9910 			"logical %llu len %llu found bg but no related chunk",
9911 					  found_key.objectid, found_key.offset);
9912 				ret = -ENOENT;
9913 			} else {
9914 				ret = 0;
9915 			}
9916 			free_extent_map(em);
9917 			goto out;
9918 		}
9919 		path->slots[0]++;
9920 	}
9921 out:
9922 	return ret;
9923 }
9924 
btrfs_put_block_group_cache(struct btrfs_fs_info * info)9925 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9926 {
9927 	struct btrfs_block_group_cache *block_group;
9928 	u64 last = 0;
9929 
9930 	while (1) {
9931 		struct inode *inode;
9932 
9933 		block_group = btrfs_lookup_first_block_group(info, last);
9934 		while (block_group) {
9935 			spin_lock(&block_group->lock);
9936 			if (block_group->iref)
9937 				break;
9938 			spin_unlock(&block_group->lock);
9939 			block_group = next_block_group(info->tree_root,
9940 						       block_group);
9941 		}
9942 		if (!block_group) {
9943 			if (last == 0)
9944 				break;
9945 			last = 0;
9946 			continue;
9947 		}
9948 
9949 		inode = block_group->inode;
9950 		block_group->iref = 0;
9951 		block_group->inode = NULL;
9952 		spin_unlock(&block_group->lock);
9953 		ASSERT(block_group->io_ctl.inode == NULL);
9954 		iput(inode);
9955 		last = block_group->key.objectid + block_group->key.offset;
9956 		btrfs_put_block_group(block_group);
9957 	}
9958 }
9959 
btrfs_free_block_groups(struct btrfs_fs_info * info)9960 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9961 {
9962 	struct btrfs_block_group_cache *block_group;
9963 	struct btrfs_space_info *space_info;
9964 	struct btrfs_caching_control *caching_ctl;
9965 	struct rb_node *n;
9966 
9967 	down_write(&info->commit_root_sem);
9968 	while (!list_empty(&info->caching_block_groups)) {
9969 		caching_ctl = list_entry(info->caching_block_groups.next,
9970 					 struct btrfs_caching_control, list);
9971 		list_del(&caching_ctl->list);
9972 		put_caching_control(caching_ctl);
9973 	}
9974 	up_write(&info->commit_root_sem);
9975 
9976 	spin_lock(&info->unused_bgs_lock);
9977 	while (!list_empty(&info->unused_bgs)) {
9978 		block_group = list_first_entry(&info->unused_bgs,
9979 					       struct btrfs_block_group_cache,
9980 					       bg_list);
9981 		list_del_init(&block_group->bg_list);
9982 		btrfs_put_block_group(block_group);
9983 	}
9984 	spin_unlock(&info->unused_bgs_lock);
9985 
9986 	spin_lock(&info->block_group_cache_lock);
9987 	while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9988 		block_group = rb_entry(n, struct btrfs_block_group_cache,
9989 				       cache_node);
9990 		rb_erase(&block_group->cache_node,
9991 			 &info->block_group_cache_tree);
9992 		RB_CLEAR_NODE(&block_group->cache_node);
9993 		spin_unlock(&info->block_group_cache_lock);
9994 
9995 		down_write(&block_group->space_info->groups_sem);
9996 		list_del(&block_group->list);
9997 		up_write(&block_group->space_info->groups_sem);
9998 
9999 		if (block_group->cached == BTRFS_CACHE_STARTED)
10000 			wait_block_group_cache_done(block_group);
10001 
10002 		/*
10003 		 * We haven't cached this block group, which means we could
10004 		 * possibly have excluded extents on this block group.
10005 		 */
10006 		if (block_group->cached == BTRFS_CACHE_NO ||
10007 		    block_group->cached == BTRFS_CACHE_ERROR)
10008 			free_excluded_extents(info->extent_root, block_group);
10009 
10010 		btrfs_remove_free_space_cache(block_group);
10011 		ASSERT(list_empty(&block_group->dirty_list));
10012 		ASSERT(list_empty(&block_group->io_list));
10013 		ASSERT(list_empty(&block_group->bg_list));
10014 		ASSERT(atomic_read(&block_group->count) == 1);
10015 		btrfs_put_block_group(block_group);
10016 
10017 		spin_lock(&info->block_group_cache_lock);
10018 	}
10019 	spin_unlock(&info->block_group_cache_lock);
10020 
10021 	/* now that all the block groups are freed, go through and
10022 	 * free all the space_info structs.  This is only called during
10023 	 * the final stages of unmount, and so we know nobody is
10024 	 * using them.  We call synchronize_rcu() once before we start,
10025 	 * just to be on the safe side.
10026 	 */
10027 	synchronize_rcu();
10028 
10029 	release_global_block_rsv(info);
10030 
10031 	while (!list_empty(&info->space_info)) {
10032 		int i;
10033 
10034 		space_info = list_entry(info->space_info.next,
10035 					struct btrfs_space_info,
10036 					list);
10037 
10038 		/*
10039 		 * Do not hide this behind enospc_debug, this is actually
10040 		 * important and indicates a real bug if this happens.
10041 		 */
10042 		if (WARN_ON(space_info->bytes_pinned > 0 ||
10043 			    space_info->bytes_reserved > 0 ||
10044 			    space_info->bytes_may_use > 0))
10045 			dump_space_info(info, space_info, 0, 0);
10046 		list_del(&space_info->list);
10047 		for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10048 			struct kobject *kobj;
10049 			kobj = space_info->block_group_kobjs[i];
10050 			space_info->block_group_kobjs[i] = NULL;
10051 			if (kobj) {
10052 				kobject_del(kobj);
10053 				kobject_put(kobj);
10054 			}
10055 		}
10056 		kobject_del(&space_info->kobj);
10057 		kobject_put(&space_info->kobj);
10058 	}
10059 	return 0;
10060 }
10061 
__link_block_group(struct btrfs_space_info * space_info,struct btrfs_block_group_cache * cache)10062 static void __link_block_group(struct btrfs_space_info *space_info,
10063 			       struct btrfs_block_group_cache *cache)
10064 {
10065 	int index = get_block_group_index(cache);
10066 	bool first = false;
10067 
10068 	down_write(&space_info->groups_sem);
10069 	if (list_empty(&space_info->block_groups[index]))
10070 		first = true;
10071 	list_add_tail(&cache->list, &space_info->block_groups[index]);
10072 	up_write(&space_info->groups_sem);
10073 
10074 	if (first) {
10075 		struct raid_kobject *rkobj;
10076 		int ret;
10077 
10078 		rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10079 		if (!rkobj)
10080 			goto out_err;
10081 		rkobj->raid_type = index;
10082 		kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10083 		ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10084 				  "%s", get_raid_name(index));
10085 		if (ret) {
10086 			kobject_put(&rkobj->kobj);
10087 			goto out_err;
10088 		}
10089 		space_info->block_group_kobjs[index] = &rkobj->kobj;
10090 	}
10091 
10092 	return;
10093 out_err:
10094 	btrfs_warn(cache->fs_info,
10095 		   "failed to add kobject for block cache, ignoring");
10096 }
10097 
10098 static struct btrfs_block_group_cache *
btrfs_create_block_group_cache(struct btrfs_root * root,u64 start,u64 size)10099 btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
10100 {
10101 	struct btrfs_block_group_cache *cache;
10102 
10103 	cache = kzalloc(sizeof(*cache), GFP_NOFS);
10104 	if (!cache)
10105 		return NULL;
10106 
10107 	cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10108 					GFP_NOFS);
10109 	if (!cache->free_space_ctl) {
10110 		kfree(cache);
10111 		return NULL;
10112 	}
10113 
10114 	cache->key.objectid = start;
10115 	cache->key.offset = size;
10116 	cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10117 
10118 	cache->sectorsize = root->sectorsize;
10119 	cache->fs_info = root->fs_info;
10120 	cache->full_stripe_len = btrfs_full_stripe_len(root,
10121 					       &root->fs_info->mapping_tree,
10122 					       start);
10123 	set_free_space_tree_thresholds(cache);
10124 
10125 	atomic_set(&cache->count, 1);
10126 	spin_lock_init(&cache->lock);
10127 	init_rwsem(&cache->data_rwsem);
10128 	INIT_LIST_HEAD(&cache->list);
10129 	INIT_LIST_HEAD(&cache->cluster_list);
10130 	INIT_LIST_HEAD(&cache->bg_list);
10131 	INIT_LIST_HEAD(&cache->ro_list);
10132 	INIT_LIST_HEAD(&cache->dirty_list);
10133 	INIT_LIST_HEAD(&cache->io_list);
10134 	btrfs_init_free_space_ctl(cache);
10135 	atomic_set(&cache->trimming, 0);
10136 	mutex_init(&cache->free_space_lock);
10137 
10138 	return cache;
10139 }
10140 
btrfs_read_block_groups(struct btrfs_root * root)10141 int btrfs_read_block_groups(struct btrfs_root *root)
10142 {
10143 	struct btrfs_path *path;
10144 	int ret;
10145 	struct btrfs_block_group_cache *cache;
10146 	struct btrfs_fs_info *info = root->fs_info;
10147 	struct btrfs_space_info *space_info;
10148 	struct btrfs_key key;
10149 	struct btrfs_key found_key;
10150 	struct extent_buffer *leaf;
10151 	int need_clear = 0;
10152 	u64 cache_gen;
10153 	u64 feature;
10154 	int mixed;
10155 
10156 	feature = btrfs_super_incompat_flags(info->super_copy);
10157 	mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10158 
10159 	root = info->extent_root;
10160 	key.objectid = 0;
10161 	key.offset = 0;
10162 	key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10163 	path = btrfs_alloc_path();
10164 	if (!path)
10165 		return -ENOMEM;
10166 	path->reada = READA_FORWARD;
10167 
10168 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
10169 	if (btrfs_test_opt(root->fs_info, SPACE_CACHE) &&
10170 	    btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
10171 		need_clear = 1;
10172 	if (btrfs_test_opt(root->fs_info, CLEAR_CACHE))
10173 		need_clear = 1;
10174 
10175 	while (1) {
10176 		ret = find_first_block_group(root, path, &key);
10177 		if (ret > 0)
10178 			break;
10179 		if (ret != 0)
10180 			goto error;
10181 
10182 		leaf = path->nodes[0];
10183 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10184 
10185 		cache = btrfs_create_block_group_cache(root, found_key.objectid,
10186 						       found_key.offset);
10187 		if (!cache) {
10188 			ret = -ENOMEM;
10189 			goto error;
10190 		}
10191 
10192 		if (need_clear) {
10193 			/*
10194 			 * When we mount with old space cache, we need to
10195 			 * set BTRFS_DC_CLEAR and set dirty flag.
10196 			 *
10197 			 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10198 			 *    truncate the old free space cache inode and
10199 			 *    setup a new one.
10200 			 * b) Setting 'dirty flag' makes sure that we flush
10201 			 *    the new space cache info onto disk.
10202 			 */
10203 			if (btrfs_test_opt(root->fs_info, SPACE_CACHE))
10204 				cache->disk_cache_state = BTRFS_DC_CLEAR;
10205 		}
10206 
10207 		read_extent_buffer(leaf, &cache->item,
10208 				   btrfs_item_ptr_offset(leaf, path->slots[0]),
10209 				   sizeof(cache->item));
10210 		cache->flags = btrfs_block_group_flags(&cache->item);
10211 		if (!mixed &&
10212 		    ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10213 		    (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10214 			btrfs_err(info,
10215 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10216 				  cache->key.objectid);
10217 			ret = -EINVAL;
10218 			goto error;
10219 		}
10220 
10221 		key.objectid = found_key.objectid + found_key.offset;
10222 		btrfs_release_path(path);
10223 
10224 		/*
10225 		 * We need to exclude the super stripes now so that the space
10226 		 * info has super bytes accounted for, otherwise we'll think
10227 		 * we have more space than we actually do.
10228 		 */
10229 		ret = exclude_super_stripes(root, cache);
10230 		if (ret) {
10231 			/*
10232 			 * We may have excluded something, so call this just in
10233 			 * case.
10234 			 */
10235 			free_excluded_extents(root, cache);
10236 			btrfs_put_block_group(cache);
10237 			goto error;
10238 		}
10239 
10240 		/*
10241 		 * check for two cases, either we are full, and therefore
10242 		 * don't need to bother with the caching work since we won't
10243 		 * find any space, or we are empty, and we can just add all
10244 		 * the space in and be done with it.  This saves us _alot_ of
10245 		 * time, particularly in the full case.
10246 		 */
10247 		if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10248 			cache->last_byte_to_unpin = (u64)-1;
10249 			cache->cached = BTRFS_CACHE_FINISHED;
10250 			free_excluded_extents(root, cache);
10251 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10252 			cache->last_byte_to_unpin = (u64)-1;
10253 			cache->cached = BTRFS_CACHE_FINISHED;
10254 			add_new_free_space(cache, root->fs_info,
10255 					   found_key.objectid,
10256 					   found_key.objectid +
10257 					   found_key.offset);
10258 			free_excluded_extents(root, cache);
10259 		}
10260 
10261 		ret = btrfs_add_block_group_cache(root->fs_info, cache);
10262 		if (ret) {
10263 			btrfs_remove_free_space_cache(cache);
10264 			btrfs_put_block_group(cache);
10265 			goto error;
10266 		}
10267 
10268 		trace_btrfs_add_block_group(root->fs_info, cache, 0);
10269 		ret = update_space_info(info, cache->flags, found_key.offset,
10270 					btrfs_block_group_used(&cache->item),
10271 					cache->bytes_super, &space_info);
10272 		if (ret) {
10273 			btrfs_remove_free_space_cache(cache);
10274 			spin_lock(&info->block_group_cache_lock);
10275 			rb_erase(&cache->cache_node,
10276 				 &info->block_group_cache_tree);
10277 			RB_CLEAR_NODE(&cache->cache_node);
10278 			spin_unlock(&info->block_group_cache_lock);
10279 			btrfs_put_block_group(cache);
10280 			goto error;
10281 		}
10282 
10283 		cache->space_info = space_info;
10284 
10285 		__link_block_group(space_info, cache);
10286 
10287 		set_avail_alloc_bits(root->fs_info, cache->flags);
10288 		if (btrfs_chunk_readonly(root, cache->key.objectid)) {
10289 			inc_block_group_ro(cache, 1);
10290 		} else if (btrfs_block_group_used(&cache->item) == 0) {
10291 			spin_lock(&info->unused_bgs_lock);
10292 			/* Should always be true but just in case. */
10293 			if (list_empty(&cache->bg_list)) {
10294 				btrfs_get_block_group(cache);
10295 				list_add_tail(&cache->bg_list,
10296 					      &info->unused_bgs);
10297 			}
10298 			spin_unlock(&info->unused_bgs_lock);
10299 		}
10300 	}
10301 
10302 	list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10303 		if (!(get_alloc_profile(root, space_info->flags) &
10304 		      (BTRFS_BLOCK_GROUP_RAID10 |
10305 		       BTRFS_BLOCK_GROUP_RAID1 |
10306 		       BTRFS_BLOCK_GROUP_RAID5 |
10307 		       BTRFS_BLOCK_GROUP_RAID6 |
10308 		       BTRFS_BLOCK_GROUP_DUP)))
10309 			continue;
10310 		/*
10311 		 * avoid allocating from un-mirrored block group if there are
10312 		 * mirrored block groups.
10313 		 */
10314 		list_for_each_entry(cache,
10315 				&space_info->block_groups[BTRFS_RAID_RAID0],
10316 				list)
10317 			inc_block_group_ro(cache, 1);
10318 		list_for_each_entry(cache,
10319 				&space_info->block_groups[BTRFS_RAID_SINGLE],
10320 				list)
10321 			inc_block_group_ro(cache, 1);
10322 	}
10323 
10324 	init_global_block_rsv(info);
10325 	ret = 0;
10326 error:
10327 	btrfs_free_path(path);
10328 	return ret;
10329 }
10330 
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans,struct btrfs_root * root)10331 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10332 				       struct btrfs_root *root)
10333 {
10334 	struct btrfs_block_group_cache *block_group, *tmp;
10335 	struct btrfs_root *extent_root = root->fs_info->extent_root;
10336 	struct btrfs_block_group_item item;
10337 	struct btrfs_key key;
10338 	int ret = 0;
10339 	bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10340 
10341 	trans->can_flush_pending_bgs = false;
10342 	list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10343 		if (ret)
10344 			goto next;
10345 
10346 		spin_lock(&block_group->lock);
10347 		memcpy(&item, &block_group->item, sizeof(item));
10348 		memcpy(&key, &block_group->key, sizeof(key));
10349 		spin_unlock(&block_group->lock);
10350 
10351 		ret = btrfs_insert_item(trans, extent_root, &key, &item,
10352 					sizeof(item));
10353 		if (ret)
10354 			btrfs_abort_transaction(trans, ret);
10355 		ret = btrfs_finish_chunk_alloc(trans, extent_root,
10356 					       key.objectid, key.offset);
10357 		if (ret)
10358 			btrfs_abort_transaction(trans, ret);
10359 		add_block_group_free_space(trans, root->fs_info, block_group);
10360 		/* already aborted the transaction if it failed. */
10361 next:
10362 		list_del_init(&block_group->bg_list);
10363 	}
10364 	trans->can_flush_pending_bgs = can_flush_pending_bgs;
10365 }
10366 
btrfs_make_block_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 bytes_used,u64 type,u64 chunk_objectid,u64 chunk_offset,u64 size)10367 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10368 			   struct btrfs_root *root, u64 bytes_used,
10369 			   u64 type, u64 chunk_objectid, u64 chunk_offset,
10370 			   u64 size)
10371 {
10372 	int ret;
10373 	struct btrfs_root *extent_root;
10374 	struct btrfs_block_group_cache *cache;
10375 	extent_root = root->fs_info->extent_root;
10376 
10377 	btrfs_set_log_full_commit(root->fs_info, trans);
10378 
10379 	cache = btrfs_create_block_group_cache(root, chunk_offset, size);
10380 	if (!cache)
10381 		return -ENOMEM;
10382 
10383 	btrfs_set_block_group_used(&cache->item, bytes_used);
10384 	btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
10385 	btrfs_set_block_group_flags(&cache->item, type);
10386 
10387 	cache->flags = type;
10388 	cache->last_byte_to_unpin = (u64)-1;
10389 	cache->cached = BTRFS_CACHE_FINISHED;
10390 	cache->needs_free_space = 1;
10391 	ret = exclude_super_stripes(root, cache);
10392 	if (ret) {
10393 		/*
10394 		 * We may have excluded something, so call this just in
10395 		 * case.
10396 		 */
10397 		free_excluded_extents(root, cache);
10398 		btrfs_put_block_group(cache);
10399 		return ret;
10400 	}
10401 
10402 	add_new_free_space(cache, root->fs_info, chunk_offset,
10403 			   chunk_offset + size);
10404 
10405 	free_excluded_extents(root, cache);
10406 
10407 #ifdef CONFIG_BTRFS_DEBUG
10408 	if (btrfs_should_fragment_free_space(root, cache)) {
10409 		u64 new_bytes_used = size - bytes_used;
10410 
10411 		bytes_used += new_bytes_used >> 1;
10412 		fragment_free_space(root, cache);
10413 	}
10414 #endif
10415 	/*
10416 	 * Call to ensure the corresponding space_info object is created and
10417 	 * assigned to our block group, but don't update its counters just yet.
10418 	 * We want our bg to be added to the rbtree with its ->space_info set.
10419 	 */
10420 	ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
10421 				&cache->space_info);
10422 	if (ret) {
10423 		btrfs_remove_free_space_cache(cache);
10424 		btrfs_put_block_group(cache);
10425 		return ret;
10426 	}
10427 
10428 	ret = btrfs_add_block_group_cache(root->fs_info, cache);
10429 	if (ret) {
10430 		btrfs_remove_free_space_cache(cache);
10431 		btrfs_put_block_group(cache);
10432 		return ret;
10433 	}
10434 
10435 	/*
10436 	 * Now that our block group has its ->space_info set and is inserted in
10437 	 * the rbtree, update the space info's counters.
10438 	 */
10439 	trace_btrfs_add_block_group(root->fs_info, cache, 1);
10440 	ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
10441 				cache->bytes_super, &cache->space_info);
10442 	if (ret) {
10443 		btrfs_remove_free_space_cache(cache);
10444 		spin_lock(&root->fs_info->block_group_cache_lock);
10445 		rb_erase(&cache->cache_node,
10446 			 &root->fs_info->block_group_cache_tree);
10447 		RB_CLEAR_NODE(&cache->cache_node);
10448 		spin_unlock(&root->fs_info->block_group_cache_lock);
10449 		btrfs_put_block_group(cache);
10450 		return ret;
10451 	}
10452 	update_global_block_rsv(root->fs_info);
10453 
10454 	__link_block_group(cache->space_info, cache);
10455 
10456 	list_add_tail(&cache->bg_list, &trans->new_bgs);
10457 
10458 	set_avail_alloc_bits(extent_root->fs_info, type);
10459 	return 0;
10460 }
10461 
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)10462 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10463 {
10464 	u64 extra_flags = chunk_to_extended(flags) &
10465 				BTRFS_EXTENDED_PROFILE_MASK;
10466 
10467 	write_seqlock(&fs_info->profiles_lock);
10468 	if (flags & BTRFS_BLOCK_GROUP_DATA)
10469 		fs_info->avail_data_alloc_bits &= ~extra_flags;
10470 	if (flags & BTRFS_BLOCK_GROUP_METADATA)
10471 		fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10472 	if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10473 		fs_info->avail_system_alloc_bits &= ~extra_flags;
10474 	write_sequnlock(&fs_info->profiles_lock);
10475 }
10476 
btrfs_remove_block_group(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 group_start,struct extent_map * em)10477 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10478 			     struct btrfs_root *root, u64 group_start,
10479 			     struct extent_map *em)
10480 {
10481 	struct btrfs_path *path;
10482 	struct btrfs_block_group_cache *block_group;
10483 	struct btrfs_free_cluster *cluster;
10484 	struct btrfs_root *tree_root = root->fs_info->tree_root;
10485 	struct btrfs_key key;
10486 	struct inode *inode;
10487 	struct kobject *kobj = NULL;
10488 	int ret;
10489 	int index;
10490 	int factor;
10491 	struct btrfs_caching_control *caching_ctl = NULL;
10492 	bool remove_em;
10493 
10494 	root = root->fs_info->extent_root;
10495 
10496 	block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10497 	BUG_ON(!block_group);
10498 	BUG_ON(!block_group->ro);
10499 
10500 	/*
10501 	 * Free the reserved super bytes from this block group before
10502 	 * remove it.
10503 	 */
10504 	free_excluded_extents(root, block_group);
10505 
10506 	memcpy(&key, &block_group->key, sizeof(key));
10507 	index = get_block_group_index(block_group);
10508 	if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10509 				  BTRFS_BLOCK_GROUP_RAID1 |
10510 				  BTRFS_BLOCK_GROUP_RAID10))
10511 		factor = 2;
10512 	else
10513 		factor = 1;
10514 
10515 	/* make sure this block group isn't part of an allocation cluster */
10516 	cluster = &root->fs_info->data_alloc_cluster;
10517 	spin_lock(&cluster->refill_lock);
10518 	btrfs_return_cluster_to_free_space(block_group, cluster);
10519 	spin_unlock(&cluster->refill_lock);
10520 
10521 	/*
10522 	 * make sure this block group isn't part of a metadata
10523 	 * allocation cluster
10524 	 */
10525 	cluster = &root->fs_info->meta_alloc_cluster;
10526 	spin_lock(&cluster->refill_lock);
10527 	btrfs_return_cluster_to_free_space(block_group, cluster);
10528 	spin_unlock(&cluster->refill_lock);
10529 
10530 	path = btrfs_alloc_path();
10531 	if (!path) {
10532 		ret = -ENOMEM;
10533 		goto out;
10534 	}
10535 
10536 	/*
10537 	 * get the inode first so any iput calls done for the io_list
10538 	 * aren't the final iput (no unlinks allowed now)
10539 	 */
10540 	inode = lookup_free_space_inode(tree_root, block_group, path);
10541 
10542 	mutex_lock(&trans->transaction->cache_write_mutex);
10543 	/*
10544 	 * make sure our free spache cache IO is done before remove the
10545 	 * free space inode
10546 	 */
10547 	spin_lock(&trans->transaction->dirty_bgs_lock);
10548 	if (!list_empty(&block_group->io_list)) {
10549 		list_del_init(&block_group->io_list);
10550 
10551 		WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10552 
10553 		spin_unlock(&trans->transaction->dirty_bgs_lock);
10554 		btrfs_wait_cache_io(root, trans, block_group,
10555 				    &block_group->io_ctl, path,
10556 				    block_group->key.objectid);
10557 		btrfs_put_block_group(block_group);
10558 		spin_lock(&trans->transaction->dirty_bgs_lock);
10559 	}
10560 
10561 	if (!list_empty(&block_group->dirty_list)) {
10562 		list_del_init(&block_group->dirty_list);
10563 		btrfs_put_block_group(block_group);
10564 	}
10565 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10566 	mutex_unlock(&trans->transaction->cache_write_mutex);
10567 
10568 	if (!IS_ERR(inode)) {
10569 		ret = btrfs_orphan_add(trans, inode);
10570 		if (ret) {
10571 			btrfs_add_delayed_iput(inode);
10572 			goto out;
10573 		}
10574 		clear_nlink(inode);
10575 		/* One for the block groups ref */
10576 		spin_lock(&block_group->lock);
10577 		if (block_group->iref) {
10578 			block_group->iref = 0;
10579 			block_group->inode = NULL;
10580 			spin_unlock(&block_group->lock);
10581 			iput(inode);
10582 		} else {
10583 			spin_unlock(&block_group->lock);
10584 		}
10585 		/* One for our lookup ref */
10586 		btrfs_add_delayed_iput(inode);
10587 	}
10588 
10589 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10590 	key.offset = block_group->key.objectid;
10591 	key.type = 0;
10592 
10593 	ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10594 	if (ret < 0)
10595 		goto out;
10596 	if (ret > 0)
10597 		btrfs_release_path(path);
10598 	if (ret == 0) {
10599 		ret = btrfs_del_item(trans, tree_root, path);
10600 		if (ret)
10601 			goto out;
10602 		btrfs_release_path(path);
10603 	}
10604 
10605 	spin_lock(&root->fs_info->block_group_cache_lock);
10606 	rb_erase(&block_group->cache_node,
10607 		 &root->fs_info->block_group_cache_tree);
10608 	RB_CLEAR_NODE(&block_group->cache_node);
10609 
10610 	if (root->fs_info->first_logical_byte == block_group->key.objectid)
10611 		root->fs_info->first_logical_byte = (u64)-1;
10612 	spin_unlock(&root->fs_info->block_group_cache_lock);
10613 
10614 	down_write(&block_group->space_info->groups_sem);
10615 	/*
10616 	 * we must use list_del_init so people can check to see if they
10617 	 * are still on the list after taking the semaphore
10618 	 */
10619 	list_del_init(&block_group->list);
10620 	if (list_empty(&block_group->space_info->block_groups[index])) {
10621 		kobj = block_group->space_info->block_group_kobjs[index];
10622 		block_group->space_info->block_group_kobjs[index] = NULL;
10623 		clear_avail_alloc_bits(root->fs_info, block_group->flags);
10624 	}
10625 	up_write(&block_group->space_info->groups_sem);
10626 	if (kobj) {
10627 		kobject_del(kobj);
10628 		kobject_put(kobj);
10629 	}
10630 
10631 	if (block_group->has_caching_ctl)
10632 		caching_ctl = get_caching_control(block_group);
10633 	if (block_group->cached == BTRFS_CACHE_STARTED)
10634 		wait_block_group_cache_done(block_group);
10635 	if (block_group->has_caching_ctl) {
10636 		down_write(&root->fs_info->commit_root_sem);
10637 		if (!caching_ctl) {
10638 			struct btrfs_caching_control *ctl;
10639 
10640 			list_for_each_entry(ctl,
10641 				    &root->fs_info->caching_block_groups, list)
10642 				if (ctl->block_group == block_group) {
10643 					caching_ctl = ctl;
10644 					atomic_inc(&caching_ctl->count);
10645 					break;
10646 				}
10647 		}
10648 		if (caching_ctl)
10649 			list_del_init(&caching_ctl->list);
10650 		up_write(&root->fs_info->commit_root_sem);
10651 		if (caching_ctl) {
10652 			/* Once for the caching bgs list and once for us. */
10653 			put_caching_control(caching_ctl);
10654 			put_caching_control(caching_ctl);
10655 		}
10656 	}
10657 
10658 	spin_lock(&trans->transaction->dirty_bgs_lock);
10659 	if (!list_empty(&block_group->dirty_list)) {
10660 		WARN_ON(1);
10661 	}
10662 	if (!list_empty(&block_group->io_list)) {
10663 		WARN_ON(1);
10664 	}
10665 	spin_unlock(&trans->transaction->dirty_bgs_lock);
10666 	btrfs_remove_free_space_cache(block_group);
10667 
10668 	spin_lock(&block_group->space_info->lock);
10669 	list_del_init(&block_group->ro_list);
10670 
10671 	if (btrfs_test_opt(root->fs_info, ENOSPC_DEBUG)) {
10672 		WARN_ON(block_group->space_info->total_bytes
10673 			< block_group->key.offset);
10674 		WARN_ON(block_group->space_info->bytes_readonly
10675 			< block_group->key.offset);
10676 		WARN_ON(block_group->space_info->disk_total
10677 			< block_group->key.offset * factor);
10678 	}
10679 	block_group->space_info->total_bytes -= block_group->key.offset;
10680 	block_group->space_info->bytes_readonly -= block_group->key.offset;
10681 	block_group->space_info->disk_total -= block_group->key.offset * factor;
10682 
10683 	spin_unlock(&block_group->space_info->lock);
10684 
10685 	memcpy(&key, &block_group->key, sizeof(key));
10686 
10687 	lock_chunks(root);
10688 	if (!list_empty(&em->list)) {
10689 		/* We're in the transaction->pending_chunks list. */
10690 		free_extent_map(em);
10691 	}
10692 	spin_lock(&block_group->lock);
10693 	block_group->removed = 1;
10694 	/*
10695 	 * At this point trimming can't start on this block group, because we
10696 	 * removed the block group from the tree fs_info->block_group_cache_tree
10697 	 * so no one can't find it anymore and even if someone already got this
10698 	 * block group before we removed it from the rbtree, they have already
10699 	 * incremented block_group->trimming - if they didn't, they won't find
10700 	 * any free space entries because we already removed them all when we
10701 	 * called btrfs_remove_free_space_cache().
10702 	 *
10703 	 * And we must not remove the extent map from the fs_info->mapping_tree
10704 	 * to prevent the same logical address range and physical device space
10705 	 * ranges from being reused for a new block group. This is because our
10706 	 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10707 	 * completely transactionless, so while it is trimming a range the
10708 	 * currently running transaction might finish and a new one start,
10709 	 * allowing for new block groups to be created that can reuse the same
10710 	 * physical device locations unless we take this special care.
10711 	 *
10712 	 * There may also be an implicit trim operation if the file system
10713 	 * is mounted with -odiscard. The same protections must remain
10714 	 * in place until the extents have been discarded completely when
10715 	 * the transaction commit has completed.
10716 	 */
10717 	remove_em = (atomic_read(&block_group->trimming) == 0);
10718 	/*
10719 	 * Make sure a trimmer task always sees the em in the pinned_chunks list
10720 	 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10721 	 * before checking block_group->removed).
10722 	 */
10723 	if (!remove_em) {
10724 		/*
10725 		 * Our em might be in trans->transaction->pending_chunks which
10726 		 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10727 		 * and so is the fs_info->pinned_chunks list.
10728 		 *
10729 		 * So at this point we must be holding the chunk_mutex to avoid
10730 		 * any races with chunk allocation (more specifically at
10731 		 * volumes.c:contains_pending_extent()), to ensure it always
10732 		 * sees the em, either in the pending_chunks list or in the
10733 		 * pinned_chunks list.
10734 		 */
10735 		list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10736 	}
10737 	spin_unlock(&block_group->lock);
10738 
10739 	if (remove_em) {
10740 		struct extent_map_tree *em_tree;
10741 
10742 		em_tree = &root->fs_info->mapping_tree.map_tree;
10743 		write_lock(&em_tree->lock);
10744 		/*
10745 		 * The em might be in the pending_chunks list, so make sure the
10746 		 * chunk mutex is locked, since remove_extent_mapping() will
10747 		 * delete us from that list.
10748 		 */
10749 		remove_extent_mapping(em_tree, em);
10750 		write_unlock(&em_tree->lock);
10751 		/* once for the tree */
10752 		free_extent_map(em);
10753 	}
10754 
10755 	unlock_chunks(root);
10756 
10757 	ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10758 	if (ret)
10759 		goto out;
10760 
10761 	btrfs_put_block_group(block_group);
10762 	btrfs_put_block_group(block_group);
10763 
10764 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10765 	if (ret > 0)
10766 		ret = -EIO;
10767 	if (ret < 0)
10768 		goto out;
10769 
10770 	ret = btrfs_del_item(trans, root, path);
10771 out:
10772 	btrfs_free_path(path);
10773 	return ret;
10774 }
10775 
10776 struct btrfs_trans_handle *
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)10777 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10778 				     const u64 chunk_offset)
10779 {
10780 	struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10781 	struct extent_map *em;
10782 	struct map_lookup *map;
10783 	unsigned int num_items;
10784 
10785 	read_lock(&em_tree->lock);
10786 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10787 	read_unlock(&em_tree->lock);
10788 	ASSERT(em && em->start == chunk_offset);
10789 
10790 	/*
10791 	 * We need to reserve 3 + N units from the metadata space info in order
10792 	 * to remove a block group (done at btrfs_remove_chunk() and at
10793 	 * btrfs_remove_block_group()), which are used for:
10794 	 *
10795 	 * 1 unit for adding the free space inode's orphan (located in the tree
10796 	 * of tree roots).
10797 	 * 1 unit for deleting the block group item (located in the extent
10798 	 * tree).
10799 	 * 1 unit for deleting the free space item (located in tree of tree
10800 	 * roots).
10801 	 * N units for deleting N device extent items corresponding to each
10802 	 * stripe (located in the device tree).
10803 	 *
10804 	 * In order to remove a block group we also need to reserve units in the
10805 	 * system space info in order to update the chunk tree (update one or
10806 	 * more device items and remove one chunk item), but this is done at
10807 	 * btrfs_remove_chunk() through a call to check_system_chunk().
10808 	 */
10809 	map = em->map_lookup;
10810 	num_items = 3 + map->num_stripes;
10811 	free_extent_map(em);
10812 
10813 	return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10814 							   num_items, 1);
10815 }
10816 
10817 /*
10818  * Process the unused_bgs list and remove any that don't have any allocated
10819  * space inside of them.
10820  */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)10821 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10822 {
10823 	struct btrfs_block_group_cache *block_group;
10824 	struct btrfs_space_info *space_info;
10825 	struct btrfs_root *root = fs_info->extent_root;
10826 	struct btrfs_trans_handle *trans;
10827 	int ret = 0;
10828 
10829 	if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10830 		return;
10831 
10832 	spin_lock(&fs_info->unused_bgs_lock);
10833 	while (!list_empty(&fs_info->unused_bgs)) {
10834 		u64 start, end;
10835 		int trimming;
10836 
10837 		block_group = list_first_entry(&fs_info->unused_bgs,
10838 					       struct btrfs_block_group_cache,
10839 					       bg_list);
10840 		list_del_init(&block_group->bg_list);
10841 
10842 		space_info = block_group->space_info;
10843 
10844 		if (ret || btrfs_mixed_space_info(space_info)) {
10845 			btrfs_put_block_group(block_group);
10846 			continue;
10847 		}
10848 		spin_unlock(&fs_info->unused_bgs_lock);
10849 
10850 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
10851 
10852 		/* Don't want to race with allocators so take the groups_sem */
10853 		down_write(&space_info->groups_sem);
10854 		spin_lock(&block_group->lock);
10855 		if (block_group->reserved ||
10856 		    btrfs_block_group_used(&block_group->item) ||
10857 		    block_group->ro ||
10858 		    list_is_singular(&block_group->list)) {
10859 			/*
10860 			 * We want to bail if we made new allocations or have
10861 			 * outstanding allocations in this block group.  We do
10862 			 * the ro check in case balance is currently acting on
10863 			 * this block group.
10864 			 */
10865 			spin_unlock(&block_group->lock);
10866 			up_write(&space_info->groups_sem);
10867 			goto next;
10868 		}
10869 		spin_unlock(&block_group->lock);
10870 
10871 		/* We don't want to force the issue, only flip if it's ok. */
10872 		ret = inc_block_group_ro(block_group, 0);
10873 		up_write(&space_info->groups_sem);
10874 		if (ret < 0) {
10875 			ret = 0;
10876 			goto next;
10877 		}
10878 
10879 		/*
10880 		 * Want to do this before we do anything else so we can recover
10881 		 * properly if we fail to join the transaction.
10882 		 */
10883 		trans = btrfs_start_trans_remove_block_group(fs_info,
10884 						     block_group->key.objectid);
10885 		if (IS_ERR(trans)) {
10886 			btrfs_dec_block_group_ro(root, block_group);
10887 			ret = PTR_ERR(trans);
10888 			goto next;
10889 		}
10890 
10891 		/*
10892 		 * We could have pending pinned extents for this block group,
10893 		 * just delete them, we don't care about them anymore.
10894 		 */
10895 		start = block_group->key.objectid;
10896 		end = start + block_group->key.offset - 1;
10897 		/*
10898 		 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10899 		 * btrfs_finish_extent_commit(). If we are at transaction N,
10900 		 * another task might be running finish_extent_commit() for the
10901 		 * previous transaction N - 1, and have seen a range belonging
10902 		 * to the block group in freed_extents[] before we were able to
10903 		 * clear the whole block group range from freed_extents[]. This
10904 		 * means that task can lookup for the block group after we
10905 		 * unpinned it from freed_extents[] and removed it, leading to
10906 		 * a BUG_ON() at btrfs_unpin_extent_range().
10907 		 */
10908 		mutex_lock(&fs_info->unused_bg_unpin_mutex);
10909 		ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10910 				  EXTENT_DIRTY);
10911 		if (ret) {
10912 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10913 			btrfs_dec_block_group_ro(root, block_group);
10914 			goto end_trans;
10915 		}
10916 		ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10917 				  EXTENT_DIRTY);
10918 		if (ret) {
10919 			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10920 			btrfs_dec_block_group_ro(root, block_group);
10921 			goto end_trans;
10922 		}
10923 		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10924 
10925 		/* Reset pinned so btrfs_put_block_group doesn't complain */
10926 		spin_lock(&space_info->lock);
10927 		spin_lock(&block_group->lock);
10928 
10929 		space_info->bytes_pinned -= block_group->pinned;
10930 		space_info->bytes_readonly += block_group->pinned;
10931 		percpu_counter_add(&space_info->total_bytes_pinned,
10932 				   -block_group->pinned);
10933 		block_group->pinned = 0;
10934 
10935 		spin_unlock(&block_group->lock);
10936 		spin_unlock(&space_info->lock);
10937 
10938 		/* DISCARD can flip during remount */
10939 		trimming = btrfs_test_opt(root->fs_info, DISCARD);
10940 
10941 		/* Implicit trim during transaction commit. */
10942 		if (trimming)
10943 			btrfs_get_block_group_trimming(block_group);
10944 
10945 		/*
10946 		 * Btrfs_remove_chunk will abort the transaction if things go
10947 		 * horribly wrong.
10948 		 */
10949 		ret = btrfs_remove_chunk(trans, root,
10950 					 block_group->key.objectid);
10951 
10952 		if (ret) {
10953 			if (trimming)
10954 				btrfs_put_block_group_trimming(block_group);
10955 			goto end_trans;
10956 		}
10957 
10958 		/*
10959 		 * If we're not mounted with -odiscard, we can just forget
10960 		 * about this block group. Otherwise we'll need to wait
10961 		 * until transaction commit to do the actual discard.
10962 		 */
10963 		if (trimming) {
10964 			spin_lock(&fs_info->unused_bgs_lock);
10965 			/*
10966 			 * A concurrent scrub might have added us to the list
10967 			 * fs_info->unused_bgs, so use a list_move operation
10968 			 * to add the block group to the deleted_bgs list.
10969 			 */
10970 			list_move(&block_group->bg_list,
10971 				  &trans->transaction->deleted_bgs);
10972 			spin_unlock(&fs_info->unused_bgs_lock);
10973 			btrfs_get_block_group(block_group);
10974 		}
10975 end_trans:
10976 		btrfs_end_transaction(trans, root);
10977 next:
10978 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10979 		btrfs_put_block_group(block_group);
10980 		spin_lock(&fs_info->unused_bgs_lock);
10981 	}
10982 	spin_unlock(&fs_info->unused_bgs_lock);
10983 }
10984 
btrfs_init_space_info(struct btrfs_fs_info * fs_info)10985 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10986 {
10987 	struct btrfs_space_info *space_info;
10988 	struct btrfs_super_block *disk_super;
10989 	u64 features;
10990 	u64 flags;
10991 	int mixed = 0;
10992 	int ret;
10993 
10994 	disk_super = fs_info->super_copy;
10995 	if (!btrfs_super_root(disk_super))
10996 		return -EINVAL;
10997 
10998 	features = btrfs_super_incompat_flags(disk_super);
10999 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
11000 		mixed = 1;
11001 
11002 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
11003 	ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
11004 	if (ret)
11005 		goto out;
11006 
11007 	if (mixed) {
11008 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
11009 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
11010 	} else {
11011 		flags = BTRFS_BLOCK_GROUP_METADATA;
11012 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
11013 		if (ret)
11014 			goto out;
11015 
11016 		flags = BTRFS_BLOCK_GROUP_DATA;
11017 		ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
11018 	}
11019 out:
11020 	return ret;
11021 }
11022 
btrfs_error_unpin_extent_range(struct btrfs_root * root,u64 start,u64 end)11023 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
11024 {
11025 	return unpin_extent_range(root, start, end, false);
11026 }
11027 
11028 /*
11029  * It used to be that old block groups would be left around forever.
11030  * Iterating over them would be enough to trim unused space.  Since we
11031  * now automatically remove them, we also need to iterate over unallocated
11032  * space.
11033  *
11034  * We don't want a transaction for this since the discard may take a
11035  * substantial amount of time.  We don't require that a transaction be
11036  * running, but we do need to take a running transaction into account
11037  * to ensure that we're not discarding chunks that were released in
11038  * the current transaction.
11039  *
11040  * Holding the chunks lock will prevent other threads from allocating
11041  * or releasing chunks, but it won't prevent a running transaction
11042  * from committing and releasing the memory that the pending chunks
11043  * list head uses.  For that, we need to take a reference to the
11044  * transaction.
11045  */
btrfs_trim_free_extents(struct btrfs_device * device,u64 minlen,u64 * trimmed)11046 static int btrfs_trim_free_extents(struct btrfs_device *device,
11047 				   u64 minlen, u64 *trimmed)
11048 {
11049 	u64 start = 0, len = 0;
11050 	int ret;
11051 
11052 	*trimmed = 0;
11053 
11054 	/* Not writeable = nothing to do. */
11055 	if (!device->writeable)
11056 		return 0;
11057 
11058 	/* No free space = nothing to do. */
11059 	if (device->total_bytes <= device->bytes_used)
11060 		return 0;
11061 
11062 	ret = 0;
11063 
11064 	while (1) {
11065 		struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
11066 		struct btrfs_transaction *trans;
11067 		u64 bytes;
11068 
11069 		ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11070 		if (ret)
11071 			return ret;
11072 
11073 		down_read(&fs_info->commit_root_sem);
11074 
11075 		spin_lock(&fs_info->trans_lock);
11076 		trans = fs_info->running_transaction;
11077 		if (trans)
11078 			atomic_inc(&trans->use_count);
11079 		spin_unlock(&fs_info->trans_lock);
11080 
11081 		ret = find_free_dev_extent_start(trans, device, minlen, start,
11082 						 &start, &len);
11083 		if (trans)
11084 			btrfs_put_transaction(trans);
11085 
11086 		if (ret) {
11087 			up_read(&fs_info->commit_root_sem);
11088 			mutex_unlock(&fs_info->chunk_mutex);
11089 			if (ret == -ENOSPC)
11090 				ret = 0;
11091 			break;
11092 		}
11093 
11094 		ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11095 		up_read(&fs_info->commit_root_sem);
11096 		mutex_unlock(&fs_info->chunk_mutex);
11097 
11098 		if (ret)
11099 			break;
11100 
11101 		start += len;
11102 		*trimmed += bytes;
11103 
11104 		if (fatal_signal_pending(current)) {
11105 			ret = -ERESTARTSYS;
11106 			break;
11107 		}
11108 
11109 		cond_resched();
11110 	}
11111 
11112 	return ret;
11113 }
11114 
btrfs_trim_fs(struct btrfs_root * root,struct fstrim_range * range)11115 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
11116 {
11117 	struct btrfs_fs_info *fs_info = root->fs_info;
11118 	struct btrfs_block_group_cache *cache = NULL;
11119 	struct btrfs_device *device;
11120 	struct list_head *devices;
11121 	u64 group_trimmed;
11122 	u64 start;
11123 	u64 end;
11124 	u64 trimmed = 0;
11125 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
11126 	int ret = 0;
11127 
11128 	/*
11129 	 * try to trim all FS space, our block group may start from non-zero.
11130 	 */
11131 	if (range->len == total_bytes)
11132 		cache = btrfs_lookup_first_block_group(fs_info, range->start);
11133 	else
11134 		cache = btrfs_lookup_block_group(fs_info, range->start);
11135 
11136 	while (cache) {
11137 		if (cache->key.objectid >= (range->start + range->len)) {
11138 			btrfs_put_block_group(cache);
11139 			break;
11140 		}
11141 
11142 		start = max(range->start, cache->key.objectid);
11143 		end = min(range->start + range->len,
11144 				cache->key.objectid + cache->key.offset);
11145 
11146 		if (end - start >= range->minlen) {
11147 			if (!block_group_cache_done(cache)) {
11148 				ret = cache_block_group(cache, 0);
11149 				if (ret) {
11150 					btrfs_put_block_group(cache);
11151 					break;
11152 				}
11153 				ret = wait_block_group_cache_done(cache);
11154 				if (ret) {
11155 					btrfs_put_block_group(cache);
11156 					break;
11157 				}
11158 			}
11159 			ret = btrfs_trim_block_group(cache,
11160 						     &group_trimmed,
11161 						     start,
11162 						     end,
11163 						     range->minlen);
11164 
11165 			trimmed += group_trimmed;
11166 			if (ret) {
11167 				btrfs_put_block_group(cache);
11168 				break;
11169 			}
11170 		}
11171 
11172 		cache = next_block_group(fs_info->tree_root, cache);
11173 	}
11174 
11175 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
11176 	devices = &root->fs_info->fs_devices->alloc_list;
11177 	list_for_each_entry(device, devices, dev_alloc_list) {
11178 		ret = btrfs_trim_free_extents(device, range->minlen,
11179 					      &group_trimmed);
11180 		if (ret)
11181 			break;
11182 
11183 		trimmed += group_trimmed;
11184 	}
11185 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
11186 
11187 	range->len = trimmed;
11188 	return ret;
11189 }
11190 
11191 /*
11192  * btrfs_{start,end}_write_no_snapshoting() are similar to
11193  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11194  * data into the page cache through nocow before the subvolume is snapshoted,
11195  * but flush the data into disk after the snapshot creation, or to prevent
11196  * operations while snapshoting is ongoing and that cause the snapshot to be
11197  * inconsistent (writes followed by expanding truncates for example).
11198  */
btrfs_end_write_no_snapshoting(struct btrfs_root * root)11199 void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
11200 {
11201 	percpu_counter_dec(&root->subv_writers->counter);
11202 	/*
11203 	 * Make sure counter is updated before we wake up waiters.
11204 	 */
11205 	smp_mb();
11206 	if (waitqueue_active(&root->subv_writers->wait))
11207 		wake_up(&root->subv_writers->wait);
11208 }
11209 
btrfs_start_write_no_snapshoting(struct btrfs_root * root)11210 int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
11211 {
11212 	if (atomic_read(&root->will_be_snapshoted))
11213 		return 0;
11214 
11215 	percpu_counter_inc(&root->subv_writers->counter);
11216 	/*
11217 	 * Make sure counter is updated before we check for snapshot creation.
11218 	 */
11219 	smp_mb();
11220 	if (atomic_read(&root->will_be_snapshoted)) {
11221 		btrfs_end_write_no_snapshoting(root);
11222 		return 0;
11223 	}
11224 	return 1;
11225 }
11226 
wait_snapshoting_atomic_t(atomic_t * a)11227 static int wait_snapshoting_atomic_t(atomic_t *a)
11228 {
11229 	schedule();
11230 	return 0;
11231 }
11232 
btrfs_wait_for_snapshot_creation(struct btrfs_root * root)11233 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11234 {
11235 	while (true) {
11236 		int ret;
11237 
11238 		ret = btrfs_start_write_no_snapshoting(root);
11239 		if (ret)
11240 			break;
11241 		wait_on_atomic_t(&root->will_be_snapshoted,
11242 				 wait_snapshoting_atomic_t,
11243 				 TASK_UNINTERRUPTIBLE);
11244 	}
11245 }
11246