• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #include "qgroup.h"
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/btrfs.h>
66 
67 static const struct super_operations btrfs_super_ops;
68 static struct file_system_type btrfs_fs_type;
69 
70 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
71 
btrfs_decode_error(int errno)72 const char *btrfs_decode_error(int errno)
73 {
74 	char *errstr = "unknown";
75 
76 	switch (errno) {
77 	case -EIO:
78 		errstr = "IO failure";
79 		break;
80 	case -ENOMEM:
81 		errstr = "Out of memory";
82 		break;
83 	case -EROFS:
84 		errstr = "Readonly filesystem";
85 		break;
86 	case -EEXIST:
87 		errstr = "Object already exists";
88 		break;
89 	case -ENOSPC:
90 		errstr = "No space left";
91 		break;
92 	case -ENOENT:
93 		errstr = "No such entry";
94 		break;
95 	}
96 
97 	return errstr;
98 }
99 
100 /* btrfs handle error by forcing the filesystem readonly */
btrfs_handle_error(struct btrfs_fs_info * fs_info)101 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
102 {
103 	struct super_block *sb = fs_info->sb;
104 
105 	if (sb->s_flags & MS_RDONLY)
106 		return;
107 
108 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
109 		sb->s_flags |= MS_RDONLY;
110 		btrfs_info(fs_info, "forced readonly");
111 		/*
112 		 * Note that a running device replace operation is not
113 		 * canceled here although there is no way to update
114 		 * the progress. It would add the risk of a deadlock,
115 		 * therefore the canceling is omitted. The only penalty
116 		 * is that some I/O remains active until the procedure
117 		 * completes. The next time when the filesystem is
118 		 * mounted writeable again, the device replace
119 		 * operation continues.
120 		 */
121 	}
122 }
123 
124 /*
125  * __btrfs_handle_fs_error decodes expected errors from the caller and
126  * invokes the approciate error response.
127  */
128 __cold
__btrfs_handle_fs_error(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)129 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
130 		       unsigned int line, int errno, const char *fmt, ...)
131 {
132 	struct super_block *sb = fs_info->sb;
133 #ifdef CONFIG_PRINTK
134 	const char *errstr;
135 #endif
136 
137 	/*
138 	 * Special case: if the error is EROFS, and we're already
139 	 * under MS_RDONLY, then it is safe here.
140 	 */
141 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
142   		return;
143 
144 #ifdef CONFIG_PRINTK
145 	errstr = btrfs_decode_error(errno);
146 	if (fmt) {
147 		struct va_format vaf;
148 		va_list args;
149 
150 		va_start(args, fmt);
151 		vaf.fmt = fmt;
152 		vaf.va = &args;
153 
154 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
155 			sb->s_id, function, line, errno, errstr, &vaf);
156 		va_end(args);
157 	} else {
158 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
159 			sb->s_id, function, line, errno, errstr);
160 	}
161 #endif
162 
163 	/*
164 	 * Today we only save the error info to memory.  Long term we'll
165 	 * also send it down to the disk
166 	 */
167 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
168 
169 	/* Don't go through full error handling during mount */
170 	if (sb->s_flags & MS_BORN)
171 		btrfs_handle_error(fs_info);
172 }
173 
174 #ifdef CONFIG_PRINTK
175 static const char * const logtypes[] = {
176 	"emergency",
177 	"alert",
178 	"critical",
179 	"error",
180 	"warning",
181 	"notice",
182 	"info",
183 	"debug",
184 };
185 
186 
187 /*
188  * Use one ratelimit state per log level so that a flood of less important
189  * messages doesn't cause more important ones to be dropped.
190  */
191 static struct ratelimit_state printk_limits[] = {
192 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
193 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
194 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
195 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
196 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
197 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
198 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
199 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
200 };
201 
btrfs_printk(const struct btrfs_fs_info * fs_info,const char * fmt,...)202 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
203 {
204 	struct super_block *sb = fs_info->sb;
205 	char lvl[4];
206 	struct va_format vaf;
207 	va_list args;
208 	const char *type = logtypes[4];
209 	int kern_level;
210 	struct ratelimit_state *ratelimit;
211 
212 	va_start(args, fmt);
213 
214 	kern_level = printk_get_level(fmt);
215 	if (kern_level) {
216 		size_t size = printk_skip_level(fmt) - fmt;
217 		memcpy(lvl, fmt,  size);
218 		lvl[size] = '\0';
219 		fmt += size;
220 		type = logtypes[kern_level - '0'];
221 		ratelimit = &printk_limits[kern_level - '0'];
222 	} else {
223 		*lvl = '\0';
224 		/* Default to debug output */
225 		ratelimit = &printk_limits[7];
226 	}
227 
228 	vaf.fmt = fmt;
229 	vaf.va = &args;
230 
231 	if (__ratelimit(ratelimit))
232 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
233 
234 	va_end(args);
235 }
236 #endif
237 
238 /*
239  * We only mark the transaction aborted and then set the file system read-only.
240  * This will prevent new transactions from starting or trying to join this
241  * one.
242  *
243  * This means that error recovery at the call site is limited to freeing
244  * any local memory allocations and passing the error code up without
245  * further cleanup. The transaction should complete as it normally would
246  * in the call path but will return -EIO.
247  *
248  * We'll complete the cleanup in btrfs_end_transaction and
249  * btrfs_commit_transaction.
250  */
251 __cold
__btrfs_abort_transaction(struct btrfs_trans_handle * trans,const char * function,unsigned int line,int errno)252 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
253 			       const char *function,
254 			       unsigned int line, int errno)
255 {
256 	struct btrfs_fs_info *fs_info = trans->fs_info;
257 
258 	trans->aborted = errno;
259 	/* Nothing used. The other threads that have joined this
260 	 * transaction may be able to continue. */
261 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
262 		const char *errstr;
263 
264 		errstr = btrfs_decode_error(errno);
265 		btrfs_warn(fs_info,
266 		           "%s:%d: Aborting unused transaction(%s).",
267 		           function, line, errstr);
268 		return;
269 	}
270 	ACCESS_ONCE(trans->transaction->aborted) = errno;
271 	/* Wake up anybody who may be waiting on this transaction */
272 	wake_up(&fs_info->transaction_wait);
273 	wake_up(&fs_info->transaction_blocked_wait);
274 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
275 }
276 /*
277  * __btrfs_panic decodes unexpected, fatal errors from the caller,
278  * issues an alert, and either panics or BUGs, depending on mount options.
279  */
280 __cold
__btrfs_panic(struct btrfs_fs_info * fs_info,const char * function,unsigned int line,int errno,const char * fmt,...)281 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
282 		   unsigned int line, int errno, const char *fmt, ...)
283 {
284 	char *s_id = "<unknown>";
285 	const char *errstr;
286 	struct va_format vaf = { .fmt = fmt };
287 	va_list args;
288 
289 	if (fs_info)
290 		s_id = fs_info->sb->s_id;
291 
292 	va_start(args, fmt);
293 	vaf.va = &args;
294 
295 	errstr = btrfs_decode_error(errno);
296 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
297 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
298 			s_id, function, line, &vaf, errno, errstr);
299 
300 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
301 		   function, line, &vaf, errno, errstr);
302 	va_end(args);
303 	/* Caller calls BUG() */
304 }
305 
btrfs_put_super(struct super_block * sb)306 static void btrfs_put_super(struct super_block *sb)
307 {
308 	close_ctree(btrfs_sb(sb)->tree_root);
309 }
310 
311 enum {
312 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
313 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
314 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
315 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
316 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
317 	Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
318 	Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
319 	Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
320 	Opt_skip_balance, Opt_check_integrity,
321 	Opt_check_integrity_including_extent_data,
322 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
323 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
324 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
325 	Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
326 	Opt_nologreplay, Opt_norecovery,
327 #ifdef CONFIG_BTRFS_DEBUG
328 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
329 #endif
330 	Opt_err,
331 };
332 
333 static const match_table_t tokens = {
334 	{Opt_degraded, "degraded"},
335 	{Opt_subvol, "subvol=%s"},
336 	{Opt_subvolid, "subvolid=%s"},
337 	{Opt_device, "device=%s"},
338 	{Opt_nodatasum, "nodatasum"},
339 	{Opt_datasum, "datasum"},
340 	{Opt_nodatacow, "nodatacow"},
341 	{Opt_datacow, "datacow"},
342 	{Opt_nobarrier, "nobarrier"},
343 	{Opt_barrier, "barrier"},
344 	{Opt_max_inline, "max_inline=%s"},
345 	{Opt_alloc_start, "alloc_start=%s"},
346 	{Opt_thread_pool, "thread_pool=%d"},
347 	{Opt_compress, "compress"},
348 	{Opt_compress_type, "compress=%s"},
349 	{Opt_compress_force, "compress-force"},
350 	{Opt_compress_force_type, "compress-force=%s"},
351 	{Opt_ssd, "ssd"},
352 	{Opt_ssd_spread, "ssd_spread"},
353 	{Opt_nossd, "nossd"},
354 	{Opt_acl, "acl"},
355 	{Opt_noacl, "noacl"},
356 	{Opt_notreelog, "notreelog"},
357 	{Opt_treelog, "treelog"},
358 	{Opt_nologreplay, "nologreplay"},
359 	{Opt_norecovery, "norecovery"},
360 	{Opt_flushoncommit, "flushoncommit"},
361 	{Opt_noflushoncommit, "noflushoncommit"},
362 	{Opt_ratio, "metadata_ratio=%d"},
363 	{Opt_discard, "discard"},
364 	{Opt_nodiscard, "nodiscard"},
365 	{Opt_space_cache, "space_cache"},
366 	{Opt_space_cache_version, "space_cache=%s"},
367 	{Opt_clear_cache, "clear_cache"},
368 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
369 	{Opt_enospc_debug, "enospc_debug"},
370 	{Opt_noenospc_debug, "noenospc_debug"},
371 	{Opt_subvolrootid, "subvolrootid=%d"},
372 	{Opt_defrag, "autodefrag"},
373 	{Opt_nodefrag, "noautodefrag"},
374 	{Opt_inode_cache, "inode_cache"},
375 	{Opt_noinode_cache, "noinode_cache"},
376 	{Opt_no_space_cache, "nospace_cache"},
377 	{Opt_recovery, "recovery"}, /* deprecated */
378 	{Opt_usebackuproot, "usebackuproot"},
379 	{Opt_skip_balance, "skip_balance"},
380 	{Opt_check_integrity, "check_int"},
381 	{Opt_check_integrity_including_extent_data, "check_int_data"},
382 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
383 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
384 	{Opt_fatal_errors, "fatal_errors=%s"},
385 	{Opt_commit_interval, "commit=%d"},
386 #ifdef CONFIG_BTRFS_DEBUG
387 	{Opt_fragment_data, "fragment=data"},
388 	{Opt_fragment_metadata, "fragment=metadata"},
389 	{Opt_fragment_all, "fragment=all"},
390 #endif
391 	{Opt_err, NULL},
392 };
393 
394 /*
395  * Regular mount options parser.  Everything that is needed only when
396  * reading in a new superblock is parsed here.
397  * XXX JDM: This needs to be cleaned up for remount.
398  */
btrfs_parse_options(struct btrfs_root * root,char * options,unsigned long new_flags)399 int btrfs_parse_options(struct btrfs_root *root, char *options,
400 			unsigned long new_flags)
401 {
402 	struct btrfs_fs_info *info = root->fs_info;
403 	substring_t args[MAX_OPT_ARGS];
404 	char *p, *num, *orig = NULL;
405 	u64 cache_gen;
406 	int intarg;
407 	int ret = 0;
408 	char *compress_type;
409 	bool compress_force = false;
410 	enum btrfs_compression_type saved_compress_type;
411 	bool saved_compress_force;
412 	int no_compress = 0;
413 
414 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
415 	if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE))
416 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
417 	else if (cache_gen)
418 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
419 
420 	/*
421 	 * Even the options are empty, we still need to do extra check
422 	 * against new flags
423 	 */
424 	if (!options)
425 		goto check;
426 
427 	/*
428 	 * strsep changes the string, duplicate it because parse_options
429 	 * gets called twice
430 	 */
431 	options = kstrdup(options, GFP_NOFS);
432 	if (!options)
433 		return -ENOMEM;
434 
435 	orig = options;
436 
437 	while ((p = strsep(&options, ",")) != NULL) {
438 		int token;
439 		if (!*p)
440 			continue;
441 
442 		token = match_token(p, tokens, args);
443 		switch (token) {
444 		case Opt_degraded:
445 			btrfs_info(root->fs_info, "allowing degraded mounts");
446 			btrfs_set_opt(info->mount_opt, DEGRADED);
447 			break;
448 		case Opt_subvol:
449 		case Opt_subvolid:
450 		case Opt_subvolrootid:
451 		case Opt_device:
452 			/*
453 			 * These are parsed by btrfs_parse_early_options
454 			 * and can be happily ignored here.
455 			 */
456 			break;
457 		case Opt_nodatasum:
458 			btrfs_set_and_info(info, NODATASUM,
459 					   "setting nodatasum");
460 			break;
461 		case Opt_datasum:
462 			if (btrfs_test_opt(info, NODATASUM)) {
463 				if (btrfs_test_opt(info, NODATACOW))
464 					btrfs_info(root->fs_info,
465 						   "setting datasum, datacow enabled");
466 				else
467 					btrfs_info(root->fs_info,
468 						   "setting datasum");
469 			}
470 			btrfs_clear_opt(info->mount_opt, NODATACOW);
471 			btrfs_clear_opt(info->mount_opt, NODATASUM);
472 			break;
473 		case Opt_nodatacow:
474 			if (!btrfs_test_opt(info, NODATACOW)) {
475 				if (!btrfs_test_opt(info, COMPRESS) ||
476 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
477 					btrfs_info(root->fs_info,
478 						   "setting nodatacow, compression disabled");
479 				} else {
480 					btrfs_info(root->fs_info,
481 						   "setting nodatacow");
482 				}
483 			}
484 			btrfs_clear_opt(info->mount_opt, COMPRESS);
485 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
486 			btrfs_set_opt(info->mount_opt, NODATACOW);
487 			btrfs_set_opt(info->mount_opt, NODATASUM);
488 			break;
489 		case Opt_datacow:
490 			btrfs_clear_and_info(info, NODATACOW,
491 					     "setting datacow");
492 			break;
493 		case Opt_compress_force:
494 		case Opt_compress_force_type:
495 			compress_force = true;
496 			/* Fallthrough */
497 		case Opt_compress:
498 		case Opt_compress_type:
499 			saved_compress_type = btrfs_test_opt(info,
500 							     COMPRESS) ?
501 				info->compress_type : BTRFS_COMPRESS_NONE;
502 			saved_compress_force =
503 				btrfs_test_opt(info, FORCE_COMPRESS);
504 			if (token == Opt_compress ||
505 			    token == Opt_compress_force ||
506 			    strcmp(args[0].from, "zlib") == 0) {
507 				compress_type = "zlib";
508 				info->compress_type = BTRFS_COMPRESS_ZLIB;
509 				btrfs_set_opt(info->mount_opt, COMPRESS);
510 				btrfs_clear_opt(info->mount_opt, NODATACOW);
511 				btrfs_clear_opt(info->mount_opt, NODATASUM);
512 				no_compress = 0;
513 			} else if (strcmp(args[0].from, "lzo") == 0) {
514 				compress_type = "lzo";
515 				info->compress_type = BTRFS_COMPRESS_LZO;
516 				btrfs_set_opt(info->mount_opt, COMPRESS);
517 				btrfs_clear_opt(info->mount_opt, NODATACOW);
518 				btrfs_clear_opt(info->mount_opt, NODATASUM);
519 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
520 				no_compress = 0;
521 			} else if (strncmp(args[0].from, "no", 2) == 0) {
522 				compress_type = "no";
523 				btrfs_clear_opt(info->mount_opt, COMPRESS);
524 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
525 				compress_force = false;
526 				no_compress++;
527 			} else {
528 				ret = -EINVAL;
529 				goto out;
530 			}
531 
532 			if (compress_force) {
533 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
534 			} else {
535 				/*
536 				 * If we remount from compress-force=xxx to
537 				 * compress=xxx, we need clear FORCE_COMPRESS
538 				 * flag, otherwise, there is no way for users
539 				 * to disable forcible compression separately.
540 				 */
541 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
542 			}
543 			if ((btrfs_test_opt(info, COMPRESS) &&
544 			     (info->compress_type != saved_compress_type ||
545 			      compress_force != saved_compress_force)) ||
546 			    (!btrfs_test_opt(info, COMPRESS) &&
547 			     no_compress == 1)) {
548 				btrfs_info(root->fs_info,
549 					   "%s %s compression",
550 					   (compress_force) ? "force" : "use",
551 					   compress_type);
552 			}
553 			compress_force = false;
554 			break;
555 		case Opt_ssd:
556 			btrfs_set_and_info(info, SSD,
557 					   "use ssd allocation scheme");
558 			break;
559 		case Opt_ssd_spread:
560 			btrfs_set_and_info(info, SSD_SPREAD,
561 					   "use spread ssd allocation scheme");
562 			btrfs_set_opt(info->mount_opt, SSD);
563 			break;
564 		case Opt_nossd:
565 			btrfs_set_and_info(info, NOSSD,
566 					     "not using ssd allocation scheme");
567 			btrfs_clear_opt(info->mount_opt, SSD);
568 			break;
569 		case Opt_barrier:
570 			btrfs_clear_and_info(info, NOBARRIER,
571 					     "turning on barriers");
572 			break;
573 		case Opt_nobarrier:
574 			btrfs_set_and_info(info, NOBARRIER,
575 					   "turning off barriers");
576 			break;
577 		case Opt_thread_pool:
578 			ret = match_int(&args[0], &intarg);
579 			if (ret) {
580 				goto out;
581 			} else if (intarg > 0) {
582 				info->thread_pool_size = intarg;
583 			} else {
584 				ret = -EINVAL;
585 				goto out;
586 			}
587 			break;
588 		case Opt_max_inline:
589 			num = match_strdup(&args[0]);
590 			if (num) {
591 				info->max_inline = memparse(num, NULL);
592 				kfree(num);
593 
594 				if (info->max_inline) {
595 					info->max_inline = min_t(u64,
596 						info->max_inline,
597 						root->sectorsize);
598 				}
599 				btrfs_info(root->fs_info, "max_inline at %llu",
600 					info->max_inline);
601 			} else {
602 				ret = -ENOMEM;
603 				goto out;
604 			}
605 			break;
606 		case Opt_alloc_start:
607 			num = match_strdup(&args[0]);
608 			if (num) {
609 				mutex_lock(&info->chunk_mutex);
610 				info->alloc_start = memparse(num, NULL);
611 				mutex_unlock(&info->chunk_mutex);
612 				kfree(num);
613 				btrfs_info(root->fs_info,
614 					   "allocations start at %llu",
615 					   info->alloc_start);
616 			} else {
617 				ret = -ENOMEM;
618 				goto out;
619 			}
620 			break;
621 		case Opt_acl:
622 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
623 			root->fs_info->sb->s_flags |= MS_POSIXACL;
624 			break;
625 #else
626 			btrfs_err(root->fs_info,
627 				"support for ACL not compiled in!");
628 			ret = -EINVAL;
629 			goto out;
630 #endif
631 		case Opt_noacl:
632 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
633 			break;
634 		case Opt_notreelog:
635 			btrfs_set_and_info(info, NOTREELOG,
636 					   "disabling tree log");
637 			break;
638 		case Opt_treelog:
639 			btrfs_clear_and_info(info, NOTREELOG,
640 					     "enabling tree log");
641 			break;
642 		case Opt_norecovery:
643 		case Opt_nologreplay:
644 			btrfs_set_and_info(info, NOLOGREPLAY,
645 					   "disabling log replay at mount time");
646 			break;
647 		case Opt_flushoncommit:
648 			btrfs_set_and_info(info, FLUSHONCOMMIT,
649 					   "turning on flush-on-commit");
650 			break;
651 		case Opt_noflushoncommit:
652 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
653 					     "turning off flush-on-commit");
654 			break;
655 		case Opt_ratio:
656 			ret = match_int(&args[0], &intarg);
657 			if (ret) {
658 				goto out;
659 			} else if (intarg >= 0) {
660 				info->metadata_ratio = intarg;
661 				btrfs_info(root->fs_info, "metadata ratio %d",
662 				       info->metadata_ratio);
663 			} else {
664 				ret = -EINVAL;
665 				goto out;
666 			}
667 			break;
668 		case Opt_discard:
669 			btrfs_set_and_info(info, DISCARD,
670 					   "turning on discard");
671 			break;
672 		case Opt_nodiscard:
673 			btrfs_clear_and_info(info, DISCARD,
674 					     "turning off discard");
675 			break;
676 		case Opt_space_cache:
677 		case Opt_space_cache_version:
678 			if (token == Opt_space_cache ||
679 			    strcmp(args[0].from, "v1") == 0) {
680 				btrfs_clear_opt(root->fs_info->mount_opt,
681 						FREE_SPACE_TREE);
682 				btrfs_set_and_info(info, SPACE_CACHE,
683 						   "enabling disk space caching");
684 			} else if (strcmp(args[0].from, "v2") == 0) {
685 				btrfs_clear_opt(root->fs_info->mount_opt,
686 						SPACE_CACHE);
687 				btrfs_set_and_info(info,
688 						   FREE_SPACE_TREE,
689 						   "enabling free space tree");
690 			} else {
691 				ret = -EINVAL;
692 				goto out;
693 			}
694 			break;
695 		case Opt_rescan_uuid_tree:
696 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
697 			break;
698 		case Opt_no_space_cache:
699 			if (btrfs_test_opt(info, SPACE_CACHE)) {
700 				btrfs_clear_and_info(info,
701 						     SPACE_CACHE,
702 						     "disabling disk space caching");
703 			}
704 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
705 				btrfs_clear_and_info(info,
706 						     FREE_SPACE_TREE,
707 						     "disabling free space tree");
708 			}
709 			break;
710 		case Opt_inode_cache:
711 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
712 					   "enabling inode map caching");
713 			break;
714 		case Opt_noinode_cache:
715 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
716 					     "disabling inode map caching");
717 			break;
718 		case Opt_clear_cache:
719 			btrfs_set_and_info(info, CLEAR_CACHE,
720 					   "force clearing of disk cache");
721 			break;
722 		case Opt_user_subvol_rm_allowed:
723 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
724 			break;
725 		case Opt_enospc_debug:
726 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
727 			break;
728 		case Opt_noenospc_debug:
729 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
730 			break;
731 		case Opt_defrag:
732 			btrfs_set_and_info(info, AUTO_DEFRAG,
733 					   "enabling auto defrag");
734 			break;
735 		case Opt_nodefrag:
736 			btrfs_clear_and_info(info, AUTO_DEFRAG,
737 					     "disabling auto defrag");
738 			break;
739 		case Opt_recovery:
740 			btrfs_warn(root->fs_info,
741 				   "'recovery' is deprecated, use 'usebackuproot' instead");
742 		case Opt_usebackuproot:
743 			btrfs_info(root->fs_info,
744 				   "trying to use backup root at mount time");
745 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
746 			break;
747 		case Opt_skip_balance:
748 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
749 			break;
750 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
751 		case Opt_check_integrity_including_extent_data:
752 			btrfs_info(root->fs_info,
753 				   "enabling check integrity including extent data");
754 			btrfs_set_opt(info->mount_opt,
755 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
756 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
757 			break;
758 		case Opt_check_integrity:
759 			btrfs_info(root->fs_info, "enabling check integrity");
760 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
761 			break;
762 		case Opt_check_integrity_print_mask:
763 			ret = match_int(&args[0], &intarg);
764 			if (ret) {
765 				goto out;
766 			} else if (intarg >= 0) {
767 				info->check_integrity_print_mask = intarg;
768 				btrfs_info(root->fs_info,
769 					   "check_integrity_print_mask 0x%x",
770 					   info->check_integrity_print_mask);
771 			} else {
772 				ret = -EINVAL;
773 				goto out;
774 			}
775 			break;
776 #else
777 		case Opt_check_integrity_including_extent_data:
778 		case Opt_check_integrity:
779 		case Opt_check_integrity_print_mask:
780 			btrfs_err(root->fs_info,
781 				"support for check_integrity* not compiled in!");
782 			ret = -EINVAL;
783 			goto out;
784 #endif
785 		case Opt_fatal_errors:
786 			if (strcmp(args[0].from, "panic") == 0)
787 				btrfs_set_opt(info->mount_opt,
788 					      PANIC_ON_FATAL_ERROR);
789 			else if (strcmp(args[0].from, "bug") == 0)
790 				btrfs_clear_opt(info->mount_opt,
791 					      PANIC_ON_FATAL_ERROR);
792 			else {
793 				ret = -EINVAL;
794 				goto out;
795 			}
796 			break;
797 		case Opt_commit_interval:
798 			intarg = 0;
799 			ret = match_int(&args[0], &intarg);
800 			if (ret < 0) {
801 				btrfs_err(root->fs_info,
802 					  "invalid commit interval");
803 				ret = -EINVAL;
804 				goto out;
805 			}
806 			if (intarg > 0) {
807 				if (intarg > 300) {
808 					btrfs_warn(root->fs_info,
809 						"excessive commit interval %d",
810 						intarg);
811 				}
812 				info->commit_interval = intarg;
813 			} else {
814 				btrfs_info(root->fs_info,
815 					   "using default commit interval %ds",
816 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
817 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
818 			}
819 			break;
820 #ifdef CONFIG_BTRFS_DEBUG
821 		case Opt_fragment_all:
822 			btrfs_info(root->fs_info, "fragmenting all space");
823 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
824 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
825 			break;
826 		case Opt_fragment_metadata:
827 			btrfs_info(root->fs_info, "fragmenting metadata");
828 			btrfs_set_opt(info->mount_opt,
829 				      FRAGMENT_METADATA);
830 			break;
831 		case Opt_fragment_data:
832 			btrfs_info(root->fs_info, "fragmenting data");
833 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
834 			break;
835 #endif
836 		case Opt_err:
837 			btrfs_info(root->fs_info,
838 				   "unrecognized mount option '%s'", p);
839 			ret = -EINVAL;
840 			goto out;
841 		default:
842 			break;
843 		}
844 	}
845 check:
846 	/*
847 	 * Extra check for current option against current flag
848 	 */
849 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) {
850 		btrfs_err(root->fs_info,
851 			  "nologreplay must be used with ro mount option");
852 		ret = -EINVAL;
853 	}
854 out:
855 	if (btrfs_fs_compat_ro(root->fs_info, FREE_SPACE_TREE) &&
856 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
857 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
858 		btrfs_err(root->fs_info, "cannot disable free space tree");
859 		ret = -EINVAL;
860 
861 	}
862 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
863 		btrfs_info(root->fs_info, "disk space caching is enabled");
864 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
865 		btrfs_info(root->fs_info, "using free space tree");
866 	kfree(orig);
867 	return ret;
868 }
869 
870 /*
871  * Parse mount options that are required early in the mount process.
872  *
873  * All other options will be parsed on much later in the mount process and
874  * only when we need to allocate a new super block.
875  */
btrfs_parse_early_options(const char * options,fmode_t flags,void * holder,char ** subvol_name,u64 * subvol_objectid,struct btrfs_fs_devices ** fs_devices)876 static int btrfs_parse_early_options(const char *options, fmode_t flags,
877 		void *holder, char **subvol_name, u64 *subvol_objectid,
878 		struct btrfs_fs_devices **fs_devices)
879 {
880 	substring_t args[MAX_OPT_ARGS];
881 	char *device_name, *opts, *orig, *p;
882 	char *num = NULL;
883 	int error = 0;
884 
885 	if (!options)
886 		return 0;
887 
888 	/*
889 	 * strsep changes the string, duplicate it because parse_options
890 	 * gets called twice
891 	 */
892 	opts = kstrdup(options, GFP_KERNEL);
893 	if (!opts)
894 		return -ENOMEM;
895 	orig = opts;
896 
897 	while ((p = strsep(&opts, ",")) != NULL) {
898 		int token;
899 		if (!*p)
900 			continue;
901 
902 		token = match_token(p, tokens, args);
903 		switch (token) {
904 		case Opt_subvol:
905 			kfree(*subvol_name);
906 			*subvol_name = match_strdup(&args[0]);
907 			if (!*subvol_name) {
908 				error = -ENOMEM;
909 				goto out;
910 			}
911 			break;
912 		case Opt_subvolid:
913 			num = match_strdup(&args[0]);
914 			if (num) {
915 				*subvol_objectid = memparse(num, NULL);
916 				kfree(num);
917 				/* we want the original fs_tree */
918 				if (!*subvol_objectid)
919 					*subvol_objectid =
920 						BTRFS_FS_TREE_OBJECTID;
921 			} else {
922 				error = -EINVAL;
923 				goto out;
924 			}
925 			break;
926 		case Opt_subvolrootid:
927 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
928 			break;
929 		case Opt_device:
930 			device_name = match_strdup(&args[0]);
931 			if (!device_name) {
932 				error = -ENOMEM;
933 				goto out;
934 			}
935 			error = btrfs_scan_one_device(device_name,
936 					flags, holder, fs_devices);
937 			kfree(device_name);
938 			if (error)
939 				goto out;
940 			break;
941 		default:
942 			break;
943 		}
944 	}
945 
946 out:
947 	kfree(orig);
948 	return error;
949 }
950 
get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)951 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
952 					   u64 subvol_objectid)
953 {
954 	struct btrfs_root *root = fs_info->tree_root;
955 	struct btrfs_root *fs_root;
956 	struct btrfs_root_ref *root_ref;
957 	struct btrfs_inode_ref *inode_ref;
958 	struct btrfs_key key;
959 	struct btrfs_path *path = NULL;
960 	char *name = NULL, *ptr;
961 	u64 dirid;
962 	int len;
963 	int ret;
964 
965 	path = btrfs_alloc_path();
966 	if (!path) {
967 		ret = -ENOMEM;
968 		goto err;
969 	}
970 	path->leave_spinning = 1;
971 
972 	name = kmalloc(PATH_MAX, GFP_NOFS);
973 	if (!name) {
974 		ret = -ENOMEM;
975 		goto err;
976 	}
977 	ptr = name + PATH_MAX - 1;
978 	ptr[0] = '\0';
979 
980 	/*
981 	 * Walk up the subvolume trees in the tree of tree roots by root
982 	 * backrefs until we hit the top-level subvolume.
983 	 */
984 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
985 		key.objectid = subvol_objectid;
986 		key.type = BTRFS_ROOT_BACKREF_KEY;
987 		key.offset = (u64)-1;
988 
989 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
990 		if (ret < 0) {
991 			goto err;
992 		} else if (ret > 0) {
993 			ret = btrfs_previous_item(root, path, subvol_objectid,
994 						  BTRFS_ROOT_BACKREF_KEY);
995 			if (ret < 0) {
996 				goto err;
997 			} else if (ret > 0) {
998 				ret = -ENOENT;
999 				goto err;
1000 			}
1001 		}
1002 
1003 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1004 		subvol_objectid = key.offset;
1005 
1006 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1007 					  struct btrfs_root_ref);
1008 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1009 		ptr -= len + 1;
1010 		if (ptr < name) {
1011 			ret = -ENAMETOOLONG;
1012 			goto err;
1013 		}
1014 		read_extent_buffer(path->nodes[0], ptr + 1,
1015 				   (unsigned long)(root_ref + 1), len);
1016 		ptr[0] = '/';
1017 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1018 		btrfs_release_path(path);
1019 
1020 		key.objectid = subvol_objectid;
1021 		key.type = BTRFS_ROOT_ITEM_KEY;
1022 		key.offset = (u64)-1;
1023 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1024 		if (IS_ERR(fs_root)) {
1025 			ret = PTR_ERR(fs_root);
1026 			goto err;
1027 		}
1028 
1029 		/*
1030 		 * Walk up the filesystem tree by inode refs until we hit the
1031 		 * root directory.
1032 		 */
1033 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1034 			key.objectid = dirid;
1035 			key.type = BTRFS_INODE_REF_KEY;
1036 			key.offset = (u64)-1;
1037 
1038 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1039 			if (ret < 0) {
1040 				goto err;
1041 			} else if (ret > 0) {
1042 				ret = btrfs_previous_item(fs_root, path, dirid,
1043 							  BTRFS_INODE_REF_KEY);
1044 				if (ret < 0) {
1045 					goto err;
1046 				} else if (ret > 0) {
1047 					ret = -ENOENT;
1048 					goto err;
1049 				}
1050 			}
1051 
1052 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1053 			dirid = key.offset;
1054 
1055 			inode_ref = btrfs_item_ptr(path->nodes[0],
1056 						   path->slots[0],
1057 						   struct btrfs_inode_ref);
1058 			len = btrfs_inode_ref_name_len(path->nodes[0],
1059 						       inode_ref);
1060 			ptr -= len + 1;
1061 			if (ptr < name) {
1062 				ret = -ENAMETOOLONG;
1063 				goto err;
1064 			}
1065 			read_extent_buffer(path->nodes[0], ptr + 1,
1066 					   (unsigned long)(inode_ref + 1), len);
1067 			ptr[0] = '/';
1068 			btrfs_release_path(path);
1069 		}
1070 	}
1071 
1072 	btrfs_free_path(path);
1073 	if (ptr == name + PATH_MAX - 1) {
1074 		name[0] = '/';
1075 		name[1] = '\0';
1076 	} else {
1077 		memmove(name, ptr, name + PATH_MAX - ptr);
1078 	}
1079 	return name;
1080 
1081 err:
1082 	btrfs_free_path(path);
1083 	kfree(name);
1084 	return ERR_PTR(ret);
1085 }
1086 
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)1087 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1088 {
1089 	struct btrfs_root *root = fs_info->tree_root;
1090 	struct btrfs_dir_item *di;
1091 	struct btrfs_path *path;
1092 	struct btrfs_key location;
1093 	u64 dir_id;
1094 
1095 	path = btrfs_alloc_path();
1096 	if (!path)
1097 		return -ENOMEM;
1098 	path->leave_spinning = 1;
1099 
1100 	/*
1101 	 * Find the "default" dir item which points to the root item that we
1102 	 * will mount by default if we haven't been given a specific subvolume
1103 	 * to mount.
1104 	 */
1105 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1106 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1107 	if (IS_ERR(di)) {
1108 		btrfs_free_path(path);
1109 		return PTR_ERR(di);
1110 	}
1111 	if (!di) {
1112 		/*
1113 		 * Ok the default dir item isn't there.  This is weird since
1114 		 * it's always been there, but don't freak out, just try and
1115 		 * mount the top-level subvolume.
1116 		 */
1117 		btrfs_free_path(path);
1118 		*objectid = BTRFS_FS_TREE_OBJECTID;
1119 		return 0;
1120 	}
1121 
1122 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1123 	btrfs_free_path(path);
1124 	*objectid = location.objectid;
1125 	return 0;
1126 }
1127 
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices,void * data,int silent)1128 static int btrfs_fill_super(struct super_block *sb,
1129 			    struct btrfs_fs_devices *fs_devices,
1130 			    void *data, int silent)
1131 {
1132 	struct inode *inode;
1133 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1134 	struct btrfs_key key;
1135 	int err;
1136 
1137 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1138 	sb->s_magic = BTRFS_SUPER_MAGIC;
1139 	sb->s_op = &btrfs_super_ops;
1140 	sb->s_d_op = &btrfs_dentry_operations;
1141 	sb->s_export_op = &btrfs_export_ops;
1142 	sb->s_xattr = btrfs_xattr_handlers;
1143 	sb->s_time_gran = 1;
1144 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1145 	sb->s_flags |= MS_POSIXACL;
1146 #endif
1147 	sb->s_flags |= MS_I_VERSION;
1148 	sb->s_iflags |= SB_I_CGROUPWB;
1149 	err = open_ctree(sb, fs_devices, (char *)data);
1150 	if (err) {
1151 		btrfs_err(fs_info, "open_ctree failed");
1152 		return err;
1153 	}
1154 
1155 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1156 	key.type = BTRFS_INODE_ITEM_KEY;
1157 	key.offset = 0;
1158 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1159 	if (IS_ERR(inode)) {
1160 		err = PTR_ERR(inode);
1161 		goto fail_close;
1162 	}
1163 
1164 	sb->s_root = d_make_root(inode);
1165 	if (!sb->s_root) {
1166 		err = -ENOMEM;
1167 		goto fail_close;
1168 	}
1169 
1170 	save_mount_options(sb, data);
1171 	cleancache_init_fs(sb);
1172 	sb->s_flags |= MS_ACTIVE;
1173 	return 0;
1174 
1175 fail_close:
1176 	close_ctree(fs_info->tree_root);
1177 	return err;
1178 }
1179 
btrfs_sync_fs(struct super_block * sb,int wait)1180 int btrfs_sync_fs(struct super_block *sb, int wait)
1181 {
1182 	struct btrfs_trans_handle *trans;
1183 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1184 	struct btrfs_root *root = fs_info->tree_root;
1185 
1186 	trace_btrfs_sync_fs(fs_info, wait);
1187 
1188 	if (!wait) {
1189 		filemap_flush(fs_info->btree_inode->i_mapping);
1190 		return 0;
1191 	}
1192 
1193 	btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1194 
1195 	trans = btrfs_attach_transaction_barrier(root);
1196 	if (IS_ERR(trans)) {
1197 		/* no transaction, don't bother */
1198 		if (PTR_ERR(trans) == -ENOENT) {
1199 			/*
1200 			 * Exit unless we have some pending changes
1201 			 * that need to go through commit
1202 			 */
1203 			if (fs_info->pending_changes == 0)
1204 				return 0;
1205 			/*
1206 			 * A non-blocking test if the fs is frozen. We must not
1207 			 * start a new transaction here otherwise a deadlock
1208 			 * happens. The pending operations are delayed to the
1209 			 * next commit after thawing.
1210 			 */
1211 			if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1212 				__sb_end_write(sb, SB_FREEZE_WRITE);
1213 			else
1214 				return 0;
1215 			trans = btrfs_start_transaction(root, 0);
1216 		}
1217 		if (IS_ERR(trans))
1218 			return PTR_ERR(trans);
1219 	}
1220 	return btrfs_commit_transaction(trans, root);
1221 }
1222 
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1223 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1224 {
1225 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1226 	struct btrfs_root *root = info->tree_root;
1227 	char *compress_type;
1228 
1229 	if (btrfs_test_opt(info, DEGRADED))
1230 		seq_puts(seq, ",degraded");
1231 	if (btrfs_test_opt(info, NODATASUM))
1232 		seq_puts(seq, ",nodatasum");
1233 	if (btrfs_test_opt(info, NODATACOW))
1234 		seq_puts(seq, ",nodatacow");
1235 	if (btrfs_test_opt(info, NOBARRIER))
1236 		seq_puts(seq, ",nobarrier");
1237 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1238 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1239 	if (info->alloc_start != 0)
1240 		seq_printf(seq, ",alloc_start=%llu", info->alloc_start);
1241 	if (info->thread_pool_size !=  min_t(unsigned long,
1242 					     num_online_cpus() + 2, 8))
1243 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1244 	if (btrfs_test_opt(info, COMPRESS)) {
1245 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1246 			compress_type = "zlib";
1247 		else
1248 			compress_type = "lzo";
1249 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1250 			seq_printf(seq, ",compress-force=%s", compress_type);
1251 		else
1252 			seq_printf(seq, ",compress=%s", compress_type);
1253 	}
1254 	if (btrfs_test_opt(info, NOSSD))
1255 		seq_puts(seq, ",nossd");
1256 	if (btrfs_test_opt(info, SSD_SPREAD))
1257 		seq_puts(seq, ",ssd_spread");
1258 	else if (btrfs_test_opt(info, SSD))
1259 		seq_puts(seq, ",ssd");
1260 	if (btrfs_test_opt(info, NOTREELOG))
1261 		seq_puts(seq, ",notreelog");
1262 	if (btrfs_test_opt(info, NOLOGREPLAY))
1263 		seq_puts(seq, ",nologreplay");
1264 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1265 		seq_puts(seq, ",flushoncommit");
1266 	if (btrfs_test_opt(info, DISCARD))
1267 		seq_puts(seq, ",discard");
1268 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
1269 		seq_puts(seq, ",noacl");
1270 	if (btrfs_test_opt(info, SPACE_CACHE))
1271 		seq_puts(seq, ",space_cache");
1272 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1273 		seq_puts(seq, ",space_cache=v2");
1274 	else
1275 		seq_puts(seq, ",nospace_cache");
1276 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1277 		seq_puts(seq, ",rescan_uuid_tree");
1278 	if (btrfs_test_opt(info, CLEAR_CACHE))
1279 		seq_puts(seq, ",clear_cache");
1280 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1281 		seq_puts(seq, ",user_subvol_rm_allowed");
1282 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1283 		seq_puts(seq, ",enospc_debug");
1284 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1285 		seq_puts(seq, ",autodefrag");
1286 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1287 		seq_puts(seq, ",inode_cache");
1288 	if (btrfs_test_opt(info, SKIP_BALANCE))
1289 		seq_puts(seq, ",skip_balance");
1290 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1291 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1292 		seq_puts(seq, ",check_int_data");
1293 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1294 		seq_puts(seq, ",check_int");
1295 	if (info->check_integrity_print_mask)
1296 		seq_printf(seq, ",check_int_print_mask=%d",
1297 				info->check_integrity_print_mask);
1298 #endif
1299 	if (info->metadata_ratio)
1300 		seq_printf(seq, ",metadata_ratio=%d",
1301 				info->metadata_ratio);
1302 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1303 		seq_puts(seq, ",fatal_errors=panic");
1304 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1305 		seq_printf(seq, ",commit=%d", info->commit_interval);
1306 #ifdef CONFIG_BTRFS_DEBUG
1307 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1308 		seq_puts(seq, ",fragment=data");
1309 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1310 		seq_puts(seq, ",fragment=metadata");
1311 #endif
1312 	seq_printf(seq, ",subvolid=%llu",
1313 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1314 	seq_puts(seq, ",subvol=");
1315 	seq_dentry(seq, dentry, " \t\n\\");
1316 	return 0;
1317 }
1318 
btrfs_test_super(struct super_block * s,void * data)1319 static int btrfs_test_super(struct super_block *s, void *data)
1320 {
1321 	struct btrfs_fs_info *p = data;
1322 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1323 
1324 	return fs_info->fs_devices == p->fs_devices;
1325 }
1326 
btrfs_set_super(struct super_block * s,void * data)1327 static int btrfs_set_super(struct super_block *s, void *data)
1328 {
1329 	int err = set_anon_super(s, data);
1330 	if (!err)
1331 		s->s_fs_info = data;
1332 	return err;
1333 }
1334 
1335 /*
1336  * subvolumes are identified by ino 256
1337  */
is_subvolume_inode(struct inode * inode)1338 static inline int is_subvolume_inode(struct inode *inode)
1339 {
1340 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1341 		return 1;
1342 	return 0;
1343 }
1344 
1345 /*
1346  * This will add subvolid=0 to the argument string while removing any subvol=
1347  * and subvolid= arguments to make sure we get the top-level root for path
1348  * walking to the subvol we want.
1349  */
setup_root_args(char * args)1350 static char *setup_root_args(char *args)
1351 {
1352 	char *buf, *dst, *sep;
1353 
1354 	if (!args)
1355 		return kstrdup("subvolid=0", GFP_NOFS);
1356 
1357 	/* The worst case is that we add ",subvolid=0" to the end. */
1358 	buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS);
1359 	if (!buf)
1360 		return NULL;
1361 
1362 	while (1) {
1363 		sep = strchrnul(args, ',');
1364 		if (!strstarts(args, "subvol=") &&
1365 		    !strstarts(args, "subvolid=")) {
1366 			memcpy(dst, args, sep - args);
1367 			dst += sep - args;
1368 			*dst++ = ',';
1369 		}
1370 		if (*sep)
1371 			args = sep + 1;
1372 		else
1373 			break;
1374 	}
1375 	strcpy(dst, "subvolid=0");
1376 
1377 	return buf;
1378 }
1379 
mount_subvol(const char * subvol_name,u64 subvol_objectid,int flags,const char * device_name,char * data)1380 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1381 				   int flags, const char *device_name,
1382 				   char *data)
1383 {
1384 	struct dentry *root;
1385 	struct vfsmount *mnt = NULL;
1386 	char *newargs;
1387 	int ret;
1388 
1389 	newargs = setup_root_args(data);
1390 	if (!newargs) {
1391 		root = ERR_PTR(-ENOMEM);
1392 		goto out;
1393 	}
1394 
1395 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1396 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1397 		if (flags & MS_RDONLY) {
1398 			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1399 					     device_name, newargs);
1400 		} else {
1401 			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1402 					     device_name, newargs);
1403 			if (IS_ERR(mnt)) {
1404 				root = ERR_CAST(mnt);
1405 				mnt = NULL;
1406 				goto out;
1407 			}
1408 
1409 			down_write(&mnt->mnt_sb->s_umount);
1410 			ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1411 			up_write(&mnt->mnt_sb->s_umount);
1412 			if (ret < 0) {
1413 				root = ERR_PTR(ret);
1414 				goto out;
1415 			}
1416 		}
1417 	}
1418 	if (IS_ERR(mnt)) {
1419 		root = ERR_CAST(mnt);
1420 		mnt = NULL;
1421 		goto out;
1422 	}
1423 
1424 	if (!subvol_name) {
1425 		if (!subvol_objectid) {
1426 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1427 							  &subvol_objectid);
1428 			if (ret) {
1429 				root = ERR_PTR(ret);
1430 				goto out;
1431 			}
1432 		}
1433 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1434 							    subvol_objectid);
1435 		if (IS_ERR(subvol_name)) {
1436 			root = ERR_CAST(subvol_name);
1437 			subvol_name = NULL;
1438 			goto out;
1439 		}
1440 
1441 	}
1442 
1443 	root = mount_subtree(mnt, subvol_name);
1444 	/* mount_subtree() drops our reference on the vfsmount. */
1445 	mnt = NULL;
1446 
1447 	if (!IS_ERR(root)) {
1448 		struct super_block *s = root->d_sb;
1449 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1450 		struct inode *root_inode = d_inode(root);
1451 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1452 
1453 		ret = 0;
1454 		if (!is_subvolume_inode(root_inode)) {
1455 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1456 			       subvol_name);
1457 			ret = -EINVAL;
1458 		}
1459 		if (subvol_objectid && root_objectid != subvol_objectid) {
1460 			/*
1461 			 * This will also catch a race condition where a
1462 			 * subvolume which was passed by ID is renamed and
1463 			 * another subvolume is renamed over the old location.
1464 			 */
1465 			btrfs_err(fs_info,
1466 				  "subvol '%s' does not match subvolid %llu",
1467 				  subvol_name, subvol_objectid);
1468 			ret = -EINVAL;
1469 		}
1470 		if (ret) {
1471 			dput(root);
1472 			root = ERR_PTR(ret);
1473 			deactivate_locked_super(s);
1474 		}
1475 	}
1476 
1477 out:
1478 	mntput(mnt);
1479 	kfree(newargs);
1480 	kfree(subvol_name);
1481 	return root;
1482 }
1483 
parse_security_options(char * orig_opts,struct security_mnt_opts * sec_opts)1484 static int parse_security_options(char *orig_opts,
1485 				  struct security_mnt_opts *sec_opts)
1486 {
1487 	char *secdata = NULL;
1488 	int ret = 0;
1489 
1490 	secdata = alloc_secdata();
1491 	if (!secdata)
1492 		return -ENOMEM;
1493 	ret = security_sb_copy_data(orig_opts, secdata);
1494 	if (ret) {
1495 		free_secdata(secdata);
1496 		return ret;
1497 	}
1498 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1499 	free_secdata(secdata);
1500 	return ret;
1501 }
1502 
setup_security_options(struct btrfs_fs_info * fs_info,struct super_block * sb,struct security_mnt_opts * sec_opts)1503 static int setup_security_options(struct btrfs_fs_info *fs_info,
1504 				  struct super_block *sb,
1505 				  struct security_mnt_opts *sec_opts)
1506 {
1507 	int ret = 0;
1508 
1509 	/*
1510 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1511 	 * is valid.
1512 	 */
1513 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1514 	if (ret)
1515 		return ret;
1516 
1517 #ifdef CONFIG_SECURITY
1518 	if (!fs_info->security_opts.num_mnt_opts) {
1519 		/* first time security setup, copy sec_opts to fs_info */
1520 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1521 	} else {
1522 		/*
1523 		 * Since SELinux (the only one supporting security_mnt_opts)
1524 		 * does NOT support changing context during remount/mount of
1525 		 * the same sb, this must be the same or part of the same
1526 		 * security options, just free it.
1527 		 */
1528 		security_free_mnt_opts(sec_opts);
1529 	}
1530 #endif
1531 	return ret;
1532 }
1533 
1534 /*
1535  * Find a superblock for the given device / mount point.
1536  *
1537  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1538  *	  for multiple device setup.  Make sure to keep it in sync.
1539  */
btrfs_mount(struct file_system_type * fs_type,int flags,const char * device_name,void * data)1540 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1541 		const char *device_name, void *data)
1542 {
1543 	struct block_device *bdev = NULL;
1544 	struct super_block *s;
1545 	struct btrfs_fs_devices *fs_devices = NULL;
1546 	struct btrfs_fs_info *fs_info = NULL;
1547 	struct security_mnt_opts new_sec_opts;
1548 	fmode_t mode = FMODE_READ;
1549 	char *subvol_name = NULL;
1550 	u64 subvol_objectid = 0;
1551 	int error = 0;
1552 
1553 	if (!(flags & MS_RDONLY))
1554 		mode |= FMODE_WRITE;
1555 
1556 	error = btrfs_parse_early_options(data, mode, fs_type,
1557 					  &subvol_name, &subvol_objectid,
1558 					  &fs_devices);
1559 	if (error) {
1560 		kfree(subvol_name);
1561 		return ERR_PTR(error);
1562 	}
1563 
1564 	if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1565 		/* mount_subvol() will free subvol_name. */
1566 		return mount_subvol(subvol_name, subvol_objectid, flags,
1567 				    device_name, data);
1568 	}
1569 
1570 	security_init_mnt_opts(&new_sec_opts);
1571 	if (data) {
1572 		error = parse_security_options(data, &new_sec_opts);
1573 		if (error)
1574 			return ERR_PTR(error);
1575 	}
1576 
1577 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1578 	if (error)
1579 		goto error_sec_opts;
1580 
1581 	/*
1582 	 * Setup a dummy root and fs_info for test/set super.  This is because
1583 	 * we don't actually fill this stuff out until open_ctree, but we need
1584 	 * it for searching for existing supers, so this lets us do that and
1585 	 * then open_ctree will properly initialize everything later.
1586 	 */
1587 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1588 	if (!fs_info) {
1589 		error = -ENOMEM;
1590 		goto error_sec_opts;
1591 	}
1592 
1593 	fs_info->fs_devices = fs_devices;
1594 
1595 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1596 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1597 	security_init_mnt_opts(&fs_info->security_opts);
1598 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1599 		error = -ENOMEM;
1600 		goto error_fs_info;
1601 	}
1602 
1603 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1604 	if (error)
1605 		goto error_fs_info;
1606 
1607 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1608 		error = -EACCES;
1609 		goto error_close_devices;
1610 	}
1611 
1612 	bdev = fs_devices->latest_bdev;
1613 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1614 		 fs_info);
1615 	if (IS_ERR(s)) {
1616 		error = PTR_ERR(s);
1617 		goto error_close_devices;
1618 	}
1619 
1620 	if (s->s_root) {
1621 		btrfs_close_devices(fs_devices);
1622 		free_fs_info(fs_info);
1623 		if ((flags ^ s->s_flags) & MS_RDONLY)
1624 			error = -EBUSY;
1625 	} else {
1626 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1627 		btrfs_sb(s)->bdev_holder = fs_type;
1628 		error = btrfs_fill_super(s, fs_devices, data,
1629 					 flags & MS_SILENT ? 1 : 0);
1630 	}
1631 	if (error) {
1632 		deactivate_locked_super(s);
1633 		goto error_sec_opts;
1634 	}
1635 
1636 	fs_info = btrfs_sb(s);
1637 	error = setup_security_options(fs_info, s, &new_sec_opts);
1638 	if (error) {
1639 		deactivate_locked_super(s);
1640 		goto error_sec_opts;
1641 	}
1642 
1643 	return dget(s->s_root);
1644 
1645 error_close_devices:
1646 	btrfs_close_devices(fs_devices);
1647 error_fs_info:
1648 	free_fs_info(fs_info);
1649 error_sec_opts:
1650 	security_free_mnt_opts(&new_sec_opts);
1651 	return ERR_PTR(error);
1652 }
1653 
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,int new_pool_size,int old_pool_size)1654 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1655 				     int new_pool_size, int old_pool_size)
1656 {
1657 	if (new_pool_size == old_pool_size)
1658 		return;
1659 
1660 	fs_info->thread_pool_size = new_pool_size;
1661 
1662 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1663 	       old_pool_size, new_pool_size);
1664 
1665 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1666 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1667 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1668 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1669 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1670 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1671 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1672 				new_pool_size);
1673 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1674 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1675 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1676 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1677 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1678 				new_pool_size);
1679 }
1680 
btrfs_remount_prepare(struct btrfs_fs_info * fs_info)1681 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1682 {
1683 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1684 }
1685 
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long old_opts,int flags)1686 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1687 				       unsigned long old_opts, int flags)
1688 {
1689 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1690 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1691 	     (flags & MS_RDONLY))) {
1692 		/* wait for any defraggers to finish */
1693 		wait_event(fs_info->transaction_wait,
1694 			   (atomic_read(&fs_info->defrag_running) == 0));
1695 		if (flags & MS_RDONLY)
1696 			sync_filesystem(fs_info->sb);
1697 	}
1698 }
1699 
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long old_opts)1700 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1701 					 unsigned long old_opts)
1702 {
1703 	/*
1704 	 * We need to cleanup all defragable inodes if the autodefragment is
1705 	 * close or the filesystem is read only.
1706 	 */
1707 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1708 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1709 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1710 		btrfs_cleanup_defrag_inodes(fs_info);
1711 	}
1712 
1713 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1714 }
1715 
btrfs_remount(struct super_block * sb,int * flags,char * data)1716 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1717 {
1718 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1719 	struct btrfs_root *root = fs_info->tree_root;
1720 	unsigned old_flags = sb->s_flags;
1721 	unsigned long old_opts = fs_info->mount_opt;
1722 	unsigned long old_compress_type = fs_info->compress_type;
1723 	u64 old_max_inline = fs_info->max_inline;
1724 	u64 old_alloc_start = fs_info->alloc_start;
1725 	int old_thread_pool_size = fs_info->thread_pool_size;
1726 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1727 	int ret;
1728 
1729 	sync_filesystem(sb);
1730 	btrfs_remount_prepare(fs_info);
1731 
1732 	if (data) {
1733 		struct security_mnt_opts new_sec_opts;
1734 
1735 		security_init_mnt_opts(&new_sec_opts);
1736 		ret = parse_security_options(data, &new_sec_opts);
1737 		if (ret)
1738 			goto restore;
1739 		ret = setup_security_options(fs_info, sb,
1740 					     &new_sec_opts);
1741 		if (ret) {
1742 			security_free_mnt_opts(&new_sec_opts);
1743 			goto restore;
1744 		}
1745 	}
1746 
1747 	ret = btrfs_parse_options(root, data, *flags);
1748 	if (ret) {
1749 		ret = -EINVAL;
1750 		goto restore;
1751 	}
1752 
1753 	btrfs_remount_begin(fs_info, old_opts, *flags);
1754 	btrfs_resize_thread_pool(fs_info,
1755 		fs_info->thread_pool_size, old_thread_pool_size);
1756 
1757 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1758 		goto out;
1759 
1760 	if (*flags & MS_RDONLY) {
1761 		/*
1762 		 * this also happens on 'umount -rf' or on shutdown, when
1763 		 * the filesystem is busy.
1764 		 */
1765 		cancel_work_sync(&fs_info->async_reclaim_work);
1766 
1767 		/* wait for the uuid_scan task to finish */
1768 		down(&fs_info->uuid_tree_rescan_sem);
1769 		/* avoid complains from lockdep et al. */
1770 		up(&fs_info->uuid_tree_rescan_sem);
1771 
1772 		sb->s_flags |= MS_RDONLY;
1773 
1774 		/*
1775 		 * Setting MS_RDONLY will put the cleaner thread to
1776 		 * sleep at the next loop if it's already active.
1777 		 * If it's already asleep, we'll leave unused block
1778 		 * groups on disk until we're mounted read-write again
1779 		 * unless we clean them up here.
1780 		 */
1781 		btrfs_delete_unused_bgs(fs_info);
1782 
1783 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1784 		btrfs_scrub_cancel(fs_info);
1785 		btrfs_pause_balance(fs_info);
1786 
1787 		ret = btrfs_commit_super(root);
1788 		if (ret)
1789 			goto restore;
1790 	} else {
1791 		if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1792 			btrfs_err(fs_info,
1793 				"Remounting read-write after error is not allowed");
1794 			ret = -EINVAL;
1795 			goto restore;
1796 		}
1797 		if (fs_info->fs_devices->rw_devices == 0) {
1798 			ret = -EACCES;
1799 			goto restore;
1800 		}
1801 
1802 		if (fs_info->fs_devices->missing_devices >
1803 		     fs_info->num_tolerated_disk_barrier_failures &&
1804 		    !(*flags & MS_RDONLY)) {
1805 			btrfs_warn(fs_info,
1806 				"too many missing devices, writeable remount is not allowed");
1807 			ret = -EACCES;
1808 			goto restore;
1809 		}
1810 
1811 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1812 			ret = -EINVAL;
1813 			goto restore;
1814 		}
1815 
1816 		ret = btrfs_cleanup_fs_roots(fs_info);
1817 		if (ret)
1818 			goto restore;
1819 
1820 		/* recover relocation */
1821 		mutex_lock(&fs_info->cleaner_mutex);
1822 		ret = btrfs_recover_relocation(root);
1823 		mutex_unlock(&fs_info->cleaner_mutex);
1824 		if (ret)
1825 			goto restore;
1826 
1827 		ret = btrfs_resume_balance_async(fs_info);
1828 		if (ret)
1829 			goto restore;
1830 
1831 		ret = btrfs_resume_dev_replace_async(fs_info);
1832 		if (ret) {
1833 			btrfs_warn(fs_info, "failed to resume dev_replace");
1834 			goto restore;
1835 		}
1836 
1837 		btrfs_qgroup_rescan_resume(fs_info);
1838 
1839 		if (!fs_info->uuid_root) {
1840 			btrfs_info(fs_info, "creating UUID tree");
1841 			ret = btrfs_create_uuid_tree(fs_info);
1842 			if (ret) {
1843 				btrfs_warn(fs_info,
1844 					   "failed to create the UUID tree %d",
1845 					   ret);
1846 				goto restore;
1847 			}
1848 		}
1849 		sb->s_flags &= ~MS_RDONLY;
1850 
1851 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1852 	}
1853 out:
1854 	wake_up_process(fs_info->transaction_kthread);
1855 	btrfs_remount_cleanup(fs_info, old_opts);
1856 	return 0;
1857 
1858 restore:
1859 	/* We've hit an error - don't reset MS_RDONLY */
1860 	if (sb->s_flags & MS_RDONLY)
1861 		old_flags |= MS_RDONLY;
1862 	sb->s_flags = old_flags;
1863 	fs_info->mount_opt = old_opts;
1864 	fs_info->compress_type = old_compress_type;
1865 	fs_info->max_inline = old_max_inline;
1866 	mutex_lock(&fs_info->chunk_mutex);
1867 	fs_info->alloc_start = old_alloc_start;
1868 	mutex_unlock(&fs_info->chunk_mutex);
1869 	btrfs_resize_thread_pool(fs_info,
1870 		old_thread_pool_size, fs_info->thread_pool_size);
1871 	fs_info->metadata_ratio = old_metadata_ratio;
1872 	btrfs_remount_cleanup(fs_info, old_opts);
1873 	return ret;
1874 }
1875 
1876 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * dev_info1,const void * dev_info2)1877 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1878 				       const void *dev_info2)
1879 {
1880 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1881 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1882 		return -1;
1883 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1884 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1885 		return 1;
1886 	else
1887 	return 0;
1888 }
1889 
1890 /*
1891  * sort the devices by max_avail, in which max free extent size of each device
1892  * is stored.(Descending Sort)
1893  */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)1894 static inline void btrfs_descending_sort_devices(
1895 					struct btrfs_device_info *devices,
1896 					size_t nr_devices)
1897 {
1898 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1899 	     btrfs_cmp_device_free_bytes, NULL);
1900 }
1901 
1902 /*
1903  * The helper to calc the free space on the devices that can be used to store
1904  * file data.
1905  */
btrfs_calc_avail_data_space(struct btrfs_root * root,u64 * free_bytes)1906 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1907 {
1908 	struct btrfs_fs_info *fs_info = root->fs_info;
1909 	struct btrfs_device_info *devices_info;
1910 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1911 	struct btrfs_device *device;
1912 	u64 skip_space;
1913 	u64 type;
1914 	u64 avail_space;
1915 	u64 used_space;
1916 	u64 min_stripe_size;
1917 	int min_stripes = 1, num_stripes = 1;
1918 	int i = 0, nr_devices;
1919 	int ret;
1920 
1921 	/*
1922 	 * We aren't under the device list lock, so this is racy-ish, but good
1923 	 * enough for our purposes.
1924 	 */
1925 	nr_devices = fs_info->fs_devices->open_devices;
1926 	if (!nr_devices) {
1927 		smp_mb();
1928 		nr_devices = fs_info->fs_devices->open_devices;
1929 		ASSERT(nr_devices);
1930 		if (!nr_devices) {
1931 			*free_bytes = 0;
1932 			return 0;
1933 		}
1934 	}
1935 
1936 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1937 			       GFP_NOFS);
1938 	if (!devices_info)
1939 		return -ENOMEM;
1940 
1941 	/* calc min stripe number for data space allocation */
1942 	type = btrfs_get_alloc_profile(root, 1);
1943 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1944 		min_stripes = 2;
1945 		num_stripes = nr_devices;
1946 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1947 		min_stripes = 2;
1948 		num_stripes = 2;
1949 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1950 		min_stripes = 4;
1951 		num_stripes = 4;
1952 	}
1953 
1954 	if (type & BTRFS_BLOCK_GROUP_DUP)
1955 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1956 	else
1957 		min_stripe_size = BTRFS_STRIPE_LEN;
1958 
1959 	if (fs_info->alloc_start)
1960 		mutex_lock(&fs_devices->device_list_mutex);
1961 	rcu_read_lock();
1962 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1963 		if (!device->in_fs_metadata || !device->bdev ||
1964 		    device->is_tgtdev_for_dev_replace)
1965 			continue;
1966 
1967 		if (i >= nr_devices)
1968 			break;
1969 
1970 		avail_space = device->total_bytes - device->bytes_used;
1971 
1972 		/* align with stripe_len */
1973 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1974 		avail_space *= BTRFS_STRIPE_LEN;
1975 
1976 		/*
1977 		 * In order to avoid overwriting the superblock on the drive,
1978 		 * btrfs starts at an offset of at least 1MB when doing chunk
1979 		 * allocation.
1980 		 */
1981 		skip_space = SZ_1M;
1982 
1983 		/* user can set the offset in fs_info->alloc_start. */
1984 		if (fs_info->alloc_start &&
1985 		    fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1986 		    device->total_bytes) {
1987 			rcu_read_unlock();
1988 			skip_space = max(fs_info->alloc_start, skip_space);
1989 
1990 			/*
1991 			 * btrfs can not use the free space in
1992 			 * [0, skip_space - 1], we must subtract it from the
1993 			 * total. In order to implement it, we account the used
1994 			 * space in this range first.
1995 			 */
1996 			ret = btrfs_account_dev_extents_size(device, 0,
1997 							     skip_space - 1,
1998 							     &used_space);
1999 			if (ret) {
2000 				kfree(devices_info);
2001 				mutex_unlock(&fs_devices->device_list_mutex);
2002 				return ret;
2003 			}
2004 
2005 			rcu_read_lock();
2006 
2007 			/* calc the free space in [0, skip_space - 1] */
2008 			skip_space -= used_space;
2009 		}
2010 
2011 		/*
2012 		 * we can use the free space in [0, skip_space - 1], subtract
2013 		 * it from the total.
2014 		 */
2015 		if (avail_space && avail_space >= skip_space)
2016 			avail_space -= skip_space;
2017 		else
2018 			avail_space = 0;
2019 
2020 		if (avail_space < min_stripe_size)
2021 			continue;
2022 
2023 		devices_info[i].dev = device;
2024 		devices_info[i].max_avail = avail_space;
2025 
2026 		i++;
2027 	}
2028 	rcu_read_unlock();
2029 	if (fs_info->alloc_start)
2030 		mutex_unlock(&fs_devices->device_list_mutex);
2031 
2032 	nr_devices = i;
2033 
2034 	btrfs_descending_sort_devices(devices_info, nr_devices);
2035 
2036 	i = nr_devices - 1;
2037 	avail_space = 0;
2038 	while (nr_devices >= min_stripes) {
2039 		if (num_stripes > nr_devices)
2040 			num_stripes = nr_devices;
2041 
2042 		if (devices_info[i].max_avail >= min_stripe_size) {
2043 			int j;
2044 			u64 alloc_size;
2045 
2046 			avail_space += devices_info[i].max_avail * num_stripes;
2047 			alloc_size = devices_info[i].max_avail;
2048 			for (j = i + 1 - num_stripes; j <= i; j++)
2049 				devices_info[j].max_avail -= alloc_size;
2050 		}
2051 		i--;
2052 		nr_devices--;
2053 	}
2054 
2055 	kfree(devices_info);
2056 	*free_bytes = avail_space;
2057 	return 0;
2058 }
2059 
2060 /*
2061  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2062  *
2063  * If there's a redundant raid level at DATA block groups, use the respective
2064  * multiplier to scale the sizes.
2065  *
2066  * Unused device space usage is based on simulating the chunk allocator
2067  * algorithm that respects the device sizes, order of allocations and the
2068  * 'alloc_start' value, this is a close approximation of the actual use but
2069  * there are other factors that may change the result (like a new metadata
2070  * chunk).
2071  *
2072  * If metadata is exhausted, f_bavail will be 0.
2073  */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)2074 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2075 {
2076 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2077 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2078 	struct list_head *head = &fs_info->space_info;
2079 	struct btrfs_space_info *found;
2080 	u64 total_used = 0;
2081 	u64 total_free_data = 0;
2082 	u64 total_free_meta = 0;
2083 	int bits = dentry->d_sb->s_blocksize_bits;
2084 	__be32 *fsid = (__be32 *)fs_info->fsid;
2085 	unsigned factor = 1;
2086 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2087 	int ret;
2088 	u64 thresh = 0;
2089 	int mixed = 0;
2090 
2091 	/*
2092 	 * holding chunk_mutex to avoid allocating new chunks, holding
2093 	 * device_list_mutex to avoid the device being removed
2094 	 */
2095 	rcu_read_lock();
2096 	list_for_each_entry_rcu(found, head, list) {
2097 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2098 			int i;
2099 
2100 			total_free_data += found->disk_total - found->disk_used;
2101 			total_free_data -=
2102 				btrfs_account_ro_block_groups_free_space(found);
2103 
2104 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2105 				if (!list_empty(&found->block_groups[i])) {
2106 					switch (i) {
2107 					case BTRFS_RAID_DUP:
2108 					case BTRFS_RAID_RAID1:
2109 					case BTRFS_RAID_RAID10:
2110 						factor = 2;
2111 					}
2112 				}
2113 			}
2114 		}
2115 
2116 		/*
2117 		 * Metadata in mixed block goup profiles are accounted in data
2118 		 */
2119 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2120 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2121 				mixed = 1;
2122 			else
2123 				total_free_meta += found->disk_total -
2124 					found->disk_used;
2125 		}
2126 
2127 		total_used += found->disk_used;
2128 	}
2129 
2130 	rcu_read_unlock();
2131 
2132 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2133 	buf->f_blocks >>= bits;
2134 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2135 
2136 	/* Account global block reserve as used, it's in logical size already */
2137 	spin_lock(&block_rsv->lock);
2138 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2139 	if (buf->f_bfree >= block_rsv->size >> bits)
2140 		buf->f_bfree -= block_rsv->size >> bits;
2141 	else
2142 		buf->f_bfree = 0;
2143 	spin_unlock(&block_rsv->lock);
2144 
2145 	buf->f_bavail = div_u64(total_free_data, factor);
2146 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
2147 	if (ret)
2148 		return ret;
2149 	buf->f_bavail += div_u64(total_free_data, factor);
2150 	buf->f_bavail = buf->f_bavail >> bits;
2151 
2152 	/*
2153 	 * We calculate the remaining metadata space minus global reserve. If
2154 	 * this is (supposedly) smaller than zero, there's no space. But this
2155 	 * does not hold in practice, the exhausted state happens where's still
2156 	 * some positive delta. So we apply some guesswork and compare the
2157 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2158 	 *
2159 	 * We probably cannot calculate the exact threshold value because this
2160 	 * depends on the internal reservations requested by various
2161 	 * operations, so some operations that consume a few metadata will
2162 	 * succeed even if the Avail is zero. But this is better than the other
2163 	 * way around.
2164 	 */
2165 	thresh = 4 * 1024 * 1024;
2166 
2167 	if (!mixed && total_free_meta - thresh < block_rsv->size)
2168 		buf->f_bavail = 0;
2169 
2170 	buf->f_type = BTRFS_SUPER_MAGIC;
2171 	buf->f_bsize = dentry->d_sb->s_blocksize;
2172 	buf->f_namelen = BTRFS_NAME_LEN;
2173 
2174 	/* We treat it as constant endianness (it doesn't matter _which_)
2175 	   because we want the fsid to come out the same whether mounted
2176 	   on a big-endian or little-endian host */
2177 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2178 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2179 	/* Mask in the root object ID too, to disambiguate subvols */
2180 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2181 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2182 
2183 	return 0;
2184 }
2185 
btrfs_kill_super(struct super_block * sb)2186 static void btrfs_kill_super(struct super_block *sb)
2187 {
2188 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2189 	kill_anon_super(sb);
2190 	free_fs_info(fs_info);
2191 }
2192 
2193 static struct file_system_type btrfs_fs_type = {
2194 	.owner		= THIS_MODULE,
2195 	.name		= "btrfs",
2196 	.mount		= btrfs_mount,
2197 	.kill_sb	= btrfs_kill_super,
2198 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2199 };
2200 MODULE_ALIAS_FS("btrfs");
2201 
btrfs_control_open(struct inode * inode,struct file * file)2202 static int btrfs_control_open(struct inode *inode, struct file *file)
2203 {
2204 	/*
2205 	 * The control file's private_data is used to hold the
2206 	 * transaction when it is started and is used to keep
2207 	 * track of whether a transaction is already in progress.
2208 	 */
2209 	file->private_data = NULL;
2210 	return 0;
2211 }
2212 
2213 /*
2214  * used by btrfsctl to scan devices when no FS is mounted
2215  */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2216 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2217 				unsigned long arg)
2218 {
2219 	struct btrfs_ioctl_vol_args *vol;
2220 	struct btrfs_fs_devices *fs_devices;
2221 	int ret = -ENOTTY;
2222 
2223 	if (!capable(CAP_SYS_ADMIN))
2224 		return -EPERM;
2225 
2226 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2227 	if (IS_ERR(vol))
2228 		return PTR_ERR(vol);
2229 
2230 	switch (cmd) {
2231 	case BTRFS_IOC_SCAN_DEV:
2232 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2233 					    &btrfs_fs_type, &fs_devices);
2234 		break;
2235 	case BTRFS_IOC_DEVICES_READY:
2236 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2237 					    &btrfs_fs_type, &fs_devices);
2238 		if (ret)
2239 			break;
2240 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
2241 		break;
2242 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2243 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2244 		break;
2245 	}
2246 
2247 	kfree(vol);
2248 	return ret;
2249 }
2250 
btrfs_freeze(struct super_block * sb)2251 static int btrfs_freeze(struct super_block *sb)
2252 {
2253 	struct btrfs_trans_handle *trans;
2254 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
2255 
2256 	root->fs_info->fs_frozen = 1;
2257 	/*
2258 	 * We don't need a barrier here, we'll wait for any transaction that
2259 	 * could be in progress on other threads (and do delayed iputs that
2260 	 * we want to avoid on a frozen filesystem), or do the commit
2261 	 * ourselves.
2262 	 */
2263 	trans = btrfs_attach_transaction_barrier(root);
2264 	if (IS_ERR(trans)) {
2265 		/* no transaction, don't bother */
2266 		if (PTR_ERR(trans) == -ENOENT)
2267 			return 0;
2268 		return PTR_ERR(trans);
2269 	}
2270 	return btrfs_commit_transaction(trans, root);
2271 }
2272 
btrfs_unfreeze(struct super_block * sb)2273 static int btrfs_unfreeze(struct super_block *sb)
2274 {
2275 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
2276 
2277 	root->fs_info->fs_frozen = 0;
2278 	return 0;
2279 }
2280 
btrfs_show_devname(struct seq_file * m,struct dentry * root)2281 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2282 {
2283 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2284 	struct btrfs_fs_devices *cur_devices;
2285 	struct btrfs_device *dev, *first_dev = NULL;
2286 	struct list_head *head;
2287 	struct rcu_string *name;
2288 
2289 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2290 	cur_devices = fs_info->fs_devices;
2291 	while (cur_devices) {
2292 		head = &cur_devices->devices;
2293 		list_for_each_entry(dev, head, dev_list) {
2294 			if (dev->missing)
2295 				continue;
2296 			if (!dev->name)
2297 				continue;
2298 			if (!first_dev || dev->devid < first_dev->devid)
2299 				first_dev = dev;
2300 		}
2301 		cur_devices = cur_devices->seed;
2302 	}
2303 
2304 	if (first_dev) {
2305 		rcu_read_lock();
2306 		name = rcu_dereference(first_dev->name);
2307 		seq_escape(m, name->str, " \t\n\\");
2308 		rcu_read_unlock();
2309 	} else {
2310 		WARN_ON(1);
2311 	}
2312 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2313 	return 0;
2314 }
2315 
2316 static const struct super_operations btrfs_super_ops = {
2317 	.drop_inode	= btrfs_drop_inode,
2318 	.evict_inode	= btrfs_evict_inode,
2319 	.put_super	= btrfs_put_super,
2320 	.sync_fs	= btrfs_sync_fs,
2321 	.show_options	= btrfs_show_options,
2322 	.show_devname	= btrfs_show_devname,
2323 	.write_inode	= btrfs_write_inode,
2324 	.alloc_inode	= btrfs_alloc_inode,
2325 	.destroy_inode	= btrfs_destroy_inode,
2326 	.statfs		= btrfs_statfs,
2327 	.remount_fs	= btrfs_remount,
2328 	.freeze_fs	= btrfs_freeze,
2329 	.unfreeze_fs	= btrfs_unfreeze,
2330 };
2331 
2332 static const struct file_operations btrfs_ctl_fops = {
2333 	.open = btrfs_control_open,
2334 	.unlocked_ioctl	 = btrfs_control_ioctl,
2335 	.compat_ioctl = btrfs_control_ioctl,
2336 	.owner	 = THIS_MODULE,
2337 	.llseek = noop_llseek,
2338 };
2339 
2340 static struct miscdevice btrfs_misc = {
2341 	.minor		= BTRFS_MINOR,
2342 	.name		= "btrfs-control",
2343 	.fops		= &btrfs_ctl_fops
2344 };
2345 
2346 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2347 MODULE_ALIAS("devname:btrfs-control");
2348 
btrfs_interface_init(void)2349 static int btrfs_interface_init(void)
2350 {
2351 	return misc_register(&btrfs_misc);
2352 }
2353 
btrfs_interface_exit(void)2354 static void btrfs_interface_exit(void)
2355 {
2356 	misc_deregister(&btrfs_misc);
2357 }
2358 
btrfs_print_mod_info(void)2359 static void btrfs_print_mod_info(void)
2360 {
2361 	pr_info("Btrfs loaded, crc32c=%s"
2362 #ifdef CONFIG_BTRFS_DEBUG
2363 			", debug=on"
2364 #endif
2365 #ifdef CONFIG_BTRFS_ASSERT
2366 			", assert=on"
2367 #endif
2368 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2369 			", integrity-checker=on"
2370 #endif
2371 			"\n",
2372 			btrfs_crc32c_impl());
2373 }
2374 
init_btrfs_fs(void)2375 static int __init init_btrfs_fs(void)
2376 {
2377 	int err;
2378 
2379 	err = btrfs_hash_init();
2380 	if (err)
2381 		return err;
2382 
2383 	btrfs_props_init();
2384 
2385 	err = btrfs_init_sysfs();
2386 	if (err)
2387 		goto free_hash;
2388 
2389 	btrfs_init_compress();
2390 
2391 	err = btrfs_init_cachep();
2392 	if (err)
2393 		goto free_compress;
2394 
2395 	err = extent_io_init();
2396 	if (err)
2397 		goto free_cachep;
2398 
2399 	err = extent_map_init();
2400 	if (err)
2401 		goto free_extent_io;
2402 
2403 	err = ordered_data_init();
2404 	if (err)
2405 		goto free_extent_map;
2406 
2407 	err = btrfs_delayed_inode_init();
2408 	if (err)
2409 		goto free_ordered_data;
2410 
2411 	err = btrfs_auto_defrag_init();
2412 	if (err)
2413 		goto free_delayed_inode;
2414 
2415 	err = btrfs_delayed_ref_init();
2416 	if (err)
2417 		goto free_auto_defrag;
2418 
2419 	err = btrfs_prelim_ref_init();
2420 	if (err)
2421 		goto free_delayed_ref;
2422 
2423 	err = btrfs_end_io_wq_init();
2424 	if (err)
2425 		goto free_prelim_ref;
2426 
2427 	err = btrfs_interface_init();
2428 	if (err)
2429 		goto free_end_io_wq;
2430 
2431 	btrfs_init_lockdep();
2432 
2433 	btrfs_print_mod_info();
2434 
2435 	err = btrfs_run_sanity_tests();
2436 	if (err)
2437 		goto unregister_ioctl;
2438 
2439 	err = register_filesystem(&btrfs_fs_type);
2440 	if (err)
2441 		goto unregister_ioctl;
2442 
2443 	return 0;
2444 
2445 unregister_ioctl:
2446 	btrfs_interface_exit();
2447 free_end_io_wq:
2448 	btrfs_end_io_wq_exit();
2449 free_prelim_ref:
2450 	btrfs_prelim_ref_exit();
2451 free_delayed_ref:
2452 	btrfs_delayed_ref_exit();
2453 free_auto_defrag:
2454 	btrfs_auto_defrag_exit();
2455 free_delayed_inode:
2456 	btrfs_delayed_inode_exit();
2457 free_ordered_data:
2458 	ordered_data_exit();
2459 free_extent_map:
2460 	extent_map_exit();
2461 free_extent_io:
2462 	extent_io_exit();
2463 free_cachep:
2464 	btrfs_destroy_cachep();
2465 free_compress:
2466 	btrfs_exit_compress();
2467 	btrfs_exit_sysfs();
2468 free_hash:
2469 	btrfs_hash_exit();
2470 	return err;
2471 }
2472 
exit_btrfs_fs(void)2473 static void __exit exit_btrfs_fs(void)
2474 {
2475 	btrfs_destroy_cachep();
2476 	btrfs_delayed_ref_exit();
2477 	btrfs_auto_defrag_exit();
2478 	btrfs_delayed_inode_exit();
2479 	btrfs_prelim_ref_exit();
2480 	ordered_data_exit();
2481 	extent_map_exit();
2482 	extent_io_exit();
2483 	btrfs_interface_exit();
2484 	btrfs_end_io_wq_exit();
2485 	unregister_filesystem(&btrfs_fs_type);
2486 	btrfs_exit_sysfs();
2487 	btrfs_cleanup_fs_uuids();
2488 	btrfs_exit_compress();
2489 	btrfs_hash_exit();
2490 }
2491 
2492 late_initcall(init_btrfs_fs);
2493 module_exit(exit_btrfs_fs)
2494 
2495 MODULE_LICENSE("GPL");
2496