• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/delay.h>
20 #include <linux/kthread.h>
21 #include <linux/pagemap.h>
22 
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "free-space-cache.h"
26 #include "inode-map.h"
27 #include "transaction.h"
28 
caching_kthread(void * data)29 static int caching_kthread(void *data)
30 {
31 	struct btrfs_root *root = data;
32 	struct btrfs_fs_info *fs_info = root->fs_info;
33 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
34 	struct btrfs_key key;
35 	struct btrfs_path *path;
36 	struct extent_buffer *leaf;
37 	u64 last = (u64)-1;
38 	int slot;
39 	int ret;
40 
41 	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
42 		return 0;
43 
44 	path = btrfs_alloc_path();
45 	if (!path)
46 		return -ENOMEM;
47 
48 	/* Since the commit root is read-only, we can safely skip locking. */
49 	path->skip_locking = 1;
50 	path->search_commit_root = 1;
51 	path->reada = READA_FORWARD;
52 
53 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
54 	key.offset = 0;
55 	key.type = BTRFS_INODE_ITEM_KEY;
56 again:
57 	/* need to make sure the commit_root doesn't disappear */
58 	down_read(&fs_info->commit_root_sem);
59 
60 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
61 	if (ret < 0)
62 		goto out;
63 
64 	while (1) {
65 		if (btrfs_fs_closing(fs_info))
66 			goto out;
67 
68 		leaf = path->nodes[0];
69 		slot = path->slots[0];
70 		if (slot >= btrfs_header_nritems(leaf)) {
71 			ret = btrfs_next_leaf(root, path);
72 			if (ret < 0)
73 				goto out;
74 			else if (ret > 0)
75 				break;
76 
77 			if (need_resched() ||
78 			    btrfs_transaction_in_commit(fs_info)) {
79 				leaf = path->nodes[0];
80 
81 				if (WARN_ON(btrfs_header_nritems(leaf) == 0))
82 					break;
83 
84 				/*
85 				 * Save the key so we can advances forward
86 				 * in the next search.
87 				 */
88 				btrfs_item_key_to_cpu(leaf, &key, 0);
89 				btrfs_release_path(path);
90 				root->ino_cache_progress = last;
91 				up_read(&fs_info->commit_root_sem);
92 				schedule_timeout(1);
93 				goto again;
94 			} else
95 				continue;
96 		}
97 
98 		btrfs_item_key_to_cpu(leaf, &key, slot);
99 
100 		if (key.type != BTRFS_INODE_ITEM_KEY)
101 			goto next;
102 
103 		if (key.objectid >= root->highest_objectid)
104 			break;
105 
106 		if (last != (u64)-1 && last + 1 != key.objectid) {
107 			__btrfs_add_free_space(fs_info, ctl, last + 1,
108 					       key.objectid - last - 1);
109 			wake_up(&root->ino_cache_wait);
110 		}
111 
112 		last = key.objectid;
113 next:
114 		path->slots[0]++;
115 	}
116 
117 	if (last < root->highest_objectid - 1) {
118 		__btrfs_add_free_space(fs_info, ctl, last + 1,
119 				       root->highest_objectid - last - 1);
120 	}
121 
122 	spin_lock(&root->ino_cache_lock);
123 	root->ino_cache_state = BTRFS_CACHE_FINISHED;
124 	spin_unlock(&root->ino_cache_lock);
125 
126 	root->ino_cache_progress = (u64)-1;
127 	btrfs_unpin_free_ino(root);
128 out:
129 	wake_up(&root->ino_cache_wait);
130 	up_read(&fs_info->commit_root_sem);
131 
132 	btrfs_free_path(path);
133 
134 	return ret;
135 }
136 
start_caching(struct btrfs_root * root)137 static void start_caching(struct btrfs_root *root)
138 {
139 	struct btrfs_fs_info *fs_info = root->fs_info;
140 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
141 	struct task_struct *tsk;
142 	int ret;
143 	u64 objectid;
144 
145 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
146 		return;
147 
148 	spin_lock(&root->ino_cache_lock);
149 	if (root->ino_cache_state != BTRFS_CACHE_NO) {
150 		spin_unlock(&root->ino_cache_lock);
151 		return;
152 	}
153 
154 	root->ino_cache_state = BTRFS_CACHE_STARTED;
155 	spin_unlock(&root->ino_cache_lock);
156 
157 	ret = load_free_ino_cache(fs_info, root);
158 	if (ret == 1) {
159 		spin_lock(&root->ino_cache_lock);
160 		root->ino_cache_state = BTRFS_CACHE_FINISHED;
161 		spin_unlock(&root->ino_cache_lock);
162 		return;
163 	}
164 
165 	/*
166 	 * It can be quite time-consuming to fill the cache by searching
167 	 * through the extent tree, and this can keep ino allocation path
168 	 * waiting. Therefore at start we quickly find out the highest
169 	 * inode number and we know we can use inode numbers which fall in
170 	 * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
171 	 */
172 	ret = btrfs_find_free_objectid(root, &objectid);
173 	if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
174 		__btrfs_add_free_space(fs_info, ctl, objectid,
175 				       BTRFS_LAST_FREE_OBJECTID - objectid + 1);
176 	}
177 
178 	tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu",
179 			  root->root_key.objectid);
180 	if (IS_ERR(tsk)) {
181 		btrfs_warn(fs_info, "failed to start inode caching task");
182 		btrfs_clear_pending_and_info(fs_info, INODE_MAP_CACHE,
183 				"disabling inode map caching");
184 	}
185 }
186 
btrfs_find_free_ino(struct btrfs_root * root,u64 * objectid)187 int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
188 {
189 	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
190 		return btrfs_find_free_objectid(root, objectid);
191 
192 again:
193 	*objectid = btrfs_find_ino_for_alloc(root);
194 
195 	if (*objectid != 0)
196 		return 0;
197 
198 	start_caching(root);
199 
200 	wait_event(root->ino_cache_wait,
201 		   root->ino_cache_state == BTRFS_CACHE_FINISHED ||
202 		   root->free_ino_ctl->free_space > 0);
203 
204 	if (root->ino_cache_state == BTRFS_CACHE_FINISHED &&
205 	    root->free_ino_ctl->free_space == 0)
206 		return -ENOSPC;
207 	else
208 		goto again;
209 }
210 
btrfs_return_ino(struct btrfs_root * root,u64 objectid)211 void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
212 {
213 	struct btrfs_fs_info *fs_info = root->fs_info;
214 	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
215 
216 	if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
217 		return;
218 again:
219 	if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
220 		__btrfs_add_free_space(fs_info, pinned, objectid, 1);
221 	} else {
222 		down_write(&fs_info->commit_root_sem);
223 		spin_lock(&root->ino_cache_lock);
224 		if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
225 			spin_unlock(&root->ino_cache_lock);
226 			up_write(&fs_info->commit_root_sem);
227 			goto again;
228 		}
229 		spin_unlock(&root->ino_cache_lock);
230 
231 		start_caching(root);
232 
233 		__btrfs_add_free_space(fs_info, pinned, objectid, 1);
234 
235 		up_write(&fs_info->commit_root_sem);
236 	}
237 }
238 
239 /*
240  * When a transaction is committed, we'll move those inode numbers which are
241  * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
242  * others will just be dropped, because the commit root we were searching has
243  * changed.
244  *
245  * Must be called with root->fs_info->commit_root_sem held
246  */
btrfs_unpin_free_ino(struct btrfs_root * root)247 void btrfs_unpin_free_ino(struct btrfs_root *root)
248 {
249 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
250 	struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
251 	spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock;
252 	struct btrfs_free_space *info;
253 	struct rb_node *n;
254 	u64 count;
255 
256 	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
257 		return;
258 
259 	while (1) {
260 		bool add_to_ctl = true;
261 
262 		spin_lock(rbroot_lock);
263 		n = rb_first(rbroot);
264 		if (!n) {
265 			spin_unlock(rbroot_lock);
266 			break;
267 		}
268 
269 		info = rb_entry(n, struct btrfs_free_space, offset_index);
270 		BUG_ON(info->bitmap); /* Logic error */
271 
272 		if (info->offset > root->ino_cache_progress)
273 			add_to_ctl = false;
274 		else if (info->offset + info->bytes > root->ino_cache_progress)
275 			count = root->ino_cache_progress - info->offset + 1;
276 		else
277 			count = info->bytes;
278 
279 		rb_erase(&info->offset_index, rbroot);
280 		spin_unlock(rbroot_lock);
281 		if (add_to_ctl)
282 			__btrfs_add_free_space(root->fs_info, ctl,
283 					       info->offset, count);
284 		kmem_cache_free(btrfs_free_space_cachep, info);
285 	}
286 }
287 
288 #define INIT_THRESHOLD	((SZ_32K / 2) / sizeof(struct btrfs_free_space))
289 #define INODES_PER_BITMAP (PAGE_SIZE * 8)
290 
291 /*
292  * The goal is to keep the memory used by the free_ino tree won't
293  * exceed the memory if we use bitmaps only.
294  */
recalculate_thresholds(struct btrfs_free_space_ctl * ctl)295 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
296 {
297 	struct btrfs_free_space *info;
298 	struct rb_node *n;
299 	int max_ino;
300 	int max_bitmaps;
301 
302 	n = rb_last(&ctl->free_space_offset);
303 	if (!n) {
304 		ctl->extents_thresh = INIT_THRESHOLD;
305 		return;
306 	}
307 	info = rb_entry(n, struct btrfs_free_space, offset_index);
308 
309 	/*
310 	 * Find the maximum inode number in the filesystem. Note we
311 	 * ignore the fact that this can be a bitmap, because we are
312 	 * not doing precise calculation.
313 	 */
314 	max_ino = info->bytes - 1;
315 
316 	max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
317 	if (max_bitmaps <= ctl->total_bitmaps) {
318 		ctl->extents_thresh = 0;
319 		return;
320 	}
321 
322 	ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
323 				PAGE_SIZE / sizeof(*info);
324 }
325 
326 /*
327  * We don't fall back to bitmap, if we are below the extents threshold
328  * or this chunk of inode numbers is a big one.
329  */
use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)330 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
331 		       struct btrfs_free_space *info)
332 {
333 	if (ctl->free_extents < ctl->extents_thresh ||
334 	    info->bytes > INODES_PER_BITMAP / 10)
335 		return false;
336 
337 	return true;
338 }
339 
340 static const struct btrfs_free_space_op free_ino_op = {
341 	.recalc_thresholds	= recalculate_thresholds,
342 	.use_bitmap		= use_bitmap,
343 };
344 
pinned_recalc_thresholds(struct btrfs_free_space_ctl * ctl)345 static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
346 {
347 }
348 
pinned_use_bitmap(struct btrfs_free_space_ctl * ctl,struct btrfs_free_space * info)349 static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
350 			      struct btrfs_free_space *info)
351 {
352 	/*
353 	 * We always use extents for two reasons:
354 	 *
355 	 * - The pinned tree is only used during the process of caching
356 	 *   work.
357 	 * - Make code simpler. See btrfs_unpin_free_ino().
358 	 */
359 	return false;
360 }
361 
362 static const struct btrfs_free_space_op pinned_free_ino_op = {
363 	.recalc_thresholds	= pinned_recalc_thresholds,
364 	.use_bitmap		= pinned_use_bitmap,
365 };
366 
btrfs_init_free_ino_ctl(struct btrfs_root * root)367 void btrfs_init_free_ino_ctl(struct btrfs_root *root)
368 {
369 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
370 	struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
371 
372 	spin_lock_init(&ctl->tree_lock);
373 	ctl->unit = 1;
374 	ctl->start = 0;
375 	ctl->private = NULL;
376 	ctl->op = &free_ino_op;
377 	INIT_LIST_HEAD(&ctl->trimming_ranges);
378 	mutex_init(&ctl->cache_writeout_mutex);
379 
380 	/*
381 	 * Initially we allow to use 16K of ram to cache chunks of
382 	 * inode numbers before we resort to bitmaps. This is somewhat
383 	 * arbitrary, but it will be adjusted in runtime.
384 	 */
385 	ctl->extents_thresh = INIT_THRESHOLD;
386 
387 	spin_lock_init(&pinned->tree_lock);
388 	pinned->unit = 1;
389 	pinned->start = 0;
390 	pinned->private = NULL;
391 	pinned->extents_thresh = 0;
392 	pinned->op = &pinned_free_ino_op;
393 }
394 
btrfs_save_ino_cache(struct btrfs_root * root,struct btrfs_trans_handle * trans)395 int btrfs_save_ino_cache(struct btrfs_root *root,
396 			 struct btrfs_trans_handle *trans)
397 {
398 	struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
399 	struct btrfs_path *path;
400 	struct inode *inode;
401 	struct btrfs_block_rsv *rsv;
402 	u64 num_bytes;
403 	u64 alloc_hint = 0;
404 	int ret;
405 	int prealloc;
406 	bool retry = false;
407 
408 	/* only fs tree and subvol/snap needs ino cache */
409 	if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
410 	    (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
411 	     root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
412 		return 0;
413 
414 	/* Don't save inode cache if we are deleting this root */
415 	if (btrfs_root_refs(&root->root_item) == 0)
416 		return 0;
417 
418 	if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
419 		return 0;
420 
421 	path = btrfs_alloc_path();
422 	if (!path)
423 		return -ENOMEM;
424 
425 	rsv = trans->block_rsv;
426 	trans->block_rsv = &root->fs_info->trans_block_rsv;
427 
428 	num_bytes = trans->bytes_reserved;
429 	/*
430 	 * 1 item for inode item insertion if need
431 	 * 4 items for inode item update (in the worst case)
432 	 * 1 items for slack space if we need do truncation
433 	 * 1 item for free space object
434 	 * 3 items for pre-allocation
435 	 */
436 	trans->bytes_reserved = btrfs_calc_trans_metadata_size(root, 10);
437 	ret = btrfs_block_rsv_add(root, trans->block_rsv,
438 				  trans->bytes_reserved,
439 				  BTRFS_RESERVE_NO_FLUSH);
440 	if (ret)
441 		goto out;
442 	trace_btrfs_space_reservation(root->fs_info, "ino_cache",
443 				      trans->transid, trans->bytes_reserved, 1);
444 again:
445 	inode = lookup_free_ino_inode(root, path);
446 	if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
447 		ret = PTR_ERR(inode);
448 		goto out_release;
449 	}
450 
451 	if (IS_ERR(inode)) {
452 		BUG_ON(retry); /* Logic error */
453 		retry = true;
454 
455 		ret = create_free_ino_inode(root, trans, path);
456 		if (ret)
457 			goto out_release;
458 		goto again;
459 	}
460 
461 	BTRFS_I(inode)->generation = 0;
462 	ret = btrfs_update_inode(trans, root, inode);
463 	if (ret) {
464 		btrfs_abort_transaction(trans, ret);
465 		goto out_put;
466 	}
467 
468 	if (i_size_read(inode) > 0) {
469 		ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
470 		if (ret) {
471 			if (ret != -ENOSPC)
472 				btrfs_abort_transaction(trans, ret);
473 			goto out_put;
474 		}
475 	}
476 
477 	spin_lock(&root->ino_cache_lock);
478 	if (root->ino_cache_state != BTRFS_CACHE_FINISHED) {
479 		ret = -1;
480 		spin_unlock(&root->ino_cache_lock);
481 		goto out_put;
482 	}
483 	spin_unlock(&root->ino_cache_lock);
484 
485 	spin_lock(&ctl->tree_lock);
486 	prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
487 	prealloc = ALIGN(prealloc, PAGE_SIZE);
488 	prealloc += ctl->total_bitmaps * PAGE_SIZE;
489 	spin_unlock(&ctl->tree_lock);
490 
491 	/* Just to make sure we have enough space */
492 	prealloc += 8 * PAGE_SIZE;
493 
494 	ret = btrfs_delalloc_reserve_space(inode, 0, prealloc);
495 	if (ret)
496 		goto out_put;
497 
498 	ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
499 					      prealloc, prealloc, &alloc_hint);
500 	if (ret) {
501 		btrfs_delalloc_release_metadata(inode, prealloc);
502 		goto out_put;
503 	}
504 
505 	ret = btrfs_write_out_ino_cache(root, trans, path, inode);
506 out_put:
507 	iput(inode);
508 out_release:
509 	trace_btrfs_space_reservation(root->fs_info, "ino_cache",
510 				      trans->transid, trans->bytes_reserved, 0);
511 	btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
512 out:
513 	trans->block_rsv = rsv;
514 	trans->bytes_reserved = num_bytes;
515 
516 	btrfs_free_path(path);
517 	return ret;
518 }
519 
btrfs_find_highest_objectid(struct btrfs_root * root,u64 * objectid)520 int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
521 {
522 	struct btrfs_path *path;
523 	int ret;
524 	struct extent_buffer *l;
525 	struct btrfs_key search_key;
526 	struct btrfs_key found_key;
527 	int slot;
528 
529 	path = btrfs_alloc_path();
530 	if (!path)
531 		return -ENOMEM;
532 
533 	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
534 	search_key.type = -1;
535 	search_key.offset = (u64)-1;
536 	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
537 	if (ret < 0)
538 		goto error;
539 	BUG_ON(ret == 0); /* Corruption */
540 	if (path->slots[0] > 0) {
541 		slot = path->slots[0] - 1;
542 		l = path->nodes[0];
543 		btrfs_item_key_to_cpu(l, &found_key, slot);
544 		*objectid = max_t(u64, found_key.objectid,
545 				  BTRFS_FIRST_FREE_OBJECTID - 1);
546 	} else {
547 		*objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
548 	}
549 	ret = 0;
550 error:
551 	btrfs_free_path(path);
552 	return ret;
553 }
554 
btrfs_find_free_objectid(struct btrfs_root * root,u64 * objectid)555 int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
556 {
557 	int ret;
558 	mutex_lock(&root->objectid_mutex);
559 
560 	if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
561 		btrfs_warn(root->fs_info,
562 			   "the objectid of root %llu reaches its highest value",
563 			   root->root_key.objectid);
564 		ret = -ENOSPC;
565 		goto out;
566 	}
567 
568 	*objectid = ++root->highest_objectid;
569 	ret = 0;
570 out:
571 	mutex_unlock(&root->objectid_mutex);
572 	return ret;
573 }
574