• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "ctree.h"
25 
26 #define BTRFS_DELAYED_WRITEBACK		512
27 #define BTRFS_DELAYED_BACKGROUND	128
28 #define BTRFS_DELAYED_BATCH		16
29 
30 static struct kmem_cache *delayed_node_cache;
31 
btrfs_delayed_inode_init(void)32 int __init btrfs_delayed_inode_init(void)
33 {
34 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 					sizeof(struct btrfs_delayed_node),
36 					0,
37 					SLAB_MEM_SPREAD,
38 					NULL);
39 	if (!delayed_node_cache)
40 		return -ENOMEM;
41 	return 0;
42 }
43 
btrfs_delayed_inode_exit(void)44 void btrfs_delayed_inode_exit(void)
45 {
46 	kmem_cache_destroy(delayed_node_cache);
47 }
48 
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)49 static inline void btrfs_init_delayed_node(
50 				struct btrfs_delayed_node *delayed_node,
51 				struct btrfs_root *root, u64 inode_id)
52 {
53 	delayed_node->root = root;
54 	delayed_node->inode_id = inode_id;
55 	atomic_set(&delayed_node->refs, 0);
56 	delayed_node->ins_root = RB_ROOT;
57 	delayed_node->del_root = RB_ROOT;
58 	mutex_init(&delayed_node->mutex);
59 	INIT_LIST_HEAD(&delayed_node->n_list);
60 	INIT_LIST_HEAD(&delayed_node->p_list);
61 }
62 
btrfs_is_continuous_delayed_item(struct btrfs_delayed_item * item1,struct btrfs_delayed_item * item2)63 static inline int btrfs_is_continuous_delayed_item(
64 					struct btrfs_delayed_item *item1,
65 					struct btrfs_delayed_item *item2)
66 {
67 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68 	    item1->key.objectid == item2->key.objectid &&
69 	    item1->key.type == item2->key.type &&
70 	    item1->key.offset + 1 == item2->key.offset)
71 		return 1;
72 	return 0;
73 }
74 
btrfs_get_delayed_root(struct btrfs_root * root)75 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
76 							struct btrfs_root *root)
77 {
78 	return root->fs_info->delayed_root;
79 }
80 
btrfs_get_delayed_node(struct inode * inode)81 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
82 {
83 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
84 	struct btrfs_root *root = btrfs_inode->root;
85 	u64 ino = btrfs_ino(inode);
86 	struct btrfs_delayed_node *node;
87 
88 	node = ACCESS_ONCE(btrfs_inode->delayed_node);
89 	if (node) {
90 		atomic_inc(&node->refs);
91 		return node;
92 	}
93 
94 	spin_lock(&root->inode_lock);
95 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
96 	if (node) {
97 		if (btrfs_inode->delayed_node) {
98 			atomic_inc(&node->refs);	/* can be accessed */
99 			BUG_ON(btrfs_inode->delayed_node != node);
100 			spin_unlock(&root->inode_lock);
101 			return node;
102 		}
103 		btrfs_inode->delayed_node = node;
104 		/* can be accessed and cached in the inode */
105 		atomic_add(2, &node->refs);
106 		spin_unlock(&root->inode_lock);
107 		return node;
108 	}
109 	spin_unlock(&root->inode_lock);
110 
111 	return NULL;
112 }
113 
114 /* Will return either the node or PTR_ERR(-ENOMEM) */
btrfs_get_or_create_delayed_node(struct inode * inode)115 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
116 							struct inode *inode)
117 {
118 	struct btrfs_delayed_node *node;
119 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
120 	struct btrfs_root *root = btrfs_inode->root;
121 	u64 ino = btrfs_ino(inode);
122 	int ret;
123 
124 again:
125 	node = btrfs_get_delayed_node(inode);
126 	if (node)
127 		return node;
128 
129 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130 	if (!node)
131 		return ERR_PTR(-ENOMEM);
132 	btrfs_init_delayed_node(node, root, ino);
133 
134 	/* cached in the btrfs inode and can be accessed */
135 	atomic_add(2, &node->refs);
136 
137 	ret = radix_tree_preload(GFP_NOFS);
138 	if (ret) {
139 		kmem_cache_free(delayed_node_cache, node);
140 		return ERR_PTR(ret);
141 	}
142 
143 	spin_lock(&root->inode_lock);
144 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 	if (ret == -EEXIST) {
146 		spin_unlock(&root->inode_lock);
147 		kmem_cache_free(delayed_node_cache, node);
148 		radix_tree_preload_end();
149 		goto again;
150 	}
151 	btrfs_inode->delayed_node = node;
152 	spin_unlock(&root->inode_lock);
153 	radix_tree_preload_end();
154 
155 	return node;
156 }
157 
158 /*
159  * Call it when holding delayed_node->mutex
160  *
161  * If mod = 1, add this node into the prepared list.
162  */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 				     struct btrfs_delayed_node *node,
165 				     int mod)
166 {
167 	spin_lock(&root->lock);
168 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169 		if (!list_empty(&node->p_list))
170 			list_move_tail(&node->p_list, &root->prepare_list);
171 		else if (mod)
172 			list_add_tail(&node->p_list, &root->prepare_list);
173 	} else {
174 		list_add_tail(&node->n_list, &root->node_list);
175 		list_add_tail(&node->p_list, &root->prepare_list);
176 		atomic_inc(&node->refs);	/* inserted into list */
177 		root->nodes++;
178 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
179 	}
180 	spin_unlock(&root->lock);
181 }
182 
183 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 				       struct btrfs_delayed_node *node)
186 {
187 	spin_lock(&root->lock);
188 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
189 		root->nodes--;
190 		atomic_dec(&node->refs);	/* not in the list */
191 		list_del_init(&node->n_list);
192 		if (!list_empty(&node->p_list))
193 			list_del_init(&node->p_list);
194 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
195 	}
196 	spin_unlock(&root->lock);
197 }
198 
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root)199 static struct btrfs_delayed_node *btrfs_first_delayed_node(
200 			struct btrfs_delayed_root *delayed_root)
201 {
202 	struct list_head *p;
203 	struct btrfs_delayed_node *node = NULL;
204 
205 	spin_lock(&delayed_root->lock);
206 	if (list_empty(&delayed_root->node_list))
207 		goto out;
208 
209 	p = delayed_root->node_list.next;
210 	node = list_entry(p, struct btrfs_delayed_node, n_list);
211 	atomic_inc(&node->refs);
212 out:
213 	spin_unlock(&delayed_root->lock);
214 
215 	return node;
216 }
217 
btrfs_next_delayed_node(struct btrfs_delayed_node * node)218 static struct btrfs_delayed_node *btrfs_next_delayed_node(
219 						struct btrfs_delayed_node *node)
220 {
221 	struct btrfs_delayed_root *delayed_root;
222 	struct list_head *p;
223 	struct btrfs_delayed_node *next = NULL;
224 
225 	delayed_root = node->root->fs_info->delayed_root;
226 	spin_lock(&delayed_root->lock);
227 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 		/* not in the list */
229 		if (list_empty(&delayed_root->node_list))
230 			goto out;
231 		p = delayed_root->node_list.next;
232 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
233 		goto out;
234 	else
235 		p = node->n_list.next;
236 
237 	next = list_entry(p, struct btrfs_delayed_node, n_list);
238 	atomic_inc(&next->refs);
239 out:
240 	spin_unlock(&delayed_root->lock);
241 
242 	return next;
243 }
244 
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod)245 static void __btrfs_release_delayed_node(
246 				struct btrfs_delayed_node *delayed_node,
247 				int mod)
248 {
249 	struct btrfs_delayed_root *delayed_root;
250 
251 	if (!delayed_node)
252 		return;
253 
254 	delayed_root = delayed_node->root->fs_info->delayed_root;
255 
256 	mutex_lock(&delayed_node->mutex);
257 	if (delayed_node->count)
258 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259 	else
260 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261 	mutex_unlock(&delayed_node->mutex);
262 
263 	if (atomic_dec_and_test(&delayed_node->refs)) {
264 		bool free = false;
265 		struct btrfs_root *root = delayed_node->root;
266 		spin_lock(&root->inode_lock);
267 		if (atomic_read(&delayed_node->refs) == 0) {
268 			radix_tree_delete(&root->delayed_nodes_tree,
269 					  delayed_node->inode_id);
270 			free = true;
271 		}
272 		spin_unlock(&root->inode_lock);
273 		if (free)
274 			kmem_cache_free(delayed_node_cache, delayed_node);
275 	}
276 }
277 
btrfs_release_delayed_node(struct btrfs_delayed_node * node)278 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
279 {
280 	__btrfs_release_delayed_node(node, 0);
281 }
282 
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root)283 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
284 					struct btrfs_delayed_root *delayed_root)
285 {
286 	struct list_head *p;
287 	struct btrfs_delayed_node *node = NULL;
288 
289 	spin_lock(&delayed_root->lock);
290 	if (list_empty(&delayed_root->prepare_list))
291 		goto out;
292 
293 	p = delayed_root->prepare_list.next;
294 	list_del_init(p);
295 	node = list_entry(p, struct btrfs_delayed_node, p_list);
296 	atomic_inc(&node->refs);
297 out:
298 	spin_unlock(&delayed_root->lock);
299 
300 	return node;
301 }
302 
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node)303 static inline void btrfs_release_prepared_delayed_node(
304 					struct btrfs_delayed_node *node)
305 {
306 	__btrfs_release_delayed_node(node, 1);
307 }
308 
btrfs_alloc_delayed_item(u32 data_len)309 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
310 {
311 	struct btrfs_delayed_item *item;
312 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
313 	if (item) {
314 		item->data_len = data_len;
315 		item->ins_or_del = 0;
316 		item->bytes_reserved = 0;
317 		item->delayed_node = NULL;
318 		atomic_set(&item->refs, 1);
319 	}
320 	return item;
321 }
322 
323 /*
324  * __btrfs_lookup_delayed_item - look up the delayed item by key
325  * @delayed_node: pointer to the delayed node
326  * @key:	  the key to look up
327  * @prev:	  used to store the prev item if the right item isn't found
328  * @next:	  used to store the next item if the right item isn't found
329  *
330  * Note: if we don't find the right item, we will return the prev item and
331  * the next item.
332  */
__btrfs_lookup_delayed_item(struct rb_root * root,struct btrfs_key * key,struct btrfs_delayed_item ** prev,struct btrfs_delayed_item ** next)333 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
334 				struct rb_root *root,
335 				struct btrfs_key *key,
336 				struct btrfs_delayed_item **prev,
337 				struct btrfs_delayed_item **next)
338 {
339 	struct rb_node *node, *prev_node = NULL;
340 	struct btrfs_delayed_item *delayed_item = NULL;
341 	int ret = 0;
342 
343 	node = root->rb_node;
344 
345 	while (node) {
346 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 					rb_node);
348 		prev_node = node;
349 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
350 		if (ret < 0)
351 			node = node->rb_right;
352 		else if (ret > 0)
353 			node = node->rb_left;
354 		else
355 			return delayed_item;
356 	}
357 
358 	if (prev) {
359 		if (!prev_node)
360 			*prev = NULL;
361 		else if (ret < 0)
362 			*prev = delayed_item;
363 		else if ((node = rb_prev(prev_node)) != NULL) {
364 			*prev = rb_entry(node, struct btrfs_delayed_item,
365 					 rb_node);
366 		} else
367 			*prev = NULL;
368 	}
369 
370 	if (next) {
371 		if (!prev_node)
372 			*next = NULL;
373 		else if (ret > 0)
374 			*next = delayed_item;
375 		else if ((node = rb_next(prev_node)) != NULL) {
376 			*next = rb_entry(node, struct btrfs_delayed_item,
377 					 rb_node);
378 		} else
379 			*next = NULL;
380 	}
381 	return NULL;
382 }
383 
__btrfs_lookup_delayed_insertion_item(struct btrfs_delayed_node * delayed_node,struct btrfs_key * key)384 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
385 					struct btrfs_delayed_node *delayed_node,
386 					struct btrfs_key *key)
387 {
388 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
389 					   NULL, NULL);
390 }
391 
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins,int action)392 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
393 				    struct btrfs_delayed_item *ins,
394 				    int action)
395 {
396 	struct rb_node **p, *node;
397 	struct rb_node *parent_node = NULL;
398 	struct rb_root *root;
399 	struct btrfs_delayed_item *item;
400 	int cmp;
401 
402 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
403 		root = &delayed_node->ins_root;
404 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
405 		root = &delayed_node->del_root;
406 	else
407 		BUG();
408 	p = &root->rb_node;
409 	node = &ins->rb_node;
410 
411 	while (*p) {
412 		parent_node = *p;
413 		item = rb_entry(parent_node, struct btrfs_delayed_item,
414 				 rb_node);
415 
416 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
417 		if (cmp < 0)
418 			p = &(*p)->rb_right;
419 		else if (cmp > 0)
420 			p = &(*p)->rb_left;
421 		else
422 			return -EEXIST;
423 	}
424 
425 	rb_link_node(node, parent_node, p);
426 	rb_insert_color(node, root);
427 	ins->delayed_node = delayed_node;
428 	ins->ins_or_del = action;
429 
430 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
431 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
432 	    ins->key.offset >= delayed_node->index_cnt)
433 			delayed_node->index_cnt = ins->key.offset + 1;
434 
435 	delayed_node->count++;
436 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
437 	return 0;
438 }
439 
__btrfs_add_delayed_insertion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)440 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
441 					      struct btrfs_delayed_item *item)
442 {
443 	return __btrfs_add_delayed_item(node, item,
444 					BTRFS_DELAYED_INSERTION_ITEM);
445 }
446 
__btrfs_add_delayed_deletion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)447 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
448 					     struct btrfs_delayed_item *item)
449 {
450 	return __btrfs_add_delayed_item(node, item,
451 					BTRFS_DELAYED_DELETION_ITEM);
452 }
453 
finish_one_item(struct btrfs_delayed_root * delayed_root)454 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
455 {
456 	int seq = atomic_inc_return(&delayed_root->items_seq);
457 
458 	/*
459 	 * atomic_dec_return implies a barrier for waitqueue_active
460 	 */
461 	if ((atomic_dec_return(&delayed_root->items) <
462 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
463 	    waitqueue_active(&delayed_root->wait))
464 		wake_up(&delayed_root->wait);
465 }
466 
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)467 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
468 {
469 	struct rb_root *root;
470 	struct btrfs_delayed_root *delayed_root;
471 
472 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
473 
474 	BUG_ON(!delayed_root);
475 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
476 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
477 
478 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
479 		root = &delayed_item->delayed_node->ins_root;
480 	else
481 		root = &delayed_item->delayed_node->del_root;
482 
483 	rb_erase(&delayed_item->rb_node, root);
484 	delayed_item->delayed_node->count--;
485 
486 	finish_one_item(delayed_root);
487 }
488 
btrfs_release_delayed_item(struct btrfs_delayed_item * item)489 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
490 {
491 	if (item) {
492 		__btrfs_remove_delayed_item(item);
493 		if (atomic_dec_and_test(&item->refs))
494 			kfree(item);
495 	}
496 }
497 
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)498 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
499 					struct btrfs_delayed_node *delayed_node)
500 {
501 	struct rb_node *p;
502 	struct btrfs_delayed_item *item = NULL;
503 
504 	p = rb_first(&delayed_node->ins_root);
505 	if (p)
506 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
507 
508 	return item;
509 }
510 
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)511 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
512 					struct btrfs_delayed_node *delayed_node)
513 {
514 	struct rb_node *p;
515 	struct btrfs_delayed_item *item = NULL;
516 
517 	p = rb_first(&delayed_node->del_root);
518 	if (p)
519 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
520 
521 	return item;
522 }
523 
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)524 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
525 						struct btrfs_delayed_item *item)
526 {
527 	struct rb_node *p;
528 	struct btrfs_delayed_item *next = NULL;
529 
530 	p = rb_next(&item->rb_node);
531 	if (p)
532 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
533 
534 	return next;
535 }
536 
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_item * item)537 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
538 					       struct btrfs_root *root,
539 					       struct btrfs_delayed_item *item)
540 {
541 	struct btrfs_block_rsv *src_rsv;
542 	struct btrfs_block_rsv *dst_rsv;
543 	u64 num_bytes;
544 	int ret;
545 
546 	if (!trans->bytes_reserved)
547 		return 0;
548 
549 	src_rsv = trans->block_rsv;
550 	dst_rsv = &root->fs_info->delayed_block_rsv;
551 
552 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
553 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
554 	if (!ret) {
555 		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
556 					      item->key.objectid,
557 					      num_bytes, 1);
558 		item->bytes_reserved = num_bytes;
559 	}
560 
561 	return ret;
562 }
563 
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)564 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
565 						struct btrfs_delayed_item *item)
566 {
567 	struct btrfs_block_rsv *rsv;
568 
569 	if (!item->bytes_reserved)
570 		return;
571 
572 	rsv = &root->fs_info->delayed_block_rsv;
573 	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
574 				      item->key.objectid, item->bytes_reserved,
575 				      0);
576 	btrfs_block_rsv_release(root, rsv,
577 				item->bytes_reserved);
578 }
579 
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_delayed_node * node)580 static int btrfs_delayed_inode_reserve_metadata(
581 					struct btrfs_trans_handle *trans,
582 					struct btrfs_root *root,
583 					struct inode *inode,
584 					struct btrfs_delayed_node *node)
585 {
586 	struct btrfs_block_rsv *src_rsv;
587 	struct btrfs_block_rsv *dst_rsv;
588 	u64 num_bytes;
589 	int ret;
590 	bool release = false;
591 
592 	src_rsv = trans->block_rsv;
593 	dst_rsv = &root->fs_info->delayed_block_rsv;
594 
595 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
596 
597 	/*
598 	 * If our block_rsv is the delalloc block reserve then check and see if
599 	 * we have our extra reservation for updating the inode.  If not fall
600 	 * through and try to reserve space quickly.
601 	 *
602 	 * We used to try and steal from the delalloc block rsv or the global
603 	 * reserve, but we'd steal a full reservation, which isn't kind.  We are
604 	 * here through delalloc which means we've likely just cowed down close
605 	 * to the leaf that contains the inode, so we would steal less just
606 	 * doing the fallback inode update, so if we do end up having to steal
607 	 * from the global block rsv we hopefully only steal one or two blocks
608 	 * worth which is less likely to hurt us.
609 	 */
610 	if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
611 		spin_lock(&BTRFS_I(inode)->lock);
612 		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
613 				       &BTRFS_I(inode)->runtime_flags))
614 			release = true;
615 		else
616 			src_rsv = NULL;
617 		spin_unlock(&BTRFS_I(inode)->lock);
618 	}
619 
620 	/*
621 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
622 	 * which doesn't reserve space for speed.  This is a problem since we
623 	 * still need to reserve space for this update, so try to reserve the
624 	 * space.
625 	 *
626 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
627 	 * we're accounted for.
628 	 */
629 	if (!src_rsv || (!trans->bytes_reserved &&
630 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
631 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
632 					  BTRFS_RESERVE_NO_FLUSH);
633 		/*
634 		 * Since we're under a transaction reserve_metadata_bytes could
635 		 * try to commit the transaction which will make it return
636 		 * EAGAIN to make us stop the transaction we have, so return
637 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
638 		 */
639 		if (ret == -EAGAIN)
640 			ret = -ENOSPC;
641 		if (!ret) {
642 			node->bytes_reserved = num_bytes;
643 			trace_btrfs_space_reservation(root->fs_info,
644 						      "delayed_inode",
645 						      btrfs_ino(inode),
646 						      num_bytes, 1);
647 		}
648 		return ret;
649 	}
650 
651 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
652 
653 	/*
654 	 * Migrate only takes a reservation, it doesn't touch the size of the
655 	 * block_rsv.  This is to simplify people who don't normally have things
656 	 * migrated from their block rsv.  If they go to release their
657 	 * reservation, that will decrease the size as well, so if migrate
658 	 * reduced size we'd end up with a negative size.  But for the
659 	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
660 	 * but we could in fact do this reserve/migrate dance several times
661 	 * between the time we did the original reservation and we'd clean it
662 	 * up.  So to take care of this, release the space for the meta
663 	 * reservation here.  I think it may be time for a documentation page on
664 	 * how block rsvs. work.
665 	 */
666 	if (!ret) {
667 		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
668 					      btrfs_ino(inode), num_bytes, 1);
669 		node->bytes_reserved = num_bytes;
670 	}
671 
672 	if (release) {
673 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
674 					      btrfs_ino(inode), num_bytes, 0);
675 		btrfs_block_rsv_release(root, src_rsv, num_bytes);
676 	}
677 
678 	return ret;
679 }
680 
btrfs_delayed_inode_release_metadata(struct btrfs_root * root,struct btrfs_delayed_node * node)681 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
682 						struct btrfs_delayed_node *node)
683 {
684 	struct btrfs_block_rsv *rsv;
685 
686 	if (!node->bytes_reserved)
687 		return;
688 
689 	rsv = &root->fs_info->delayed_block_rsv;
690 	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
691 				      node->inode_id, node->bytes_reserved, 0);
692 	btrfs_block_rsv_release(root, rsv,
693 				node->bytes_reserved);
694 	node->bytes_reserved = 0;
695 }
696 
697 /*
698  * This helper will insert some continuous items into the same leaf according
699  * to the free space of the leaf.
700  */
btrfs_batch_insert_items(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)701 static int btrfs_batch_insert_items(struct btrfs_root *root,
702 				    struct btrfs_path *path,
703 				    struct btrfs_delayed_item *item)
704 {
705 	struct btrfs_delayed_item *curr, *next;
706 	int free_space;
707 	int total_data_size = 0, total_size = 0;
708 	struct extent_buffer *leaf;
709 	char *data_ptr;
710 	struct btrfs_key *keys;
711 	u32 *data_size;
712 	struct list_head head;
713 	int slot;
714 	int nitems;
715 	int i;
716 	int ret = 0;
717 
718 	BUG_ON(!path->nodes[0]);
719 
720 	leaf = path->nodes[0];
721 	free_space = btrfs_leaf_free_space(root, leaf);
722 	INIT_LIST_HEAD(&head);
723 
724 	next = item;
725 	nitems = 0;
726 
727 	/*
728 	 * count the number of the continuous items that we can insert in batch
729 	 */
730 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
731 	       free_space) {
732 		total_data_size += next->data_len;
733 		total_size += next->data_len + sizeof(struct btrfs_item);
734 		list_add_tail(&next->tree_list, &head);
735 		nitems++;
736 
737 		curr = next;
738 		next = __btrfs_next_delayed_item(curr);
739 		if (!next)
740 			break;
741 
742 		if (!btrfs_is_continuous_delayed_item(curr, next))
743 			break;
744 	}
745 
746 	if (!nitems) {
747 		ret = 0;
748 		goto out;
749 	}
750 
751 	/*
752 	 * we need allocate some memory space, but it might cause the task
753 	 * to sleep, so we set all locked nodes in the path to blocking locks
754 	 * first.
755 	 */
756 	btrfs_set_path_blocking(path);
757 
758 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
759 	if (!keys) {
760 		ret = -ENOMEM;
761 		goto out;
762 	}
763 
764 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
765 	if (!data_size) {
766 		ret = -ENOMEM;
767 		goto error;
768 	}
769 
770 	/* get keys of all the delayed items */
771 	i = 0;
772 	list_for_each_entry(next, &head, tree_list) {
773 		keys[i] = next->key;
774 		data_size[i] = next->data_len;
775 		i++;
776 	}
777 
778 	/* reset all the locked nodes in the patch to spinning locks. */
779 	btrfs_clear_path_blocking(path, NULL, 0);
780 
781 	/* insert the keys of the items */
782 	setup_items_for_insert(root, path, keys, data_size,
783 			       total_data_size, total_size, nitems);
784 
785 	/* insert the dir index items */
786 	slot = path->slots[0];
787 	list_for_each_entry_safe(curr, next, &head, tree_list) {
788 		data_ptr = btrfs_item_ptr(leaf, slot, char);
789 		write_extent_buffer(leaf, &curr->data,
790 				    (unsigned long)data_ptr,
791 				    curr->data_len);
792 		slot++;
793 
794 		btrfs_delayed_item_release_metadata(root, curr);
795 
796 		list_del(&curr->tree_list);
797 		btrfs_release_delayed_item(curr);
798 	}
799 
800 error:
801 	kfree(data_size);
802 	kfree(keys);
803 out:
804 	return ret;
805 }
806 
807 /*
808  * This helper can just do simple insertion that needn't extend item for new
809  * data, such as directory name index insertion, inode insertion.
810  */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * delayed_item)811 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
812 				     struct btrfs_root *root,
813 				     struct btrfs_path *path,
814 				     struct btrfs_delayed_item *delayed_item)
815 {
816 	struct extent_buffer *leaf;
817 	char *ptr;
818 	int ret;
819 
820 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
821 				      delayed_item->data_len);
822 	if (ret < 0 && ret != -EEXIST)
823 		return ret;
824 
825 	leaf = path->nodes[0];
826 
827 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
828 
829 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
830 			    delayed_item->data_len);
831 	btrfs_mark_buffer_dirty(leaf);
832 
833 	btrfs_delayed_item_release_metadata(root, delayed_item);
834 	return 0;
835 }
836 
837 /*
838  * we insert an item first, then if there are some continuous items, we try
839  * to insert those items into the same leaf.
840  */
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)841 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
842 				      struct btrfs_path *path,
843 				      struct btrfs_root *root,
844 				      struct btrfs_delayed_node *node)
845 {
846 	struct btrfs_delayed_item *curr, *prev;
847 	int ret = 0;
848 
849 do_again:
850 	mutex_lock(&node->mutex);
851 	curr = __btrfs_first_delayed_insertion_item(node);
852 	if (!curr)
853 		goto insert_end;
854 
855 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
856 	if (ret < 0) {
857 		btrfs_release_path(path);
858 		goto insert_end;
859 	}
860 
861 	prev = curr;
862 	curr = __btrfs_next_delayed_item(prev);
863 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
864 		/* insert the continuous items into the same leaf */
865 		path->slots[0]++;
866 		btrfs_batch_insert_items(root, path, curr);
867 	}
868 	btrfs_release_delayed_item(prev);
869 	btrfs_mark_buffer_dirty(path->nodes[0]);
870 
871 	btrfs_release_path(path);
872 	mutex_unlock(&node->mutex);
873 	goto do_again;
874 
875 insert_end:
876 	mutex_unlock(&node->mutex);
877 	return ret;
878 }
879 
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)880 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
881 				    struct btrfs_root *root,
882 				    struct btrfs_path *path,
883 				    struct btrfs_delayed_item *item)
884 {
885 	struct btrfs_delayed_item *curr, *next;
886 	struct extent_buffer *leaf;
887 	struct btrfs_key key;
888 	struct list_head head;
889 	int nitems, i, last_item;
890 	int ret = 0;
891 
892 	BUG_ON(!path->nodes[0]);
893 
894 	leaf = path->nodes[0];
895 
896 	i = path->slots[0];
897 	last_item = btrfs_header_nritems(leaf) - 1;
898 	if (i > last_item)
899 		return -ENOENT;	/* FIXME: Is errno suitable? */
900 
901 	next = item;
902 	INIT_LIST_HEAD(&head);
903 	btrfs_item_key_to_cpu(leaf, &key, i);
904 	nitems = 0;
905 	/*
906 	 * count the number of the dir index items that we can delete in batch
907 	 */
908 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
909 		list_add_tail(&next->tree_list, &head);
910 		nitems++;
911 
912 		curr = next;
913 		next = __btrfs_next_delayed_item(curr);
914 		if (!next)
915 			break;
916 
917 		if (!btrfs_is_continuous_delayed_item(curr, next))
918 			break;
919 
920 		i++;
921 		if (i > last_item)
922 			break;
923 		btrfs_item_key_to_cpu(leaf, &key, i);
924 	}
925 
926 	if (!nitems)
927 		return 0;
928 
929 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
930 	if (ret)
931 		goto out;
932 
933 	list_for_each_entry_safe(curr, next, &head, tree_list) {
934 		btrfs_delayed_item_release_metadata(root, curr);
935 		list_del(&curr->tree_list);
936 		btrfs_release_delayed_item(curr);
937 	}
938 
939 out:
940 	return ret;
941 }
942 
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)943 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
944 				      struct btrfs_path *path,
945 				      struct btrfs_root *root,
946 				      struct btrfs_delayed_node *node)
947 {
948 	struct btrfs_delayed_item *curr, *prev;
949 	int ret = 0;
950 
951 do_again:
952 	mutex_lock(&node->mutex);
953 	curr = __btrfs_first_delayed_deletion_item(node);
954 	if (!curr)
955 		goto delete_fail;
956 
957 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
958 	if (ret < 0)
959 		goto delete_fail;
960 	else if (ret > 0) {
961 		/*
962 		 * can't find the item which the node points to, so this node
963 		 * is invalid, just drop it.
964 		 */
965 		prev = curr;
966 		curr = __btrfs_next_delayed_item(prev);
967 		btrfs_release_delayed_item(prev);
968 		ret = 0;
969 		btrfs_release_path(path);
970 		if (curr) {
971 			mutex_unlock(&node->mutex);
972 			goto do_again;
973 		} else
974 			goto delete_fail;
975 	}
976 
977 	btrfs_batch_delete_items(trans, root, path, curr);
978 	btrfs_release_path(path);
979 	mutex_unlock(&node->mutex);
980 	goto do_again;
981 
982 delete_fail:
983 	btrfs_release_path(path);
984 	mutex_unlock(&node->mutex);
985 	return ret;
986 }
987 
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)988 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
989 {
990 	struct btrfs_delayed_root *delayed_root;
991 
992 	if (delayed_node &&
993 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
994 		BUG_ON(!delayed_node->root);
995 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
996 		delayed_node->count--;
997 
998 		delayed_root = delayed_node->root->fs_info->delayed_root;
999 		finish_one_item(delayed_root);
1000 	}
1001 }
1002 
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)1003 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1004 {
1005 	struct btrfs_delayed_root *delayed_root;
1006 
1007 	ASSERT(delayed_node->root);
1008 	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1009 	delayed_node->count--;
1010 
1011 	delayed_root = delayed_node->root->fs_info->delayed_root;
1012 	finish_one_item(delayed_root);
1013 }
1014 
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1015 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1016 					struct btrfs_root *root,
1017 					struct btrfs_path *path,
1018 					struct btrfs_delayed_node *node)
1019 {
1020 	struct btrfs_key key;
1021 	struct btrfs_inode_item *inode_item;
1022 	struct extent_buffer *leaf;
1023 	int mod;
1024 	int ret;
1025 
1026 	key.objectid = node->inode_id;
1027 	key.type = BTRFS_INODE_ITEM_KEY;
1028 	key.offset = 0;
1029 
1030 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1031 		mod = -1;
1032 	else
1033 		mod = 1;
1034 
1035 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1036 	if (ret > 0) {
1037 		btrfs_release_path(path);
1038 		return -ENOENT;
1039 	} else if (ret < 0) {
1040 		return ret;
1041 	}
1042 
1043 	leaf = path->nodes[0];
1044 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1045 				    struct btrfs_inode_item);
1046 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1047 			    sizeof(struct btrfs_inode_item));
1048 	btrfs_mark_buffer_dirty(leaf);
1049 
1050 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1051 		goto no_iref;
1052 
1053 	path->slots[0]++;
1054 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1055 		goto search;
1056 again:
1057 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1058 	if (key.objectid != node->inode_id)
1059 		goto out;
1060 
1061 	if (key.type != BTRFS_INODE_REF_KEY &&
1062 	    key.type != BTRFS_INODE_EXTREF_KEY)
1063 		goto out;
1064 
1065 	/*
1066 	 * Delayed iref deletion is for the inode who has only one link,
1067 	 * so there is only one iref. The case that several irefs are
1068 	 * in the same item doesn't exist.
1069 	 */
1070 	btrfs_del_item(trans, root, path);
1071 out:
1072 	btrfs_release_delayed_iref(node);
1073 no_iref:
1074 	btrfs_release_path(path);
1075 err_out:
1076 	btrfs_delayed_inode_release_metadata(root, node);
1077 	btrfs_release_delayed_inode(node);
1078 
1079 	return ret;
1080 
1081 search:
1082 	btrfs_release_path(path);
1083 
1084 	key.type = BTRFS_INODE_EXTREF_KEY;
1085 	key.offset = -1;
1086 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1087 	if (ret < 0)
1088 		goto err_out;
1089 	ASSERT(ret);
1090 
1091 	ret = 0;
1092 	leaf = path->nodes[0];
1093 	path->slots[0]--;
1094 	goto again;
1095 }
1096 
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1097 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1098 					     struct btrfs_root *root,
1099 					     struct btrfs_path *path,
1100 					     struct btrfs_delayed_node *node)
1101 {
1102 	int ret;
1103 
1104 	mutex_lock(&node->mutex);
1105 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1106 		mutex_unlock(&node->mutex);
1107 		return 0;
1108 	}
1109 
1110 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1111 	mutex_unlock(&node->mutex);
1112 	return ret;
1113 }
1114 
1115 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1116 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1117 				   struct btrfs_path *path,
1118 				   struct btrfs_delayed_node *node)
1119 {
1120 	int ret;
1121 
1122 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1123 	if (ret)
1124 		return ret;
1125 
1126 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1127 	if (ret)
1128 		return ret;
1129 
1130 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1131 	return ret;
1132 }
1133 
1134 /*
1135  * Called when committing the transaction.
1136  * Returns 0 on success.
1137  * Returns < 0 on error and returns with an aborted transaction with any
1138  * outstanding delayed items cleaned up.
1139  */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,int nr)1140 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1141 				     struct btrfs_root *root, int nr)
1142 {
1143 	struct btrfs_delayed_root *delayed_root;
1144 	struct btrfs_delayed_node *curr_node, *prev_node;
1145 	struct btrfs_path *path;
1146 	struct btrfs_block_rsv *block_rsv;
1147 	int ret = 0;
1148 	bool count = (nr > 0);
1149 
1150 	if (trans->aborted)
1151 		return -EIO;
1152 
1153 	path = btrfs_alloc_path();
1154 	if (!path)
1155 		return -ENOMEM;
1156 	path->leave_spinning = 1;
1157 
1158 	block_rsv = trans->block_rsv;
1159 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1160 
1161 	delayed_root = btrfs_get_delayed_root(root);
1162 
1163 	curr_node = btrfs_first_delayed_node(delayed_root);
1164 	while (curr_node && (!count || (count && nr--))) {
1165 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1166 							 curr_node);
1167 		if (ret) {
1168 			btrfs_release_delayed_node(curr_node);
1169 			curr_node = NULL;
1170 			btrfs_abort_transaction(trans, ret);
1171 			break;
1172 		}
1173 
1174 		prev_node = curr_node;
1175 		curr_node = btrfs_next_delayed_node(curr_node);
1176 		btrfs_release_delayed_node(prev_node);
1177 	}
1178 
1179 	if (curr_node)
1180 		btrfs_release_delayed_node(curr_node);
1181 	btrfs_free_path(path);
1182 	trans->block_rsv = block_rsv;
1183 
1184 	return ret;
1185 }
1186 
btrfs_run_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_root * root)1187 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1188 			    struct btrfs_root *root)
1189 {
1190 	return __btrfs_run_delayed_items(trans, root, -1);
1191 }
1192 
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,struct btrfs_root * root,int nr)1193 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1194 			       struct btrfs_root *root, int nr)
1195 {
1196 	return __btrfs_run_delayed_items(trans, root, nr);
1197 }
1198 
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct inode * inode)1199 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1200 				     struct inode *inode)
1201 {
1202 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1203 	struct btrfs_path *path;
1204 	struct btrfs_block_rsv *block_rsv;
1205 	int ret;
1206 
1207 	if (!delayed_node)
1208 		return 0;
1209 
1210 	mutex_lock(&delayed_node->mutex);
1211 	if (!delayed_node->count) {
1212 		mutex_unlock(&delayed_node->mutex);
1213 		btrfs_release_delayed_node(delayed_node);
1214 		return 0;
1215 	}
1216 	mutex_unlock(&delayed_node->mutex);
1217 
1218 	path = btrfs_alloc_path();
1219 	if (!path) {
1220 		btrfs_release_delayed_node(delayed_node);
1221 		return -ENOMEM;
1222 	}
1223 	path->leave_spinning = 1;
1224 
1225 	block_rsv = trans->block_rsv;
1226 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1227 
1228 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1229 
1230 	btrfs_release_delayed_node(delayed_node);
1231 	btrfs_free_path(path);
1232 	trans->block_rsv = block_rsv;
1233 
1234 	return ret;
1235 }
1236 
btrfs_commit_inode_delayed_inode(struct inode * inode)1237 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1238 {
1239 	struct btrfs_trans_handle *trans;
1240 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1241 	struct btrfs_path *path;
1242 	struct btrfs_block_rsv *block_rsv;
1243 	int ret;
1244 
1245 	if (!delayed_node)
1246 		return 0;
1247 
1248 	mutex_lock(&delayed_node->mutex);
1249 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1250 		mutex_unlock(&delayed_node->mutex);
1251 		btrfs_release_delayed_node(delayed_node);
1252 		return 0;
1253 	}
1254 	mutex_unlock(&delayed_node->mutex);
1255 
1256 	trans = btrfs_join_transaction(delayed_node->root);
1257 	if (IS_ERR(trans)) {
1258 		ret = PTR_ERR(trans);
1259 		goto out;
1260 	}
1261 
1262 	path = btrfs_alloc_path();
1263 	if (!path) {
1264 		ret = -ENOMEM;
1265 		goto trans_out;
1266 	}
1267 	path->leave_spinning = 1;
1268 
1269 	block_rsv = trans->block_rsv;
1270 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1271 
1272 	mutex_lock(&delayed_node->mutex);
1273 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1274 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1275 						   path, delayed_node);
1276 	else
1277 		ret = 0;
1278 	mutex_unlock(&delayed_node->mutex);
1279 
1280 	btrfs_free_path(path);
1281 	trans->block_rsv = block_rsv;
1282 trans_out:
1283 	btrfs_end_transaction(trans, delayed_node->root);
1284 	btrfs_btree_balance_dirty(delayed_node->root);
1285 out:
1286 	btrfs_release_delayed_node(delayed_node);
1287 
1288 	return ret;
1289 }
1290 
btrfs_remove_delayed_node(struct inode * inode)1291 void btrfs_remove_delayed_node(struct inode *inode)
1292 {
1293 	struct btrfs_delayed_node *delayed_node;
1294 
1295 	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1296 	if (!delayed_node)
1297 		return;
1298 
1299 	BTRFS_I(inode)->delayed_node = NULL;
1300 	btrfs_release_delayed_node(delayed_node);
1301 }
1302 
1303 struct btrfs_async_delayed_work {
1304 	struct btrfs_delayed_root *delayed_root;
1305 	int nr;
1306 	struct btrfs_work work;
1307 };
1308 
btrfs_async_run_delayed_root(struct btrfs_work * work)1309 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1310 {
1311 	struct btrfs_async_delayed_work *async_work;
1312 	struct btrfs_delayed_root *delayed_root;
1313 	struct btrfs_trans_handle *trans;
1314 	struct btrfs_path *path;
1315 	struct btrfs_delayed_node *delayed_node = NULL;
1316 	struct btrfs_root *root;
1317 	struct btrfs_block_rsv *block_rsv;
1318 	int total_done = 0;
1319 
1320 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1321 	delayed_root = async_work->delayed_root;
1322 
1323 	path = btrfs_alloc_path();
1324 	if (!path)
1325 		goto out;
1326 
1327 again:
1328 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1329 		goto free_path;
1330 
1331 	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1332 	if (!delayed_node)
1333 		goto free_path;
1334 
1335 	path->leave_spinning = 1;
1336 	root = delayed_node->root;
1337 
1338 	trans = btrfs_join_transaction(root);
1339 	if (IS_ERR(trans))
1340 		goto release_path;
1341 
1342 	block_rsv = trans->block_rsv;
1343 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1344 
1345 	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1346 
1347 	trans->block_rsv = block_rsv;
1348 	btrfs_end_transaction(trans, root);
1349 	btrfs_btree_balance_dirty_nodelay(root);
1350 
1351 release_path:
1352 	btrfs_release_path(path);
1353 	total_done++;
1354 
1355 	btrfs_release_prepared_delayed_node(delayed_node);
1356 	if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
1357 	    total_done < async_work->nr)
1358 		goto again;
1359 
1360 free_path:
1361 	btrfs_free_path(path);
1362 out:
1363 	wake_up(&delayed_root->wait);
1364 	kfree(async_work);
1365 }
1366 
1367 
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1368 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1369 				     struct btrfs_fs_info *fs_info, int nr)
1370 {
1371 	struct btrfs_async_delayed_work *async_work;
1372 
1373 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
1374 	    btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1375 		return 0;
1376 
1377 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1378 	if (!async_work)
1379 		return -ENOMEM;
1380 
1381 	async_work->delayed_root = delayed_root;
1382 	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1383 			btrfs_async_run_delayed_root, NULL, NULL);
1384 	async_work->nr = nr;
1385 
1386 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1387 	return 0;
1388 }
1389 
btrfs_assert_delayed_root_empty(struct btrfs_root * root)1390 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1391 {
1392 	struct btrfs_delayed_root *delayed_root;
1393 	delayed_root = btrfs_get_delayed_root(root);
1394 	WARN_ON(btrfs_first_delayed_node(delayed_root));
1395 }
1396 
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1397 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1398 {
1399 	int val = atomic_read(&delayed_root->items_seq);
1400 
1401 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1402 		return 1;
1403 
1404 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1405 		return 1;
1406 
1407 	return 0;
1408 }
1409 
btrfs_balance_delayed_items(struct btrfs_root * root)1410 void btrfs_balance_delayed_items(struct btrfs_root *root)
1411 {
1412 	struct btrfs_delayed_root *delayed_root;
1413 	struct btrfs_fs_info *fs_info = root->fs_info;
1414 
1415 	delayed_root = btrfs_get_delayed_root(root);
1416 
1417 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1418 		return;
1419 
1420 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1421 		int seq;
1422 		int ret;
1423 
1424 		seq = atomic_read(&delayed_root->items_seq);
1425 
1426 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1427 		if (ret)
1428 			return;
1429 
1430 		wait_event_interruptible(delayed_root->wait,
1431 					 could_end_wait(delayed_root, seq));
1432 		return;
1433 	}
1434 
1435 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1436 }
1437 
1438 /* Will return 0 or -ENOMEM */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct inode * dir,struct btrfs_disk_key * disk_key,u8 type,u64 index)1439 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1440 				   struct btrfs_root *root, const char *name,
1441 				   int name_len, struct inode *dir,
1442 				   struct btrfs_disk_key *disk_key, u8 type,
1443 				   u64 index)
1444 {
1445 	struct btrfs_delayed_node *delayed_node;
1446 	struct btrfs_delayed_item *delayed_item;
1447 	struct btrfs_dir_item *dir_item;
1448 	int ret;
1449 
1450 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1451 	if (IS_ERR(delayed_node))
1452 		return PTR_ERR(delayed_node);
1453 
1454 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1455 	if (!delayed_item) {
1456 		ret = -ENOMEM;
1457 		goto release_node;
1458 	}
1459 
1460 	delayed_item->key.objectid = btrfs_ino(dir);
1461 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1462 	delayed_item->key.offset = index;
1463 
1464 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1465 	dir_item->location = *disk_key;
1466 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1467 	btrfs_set_stack_dir_data_len(dir_item, 0);
1468 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1469 	btrfs_set_stack_dir_type(dir_item, type);
1470 	memcpy((char *)(dir_item + 1), name, name_len);
1471 
1472 	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1473 	/*
1474 	 * we have reserved enough space when we start a new transaction,
1475 	 * so reserving metadata failure is impossible
1476 	 */
1477 	BUG_ON(ret);
1478 
1479 
1480 	mutex_lock(&delayed_node->mutex);
1481 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1482 	if (unlikely(ret)) {
1483 		btrfs_err(root->fs_info,
1484 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1485 			  name_len, name, delayed_node->root->objectid,
1486 			  delayed_node->inode_id, ret);
1487 		BUG();
1488 	}
1489 	mutex_unlock(&delayed_node->mutex);
1490 
1491 release_node:
1492 	btrfs_release_delayed_node(delayed_node);
1493 	return ret;
1494 }
1495 
btrfs_delete_delayed_insertion_item(struct btrfs_root * root,struct btrfs_delayed_node * node,struct btrfs_key * key)1496 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1497 					       struct btrfs_delayed_node *node,
1498 					       struct btrfs_key *key)
1499 {
1500 	struct btrfs_delayed_item *item;
1501 
1502 	mutex_lock(&node->mutex);
1503 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1504 	if (!item) {
1505 		mutex_unlock(&node->mutex);
1506 		return 1;
1507 	}
1508 
1509 	btrfs_delayed_item_release_metadata(root, item);
1510 	btrfs_release_delayed_item(item);
1511 	mutex_unlock(&node->mutex);
1512 	return 0;
1513 }
1514 
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,u64 index)1515 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1516 				   struct btrfs_root *root, struct inode *dir,
1517 				   u64 index)
1518 {
1519 	struct btrfs_delayed_node *node;
1520 	struct btrfs_delayed_item *item;
1521 	struct btrfs_key item_key;
1522 	int ret;
1523 
1524 	node = btrfs_get_or_create_delayed_node(dir);
1525 	if (IS_ERR(node))
1526 		return PTR_ERR(node);
1527 
1528 	item_key.objectid = btrfs_ino(dir);
1529 	item_key.type = BTRFS_DIR_INDEX_KEY;
1530 	item_key.offset = index;
1531 
1532 	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1533 	if (!ret)
1534 		goto end;
1535 
1536 	item = btrfs_alloc_delayed_item(0);
1537 	if (!item) {
1538 		ret = -ENOMEM;
1539 		goto end;
1540 	}
1541 
1542 	item->key = item_key;
1543 
1544 	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1545 	/*
1546 	 * we have reserved enough space when we start a new transaction,
1547 	 * so reserving metadata failure is impossible.
1548 	 */
1549 	BUG_ON(ret);
1550 
1551 	mutex_lock(&node->mutex);
1552 	ret = __btrfs_add_delayed_deletion_item(node, item);
1553 	if (unlikely(ret)) {
1554 		btrfs_err(root->fs_info,
1555 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1556 			  index, node->root->objectid, node->inode_id, ret);
1557 		BUG();
1558 	}
1559 	mutex_unlock(&node->mutex);
1560 end:
1561 	btrfs_release_delayed_node(node);
1562 	return ret;
1563 }
1564 
btrfs_inode_delayed_dir_index_count(struct inode * inode)1565 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1566 {
1567 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1568 
1569 	if (!delayed_node)
1570 		return -ENOENT;
1571 
1572 	/*
1573 	 * Since we have held i_mutex of this directory, it is impossible that
1574 	 * a new directory index is added into the delayed node and index_cnt
1575 	 * is updated now. So we needn't lock the delayed node.
1576 	 */
1577 	if (!delayed_node->index_cnt) {
1578 		btrfs_release_delayed_node(delayed_node);
1579 		return -EINVAL;
1580 	}
1581 
1582 	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1583 	btrfs_release_delayed_node(delayed_node);
1584 	return 0;
1585 }
1586 
btrfs_readdir_get_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1587 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1588 				     struct list_head *ins_list,
1589 				     struct list_head *del_list)
1590 {
1591 	struct btrfs_delayed_node *delayed_node;
1592 	struct btrfs_delayed_item *item;
1593 
1594 	delayed_node = btrfs_get_delayed_node(inode);
1595 	if (!delayed_node)
1596 		return false;
1597 
1598 	/*
1599 	 * We can only do one readdir with delayed items at a time because of
1600 	 * item->readdir_list.
1601 	 */
1602 	inode_unlock_shared(inode);
1603 	inode_lock(inode);
1604 
1605 	mutex_lock(&delayed_node->mutex);
1606 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1607 	while (item) {
1608 		atomic_inc(&item->refs);
1609 		list_add_tail(&item->readdir_list, ins_list);
1610 		item = __btrfs_next_delayed_item(item);
1611 	}
1612 
1613 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1614 	while (item) {
1615 		atomic_inc(&item->refs);
1616 		list_add_tail(&item->readdir_list, del_list);
1617 		item = __btrfs_next_delayed_item(item);
1618 	}
1619 	mutex_unlock(&delayed_node->mutex);
1620 	/*
1621 	 * This delayed node is still cached in the btrfs inode, so refs
1622 	 * must be > 1 now, and we needn't check it is going to be freed
1623 	 * or not.
1624 	 *
1625 	 * Besides that, this function is used to read dir, we do not
1626 	 * insert/delete delayed items in this period. So we also needn't
1627 	 * requeue or dequeue this delayed node.
1628 	 */
1629 	atomic_dec(&delayed_node->refs);
1630 
1631 	return true;
1632 }
1633 
btrfs_readdir_put_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1634 void btrfs_readdir_put_delayed_items(struct inode *inode,
1635 				     struct list_head *ins_list,
1636 				     struct list_head *del_list)
1637 {
1638 	struct btrfs_delayed_item *curr, *next;
1639 
1640 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1641 		list_del(&curr->readdir_list);
1642 		if (atomic_dec_and_test(&curr->refs))
1643 			kfree(curr);
1644 	}
1645 
1646 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1647 		list_del(&curr->readdir_list);
1648 		if (atomic_dec_and_test(&curr->refs))
1649 			kfree(curr);
1650 	}
1651 
1652 	/*
1653 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1654 	 * read lock.
1655 	 */
1656 	downgrade_write(&inode->i_rwsem);
1657 }
1658 
btrfs_should_delete_dir_index(struct list_head * del_list,u64 index)1659 int btrfs_should_delete_dir_index(struct list_head *del_list,
1660 				  u64 index)
1661 {
1662 	struct btrfs_delayed_item *curr, *next;
1663 	int ret;
1664 
1665 	if (list_empty(del_list))
1666 		return 0;
1667 
1668 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1669 		if (curr->key.offset > index)
1670 			break;
1671 
1672 		list_del(&curr->readdir_list);
1673 		ret = (curr->key.offset == index);
1674 
1675 		if (atomic_dec_and_test(&curr->refs))
1676 			kfree(curr);
1677 
1678 		if (ret)
1679 			return 1;
1680 		else
1681 			continue;
1682 	}
1683 	return 0;
1684 }
1685 
1686 /*
1687  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1688  *
1689  */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,struct list_head * ins_list,bool * emitted)1690 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1691 				    struct list_head *ins_list, bool *emitted)
1692 {
1693 	struct btrfs_dir_item *di;
1694 	struct btrfs_delayed_item *curr, *next;
1695 	struct btrfs_key location;
1696 	char *name;
1697 	int name_len;
1698 	int over = 0;
1699 	unsigned char d_type;
1700 
1701 	if (list_empty(ins_list))
1702 		return 0;
1703 
1704 	/*
1705 	 * Changing the data of the delayed item is impossible. So
1706 	 * we needn't lock them. And we have held i_mutex of the
1707 	 * directory, nobody can delete any directory indexes now.
1708 	 */
1709 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1710 		list_del(&curr->readdir_list);
1711 
1712 		if (curr->key.offset < ctx->pos) {
1713 			if (atomic_dec_and_test(&curr->refs))
1714 				kfree(curr);
1715 			continue;
1716 		}
1717 
1718 		ctx->pos = curr->key.offset;
1719 
1720 		di = (struct btrfs_dir_item *)curr->data;
1721 		name = (char *)(di + 1);
1722 		name_len = btrfs_stack_dir_name_len(di);
1723 
1724 		d_type = btrfs_filetype_table[di->type];
1725 		btrfs_disk_key_to_cpu(&location, &di->location);
1726 
1727 		over = !dir_emit(ctx, name, name_len,
1728 			       location.objectid, d_type);
1729 
1730 		if (atomic_dec_and_test(&curr->refs))
1731 			kfree(curr);
1732 
1733 		if (over)
1734 			return 1;
1735 		*emitted = true;
1736 	}
1737 	return 0;
1738 }
1739 
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct inode * inode)1740 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1741 				  struct btrfs_inode_item *inode_item,
1742 				  struct inode *inode)
1743 {
1744 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1745 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1746 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1747 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1748 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1749 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1750 	btrfs_set_stack_inode_generation(inode_item,
1751 					 BTRFS_I(inode)->generation);
1752 	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1753 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1754 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1755 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1756 	btrfs_set_stack_inode_block_group(inode_item, 0);
1757 
1758 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1759 				     inode->i_atime.tv_sec);
1760 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1761 				      inode->i_atime.tv_nsec);
1762 
1763 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1764 				     inode->i_mtime.tv_sec);
1765 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1766 				      inode->i_mtime.tv_nsec);
1767 
1768 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1769 				     inode->i_ctime.tv_sec);
1770 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1771 				      inode->i_ctime.tv_nsec);
1772 
1773 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1774 				     BTRFS_I(inode)->i_otime.tv_sec);
1775 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1776 				     BTRFS_I(inode)->i_otime.tv_nsec);
1777 }
1778 
btrfs_fill_inode(struct inode * inode,u32 * rdev)1779 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1780 {
1781 	struct btrfs_delayed_node *delayed_node;
1782 	struct btrfs_inode_item *inode_item;
1783 
1784 	delayed_node = btrfs_get_delayed_node(inode);
1785 	if (!delayed_node)
1786 		return -ENOENT;
1787 
1788 	mutex_lock(&delayed_node->mutex);
1789 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1790 		mutex_unlock(&delayed_node->mutex);
1791 		btrfs_release_delayed_node(delayed_node);
1792 		return -ENOENT;
1793 	}
1794 
1795 	inode_item = &delayed_node->inode_item;
1796 
1797 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1798 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1799 	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1800 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1801 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1802 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1803 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1804         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1805 
1806 	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1807 	inode->i_rdev = 0;
1808 	*rdev = btrfs_stack_inode_rdev(inode_item);
1809 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1810 
1811 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1812 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1813 
1814 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1815 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1816 
1817 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1818 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1819 
1820 	BTRFS_I(inode)->i_otime.tv_sec =
1821 		btrfs_stack_timespec_sec(&inode_item->otime);
1822 	BTRFS_I(inode)->i_otime.tv_nsec =
1823 		btrfs_stack_timespec_nsec(&inode_item->otime);
1824 
1825 	inode->i_generation = BTRFS_I(inode)->generation;
1826 	BTRFS_I(inode)->index_cnt = (u64)-1;
1827 
1828 	mutex_unlock(&delayed_node->mutex);
1829 	btrfs_release_delayed_node(delayed_node);
1830 	return 0;
1831 }
1832 
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1833 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1834 			       struct btrfs_root *root, struct inode *inode)
1835 {
1836 	struct btrfs_delayed_node *delayed_node;
1837 	int ret = 0;
1838 
1839 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1840 	if (IS_ERR(delayed_node))
1841 		return PTR_ERR(delayed_node);
1842 
1843 	mutex_lock(&delayed_node->mutex);
1844 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1845 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1846 		goto release_node;
1847 	}
1848 
1849 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1850 						   delayed_node);
1851 	if (ret)
1852 		goto release_node;
1853 
1854 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1855 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1856 	delayed_node->count++;
1857 	atomic_inc(&root->fs_info->delayed_root->items);
1858 release_node:
1859 	mutex_unlock(&delayed_node->mutex);
1860 	btrfs_release_delayed_node(delayed_node);
1861 	return ret;
1862 }
1863 
btrfs_delayed_delete_inode_ref(struct inode * inode)1864 int btrfs_delayed_delete_inode_ref(struct inode *inode)
1865 {
1866 	struct btrfs_delayed_node *delayed_node;
1867 
1868 	/*
1869 	 * we don't do delayed inode updates during log recovery because it
1870 	 * leads to enospc problems.  This means we also can't do
1871 	 * delayed inode refs
1872 	 */
1873 	if (test_bit(BTRFS_FS_LOG_RECOVERING,
1874 		     &BTRFS_I(inode)->root->fs_info->flags))
1875 		return -EAGAIN;
1876 
1877 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1878 	if (IS_ERR(delayed_node))
1879 		return PTR_ERR(delayed_node);
1880 
1881 	/*
1882 	 * We don't reserve space for inode ref deletion is because:
1883 	 * - We ONLY do async inode ref deletion for the inode who has only
1884 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1885 	 *   And in most case, the inode ref and the inode item are in the
1886 	 *   same leaf, and we will deal with them at the same time.
1887 	 *   Since we are sure we will reserve the space for the inode item,
1888 	 *   it is unnecessary to reserve space for inode ref deletion.
1889 	 * - If the inode ref and the inode item are not in the same leaf,
1890 	 *   We also needn't worry about enospc problem, because we reserve
1891 	 *   much more space for the inode update than it needs.
1892 	 * - At the worst, we can steal some space from the global reservation.
1893 	 *   It is very rare.
1894 	 */
1895 	mutex_lock(&delayed_node->mutex);
1896 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1897 		goto release_node;
1898 
1899 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1900 	delayed_node->count++;
1901 	atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
1902 release_node:
1903 	mutex_unlock(&delayed_node->mutex);
1904 	btrfs_release_delayed_node(delayed_node);
1905 	return 0;
1906 }
1907 
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)1908 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1909 {
1910 	struct btrfs_root *root = delayed_node->root;
1911 	struct btrfs_delayed_item *curr_item, *prev_item;
1912 
1913 	mutex_lock(&delayed_node->mutex);
1914 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1915 	while (curr_item) {
1916 		btrfs_delayed_item_release_metadata(root, curr_item);
1917 		prev_item = curr_item;
1918 		curr_item = __btrfs_next_delayed_item(prev_item);
1919 		btrfs_release_delayed_item(prev_item);
1920 	}
1921 
1922 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1923 	while (curr_item) {
1924 		btrfs_delayed_item_release_metadata(root, curr_item);
1925 		prev_item = curr_item;
1926 		curr_item = __btrfs_next_delayed_item(prev_item);
1927 		btrfs_release_delayed_item(prev_item);
1928 	}
1929 
1930 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1931 		btrfs_release_delayed_iref(delayed_node);
1932 
1933 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1934 		btrfs_delayed_inode_release_metadata(root, delayed_node);
1935 		btrfs_release_delayed_inode(delayed_node);
1936 	}
1937 	mutex_unlock(&delayed_node->mutex);
1938 }
1939 
btrfs_kill_delayed_inode_items(struct inode * inode)1940 void btrfs_kill_delayed_inode_items(struct inode *inode)
1941 {
1942 	struct btrfs_delayed_node *delayed_node;
1943 
1944 	delayed_node = btrfs_get_delayed_node(inode);
1945 	if (!delayed_node)
1946 		return;
1947 
1948 	__btrfs_kill_delayed_node(delayed_node);
1949 	btrfs_release_delayed_node(delayed_node);
1950 }
1951 
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)1952 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1953 {
1954 	u64 inode_id = 0;
1955 	struct btrfs_delayed_node *delayed_nodes[8];
1956 	int i, n;
1957 
1958 	while (1) {
1959 		spin_lock(&root->inode_lock);
1960 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1961 					   (void **)delayed_nodes, inode_id,
1962 					   ARRAY_SIZE(delayed_nodes));
1963 		if (!n) {
1964 			spin_unlock(&root->inode_lock);
1965 			break;
1966 		}
1967 
1968 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1969 
1970 		for (i = 0; i < n; i++)
1971 			atomic_inc(&delayed_nodes[i]->refs);
1972 		spin_unlock(&root->inode_lock);
1973 
1974 		for (i = 0; i < n; i++) {
1975 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1976 			btrfs_release_delayed_node(delayed_nodes[i]);
1977 		}
1978 	}
1979 }
1980 
btrfs_destroy_delayed_inodes(struct btrfs_root * root)1981 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1982 {
1983 	struct btrfs_delayed_root *delayed_root;
1984 	struct btrfs_delayed_node *curr_node, *prev_node;
1985 
1986 	delayed_root = btrfs_get_delayed_root(root);
1987 
1988 	curr_node = btrfs_first_delayed_node(delayed_root);
1989 	while (curr_node) {
1990 		__btrfs_kill_delayed_node(curr_node);
1991 
1992 		prev_node = curr_node;
1993 		curr_node = btrfs_next_delayed_node(curr_node);
1994 		btrfs_release_delayed_node(prev_node);
1995 	}
1996 }
1997 
1998