1 /*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
18 */
19
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "ctree.h"
25
26 #define BTRFS_DELAYED_WRITEBACK 512
27 #define BTRFS_DELAYED_BACKGROUND 128
28 #define BTRFS_DELAYED_BATCH 16
29
30 static struct kmem_cache *delayed_node_cache;
31
btrfs_delayed_inode_init(void)32 int __init btrfs_delayed_inode_init(void)
33 {
34 delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 sizeof(struct btrfs_delayed_node),
36 0,
37 SLAB_MEM_SPREAD,
38 NULL);
39 if (!delayed_node_cache)
40 return -ENOMEM;
41 return 0;
42 }
43
btrfs_delayed_inode_exit(void)44 void btrfs_delayed_inode_exit(void)
45 {
46 kmem_cache_destroy(delayed_node_cache);
47 }
48
btrfs_init_delayed_node(struct btrfs_delayed_node * delayed_node,struct btrfs_root * root,u64 inode_id)49 static inline void btrfs_init_delayed_node(
50 struct btrfs_delayed_node *delayed_node,
51 struct btrfs_root *root, u64 inode_id)
52 {
53 delayed_node->root = root;
54 delayed_node->inode_id = inode_id;
55 atomic_set(&delayed_node->refs, 0);
56 delayed_node->ins_root = RB_ROOT;
57 delayed_node->del_root = RB_ROOT;
58 mutex_init(&delayed_node->mutex);
59 INIT_LIST_HEAD(&delayed_node->n_list);
60 INIT_LIST_HEAD(&delayed_node->p_list);
61 }
62
btrfs_is_continuous_delayed_item(struct btrfs_delayed_item * item1,struct btrfs_delayed_item * item2)63 static inline int btrfs_is_continuous_delayed_item(
64 struct btrfs_delayed_item *item1,
65 struct btrfs_delayed_item *item2)
66 {
67 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68 item1->key.objectid == item2->key.objectid &&
69 item1->key.type == item2->key.type &&
70 item1->key.offset + 1 == item2->key.offset)
71 return 1;
72 return 0;
73 }
74
btrfs_get_delayed_root(struct btrfs_root * root)75 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
76 struct btrfs_root *root)
77 {
78 return root->fs_info->delayed_root;
79 }
80
btrfs_get_delayed_node(struct inode * inode)81 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
82 {
83 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
84 struct btrfs_root *root = btrfs_inode->root;
85 u64 ino = btrfs_ino(inode);
86 struct btrfs_delayed_node *node;
87
88 node = ACCESS_ONCE(btrfs_inode->delayed_node);
89 if (node) {
90 atomic_inc(&node->refs);
91 return node;
92 }
93
94 spin_lock(&root->inode_lock);
95 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
96 if (node) {
97 if (btrfs_inode->delayed_node) {
98 atomic_inc(&node->refs); /* can be accessed */
99 BUG_ON(btrfs_inode->delayed_node != node);
100 spin_unlock(&root->inode_lock);
101 return node;
102 }
103 btrfs_inode->delayed_node = node;
104 /* can be accessed and cached in the inode */
105 atomic_add(2, &node->refs);
106 spin_unlock(&root->inode_lock);
107 return node;
108 }
109 spin_unlock(&root->inode_lock);
110
111 return NULL;
112 }
113
114 /* Will return either the node or PTR_ERR(-ENOMEM) */
btrfs_get_or_create_delayed_node(struct inode * inode)115 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
116 struct inode *inode)
117 {
118 struct btrfs_delayed_node *node;
119 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
120 struct btrfs_root *root = btrfs_inode->root;
121 u64 ino = btrfs_ino(inode);
122 int ret;
123
124 again:
125 node = btrfs_get_delayed_node(inode);
126 if (node)
127 return node;
128
129 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
130 if (!node)
131 return ERR_PTR(-ENOMEM);
132 btrfs_init_delayed_node(node, root, ino);
133
134 /* cached in the btrfs inode and can be accessed */
135 atomic_add(2, &node->refs);
136
137 ret = radix_tree_preload(GFP_NOFS);
138 if (ret) {
139 kmem_cache_free(delayed_node_cache, node);
140 return ERR_PTR(ret);
141 }
142
143 spin_lock(&root->inode_lock);
144 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
145 if (ret == -EEXIST) {
146 spin_unlock(&root->inode_lock);
147 kmem_cache_free(delayed_node_cache, node);
148 radix_tree_preload_end();
149 goto again;
150 }
151 btrfs_inode->delayed_node = node;
152 spin_unlock(&root->inode_lock);
153 radix_tree_preload_end();
154
155 return node;
156 }
157
158 /*
159 * Call it when holding delayed_node->mutex
160 *
161 * If mod = 1, add this node into the prepared list.
162 */
btrfs_queue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node,int mod)163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
164 struct btrfs_delayed_node *node,
165 int mod)
166 {
167 spin_lock(&root->lock);
168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
169 if (!list_empty(&node->p_list))
170 list_move_tail(&node->p_list, &root->prepare_list);
171 else if (mod)
172 list_add_tail(&node->p_list, &root->prepare_list);
173 } else {
174 list_add_tail(&node->n_list, &root->node_list);
175 list_add_tail(&node->p_list, &root->prepare_list);
176 atomic_inc(&node->refs); /* inserted into list */
177 root->nodes++;
178 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
179 }
180 spin_unlock(&root->lock);
181 }
182
183 /* Call it when holding delayed_node->mutex */
btrfs_dequeue_delayed_node(struct btrfs_delayed_root * root,struct btrfs_delayed_node * node)184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
185 struct btrfs_delayed_node *node)
186 {
187 spin_lock(&root->lock);
188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
189 root->nodes--;
190 atomic_dec(&node->refs); /* not in the list */
191 list_del_init(&node->n_list);
192 if (!list_empty(&node->p_list))
193 list_del_init(&node->p_list);
194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
195 }
196 spin_unlock(&root->lock);
197 }
198
btrfs_first_delayed_node(struct btrfs_delayed_root * delayed_root)199 static struct btrfs_delayed_node *btrfs_first_delayed_node(
200 struct btrfs_delayed_root *delayed_root)
201 {
202 struct list_head *p;
203 struct btrfs_delayed_node *node = NULL;
204
205 spin_lock(&delayed_root->lock);
206 if (list_empty(&delayed_root->node_list))
207 goto out;
208
209 p = delayed_root->node_list.next;
210 node = list_entry(p, struct btrfs_delayed_node, n_list);
211 atomic_inc(&node->refs);
212 out:
213 spin_unlock(&delayed_root->lock);
214
215 return node;
216 }
217
btrfs_next_delayed_node(struct btrfs_delayed_node * node)218 static struct btrfs_delayed_node *btrfs_next_delayed_node(
219 struct btrfs_delayed_node *node)
220 {
221 struct btrfs_delayed_root *delayed_root;
222 struct list_head *p;
223 struct btrfs_delayed_node *next = NULL;
224
225 delayed_root = node->root->fs_info->delayed_root;
226 spin_lock(&delayed_root->lock);
227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
228 /* not in the list */
229 if (list_empty(&delayed_root->node_list))
230 goto out;
231 p = delayed_root->node_list.next;
232 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
233 goto out;
234 else
235 p = node->n_list.next;
236
237 next = list_entry(p, struct btrfs_delayed_node, n_list);
238 atomic_inc(&next->refs);
239 out:
240 spin_unlock(&delayed_root->lock);
241
242 return next;
243 }
244
__btrfs_release_delayed_node(struct btrfs_delayed_node * delayed_node,int mod)245 static void __btrfs_release_delayed_node(
246 struct btrfs_delayed_node *delayed_node,
247 int mod)
248 {
249 struct btrfs_delayed_root *delayed_root;
250
251 if (!delayed_node)
252 return;
253
254 delayed_root = delayed_node->root->fs_info->delayed_root;
255
256 mutex_lock(&delayed_node->mutex);
257 if (delayed_node->count)
258 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
259 else
260 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
261 mutex_unlock(&delayed_node->mutex);
262
263 if (atomic_dec_and_test(&delayed_node->refs)) {
264 bool free = false;
265 struct btrfs_root *root = delayed_node->root;
266 spin_lock(&root->inode_lock);
267 if (atomic_read(&delayed_node->refs) == 0) {
268 radix_tree_delete(&root->delayed_nodes_tree,
269 delayed_node->inode_id);
270 free = true;
271 }
272 spin_unlock(&root->inode_lock);
273 if (free)
274 kmem_cache_free(delayed_node_cache, delayed_node);
275 }
276 }
277
btrfs_release_delayed_node(struct btrfs_delayed_node * node)278 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
279 {
280 __btrfs_release_delayed_node(node, 0);
281 }
282
btrfs_first_prepared_delayed_node(struct btrfs_delayed_root * delayed_root)283 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
284 struct btrfs_delayed_root *delayed_root)
285 {
286 struct list_head *p;
287 struct btrfs_delayed_node *node = NULL;
288
289 spin_lock(&delayed_root->lock);
290 if (list_empty(&delayed_root->prepare_list))
291 goto out;
292
293 p = delayed_root->prepare_list.next;
294 list_del_init(p);
295 node = list_entry(p, struct btrfs_delayed_node, p_list);
296 atomic_inc(&node->refs);
297 out:
298 spin_unlock(&delayed_root->lock);
299
300 return node;
301 }
302
btrfs_release_prepared_delayed_node(struct btrfs_delayed_node * node)303 static inline void btrfs_release_prepared_delayed_node(
304 struct btrfs_delayed_node *node)
305 {
306 __btrfs_release_delayed_node(node, 1);
307 }
308
btrfs_alloc_delayed_item(u32 data_len)309 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
310 {
311 struct btrfs_delayed_item *item;
312 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
313 if (item) {
314 item->data_len = data_len;
315 item->ins_or_del = 0;
316 item->bytes_reserved = 0;
317 item->delayed_node = NULL;
318 atomic_set(&item->refs, 1);
319 }
320 return item;
321 }
322
323 /*
324 * __btrfs_lookup_delayed_item - look up the delayed item by key
325 * @delayed_node: pointer to the delayed node
326 * @key: the key to look up
327 * @prev: used to store the prev item if the right item isn't found
328 * @next: used to store the next item if the right item isn't found
329 *
330 * Note: if we don't find the right item, we will return the prev item and
331 * the next item.
332 */
__btrfs_lookup_delayed_item(struct rb_root * root,struct btrfs_key * key,struct btrfs_delayed_item ** prev,struct btrfs_delayed_item ** next)333 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
334 struct rb_root *root,
335 struct btrfs_key *key,
336 struct btrfs_delayed_item **prev,
337 struct btrfs_delayed_item **next)
338 {
339 struct rb_node *node, *prev_node = NULL;
340 struct btrfs_delayed_item *delayed_item = NULL;
341 int ret = 0;
342
343 node = root->rb_node;
344
345 while (node) {
346 delayed_item = rb_entry(node, struct btrfs_delayed_item,
347 rb_node);
348 prev_node = node;
349 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
350 if (ret < 0)
351 node = node->rb_right;
352 else if (ret > 0)
353 node = node->rb_left;
354 else
355 return delayed_item;
356 }
357
358 if (prev) {
359 if (!prev_node)
360 *prev = NULL;
361 else if (ret < 0)
362 *prev = delayed_item;
363 else if ((node = rb_prev(prev_node)) != NULL) {
364 *prev = rb_entry(node, struct btrfs_delayed_item,
365 rb_node);
366 } else
367 *prev = NULL;
368 }
369
370 if (next) {
371 if (!prev_node)
372 *next = NULL;
373 else if (ret > 0)
374 *next = delayed_item;
375 else if ((node = rb_next(prev_node)) != NULL) {
376 *next = rb_entry(node, struct btrfs_delayed_item,
377 rb_node);
378 } else
379 *next = NULL;
380 }
381 return NULL;
382 }
383
__btrfs_lookup_delayed_insertion_item(struct btrfs_delayed_node * delayed_node,struct btrfs_key * key)384 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
385 struct btrfs_delayed_node *delayed_node,
386 struct btrfs_key *key)
387 {
388 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
389 NULL, NULL);
390 }
391
__btrfs_add_delayed_item(struct btrfs_delayed_node * delayed_node,struct btrfs_delayed_item * ins,int action)392 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
393 struct btrfs_delayed_item *ins,
394 int action)
395 {
396 struct rb_node **p, *node;
397 struct rb_node *parent_node = NULL;
398 struct rb_root *root;
399 struct btrfs_delayed_item *item;
400 int cmp;
401
402 if (action == BTRFS_DELAYED_INSERTION_ITEM)
403 root = &delayed_node->ins_root;
404 else if (action == BTRFS_DELAYED_DELETION_ITEM)
405 root = &delayed_node->del_root;
406 else
407 BUG();
408 p = &root->rb_node;
409 node = &ins->rb_node;
410
411 while (*p) {
412 parent_node = *p;
413 item = rb_entry(parent_node, struct btrfs_delayed_item,
414 rb_node);
415
416 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
417 if (cmp < 0)
418 p = &(*p)->rb_right;
419 else if (cmp > 0)
420 p = &(*p)->rb_left;
421 else
422 return -EEXIST;
423 }
424
425 rb_link_node(node, parent_node, p);
426 rb_insert_color(node, root);
427 ins->delayed_node = delayed_node;
428 ins->ins_or_del = action;
429
430 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
431 action == BTRFS_DELAYED_INSERTION_ITEM &&
432 ins->key.offset >= delayed_node->index_cnt)
433 delayed_node->index_cnt = ins->key.offset + 1;
434
435 delayed_node->count++;
436 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
437 return 0;
438 }
439
__btrfs_add_delayed_insertion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)440 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
441 struct btrfs_delayed_item *item)
442 {
443 return __btrfs_add_delayed_item(node, item,
444 BTRFS_DELAYED_INSERTION_ITEM);
445 }
446
__btrfs_add_delayed_deletion_item(struct btrfs_delayed_node * node,struct btrfs_delayed_item * item)447 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
448 struct btrfs_delayed_item *item)
449 {
450 return __btrfs_add_delayed_item(node, item,
451 BTRFS_DELAYED_DELETION_ITEM);
452 }
453
finish_one_item(struct btrfs_delayed_root * delayed_root)454 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
455 {
456 int seq = atomic_inc_return(&delayed_root->items_seq);
457
458 /*
459 * atomic_dec_return implies a barrier for waitqueue_active
460 */
461 if ((atomic_dec_return(&delayed_root->items) <
462 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
463 waitqueue_active(&delayed_root->wait))
464 wake_up(&delayed_root->wait);
465 }
466
__btrfs_remove_delayed_item(struct btrfs_delayed_item * delayed_item)467 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
468 {
469 struct rb_root *root;
470 struct btrfs_delayed_root *delayed_root;
471
472 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
473
474 BUG_ON(!delayed_root);
475 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
476 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
477
478 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
479 root = &delayed_item->delayed_node->ins_root;
480 else
481 root = &delayed_item->delayed_node->del_root;
482
483 rb_erase(&delayed_item->rb_node, root);
484 delayed_item->delayed_node->count--;
485
486 finish_one_item(delayed_root);
487 }
488
btrfs_release_delayed_item(struct btrfs_delayed_item * item)489 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
490 {
491 if (item) {
492 __btrfs_remove_delayed_item(item);
493 if (atomic_dec_and_test(&item->refs))
494 kfree(item);
495 }
496 }
497
__btrfs_first_delayed_insertion_item(struct btrfs_delayed_node * delayed_node)498 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
499 struct btrfs_delayed_node *delayed_node)
500 {
501 struct rb_node *p;
502 struct btrfs_delayed_item *item = NULL;
503
504 p = rb_first(&delayed_node->ins_root);
505 if (p)
506 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
507
508 return item;
509 }
510
__btrfs_first_delayed_deletion_item(struct btrfs_delayed_node * delayed_node)511 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
512 struct btrfs_delayed_node *delayed_node)
513 {
514 struct rb_node *p;
515 struct btrfs_delayed_item *item = NULL;
516
517 p = rb_first(&delayed_node->del_root);
518 if (p)
519 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
520
521 return item;
522 }
523
__btrfs_next_delayed_item(struct btrfs_delayed_item * item)524 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
525 struct btrfs_delayed_item *item)
526 {
527 struct rb_node *p;
528 struct btrfs_delayed_item *next = NULL;
529
530 p = rb_next(&item->rb_node);
531 if (p)
532 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
533
534 return next;
535 }
536
btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_delayed_item * item)537 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
538 struct btrfs_root *root,
539 struct btrfs_delayed_item *item)
540 {
541 struct btrfs_block_rsv *src_rsv;
542 struct btrfs_block_rsv *dst_rsv;
543 u64 num_bytes;
544 int ret;
545
546 if (!trans->bytes_reserved)
547 return 0;
548
549 src_rsv = trans->block_rsv;
550 dst_rsv = &root->fs_info->delayed_block_rsv;
551
552 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
553 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
554 if (!ret) {
555 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
556 item->key.objectid,
557 num_bytes, 1);
558 item->bytes_reserved = num_bytes;
559 }
560
561 return ret;
562 }
563
btrfs_delayed_item_release_metadata(struct btrfs_root * root,struct btrfs_delayed_item * item)564 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
565 struct btrfs_delayed_item *item)
566 {
567 struct btrfs_block_rsv *rsv;
568
569 if (!item->bytes_reserved)
570 return;
571
572 rsv = &root->fs_info->delayed_block_rsv;
573 trace_btrfs_space_reservation(root->fs_info, "delayed_item",
574 item->key.objectid, item->bytes_reserved,
575 0);
576 btrfs_block_rsv_release(root, rsv,
577 item->bytes_reserved);
578 }
579
btrfs_delayed_inode_reserve_metadata(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode,struct btrfs_delayed_node * node)580 static int btrfs_delayed_inode_reserve_metadata(
581 struct btrfs_trans_handle *trans,
582 struct btrfs_root *root,
583 struct inode *inode,
584 struct btrfs_delayed_node *node)
585 {
586 struct btrfs_block_rsv *src_rsv;
587 struct btrfs_block_rsv *dst_rsv;
588 u64 num_bytes;
589 int ret;
590 bool release = false;
591
592 src_rsv = trans->block_rsv;
593 dst_rsv = &root->fs_info->delayed_block_rsv;
594
595 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
596
597 /*
598 * If our block_rsv is the delalloc block reserve then check and see if
599 * we have our extra reservation for updating the inode. If not fall
600 * through and try to reserve space quickly.
601 *
602 * We used to try and steal from the delalloc block rsv or the global
603 * reserve, but we'd steal a full reservation, which isn't kind. We are
604 * here through delalloc which means we've likely just cowed down close
605 * to the leaf that contains the inode, so we would steal less just
606 * doing the fallback inode update, so if we do end up having to steal
607 * from the global block rsv we hopefully only steal one or two blocks
608 * worth which is less likely to hurt us.
609 */
610 if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
611 spin_lock(&BTRFS_I(inode)->lock);
612 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
613 &BTRFS_I(inode)->runtime_flags))
614 release = true;
615 else
616 src_rsv = NULL;
617 spin_unlock(&BTRFS_I(inode)->lock);
618 }
619
620 /*
621 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
622 * which doesn't reserve space for speed. This is a problem since we
623 * still need to reserve space for this update, so try to reserve the
624 * space.
625 *
626 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
627 * we're accounted for.
628 */
629 if (!src_rsv || (!trans->bytes_reserved &&
630 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
631 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
632 BTRFS_RESERVE_NO_FLUSH);
633 /*
634 * Since we're under a transaction reserve_metadata_bytes could
635 * try to commit the transaction which will make it return
636 * EAGAIN to make us stop the transaction we have, so return
637 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
638 */
639 if (ret == -EAGAIN)
640 ret = -ENOSPC;
641 if (!ret) {
642 node->bytes_reserved = num_bytes;
643 trace_btrfs_space_reservation(root->fs_info,
644 "delayed_inode",
645 btrfs_ino(inode),
646 num_bytes, 1);
647 }
648 return ret;
649 }
650
651 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
652
653 /*
654 * Migrate only takes a reservation, it doesn't touch the size of the
655 * block_rsv. This is to simplify people who don't normally have things
656 * migrated from their block rsv. If they go to release their
657 * reservation, that will decrease the size as well, so if migrate
658 * reduced size we'd end up with a negative size. But for the
659 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
660 * but we could in fact do this reserve/migrate dance several times
661 * between the time we did the original reservation and we'd clean it
662 * up. So to take care of this, release the space for the meta
663 * reservation here. I think it may be time for a documentation page on
664 * how block rsvs. work.
665 */
666 if (!ret) {
667 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
668 btrfs_ino(inode), num_bytes, 1);
669 node->bytes_reserved = num_bytes;
670 }
671
672 if (release) {
673 trace_btrfs_space_reservation(root->fs_info, "delalloc",
674 btrfs_ino(inode), num_bytes, 0);
675 btrfs_block_rsv_release(root, src_rsv, num_bytes);
676 }
677
678 return ret;
679 }
680
btrfs_delayed_inode_release_metadata(struct btrfs_root * root,struct btrfs_delayed_node * node)681 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
682 struct btrfs_delayed_node *node)
683 {
684 struct btrfs_block_rsv *rsv;
685
686 if (!node->bytes_reserved)
687 return;
688
689 rsv = &root->fs_info->delayed_block_rsv;
690 trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
691 node->inode_id, node->bytes_reserved, 0);
692 btrfs_block_rsv_release(root, rsv,
693 node->bytes_reserved);
694 node->bytes_reserved = 0;
695 }
696
697 /*
698 * This helper will insert some continuous items into the same leaf according
699 * to the free space of the leaf.
700 */
btrfs_batch_insert_items(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)701 static int btrfs_batch_insert_items(struct btrfs_root *root,
702 struct btrfs_path *path,
703 struct btrfs_delayed_item *item)
704 {
705 struct btrfs_delayed_item *curr, *next;
706 int free_space;
707 int total_data_size = 0, total_size = 0;
708 struct extent_buffer *leaf;
709 char *data_ptr;
710 struct btrfs_key *keys;
711 u32 *data_size;
712 struct list_head head;
713 int slot;
714 int nitems;
715 int i;
716 int ret = 0;
717
718 BUG_ON(!path->nodes[0]);
719
720 leaf = path->nodes[0];
721 free_space = btrfs_leaf_free_space(root, leaf);
722 INIT_LIST_HEAD(&head);
723
724 next = item;
725 nitems = 0;
726
727 /*
728 * count the number of the continuous items that we can insert in batch
729 */
730 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
731 free_space) {
732 total_data_size += next->data_len;
733 total_size += next->data_len + sizeof(struct btrfs_item);
734 list_add_tail(&next->tree_list, &head);
735 nitems++;
736
737 curr = next;
738 next = __btrfs_next_delayed_item(curr);
739 if (!next)
740 break;
741
742 if (!btrfs_is_continuous_delayed_item(curr, next))
743 break;
744 }
745
746 if (!nitems) {
747 ret = 0;
748 goto out;
749 }
750
751 /*
752 * we need allocate some memory space, but it might cause the task
753 * to sleep, so we set all locked nodes in the path to blocking locks
754 * first.
755 */
756 btrfs_set_path_blocking(path);
757
758 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
759 if (!keys) {
760 ret = -ENOMEM;
761 goto out;
762 }
763
764 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
765 if (!data_size) {
766 ret = -ENOMEM;
767 goto error;
768 }
769
770 /* get keys of all the delayed items */
771 i = 0;
772 list_for_each_entry(next, &head, tree_list) {
773 keys[i] = next->key;
774 data_size[i] = next->data_len;
775 i++;
776 }
777
778 /* reset all the locked nodes in the patch to spinning locks. */
779 btrfs_clear_path_blocking(path, NULL, 0);
780
781 /* insert the keys of the items */
782 setup_items_for_insert(root, path, keys, data_size,
783 total_data_size, total_size, nitems);
784
785 /* insert the dir index items */
786 slot = path->slots[0];
787 list_for_each_entry_safe(curr, next, &head, tree_list) {
788 data_ptr = btrfs_item_ptr(leaf, slot, char);
789 write_extent_buffer(leaf, &curr->data,
790 (unsigned long)data_ptr,
791 curr->data_len);
792 slot++;
793
794 btrfs_delayed_item_release_metadata(root, curr);
795
796 list_del(&curr->tree_list);
797 btrfs_release_delayed_item(curr);
798 }
799
800 error:
801 kfree(data_size);
802 kfree(keys);
803 out:
804 return ret;
805 }
806
807 /*
808 * This helper can just do simple insertion that needn't extend item for new
809 * data, such as directory name index insertion, inode insertion.
810 */
btrfs_insert_delayed_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * delayed_item)811 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
812 struct btrfs_root *root,
813 struct btrfs_path *path,
814 struct btrfs_delayed_item *delayed_item)
815 {
816 struct extent_buffer *leaf;
817 char *ptr;
818 int ret;
819
820 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
821 delayed_item->data_len);
822 if (ret < 0 && ret != -EEXIST)
823 return ret;
824
825 leaf = path->nodes[0];
826
827 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
828
829 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
830 delayed_item->data_len);
831 btrfs_mark_buffer_dirty(leaf);
832
833 btrfs_delayed_item_release_metadata(root, delayed_item);
834 return 0;
835 }
836
837 /*
838 * we insert an item first, then if there are some continuous items, we try
839 * to insert those items into the same leaf.
840 */
btrfs_insert_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)841 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
842 struct btrfs_path *path,
843 struct btrfs_root *root,
844 struct btrfs_delayed_node *node)
845 {
846 struct btrfs_delayed_item *curr, *prev;
847 int ret = 0;
848
849 do_again:
850 mutex_lock(&node->mutex);
851 curr = __btrfs_first_delayed_insertion_item(node);
852 if (!curr)
853 goto insert_end;
854
855 ret = btrfs_insert_delayed_item(trans, root, path, curr);
856 if (ret < 0) {
857 btrfs_release_path(path);
858 goto insert_end;
859 }
860
861 prev = curr;
862 curr = __btrfs_next_delayed_item(prev);
863 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
864 /* insert the continuous items into the same leaf */
865 path->slots[0]++;
866 btrfs_batch_insert_items(root, path, curr);
867 }
868 btrfs_release_delayed_item(prev);
869 btrfs_mark_buffer_dirty(path->nodes[0]);
870
871 btrfs_release_path(path);
872 mutex_unlock(&node->mutex);
873 goto do_again;
874
875 insert_end:
876 mutex_unlock(&node->mutex);
877 return ret;
878 }
879
btrfs_batch_delete_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_item * item)880 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
881 struct btrfs_root *root,
882 struct btrfs_path *path,
883 struct btrfs_delayed_item *item)
884 {
885 struct btrfs_delayed_item *curr, *next;
886 struct extent_buffer *leaf;
887 struct btrfs_key key;
888 struct list_head head;
889 int nitems, i, last_item;
890 int ret = 0;
891
892 BUG_ON(!path->nodes[0]);
893
894 leaf = path->nodes[0];
895
896 i = path->slots[0];
897 last_item = btrfs_header_nritems(leaf) - 1;
898 if (i > last_item)
899 return -ENOENT; /* FIXME: Is errno suitable? */
900
901 next = item;
902 INIT_LIST_HEAD(&head);
903 btrfs_item_key_to_cpu(leaf, &key, i);
904 nitems = 0;
905 /*
906 * count the number of the dir index items that we can delete in batch
907 */
908 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
909 list_add_tail(&next->tree_list, &head);
910 nitems++;
911
912 curr = next;
913 next = __btrfs_next_delayed_item(curr);
914 if (!next)
915 break;
916
917 if (!btrfs_is_continuous_delayed_item(curr, next))
918 break;
919
920 i++;
921 if (i > last_item)
922 break;
923 btrfs_item_key_to_cpu(leaf, &key, i);
924 }
925
926 if (!nitems)
927 return 0;
928
929 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
930 if (ret)
931 goto out;
932
933 list_for_each_entry_safe(curr, next, &head, tree_list) {
934 btrfs_delayed_item_release_metadata(root, curr);
935 list_del(&curr->tree_list);
936 btrfs_release_delayed_item(curr);
937 }
938
939 out:
940 return ret;
941 }
942
btrfs_delete_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_root * root,struct btrfs_delayed_node * node)943 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
944 struct btrfs_path *path,
945 struct btrfs_root *root,
946 struct btrfs_delayed_node *node)
947 {
948 struct btrfs_delayed_item *curr, *prev;
949 int ret = 0;
950
951 do_again:
952 mutex_lock(&node->mutex);
953 curr = __btrfs_first_delayed_deletion_item(node);
954 if (!curr)
955 goto delete_fail;
956
957 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
958 if (ret < 0)
959 goto delete_fail;
960 else if (ret > 0) {
961 /*
962 * can't find the item which the node points to, so this node
963 * is invalid, just drop it.
964 */
965 prev = curr;
966 curr = __btrfs_next_delayed_item(prev);
967 btrfs_release_delayed_item(prev);
968 ret = 0;
969 btrfs_release_path(path);
970 if (curr) {
971 mutex_unlock(&node->mutex);
972 goto do_again;
973 } else
974 goto delete_fail;
975 }
976
977 btrfs_batch_delete_items(trans, root, path, curr);
978 btrfs_release_path(path);
979 mutex_unlock(&node->mutex);
980 goto do_again;
981
982 delete_fail:
983 btrfs_release_path(path);
984 mutex_unlock(&node->mutex);
985 return ret;
986 }
987
btrfs_release_delayed_inode(struct btrfs_delayed_node * delayed_node)988 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
989 {
990 struct btrfs_delayed_root *delayed_root;
991
992 if (delayed_node &&
993 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
994 BUG_ON(!delayed_node->root);
995 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
996 delayed_node->count--;
997
998 delayed_root = delayed_node->root->fs_info->delayed_root;
999 finish_one_item(delayed_root);
1000 }
1001 }
1002
btrfs_release_delayed_iref(struct btrfs_delayed_node * delayed_node)1003 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1004 {
1005 struct btrfs_delayed_root *delayed_root;
1006
1007 ASSERT(delayed_node->root);
1008 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1009 delayed_node->count--;
1010
1011 delayed_root = delayed_node->root->fs_info->delayed_root;
1012 finish_one_item(delayed_root);
1013 }
1014
__btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1015 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1016 struct btrfs_root *root,
1017 struct btrfs_path *path,
1018 struct btrfs_delayed_node *node)
1019 {
1020 struct btrfs_key key;
1021 struct btrfs_inode_item *inode_item;
1022 struct extent_buffer *leaf;
1023 int mod;
1024 int ret;
1025
1026 key.objectid = node->inode_id;
1027 key.type = BTRFS_INODE_ITEM_KEY;
1028 key.offset = 0;
1029
1030 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1031 mod = -1;
1032 else
1033 mod = 1;
1034
1035 ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1036 if (ret > 0) {
1037 btrfs_release_path(path);
1038 return -ENOENT;
1039 } else if (ret < 0) {
1040 return ret;
1041 }
1042
1043 leaf = path->nodes[0];
1044 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1045 struct btrfs_inode_item);
1046 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1047 sizeof(struct btrfs_inode_item));
1048 btrfs_mark_buffer_dirty(leaf);
1049
1050 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1051 goto no_iref;
1052
1053 path->slots[0]++;
1054 if (path->slots[0] >= btrfs_header_nritems(leaf))
1055 goto search;
1056 again:
1057 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1058 if (key.objectid != node->inode_id)
1059 goto out;
1060
1061 if (key.type != BTRFS_INODE_REF_KEY &&
1062 key.type != BTRFS_INODE_EXTREF_KEY)
1063 goto out;
1064
1065 /*
1066 * Delayed iref deletion is for the inode who has only one link,
1067 * so there is only one iref. The case that several irefs are
1068 * in the same item doesn't exist.
1069 */
1070 btrfs_del_item(trans, root, path);
1071 out:
1072 btrfs_release_delayed_iref(node);
1073 no_iref:
1074 btrfs_release_path(path);
1075 err_out:
1076 btrfs_delayed_inode_release_metadata(root, node);
1077 btrfs_release_delayed_inode(node);
1078
1079 return ret;
1080
1081 search:
1082 btrfs_release_path(path);
1083
1084 key.type = BTRFS_INODE_EXTREF_KEY;
1085 key.offset = -1;
1086 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1087 if (ret < 0)
1088 goto err_out;
1089 ASSERT(ret);
1090
1091 ret = 0;
1092 leaf = path->nodes[0];
1093 path->slots[0]--;
1094 goto again;
1095 }
1096
btrfs_update_delayed_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_delayed_node * node)1097 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1098 struct btrfs_root *root,
1099 struct btrfs_path *path,
1100 struct btrfs_delayed_node *node)
1101 {
1102 int ret;
1103
1104 mutex_lock(&node->mutex);
1105 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1106 mutex_unlock(&node->mutex);
1107 return 0;
1108 }
1109
1110 ret = __btrfs_update_delayed_inode(trans, root, path, node);
1111 mutex_unlock(&node->mutex);
1112 return ret;
1113 }
1114
1115 static inline int
__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_delayed_node * node)1116 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1117 struct btrfs_path *path,
1118 struct btrfs_delayed_node *node)
1119 {
1120 int ret;
1121
1122 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1123 if (ret)
1124 return ret;
1125
1126 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1127 if (ret)
1128 return ret;
1129
1130 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1131 return ret;
1132 }
1133
1134 /*
1135 * Called when committing the transaction.
1136 * Returns 0 on success.
1137 * Returns < 0 on error and returns with an aborted transaction with any
1138 * outstanding delayed items cleaned up.
1139 */
__btrfs_run_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_root * root,int nr)1140 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1141 struct btrfs_root *root, int nr)
1142 {
1143 struct btrfs_delayed_root *delayed_root;
1144 struct btrfs_delayed_node *curr_node, *prev_node;
1145 struct btrfs_path *path;
1146 struct btrfs_block_rsv *block_rsv;
1147 int ret = 0;
1148 bool count = (nr > 0);
1149
1150 if (trans->aborted)
1151 return -EIO;
1152
1153 path = btrfs_alloc_path();
1154 if (!path)
1155 return -ENOMEM;
1156 path->leave_spinning = 1;
1157
1158 block_rsv = trans->block_rsv;
1159 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1160
1161 delayed_root = btrfs_get_delayed_root(root);
1162
1163 curr_node = btrfs_first_delayed_node(delayed_root);
1164 while (curr_node && (!count || (count && nr--))) {
1165 ret = __btrfs_commit_inode_delayed_items(trans, path,
1166 curr_node);
1167 if (ret) {
1168 btrfs_release_delayed_node(curr_node);
1169 curr_node = NULL;
1170 btrfs_abort_transaction(trans, ret);
1171 break;
1172 }
1173
1174 prev_node = curr_node;
1175 curr_node = btrfs_next_delayed_node(curr_node);
1176 btrfs_release_delayed_node(prev_node);
1177 }
1178
1179 if (curr_node)
1180 btrfs_release_delayed_node(curr_node);
1181 btrfs_free_path(path);
1182 trans->block_rsv = block_rsv;
1183
1184 return ret;
1185 }
1186
btrfs_run_delayed_items(struct btrfs_trans_handle * trans,struct btrfs_root * root)1187 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1188 struct btrfs_root *root)
1189 {
1190 return __btrfs_run_delayed_items(trans, root, -1);
1191 }
1192
btrfs_run_delayed_items_nr(struct btrfs_trans_handle * trans,struct btrfs_root * root,int nr)1193 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1194 struct btrfs_root *root, int nr)
1195 {
1196 return __btrfs_run_delayed_items(trans, root, nr);
1197 }
1198
btrfs_commit_inode_delayed_items(struct btrfs_trans_handle * trans,struct inode * inode)1199 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1200 struct inode *inode)
1201 {
1202 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1203 struct btrfs_path *path;
1204 struct btrfs_block_rsv *block_rsv;
1205 int ret;
1206
1207 if (!delayed_node)
1208 return 0;
1209
1210 mutex_lock(&delayed_node->mutex);
1211 if (!delayed_node->count) {
1212 mutex_unlock(&delayed_node->mutex);
1213 btrfs_release_delayed_node(delayed_node);
1214 return 0;
1215 }
1216 mutex_unlock(&delayed_node->mutex);
1217
1218 path = btrfs_alloc_path();
1219 if (!path) {
1220 btrfs_release_delayed_node(delayed_node);
1221 return -ENOMEM;
1222 }
1223 path->leave_spinning = 1;
1224
1225 block_rsv = trans->block_rsv;
1226 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1227
1228 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1229
1230 btrfs_release_delayed_node(delayed_node);
1231 btrfs_free_path(path);
1232 trans->block_rsv = block_rsv;
1233
1234 return ret;
1235 }
1236
btrfs_commit_inode_delayed_inode(struct inode * inode)1237 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1238 {
1239 struct btrfs_trans_handle *trans;
1240 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1241 struct btrfs_path *path;
1242 struct btrfs_block_rsv *block_rsv;
1243 int ret;
1244
1245 if (!delayed_node)
1246 return 0;
1247
1248 mutex_lock(&delayed_node->mutex);
1249 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1250 mutex_unlock(&delayed_node->mutex);
1251 btrfs_release_delayed_node(delayed_node);
1252 return 0;
1253 }
1254 mutex_unlock(&delayed_node->mutex);
1255
1256 trans = btrfs_join_transaction(delayed_node->root);
1257 if (IS_ERR(trans)) {
1258 ret = PTR_ERR(trans);
1259 goto out;
1260 }
1261
1262 path = btrfs_alloc_path();
1263 if (!path) {
1264 ret = -ENOMEM;
1265 goto trans_out;
1266 }
1267 path->leave_spinning = 1;
1268
1269 block_rsv = trans->block_rsv;
1270 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1271
1272 mutex_lock(&delayed_node->mutex);
1273 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1274 ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1275 path, delayed_node);
1276 else
1277 ret = 0;
1278 mutex_unlock(&delayed_node->mutex);
1279
1280 btrfs_free_path(path);
1281 trans->block_rsv = block_rsv;
1282 trans_out:
1283 btrfs_end_transaction(trans, delayed_node->root);
1284 btrfs_btree_balance_dirty(delayed_node->root);
1285 out:
1286 btrfs_release_delayed_node(delayed_node);
1287
1288 return ret;
1289 }
1290
btrfs_remove_delayed_node(struct inode * inode)1291 void btrfs_remove_delayed_node(struct inode *inode)
1292 {
1293 struct btrfs_delayed_node *delayed_node;
1294
1295 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1296 if (!delayed_node)
1297 return;
1298
1299 BTRFS_I(inode)->delayed_node = NULL;
1300 btrfs_release_delayed_node(delayed_node);
1301 }
1302
1303 struct btrfs_async_delayed_work {
1304 struct btrfs_delayed_root *delayed_root;
1305 int nr;
1306 struct btrfs_work work;
1307 };
1308
btrfs_async_run_delayed_root(struct btrfs_work * work)1309 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1310 {
1311 struct btrfs_async_delayed_work *async_work;
1312 struct btrfs_delayed_root *delayed_root;
1313 struct btrfs_trans_handle *trans;
1314 struct btrfs_path *path;
1315 struct btrfs_delayed_node *delayed_node = NULL;
1316 struct btrfs_root *root;
1317 struct btrfs_block_rsv *block_rsv;
1318 int total_done = 0;
1319
1320 async_work = container_of(work, struct btrfs_async_delayed_work, work);
1321 delayed_root = async_work->delayed_root;
1322
1323 path = btrfs_alloc_path();
1324 if (!path)
1325 goto out;
1326
1327 again:
1328 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1329 goto free_path;
1330
1331 delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1332 if (!delayed_node)
1333 goto free_path;
1334
1335 path->leave_spinning = 1;
1336 root = delayed_node->root;
1337
1338 trans = btrfs_join_transaction(root);
1339 if (IS_ERR(trans))
1340 goto release_path;
1341
1342 block_rsv = trans->block_rsv;
1343 trans->block_rsv = &root->fs_info->delayed_block_rsv;
1344
1345 __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1346
1347 trans->block_rsv = block_rsv;
1348 btrfs_end_transaction(trans, root);
1349 btrfs_btree_balance_dirty_nodelay(root);
1350
1351 release_path:
1352 btrfs_release_path(path);
1353 total_done++;
1354
1355 btrfs_release_prepared_delayed_node(delayed_node);
1356 if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
1357 total_done < async_work->nr)
1358 goto again;
1359
1360 free_path:
1361 btrfs_free_path(path);
1362 out:
1363 wake_up(&delayed_root->wait);
1364 kfree(async_work);
1365 }
1366
1367
btrfs_wq_run_delayed_node(struct btrfs_delayed_root * delayed_root,struct btrfs_fs_info * fs_info,int nr)1368 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1369 struct btrfs_fs_info *fs_info, int nr)
1370 {
1371 struct btrfs_async_delayed_work *async_work;
1372
1373 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
1374 btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1375 return 0;
1376
1377 async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1378 if (!async_work)
1379 return -ENOMEM;
1380
1381 async_work->delayed_root = delayed_root;
1382 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1383 btrfs_async_run_delayed_root, NULL, NULL);
1384 async_work->nr = nr;
1385
1386 btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1387 return 0;
1388 }
1389
btrfs_assert_delayed_root_empty(struct btrfs_root * root)1390 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1391 {
1392 struct btrfs_delayed_root *delayed_root;
1393 delayed_root = btrfs_get_delayed_root(root);
1394 WARN_ON(btrfs_first_delayed_node(delayed_root));
1395 }
1396
could_end_wait(struct btrfs_delayed_root * delayed_root,int seq)1397 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1398 {
1399 int val = atomic_read(&delayed_root->items_seq);
1400
1401 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1402 return 1;
1403
1404 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1405 return 1;
1406
1407 return 0;
1408 }
1409
btrfs_balance_delayed_items(struct btrfs_root * root)1410 void btrfs_balance_delayed_items(struct btrfs_root *root)
1411 {
1412 struct btrfs_delayed_root *delayed_root;
1413 struct btrfs_fs_info *fs_info = root->fs_info;
1414
1415 delayed_root = btrfs_get_delayed_root(root);
1416
1417 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1418 return;
1419
1420 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1421 int seq;
1422 int ret;
1423
1424 seq = atomic_read(&delayed_root->items_seq);
1425
1426 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1427 if (ret)
1428 return;
1429
1430 wait_event_interruptible(delayed_root->wait,
1431 could_end_wait(delayed_root, seq));
1432 return;
1433 }
1434
1435 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1436 }
1437
1438 /* Will return 0 or -ENOMEM */
btrfs_insert_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_root * root,const char * name,int name_len,struct inode * dir,struct btrfs_disk_key * disk_key,u8 type,u64 index)1439 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1440 struct btrfs_root *root, const char *name,
1441 int name_len, struct inode *dir,
1442 struct btrfs_disk_key *disk_key, u8 type,
1443 u64 index)
1444 {
1445 struct btrfs_delayed_node *delayed_node;
1446 struct btrfs_delayed_item *delayed_item;
1447 struct btrfs_dir_item *dir_item;
1448 int ret;
1449
1450 delayed_node = btrfs_get_or_create_delayed_node(dir);
1451 if (IS_ERR(delayed_node))
1452 return PTR_ERR(delayed_node);
1453
1454 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1455 if (!delayed_item) {
1456 ret = -ENOMEM;
1457 goto release_node;
1458 }
1459
1460 delayed_item->key.objectid = btrfs_ino(dir);
1461 delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1462 delayed_item->key.offset = index;
1463
1464 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1465 dir_item->location = *disk_key;
1466 btrfs_set_stack_dir_transid(dir_item, trans->transid);
1467 btrfs_set_stack_dir_data_len(dir_item, 0);
1468 btrfs_set_stack_dir_name_len(dir_item, name_len);
1469 btrfs_set_stack_dir_type(dir_item, type);
1470 memcpy((char *)(dir_item + 1), name, name_len);
1471
1472 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1473 /*
1474 * we have reserved enough space when we start a new transaction,
1475 * so reserving metadata failure is impossible
1476 */
1477 BUG_ON(ret);
1478
1479
1480 mutex_lock(&delayed_node->mutex);
1481 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1482 if (unlikely(ret)) {
1483 btrfs_err(root->fs_info,
1484 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1485 name_len, name, delayed_node->root->objectid,
1486 delayed_node->inode_id, ret);
1487 BUG();
1488 }
1489 mutex_unlock(&delayed_node->mutex);
1490
1491 release_node:
1492 btrfs_release_delayed_node(delayed_node);
1493 return ret;
1494 }
1495
btrfs_delete_delayed_insertion_item(struct btrfs_root * root,struct btrfs_delayed_node * node,struct btrfs_key * key)1496 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1497 struct btrfs_delayed_node *node,
1498 struct btrfs_key *key)
1499 {
1500 struct btrfs_delayed_item *item;
1501
1502 mutex_lock(&node->mutex);
1503 item = __btrfs_lookup_delayed_insertion_item(node, key);
1504 if (!item) {
1505 mutex_unlock(&node->mutex);
1506 return 1;
1507 }
1508
1509 btrfs_delayed_item_release_metadata(root, item);
1510 btrfs_release_delayed_item(item);
1511 mutex_unlock(&node->mutex);
1512 return 0;
1513 }
1514
btrfs_delete_delayed_dir_index(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * dir,u64 index)1515 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1516 struct btrfs_root *root, struct inode *dir,
1517 u64 index)
1518 {
1519 struct btrfs_delayed_node *node;
1520 struct btrfs_delayed_item *item;
1521 struct btrfs_key item_key;
1522 int ret;
1523
1524 node = btrfs_get_or_create_delayed_node(dir);
1525 if (IS_ERR(node))
1526 return PTR_ERR(node);
1527
1528 item_key.objectid = btrfs_ino(dir);
1529 item_key.type = BTRFS_DIR_INDEX_KEY;
1530 item_key.offset = index;
1531
1532 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1533 if (!ret)
1534 goto end;
1535
1536 item = btrfs_alloc_delayed_item(0);
1537 if (!item) {
1538 ret = -ENOMEM;
1539 goto end;
1540 }
1541
1542 item->key = item_key;
1543
1544 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1545 /*
1546 * we have reserved enough space when we start a new transaction,
1547 * so reserving metadata failure is impossible.
1548 */
1549 BUG_ON(ret);
1550
1551 mutex_lock(&node->mutex);
1552 ret = __btrfs_add_delayed_deletion_item(node, item);
1553 if (unlikely(ret)) {
1554 btrfs_err(root->fs_info,
1555 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1556 index, node->root->objectid, node->inode_id, ret);
1557 BUG();
1558 }
1559 mutex_unlock(&node->mutex);
1560 end:
1561 btrfs_release_delayed_node(node);
1562 return ret;
1563 }
1564
btrfs_inode_delayed_dir_index_count(struct inode * inode)1565 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1566 {
1567 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1568
1569 if (!delayed_node)
1570 return -ENOENT;
1571
1572 /*
1573 * Since we have held i_mutex of this directory, it is impossible that
1574 * a new directory index is added into the delayed node and index_cnt
1575 * is updated now. So we needn't lock the delayed node.
1576 */
1577 if (!delayed_node->index_cnt) {
1578 btrfs_release_delayed_node(delayed_node);
1579 return -EINVAL;
1580 }
1581
1582 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1583 btrfs_release_delayed_node(delayed_node);
1584 return 0;
1585 }
1586
btrfs_readdir_get_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1587 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1588 struct list_head *ins_list,
1589 struct list_head *del_list)
1590 {
1591 struct btrfs_delayed_node *delayed_node;
1592 struct btrfs_delayed_item *item;
1593
1594 delayed_node = btrfs_get_delayed_node(inode);
1595 if (!delayed_node)
1596 return false;
1597
1598 /*
1599 * We can only do one readdir with delayed items at a time because of
1600 * item->readdir_list.
1601 */
1602 inode_unlock_shared(inode);
1603 inode_lock(inode);
1604
1605 mutex_lock(&delayed_node->mutex);
1606 item = __btrfs_first_delayed_insertion_item(delayed_node);
1607 while (item) {
1608 atomic_inc(&item->refs);
1609 list_add_tail(&item->readdir_list, ins_list);
1610 item = __btrfs_next_delayed_item(item);
1611 }
1612
1613 item = __btrfs_first_delayed_deletion_item(delayed_node);
1614 while (item) {
1615 atomic_inc(&item->refs);
1616 list_add_tail(&item->readdir_list, del_list);
1617 item = __btrfs_next_delayed_item(item);
1618 }
1619 mutex_unlock(&delayed_node->mutex);
1620 /*
1621 * This delayed node is still cached in the btrfs inode, so refs
1622 * must be > 1 now, and we needn't check it is going to be freed
1623 * or not.
1624 *
1625 * Besides that, this function is used to read dir, we do not
1626 * insert/delete delayed items in this period. So we also needn't
1627 * requeue or dequeue this delayed node.
1628 */
1629 atomic_dec(&delayed_node->refs);
1630
1631 return true;
1632 }
1633
btrfs_readdir_put_delayed_items(struct inode * inode,struct list_head * ins_list,struct list_head * del_list)1634 void btrfs_readdir_put_delayed_items(struct inode *inode,
1635 struct list_head *ins_list,
1636 struct list_head *del_list)
1637 {
1638 struct btrfs_delayed_item *curr, *next;
1639
1640 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1641 list_del(&curr->readdir_list);
1642 if (atomic_dec_and_test(&curr->refs))
1643 kfree(curr);
1644 }
1645
1646 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1647 list_del(&curr->readdir_list);
1648 if (atomic_dec_and_test(&curr->refs))
1649 kfree(curr);
1650 }
1651
1652 /*
1653 * The VFS is going to do up_read(), so we need to downgrade back to a
1654 * read lock.
1655 */
1656 downgrade_write(&inode->i_rwsem);
1657 }
1658
btrfs_should_delete_dir_index(struct list_head * del_list,u64 index)1659 int btrfs_should_delete_dir_index(struct list_head *del_list,
1660 u64 index)
1661 {
1662 struct btrfs_delayed_item *curr, *next;
1663 int ret;
1664
1665 if (list_empty(del_list))
1666 return 0;
1667
1668 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1669 if (curr->key.offset > index)
1670 break;
1671
1672 list_del(&curr->readdir_list);
1673 ret = (curr->key.offset == index);
1674
1675 if (atomic_dec_and_test(&curr->refs))
1676 kfree(curr);
1677
1678 if (ret)
1679 return 1;
1680 else
1681 continue;
1682 }
1683 return 0;
1684 }
1685
1686 /*
1687 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1688 *
1689 */
btrfs_readdir_delayed_dir_index(struct dir_context * ctx,struct list_head * ins_list,bool * emitted)1690 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1691 struct list_head *ins_list, bool *emitted)
1692 {
1693 struct btrfs_dir_item *di;
1694 struct btrfs_delayed_item *curr, *next;
1695 struct btrfs_key location;
1696 char *name;
1697 int name_len;
1698 int over = 0;
1699 unsigned char d_type;
1700
1701 if (list_empty(ins_list))
1702 return 0;
1703
1704 /*
1705 * Changing the data of the delayed item is impossible. So
1706 * we needn't lock them. And we have held i_mutex of the
1707 * directory, nobody can delete any directory indexes now.
1708 */
1709 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1710 list_del(&curr->readdir_list);
1711
1712 if (curr->key.offset < ctx->pos) {
1713 if (atomic_dec_and_test(&curr->refs))
1714 kfree(curr);
1715 continue;
1716 }
1717
1718 ctx->pos = curr->key.offset;
1719
1720 di = (struct btrfs_dir_item *)curr->data;
1721 name = (char *)(di + 1);
1722 name_len = btrfs_stack_dir_name_len(di);
1723
1724 d_type = btrfs_filetype_table[di->type];
1725 btrfs_disk_key_to_cpu(&location, &di->location);
1726
1727 over = !dir_emit(ctx, name, name_len,
1728 location.objectid, d_type);
1729
1730 if (atomic_dec_and_test(&curr->refs))
1731 kfree(curr);
1732
1733 if (over)
1734 return 1;
1735 *emitted = true;
1736 }
1737 return 0;
1738 }
1739
fill_stack_inode_item(struct btrfs_trans_handle * trans,struct btrfs_inode_item * inode_item,struct inode * inode)1740 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1741 struct btrfs_inode_item *inode_item,
1742 struct inode *inode)
1743 {
1744 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1745 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1746 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1747 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1748 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1749 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1750 btrfs_set_stack_inode_generation(inode_item,
1751 BTRFS_I(inode)->generation);
1752 btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1753 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1754 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1755 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1756 btrfs_set_stack_inode_block_group(inode_item, 0);
1757
1758 btrfs_set_stack_timespec_sec(&inode_item->atime,
1759 inode->i_atime.tv_sec);
1760 btrfs_set_stack_timespec_nsec(&inode_item->atime,
1761 inode->i_atime.tv_nsec);
1762
1763 btrfs_set_stack_timespec_sec(&inode_item->mtime,
1764 inode->i_mtime.tv_sec);
1765 btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1766 inode->i_mtime.tv_nsec);
1767
1768 btrfs_set_stack_timespec_sec(&inode_item->ctime,
1769 inode->i_ctime.tv_sec);
1770 btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1771 inode->i_ctime.tv_nsec);
1772
1773 btrfs_set_stack_timespec_sec(&inode_item->otime,
1774 BTRFS_I(inode)->i_otime.tv_sec);
1775 btrfs_set_stack_timespec_nsec(&inode_item->otime,
1776 BTRFS_I(inode)->i_otime.tv_nsec);
1777 }
1778
btrfs_fill_inode(struct inode * inode,u32 * rdev)1779 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1780 {
1781 struct btrfs_delayed_node *delayed_node;
1782 struct btrfs_inode_item *inode_item;
1783
1784 delayed_node = btrfs_get_delayed_node(inode);
1785 if (!delayed_node)
1786 return -ENOENT;
1787
1788 mutex_lock(&delayed_node->mutex);
1789 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1790 mutex_unlock(&delayed_node->mutex);
1791 btrfs_release_delayed_node(delayed_node);
1792 return -ENOENT;
1793 }
1794
1795 inode_item = &delayed_node->inode_item;
1796
1797 i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1798 i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1799 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1800 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1801 set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1802 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1803 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1804 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1805
1806 inode->i_version = btrfs_stack_inode_sequence(inode_item);
1807 inode->i_rdev = 0;
1808 *rdev = btrfs_stack_inode_rdev(inode_item);
1809 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1810
1811 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1812 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1813
1814 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1815 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1816
1817 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1818 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1819
1820 BTRFS_I(inode)->i_otime.tv_sec =
1821 btrfs_stack_timespec_sec(&inode_item->otime);
1822 BTRFS_I(inode)->i_otime.tv_nsec =
1823 btrfs_stack_timespec_nsec(&inode_item->otime);
1824
1825 inode->i_generation = BTRFS_I(inode)->generation;
1826 BTRFS_I(inode)->index_cnt = (u64)-1;
1827
1828 mutex_unlock(&delayed_node->mutex);
1829 btrfs_release_delayed_node(delayed_node);
1830 return 0;
1831 }
1832
btrfs_delayed_update_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct inode * inode)1833 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1834 struct btrfs_root *root, struct inode *inode)
1835 {
1836 struct btrfs_delayed_node *delayed_node;
1837 int ret = 0;
1838
1839 delayed_node = btrfs_get_or_create_delayed_node(inode);
1840 if (IS_ERR(delayed_node))
1841 return PTR_ERR(delayed_node);
1842
1843 mutex_lock(&delayed_node->mutex);
1844 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1845 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1846 goto release_node;
1847 }
1848
1849 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1850 delayed_node);
1851 if (ret)
1852 goto release_node;
1853
1854 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1855 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1856 delayed_node->count++;
1857 atomic_inc(&root->fs_info->delayed_root->items);
1858 release_node:
1859 mutex_unlock(&delayed_node->mutex);
1860 btrfs_release_delayed_node(delayed_node);
1861 return ret;
1862 }
1863
btrfs_delayed_delete_inode_ref(struct inode * inode)1864 int btrfs_delayed_delete_inode_ref(struct inode *inode)
1865 {
1866 struct btrfs_delayed_node *delayed_node;
1867
1868 /*
1869 * we don't do delayed inode updates during log recovery because it
1870 * leads to enospc problems. This means we also can't do
1871 * delayed inode refs
1872 */
1873 if (test_bit(BTRFS_FS_LOG_RECOVERING,
1874 &BTRFS_I(inode)->root->fs_info->flags))
1875 return -EAGAIN;
1876
1877 delayed_node = btrfs_get_or_create_delayed_node(inode);
1878 if (IS_ERR(delayed_node))
1879 return PTR_ERR(delayed_node);
1880
1881 /*
1882 * We don't reserve space for inode ref deletion is because:
1883 * - We ONLY do async inode ref deletion for the inode who has only
1884 * one link(i_nlink == 1), it means there is only one inode ref.
1885 * And in most case, the inode ref and the inode item are in the
1886 * same leaf, and we will deal with them at the same time.
1887 * Since we are sure we will reserve the space for the inode item,
1888 * it is unnecessary to reserve space for inode ref deletion.
1889 * - If the inode ref and the inode item are not in the same leaf,
1890 * We also needn't worry about enospc problem, because we reserve
1891 * much more space for the inode update than it needs.
1892 * - At the worst, we can steal some space from the global reservation.
1893 * It is very rare.
1894 */
1895 mutex_lock(&delayed_node->mutex);
1896 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1897 goto release_node;
1898
1899 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1900 delayed_node->count++;
1901 atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
1902 release_node:
1903 mutex_unlock(&delayed_node->mutex);
1904 btrfs_release_delayed_node(delayed_node);
1905 return 0;
1906 }
1907
__btrfs_kill_delayed_node(struct btrfs_delayed_node * delayed_node)1908 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1909 {
1910 struct btrfs_root *root = delayed_node->root;
1911 struct btrfs_delayed_item *curr_item, *prev_item;
1912
1913 mutex_lock(&delayed_node->mutex);
1914 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1915 while (curr_item) {
1916 btrfs_delayed_item_release_metadata(root, curr_item);
1917 prev_item = curr_item;
1918 curr_item = __btrfs_next_delayed_item(prev_item);
1919 btrfs_release_delayed_item(prev_item);
1920 }
1921
1922 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1923 while (curr_item) {
1924 btrfs_delayed_item_release_metadata(root, curr_item);
1925 prev_item = curr_item;
1926 curr_item = __btrfs_next_delayed_item(prev_item);
1927 btrfs_release_delayed_item(prev_item);
1928 }
1929
1930 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1931 btrfs_release_delayed_iref(delayed_node);
1932
1933 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1934 btrfs_delayed_inode_release_metadata(root, delayed_node);
1935 btrfs_release_delayed_inode(delayed_node);
1936 }
1937 mutex_unlock(&delayed_node->mutex);
1938 }
1939
btrfs_kill_delayed_inode_items(struct inode * inode)1940 void btrfs_kill_delayed_inode_items(struct inode *inode)
1941 {
1942 struct btrfs_delayed_node *delayed_node;
1943
1944 delayed_node = btrfs_get_delayed_node(inode);
1945 if (!delayed_node)
1946 return;
1947
1948 __btrfs_kill_delayed_node(delayed_node);
1949 btrfs_release_delayed_node(delayed_node);
1950 }
1951
btrfs_kill_all_delayed_nodes(struct btrfs_root * root)1952 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1953 {
1954 u64 inode_id = 0;
1955 struct btrfs_delayed_node *delayed_nodes[8];
1956 int i, n;
1957
1958 while (1) {
1959 spin_lock(&root->inode_lock);
1960 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1961 (void **)delayed_nodes, inode_id,
1962 ARRAY_SIZE(delayed_nodes));
1963 if (!n) {
1964 spin_unlock(&root->inode_lock);
1965 break;
1966 }
1967
1968 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1969
1970 for (i = 0; i < n; i++)
1971 atomic_inc(&delayed_nodes[i]->refs);
1972 spin_unlock(&root->inode_lock);
1973
1974 for (i = 0; i < n; i++) {
1975 __btrfs_kill_delayed_node(delayed_nodes[i]);
1976 btrfs_release_delayed_node(delayed_nodes[i]);
1977 }
1978 }
1979 }
1980
btrfs_destroy_delayed_inodes(struct btrfs_root * root)1981 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1982 {
1983 struct btrfs_delayed_root *delayed_root;
1984 struct btrfs_delayed_node *curr_node, *prev_node;
1985
1986 delayed_root = btrfs_get_delayed_root(root);
1987
1988 curr_node = btrfs_first_delayed_node(delayed_root);
1989 while (curr_node) {
1990 __btrfs_kill_delayed_node(curr_node);
1991
1992 prev_node = curr_node;
1993 curr_node = btrfs_next_delayed_node(curr_node);
1994 btrfs_release_delayed_node(prev_node);
1995 }
1996 }
1997
1998