• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44 
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 	[BTRFS_RAID_RAID10] = {
47 		.sub_stripes	= 2,
48 		.dev_stripes	= 1,
49 		.devs_max	= 0,	/* 0 == as many as possible */
50 		.devs_min	= 4,
51 		.tolerated_failures = 1,
52 		.devs_increment	= 2,
53 		.ncopies	= 2,
54 	},
55 	[BTRFS_RAID_RAID1] = {
56 		.sub_stripes	= 1,
57 		.dev_stripes	= 1,
58 		.devs_max	= 2,
59 		.devs_min	= 2,
60 		.tolerated_failures = 1,
61 		.devs_increment	= 2,
62 		.ncopies	= 2,
63 	},
64 	[BTRFS_RAID_DUP] = {
65 		.sub_stripes	= 1,
66 		.dev_stripes	= 2,
67 		.devs_max	= 1,
68 		.devs_min	= 1,
69 		.tolerated_failures = 0,
70 		.devs_increment	= 1,
71 		.ncopies	= 2,
72 	},
73 	[BTRFS_RAID_RAID0] = {
74 		.sub_stripes	= 1,
75 		.dev_stripes	= 1,
76 		.devs_max	= 0,
77 		.devs_min	= 2,
78 		.tolerated_failures = 0,
79 		.devs_increment	= 1,
80 		.ncopies	= 1,
81 	},
82 	[BTRFS_RAID_SINGLE] = {
83 		.sub_stripes	= 1,
84 		.dev_stripes	= 1,
85 		.devs_max	= 1,
86 		.devs_min	= 1,
87 		.tolerated_failures = 0,
88 		.devs_increment	= 1,
89 		.ncopies	= 1,
90 	},
91 	[BTRFS_RAID_RAID5] = {
92 		.sub_stripes	= 1,
93 		.dev_stripes	= 1,
94 		.devs_max	= 0,
95 		.devs_min	= 2,
96 		.tolerated_failures = 1,
97 		.devs_increment	= 1,
98 		.ncopies	= 2,
99 	},
100 	[BTRFS_RAID_RAID6] = {
101 		.sub_stripes	= 1,
102 		.dev_stripes	= 1,
103 		.devs_max	= 0,
104 		.devs_min	= 3,
105 		.tolerated_failures = 2,
106 		.devs_increment	= 1,
107 		.ncopies	= 3,
108 	},
109 };
110 
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 	[BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 	[BTRFS_RAID_RAID1]  = BTRFS_BLOCK_GROUP_RAID1,
114 	[BTRFS_RAID_DUP]    = BTRFS_BLOCK_GROUP_DUP,
115 	[BTRFS_RAID_RAID0]  = BTRFS_BLOCK_GROUP_RAID0,
116 	[BTRFS_RAID_SINGLE] = 0,
117 	[BTRFS_RAID_RAID5]  = BTRFS_BLOCK_GROUP_RAID5,
118 	[BTRFS_RAID_RAID6]  = BTRFS_BLOCK_GROUP_RAID6,
119 };
120 
121 /*
122  * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123  * condition is not met. Zero means there's no corresponding
124  * BTRFS_ERROR_DEV_*_NOT_MET value.
125  */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 	[BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 	[BTRFS_RAID_RAID1]  = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 	[BTRFS_RAID_DUP]    = 0,
130 	[BTRFS_RAID_RAID0]  = 0,
131 	[BTRFS_RAID_SINGLE] = 0,
132 	[BTRFS_RAID_RAID5]  = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 	[BTRFS_RAID_RAID6]  = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135 
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 				struct btrfs_root *root,
138 				struct btrfs_device *device);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143 
144 DEFINE_MUTEX(uuid_mutex);
145 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)146 struct list_head *btrfs_get_fs_uuids(void)
147 {
148 	return &fs_uuids;
149 }
150 
__alloc_fs_devices(void)151 static struct btrfs_fs_devices *__alloc_fs_devices(void)
152 {
153 	struct btrfs_fs_devices *fs_devs;
154 
155 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
156 	if (!fs_devs)
157 		return ERR_PTR(-ENOMEM);
158 
159 	mutex_init(&fs_devs->device_list_mutex);
160 
161 	INIT_LIST_HEAD(&fs_devs->devices);
162 	INIT_LIST_HEAD(&fs_devs->resized_devices);
163 	INIT_LIST_HEAD(&fs_devs->alloc_list);
164 	INIT_LIST_HEAD(&fs_devs->list);
165 
166 	return fs_devs;
167 }
168 
169 /**
170  * alloc_fs_devices - allocate struct btrfs_fs_devices
171  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
172  *		generated.
173  *
174  * Return: a pointer to a new &struct btrfs_fs_devices on success;
175  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
176  * can be destroyed with kfree() right away.
177  */
alloc_fs_devices(const u8 * fsid)178 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179 {
180 	struct btrfs_fs_devices *fs_devs;
181 
182 	fs_devs = __alloc_fs_devices();
183 	if (IS_ERR(fs_devs))
184 		return fs_devs;
185 
186 	if (fsid)
187 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188 	else
189 		generate_random_uuid(fs_devs->fsid);
190 
191 	return fs_devs;
192 }
193 
free_fs_devices(struct btrfs_fs_devices * fs_devices)194 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195 {
196 	struct btrfs_device *device;
197 	WARN_ON(fs_devices->opened);
198 	while (!list_empty(&fs_devices->devices)) {
199 		device = list_entry(fs_devices->devices.next,
200 				    struct btrfs_device, dev_list);
201 		list_del(&device->dev_list);
202 		rcu_string_free(device->name);
203 		kfree(device);
204 	}
205 	kfree(fs_devices);
206 }
207 
btrfs_kobject_uevent(struct block_device * bdev,enum kobject_action action)208 static void btrfs_kobject_uevent(struct block_device *bdev,
209 				 enum kobject_action action)
210 {
211 	int ret;
212 
213 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214 	if (ret)
215 		pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
216 			action,
217 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218 			&disk_to_dev(bdev->bd_disk)->kobj);
219 }
220 
btrfs_cleanup_fs_uuids(void)221 void btrfs_cleanup_fs_uuids(void)
222 {
223 	struct btrfs_fs_devices *fs_devices;
224 
225 	while (!list_empty(&fs_uuids)) {
226 		fs_devices = list_entry(fs_uuids.next,
227 					struct btrfs_fs_devices, list);
228 		list_del(&fs_devices->list);
229 		free_fs_devices(fs_devices);
230 	}
231 }
232 
__alloc_device(void)233 static struct btrfs_device *__alloc_device(void)
234 {
235 	struct btrfs_device *dev;
236 
237 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
238 	if (!dev)
239 		return ERR_PTR(-ENOMEM);
240 
241 	INIT_LIST_HEAD(&dev->dev_list);
242 	INIT_LIST_HEAD(&dev->dev_alloc_list);
243 	INIT_LIST_HEAD(&dev->resized_list);
244 
245 	spin_lock_init(&dev->io_lock);
246 
247 	spin_lock_init(&dev->reada_lock);
248 	atomic_set(&dev->reada_in_flight, 0);
249 	atomic_set(&dev->dev_stats_ccnt, 0);
250 	btrfs_device_data_ordered_init(dev);
251 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253 
254 	return dev;
255 }
256 
__find_device(struct list_head * head,u64 devid,u8 * uuid)257 static noinline struct btrfs_device *__find_device(struct list_head *head,
258 						   u64 devid, u8 *uuid)
259 {
260 	struct btrfs_device *dev;
261 
262 	list_for_each_entry(dev, head, dev_list) {
263 		if (dev->devid == devid &&
264 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
265 			return dev;
266 		}
267 	}
268 	return NULL;
269 }
270 
find_fsid(u8 * fsid)271 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
272 {
273 	struct btrfs_fs_devices *fs_devices;
274 
275 	list_for_each_entry(fs_devices, &fs_uuids, list) {
276 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277 			return fs_devices;
278 	}
279 	return NULL;
280 }
281 
282 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct buffer_head ** bh)283 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284 		      int flush, struct block_device **bdev,
285 		      struct buffer_head **bh)
286 {
287 	int ret;
288 
289 	*bdev = blkdev_get_by_path(device_path, flags, holder);
290 
291 	if (IS_ERR(*bdev)) {
292 		ret = PTR_ERR(*bdev);
293 		goto error;
294 	}
295 
296 	if (flush)
297 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298 	ret = set_blocksize(*bdev, 4096);
299 	if (ret) {
300 		blkdev_put(*bdev, flags);
301 		goto error;
302 	}
303 	invalidate_bdev(*bdev);
304 	*bh = btrfs_read_dev_super(*bdev);
305 	if (IS_ERR(*bh)) {
306 		ret = PTR_ERR(*bh);
307 		blkdev_put(*bdev, flags);
308 		goto error;
309 	}
310 
311 	return 0;
312 
313 error:
314 	*bdev = NULL;
315 	*bh = NULL;
316 	return ret;
317 }
318 
requeue_list(struct btrfs_pending_bios * pending_bios,struct bio * head,struct bio * tail)319 static void requeue_list(struct btrfs_pending_bios *pending_bios,
320 			struct bio *head, struct bio *tail)
321 {
322 
323 	struct bio *old_head;
324 
325 	old_head = pending_bios->head;
326 	pending_bios->head = head;
327 	if (pending_bios->tail)
328 		tail->bi_next = old_head;
329 	else
330 		pending_bios->tail = tail;
331 }
332 
333 /*
334  * we try to collect pending bios for a device so we don't get a large
335  * number of procs sending bios down to the same device.  This greatly
336  * improves the schedulers ability to collect and merge the bios.
337  *
338  * But, it also turns into a long list of bios to process and that is sure
339  * to eventually make the worker thread block.  The solution here is to
340  * make some progress and then put this work struct back at the end of
341  * the list if the block device is congested.  This way, multiple devices
342  * can make progress from a single worker thread.
343  */
run_scheduled_bios(struct btrfs_device * device)344 static noinline void run_scheduled_bios(struct btrfs_device *device)
345 {
346 	struct bio *pending;
347 	struct backing_dev_info *bdi;
348 	struct btrfs_fs_info *fs_info;
349 	struct btrfs_pending_bios *pending_bios;
350 	struct bio *tail;
351 	struct bio *cur;
352 	int again = 0;
353 	unsigned long num_run;
354 	unsigned long batch_run = 0;
355 	unsigned long limit;
356 	unsigned long last_waited = 0;
357 	int force_reg = 0;
358 	int sync_pending = 0;
359 	struct blk_plug plug;
360 
361 	/*
362 	 * this function runs all the bios we've collected for
363 	 * a particular device.  We don't want to wander off to
364 	 * another device without first sending all of these down.
365 	 * So, setup a plug here and finish it off before we return
366 	 */
367 	blk_start_plug(&plug);
368 
369 	bdi = blk_get_backing_dev_info(device->bdev);
370 	fs_info = device->dev_root->fs_info;
371 	limit = btrfs_async_submit_limit(fs_info);
372 	limit = limit * 2 / 3;
373 
374 loop:
375 	spin_lock(&device->io_lock);
376 
377 loop_lock:
378 	num_run = 0;
379 
380 	/* take all the bios off the list at once and process them
381 	 * later on (without the lock held).  But, remember the
382 	 * tail and other pointers so the bios can be properly reinserted
383 	 * into the list if we hit congestion
384 	 */
385 	if (!force_reg && device->pending_sync_bios.head) {
386 		pending_bios = &device->pending_sync_bios;
387 		force_reg = 1;
388 	} else {
389 		pending_bios = &device->pending_bios;
390 		force_reg = 0;
391 	}
392 
393 	pending = pending_bios->head;
394 	tail = pending_bios->tail;
395 	WARN_ON(pending && !tail);
396 
397 	/*
398 	 * if pending was null this time around, no bios need processing
399 	 * at all and we can stop.  Otherwise it'll loop back up again
400 	 * and do an additional check so no bios are missed.
401 	 *
402 	 * device->running_pending is used to synchronize with the
403 	 * schedule_bio code.
404 	 */
405 	if (device->pending_sync_bios.head == NULL &&
406 	    device->pending_bios.head == NULL) {
407 		again = 0;
408 		device->running_pending = 0;
409 	} else {
410 		again = 1;
411 		device->running_pending = 1;
412 	}
413 
414 	pending_bios->head = NULL;
415 	pending_bios->tail = NULL;
416 
417 	spin_unlock(&device->io_lock);
418 
419 	while (pending) {
420 
421 		rmb();
422 		/* we want to work on both lists, but do more bios on the
423 		 * sync list than the regular list
424 		 */
425 		if ((num_run > 32 &&
426 		    pending_bios != &device->pending_sync_bios &&
427 		    device->pending_sync_bios.head) ||
428 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
429 		    device->pending_bios.head)) {
430 			spin_lock(&device->io_lock);
431 			requeue_list(pending_bios, pending, tail);
432 			goto loop_lock;
433 		}
434 
435 		cur = pending;
436 		pending = pending->bi_next;
437 		cur->bi_next = NULL;
438 
439 		/*
440 		 * atomic_dec_return implies a barrier for waitqueue_active
441 		 */
442 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
443 		    waitqueue_active(&fs_info->async_submit_wait))
444 			wake_up(&fs_info->async_submit_wait);
445 
446 		BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
447 
448 		/*
449 		 * if we're doing the sync list, record that our
450 		 * plug has some sync requests on it
451 		 *
452 		 * If we're doing the regular list and there are
453 		 * sync requests sitting around, unplug before
454 		 * we add more
455 		 */
456 		if (pending_bios == &device->pending_sync_bios) {
457 			sync_pending = 1;
458 		} else if (sync_pending) {
459 			blk_finish_plug(&plug);
460 			blk_start_plug(&plug);
461 			sync_pending = 0;
462 		}
463 
464 		btrfsic_submit_bio(cur);
465 		num_run++;
466 		batch_run++;
467 
468 		cond_resched();
469 
470 		/*
471 		 * we made progress, there is more work to do and the bdi
472 		 * is now congested.  Back off and let other work structs
473 		 * run instead
474 		 */
475 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
476 		    fs_info->fs_devices->open_devices > 1) {
477 			struct io_context *ioc;
478 
479 			ioc = current->io_context;
480 
481 			/*
482 			 * the main goal here is that we don't want to
483 			 * block if we're going to be able to submit
484 			 * more requests without blocking.
485 			 *
486 			 * This code does two great things, it pokes into
487 			 * the elevator code from a filesystem _and_
488 			 * it makes assumptions about how batching works.
489 			 */
490 			if (ioc && ioc->nr_batch_requests > 0 &&
491 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
492 			    (last_waited == 0 ||
493 			     ioc->last_waited == last_waited)) {
494 				/*
495 				 * we want to go through our batch of
496 				 * requests and stop.  So, we copy out
497 				 * the ioc->last_waited time and test
498 				 * against it before looping
499 				 */
500 				last_waited = ioc->last_waited;
501 				cond_resched();
502 				continue;
503 			}
504 			spin_lock(&device->io_lock);
505 			requeue_list(pending_bios, pending, tail);
506 			device->running_pending = 1;
507 
508 			spin_unlock(&device->io_lock);
509 			btrfs_queue_work(fs_info->submit_workers,
510 					 &device->work);
511 			goto done;
512 		}
513 		/* unplug every 64 requests just for good measure */
514 		if (batch_run % 64 == 0) {
515 			blk_finish_plug(&plug);
516 			blk_start_plug(&plug);
517 			sync_pending = 0;
518 		}
519 	}
520 
521 	cond_resched();
522 	if (again)
523 		goto loop;
524 
525 	spin_lock(&device->io_lock);
526 	if (device->pending_bios.head || device->pending_sync_bios.head)
527 		goto loop_lock;
528 	spin_unlock(&device->io_lock);
529 
530 done:
531 	blk_finish_plug(&plug);
532 }
533 
pending_bios_fn(struct btrfs_work * work)534 static void pending_bios_fn(struct btrfs_work *work)
535 {
536 	struct btrfs_device *device;
537 
538 	device = container_of(work, struct btrfs_device, work);
539 	run_scheduled_bios(device);
540 }
541 
542 
btrfs_free_stale_device(struct btrfs_device * cur_dev)543 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
544 {
545 	struct btrfs_fs_devices *fs_devs;
546 	struct btrfs_device *dev;
547 
548 	if (!cur_dev->name)
549 		return;
550 
551 	list_for_each_entry(fs_devs, &fs_uuids, list) {
552 		int del = 1;
553 
554 		if (fs_devs->opened)
555 			continue;
556 		if (fs_devs->seeding)
557 			continue;
558 
559 		list_for_each_entry(dev, &fs_devs->devices, dev_list) {
560 
561 			if (dev == cur_dev)
562 				continue;
563 			if (!dev->name)
564 				continue;
565 
566 			/*
567 			 * Todo: This won't be enough. What if the same device
568 			 * comes back (with new uuid and) with its mapper path?
569 			 * But for now, this does help as mostly an admin will
570 			 * either use mapper or non mapper path throughout.
571 			 */
572 			rcu_read_lock();
573 			del = strcmp(rcu_str_deref(dev->name),
574 						rcu_str_deref(cur_dev->name));
575 			rcu_read_unlock();
576 			if (!del)
577 				break;
578 		}
579 
580 		if (!del) {
581 			/* delete the stale device */
582 			if (fs_devs->num_devices == 1) {
583 				btrfs_sysfs_remove_fsid(fs_devs);
584 				list_del(&fs_devs->list);
585 				free_fs_devices(fs_devs);
586 				break;
587 			} else {
588 				fs_devs->num_devices--;
589 				list_del(&dev->dev_list);
590 				rcu_string_free(dev->name);
591 				kfree(dev);
592 			}
593 			break;
594 		}
595 	}
596 }
597 
598 /*
599  * Add new device to list of registered devices
600  *
601  * Returns:
602  * 1   - first time device is seen
603  * 0   - device already known
604  * < 0 - error
605  */
device_list_add(const char * path,struct btrfs_super_block * disk_super,u64 devid,struct btrfs_fs_devices ** fs_devices_ret)606 static noinline int device_list_add(const char *path,
607 			   struct btrfs_super_block *disk_super,
608 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
609 {
610 	struct btrfs_device *device;
611 	struct btrfs_fs_devices *fs_devices;
612 	struct rcu_string *name;
613 	int ret = 0;
614 	u64 found_transid = btrfs_super_generation(disk_super);
615 
616 	fs_devices = find_fsid(disk_super->fsid);
617 	if (!fs_devices) {
618 		fs_devices = alloc_fs_devices(disk_super->fsid);
619 		if (IS_ERR(fs_devices))
620 			return PTR_ERR(fs_devices);
621 
622 		list_add(&fs_devices->list, &fs_uuids);
623 
624 		device = NULL;
625 	} else {
626 		device = __find_device(&fs_devices->devices, devid,
627 				       disk_super->dev_item.uuid);
628 	}
629 
630 	if (!device) {
631 		if (fs_devices->opened)
632 			return -EBUSY;
633 
634 		device = btrfs_alloc_device(NULL, &devid,
635 					    disk_super->dev_item.uuid);
636 		if (IS_ERR(device)) {
637 			/* we can safely leave the fs_devices entry around */
638 			return PTR_ERR(device);
639 		}
640 
641 		name = rcu_string_strdup(path, GFP_NOFS);
642 		if (!name) {
643 			kfree(device);
644 			return -ENOMEM;
645 		}
646 		rcu_assign_pointer(device->name, name);
647 
648 		mutex_lock(&fs_devices->device_list_mutex);
649 		list_add_rcu(&device->dev_list, &fs_devices->devices);
650 		fs_devices->num_devices++;
651 		mutex_unlock(&fs_devices->device_list_mutex);
652 
653 		ret = 1;
654 		device->fs_devices = fs_devices;
655 	} else if (!device->name || strcmp(device->name->str, path)) {
656 		/*
657 		 * When FS is already mounted.
658 		 * 1. If you are here and if the device->name is NULL that
659 		 *    means this device was missing at time of FS mount.
660 		 * 2. If you are here and if the device->name is different
661 		 *    from 'path' that means either
662 		 *      a. The same device disappeared and reappeared with
663 		 *         different name. or
664 		 *      b. The missing-disk-which-was-replaced, has
665 		 *         reappeared now.
666 		 *
667 		 * We must allow 1 and 2a above. But 2b would be a spurious
668 		 * and unintentional.
669 		 *
670 		 * Further in case of 1 and 2a above, the disk at 'path'
671 		 * would have missed some transaction when it was away and
672 		 * in case of 2a the stale bdev has to be updated as well.
673 		 * 2b must not be allowed at all time.
674 		 */
675 
676 		/*
677 		 * For now, we do allow update to btrfs_fs_device through the
678 		 * btrfs dev scan cli after FS has been mounted.  We're still
679 		 * tracking a problem where systems fail mount by subvolume id
680 		 * when we reject replacement on a mounted FS.
681 		 */
682 		if (!fs_devices->opened && found_transid < device->generation) {
683 			/*
684 			 * That is if the FS is _not_ mounted and if you
685 			 * are here, that means there is more than one
686 			 * disk with same uuid and devid.We keep the one
687 			 * with larger generation number or the last-in if
688 			 * generation are equal.
689 			 */
690 			return -EEXIST;
691 		}
692 
693 		name = rcu_string_strdup(path, GFP_NOFS);
694 		if (!name)
695 			return -ENOMEM;
696 		rcu_string_free(device->name);
697 		rcu_assign_pointer(device->name, name);
698 		if (device->missing) {
699 			fs_devices->missing_devices--;
700 			device->missing = 0;
701 		}
702 	}
703 
704 	/*
705 	 * Unmount does not free the btrfs_device struct but would zero
706 	 * generation along with most of the other members. So just update
707 	 * it back. We need it to pick the disk with largest generation
708 	 * (as above).
709 	 */
710 	if (!fs_devices->opened)
711 		device->generation = found_transid;
712 
713 	/*
714 	 * if there is new btrfs on an already registered device,
715 	 * then remove the stale device entry.
716 	 */
717 	if (ret > 0)
718 		btrfs_free_stale_device(device);
719 
720 	*fs_devices_ret = fs_devices;
721 
722 	return ret;
723 }
724 
clone_fs_devices(struct btrfs_fs_devices * orig)725 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
726 {
727 	struct btrfs_fs_devices *fs_devices;
728 	struct btrfs_device *device;
729 	struct btrfs_device *orig_dev;
730 
731 	fs_devices = alloc_fs_devices(orig->fsid);
732 	if (IS_ERR(fs_devices))
733 		return fs_devices;
734 
735 	mutex_lock(&orig->device_list_mutex);
736 	fs_devices->total_devices = orig->total_devices;
737 
738 	/* We have held the volume lock, it is safe to get the devices. */
739 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
740 		struct rcu_string *name;
741 
742 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
743 					    orig_dev->uuid);
744 		if (IS_ERR(device))
745 			goto error;
746 
747 		/*
748 		 * This is ok to do without rcu read locked because we hold the
749 		 * uuid mutex so nothing we touch in here is going to disappear.
750 		 */
751 		if (orig_dev->name) {
752 			name = rcu_string_strdup(orig_dev->name->str,
753 					GFP_KERNEL);
754 			if (!name) {
755 				kfree(device);
756 				goto error;
757 			}
758 			rcu_assign_pointer(device->name, name);
759 		}
760 
761 		list_add(&device->dev_list, &fs_devices->devices);
762 		device->fs_devices = fs_devices;
763 		fs_devices->num_devices++;
764 	}
765 	mutex_unlock(&orig->device_list_mutex);
766 	return fs_devices;
767 error:
768 	mutex_unlock(&orig->device_list_mutex);
769 	free_fs_devices(fs_devices);
770 	return ERR_PTR(-ENOMEM);
771 }
772 
btrfs_close_extra_devices(struct btrfs_fs_devices * fs_devices,int step)773 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
774 {
775 	struct btrfs_device *device, *next;
776 	struct btrfs_device *latest_dev = NULL;
777 
778 	mutex_lock(&uuid_mutex);
779 again:
780 	/* This is the initialized path, it is safe to release the devices. */
781 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
782 		if (device->in_fs_metadata) {
783 			if (!device->is_tgtdev_for_dev_replace &&
784 			    (!latest_dev ||
785 			     device->generation > latest_dev->generation)) {
786 				latest_dev = device;
787 			}
788 			continue;
789 		}
790 
791 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
792 			/*
793 			 * In the first step, keep the device which has
794 			 * the correct fsid and the devid that is used
795 			 * for the dev_replace procedure.
796 			 * In the second step, the dev_replace state is
797 			 * read from the device tree and it is known
798 			 * whether the procedure is really active or
799 			 * not, which means whether this device is
800 			 * used or whether it should be removed.
801 			 */
802 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
803 				continue;
804 			}
805 		}
806 		if (device->bdev) {
807 			blkdev_put(device->bdev, device->mode);
808 			device->bdev = NULL;
809 			fs_devices->open_devices--;
810 		}
811 		if (device->writeable) {
812 			list_del_init(&device->dev_alloc_list);
813 			device->writeable = 0;
814 			if (!device->is_tgtdev_for_dev_replace)
815 				fs_devices->rw_devices--;
816 		}
817 		list_del_init(&device->dev_list);
818 		fs_devices->num_devices--;
819 		rcu_string_free(device->name);
820 		kfree(device);
821 	}
822 
823 	if (fs_devices->seed) {
824 		fs_devices = fs_devices->seed;
825 		goto again;
826 	}
827 
828 	fs_devices->latest_bdev = latest_dev->bdev;
829 
830 	mutex_unlock(&uuid_mutex);
831 }
832 
__free_device(struct work_struct * work)833 static void __free_device(struct work_struct *work)
834 {
835 	struct btrfs_device *device;
836 
837 	device = container_of(work, struct btrfs_device, rcu_work);
838 	rcu_string_free(device->name);
839 	kfree(device);
840 }
841 
free_device(struct rcu_head * head)842 static void free_device(struct rcu_head *head)
843 {
844 	struct btrfs_device *device;
845 
846 	device = container_of(head, struct btrfs_device, rcu);
847 
848 	INIT_WORK(&device->rcu_work, __free_device);
849 	schedule_work(&device->rcu_work);
850 }
851 
btrfs_close_bdev(struct btrfs_device * device)852 static void btrfs_close_bdev(struct btrfs_device *device)
853 {
854 	if (device->bdev && device->writeable) {
855 		sync_blockdev(device->bdev);
856 		invalidate_bdev(device->bdev);
857 	}
858 
859 	if (device->bdev)
860 		blkdev_put(device->bdev, device->mode);
861 }
862 
btrfs_prepare_close_one_device(struct btrfs_device * device)863 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
864 {
865 	struct btrfs_fs_devices *fs_devices = device->fs_devices;
866 	struct btrfs_device *new_device;
867 	struct rcu_string *name;
868 
869 	if (device->bdev)
870 		fs_devices->open_devices--;
871 
872 	if (device->writeable &&
873 	    device->devid != BTRFS_DEV_REPLACE_DEVID) {
874 		list_del_init(&device->dev_alloc_list);
875 		fs_devices->rw_devices--;
876 	}
877 
878 	if (device->missing)
879 		fs_devices->missing_devices--;
880 
881 	new_device = btrfs_alloc_device(NULL, &device->devid,
882 					device->uuid);
883 	BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
884 
885 	/* Safe because we are under uuid_mutex */
886 	if (device->name) {
887 		name = rcu_string_strdup(device->name->str, GFP_NOFS);
888 		BUG_ON(!name); /* -ENOMEM */
889 		rcu_assign_pointer(new_device->name, name);
890 	}
891 
892 	list_replace_rcu(&device->dev_list, &new_device->dev_list);
893 	new_device->fs_devices = device->fs_devices;
894 }
895 
__btrfs_close_devices(struct btrfs_fs_devices * fs_devices)896 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
897 {
898 	struct btrfs_device *device, *tmp;
899 	struct list_head pending_put;
900 
901 	INIT_LIST_HEAD(&pending_put);
902 
903 	if (--fs_devices->opened > 0)
904 		return 0;
905 
906 	mutex_lock(&fs_devices->device_list_mutex);
907 	list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
908 		btrfs_prepare_close_one_device(device);
909 		list_add(&device->dev_list, &pending_put);
910 	}
911 	mutex_unlock(&fs_devices->device_list_mutex);
912 
913 	/*
914 	 * btrfs_show_devname() is using the device_list_mutex,
915 	 * sometimes call to blkdev_put() leads vfs calling
916 	 * into this func. So do put outside of device_list_mutex,
917 	 * as of now.
918 	 */
919 	while (!list_empty(&pending_put)) {
920 		device = list_first_entry(&pending_put,
921 				struct btrfs_device, dev_list);
922 		list_del(&device->dev_list);
923 		btrfs_close_bdev(device);
924 		call_rcu(&device->rcu, free_device);
925 	}
926 
927 	WARN_ON(fs_devices->open_devices);
928 	WARN_ON(fs_devices->rw_devices);
929 	fs_devices->opened = 0;
930 	fs_devices->seeding = 0;
931 
932 	return 0;
933 }
934 
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)935 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
936 {
937 	struct btrfs_fs_devices *seed_devices = NULL;
938 	int ret;
939 
940 	mutex_lock(&uuid_mutex);
941 	ret = __btrfs_close_devices(fs_devices);
942 	if (!fs_devices->opened) {
943 		seed_devices = fs_devices->seed;
944 		fs_devices->seed = NULL;
945 	}
946 	mutex_unlock(&uuid_mutex);
947 
948 	while (seed_devices) {
949 		fs_devices = seed_devices;
950 		seed_devices = fs_devices->seed;
951 		__btrfs_close_devices(fs_devices);
952 		free_fs_devices(fs_devices);
953 	}
954 	/*
955 	 * Wait for rcu kworkers under __btrfs_close_devices
956 	 * to finish all blkdev_puts so device is really
957 	 * free when umount is done.
958 	 */
959 	rcu_barrier();
960 	return ret;
961 }
962 
__btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)963 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
964 				fmode_t flags, void *holder)
965 {
966 	struct request_queue *q;
967 	struct block_device *bdev;
968 	struct list_head *head = &fs_devices->devices;
969 	struct btrfs_device *device;
970 	struct btrfs_device *latest_dev = NULL;
971 	struct buffer_head *bh;
972 	struct btrfs_super_block *disk_super;
973 	u64 devid;
974 	int seeding = 1;
975 	int ret = 0;
976 
977 	flags |= FMODE_EXCL;
978 
979 	list_for_each_entry(device, head, dev_list) {
980 		if (device->bdev)
981 			continue;
982 		if (!device->name)
983 			continue;
984 
985 		/* Just open everything we can; ignore failures here */
986 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
987 					    &bdev, &bh))
988 			continue;
989 
990 		disk_super = (struct btrfs_super_block *)bh->b_data;
991 		devid = btrfs_stack_device_id(&disk_super->dev_item);
992 		if (devid != device->devid)
993 			goto error_brelse;
994 
995 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
996 			   BTRFS_UUID_SIZE))
997 			goto error_brelse;
998 
999 		device->generation = btrfs_super_generation(disk_super);
1000 		if (!latest_dev ||
1001 		    device->generation > latest_dev->generation)
1002 			latest_dev = device;
1003 
1004 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1005 			device->writeable = 0;
1006 		} else {
1007 			device->writeable = !bdev_read_only(bdev);
1008 			seeding = 0;
1009 		}
1010 
1011 		q = bdev_get_queue(bdev);
1012 		if (blk_queue_discard(q))
1013 			device->can_discard = 1;
1014 
1015 		device->bdev = bdev;
1016 		device->in_fs_metadata = 0;
1017 		device->mode = flags;
1018 
1019 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1020 			fs_devices->rotating = 1;
1021 
1022 		fs_devices->open_devices++;
1023 		if (device->writeable &&
1024 		    device->devid != BTRFS_DEV_REPLACE_DEVID) {
1025 			fs_devices->rw_devices++;
1026 			list_add(&device->dev_alloc_list,
1027 				 &fs_devices->alloc_list);
1028 		}
1029 		brelse(bh);
1030 		continue;
1031 
1032 error_brelse:
1033 		brelse(bh);
1034 		blkdev_put(bdev, flags);
1035 		continue;
1036 	}
1037 	if (fs_devices->open_devices == 0) {
1038 		ret = -EINVAL;
1039 		goto out;
1040 	}
1041 	fs_devices->seeding = seeding;
1042 	fs_devices->opened = 1;
1043 	fs_devices->latest_bdev = latest_dev->bdev;
1044 	fs_devices->total_rw_bytes = 0;
1045 out:
1046 	return ret;
1047 }
1048 
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1049 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1050 		       fmode_t flags, void *holder)
1051 {
1052 	int ret;
1053 
1054 	mutex_lock(&uuid_mutex);
1055 	if (fs_devices->opened) {
1056 		fs_devices->opened++;
1057 		ret = 0;
1058 	} else {
1059 		ret = __btrfs_open_devices(fs_devices, flags, holder);
1060 	}
1061 	mutex_unlock(&uuid_mutex);
1062 	return ret;
1063 }
1064 
btrfs_release_disk_super(struct page * page)1065 void btrfs_release_disk_super(struct page *page)
1066 {
1067 	kunmap(page);
1068 	put_page(page);
1069 }
1070 
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,struct page ** page,struct btrfs_super_block ** disk_super)1071 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1072 		struct page **page, struct btrfs_super_block **disk_super)
1073 {
1074 	void *p;
1075 	pgoff_t index;
1076 
1077 	/* make sure our super fits in the device */
1078 	if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1079 		return 1;
1080 
1081 	/* make sure our super fits in the page */
1082 	if (sizeof(**disk_super) > PAGE_SIZE)
1083 		return 1;
1084 
1085 	/* make sure our super doesn't straddle pages on disk */
1086 	index = bytenr >> PAGE_SHIFT;
1087 	if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1088 		return 1;
1089 
1090 	/* pull in the page with our super */
1091 	*page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1092 				   index, GFP_KERNEL);
1093 
1094 	if (IS_ERR_OR_NULL(*page))
1095 		return 1;
1096 
1097 	p = kmap(*page);
1098 
1099 	/* align our pointer to the offset of the super block */
1100 	*disk_super = p + (bytenr & ~PAGE_MASK);
1101 
1102 	if (btrfs_super_bytenr(*disk_super) != bytenr ||
1103 	    btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1104 		btrfs_release_disk_super(*page);
1105 		return 1;
1106 	}
1107 
1108 	if ((*disk_super)->label[0] &&
1109 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1110 		(*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1111 
1112 	return 0;
1113 }
1114 
1115 /*
1116  * Look for a btrfs signature on a device. This may be called out of the mount path
1117  * and we are not allowed to call set_blocksize during the scan. The superblock
1118  * is read via pagecache
1119  */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder,struct btrfs_fs_devices ** fs_devices_ret)1120 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1121 			  struct btrfs_fs_devices **fs_devices_ret)
1122 {
1123 	struct btrfs_super_block *disk_super;
1124 	struct block_device *bdev;
1125 	struct page *page;
1126 	int ret = -EINVAL;
1127 	u64 devid;
1128 	u64 transid;
1129 	u64 total_devices;
1130 	u64 bytenr;
1131 
1132 	/*
1133 	 * we would like to check all the supers, but that would make
1134 	 * a btrfs mount succeed after a mkfs from a different FS.
1135 	 * So, we need to add a special mount option to scan for
1136 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1137 	 */
1138 	bytenr = btrfs_sb_offset(0);
1139 	flags |= FMODE_EXCL;
1140 	mutex_lock(&uuid_mutex);
1141 
1142 	bdev = blkdev_get_by_path(path, flags, holder);
1143 	if (IS_ERR(bdev)) {
1144 		ret = PTR_ERR(bdev);
1145 		goto error;
1146 	}
1147 
1148 	if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1149 		goto error_bdev_put;
1150 
1151 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1152 	transid = btrfs_super_generation(disk_super);
1153 	total_devices = btrfs_super_num_devices(disk_super);
1154 
1155 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1156 	if (ret > 0) {
1157 		if (disk_super->label[0]) {
1158 			pr_info("BTRFS: device label %s ", disk_super->label);
1159 		} else {
1160 			pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1161 		}
1162 
1163 		pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1164 		ret = 0;
1165 	}
1166 	if (!ret && fs_devices_ret)
1167 		(*fs_devices_ret)->total_devices = total_devices;
1168 
1169 	btrfs_release_disk_super(page);
1170 
1171 error_bdev_put:
1172 	blkdev_put(bdev, flags);
1173 error:
1174 	mutex_unlock(&uuid_mutex);
1175 	return ret;
1176 }
1177 
1178 /* helper to account the used device space in the range */
btrfs_account_dev_extents_size(struct btrfs_device * device,u64 start,u64 end,u64 * length)1179 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1180 				   u64 end, u64 *length)
1181 {
1182 	struct btrfs_key key;
1183 	struct btrfs_root *root = device->dev_root;
1184 	struct btrfs_dev_extent *dev_extent;
1185 	struct btrfs_path *path;
1186 	u64 extent_end;
1187 	int ret;
1188 	int slot;
1189 	struct extent_buffer *l;
1190 
1191 	*length = 0;
1192 
1193 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1194 		return 0;
1195 
1196 	path = btrfs_alloc_path();
1197 	if (!path)
1198 		return -ENOMEM;
1199 	path->reada = READA_FORWARD;
1200 
1201 	key.objectid = device->devid;
1202 	key.offset = start;
1203 	key.type = BTRFS_DEV_EXTENT_KEY;
1204 
1205 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1206 	if (ret < 0)
1207 		goto out;
1208 	if (ret > 0) {
1209 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1210 		if (ret < 0)
1211 			goto out;
1212 	}
1213 
1214 	while (1) {
1215 		l = path->nodes[0];
1216 		slot = path->slots[0];
1217 		if (slot >= btrfs_header_nritems(l)) {
1218 			ret = btrfs_next_leaf(root, path);
1219 			if (ret == 0)
1220 				continue;
1221 			if (ret < 0)
1222 				goto out;
1223 
1224 			break;
1225 		}
1226 		btrfs_item_key_to_cpu(l, &key, slot);
1227 
1228 		if (key.objectid < device->devid)
1229 			goto next;
1230 
1231 		if (key.objectid > device->devid)
1232 			break;
1233 
1234 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1235 			goto next;
1236 
1237 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1238 		extent_end = key.offset + btrfs_dev_extent_length(l,
1239 								  dev_extent);
1240 		if (key.offset <= start && extent_end > end) {
1241 			*length = end - start + 1;
1242 			break;
1243 		} else if (key.offset <= start && extent_end > start)
1244 			*length += extent_end - start;
1245 		else if (key.offset > start && extent_end <= end)
1246 			*length += extent_end - key.offset;
1247 		else if (key.offset > start && key.offset <= end) {
1248 			*length += end - key.offset + 1;
1249 			break;
1250 		} else if (key.offset > end)
1251 			break;
1252 
1253 next:
1254 		path->slots[0]++;
1255 	}
1256 	ret = 0;
1257 out:
1258 	btrfs_free_path(path);
1259 	return ret;
1260 }
1261 
contains_pending_extent(struct btrfs_transaction * transaction,struct btrfs_device * device,u64 * start,u64 len)1262 static int contains_pending_extent(struct btrfs_transaction *transaction,
1263 				   struct btrfs_device *device,
1264 				   u64 *start, u64 len)
1265 {
1266 	struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1267 	struct extent_map *em;
1268 	struct list_head *search_list = &fs_info->pinned_chunks;
1269 	int ret = 0;
1270 	u64 physical_start = *start;
1271 
1272 	if (transaction)
1273 		search_list = &transaction->pending_chunks;
1274 again:
1275 	list_for_each_entry(em, search_list, list) {
1276 		struct map_lookup *map;
1277 		int i;
1278 
1279 		map = em->map_lookup;
1280 		for (i = 0; i < map->num_stripes; i++) {
1281 			u64 end;
1282 
1283 			if (map->stripes[i].dev != device)
1284 				continue;
1285 			if (map->stripes[i].physical >= physical_start + len ||
1286 			    map->stripes[i].physical + em->orig_block_len <=
1287 			    physical_start)
1288 				continue;
1289 			/*
1290 			 * Make sure that while processing the pinned list we do
1291 			 * not override our *start with a lower value, because
1292 			 * we can have pinned chunks that fall within this
1293 			 * device hole and that have lower physical addresses
1294 			 * than the pending chunks we processed before. If we
1295 			 * do not take this special care we can end up getting
1296 			 * 2 pending chunks that start at the same physical
1297 			 * device offsets because the end offset of a pinned
1298 			 * chunk can be equal to the start offset of some
1299 			 * pending chunk.
1300 			 */
1301 			end = map->stripes[i].physical + em->orig_block_len;
1302 			if (end > *start) {
1303 				*start = end;
1304 				ret = 1;
1305 			}
1306 		}
1307 	}
1308 	if (search_list != &fs_info->pinned_chunks) {
1309 		search_list = &fs_info->pinned_chunks;
1310 		goto again;
1311 	}
1312 
1313 	return ret;
1314 }
1315 
1316 
1317 /*
1318  * find_free_dev_extent_start - find free space in the specified device
1319  * @device:	  the device which we search the free space in
1320  * @num_bytes:	  the size of the free space that we need
1321  * @search_start: the position from which to begin the search
1322  * @start:	  store the start of the free space.
1323  * @len:	  the size of the free space. that we find, or the size
1324  *		  of the max free space if we don't find suitable free space
1325  *
1326  * this uses a pretty simple search, the expectation is that it is
1327  * called very infrequently and that a given device has a small number
1328  * of extents
1329  *
1330  * @start is used to store the start of the free space if we find. But if we
1331  * don't find suitable free space, it will be used to store the start position
1332  * of the max free space.
1333  *
1334  * @len is used to store the size of the free space that we find.
1335  * But if we don't find suitable free space, it is used to store the size of
1336  * the max free space.
1337  */
find_free_dev_extent_start(struct btrfs_transaction * transaction,struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1338 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1339 			       struct btrfs_device *device, u64 num_bytes,
1340 			       u64 search_start, u64 *start, u64 *len)
1341 {
1342 	struct btrfs_key key;
1343 	struct btrfs_root *root = device->dev_root;
1344 	struct btrfs_dev_extent *dev_extent;
1345 	struct btrfs_path *path;
1346 	u64 hole_size;
1347 	u64 max_hole_start;
1348 	u64 max_hole_size;
1349 	u64 extent_end;
1350 	u64 search_end = device->total_bytes;
1351 	int ret;
1352 	int slot;
1353 	struct extent_buffer *l;
1354 	u64 min_search_start;
1355 
1356 	/*
1357 	 * We don't want to overwrite the superblock on the drive nor any area
1358 	 * used by the boot loader (grub for example), so we make sure to start
1359 	 * at an offset of at least 1MB.
1360 	 */
1361 	min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1362 	search_start = max(search_start, min_search_start);
1363 
1364 	path = btrfs_alloc_path();
1365 	if (!path)
1366 		return -ENOMEM;
1367 
1368 	max_hole_start = search_start;
1369 	max_hole_size = 0;
1370 
1371 again:
1372 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1373 		ret = -ENOSPC;
1374 		goto out;
1375 	}
1376 
1377 	path->reada = READA_FORWARD;
1378 	path->search_commit_root = 1;
1379 	path->skip_locking = 1;
1380 
1381 	key.objectid = device->devid;
1382 	key.offset = search_start;
1383 	key.type = BTRFS_DEV_EXTENT_KEY;
1384 
1385 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1386 	if (ret < 0)
1387 		goto out;
1388 	if (ret > 0) {
1389 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1390 		if (ret < 0)
1391 			goto out;
1392 	}
1393 
1394 	while (1) {
1395 		l = path->nodes[0];
1396 		slot = path->slots[0];
1397 		if (slot >= btrfs_header_nritems(l)) {
1398 			ret = btrfs_next_leaf(root, path);
1399 			if (ret == 0)
1400 				continue;
1401 			if (ret < 0)
1402 				goto out;
1403 
1404 			break;
1405 		}
1406 		btrfs_item_key_to_cpu(l, &key, slot);
1407 
1408 		if (key.objectid < device->devid)
1409 			goto next;
1410 
1411 		if (key.objectid > device->devid)
1412 			break;
1413 
1414 		if (key.type != BTRFS_DEV_EXTENT_KEY)
1415 			goto next;
1416 
1417 		if (key.offset > search_start) {
1418 			hole_size = key.offset - search_start;
1419 
1420 			/*
1421 			 * Have to check before we set max_hole_start, otherwise
1422 			 * we could end up sending back this offset anyway.
1423 			 */
1424 			if (contains_pending_extent(transaction, device,
1425 						    &search_start,
1426 						    hole_size)) {
1427 				if (key.offset >= search_start) {
1428 					hole_size = key.offset - search_start;
1429 				} else {
1430 					WARN_ON_ONCE(1);
1431 					hole_size = 0;
1432 				}
1433 			}
1434 
1435 			if (hole_size > max_hole_size) {
1436 				max_hole_start = search_start;
1437 				max_hole_size = hole_size;
1438 			}
1439 
1440 			/*
1441 			 * If this free space is greater than which we need,
1442 			 * it must be the max free space that we have found
1443 			 * until now, so max_hole_start must point to the start
1444 			 * of this free space and the length of this free space
1445 			 * is stored in max_hole_size. Thus, we return
1446 			 * max_hole_start and max_hole_size and go back to the
1447 			 * caller.
1448 			 */
1449 			if (hole_size >= num_bytes) {
1450 				ret = 0;
1451 				goto out;
1452 			}
1453 		}
1454 
1455 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1456 		extent_end = key.offset + btrfs_dev_extent_length(l,
1457 								  dev_extent);
1458 		if (extent_end > search_start)
1459 			search_start = extent_end;
1460 next:
1461 		path->slots[0]++;
1462 		cond_resched();
1463 	}
1464 
1465 	/*
1466 	 * At this point, search_start should be the end of
1467 	 * allocated dev extents, and when shrinking the device,
1468 	 * search_end may be smaller than search_start.
1469 	 */
1470 	if (search_end > search_start) {
1471 		hole_size = search_end - search_start;
1472 
1473 		if (contains_pending_extent(transaction, device, &search_start,
1474 					    hole_size)) {
1475 			btrfs_release_path(path);
1476 			goto again;
1477 		}
1478 
1479 		if (hole_size > max_hole_size) {
1480 			max_hole_start = search_start;
1481 			max_hole_size = hole_size;
1482 		}
1483 	}
1484 
1485 	/* See above. */
1486 	if (max_hole_size < num_bytes)
1487 		ret = -ENOSPC;
1488 	else
1489 		ret = 0;
1490 
1491 out:
1492 	btrfs_free_path(path);
1493 	*start = max_hole_start;
1494 	if (len)
1495 		*len = max_hole_size;
1496 	return ret;
1497 }
1498 
find_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1499 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1500 			 struct btrfs_device *device, u64 num_bytes,
1501 			 u64 *start, u64 *len)
1502 {
1503 	/* FIXME use last free of some kind */
1504 	return find_free_dev_extent_start(trans->transaction, device,
1505 					  num_bytes, 0, start, len);
1506 }
1507 
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1508 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1509 			  struct btrfs_device *device,
1510 			  u64 start, u64 *dev_extent_len)
1511 {
1512 	int ret;
1513 	struct btrfs_path *path;
1514 	struct btrfs_root *root = device->dev_root;
1515 	struct btrfs_key key;
1516 	struct btrfs_key found_key;
1517 	struct extent_buffer *leaf = NULL;
1518 	struct btrfs_dev_extent *extent = NULL;
1519 
1520 	path = btrfs_alloc_path();
1521 	if (!path)
1522 		return -ENOMEM;
1523 
1524 	key.objectid = device->devid;
1525 	key.offset = start;
1526 	key.type = BTRFS_DEV_EXTENT_KEY;
1527 again:
1528 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1529 	if (ret > 0) {
1530 		ret = btrfs_previous_item(root, path, key.objectid,
1531 					  BTRFS_DEV_EXTENT_KEY);
1532 		if (ret)
1533 			goto out;
1534 		leaf = path->nodes[0];
1535 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1536 		extent = btrfs_item_ptr(leaf, path->slots[0],
1537 					struct btrfs_dev_extent);
1538 		BUG_ON(found_key.offset > start || found_key.offset +
1539 		       btrfs_dev_extent_length(leaf, extent) < start);
1540 		key = found_key;
1541 		btrfs_release_path(path);
1542 		goto again;
1543 	} else if (ret == 0) {
1544 		leaf = path->nodes[0];
1545 		extent = btrfs_item_ptr(leaf, path->slots[0],
1546 					struct btrfs_dev_extent);
1547 	} else {
1548 		btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
1549 		goto out;
1550 	}
1551 
1552 	*dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1553 
1554 	ret = btrfs_del_item(trans, root, path);
1555 	if (ret) {
1556 		btrfs_handle_fs_error(root->fs_info, ret,
1557 			    "Failed to remove dev extent item");
1558 	} else {
1559 		set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1560 	}
1561 out:
1562 	btrfs_free_path(path);
1563 	return ret;
1564 }
1565 
btrfs_alloc_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_tree,u64 chunk_objectid,u64 chunk_offset,u64 start,u64 num_bytes)1566 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1567 				  struct btrfs_device *device,
1568 				  u64 chunk_tree, u64 chunk_objectid,
1569 				  u64 chunk_offset, u64 start, u64 num_bytes)
1570 {
1571 	int ret;
1572 	struct btrfs_path *path;
1573 	struct btrfs_root *root = device->dev_root;
1574 	struct btrfs_dev_extent *extent;
1575 	struct extent_buffer *leaf;
1576 	struct btrfs_key key;
1577 
1578 	WARN_ON(!device->in_fs_metadata);
1579 	WARN_ON(device->is_tgtdev_for_dev_replace);
1580 	path = btrfs_alloc_path();
1581 	if (!path)
1582 		return -ENOMEM;
1583 
1584 	key.objectid = device->devid;
1585 	key.offset = start;
1586 	key.type = BTRFS_DEV_EXTENT_KEY;
1587 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1588 				      sizeof(*extent));
1589 	if (ret)
1590 		goto out;
1591 
1592 	leaf = path->nodes[0];
1593 	extent = btrfs_item_ptr(leaf, path->slots[0],
1594 				struct btrfs_dev_extent);
1595 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1596 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1597 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1598 
1599 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1600 		    btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1601 
1602 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1603 	btrfs_mark_buffer_dirty(leaf);
1604 out:
1605 	btrfs_free_path(path);
1606 	return ret;
1607 }
1608 
find_next_chunk(struct btrfs_fs_info * fs_info)1609 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1610 {
1611 	struct extent_map_tree *em_tree;
1612 	struct extent_map *em;
1613 	struct rb_node *n;
1614 	u64 ret = 0;
1615 
1616 	em_tree = &fs_info->mapping_tree.map_tree;
1617 	read_lock(&em_tree->lock);
1618 	n = rb_last(&em_tree->map);
1619 	if (n) {
1620 		em = rb_entry(n, struct extent_map, rb_node);
1621 		ret = em->start + em->len;
1622 	}
1623 	read_unlock(&em_tree->lock);
1624 
1625 	return ret;
1626 }
1627 
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1628 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1629 				    u64 *devid_ret)
1630 {
1631 	int ret;
1632 	struct btrfs_key key;
1633 	struct btrfs_key found_key;
1634 	struct btrfs_path *path;
1635 
1636 	path = btrfs_alloc_path();
1637 	if (!path)
1638 		return -ENOMEM;
1639 
1640 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1641 	key.type = BTRFS_DEV_ITEM_KEY;
1642 	key.offset = (u64)-1;
1643 
1644 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1645 	if (ret < 0)
1646 		goto error;
1647 
1648 	BUG_ON(ret == 0); /* Corruption */
1649 
1650 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1651 				  BTRFS_DEV_ITEMS_OBJECTID,
1652 				  BTRFS_DEV_ITEM_KEY);
1653 	if (ret) {
1654 		*devid_ret = 1;
1655 	} else {
1656 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1657 				      path->slots[0]);
1658 		*devid_ret = found_key.offset + 1;
1659 	}
1660 	ret = 0;
1661 error:
1662 	btrfs_free_path(path);
1663 	return ret;
1664 }
1665 
1666 /*
1667  * the device information is stored in the chunk root
1668  * the btrfs_device struct should be fully filled in
1669  */
btrfs_add_device(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_device * device)1670 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1671 			    struct btrfs_root *root,
1672 			    struct btrfs_device *device)
1673 {
1674 	int ret;
1675 	struct btrfs_path *path;
1676 	struct btrfs_dev_item *dev_item;
1677 	struct extent_buffer *leaf;
1678 	struct btrfs_key key;
1679 	unsigned long ptr;
1680 
1681 	root = root->fs_info->chunk_root;
1682 
1683 	path = btrfs_alloc_path();
1684 	if (!path)
1685 		return -ENOMEM;
1686 
1687 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1688 	key.type = BTRFS_DEV_ITEM_KEY;
1689 	key.offset = device->devid;
1690 
1691 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1692 				      sizeof(*dev_item));
1693 	if (ret)
1694 		goto out;
1695 
1696 	leaf = path->nodes[0];
1697 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1698 
1699 	btrfs_set_device_id(leaf, dev_item, device->devid);
1700 	btrfs_set_device_generation(leaf, dev_item, 0);
1701 	btrfs_set_device_type(leaf, dev_item, device->type);
1702 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1703 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1704 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1705 	btrfs_set_device_total_bytes(leaf, dev_item,
1706 				     btrfs_device_get_disk_total_bytes(device));
1707 	btrfs_set_device_bytes_used(leaf, dev_item,
1708 				    btrfs_device_get_bytes_used(device));
1709 	btrfs_set_device_group(leaf, dev_item, 0);
1710 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1711 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1712 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1713 
1714 	ptr = btrfs_device_uuid(dev_item);
1715 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1716 	ptr = btrfs_device_fsid(dev_item);
1717 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1718 	btrfs_mark_buffer_dirty(leaf);
1719 
1720 	ret = 0;
1721 out:
1722 	btrfs_free_path(path);
1723 	return ret;
1724 }
1725 
1726 /*
1727  * Function to update ctime/mtime for a given device path.
1728  * Mainly used for ctime/mtime based probe like libblkid.
1729  */
update_dev_time(char * path_name)1730 static void update_dev_time(char *path_name)
1731 {
1732 	struct file *filp;
1733 
1734 	filp = filp_open(path_name, O_RDWR, 0);
1735 	if (IS_ERR(filp))
1736 		return;
1737 	file_update_time(filp);
1738 	filp_close(filp, NULL);
1739 }
1740 
btrfs_rm_dev_item(struct btrfs_root * root,struct btrfs_device * device)1741 static int btrfs_rm_dev_item(struct btrfs_root *root,
1742 			     struct btrfs_device *device)
1743 {
1744 	int ret;
1745 	struct btrfs_path *path;
1746 	struct btrfs_key key;
1747 	struct btrfs_trans_handle *trans;
1748 
1749 	root = root->fs_info->chunk_root;
1750 
1751 	path = btrfs_alloc_path();
1752 	if (!path)
1753 		return -ENOMEM;
1754 
1755 	trans = btrfs_start_transaction(root, 0);
1756 	if (IS_ERR(trans)) {
1757 		btrfs_free_path(path);
1758 		return PTR_ERR(trans);
1759 	}
1760 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1761 	key.type = BTRFS_DEV_ITEM_KEY;
1762 	key.offset = device->devid;
1763 
1764 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1765 	if (ret < 0)
1766 		goto out;
1767 
1768 	if (ret > 0) {
1769 		ret = -ENOENT;
1770 		goto out;
1771 	}
1772 
1773 	ret = btrfs_del_item(trans, root, path);
1774 	if (ret)
1775 		goto out;
1776 out:
1777 	btrfs_free_path(path);
1778 	btrfs_commit_transaction(trans, root);
1779 	return ret;
1780 }
1781 
1782 /*
1783  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1784  * filesystem. It's up to the caller to adjust that number regarding eg. device
1785  * replace.
1786  */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1787 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1788 		u64 num_devices)
1789 {
1790 	u64 all_avail;
1791 	unsigned seq;
1792 	int i;
1793 
1794 	do {
1795 		seq = read_seqbegin(&fs_info->profiles_lock);
1796 
1797 		all_avail = fs_info->avail_data_alloc_bits |
1798 			    fs_info->avail_system_alloc_bits |
1799 			    fs_info->avail_metadata_alloc_bits;
1800 	} while (read_seqretry(&fs_info->profiles_lock, seq));
1801 
1802 	for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1803 		if (!(all_avail & btrfs_raid_group[i]))
1804 			continue;
1805 
1806 		if (num_devices < btrfs_raid_array[i].devs_min) {
1807 			int ret = btrfs_raid_mindev_error[i];
1808 
1809 			if (ret)
1810 				return ret;
1811 		}
1812 	}
1813 
1814 	return 0;
1815 }
1816 
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)1817 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1818 					struct btrfs_device *device)
1819 {
1820 	struct btrfs_device *next_device;
1821 
1822 	list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1823 		if (next_device != device &&
1824 			!next_device->missing && next_device->bdev)
1825 			return next_device;
1826 	}
1827 
1828 	return NULL;
1829 }
1830 
1831 /*
1832  * Helper function to check if the given device is part of s_bdev / latest_bdev
1833  * and replace it with the provided or the next active device, in the context
1834  * where this function called, there should be always be another device (or
1835  * this_dev) which is active.
1836  */
btrfs_assign_next_active_device(struct btrfs_fs_info * fs_info,struct btrfs_device * device,struct btrfs_device * this_dev)1837 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1838 		struct btrfs_device *device, struct btrfs_device *this_dev)
1839 {
1840 	struct btrfs_device *next_device;
1841 
1842 	if (this_dev)
1843 		next_device = this_dev;
1844 	else
1845 		next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1846 								device);
1847 	ASSERT(next_device);
1848 
1849 	if (fs_info->sb->s_bdev &&
1850 			(fs_info->sb->s_bdev == device->bdev))
1851 		fs_info->sb->s_bdev = next_device->bdev;
1852 
1853 	if (fs_info->fs_devices->latest_bdev == device->bdev)
1854 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1855 }
1856 
btrfs_rm_device(struct btrfs_root * root,char * device_path,u64 devid)1857 int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
1858 {
1859 	struct btrfs_device *device;
1860 	struct btrfs_fs_devices *cur_devices;
1861 	u64 num_devices;
1862 	int ret = 0;
1863 	bool clear_super = false;
1864 
1865 	mutex_lock(&uuid_mutex);
1866 
1867 	num_devices = root->fs_info->fs_devices->num_devices;
1868 	btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1869 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1870 		WARN_ON(num_devices < 1);
1871 		num_devices--;
1872 	}
1873 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1874 
1875 	ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
1876 	if (ret)
1877 		goto out;
1878 
1879 	ret = btrfs_find_device_by_devspec(root, devid, device_path,
1880 				&device);
1881 	if (ret)
1882 		goto out;
1883 
1884 	if (device->is_tgtdev_for_dev_replace) {
1885 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1886 		goto out;
1887 	}
1888 
1889 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1890 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1891 		goto out;
1892 	}
1893 
1894 	if (device->writeable) {
1895 		lock_chunks(root);
1896 		list_del_init(&device->dev_alloc_list);
1897 		device->fs_devices->rw_devices--;
1898 		unlock_chunks(root);
1899 		clear_super = true;
1900 	}
1901 
1902 	mutex_unlock(&uuid_mutex);
1903 	ret = btrfs_shrink_device(device, 0);
1904 	mutex_lock(&uuid_mutex);
1905 	if (ret)
1906 		goto error_undo;
1907 
1908 	/*
1909 	 * TODO: the superblock still includes this device in its num_devices
1910 	 * counter although write_all_supers() is not locked out. This
1911 	 * could give a filesystem state which requires a degraded mount.
1912 	 */
1913 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1914 	if (ret)
1915 		goto error_undo;
1916 
1917 	device->in_fs_metadata = 0;
1918 	btrfs_scrub_cancel_dev(root->fs_info, device);
1919 
1920 	/*
1921 	 * the device list mutex makes sure that we don't change
1922 	 * the device list while someone else is writing out all
1923 	 * the device supers. Whoever is writing all supers, should
1924 	 * lock the device list mutex before getting the number of
1925 	 * devices in the super block (super_copy). Conversely,
1926 	 * whoever updates the number of devices in the super block
1927 	 * (super_copy) should hold the device list mutex.
1928 	 */
1929 
1930 	cur_devices = device->fs_devices;
1931 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1932 	list_del_rcu(&device->dev_list);
1933 
1934 	device->fs_devices->num_devices--;
1935 	device->fs_devices->total_devices--;
1936 
1937 	if (device->missing)
1938 		device->fs_devices->missing_devices--;
1939 
1940 	btrfs_assign_next_active_device(root->fs_info, device, NULL);
1941 
1942 	if (device->bdev) {
1943 		device->fs_devices->open_devices--;
1944 		/* remove sysfs entry */
1945 		btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1946 	}
1947 
1948 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1949 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1950 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1951 
1952 	/*
1953 	 * at this point, the device is zero sized and detached from
1954 	 * the devices list.  All that's left is to zero out the old
1955 	 * supers and free the device.
1956 	 */
1957 	if (device->writeable)
1958 		btrfs_scratch_superblocks(device->bdev, device->name->str);
1959 
1960 	btrfs_close_bdev(device);
1961 	call_rcu(&device->rcu, free_device);
1962 
1963 	if (cur_devices->open_devices == 0) {
1964 		struct btrfs_fs_devices *fs_devices;
1965 		fs_devices = root->fs_info->fs_devices;
1966 		while (fs_devices) {
1967 			if (fs_devices->seed == cur_devices) {
1968 				fs_devices->seed = cur_devices->seed;
1969 				break;
1970 			}
1971 			fs_devices = fs_devices->seed;
1972 		}
1973 		cur_devices->seed = NULL;
1974 		__btrfs_close_devices(cur_devices);
1975 		free_fs_devices(cur_devices);
1976 	}
1977 
1978 	root->fs_info->num_tolerated_disk_barrier_failures =
1979 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1980 
1981 out:
1982 	mutex_unlock(&uuid_mutex);
1983 	return ret;
1984 
1985 error_undo:
1986 	if (device->writeable) {
1987 		lock_chunks(root);
1988 		list_add(&device->dev_alloc_list,
1989 			 &root->fs_info->fs_devices->alloc_list);
1990 		device->fs_devices->rw_devices++;
1991 		unlock_chunks(root);
1992 	}
1993 	goto out;
1994 }
1995 
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info * fs_info,struct btrfs_device * srcdev)1996 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1997 					struct btrfs_device *srcdev)
1998 {
1999 	struct btrfs_fs_devices *fs_devices;
2000 
2001 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2002 
2003 	/*
2004 	 * in case of fs with no seed, srcdev->fs_devices will point
2005 	 * to fs_devices of fs_info. However when the dev being replaced is
2006 	 * a seed dev it will point to the seed's local fs_devices. In short
2007 	 * srcdev will have its correct fs_devices in both the cases.
2008 	 */
2009 	fs_devices = srcdev->fs_devices;
2010 
2011 	list_del_rcu(&srcdev->dev_list);
2012 	list_del_rcu(&srcdev->dev_alloc_list);
2013 	fs_devices->num_devices--;
2014 	if (srcdev->missing)
2015 		fs_devices->missing_devices--;
2016 
2017 	if (srcdev->writeable)
2018 		fs_devices->rw_devices--;
2019 
2020 	if (srcdev->bdev)
2021 		fs_devices->open_devices--;
2022 }
2023 
btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info * fs_info,struct btrfs_device * srcdev)2024 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2025 				      struct btrfs_device *srcdev)
2026 {
2027 	struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2028 
2029 	if (srcdev->writeable) {
2030 		/* zero out the old super if it is writable */
2031 		btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2032 	}
2033 
2034 	btrfs_close_bdev(srcdev);
2035 
2036 	call_rcu(&srcdev->rcu, free_device);
2037 
2038 	/*
2039 	 * unless fs_devices is seed fs, num_devices shouldn't go
2040 	 * zero
2041 	 */
2042 	BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2043 
2044 	/* if this is no devs we rather delete the fs_devices */
2045 	if (!fs_devices->num_devices) {
2046 		struct btrfs_fs_devices *tmp_fs_devices;
2047 
2048 		tmp_fs_devices = fs_info->fs_devices;
2049 		while (tmp_fs_devices) {
2050 			if (tmp_fs_devices->seed == fs_devices) {
2051 				tmp_fs_devices->seed = fs_devices->seed;
2052 				break;
2053 			}
2054 			tmp_fs_devices = tmp_fs_devices->seed;
2055 		}
2056 		fs_devices->seed = NULL;
2057 		__btrfs_close_devices(fs_devices);
2058 		free_fs_devices(fs_devices);
2059 	}
2060 }
2061 
btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info * fs_info,struct btrfs_device * tgtdev)2062 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2063 				      struct btrfs_device *tgtdev)
2064 {
2065 	mutex_lock(&uuid_mutex);
2066 	WARN_ON(!tgtdev);
2067 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2068 
2069 	btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2070 
2071 	if (tgtdev->bdev)
2072 		fs_info->fs_devices->open_devices--;
2073 
2074 	fs_info->fs_devices->num_devices--;
2075 
2076 	btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2077 
2078 	list_del_rcu(&tgtdev->dev_list);
2079 
2080 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2081 	mutex_unlock(&uuid_mutex);
2082 
2083 	/*
2084 	 * The update_dev_time() with in btrfs_scratch_superblocks()
2085 	 * may lead to a call to btrfs_show_devname() which will try
2086 	 * to hold device_list_mutex. And here this device
2087 	 * is already out of device list, so we don't have to hold
2088 	 * the device_list_mutex lock.
2089 	 */
2090 	btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2091 
2092 	btrfs_close_bdev(tgtdev);
2093 	call_rcu(&tgtdev->rcu, free_device);
2094 }
2095 
btrfs_find_device_by_path(struct btrfs_root * root,char * device_path,struct btrfs_device ** device)2096 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2097 				     struct btrfs_device **device)
2098 {
2099 	int ret = 0;
2100 	struct btrfs_super_block *disk_super;
2101 	u64 devid;
2102 	u8 *dev_uuid;
2103 	struct block_device *bdev;
2104 	struct buffer_head *bh;
2105 
2106 	*device = NULL;
2107 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2108 				    root->fs_info->bdev_holder, 0, &bdev, &bh);
2109 	if (ret)
2110 		return ret;
2111 	disk_super = (struct btrfs_super_block *)bh->b_data;
2112 	devid = btrfs_stack_device_id(&disk_super->dev_item);
2113 	dev_uuid = disk_super->dev_item.uuid;
2114 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2115 				    disk_super->fsid);
2116 	brelse(bh);
2117 	if (!*device)
2118 		ret = -ENOENT;
2119 	blkdev_put(bdev, FMODE_READ);
2120 	return ret;
2121 }
2122 
btrfs_find_device_missing_or_by_path(struct btrfs_root * root,char * device_path,struct btrfs_device ** device)2123 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2124 					 char *device_path,
2125 					 struct btrfs_device **device)
2126 {
2127 	*device = NULL;
2128 	if (strcmp(device_path, "missing") == 0) {
2129 		struct list_head *devices;
2130 		struct btrfs_device *tmp;
2131 
2132 		devices = &root->fs_info->fs_devices->devices;
2133 		/*
2134 		 * It is safe to read the devices since the volume_mutex
2135 		 * is held by the caller.
2136 		 */
2137 		list_for_each_entry(tmp, devices, dev_list) {
2138 			if (tmp->in_fs_metadata && !tmp->bdev) {
2139 				*device = tmp;
2140 				break;
2141 			}
2142 		}
2143 
2144 		if (!*device)
2145 			return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2146 
2147 		return 0;
2148 	} else {
2149 		return btrfs_find_device_by_path(root, device_path, device);
2150 	}
2151 }
2152 
2153 /*
2154  * Lookup a device given by device id, or the path if the id is 0.
2155  */
btrfs_find_device_by_devspec(struct btrfs_root * root,u64 devid,char * devpath,struct btrfs_device ** device)2156 int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2157 					 char *devpath,
2158 					 struct btrfs_device **device)
2159 {
2160 	int ret;
2161 
2162 	if (devid) {
2163 		ret = 0;
2164 		*device = btrfs_find_device(root->fs_info, devid, NULL,
2165 					    NULL);
2166 		if (!*device)
2167 			ret = -ENOENT;
2168 	} else {
2169 		if (!devpath || !devpath[0])
2170 			return -EINVAL;
2171 
2172 		ret = btrfs_find_device_missing_or_by_path(root, devpath,
2173 							   device);
2174 	}
2175 	return ret;
2176 }
2177 
2178 /*
2179  * does all the dirty work required for changing file system's UUID.
2180  */
btrfs_prepare_sprout(struct btrfs_root * root)2181 static int btrfs_prepare_sprout(struct btrfs_root *root)
2182 {
2183 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2184 	struct btrfs_fs_devices *old_devices;
2185 	struct btrfs_fs_devices *seed_devices;
2186 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2187 	struct btrfs_device *device;
2188 	u64 super_flags;
2189 
2190 	BUG_ON(!mutex_is_locked(&uuid_mutex));
2191 	if (!fs_devices->seeding)
2192 		return -EINVAL;
2193 
2194 	seed_devices = __alloc_fs_devices();
2195 	if (IS_ERR(seed_devices))
2196 		return PTR_ERR(seed_devices);
2197 
2198 	old_devices = clone_fs_devices(fs_devices);
2199 	if (IS_ERR(old_devices)) {
2200 		kfree(seed_devices);
2201 		return PTR_ERR(old_devices);
2202 	}
2203 
2204 	list_add(&old_devices->list, &fs_uuids);
2205 
2206 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2207 	seed_devices->opened = 1;
2208 	INIT_LIST_HEAD(&seed_devices->devices);
2209 	INIT_LIST_HEAD(&seed_devices->alloc_list);
2210 	mutex_init(&seed_devices->device_list_mutex);
2211 
2212 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2213 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2214 			      synchronize_rcu);
2215 	list_for_each_entry(device, &seed_devices->devices, dev_list)
2216 		device->fs_devices = seed_devices;
2217 
2218 	lock_chunks(root);
2219 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2220 	unlock_chunks(root);
2221 
2222 	fs_devices->seeding = 0;
2223 	fs_devices->num_devices = 0;
2224 	fs_devices->open_devices = 0;
2225 	fs_devices->missing_devices = 0;
2226 	fs_devices->rotating = 0;
2227 	fs_devices->seed = seed_devices;
2228 
2229 	generate_random_uuid(fs_devices->fsid);
2230 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2231 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2232 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2233 
2234 	super_flags = btrfs_super_flags(disk_super) &
2235 		      ~BTRFS_SUPER_FLAG_SEEDING;
2236 	btrfs_set_super_flags(disk_super, super_flags);
2237 
2238 	return 0;
2239 }
2240 
2241 /*
2242  * Store the expected generation for seed devices in device items.
2243  */
btrfs_finish_sprout(struct btrfs_trans_handle * trans,struct btrfs_root * root)2244 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2245 			       struct btrfs_root *root)
2246 {
2247 	struct btrfs_path *path;
2248 	struct extent_buffer *leaf;
2249 	struct btrfs_dev_item *dev_item;
2250 	struct btrfs_device *device;
2251 	struct btrfs_key key;
2252 	u8 fs_uuid[BTRFS_UUID_SIZE];
2253 	u8 dev_uuid[BTRFS_UUID_SIZE];
2254 	u64 devid;
2255 	int ret;
2256 
2257 	path = btrfs_alloc_path();
2258 	if (!path)
2259 		return -ENOMEM;
2260 
2261 	root = root->fs_info->chunk_root;
2262 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2263 	key.offset = 0;
2264 	key.type = BTRFS_DEV_ITEM_KEY;
2265 
2266 	while (1) {
2267 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2268 		if (ret < 0)
2269 			goto error;
2270 
2271 		leaf = path->nodes[0];
2272 next_slot:
2273 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2274 			ret = btrfs_next_leaf(root, path);
2275 			if (ret > 0)
2276 				break;
2277 			if (ret < 0)
2278 				goto error;
2279 			leaf = path->nodes[0];
2280 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2281 			btrfs_release_path(path);
2282 			continue;
2283 		}
2284 
2285 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2286 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2287 		    key.type != BTRFS_DEV_ITEM_KEY)
2288 			break;
2289 
2290 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
2291 					  struct btrfs_dev_item);
2292 		devid = btrfs_device_id(leaf, dev_item);
2293 		read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2294 				   BTRFS_UUID_SIZE);
2295 		read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2296 				   BTRFS_UUID_SIZE);
2297 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2298 					   fs_uuid);
2299 		BUG_ON(!device); /* Logic error */
2300 
2301 		if (device->fs_devices->seeding) {
2302 			btrfs_set_device_generation(leaf, dev_item,
2303 						    device->generation);
2304 			btrfs_mark_buffer_dirty(leaf);
2305 		}
2306 
2307 		path->slots[0]++;
2308 		goto next_slot;
2309 	}
2310 	ret = 0;
2311 error:
2312 	btrfs_free_path(path);
2313 	return ret;
2314 }
2315 
btrfs_init_new_device(struct btrfs_root * root,char * device_path)2316 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2317 {
2318 	struct request_queue *q;
2319 	struct btrfs_trans_handle *trans;
2320 	struct btrfs_device *device;
2321 	struct block_device *bdev;
2322 	struct list_head *devices;
2323 	struct super_block *sb = root->fs_info->sb;
2324 	struct rcu_string *name;
2325 	u64 tmp;
2326 	int seeding_dev = 0;
2327 	int ret = 0;
2328 
2329 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2330 		return -EROFS;
2331 
2332 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2333 				  root->fs_info->bdev_holder);
2334 	if (IS_ERR(bdev))
2335 		return PTR_ERR(bdev);
2336 
2337 	if (root->fs_info->fs_devices->seeding) {
2338 		seeding_dev = 1;
2339 		down_write(&sb->s_umount);
2340 		mutex_lock(&uuid_mutex);
2341 	}
2342 
2343 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2344 
2345 	devices = &root->fs_info->fs_devices->devices;
2346 
2347 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2348 	list_for_each_entry(device, devices, dev_list) {
2349 		if (device->bdev == bdev) {
2350 			ret = -EEXIST;
2351 			mutex_unlock(
2352 				&root->fs_info->fs_devices->device_list_mutex);
2353 			goto error;
2354 		}
2355 	}
2356 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2357 
2358 	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2359 	if (IS_ERR(device)) {
2360 		/* we can safely leave the fs_devices entry around */
2361 		ret = PTR_ERR(device);
2362 		goto error;
2363 	}
2364 
2365 	name = rcu_string_strdup(device_path, GFP_KERNEL);
2366 	if (!name) {
2367 		kfree(device);
2368 		ret = -ENOMEM;
2369 		goto error;
2370 	}
2371 	rcu_assign_pointer(device->name, name);
2372 
2373 	trans = btrfs_start_transaction(root, 0);
2374 	if (IS_ERR(trans)) {
2375 		rcu_string_free(device->name);
2376 		kfree(device);
2377 		ret = PTR_ERR(trans);
2378 		goto error;
2379 	}
2380 
2381 	q = bdev_get_queue(bdev);
2382 	if (blk_queue_discard(q))
2383 		device->can_discard = 1;
2384 	device->writeable = 1;
2385 	device->generation = trans->transid;
2386 	device->io_width = root->sectorsize;
2387 	device->io_align = root->sectorsize;
2388 	device->sector_size = root->sectorsize;
2389 	device->total_bytes = i_size_read(bdev->bd_inode);
2390 	device->disk_total_bytes = device->total_bytes;
2391 	device->commit_total_bytes = device->total_bytes;
2392 	device->dev_root = root->fs_info->dev_root;
2393 	device->bdev = bdev;
2394 	device->in_fs_metadata = 1;
2395 	device->is_tgtdev_for_dev_replace = 0;
2396 	device->mode = FMODE_EXCL;
2397 	device->dev_stats_valid = 1;
2398 	set_blocksize(device->bdev, 4096);
2399 
2400 	if (seeding_dev) {
2401 		sb->s_flags &= ~MS_RDONLY;
2402 		ret = btrfs_prepare_sprout(root);
2403 		BUG_ON(ret); /* -ENOMEM */
2404 	}
2405 
2406 	device->fs_devices = root->fs_info->fs_devices;
2407 
2408 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2409 	lock_chunks(root);
2410 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2411 	list_add(&device->dev_alloc_list,
2412 		 &root->fs_info->fs_devices->alloc_list);
2413 	root->fs_info->fs_devices->num_devices++;
2414 	root->fs_info->fs_devices->open_devices++;
2415 	root->fs_info->fs_devices->rw_devices++;
2416 	root->fs_info->fs_devices->total_devices++;
2417 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2418 
2419 	spin_lock(&root->fs_info->free_chunk_lock);
2420 	root->fs_info->free_chunk_space += device->total_bytes;
2421 	spin_unlock(&root->fs_info->free_chunk_lock);
2422 
2423 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2424 		root->fs_info->fs_devices->rotating = 1;
2425 
2426 	tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2427 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2428 				    tmp + device->total_bytes);
2429 
2430 	tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2431 	btrfs_set_super_num_devices(root->fs_info->super_copy,
2432 				    tmp + 1);
2433 
2434 	/* add sysfs device entry */
2435 	btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2436 
2437 	/*
2438 	 * we've got more storage, clear any full flags on the space
2439 	 * infos
2440 	 */
2441 	btrfs_clear_space_info_full(root->fs_info);
2442 
2443 	unlock_chunks(root);
2444 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2445 
2446 	if (seeding_dev) {
2447 		lock_chunks(root);
2448 		ret = init_first_rw_device(trans, root, device);
2449 		unlock_chunks(root);
2450 		if (ret) {
2451 			btrfs_abort_transaction(trans, ret);
2452 			goto error_trans;
2453 		}
2454 	}
2455 
2456 	ret = btrfs_add_device(trans, root, device);
2457 	if (ret) {
2458 		btrfs_abort_transaction(trans, ret);
2459 		goto error_trans;
2460 	}
2461 
2462 	if (seeding_dev) {
2463 		char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2464 
2465 		ret = btrfs_finish_sprout(trans, root);
2466 		if (ret) {
2467 			btrfs_abort_transaction(trans, ret);
2468 			goto error_trans;
2469 		}
2470 
2471 		/* Sprouting would change fsid of the mounted root,
2472 		 * so rename the fsid on the sysfs
2473 		 */
2474 		snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2475 						root->fs_info->fsid);
2476 		if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2477 								fsid_buf))
2478 			btrfs_warn(root->fs_info,
2479 				"sysfs: failed to create fsid for sprout");
2480 	}
2481 
2482 	root->fs_info->num_tolerated_disk_barrier_failures =
2483 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2484 	ret = btrfs_commit_transaction(trans, root);
2485 
2486 	if (seeding_dev) {
2487 		mutex_unlock(&uuid_mutex);
2488 		up_write(&sb->s_umount);
2489 
2490 		if (ret) /* transaction commit */
2491 			return ret;
2492 
2493 		ret = btrfs_relocate_sys_chunks(root);
2494 		if (ret < 0)
2495 			btrfs_handle_fs_error(root->fs_info, ret,
2496 				    "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2497 		trans = btrfs_attach_transaction(root);
2498 		if (IS_ERR(trans)) {
2499 			if (PTR_ERR(trans) == -ENOENT)
2500 				return 0;
2501 			return PTR_ERR(trans);
2502 		}
2503 		ret = btrfs_commit_transaction(trans, root);
2504 	}
2505 
2506 	/* Update ctime/mtime for libblkid */
2507 	update_dev_time(device_path);
2508 	return ret;
2509 
2510 error_trans:
2511 	btrfs_end_transaction(trans, root);
2512 	rcu_string_free(device->name);
2513 	btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2514 	kfree(device);
2515 error:
2516 	blkdev_put(bdev, FMODE_EXCL);
2517 	if (seeding_dev) {
2518 		mutex_unlock(&uuid_mutex);
2519 		up_write(&sb->s_umount);
2520 	}
2521 	return ret;
2522 }
2523 
btrfs_init_dev_replace_tgtdev(struct btrfs_root * root,char * device_path,struct btrfs_device * srcdev,struct btrfs_device ** device_out)2524 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2525 				  struct btrfs_device *srcdev,
2526 				  struct btrfs_device **device_out)
2527 {
2528 	struct request_queue *q;
2529 	struct btrfs_device *device;
2530 	struct block_device *bdev;
2531 	struct btrfs_fs_info *fs_info = root->fs_info;
2532 	struct list_head *devices;
2533 	struct rcu_string *name;
2534 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2535 	int ret = 0;
2536 
2537 	*device_out = NULL;
2538 	if (fs_info->fs_devices->seeding) {
2539 		btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2540 		return -EINVAL;
2541 	}
2542 
2543 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2544 				  fs_info->bdev_holder);
2545 	if (IS_ERR(bdev)) {
2546 		btrfs_err(fs_info, "target device %s is invalid!", device_path);
2547 		return PTR_ERR(bdev);
2548 	}
2549 
2550 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2551 
2552 	devices = &fs_info->fs_devices->devices;
2553 	list_for_each_entry(device, devices, dev_list) {
2554 		if (device->bdev == bdev) {
2555 			btrfs_err(fs_info,
2556 				  "target device is in the filesystem!");
2557 			ret = -EEXIST;
2558 			goto error;
2559 		}
2560 	}
2561 
2562 
2563 	if (i_size_read(bdev->bd_inode) <
2564 	    btrfs_device_get_total_bytes(srcdev)) {
2565 		btrfs_err(fs_info,
2566 			  "target device is smaller than source device!");
2567 		ret = -EINVAL;
2568 		goto error;
2569 	}
2570 
2571 
2572 	device = btrfs_alloc_device(NULL, &devid, NULL);
2573 	if (IS_ERR(device)) {
2574 		ret = PTR_ERR(device);
2575 		goto error;
2576 	}
2577 
2578 	name = rcu_string_strdup(device_path, GFP_NOFS);
2579 	if (!name) {
2580 		kfree(device);
2581 		ret = -ENOMEM;
2582 		goto error;
2583 	}
2584 	rcu_assign_pointer(device->name, name);
2585 
2586 	q = bdev_get_queue(bdev);
2587 	if (blk_queue_discard(q))
2588 		device->can_discard = 1;
2589 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2590 	device->writeable = 1;
2591 	device->generation = 0;
2592 	device->io_width = root->sectorsize;
2593 	device->io_align = root->sectorsize;
2594 	device->sector_size = root->sectorsize;
2595 	device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2596 	device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2597 	device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2598 	ASSERT(list_empty(&srcdev->resized_list));
2599 	device->commit_total_bytes = srcdev->commit_total_bytes;
2600 	device->commit_bytes_used = device->bytes_used;
2601 	device->dev_root = fs_info->dev_root;
2602 	device->bdev = bdev;
2603 	device->in_fs_metadata = 1;
2604 	device->is_tgtdev_for_dev_replace = 1;
2605 	device->mode = FMODE_EXCL;
2606 	device->dev_stats_valid = 1;
2607 	set_blocksize(device->bdev, 4096);
2608 	device->fs_devices = fs_info->fs_devices;
2609 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2610 	fs_info->fs_devices->num_devices++;
2611 	fs_info->fs_devices->open_devices++;
2612 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2613 
2614 	*device_out = device;
2615 	return ret;
2616 
2617 error:
2618 	blkdev_put(bdev, FMODE_EXCL);
2619 	return ret;
2620 }
2621 
btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info * fs_info,struct btrfs_device * tgtdev)2622 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2623 					      struct btrfs_device *tgtdev)
2624 {
2625 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2626 	tgtdev->io_width = fs_info->dev_root->sectorsize;
2627 	tgtdev->io_align = fs_info->dev_root->sectorsize;
2628 	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2629 	tgtdev->dev_root = fs_info->dev_root;
2630 	tgtdev->in_fs_metadata = 1;
2631 }
2632 
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2633 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2634 					struct btrfs_device *device)
2635 {
2636 	int ret;
2637 	struct btrfs_path *path;
2638 	struct btrfs_root *root;
2639 	struct btrfs_dev_item *dev_item;
2640 	struct extent_buffer *leaf;
2641 	struct btrfs_key key;
2642 
2643 	root = device->dev_root->fs_info->chunk_root;
2644 
2645 	path = btrfs_alloc_path();
2646 	if (!path)
2647 		return -ENOMEM;
2648 
2649 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2650 	key.type = BTRFS_DEV_ITEM_KEY;
2651 	key.offset = device->devid;
2652 
2653 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2654 	if (ret < 0)
2655 		goto out;
2656 
2657 	if (ret > 0) {
2658 		ret = -ENOENT;
2659 		goto out;
2660 	}
2661 
2662 	leaf = path->nodes[0];
2663 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2664 
2665 	btrfs_set_device_id(leaf, dev_item, device->devid);
2666 	btrfs_set_device_type(leaf, dev_item, device->type);
2667 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2668 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2669 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2670 	btrfs_set_device_total_bytes(leaf, dev_item,
2671 				     btrfs_device_get_disk_total_bytes(device));
2672 	btrfs_set_device_bytes_used(leaf, dev_item,
2673 				    btrfs_device_get_bytes_used(device));
2674 	btrfs_mark_buffer_dirty(leaf);
2675 
2676 out:
2677 	btrfs_free_path(path);
2678 	return ret;
2679 }
2680 
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2681 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2682 		      struct btrfs_device *device, u64 new_size)
2683 {
2684 	struct btrfs_super_block *super_copy =
2685 		device->dev_root->fs_info->super_copy;
2686 	struct btrfs_fs_devices *fs_devices;
2687 	u64 old_total;
2688 	u64 diff;
2689 
2690 	if (!device->writeable)
2691 		return -EACCES;
2692 
2693 	lock_chunks(device->dev_root);
2694 	old_total = btrfs_super_total_bytes(super_copy);
2695 	diff = new_size - device->total_bytes;
2696 
2697 	if (new_size <= device->total_bytes ||
2698 	    device->is_tgtdev_for_dev_replace) {
2699 		unlock_chunks(device->dev_root);
2700 		return -EINVAL;
2701 	}
2702 
2703 	fs_devices = device->dev_root->fs_info->fs_devices;
2704 
2705 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2706 	device->fs_devices->total_rw_bytes += diff;
2707 
2708 	btrfs_device_set_total_bytes(device, new_size);
2709 	btrfs_device_set_disk_total_bytes(device, new_size);
2710 	btrfs_clear_space_info_full(device->dev_root->fs_info);
2711 	if (list_empty(&device->resized_list))
2712 		list_add_tail(&device->resized_list,
2713 			      &fs_devices->resized_devices);
2714 	unlock_chunks(device->dev_root);
2715 
2716 	return btrfs_update_device(trans, device);
2717 }
2718 
btrfs_free_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 chunk_objectid,u64 chunk_offset)2719 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2720 			    struct btrfs_root *root, u64 chunk_objectid,
2721 			    u64 chunk_offset)
2722 {
2723 	int ret;
2724 	struct btrfs_path *path;
2725 	struct btrfs_key key;
2726 
2727 	root = root->fs_info->chunk_root;
2728 	path = btrfs_alloc_path();
2729 	if (!path)
2730 		return -ENOMEM;
2731 
2732 	key.objectid = chunk_objectid;
2733 	key.offset = chunk_offset;
2734 	key.type = BTRFS_CHUNK_ITEM_KEY;
2735 
2736 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2737 	if (ret < 0)
2738 		goto out;
2739 	else if (ret > 0) { /* Logic error or corruption */
2740 		btrfs_handle_fs_error(root->fs_info, -ENOENT,
2741 			    "Failed lookup while freeing chunk.");
2742 		ret = -ENOENT;
2743 		goto out;
2744 	}
2745 
2746 	ret = btrfs_del_item(trans, root, path);
2747 	if (ret < 0)
2748 		btrfs_handle_fs_error(root->fs_info, ret,
2749 			    "Failed to delete chunk item.");
2750 out:
2751 	btrfs_free_path(path);
2752 	return ret;
2753 }
2754 
btrfs_del_sys_chunk(struct btrfs_root * root,u64 chunk_objectid,u64 chunk_offset)2755 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2756 			chunk_offset)
2757 {
2758 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2759 	struct btrfs_disk_key *disk_key;
2760 	struct btrfs_chunk *chunk;
2761 	u8 *ptr;
2762 	int ret = 0;
2763 	u32 num_stripes;
2764 	u32 array_size;
2765 	u32 len = 0;
2766 	u32 cur;
2767 	struct btrfs_key key;
2768 
2769 	lock_chunks(root);
2770 	array_size = btrfs_super_sys_array_size(super_copy);
2771 
2772 	ptr = super_copy->sys_chunk_array;
2773 	cur = 0;
2774 
2775 	while (cur < array_size) {
2776 		disk_key = (struct btrfs_disk_key *)ptr;
2777 		btrfs_disk_key_to_cpu(&key, disk_key);
2778 
2779 		len = sizeof(*disk_key);
2780 
2781 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2782 			chunk = (struct btrfs_chunk *)(ptr + len);
2783 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2784 			len += btrfs_chunk_item_size(num_stripes);
2785 		} else {
2786 			ret = -EIO;
2787 			break;
2788 		}
2789 		if (key.objectid == chunk_objectid &&
2790 		    key.offset == chunk_offset) {
2791 			memmove(ptr, ptr + len, array_size - (cur + len));
2792 			array_size -= len;
2793 			btrfs_set_super_sys_array_size(super_copy, array_size);
2794 		} else {
2795 			ptr += len;
2796 			cur += len;
2797 		}
2798 	}
2799 	unlock_chunks(root);
2800 	return ret;
2801 }
2802 
btrfs_remove_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 chunk_offset)2803 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2804 		       struct btrfs_root *root, u64 chunk_offset)
2805 {
2806 	struct extent_map_tree *em_tree;
2807 	struct extent_map *em;
2808 	struct btrfs_root *extent_root = root->fs_info->extent_root;
2809 	struct map_lookup *map;
2810 	u64 dev_extent_len = 0;
2811 	u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2812 	int i, ret = 0;
2813 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2814 
2815 	/* Just in case */
2816 	root = root->fs_info->chunk_root;
2817 	em_tree = &root->fs_info->mapping_tree.map_tree;
2818 
2819 	read_lock(&em_tree->lock);
2820 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2821 	read_unlock(&em_tree->lock);
2822 
2823 	if (!em || em->start > chunk_offset ||
2824 	    em->start + em->len < chunk_offset) {
2825 		/*
2826 		 * This is a logic error, but we don't want to just rely on the
2827 		 * user having built with ASSERT enabled, so if ASSERT doesn't
2828 		 * do anything we still error out.
2829 		 */
2830 		ASSERT(0);
2831 		if (em)
2832 			free_extent_map(em);
2833 		return -EINVAL;
2834 	}
2835 	map = em->map_lookup;
2836 	lock_chunks(root->fs_info->chunk_root);
2837 	check_system_chunk(trans, extent_root, map->type);
2838 	unlock_chunks(root->fs_info->chunk_root);
2839 
2840 	/*
2841 	 * Take the device list mutex to prevent races with the final phase of
2842 	 * a device replace operation that replaces the device object associated
2843 	 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2844 	 */
2845 	mutex_lock(&fs_devices->device_list_mutex);
2846 	for (i = 0; i < map->num_stripes; i++) {
2847 		struct btrfs_device *device = map->stripes[i].dev;
2848 		ret = btrfs_free_dev_extent(trans, device,
2849 					    map->stripes[i].physical,
2850 					    &dev_extent_len);
2851 		if (ret) {
2852 			mutex_unlock(&fs_devices->device_list_mutex);
2853 			btrfs_abort_transaction(trans, ret);
2854 			goto out;
2855 		}
2856 
2857 		if (device->bytes_used > 0) {
2858 			lock_chunks(root);
2859 			btrfs_device_set_bytes_used(device,
2860 					device->bytes_used - dev_extent_len);
2861 			spin_lock(&root->fs_info->free_chunk_lock);
2862 			root->fs_info->free_chunk_space += dev_extent_len;
2863 			spin_unlock(&root->fs_info->free_chunk_lock);
2864 			btrfs_clear_space_info_full(root->fs_info);
2865 			unlock_chunks(root);
2866 		}
2867 
2868 		if (map->stripes[i].dev) {
2869 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2870 			if (ret) {
2871 				mutex_unlock(&fs_devices->device_list_mutex);
2872 				btrfs_abort_transaction(trans, ret);
2873 				goto out;
2874 			}
2875 		}
2876 	}
2877 	mutex_unlock(&fs_devices->device_list_mutex);
2878 
2879 	ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2880 	if (ret) {
2881 		btrfs_abort_transaction(trans, ret);
2882 		goto out;
2883 	}
2884 
2885 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2886 
2887 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2888 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2889 		if (ret) {
2890 			btrfs_abort_transaction(trans, ret);
2891 			goto out;
2892 		}
2893 	}
2894 
2895 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2896 	if (ret) {
2897 		btrfs_abort_transaction(trans, ret);
2898 		goto out;
2899 	}
2900 
2901 out:
2902 	/* once for us */
2903 	free_extent_map(em);
2904 	return ret;
2905 }
2906 
btrfs_relocate_chunk(struct btrfs_root * root,u64 chunk_offset)2907 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2908 {
2909 	struct btrfs_root *extent_root;
2910 	struct btrfs_trans_handle *trans;
2911 	int ret;
2912 
2913 	root = root->fs_info->chunk_root;
2914 	extent_root = root->fs_info->extent_root;
2915 
2916 	/*
2917 	 * Prevent races with automatic removal of unused block groups.
2918 	 * After we relocate and before we remove the chunk with offset
2919 	 * chunk_offset, automatic removal of the block group can kick in,
2920 	 * resulting in a failure when calling btrfs_remove_chunk() below.
2921 	 *
2922 	 * Make sure to acquire this mutex before doing a tree search (dev
2923 	 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2924 	 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2925 	 * we release the path used to search the chunk/dev tree and before
2926 	 * the current task acquires this mutex and calls us.
2927 	 */
2928 	ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2929 
2930 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2931 	if (ret)
2932 		return -ENOSPC;
2933 
2934 	/* step one, relocate all the extents inside this chunk */
2935 	btrfs_scrub_pause(root);
2936 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2937 	btrfs_scrub_continue(root);
2938 	if (ret)
2939 		return ret;
2940 
2941 	trans = btrfs_start_trans_remove_block_group(root->fs_info,
2942 						     chunk_offset);
2943 	if (IS_ERR(trans)) {
2944 		ret = PTR_ERR(trans);
2945 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2946 		return ret;
2947 	}
2948 
2949 	/*
2950 	 * step two, delete the device extents and the
2951 	 * chunk tree entries
2952 	 */
2953 	ret = btrfs_remove_chunk(trans, root, chunk_offset);
2954 	btrfs_end_transaction(trans, extent_root);
2955 	return ret;
2956 }
2957 
btrfs_relocate_sys_chunks(struct btrfs_root * root)2958 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2959 {
2960 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2961 	struct btrfs_path *path;
2962 	struct extent_buffer *leaf;
2963 	struct btrfs_chunk *chunk;
2964 	struct btrfs_key key;
2965 	struct btrfs_key found_key;
2966 	u64 chunk_type;
2967 	bool retried = false;
2968 	int failed = 0;
2969 	int ret;
2970 
2971 	path = btrfs_alloc_path();
2972 	if (!path)
2973 		return -ENOMEM;
2974 
2975 again:
2976 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2977 	key.offset = (u64)-1;
2978 	key.type = BTRFS_CHUNK_ITEM_KEY;
2979 
2980 	while (1) {
2981 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2982 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2983 		if (ret < 0) {
2984 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2985 			goto error;
2986 		}
2987 		BUG_ON(ret == 0); /* Corruption */
2988 
2989 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2990 					  key.type);
2991 		if (ret)
2992 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2993 		if (ret < 0)
2994 			goto error;
2995 		if (ret > 0)
2996 			break;
2997 
2998 		leaf = path->nodes[0];
2999 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3000 
3001 		chunk = btrfs_item_ptr(leaf, path->slots[0],
3002 				       struct btrfs_chunk);
3003 		chunk_type = btrfs_chunk_type(leaf, chunk);
3004 		btrfs_release_path(path);
3005 
3006 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3007 			ret = btrfs_relocate_chunk(chunk_root,
3008 						   found_key.offset);
3009 			if (ret == -ENOSPC)
3010 				failed++;
3011 			else
3012 				BUG_ON(ret);
3013 		}
3014 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
3015 
3016 		if (found_key.offset == 0)
3017 			break;
3018 		key.offset = found_key.offset - 1;
3019 	}
3020 	ret = 0;
3021 	if (failed && !retried) {
3022 		failed = 0;
3023 		retried = true;
3024 		goto again;
3025 	} else if (WARN_ON(failed && retried)) {
3026 		ret = -ENOSPC;
3027 	}
3028 error:
3029 	btrfs_free_path(path);
3030 	return ret;
3031 }
3032 
insert_balance_item(struct btrfs_root * root,struct btrfs_balance_control * bctl)3033 static int insert_balance_item(struct btrfs_root *root,
3034 			       struct btrfs_balance_control *bctl)
3035 {
3036 	struct btrfs_trans_handle *trans;
3037 	struct btrfs_balance_item *item;
3038 	struct btrfs_disk_balance_args disk_bargs;
3039 	struct btrfs_path *path;
3040 	struct extent_buffer *leaf;
3041 	struct btrfs_key key;
3042 	int ret, err;
3043 
3044 	path = btrfs_alloc_path();
3045 	if (!path)
3046 		return -ENOMEM;
3047 
3048 	trans = btrfs_start_transaction(root, 0);
3049 	if (IS_ERR(trans)) {
3050 		btrfs_free_path(path);
3051 		return PTR_ERR(trans);
3052 	}
3053 
3054 	key.objectid = BTRFS_BALANCE_OBJECTID;
3055 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3056 	key.offset = 0;
3057 
3058 	ret = btrfs_insert_empty_item(trans, root, path, &key,
3059 				      sizeof(*item));
3060 	if (ret)
3061 		goto out;
3062 
3063 	leaf = path->nodes[0];
3064 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3065 
3066 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3067 
3068 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3069 	btrfs_set_balance_data(leaf, item, &disk_bargs);
3070 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3071 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
3072 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3073 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
3074 
3075 	btrfs_set_balance_flags(leaf, item, bctl->flags);
3076 
3077 	btrfs_mark_buffer_dirty(leaf);
3078 out:
3079 	btrfs_free_path(path);
3080 	err = btrfs_commit_transaction(trans, root);
3081 	if (err && !ret)
3082 		ret = err;
3083 	return ret;
3084 }
3085 
del_balance_item(struct btrfs_root * root)3086 static int del_balance_item(struct btrfs_root *root)
3087 {
3088 	struct btrfs_trans_handle *trans;
3089 	struct btrfs_path *path;
3090 	struct btrfs_key key;
3091 	int ret, err;
3092 
3093 	path = btrfs_alloc_path();
3094 	if (!path)
3095 		return -ENOMEM;
3096 
3097 	trans = btrfs_start_transaction(root, 0);
3098 	if (IS_ERR(trans)) {
3099 		btrfs_free_path(path);
3100 		return PTR_ERR(trans);
3101 	}
3102 
3103 	key.objectid = BTRFS_BALANCE_OBJECTID;
3104 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3105 	key.offset = 0;
3106 
3107 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3108 	if (ret < 0)
3109 		goto out;
3110 	if (ret > 0) {
3111 		ret = -ENOENT;
3112 		goto out;
3113 	}
3114 
3115 	ret = btrfs_del_item(trans, root, path);
3116 out:
3117 	btrfs_free_path(path);
3118 	err = btrfs_commit_transaction(trans, root);
3119 	if (err && !ret)
3120 		ret = err;
3121 	return ret;
3122 }
3123 
3124 /*
3125  * This is a heuristic used to reduce the number of chunks balanced on
3126  * resume after balance was interrupted.
3127  */
update_balance_args(struct btrfs_balance_control * bctl)3128 static void update_balance_args(struct btrfs_balance_control *bctl)
3129 {
3130 	/*
3131 	 * Turn on soft mode for chunk types that were being converted.
3132 	 */
3133 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3134 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3135 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3136 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3137 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3138 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3139 
3140 	/*
3141 	 * Turn on usage filter if is not already used.  The idea is
3142 	 * that chunks that we have already balanced should be
3143 	 * reasonably full.  Don't do it for chunks that are being
3144 	 * converted - that will keep us from relocating unconverted
3145 	 * (albeit full) chunks.
3146 	 */
3147 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3148 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3149 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3150 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3151 		bctl->data.usage = 90;
3152 	}
3153 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3154 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3155 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3156 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3157 		bctl->sys.usage = 90;
3158 	}
3159 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3160 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3161 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3162 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3163 		bctl->meta.usage = 90;
3164 	}
3165 }
3166 
3167 /*
3168  * Should be called with both balance and volume mutexes held to
3169  * serialize other volume operations (add_dev/rm_dev/resize) with
3170  * restriper.  Same goes for unset_balance_control.
3171  */
set_balance_control(struct btrfs_balance_control * bctl)3172 static void set_balance_control(struct btrfs_balance_control *bctl)
3173 {
3174 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3175 
3176 	BUG_ON(fs_info->balance_ctl);
3177 
3178 	spin_lock(&fs_info->balance_lock);
3179 	fs_info->balance_ctl = bctl;
3180 	spin_unlock(&fs_info->balance_lock);
3181 }
3182 
unset_balance_control(struct btrfs_fs_info * fs_info)3183 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3184 {
3185 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3186 
3187 	BUG_ON(!fs_info->balance_ctl);
3188 
3189 	spin_lock(&fs_info->balance_lock);
3190 	fs_info->balance_ctl = NULL;
3191 	spin_unlock(&fs_info->balance_lock);
3192 
3193 	kfree(bctl);
3194 }
3195 
3196 /*
3197  * Balance filters.  Return 1 if chunk should be filtered out
3198  * (should not be balanced).
3199  */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3200 static int chunk_profiles_filter(u64 chunk_type,
3201 				 struct btrfs_balance_args *bargs)
3202 {
3203 	chunk_type = chunk_to_extended(chunk_type) &
3204 				BTRFS_EXTENDED_PROFILE_MASK;
3205 
3206 	if (bargs->profiles & chunk_type)
3207 		return 0;
3208 
3209 	return 1;
3210 }
3211 
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3212 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3213 			      struct btrfs_balance_args *bargs)
3214 {
3215 	struct btrfs_block_group_cache *cache;
3216 	u64 chunk_used;
3217 	u64 user_thresh_min;
3218 	u64 user_thresh_max;
3219 	int ret = 1;
3220 
3221 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3222 	chunk_used = btrfs_block_group_used(&cache->item);
3223 
3224 	if (bargs->usage_min == 0)
3225 		user_thresh_min = 0;
3226 	else
3227 		user_thresh_min = div_factor_fine(cache->key.offset,
3228 					bargs->usage_min);
3229 
3230 	if (bargs->usage_max == 0)
3231 		user_thresh_max = 1;
3232 	else if (bargs->usage_max > 100)
3233 		user_thresh_max = cache->key.offset;
3234 	else
3235 		user_thresh_max = div_factor_fine(cache->key.offset,
3236 					bargs->usage_max);
3237 
3238 	if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3239 		ret = 0;
3240 
3241 	btrfs_put_block_group(cache);
3242 	return ret;
3243 }
3244 
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3245 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3246 		u64 chunk_offset, struct btrfs_balance_args *bargs)
3247 {
3248 	struct btrfs_block_group_cache *cache;
3249 	u64 chunk_used, user_thresh;
3250 	int ret = 1;
3251 
3252 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3253 	chunk_used = btrfs_block_group_used(&cache->item);
3254 
3255 	if (bargs->usage_min == 0)
3256 		user_thresh = 1;
3257 	else if (bargs->usage > 100)
3258 		user_thresh = cache->key.offset;
3259 	else
3260 		user_thresh = div_factor_fine(cache->key.offset,
3261 					      bargs->usage);
3262 
3263 	if (chunk_used < user_thresh)
3264 		ret = 0;
3265 
3266 	btrfs_put_block_group(cache);
3267 	return ret;
3268 }
3269 
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3270 static int chunk_devid_filter(struct extent_buffer *leaf,
3271 			      struct btrfs_chunk *chunk,
3272 			      struct btrfs_balance_args *bargs)
3273 {
3274 	struct btrfs_stripe *stripe;
3275 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3276 	int i;
3277 
3278 	for (i = 0; i < num_stripes; i++) {
3279 		stripe = btrfs_stripe_nr(chunk, i);
3280 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3281 			return 0;
3282 	}
3283 
3284 	return 1;
3285 }
3286 
3287 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3288 static int chunk_drange_filter(struct extent_buffer *leaf,
3289 			       struct btrfs_chunk *chunk,
3290 			       u64 chunk_offset,
3291 			       struct btrfs_balance_args *bargs)
3292 {
3293 	struct btrfs_stripe *stripe;
3294 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3295 	u64 stripe_offset;
3296 	u64 stripe_length;
3297 	int factor;
3298 	int i;
3299 
3300 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3301 		return 0;
3302 
3303 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3304 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3305 		factor = num_stripes / 2;
3306 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3307 		factor = num_stripes - 1;
3308 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3309 		factor = num_stripes - 2;
3310 	} else {
3311 		factor = num_stripes;
3312 	}
3313 
3314 	for (i = 0; i < num_stripes; i++) {
3315 		stripe = btrfs_stripe_nr(chunk, i);
3316 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3317 			continue;
3318 
3319 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
3320 		stripe_length = btrfs_chunk_length(leaf, chunk);
3321 		stripe_length = div_u64(stripe_length, factor);
3322 
3323 		if (stripe_offset < bargs->pend &&
3324 		    stripe_offset + stripe_length > bargs->pstart)
3325 			return 0;
3326 	}
3327 
3328 	return 1;
3329 }
3330 
3331 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3332 static int chunk_vrange_filter(struct extent_buffer *leaf,
3333 			       struct btrfs_chunk *chunk,
3334 			       u64 chunk_offset,
3335 			       struct btrfs_balance_args *bargs)
3336 {
3337 	if (chunk_offset < bargs->vend &&
3338 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3339 		/* at least part of the chunk is inside this vrange */
3340 		return 0;
3341 
3342 	return 1;
3343 }
3344 
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3345 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3346 			       struct btrfs_chunk *chunk,
3347 			       struct btrfs_balance_args *bargs)
3348 {
3349 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3350 
3351 	if (bargs->stripes_min <= num_stripes
3352 			&& num_stripes <= bargs->stripes_max)
3353 		return 0;
3354 
3355 	return 1;
3356 }
3357 
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3358 static int chunk_soft_convert_filter(u64 chunk_type,
3359 				     struct btrfs_balance_args *bargs)
3360 {
3361 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3362 		return 0;
3363 
3364 	chunk_type = chunk_to_extended(chunk_type) &
3365 				BTRFS_EXTENDED_PROFILE_MASK;
3366 
3367 	if (bargs->target == chunk_type)
3368 		return 1;
3369 
3370 	return 0;
3371 }
3372 
should_balance_chunk(struct btrfs_root * root,struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3373 static int should_balance_chunk(struct btrfs_root *root,
3374 				struct extent_buffer *leaf,
3375 				struct btrfs_chunk *chunk, u64 chunk_offset)
3376 {
3377 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3378 	struct btrfs_balance_args *bargs = NULL;
3379 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3380 
3381 	/* type filter */
3382 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3383 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3384 		return 0;
3385 	}
3386 
3387 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3388 		bargs = &bctl->data;
3389 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3390 		bargs = &bctl->sys;
3391 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3392 		bargs = &bctl->meta;
3393 
3394 	/* profiles filter */
3395 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3396 	    chunk_profiles_filter(chunk_type, bargs)) {
3397 		return 0;
3398 	}
3399 
3400 	/* usage filter */
3401 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3402 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3403 		return 0;
3404 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3405 	    chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3406 		return 0;
3407 	}
3408 
3409 	/* devid filter */
3410 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3411 	    chunk_devid_filter(leaf, chunk, bargs)) {
3412 		return 0;
3413 	}
3414 
3415 	/* drange filter, makes sense only with devid filter */
3416 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3417 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3418 		return 0;
3419 	}
3420 
3421 	/* vrange filter */
3422 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3423 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3424 		return 0;
3425 	}
3426 
3427 	/* stripes filter */
3428 	if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3429 	    chunk_stripes_range_filter(leaf, chunk, bargs)) {
3430 		return 0;
3431 	}
3432 
3433 	/* soft profile changing mode */
3434 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3435 	    chunk_soft_convert_filter(chunk_type, bargs)) {
3436 		return 0;
3437 	}
3438 
3439 	/*
3440 	 * limited by count, must be the last filter
3441 	 */
3442 	if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3443 		if (bargs->limit == 0)
3444 			return 0;
3445 		else
3446 			bargs->limit--;
3447 	} else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3448 		/*
3449 		 * Same logic as the 'limit' filter; the minimum cannot be
3450 		 * determined here because we do not have the global information
3451 		 * about the count of all chunks that satisfy the filters.
3452 		 */
3453 		if (bargs->limit_max == 0)
3454 			return 0;
3455 		else
3456 			bargs->limit_max--;
3457 	}
3458 
3459 	return 1;
3460 }
3461 
__btrfs_balance(struct btrfs_fs_info * fs_info)3462 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3463 {
3464 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3465 	struct btrfs_root *chunk_root = fs_info->chunk_root;
3466 	struct btrfs_root *dev_root = fs_info->dev_root;
3467 	struct list_head *devices;
3468 	struct btrfs_device *device;
3469 	u64 old_size;
3470 	u64 size_to_free;
3471 	u64 chunk_type;
3472 	struct btrfs_chunk *chunk;
3473 	struct btrfs_path *path = NULL;
3474 	struct btrfs_key key;
3475 	struct btrfs_key found_key;
3476 	struct btrfs_trans_handle *trans;
3477 	struct extent_buffer *leaf;
3478 	int slot;
3479 	int ret;
3480 	int enospc_errors = 0;
3481 	bool counting = true;
3482 	/* The single value limit and min/max limits use the same bytes in the */
3483 	u64 limit_data = bctl->data.limit;
3484 	u64 limit_meta = bctl->meta.limit;
3485 	u64 limit_sys = bctl->sys.limit;
3486 	u32 count_data = 0;
3487 	u32 count_meta = 0;
3488 	u32 count_sys = 0;
3489 	int chunk_reserved = 0;
3490 	u64 bytes_used = 0;
3491 
3492 	/* step one make some room on all the devices */
3493 	devices = &fs_info->fs_devices->devices;
3494 	list_for_each_entry(device, devices, dev_list) {
3495 		old_size = btrfs_device_get_total_bytes(device);
3496 		size_to_free = div_factor(old_size, 1);
3497 		size_to_free = min_t(u64, size_to_free, SZ_1M);
3498 		if (!device->writeable ||
3499 		    btrfs_device_get_total_bytes(device) -
3500 		    btrfs_device_get_bytes_used(device) > size_to_free ||
3501 		    device->is_tgtdev_for_dev_replace)
3502 			continue;
3503 
3504 		ret = btrfs_shrink_device(device, old_size - size_to_free);
3505 		if (ret == -ENOSPC)
3506 			break;
3507 		if (ret) {
3508 			/* btrfs_shrink_device never returns ret > 0 */
3509 			WARN_ON(ret > 0);
3510 			goto error;
3511 		}
3512 
3513 		trans = btrfs_start_transaction(dev_root, 0);
3514 		if (IS_ERR(trans)) {
3515 			ret = PTR_ERR(trans);
3516 			btrfs_info_in_rcu(fs_info,
3517 		 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3518 					  rcu_str_deref(device->name), ret,
3519 					  old_size, old_size - size_to_free);
3520 			goto error;
3521 		}
3522 
3523 		ret = btrfs_grow_device(trans, device, old_size);
3524 		if (ret) {
3525 			btrfs_end_transaction(trans, dev_root);
3526 			/* btrfs_grow_device never returns ret > 0 */
3527 			WARN_ON(ret > 0);
3528 			btrfs_info_in_rcu(fs_info,
3529 		 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3530 					  rcu_str_deref(device->name), ret,
3531 					  old_size, old_size - size_to_free);
3532 			goto error;
3533 		}
3534 
3535 		btrfs_end_transaction(trans, dev_root);
3536 	}
3537 
3538 	/* step two, relocate all the chunks */
3539 	path = btrfs_alloc_path();
3540 	if (!path) {
3541 		ret = -ENOMEM;
3542 		goto error;
3543 	}
3544 
3545 	/* zero out stat counters */
3546 	spin_lock(&fs_info->balance_lock);
3547 	memset(&bctl->stat, 0, sizeof(bctl->stat));
3548 	spin_unlock(&fs_info->balance_lock);
3549 again:
3550 	if (!counting) {
3551 		/*
3552 		 * The single value limit and min/max limits use the same bytes
3553 		 * in the
3554 		 */
3555 		bctl->data.limit = limit_data;
3556 		bctl->meta.limit = limit_meta;
3557 		bctl->sys.limit = limit_sys;
3558 	}
3559 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3560 	key.offset = (u64)-1;
3561 	key.type = BTRFS_CHUNK_ITEM_KEY;
3562 
3563 	while (1) {
3564 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3565 		    atomic_read(&fs_info->balance_cancel_req)) {
3566 			ret = -ECANCELED;
3567 			goto error;
3568 		}
3569 
3570 		mutex_lock(&fs_info->delete_unused_bgs_mutex);
3571 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3572 		if (ret < 0) {
3573 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3574 			goto error;
3575 		}
3576 
3577 		/*
3578 		 * this shouldn't happen, it means the last relocate
3579 		 * failed
3580 		 */
3581 		if (ret == 0)
3582 			BUG(); /* FIXME break ? */
3583 
3584 		ret = btrfs_previous_item(chunk_root, path, 0,
3585 					  BTRFS_CHUNK_ITEM_KEY);
3586 		if (ret) {
3587 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3588 			ret = 0;
3589 			break;
3590 		}
3591 
3592 		leaf = path->nodes[0];
3593 		slot = path->slots[0];
3594 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3595 
3596 		if (found_key.objectid != key.objectid) {
3597 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3598 			break;
3599 		}
3600 
3601 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3602 		chunk_type = btrfs_chunk_type(leaf, chunk);
3603 
3604 		if (!counting) {
3605 			spin_lock(&fs_info->balance_lock);
3606 			bctl->stat.considered++;
3607 			spin_unlock(&fs_info->balance_lock);
3608 		}
3609 
3610 		ret = should_balance_chunk(chunk_root, leaf, chunk,
3611 					   found_key.offset);
3612 
3613 		btrfs_release_path(path);
3614 		if (!ret) {
3615 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3616 			goto loop;
3617 		}
3618 
3619 		if (counting) {
3620 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3621 			spin_lock(&fs_info->balance_lock);
3622 			bctl->stat.expected++;
3623 			spin_unlock(&fs_info->balance_lock);
3624 
3625 			if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3626 				count_data++;
3627 			else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3628 				count_sys++;
3629 			else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3630 				count_meta++;
3631 
3632 			goto loop;
3633 		}
3634 
3635 		/*
3636 		 * Apply limit_min filter, no need to check if the LIMITS
3637 		 * filter is used, limit_min is 0 by default
3638 		 */
3639 		if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3640 					count_data < bctl->data.limit_min)
3641 				|| ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3642 					count_meta < bctl->meta.limit_min)
3643 				|| ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3644 					count_sys < bctl->sys.limit_min)) {
3645 			mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3646 			goto loop;
3647 		}
3648 
3649 		ASSERT(fs_info->data_sinfo);
3650 		spin_lock(&fs_info->data_sinfo->lock);
3651 		bytes_used = fs_info->data_sinfo->bytes_used;
3652 		spin_unlock(&fs_info->data_sinfo->lock);
3653 
3654 		if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3655 		    !chunk_reserved && !bytes_used) {
3656 			trans = btrfs_start_transaction(chunk_root, 0);
3657 			if (IS_ERR(trans)) {
3658 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3659 				ret = PTR_ERR(trans);
3660 				goto error;
3661 			}
3662 
3663 			ret = btrfs_force_chunk_alloc(trans, chunk_root,
3664 						      BTRFS_BLOCK_GROUP_DATA);
3665 			btrfs_end_transaction(trans, chunk_root);
3666 			if (ret < 0) {
3667 				mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3668 				goto error;
3669 			}
3670 			chunk_reserved = 1;
3671 		}
3672 
3673 		ret = btrfs_relocate_chunk(chunk_root,
3674 					   found_key.offset);
3675 		mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3676 		if (ret && ret != -ENOSPC)
3677 			goto error;
3678 		if (ret == -ENOSPC) {
3679 			enospc_errors++;
3680 		} else {
3681 			spin_lock(&fs_info->balance_lock);
3682 			bctl->stat.completed++;
3683 			spin_unlock(&fs_info->balance_lock);
3684 		}
3685 loop:
3686 		if (found_key.offset == 0)
3687 			break;
3688 		key.offset = found_key.offset - 1;
3689 	}
3690 
3691 	if (counting) {
3692 		btrfs_release_path(path);
3693 		counting = false;
3694 		goto again;
3695 	}
3696 error:
3697 	btrfs_free_path(path);
3698 	if (enospc_errors) {
3699 		btrfs_info(fs_info, "%d enospc errors during balance",
3700 			   enospc_errors);
3701 		if (!ret)
3702 			ret = -ENOSPC;
3703 	}
3704 
3705 	return ret;
3706 }
3707 
3708 /**
3709  * alloc_profile_is_valid - see if a given profile is valid and reduced
3710  * @flags: profile to validate
3711  * @extended: if true @flags is treated as an extended profile
3712  */
alloc_profile_is_valid(u64 flags,int extended)3713 static int alloc_profile_is_valid(u64 flags, int extended)
3714 {
3715 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3716 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3717 
3718 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3719 
3720 	/* 1) check that all other bits are zeroed */
3721 	if (flags & ~mask)
3722 		return 0;
3723 
3724 	/* 2) see if profile is reduced */
3725 	if (flags == 0)
3726 		return !extended; /* "0" is valid for usual profiles */
3727 
3728 	/* true if exactly one bit set */
3729 	return (flags & (flags - 1)) == 0;
3730 }
3731 
balance_need_close(struct btrfs_fs_info * fs_info)3732 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3733 {
3734 	/* cancel requested || normal exit path */
3735 	return atomic_read(&fs_info->balance_cancel_req) ||
3736 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3737 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3738 }
3739 
__cancel_balance(struct btrfs_fs_info * fs_info)3740 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3741 {
3742 	int ret;
3743 
3744 	unset_balance_control(fs_info);
3745 	ret = del_balance_item(fs_info->tree_root);
3746 	if (ret)
3747 		btrfs_handle_fs_error(fs_info, ret, NULL);
3748 
3749 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3750 }
3751 
3752 /* Non-zero return value signifies invalidity */
validate_convert_profile(struct btrfs_balance_args * bctl_arg,u64 allowed)3753 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3754 		u64 allowed)
3755 {
3756 	return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3757 		(!alloc_profile_is_valid(bctl_arg->target, 1) ||
3758 		 (bctl_arg->target & ~allowed)));
3759 }
3760 
3761 /*
3762  * Should be called with both balance and volume mutexes held
3763  */
btrfs_balance(struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)3764 int btrfs_balance(struct btrfs_balance_control *bctl,
3765 		  struct btrfs_ioctl_balance_args *bargs)
3766 {
3767 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3768 	u64 meta_target, data_target;
3769 	u64 allowed;
3770 	int mixed = 0;
3771 	int ret;
3772 	u64 num_devices;
3773 	unsigned seq;
3774 
3775 	if (btrfs_fs_closing(fs_info) ||
3776 	    atomic_read(&fs_info->balance_pause_req) ||
3777 	    atomic_read(&fs_info->balance_cancel_req)) {
3778 		ret = -EINVAL;
3779 		goto out;
3780 	}
3781 
3782 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3783 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3784 		mixed = 1;
3785 
3786 	/*
3787 	 * In case of mixed groups both data and meta should be picked,
3788 	 * and identical options should be given for both of them.
3789 	 */
3790 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3791 	if (mixed && (bctl->flags & allowed)) {
3792 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3793 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3794 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3795 			btrfs_err(fs_info,
3796 				  "with mixed groups data and metadata balance options must be the same");
3797 			ret = -EINVAL;
3798 			goto out;
3799 		}
3800 	}
3801 
3802 	num_devices = fs_info->fs_devices->num_devices;
3803 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3804 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3805 		BUG_ON(num_devices < 1);
3806 		num_devices--;
3807 	}
3808 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3809 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3810 	if (num_devices > 1)
3811 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3812 	if (num_devices > 2)
3813 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3814 	if (num_devices > 3)
3815 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3816 			    BTRFS_BLOCK_GROUP_RAID6);
3817 	if (validate_convert_profile(&bctl->data, allowed)) {
3818 		btrfs_err(fs_info,
3819 			  "unable to start balance with target data profile %llu",
3820 			  bctl->data.target);
3821 		ret = -EINVAL;
3822 		goto out;
3823 	}
3824 	if (validate_convert_profile(&bctl->meta, allowed)) {
3825 		btrfs_err(fs_info,
3826 			  "unable to start balance with target metadata profile %llu",
3827 			  bctl->meta.target);
3828 		ret = -EINVAL;
3829 		goto out;
3830 	}
3831 	if (validate_convert_profile(&bctl->sys, allowed)) {
3832 		btrfs_err(fs_info,
3833 			  "unable to start balance with target system profile %llu",
3834 			  bctl->sys.target);
3835 		ret = -EINVAL;
3836 		goto out;
3837 	}
3838 
3839 	/* allow to reduce meta or sys integrity only if force set */
3840 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3841 			BTRFS_BLOCK_GROUP_RAID10 |
3842 			BTRFS_BLOCK_GROUP_RAID5 |
3843 			BTRFS_BLOCK_GROUP_RAID6;
3844 	do {
3845 		seq = read_seqbegin(&fs_info->profiles_lock);
3846 
3847 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3848 		     (fs_info->avail_system_alloc_bits & allowed) &&
3849 		     !(bctl->sys.target & allowed)) ||
3850 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3851 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3852 		     !(bctl->meta.target & allowed))) {
3853 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3854 				btrfs_info(fs_info,
3855 					   "force reducing metadata integrity");
3856 			} else {
3857 				btrfs_err(fs_info,
3858 					  "balance will reduce metadata integrity, use force if you want this");
3859 				ret = -EINVAL;
3860 				goto out;
3861 			}
3862 		}
3863 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3864 
3865 	/* if we're not converting, the target field is uninitialized */
3866 	meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3867 		bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3868 	data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3869 		bctl->data.target : fs_info->avail_data_alloc_bits;
3870 	if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3871 		btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3872 		btrfs_warn(fs_info,
3873 			   "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3874 			   meta_target, data_target);
3875 	}
3876 
3877 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3878 		fs_info->num_tolerated_disk_barrier_failures = min(
3879 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3880 			btrfs_get_num_tolerated_disk_barrier_failures(
3881 				bctl->sys.target));
3882 	}
3883 
3884 	ret = insert_balance_item(fs_info->tree_root, bctl);
3885 	if (ret && ret != -EEXIST)
3886 		goto out;
3887 
3888 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3889 		BUG_ON(ret == -EEXIST);
3890 		set_balance_control(bctl);
3891 	} else {
3892 		BUG_ON(ret != -EEXIST);
3893 		spin_lock(&fs_info->balance_lock);
3894 		update_balance_args(bctl);
3895 		spin_unlock(&fs_info->balance_lock);
3896 	}
3897 
3898 	atomic_inc(&fs_info->balance_running);
3899 	mutex_unlock(&fs_info->balance_mutex);
3900 
3901 	ret = __btrfs_balance(fs_info);
3902 
3903 	mutex_lock(&fs_info->balance_mutex);
3904 	atomic_dec(&fs_info->balance_running);
3905 
3906 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3907 		fs_info->num_tolerated_disk_barrier_failures =
3908 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3909 	}
3910 
3911 	if (bargs) {
3912 		memset(bargs, 0, sizeof(*bargs));
3913 		update_ioctl_balance_args(fs_info, 0, bargs);
3914 	}
3915 
3916 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3917 	    balance_need_close(fs_info)) {
3918 		__cancel_balance(fs_info);
3919 	}
3920 
3921 	wake_up(&fs_info->balance_wait_q);
3922 
3923 	return ret;
3924 out:
3925 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3926 		__cancel_balance(fs_info);
3927 	else {
3928 		kfree(bctl);
3929 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3930 	}
3931 	return ret;
3932 }
3933 
balance_kthread(void * data)3934 static int balance_kthread(void *data)
3935 {
3936 	struct btrfs_fs_info *fs_info = data;
3937 	int ret = 0;
3938 
3939 	mutex_lock(&fs_info->volume_mutex);
3940 	mutex_lock(&fs_info->balance_mutex);
3941 
3942 	if (fs_info->balance_ctl) {
3943 		btrfs_info(fs_info, "continuing balance");
3944 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3945 	}
3946 
3947 	mutex_unlock(&fs_info->balance_mutex);
3948 	mutex_unlock(&fs_info->volume_mutex);
3949 
3950 	return ret;
3951 }
3952 
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)3953 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3954 {
3955 	struct task_struct *tsk;
3956 
3957 	spin_lock(&fs_info->balance_lock);
3958 	if (!fs_info->balance_ctl) {
3959 		spin_unlock(&fs_info->balance_lock);
3960 		return 0;
3961 	}
3962 	spin_unlock(&fs_info->balance_lock);
3963 
3964 	if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3965 		btrfs_info(fs_info, "force skipping balance");
3966 		return 0;
3967 	}
3968 
3969 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3970 	return PTR_ERR_OR_ZERO(tsk);
3971 }
3972 
btrfs_recover_balance(struct btrfs_fs_info * fs_info)3973 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3974 {
3975 	struct btrfs_balance_control *bctl;
3976 	struct btrfs_balance_item *item;
3977 	struct btrfs_disk_balance_args disk_bargs;
3978 	struct btrfs_path *path;
3979 	struct extent_buffer *leaf;
3980 	struct btrfs_key key;
3981 	int ret;
3982 
3983 	path = btrfs_alloc_path();
3984 	if (!path)
3985 		return -ENOMEM;
3986 
3987 	key.objectid = BTRFS_BALANCE_OBJECTID;
3988 	key.type = BTRFS_TEMPORARY_ITEM_KEY;
3989 	key.offset = 0;
3990 
3991 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3992 	if (ret < 0)
3993 		goto out;
3994 	if (ret > 0) { /* ret = -ENOENT; */
3995 		ret = 0;
3996 		goto out;
3997 	}
3998 
3999 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4000 	if (!bctl) {
4001 		ret = -ENOMEM;
4002 		goto out;
4003 	}
4004 
4005 	leaf = path->nodes[0];
4006 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4007 
4008 	bctl->fs_info = fs_info;
4009 	bctl->flags = btrfs_balance_flags(leaf, item);
4010 	bctl->flags |= BTRFS_BALANCE_RESUME;
4011 
4012 	btrfs_balance_data(leaf, item, &disk_bargs);
4013 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4014 	btrfs_balance_meta(leaf, item, &disk_bargs);
4015 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4016 	btrfs_balance_sys(leaf, item, &disk_bargs);
4017 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4018 
4019 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4020 
4021 	mutex_lock(&fs_info->volume_mutex);
4022 	mutex_lock(&fs_info->balance_mutex);
4023 
4024 	set_balance_control(bctl);
4025 
4026 	mutex_unlock(&fs_info->balance_mutex);
4027 	mutex_unlock(&fs_info->volume_mutex);
4028 out:
4029 	btrfs_free_path(path);
4030 	return ret;
4031 }
4032 
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4033 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4034 {
4035 	int ret = 0;
4036 
4037 	mutex_lock(&fs_info->balance_mutex);
4038 	if (!fs_info->balance_ctl) {
4039 		mutex_unlock(&fs_info->balance_mutex);
4040 		return -ENOTCONN;
4041 	}
4042 
4043 	if (atomic_read(&fs_info->balance_running)) {
4044 		atomic_inc(&fs_info->balance_pause_req);
4045 		mutex_unlock(&fs_info->balance_mutex);
4046 
4047 		wait_event(fs_info->balance_wait_q,
4048 			   atomic_read(&fs_info->balance_running) == 0);
4049 
4050 		mutex_lock(&fs_info->balance_mutex);
4051 		/* we are good with balance_ctl ripped off from under us */
4052 		BUG_ON(atomic_read(&fs_info->balance_running));
4053 		atomic_dec(&fs_info->balance_pause_req);
4054 	} else {
4055 		ret = -ENOTCONN;
4056 	}
4057 
4058 	mutex_unlock(&fs_info->balance_mutex);
4059 	return ret;
4060 }
4061 
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4062 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4063 {
4064 	if (fs_info->sb->s_flags & MS_RDONLY)
4065 		return -EROFS;
4066 
4067 	mutex_lock(&fs_info->balance_mutex);
4068 	if (!fs_info->balance_ctl) {
4069 		mutex_unlock(&fs_info->balance_mutex);
4070 		return -ENOTCONN;
4071 	}
4072 
4073 	atomic_inc(&fs_info->balance_cancel_req);
4074 	/*
4075 	 * if we are running just wait and return, balance item is
4076 	 * deleted in btrfs_balance in this case
4077 	 */
4078 	if (atomic_read(&fs_info->balance_running)) {
4079 		mutex_unlock(&fs_info->balance_mutex);
4080 		wait_event(fs_info->balance_wait_q,
4081 			   atomic_read(&fs_info->balance_running) == 0);
4082 		mutex_lock(&fs_info->balance_mutex);
4083 	} else {
4084 		/* __cancel_balance needs volume_mutex */
4085 		mutex_unlock(&fs_info->balance_mutex);
4086 		mutex_lock(&fs_info->volume_mutex);
4087 		mutex_lock(&fs_info->balance_mutex);
4088 
4089 		if (fs_info->balance_ctl)
4090 			__cancel_balance(fs_info);
4091 
4092 		mutex_unlock(&fs_info->volume_mutex);
4093 	}
4094 
4095 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4096 	atomic_dec(&fs_info->balance_cancel_req);
4097 	mutex_unlock(&fs_info->balance_mutex);
4098 	return 0;
4099 }
4100 
btrfs_uuid_scan_kthread(void * data)4101 static int btrfs_uuid_scan_kthread(void *data)
4102 {
4103 	struct btrfs_fs_info *fs_info = data;
4104 	struct btrfs_root *root = fs_info->tree_root;
4105 	struct btrfs_key key;
4106 	struct btrfs_key max_key;
4107 	struct btrfs_path *path = NULL;
4108 	int ret = 0;
4109 	struct extent_buffer *eb;
4110 	int slot;
4111 	struct btrfs_root_item root_item;
4112 	u32 item_size;
4113 	struct btrfs_trans_handle *trans = NULL;
4114 
4115 	path = btrfs_alloc_path();
4116 	if (!path) {
4117 		ret = -ENOMEM;
4118 		goto out;
4119 	}
4120 
4121 	key.objectid = 0;
4122 	key.type = BTRFS_ROOT_ITEM_KEY;
4123 	key.offset = 0;
4124 
4125 	max_key.objectid = (u64)-1;
4126 	max_key.type = BTRFS_ROOT_ITEM_KEY;
4127 	max_key.offset = (u64)-1;
4128 
4129 	while (1) {
4130 		ret = btrfs_search_forward(root, &key, path, 0);
4131 		if (ret) {
4132 			if (ret > 0)
4133 				ret = 0;
4134 			break;
4135 		}
4136 
4137 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
4138 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4139 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4140 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
4141 			goto skip;
4142 
4143 		eb = path->nodes[0];
4144 		slot = path->slots[0];
4145 		item_size = btrfs_item_size_nr(eb, slot);
4146 		if (item_size < sizeof(root_item))
4147 			goto skip;
4148 
4149 		read_extent_buffer(eb, &root_item,
4150 				   btrfs_item_ptr_offset(eb, slot),
4151 				   (int)sizeof(root_item));
4152 		if (btrfs_root_refs(&root_item) == 0)
4153 			goto skip;
4154 
4155 		if (!btrfs_is_empty_uuid(root_item.uuid) ||
4156 		    !btrfs_is_empty_uuid(root_item.received_uuid)) {
4157 			if (trans)
4158 				goto update_tree;
4159 
4160 			btrfs_release_path(path);
4161 			/*
4162 			 * 1 - subvol uuid item
4163 			 * 1 - received_subvol uuid item
4164 			 */
4165 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4166 			if (IS_ERR(trans)) {
4167 				ret = PTR_ERR(trans);
4168 				break;
4169 			}
4170 			continue;
4171 		} else {
4172 			goto skip;
4173 		}
4174 update_tree:
4175 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
4176 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4177 						  root_item.uuid,
4178 						  BTRFS_UUID_KEY_SUBVOL,
4179 						  key.objectid);
4180 			if (ret < 0) {
4181 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4182 					ret);
4183 				break;
4184 			}
4185 		}
4186 
4187 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4188 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4189 						  root_item.received_uuid,
4190 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4191 						  key.objectid);
4192 			if (ret < 0) {
4193 				btrfs_warn(fs_info, "uuid_tree_add failed %d",
4194 					ret);
4195 				break;
4196 			}
4197 		}
4198 
4199 skip:
4200 		if (trans) {
4201 			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4202 			trans = NULL;
4203 			if (ret)
4204 				break;
4205 		}
4206 
4207 		btrfs_release_path(path);
4208 		if (key.offset < (u64)-1) {
4209 			key.offset++;
4210 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4211 			key.offset = 0;
4212 			key.type = BTRFS_ROOT_ITEM_KEY;
4213 		} else if (key.objectid < (u64)-1) {
4214 			key.offset = 0;
4215 			key.type = BTRFS_ROOT_ITEM_KEY;
4216 			key.objectid++;
4217 		} else {
4218 			break;
4219 		}
4220 		cond_resched();
4221 	}
4222 
4223 out:
4224 	btrfs_free_path(path);
4225 	if (trans && !IS_ERR(trans))
4226 		btrfs_end_transaction(trans, fs_info->uuid_root);
4227 	if (ret)
4228 		btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4229 	else
4230 		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4231 	up(&fs_info->uuid_tree_rescan_sem);
4232 	return 0;
4233 }
4234 
4235 /*
4236  * Callback for btrfs_uuid_tree_iterate().
4237  * returns:
4238  * 0	check succeeded, the entry is not outdated.
4239  * < 0	if an error occurred.
4240  * > 0	if the check failed, which means the caller shall remove the entry.
4241  */
btrfs_check_uuid_tree_entry(struct btrfs_fs_info * fs_info,u8 * uuid,u8 type,u64 subid)4242 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4243 				       u8 *uuid, u8 type, u64 subid)
4244 {
4245 	struct btrfs_key key;
4246 	int ret = 0;
4247 	struct btrfs_root *subvol_root;
4248 
4249 	if (type != BTRFS_UUID_KEY_SUBVOL &&
4250 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4251 		goto out;
4252 
4253 	key.objectid = subid;
4254 	key.type = BTRFS_ROOT_ITEM_KEY;
4255 	key.offset = (u64)-1;
4256 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4257 	if (IS_ERR(subvol_root)) {
4258 		ret = PTR_ERR(subvol_root);
4259 		if (ret == -ENOENT)
4260 			ret = 1;
4261 		goto out;
4262 	}
4263 
4264 	switch (type) {
4265 	case BTRFS_UUID_KEY_SUBVOL:
4266 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4267 			ret = 1;
4268 		break;
4269 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4270 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
4271 			   BTRFS_UUID_SIZE))
4272 			ret = 1;
4273 		break;
4274 	}
4275 
4276 out:
4277 	return ret;
4278 }
4279 
btrfs_uuid_rescan_kthread(void * data)4280 static int btrfs_uuid_rescan_kthread(void *data)
4281 {
4282 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4283 	int ret;
4284 
4285 	/*
4286 	 * 1st step is to iterate through the existing UUID tree and
4287 	 * to delete all entries that contain outdated data.
4288 	 * 2nd step is to add all missing entries to the UUID tree.
4289 	 */
4290 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4291 	if (ret < 0) {
4292 		btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4293 		up(&fs_info->uuid_tree_rescan_sem);
4294 		return ret;
4295 	}
4296 	return btrfs_uuid_scan_kthread(data);
4297 }
4298 
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4299 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4300 {
4301 	struct btrfs_trans_handle *trans;
4302 	struct btrfs_root *tree_root = fs_info->tree_root;
4303 	struct btrfs_root *uuid_root;
4304 	struct task_struct *task;
4305 	int ret;
4306 
4307 	/*
4308 	 * 1 - root node
4309 	 * 1 - root item
4310 	 */
4311 	trans = btrfs_start_transaction(tree_root, 2);
4312 	if (IS_ERR(trans))
4313 		return PTR_ERR(trans);
4314 
4315 	uuid_root = btrfs_create_tree(trans, fs_info,
4316 				      BTRFS_UUID_TREE_OBJECTID);
4317 	if (IS_ERR(uuid_root)) {
4318 		ret = PTR_ERR(uuid_root);
4319 		btrfs_abort_transaction(trans, ret);
4320 		btrfs_end_transaction(trans, tree_root);
4321 		return ret;
4322 	}
4323 
4324 	fs_info->uuid_root = uuid_root;
4325 
4326 	ret = btrfs_commit_transaction(trans, tree_root);
4327 	if (ret)
4328 		return ret;
4329 
4330 	down(&fs_info->uuid_tree_rescan_sem);
4331 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4332 	if (IS_ERR(task)) {
4333 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4334 		btrfs_warn(fs_info, "failed to start uuid_scan task");
4335 		up(&fs_info->uuid_tree_rescan_sem);
4336 		return PTR_ERR(task);
4337 	}
4338 
4339 	return 0;
4340 }
4341 
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)4342 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4343 {
4344 	struct task_struct *task;
4345 
4346 	down(&fs_info->uuid_tree_rescan_sem);
4347 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4348 	if (IS_ERR(task)) {
4349 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
4350 		btrfs_warn(fs_info, "failed to start uuid_rescan task");
4351 		up(&fs_info->uuid_tree_rescan_sem);
4352 		return PTR_ERR(task);
4353 	}
4354 
4355 	return 0;
4356 }
4357 
4358 /*
4359  * shrinking a device means finding all of the device extents past
4360  * the new size, and then following the back refs to the chunks.
4361  * The chunk relocation code actually frees the device extent
4362  */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4363 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4364 {
4365 	struct btrfs_trans_handle *trans;
4366 	struct btrfs_root *root = device->dev_root;
4367 	struct btrfs_dev_extent *dev_extent = NULL;
4368 	struct btrfs_path *path;
4369 	u64 length;
4370 	u64 chunk_offset;
4371 	int ret;
4372 	int slot;
4373 	int failed = 0;
4374 	bool retried = false;
4375 	bool checked_pending_chunks = false;
4376 	struct extent_buffer *l;
4377 	struct btrfs_key key;
4378 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4379 	u64 old_total = btrfs_super_total_bytes(super_copy);
4380 	u64 old_size = btrfs_device_get_total_bytes(device);
4381 	u64 diff = old_size - new_size;
4382 
4383 	if (device->is_tgtdev_for_dev_replace)
4384 		return -EINVAL;
4385 
4386 	path = btrfs_alloc_path();
4387 	if (!path)
4388 		return -ENOMEM;
4389 
4390 	path->reada = READA_FORWARD;
4391 
4392 	lock_chunks(root);
4393 
4394 	btrfs_device_set_total_bytes(device, new_size);
4395 	if (device->writeable) {
4396 		device->fs_devices->total_rw_bytes -= diff;
4397 		spin_lock(&root->fs_info->free_chunk_lock);
4398 		root->fs_info->free_chunk_space -= diff;
4399 		spin_unlock(&root->fs_info->free_chunk_lock);
4400 	}
4401 	unlock_chunks(root);
4402 
4403 again:
4404 	key.objectid = device->devid;
4405 	key.offset = (u64)-1;
4406 	key.type = BTRFS_DEV_EXTENT_KEY;
4407 
4408 	do {
4409 		mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4410 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4411 		if (ret < 0) {
4412 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4413 			goto done;
4414 		}
4415 
4416 		ret = btrfs_previous_item(root, path, 0, key.type);
4417 		if (ret)
4418 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4419 		if (ret < 0)
4420 			goto done;
4421 		if (ret) {
4422 			ret = 0;
4423 			btrfs_release_path(path);
4424 			break;
4425 		}
4426 
4427 		l = path->nodes[0];
4428 		slot = path->slots[0];
4429 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4430 
4431 		if (key.objectid != device->devid) {
4432 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4433 			btrfs_release_path(path);
4434 			break;
4435 		}
4436 
4437 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4438 		length = btrfs_dev_extent_length(l, dev_extent);
4439 
4440 		if (key.offset + length <= new_size) {
4441 			mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4442 			btrfs_release_path(path);
4443 			break;
4444 		}
4445 
4446 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4447 		btrfs_release_path(path);
4448 
4449 		ret = btrfs_relocate_chunk(root, chunk_offset);
4450 		mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4451 		if (ret && ret != -ENOSPC)
4452 			goto done;
4453 		if (ret == -ENOSPC)
4454 			failed++;
4455 	} while (key.offset-- > 0);
4456 
4457 	if (failed && !retried) {
4458 		failed = 0;
4459 		retried = true;
4460 		goto again;
4461 	} else if (failed && retried) {
4462 		ret = -ENOSPC;
4463 		goto done;
4464 	}
4465 
4466 	/* Shrinking succeeded, else we would be at "done". */
4467 	trans = btrfs_start_transaction(root, 0);
4468 	if (IS_ERR(trans)) {
4469 		ret = PTR_ERR(trans);
4470 		goto done;
4471 	}
4472 
4473 	lock_chunks(root);
4474 
4475 	/*
4476 	 * We checked in the above loop all device extents that were already in
4477 	 * the device tree. However before we have updated the device's
4478 	 * total_bytes to the new size, we might have had chunk allocations that
4479 	 * have not complete yet (new block groups attached to transaction
4480 	 * handles), and therefore their device extents were not yet in the
4481 	 * device tree and we missed them in the loop above. So if we have any
4482 	 * pending chunk using a device extent that overlaps the device range
4483 	 * that we can not use anymore, commit the current transaction and
4484 	 * repeat the search on the device tree - this way we guarantee we will
4485 	 * not have chunks using device extents that end beyond 'new_size'.
4486 	 */
4487 	if (!checked_pending_chunks) {
4488 		u64 start = new_size;
4489 		u64 len = old_size - new_size;
4490 
4491 		if (contains_pending_extent(trans->transaction, device,
4492 					    &start, len)) {
4493 			unlock_chunks(root);
4494 			checked_pending_chunks = true;
4495 			failed = 0;
4496 			retried = false;
4497 			ret = btrfs_commit_transaction(trans, root);
4498 			if (ret)
4499 				goto done;
4500 			goto again;
4501 		}
4502 	}
4503 
4504 	btrfs_device_set_disk_total_bytes(device, new_size);
4505 	if (list_empty(&device->resized_list))
4506 		list_add_tail(&device->resized_list,
4507 			      &root->fs_info->fs_devices->resized_devices);
4508 
4509 	WARN_ON(diff > old_total);
4510 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
4511 	unlock_chunks(root);
4512 
4513 	/* Now btrfs_update_device() will change the on-disk size. */
4514 	ret = btrfs_update_device(trans, device);
4515 	btrfs_end_transaction(trans, root);
4516 done:
4517 	btrfs_free_path(path);
4518 	if (ret) {
4519 		lock_chunks(root);
4520 		btrfs_device_set_total_bytes(device, old_size);
4521 		if (device->writeable)
4522 			device->fs_devices->total_rw_bytes += diff;
4523 		spin_lock(&root->fs_info->free_chunk_lock);
4524 		root->fs_info->free_chunk_space += diff;
4525 		spin_unlock(&root->fs_info->free_chunk_lock);
4526 		unlock_chunks(root);
4527 	}
4528 	return ret;
4529 }
4530 
btrfs_add_system_chunk(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4531 static int btrfs_add_system_chunk(struct btrfs_root *root,
4532 			   struct btrfs_key *key,
4533 			   struct btrfs_chunk *chunk, int item_size)
4534 {
4535 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4536 	struct btrfs_disk_key disk_key;
4537 	u32 array_size;
4538 	u8 *ptr;
4539 
4540 	lock_chunks(root);
4541 	array_size = btrfs_super_sys_array_size(super_copy);
4542 	if (array_size + item_size + sizeof(disk_key)
4543 			> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4544 		unlock_chunks(root);
4545 		return -EFBIG;
4546 	}
4547 
4548 	ptr = super_copy->sys_chunk_array + array_size;
4549 	btrfs_cpu_key_to_disk(&disk_key, key);
4550 	memcpy(ptr, &disk_key, sizeof(disk_key));
4551 	ptr += sizeof(disk_key);
4552 	memcpy(ptr, chunk, item_size);
4553 	item_size += sizeof(disk_key);
4554 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4555 	unlock_chunks(root);
4556 
4557 	return 0;
4558 }
4559 
4560 /*
4561  * sort the devices in descending order by max_avail, total_avail
4562  */
btrfs_cmp_device_info(const void * a,const void * b)4563 static int btrfs_cmp_device_info(const void *a, const void *b)
4564 {
4565 	const struct btrfs_device_info *di_a = a;
4566 	const struct btrfs_device_info *di_b = b;
4567 
4568 	if (di_a->max_avail > di_b->max_avail)
4569 		return -1;
4570 	if (di_a->max_avail < di_b->max_avail)
4571 		return 1;
4572 	if (di_a->total_avail > di_b->total_avail)
4573 		return -1;
4574 	if (di_a->total_avail < di_b->total_avail)
4575 		return 1;
4576 	return 0;
4577 }
4578 
find_raid56_stripe_len(u32 data_devices,u32 dev_stripe_target)4579 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4580 {
4581 	/* TODO allow them to set a preferred stripe size */
4582 	return SZ_64K;
4583 }
4584 
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)4585 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4586 {
4587 	if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4588 		return;
4589 
4590 	btrfs_set_fs_incompat(info, RAID56);
4591 }
4592 
4593 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r)		\
4594 			- sizeof(struct btrfs_chunk))		\
4595 			/ sizeof(struct btrfs_stripe) + 1)
4596 
4597 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE	\
4598 				- 2 * sizeof(struct btrfs_disk_key)	\
4599 				- 2 * sizeof(struct btrfs_chunk))	\
4600 				/ sizeof(struct btrfs_stripe) + 1)
4601 
__btrfs_alloc_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 start,u64 type)4602 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4603 			       struct btrfs_root *extent_root, u64 start,
4604 			       u64 type)
4605 {
4606 	struct btrfs_fs_info *info = extent_root->fs_info;
4607 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
4608 	struct list_head *cur;
4609 	struct map_lookup *map = NULL;
4610 	struct extent_map_tree *em_tree;
4611 	struct extent_map *em;
4612 	struct btrfs_device_info *devices_info = NULL;
4613 	u64 total_avail;
4614 	int num_stripes;	/* total number of stripes to allocate */
4615 	int data_stripes;	/* number of stripes that count for
4616 				   block group size */
4617 	int sub_stripes;	/* sub_stripes info for map */
4618 	int dev_stripes;	/* stripes per dev */
4619 	int devs_max;		/* max devs to use */
4620 	int devs_min;		/* min devs needed */
4621 	int devs_increment;	/* ndevs has to be a multiple of this */
4622 	int ncopies;		/* how many copies to data has */
4623 	int ret;
4624 	u64 max_stripe_size;
4625 	u64 max_chunk_size;
4626 	u64 stripe_size;
4627 	u64 num_bytes;
4628 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4629 	int ndevs;
4630 	int i;
4631 	int j;
4632 	int index;
4633 
4634 	BUG_ON(!alloc_profile_is_valid(type, 0));
4635 
4636 	if (list_empty(&fs_devices->alloc_list))
4637 		return -ENOSPC;
4638 
4639 	index = __get_raid_index(type);
4640 
4641 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4642 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4643 	devs_max = btrfs_raid_array[index].devs_max;
4644 	devs_min = btrfs_raid_array[index].devs_min;
4645 	devs_increment = btrfs_raid_array[index].devs_increment;
4646 	ncopies = btrfs_raid_array[index].ncopies;
4647 
4648 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4649 		max_stripe_size = SZ_1G;
4650 		max_chunk_size = 10 * max_stripe_size;
4651 		if (!devs_max)
4652 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4653 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4654 		/* for larger filesystems, use larger metadata chunks */
4655 		if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4656 			max_stripe_size = SZ_1G;
4657 		else
4658 			max_stripe_size = SZ_256M;
4659 		max_chunk_size = max_stripe_size;
4660 		if (!devs_max)
4661 			devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4662 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4663 		max_stripe_size = SZ_32M;
4664 		max_chunk_size = 2 * max_stripe_size;
4665 		if (!devs_max)
4666 			devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4667 	} else {
4668 		btrfs_err(info, "invalid chunk type 0x%llx requested",
4669 		       type);
4670 		BUG_ON(1);
4671 	}
4672 
4673 	/* we don't want a chunk larger than 10% of writeable space */
4674 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4675 			     max_chunk_size);
4676 
4677 	devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4678 			       GFP_NOFS);
4679 	if (!devices_info)
4680 		return -ENOMEM;
4681 
4682 	cur = fs_devices->alloc_list.next;
4683 
4684 	/*
4685 	 * in the first pass through the devices list, we gather information
4686 	 * about the available holes on each device.
4687 	 */
4688 	ndevs = 0;
4689 	while (cur != &fs_devices->alloc_list) {
4690 		struct btrfs_device *device;
4691 		u64 max_avail;
4692 		u64 dev_offset;
4693 
4694 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4695 
4696 		cur = cur->next;
4697 
4698 		if (!device->writeable) {
4699 			WARN(1, KERN_ERR
4700 			       "BTRFS: read-only device in alloc_list\n");
4701 			continue;
4702 		}
4703 
4704 		if (!device->in_fs_metadata ||
4705 		    device->is_tgtdev_for_dev_replace)
4706 			continue;
4707 
4708 		if (device->total_bytes > device->bytes_used)
4709 			total_avail = device->total_bytes - device->bytes_used;
4710 		else
4711 			total_avail = 0;
4712 
4713 		/* If there is no space on this device, skip it. */
4714 		if (total_avail == 0)
4715 			continue;
4716 
4717 		ret = find_free_dev_extent(trans, device,
4718 					   max_stripe_size * dev_stripes,
4719 					   &dev_offset, &max_avail);
4720 		if (ret && ret != -ENOSPC)
4721 			goto error;
4722 
4723 		if (ret == 0)
4724 			max_avail = max_stripe_size * dev_stripes;
4725 
4726 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4727 			continue;
4728 
4729 		if (ndevs == fs_devices->rw_devices) {
4730 			WARN(1, "%s: found more than %llu devices\n",
4731 			     __func__, fs_devices->rw_devices);
4732 			break;
4733 		}
4734 		devices_info[ndevs].dev_offset = dev_offset;
4735 		devices_info[ndevs].max_avail = max_avail;
4736 		devices_info[ndevs].total_avail = total_avail;
4737 		devices_info[ndevs].dev = device;
4738 		++ndevs;
4739 	}
4740 
4741 	/*
4742 	 * now sort the devices by hole size / available space
4743 	 */
4744 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4745 	     btrfs_cmp_device_info, NULL);
4746 
4747 	/* round down to number of usable stripes */
4748 	ndevs -= ndevs % devs_increment;
4749 
4750 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4751 		ret = -ENOSPC;
4752 		goto error;
4753 	}
4754 
4755 	if (devs_max && ndevs > devs_max)
4756 		ndevs = devs_max;
4757 	/*
4758 	 * The primary goal is to maximize the number of stripes, so use as
4759 	 * many devices as possible, even if the stripes are not maximum sized.
4760 	 *
4761 	 * The DUP profile stores more than one stripe per device, the
4762 	 * max_avail is the total size so we have to adjust.
4763 	 */
4764 	stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4765 	num_stripes = ndevs * dev_stripes;
4766 
4767 	/*
4768 	 * this will have to be fixed for RAID1 and RAID10 over
4769 	 * more drives
4770 	 */
4771 	data_stripes = num_stripes / ncopies;
4772 
4773 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4774 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4775 						extent_root->stripesize);
4776 		data_stripes = num_stripes - 1;
4777 	}
4778 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4779 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4780 						extent_root->stripesize);
4781 		data_stripes = num_stripes - 2;
4782 	}
4783 
4784 	/*
4785 	 * Use the number of data stripes to figure out how big this chunk
4786 	 * is really going to be in terms of logical address space,
4787 	 * and compare that answer with the max chunk size
4788 	 */
4789 	if (stripe_size * data_stripes > max_chunk_size) {
4790 		u64 mask = (1ULL << 24) - 1;
4791 
4792 		stripe_size = div_u64(max_chunk_size, data_stripes);
4793 
4794 		/* bump the answer up to a 16MB boundary */
4795 		stripe_size = (stripe_size + mask) & ~mask;
4796 
4797 		/* but don't go higher than the limits we found
4798 		 * while searching for free extents
4799 		 */
4800 		if (stripe_size > devices_info[ndevs-1].max_avail)
4801 			stripe_size = devices_info[ndevs-1].max_avail;
4802 	}
4803 
4804 	/* align to BTRFS_STRIPE_LEN */
4805 	stripe_size = div_u64(stripe_size, raid_stripe_len);
4806 	stripe_size *= raid_stripe_len;
4807 
4808 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4809 	if (!map) {
4810 		ret = -ENOMEM;
4811 		goto error;
4812 	}
4813 	map->num_stripes = num_stripes;
4814 
4815 	for (i = 0; i < ndevs; ++i) {
4816 		for (j = 0; j < dev_stripes; ++j) {
4817 			int s = i * dev_stripes + j;
4818 			map->stripes[s].dev = devices_info[i].dev;
4819 			map->stripes[s].physical = devices_info[i].dev_offset +
4820 						   j * stripe_size;
4821 		}
4822 	}
4823 	map->sector_size = extent_root->sectorsize;
4824 	map->stripe_len = raid_stripe_len;
4825 	map->io_align = raid_stripe_len;
4826 	map->io_width = raid_stripe_len;
4827 	map->type = type;
4828 	map->sub_stripes = sub_stripes;
4829 
4830 	num_bytes = stripe_size * data_stripes;
4831 
4832 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4833 
4834 	em = alloc_extent_map();
4835 	if (!em) {
4836 		kfree(map);
4837 		ret = -ENOMEM;
4838 		goto error;
4839 	}
4840 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4841 	em->map_lookup = map;
4842 	em->start = start;
4843 	em->len = num_bytes;
4844 	em->block_start = 0;
4845 	em->block_len = em->len;
4846 	em->orig_block_len = stripe_size;
4847 
4848 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4849 	write_lock(&em_tree->lock);
4850 	ret = add_extent_mapping(em_tree, em, 0);
4851 	if (!ret) {
4852 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4853 		atomic_inc(&em->refs);
4854 	}
4855 	write_unlock(&em_tree->lock);
4856 	if (ret) {
4857 		free_extent_map(em);
4858 		goto error;
4859 	}
4860 
4861 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4862 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4863 				     start, num_bytes);
4864 	if (ret)
4865 		goto error_del_extent;
4866 
4867 	for (i = 0; i < map->num_stripes; i++) {
4868 		num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4869 		btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4870 	}
4871 
4872 	spin_lock(&extent_root->fs_info->free_chunk_lock);
4873 	extent_root->fs_info->free_chunk_space -= (stripe_size *
4874 						   map->num_stripes);
4875 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
4876 
4877 	free_extent_map(em);
4878 	check_raid56_incompat_flag(extent_root->fs_info, type);
4879 
4880 	kfree(devices_info);
4881 	return 0;
4882 
4883 error_del_extent:
4884 	write_lock(&em_tree->lock);
4885 	remove_extent_mapping(em_tree, em);
4886 	write_unlock(&em_tree->lock);
4887 
4888 	/* One for our allocation */
4889 	free_extent_map(em);
4890 	/* One for the tree reference */
4891 	free_extent_map(em);
4892 	/* One for the pending_chunks list reference */
4893 	free_extent_map(em);
4894 error:
4895 	kfree(devices_info);
4896 	return ret;
4897 }
4898 
btrfs_finish_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 chunk_offset,u64 chunk_size)4899 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4900 				struct btrfs_root *extent_root,
4901 				u64 chunk_offset, u64 chunk_size)
4902 {
4903 	struct btrfs_key key;
4904 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4905 	struct btrfs_device *device;
4906 	struct btrfs_chunk *chunk;
4907 	struct btrfs_stripe *stripe;
4908 	struct extent_map_tree *em_tree;
4909 	struct extent_map *em;
4910 	struct map_lookup *map;
4911 	size_t item_size;
4912 	u64 dev_offset;
4913 	u64 stripe_size;
4914 	int i = 0;
4915 	int ret = 0;
4916 
4917 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4918 	read_lock(&em_tree->lock);
4919 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4920 	read_unlock(&em_tree->lock);
4921 
4922 	if (!em) {
4923 		btrfs_crit(extent_root->fs_info,
4924 			   "unable to find logical %Lu len %Lu",
4925 			   chunk_offset, chunk_size);
4926 		return -EINVAL;
4927 	}
4928 
4929 	if (em->start != chunk_offset || em->len != chunk_size) {
4930 		btrfs_crit(extent_root->fs_info,
4931 			   "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4932 			    chunk_offset, chunk_size, em->start, em->len);
4933 		free_extent_map(em);
4934 		return -EINVAL;
4935 	}
4936 
4937 	map = em->map_lookup;
4938 	item_size = btrfs_chunk_item_size(map->num_stripes);
4939 	stripe_size = em->orig_block_len;
4940 
4941 	chunk = kzalloc(item_size, GFP_NOFS);
4942 	if (!chunk) {
4943 		ret = -ENOMEM;
4944 		goto out;
4945 	}
4946 
4947 	/*
4948 	 * Take the device list mutex to prevent races with the final phase of
4949 	 * a device replace operation that replaces the device object associated
4950 	 * with the map's stripes, because the device object's id can change
4951 	 * at any time during that final phase of the device replace operation
4952 	 * (dev-replace.c:btrfs_dev_replace_finishing()).
4953 	 */
4954 	mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4955 	for (i = 0; i < map->num_stripes; i++) {
4956 		device = map->stripes[i].dev;
4957 		dev_offset = map->stripes[i].physical;
4958 
4959 		ret = btrfs_update_device(trans, device);
4960 		if (ret)
4961 			break;
4962 		ret = btrfs_alloc_dev_extent(trans, device,
4963 					     chunk_root->root_key.objectid,
4964 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4965 					     chunk_offset, dev_offset,
4966 					     stripe_size);
4967 		if (ret)
4968 			break;
4969 	}
4970 	if (ret) {
4971 		mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4972 		goto out;
4973 	}
4974 
4975 	stripe = &chunk->stripe;
4976 	for (i = 0; i < map->num_stripes; i++) {
4977 		device = map->stripes[i].dev;
4978 		dev_offset = map->stripes[i].physical;
4979 
4980 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4981 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4982 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4983 		stripe++;
4984 	}
4985 	mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4986 
4987 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4988 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4989 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4990 	btrfs_set_stack_chunk_type(chunk, map->type);
4991 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4992 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4993 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4994 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4995 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4996 
4997 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4998 	key.type = BTRFS_CHUNK_ITEM_KEY;
4999 	key.offset = chunk_offset;
5000 
5001 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5002 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5003 		/*
5004 		 * TODO: Cleanup of inserted chunk root in case of
5005 		 * failure.
5006 		 */
5007 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
5008 					     item_size);
5009 	}
5010 
5011 out:
5012 	kfree(chunk);
5013 	free_extent_map(em);
5014 	return ret;
5015 }
5016 
5017 /*
5018  * Chunk allocation falls into two parts. The first part does works
5019  * that make the new allocated chunk useable, but not do any operation
5020  * that modifies the chunk tree. The second part does the works that
5021  * require modifying the chunk tree. This division is important for the
5022  * bootstrap process of adding storage to a seed btrfs.
5023  */
btrfs_alloc_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 type)5024 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5025 		      struct btrfs_root *extent_root, u64 type)
5026 {
5027 	u64 chunk_offset;
5028 
5029 	ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
5030 	chunk_offset = find_next_chunk(extent_root->fs_info);
5031 	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
5032 }
5033 
init_first_rw_device(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_device * device)5034 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5035 					 struct btrfs_root *root,
5036 					 struct btrfs_device *device)
5037 {
5038 	u64 chunk_offset;
5039 	u64 sys_chunk_offset;
5040 	u64 alloc_profile;
5041 	struct btrfs_fs_info *fs_info = root->fs_info;
5042 	struct btrfs_root *extent_root = fs_info->extent_root;
5043 	int ret;
5044 
5045 	chunk_offset = find_next_chunk(fs_info);
5046 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5047 	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
5048 				  alloc_profile);
5049 	if (ret)
5050 		return ret;
5051 
5052 	sys_chunk_offset = find_next_chunk(root->fs_info);
5053 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5054 	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
5055 				  alloc_profile);
5056 	return ret;
5057 }
5058 
btrfs_chunk_max_errors(struct map_lookup * map)5059 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5060 {
5061 	int max_errors;
5062 
5063 	if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5064 			 BTRFS_BLOCK_GROUP_RAID10 |
5065 			 BTRFS_BLOCK_GROUP_RAID5 |
5066 			 BTRFS_BLOCK_GROUP_DUP)) {
5067 		max_errors = 1;
5068 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5069 		max_errors = 2;
5070 	} else {
5071 		max_errors = 0;
5072 	}
5073 
5074 	return max_errors;
5075 }
5076 
btrfs_chunk_readonly(struct btrfs_root * root,u64 chunk_offset)5077 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5078 {
5079 	struct extent_map *em;
5080 	struct map_lookup *map;
5081 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5082 	int readonly = 0;
5083 	int miss_ndevs = 0;
5084 	int i;
5085 
5086 	read_lock(&map_tree->map_tree.lock);
5087 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5088 	read_unlock(&map_tree->map_tree.lock);
5089 	if (!em)
5090 		return 1;
5091 
5092 	map = em->map_lookup;
5093 	for (i = 0; i < map->num_stripes; i++) {
5094 		if (map->stripes[i].dev->missing) {
5095 			miss_ndevs++;
5096 			continue;
5097 		}
5098 
5099 		if (!map->stripes[i].dev->writeable) {
5100 			readonly = 1;
5101 			goto end;
5102 		}
5103 	}
5104 
5105 	/*
5106 	 * If the number of missing devices is larger than max errors,
5107 	 * we can not write the data into that chunk successfully, so
5108 	 * set it readonly.
5109 	 */
5110 	if (miss_ndevs > btrfs_chunk_max_errors(map))
5111 		readonly = 1;
5112 end:
5113 	free_extent_map(em);
5114 	return readonly;
5115 }
5116 
btrfs_mapping_init(struct btrfs_mapping_tree * tree)5117 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5118 {
5119 	extent_map_tree_init(&tree->map_tree);
5120 }
5121 
btrfs_mapping_tree_free(struct btrfs_mapping_tree * tree)5122 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5123 {
5124 	struct extent_map *em;
5125 
5126 	while (1) {
5127 		write_lock(&tree->map_tree.lock);
5128 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5129 		if (em)
5130 			remove_extent_mapping(&tree->map_tree, em);
5131 		write_unlock(&tree->map_tree.lock);
5132 		if (!em)
5133 			break;
5134 		/* once for us */
5135 		free_extent_map(em);
5136 		/* once for the tree */
5137 		free_extent_map(em);
5138 	}
5139 }
5140 
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5141 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5142 {
5143 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5144 	struct extent_map *em;
5145 	struct map_lookup *map;
5146 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5147 	int ret;
5148 
5149 	read_lock(&em_tree->lock);
5150 	em = lookup_extent_mapping(em_tree, logical, len);
5151 	read_unlock(&em_tree->lock);
5152 
5153 	/*
5154 	 * We could return errors for these cases, but that could get ugly and
5155 	 * we'd probably do the same thing which is just not do anything else
5156 	 * and exit, so return 1 so the callers don't try to use other copies.
5157 	 */
5158 	if (!em) {
5159 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5160 			    logical+len);
5161 		return 1;
5162 	}
5163 
5164 	if (em->start > logical || em->start + em->len < logical) {
5165 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5166 			   logical, logical+len, em->start,
5167 			   em->start + em->len);
5168 		free_extent_map(em);
5169 		return 1;
5170 	}
5171 
5172 	map = em->map_lookup;
5173 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5174 		ret = map->num_stripes;
5175 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5176 		ret = map->sub_stripes;
5177 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5178 		ret = 2;
5179 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5180 		ret = 3;
5181 	else
5182 		ret = 1;
5183 	free_extent_map(em);
5184 
5185 	btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5186 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5187 		ret++;
5188 	btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5189 
5190 	return ret;
5191 }
5192 
btrfs_full_stripe_len(struct btrfs_root * root,struct btrfs_mapping_tree * map_tree,u64 logical)5193 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5194 				    struct btrfs_mapping_tree *map_tree,
5195 				    u64 logical)
5196 {
5197 	struct extent_map *em;
5198 	struct map_lookup *map;
5199 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5200 	unsigned long len = root->sectorsize;
5201 
5202 	read_lock(&em_tree->lock);
5203 	em = lookup_extent_mapping(em_tree, logical, len);
5204 	read_unlock(&em_tree->lock);
5205 	BUG_ON(!em);
5206 
5207 	BUG_ON(em->start > logical || em->start + em->len < logical);
5208 	map = em->map_lookup;
5209 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5210 		len = map->stripe_len * nr_data_stripes(map);
5211 	free_extent_map(em);
5212 	return len;
5213 }
5214 
btrfs_is_parity_mirror(struct btrfs_mapping_tree * map_tree,u64 logical,u64 len,int mirror_num)5215 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5216 			   u64 logical, u64 len, int mirror_num)
5217 {
5218 	struct extent_map *em;
5219 	struct map_lookup *map;
5220 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5221 	int ret = 0;
5222 
5223 	read_lock(&em_tree->lock);
5224 	em = lookup_extent_mapping(em_tree, logical, len);
5225 	read_unlock(&em_tree->lock);
5226 	BUG_ON(!em);
5227 
5228 	BUG_ON(em->start > logical || em->start + em->len < logical);
5229 	map = em->map_lookup;
5230 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5231 		ret = 1;
5232 	free_extent_map(em);
5233 	return ret;
5234 }
5235 
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int num,int optimal,int dev_replace_is_ongoing)5236 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5237 			    struct map_lookup *map, int first, int num,
5238 			    int optimal, int dev_replace_is_ongoing)
5239 {
5240 	int i;
5241 	int tolerance;
5242 	struct btrfs_device *srcdev;
5243 
5244 	if (dev_replace_is_ongoing &&
5245 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5246 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5247 		srcdev = fs_info->dev_replace.srcdev;
5248 	else
5249 		srcdev = NULL;
5250 
5251 	/*
5252 	 * try to avoid the drive that is the source drive for a
5253 	 * dev-replace procedure, only choose it if no other non-missing
5254 	 * mirror is available
5255 	 */
5256 	for (tolerance = 0; tolerance < 2; tolerance++) {
5257 		if (map->stripes[optimal].dev->bdev &&
5258 		    (tolerance || map->stripes[optimal].dev != srcdev))
5259 			return optimal;
5260 		for (i = first; i < first + num; i++) {
5261 			if (map->stripes[i].dev->bdev &&
5262 			    (tolerance || map->stripes[i].dev != srcdev))
5263 				return i;
5264 		}
5265 	}
5266 
5267 	/* we couldn't find one that doesn't fail.  Just return something
5268 	 * and the io error handling code will clean up eventually
5269 	 */
5270 	return optimal;
5271 }
5272 
parity_smaller(u64 a,u64 b)5273 static inline int parity_smaller(u64 a, u64 b)
5274 {
5275 	return a > b;
5276 }
5277 
5278 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_bio * bbio,int num_stripes)5279 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5280 {
5281 	struct btrfs_bio_stripe s;
5282 	int i;
5283 	u64 l;
5284 	int again = 1;
5285 
5286 	while (again) {
5287 		again = 0;
5288 		for (i = 0; i < num_stripes - 1; i++) {
5289 			if (parity_smaller(bbio->raid_map[i],
5290 					   bbio->raid_map[i+1])) {
5291 				s = bbio->stripes[i];
5292 				l = bbio->raid_map[i];
5293 				bbio->stripes[i] = bbio->stripes[i+1];
5294 				bbio->raid_map[i] = bbio->raid_map[i+1];
5295 				bbio->stripes[i+1] = s;
5296 				bbio->raid_map[i+1] = l;
5297 
5298 				again = 1;
5299 			}
5300 		}
5301 	}
5302 }
5303 
alloc_btrfs_bio(int total_stripes,int real_stripes)5304 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5305 {
5306 	struct btrfs_bio *bbio = kzalloc(
5307 		 /* the size of the btrfs_bio */
5308 		sizeof(struct btrfs_bio) +
5309 		/* plus the variable array for the stripes */
5310 		sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5311 		/* plus the variable array for the tgt dev */
5312 		sizeof(int) * (real_stripes) +
5313 		/*
5314 		 * plus the raid_map, which includes both the tgt dev
5315 		 * and the stripes
5316 		 */
5317 		sizeof(u64) * (total_stripes),
5318 		GFP_NOFS|__GFP_NOFAIL);
5319 
5320 	atomic_set(&bbio->error, 0);
5321 	atomic_set(&bbio->refs, 1);
5322 
5323 	return bbio;
5324 }
5325 
btrfs_get_bbio(struct btrfs_bio * bbio)5326 void btrfs_get_bbio(struct btrfs_bio *bbio)
5327 {
5328 	WARN_ON(!atomic_read(&bbio->refs));
5329 	atomic_inc(&bbio->refs);
5330 }
5331 
btrfs_put_bbio(struct btrfs_bio * bbio)5332 void btrfs_put_bbio(struct btrfs_bio *bbio)
5333 {
5334 	if (!bbio)
5335 		return;
5336 	if (atomic_dec_and_test(&bbio->refs))
5337 		kfree(bbio);
5338 }
5339 
__btrfs_map_block(struct btrfs_fs_info * fs_info,int op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)5340 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5341 			     u64 logical, u64 *length,
5342 			     struct btrfs_bio **bbio_ret,
5343 			     int mirror_num, int need_raid_map)
5344 {
5345 	struct extent_map *em;
5346 	struct map_lookup *map;
5347 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5348 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5349 	u64 offset;
5350 	u64 stripe_offset;
5351 	u64 stripe_end_offset;
5352 	u64 stripe_nr;
5353 	u64 stripe_nr_orig;
5354 	u64 stripe_nr_end;
5355 	u64 stripe_len;
5356 	u32 stripe_index;
5357 	int i;
5358 	int ret = 0;
5359 	int num_stripes;
5360 	int max_errors = 0;
5361 	int tgtdev_indexes = 0;
5362 	struct btrfs_bio *bbio = NULL;
5363 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5364 	int dev_replace_is_ongoing = 0;
5365 	int num_alloc_stripes;
5366 	int patch_the_first_stripe_for_dev_replace = 0;
5367 	u64 physical_to_patch_in_first_stripe = 0;
5368 	u64 raid56_full_stripe_start = (u64)-1;
5369 
5370 	read_lock(&em_tree->lock);
5371 	em = lookup_extent_mapping(em_tree, logical, *length);
5372 	read_unlock(&em_tree->lock);
5373 
5374 	if (!em) {
5375 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5376 			logical, *length);
5377 		return -EINVAL;
5378 	}
5379 
5380 	if (em->start > logical || em->start + em->len < logical) {
5381 		btrfs_crit(fs_info,
5382 			   "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5383 			   logical, em->start, em->start + em->len);
5384 		free_extent_map(em);
5385 		return -EINVAL;
5386 	}
5387 
5388 	map = em->map_lookup;
5389 	offset = logical - em->start;
5390 
5391 	stripe_len = map->stripe_len;
5392 	stripe_nr = offset;
5393 	/*
5394 	 * stripe_nr counts the total number of stripes we have to stride
5395 	 * to get to this block
5396 	 */
5397 	stripe_nr = div64_u64(stripe_nr, stripe_len);
5398 
5399 	stripe_offset = stripe_nr * stripe_len;
5400 	if (offset < stripe_offset) {
5401 		btrfs_crit(fs_info,
5402 			   "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5403 			   stripe_offset, offset, em->start, logical,
5404 			   stripe_len);
5405 		free_extent_map(em);
5406 		return -EINVAL;
5407 	}
5408 
5409 	/* stripe_offset is the offset of this block in its stripe*/
5410 	stripe_offset = offset - stripe_offset;
5411 
5412 	/* if we're here for raid56, we need to know the stripe aligned start */
5413 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5414 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5415 		raid56_full_stripe_start = offset;
5416 
5417 		/* allow a write of a full stripe, but make sure we don't
5418 		 * allow straddling of stripes
5419 		 */
5420 		raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5421 				full_stripe_len);
5422 		raid56_full_stripe_start *= full_stripe_len;
5423 	}
5424 
5425 	if (op == REQ_OP_DISCARD) {
5426 		/* we don't discard raid56 yet */
5427 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5428 			ret = -EOPNOTSUPP;
5429 			goto out;
5430 		}
5431 		*length = min_t(u64, em->len - offset, *length);
5432 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5433 		u64 max_len;
5434 		/* For writes to RAID[56], allow a full stripeset across all disks.
5435 		   For other RAID types and for RAID[56] reads, just allow a single
5436 		   stripe (on a single disk). */
5437 		if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5438 		    (op == REQ_OP_WRITE)) {
5439 			max_len = stripe_len * nr_data_stripes(map) -
5440 				(offset - raid56_full_stripe_start);
5441 		} else {
5442 			/* we limit the length of each bio to what fits in a stripe */
5443 			max_len = stripe_len - stripe_offset;
5444 		}
5445 		*length = min_t(u64, em->len - offset, max_len);
5446 	} else {
5447 		*length = em->len - offset;
5448 	}
5449 
5450 	/* This is for when we're called from btrfs_merge_bio_hook() and all
5451 	   it cares about is the length */
5452 	if (!bbio_ret)
5453 		goto out;
5454 
5455 	btrfs_dev_replace_lock(dev_replace, 0);
5456 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5457 	if (!dev_replace_is_ongoing)
5458 		btrfs_dev_replace_unlock(dev_replace, 0);
5459 	else
5460 		btrfs_dev_replace_set_lock_blocking(dev_replace);
5461 
5462 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5463 	    op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5464 	    op != REQ_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5465 		/*
5466 		 * in dev-replace case, for repair case (that's the only
5467 		 * case where the mirror is selected explicitly when
5468 		 * calling btrfs_map_block), blocks left of the left cursor
5469 		 * can also be read from the target drive.
5470 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
5471 		 * the last one to the array of stripes. For READ, it also
5472 		 * needs to be supported using the same mirror number.
5473 		 * If the requested block is not left of the left cursor,
5474 		 * EIO is returned. This can happen because btrfs_num_copies()
5475 		 * returns one more in the dev-replace case.
5476 		 */
5477 		u64 tmp_length = *length;
5478 		struct btrfs_bio *tmp_bbio = NULL;
5479 		int tmp_num_stripes;
5480 		u64 srcdev_devid = dev_replace->srcdev->devid;
5481 		int index_srcdev = 0;
5482 		int found = 0;
5483 		u64 physical_of_found = 0;
5484 
5485 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5486 			     logical, &tmp_length, &tmp_bbio, 0, 0);
5487 		if (ret) {
5488 			WARN_ON(tmp_bbio != NULL);
5489 			goto out;
5490 		}
5491 
5492 		tmp_num_stripes = tmp_bbio->num_stripes;
5493 		if (mirror_num > tmp_num_stripes) {
5494 			/*
5495 			 * REQ_GET_READ_MIRRORS does not contain this
5496 			 * mirror, that means that the requested area
5497 			 * is not left of the left cursor
5498 			 */
5499 			ret = -EIO;
5500 			btrfs_put_bbio(tmp_bbio);
5501 			goto out;
5502 		}
5503 
5504 		/*
5505 		 * process the rest of the function using the mirror_num
5506 		 * of the source drive. Therefore look it up first.
5507 		 * At the end, patch the device pointer to the one of the
5508 		 * target drive.
5509 		 */
5510 		for (i = 0; i < tmp_num_stripes; i++) {
5511 			if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5512 				continue;
5513 
5514 			/*
5515 			 * In case of DUP, in order to keep it simple, only add
5516 			 * the mirror with the lowest physical address
5517 			 */
5518 			if (found &&
5519 			    physical_of_found <= tmp_bbio->stripes[i].physical)
5520 				continue;
5521 
5522 			index_srcdev = i;
5523 			found = 1;
5524 			physical_of_found = tmp_bbio->stripes[i].physical;
5525 		}
5526 
5527 		btrfs_put_bbio(tmp_bbio);
5528 
5529 		if (!found) {
5530 			WARN_ON(1);
5531 			ret = -EIO;
5532 			goto out;
5533 		}
5534 
5535 		mirror_num = index_srcdev + 1;
5536 		patch_the_first_stripe_for_dev_replace = 1;
5537 		physical_to_patch_in_first_stripe = physical_of_found;
5538 	} else if (mirror_num > map->num_stripes) {
5539 		mirror_num = 0;
5540 	}
5541 
5542 	num_stripes = 1;
5543 	stripe_index = 0;
5544 	stripe_nr_orig = stripe_nr;
5545 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5546 	stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5547 	stripe_end_offset = stripe_nr_end * map->stripe_len -
5548 			    (offset + *length);
5549 
5550 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5551 		if (op == REQ_OP_DISCARD)
5552 			num_stripes = min_t(u64, map->num_stripes,
5553 					    stripe_nr_end - stripe_nr_orig);
5554 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5555 				&stripe_index);
5556 		if (op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5557 		    op != REQ_GET_READ_MIRRORS)
5558 			mirror_num = 1;
5559 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5560 		if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5561 		    op == REQ_GET_READ_MIRRORS)
5562 			num_stripes = map->num_stripes;
5563 		else if (mirror_num)
5564 			stripe_index = mirror_num - 1;
5565 		else {
5566 			stripe_index = find_live_mirror(fs_info, map, 0,
5567 					    map->num_stripes,
5568 					    current->pid % map->num_stripes,
5569 					    dev_replace_is_ongoing);
5570 			mirror_num = stripe_index + 1;
5571 		}
5572 
5573 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5574 		if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5575 		    op == REQ_GET_READ_MIRRORS) {
5576 			num_stripes = map->num_stripes;
5577 		} else if (mirror_num) {
5578 			stripe_index = mirror_num - 1;
5579 		} else {
5580 			mirror_num = 1;
5581 		}
5582 
5583 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5584 		u32 factor = map->num_stripes / map->sub_stripes;
5585 
5586 		stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5587 		stripe_index *= map->sub_stripes;
5588 
5589 		if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5590 			num_stripes = map->sub_stripes;
5591 		else if (op == REQ_OP_DISCARD)
5592 			num_stripes = min_t(u64, map->sub_stripes *
5593 					    (stripe_nr_end - stripe_nr_orig),
5594 					    map->num_stripes);
5595 		else if (mirror_num)
5596 			stripe_index += mirror_num - 1;
5597 		else {
5598 			int old_stripe_index = stripe_index;
5599 			stripe_index = find_live_mirror(fs_info, map,
5600 					      stripe_index,
5601 					      map->sub_stripes, stripe_index +
5602 					      current->pid % map->sub_stripes,
5603 					      dev_replace_is_ongoing);
5604 			mirror_num = stripe_index - old_stripe_index + 1;
5605 		}
5606 
5607 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5608 		if (need_raid_map &&
5609 		    (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS ||
5610 		     mirror_num > 1)) {
5611 			/* push stripe_nr back to the start of the full stripe */
5612 			stripe_nr = div_u64(raid56_full_stripe_start,
5613 					stripe_len * nr_data_stripes(map));
5614 
5615 			/* RAID[56] write or recovery. Return all stripes */
5616 			num_stripes = map->num_stripes;
5617 			max_errors = nr_parity_stripes(map);
5618 
5619 			*length = map->stripe_len;
5620 			stripe_index = 0;
5621 			stripe_offset = 0;
5622 		} else {
5623 			/*
5624 			 * Mirror #0 or #1 means the original data block.
5625 			 * Mirror #2 is RAID5 parity block.
5626 			 * Mirror #3 is RAID6 Q block.
5627 			 */
5628 			stripe_nr = div_u64_rem(stripe_nr,
5629 					nr_data_stripes(map), &stripe_index);
5630 			if (mirror_num > 1)
5631 				stripe_index = nr_data_stripes(map) +
5632 						mirror_num - 2;
5633 
5634 			/* We distribute the parity blocks across stripes */
5635 			div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5636 					&stripe_index);
5637 			if ((op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5638 			    op != REQ_GET_READ_MIRRORS) && mirror_num <= 1)
5639 				mirror_num = 1;
5640 		}
5641 	} else {
5642 		/*
5643 		 * after this, stripe_nr is the number of stripes on this
5644 		 * device we have to walk to find the data, and stripe_index is
5645 		 * the number of our device in the stripe array
5646 		 */
5647 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5648 				&stripe_index);
5649 		mirror_num = stripe_index + 1;
5650 	}
5651 	if (stripe_index >= map->num_stripes) {
5652 		btrfs_crit(fs_info,
5653 			   "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5654 			   stripe_index, map->num_stripes);
5655 		ret = -EINVAL;
5656 		goto out;
5657 	}
5658 
5659 	num_alloc_stripes = num_stripes;
5660 	if (dev_replace_is_ongoing) {
5661 		if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD)
5662 			num_alloc_stripes <<= 1;
5663 		if (op == REQ_GET_READ_MIRRORS)
5664 			num_alloc_stripes++;
5665 		tgtdev_indexes = num_stripes;
5666 	}
5667 
5668 	bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5669 	if (!bbio) {
5670 		ret = -ENOMEM;
5671 		goto out;
5672 	}
5673 	if (dev_replace_is_ongoing)
5674 		bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5675 
5676 	/* build raid_map */
5677 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5678 	    need_raid_map &&
5679 	    ((op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS) ||
5680 	    mirror_num > 1)) {
5681 		u64 tmp;
5682 		unsigned rot;
5683 
5684 		bbio->raid_map = (u64 *)((void *)bbio->stripes +
5685 				 sizeof(struct btrfs_bio_stripe) *
5686 				 num_alloc_stripes +
5687 				 sizeof(int) * tgtdev_indexes);
5688 
5689 		/* Work out the disk rotation on this stripe-set */
5690 		div_u64_rem(stripe_nr, num_stripes, &rot);
5691 
5692 		/* Fill in the logical address of each stripe */
5693 		tmp = stripe_nr * nr_data_stripes(map);
5694 		for (i = 0; i < nr_data_stripes(map); i++)
5695 			bbio->raid_map[(i+rot) % num_stripes] =
5696 				em->start + (tmp + i) * map->stripe_len;
5697 
5698 		bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5699 		if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5700 			bbio->raid_map[(i+rot+1) % num_stripes] =
5701 				RAID6_Q_STRIPE;
5702 	}
5703 
5704 	if (op == REQ_OP_DISCARD) {
5705 		u32 factor = 0;
5706 		u32 sub_stripes = 0;
5707 		u64 stripes_per_dev = 0;
5708 		u32 remaining_stripes = 0;
5709 		u32 last_stripe = 0;
5710 
5711 		if (map->type &
5712 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5713 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5714 				sub_stripes = 1;
5715 			else
5716 				sub_stripes = map->sub_stripes;
5717 
5718 			factor = map->num_stripes / sub_stripes;
5719 			stripes_per_dev = div_u64_rem(stripe_nr_end -
5720 						      stripe_nr_orig,
5721 						      factor,
5722 						      &remaining_stripes);
5723 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5724 			last_stripe *= sub_stripes;
5725 		}
5726 
5727 		for (i = 0; i < num_stripes; i++) {
5728 			bbio->stripes[i].physical =
5729 				map->stripes[stripe_index].physical +
5730 				stripe_offset + stripe_nr * map->stripe_len;
5731 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5732 
5733 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5734 					 BTRFS_BLOCK_GROUP_RAID10)) {
5735 				bbio->stripes[i].length = stripes_per_dev *
5736 							  map->stripe_len;
5737 
5738 				if (i / sub_stripes < remaining_stripes)
5739 					bbio->stripes[i].length +=
5740 						map->stripe_len;
5741 
5742 				/*
5743 				 * Special for the first stripe and
5744 				 * the last stripe:
5745 				 *
5746 				 * |-------|...|-------|
5747 				 *     |----------|
5748 				 *    off     end_off
5749 				 */
5750 				if (i < sub_stripes)
5751 					bbio->stripes[i].length -=
5752 						stripe_offset;
5753 
5754 				if (stripe_index >= last_stripe &&
5755 				    stripe_index <= (last_stripe +
5756 						     sub_stripes - 1))
5757 					bbio->stripes[i].length -=
5758 						stripe_end_offset;
5759 
5760 				if (i == sub_stripes - 1)
5761 					stripe_offset = 0;
5762 			} else
5763 				bbio->stripes[i].length = *length;
5764 
5765 			stripe_index++;
5766 			if (stripe_index == map->num_stripes) {
5767 				/* This could only happen for RAID0/10 */
5768 				stripe_index = 0;
5769 				stripe_nr++;
5770 			}
5771 		}
5772 	} else {
5773 		for (i = 0; i < num_stripes; i++) {
5774 			bbio->stripes[i].physical =
5775 				map->stripes[stripe_index].physical +
5776 				stripe_offset +
5777 				stripe_nr * map->stripe_len;
5778 			bbio->stripes[i].dev =
5779 				map->stripes[stripe_index].dev;
5780 			stripe_index++;
5781 		}
5782 	}
5783 
5784 	if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5785 		max_errors = btrfs_chunk_max_errors(map);
5786 
5787 	if (bbio->raid_map)
5788 		sort_parity_stripes(bbio, num_stripes);
5789 
5790 	tgtdev_indexes = 0;
5791 	if (dev_replace_is_ongoing &&
5792 	   (op == REQ_OP_WRITE || op == REQ_OP_DISCARD) &&
5793 	    dev_replace->tgtdev != NULL) {
5794 		int index_where_to_add;
5795 		u64 srcdev_devid = dev_replace->srcdev->devid;
5796 
5797 		/*
5798 		 * duplicate the write operations while the dev replace
5799 		 * procedure is running. Since the copying of the old disk
5800 		 * to the new disk takes place at run time while the
5801 		 * filesystem is mounted writable, the regular write
5802 		 * operations to the old disk have to be duplicated to go
5803 		 * to the new disk as well.
5804 		 * Note that device->missing is handled by the caller, and
5805 		 * that the write to the old disk is already set up in the
5806 		 * stripes array.
5807 		 */
5808 		index_where_to_add = num_stripes;
5809 		for (i = 0; i < num_stripes; i++) {
5810 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5811 				/* write to new disk, too */
5812 				struct btrfs_bio_stripe *new =
5813 					bbio->stripes + index_where_to_add;
5814 				struct btrfs_bio_stripe *old =
5815 					bbio->stripes + i;
5816 
5817 				new->physical = old->physical;
5818 				new->length = old->length;
5819 				new->dev = dev_replace->tgtdev;
5820 				bbio->tgtdev_map[i] = index_where_to_add;
5821 				index_where_to_add++;
5822 				max_errors++;
5823 				tgtdev_indexes++;
5824 			}
5825 		}
5826 		num_stripes = index_where_to_add;
5827 	} else if (dev_replace_is_ongoing && (op == REQ_GET_READ_MIRRORS) &&
5828 		   dev_replace->tgtdev != NULL) {
5829 		u64 srcdev_devid = dev_replace->srcdev->devid;
5830 		int index_srcdev = 0;
5831 		int found = 0;
5832 		u64 physical_of_found = 0;
5833 
5834 		/*
5835 		 * During the dev-replace procedure, the target drive can
5836 		 * also be used to read data in case it is needed to repair
5837 		 * a corrupt block elsewhere. This is possible if the
5838 		 * requested area is left of the left cursor. In this area,
5839 		 * the target drive is a full copy of the source drive.
5840 		 */
5841 		for (i = 0; i < num_stripes; i++) {
5842 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5843 				/*
5844 				 * In case of DUP, in order to keep it
5845 				 * simple, only add the mirror with the
5846 				 * lowest physical address
5847 				 */
5848 				if (found &&
5849 				    physical_of_found <=
5850 				     bbio->stripes[i].physical)
5851 					continue;
5852 				index_srcdev = i;
5853 				found = 1;
5854 				physical_of_found = bbio->stripes[i].physical;
5855 			}
5856 		}
5857 		if (found) {
5858 			struct btrfs_bio_stripe *tgtdev_stripe =
5859 				bbio->stripes + num_stripes;
5860 
5861 			tgtdev_stripe->physical = physical_of_found;
5862 			tgtdev_stripe->length =
5863 				bbio->stripes[index_srcdev].length;
5864 			tgtdev_stripe->dev = dev_replace->tgtdev;
5865 			bbio->tgtdev_map[index_srcdev] = num_stripes;
5866 
5867 			tgtdev_indexes++;
5868 			num_stripes++;
5869 		}
5870 	}
5871 
5872 	*bbio_ret = bbio;
5873 	bbio->map_type = map->type;
5874 	bbio->num_stripes = num_stripes;
5875 	bbio->max_errors = max_errors;
5876 	bbio->mirror_num = mirror_num;
5877 	bbio->num_tgtdevs = tgtdev_indexes;
5878 
5879 	/*
5880 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5881 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5882 	 * available as a mirror
5883 	 */
5884 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5885 		WARN_ON(num_stripes > 1);
5886 		bbio->stripes[0].dev = dev_replace->tgtdev;
5887 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5888 		bbio->mirror_num = map->num_stripes + 1;
5889 	}
5890 out:
5891 	if (dev_replace_is_ongoing) {
5892 		btrfs_dev_replace_clear_lock_blocking(dev_replace);
5893 		btrfs_dev_replace_unlock(dev_replace, 0);
5894 	}
5895 	free_extent_map(em);
5896 	return ret;
5897 }
5898 
btrfs_map_block(struct btrfs_fs_info * fs_info,int op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num)5899 int btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5900 		      u64 logical, u64 *length,
5901 		      struct btrfs_bio **bbio_ret, int mirror_num)
5902 {
5903 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5904 				 mirror_num, 0);
5905 }
5906 
5907 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,int op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)5908 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int op,
5909 		     u64 logical, u64 *length,
5910 		     struct btrfs_bio **bbio_ret, int mirror_num,
5911 		     int need_raid_map)
5912 {
5913 	return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5914 				 mirror_num, need_raid_map);
5915 }
5916 
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 devid,u64 ** logical,int * naddrs,int * stripe_len)5917 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5918 		     u64 chunk_start, u64 physical, u64 devid,
5919 		     u64 **logical, int *naddrs, int *stripe_len)
5920 {
5921 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5922 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5923 	struct extent_map *em;
5924 	struct map_lookup *map;
5925 	u64 *buf;
5926 	u64 bytenr;
5927 	u64 length;
5928 	u64 stripe_nr;
5929 	u64 rmap_len;
5930 	int i, j, nr = 0;
5931 
5932 	read_lock(&em_tree->lock);
5933 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5934 	read_unlock(&em_tree->lock);
5935 
5936 	if (!em) {
5937 		btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5938 			chunk_start);
5939 		return -EIO;
5940 	}
5941 
5942 	if (em->start != chunk_start) {
5943 		btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
5944 		       em->start, chunk_start);
5945 		free_extent_map(em);
5946 		return -EIO;
5947 	}
5948 	map = em->map_lookup;
5949 
5950 	length = em->len;
5951 	rmap_len = map->stripe_len;
5952 
5953 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5954 		length = div_u64(length, map->num_stripes / map->sub_stripes);
5955 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5956 		length = div_u64(length, map->num_stripes);
5957 	else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5958 		length = div_u64(length, nr_data_stripes(map));
5959 		rmap_len = map->stripe_len * nr_data_stripes(map);
5960 	}
5961 
5962 	buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5963 	BUG_ON(!buf); /* -ENOMEM */
5964 
5965 	for (i = 0; i < map->num_stripes; i++) {
5966 		if (devid && map->stripes[i].dev->devid != devid)
5967 			continue;
5968 		if (map->stripes[i].physical > physical ||
5969 		    map->stripes[i].physical + length <= physical)
5970 			continue;
5971 
5972 		stripe_nr = physical - map->stripes[i].physical;
5973 		stripe_nr = div_u64(stripe_nr, map->stripe_len);
5974 
5975 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5976 			stripe_nr = stripe_nr * map->num_stripes + i;
5977 			stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5978 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5979 			stripe_nr = stripe_nr * map->num_stripes + i;
5980 		} /* else if RAID[56], multiply by nr_data_stripes().
5981 		   * Alternatively, just use rmap_len below instead of
5982 		   * map->stripe_len */
5983 
5984 		bytenr = chunk_start + stripe_nr * rmap_len;
5985 		WARN_ON(nr >= map->num_stripes);
5986 		for (j = 0; j < nr; j++) {
5987 			if (buf[j] == bytenr)
5988 				break;
5989 		}
5990 		if (j == nr) {
5991 			WARN_ON(nr >= map->num_stripes);
5992 			buf[nr++] = bytenr;
5993 		}
5994 	}
5995 
5996 	*logical = buf;
5997 	*naddrs = nr;
5998 	*stripe_len = rmap_len;
5999 
6000 	free_extent_map(em);
6001 	return 0;
6002 }
6003 
btrfs_end_bbio(struct btrfs_bio * bbio,struct bio * bio)6004 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6005 {
6006 	bio->bi_private = bbio->private;
6007 	bio->bi_end_io = bbio->end_io;
6008 	bio_endio(bio);
6009 
6010 	btrfs_put_bbio(bbio);
6011 }
6012 
btrfs_end_bio(struct bio * bio)6013 static void btrfs_end_bio(struct bio *bio)
6014 {
6015 	struct btrfs_bio *bbio = bio->bi_private;
6016 	int is_orig_bio = 0;
6017 
6018 	if (bio->bi_error) {
6019 		atomic_inc(&bbio->error);
6020 		if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
6021 			unsigned int stripe_index =
6022 				btrfs_io_bio(bio)->stripe_index;
6023 			struct btrfs_device *dev;
6024 
6025 			BUG_ON(stripe_index >= bbio->num_stripes);
6026 			dev = bbio->stripes[stripe_index].dev;
6027 			if (dev->bdev) {
6028 				if (bio_op(bio) == REQ_OP_WRITE)
6029 					btrfs_dev_stat_inc(dev,
6030 						BTRFS_DEV_STAT_WRITE_ERRS);
6031 				else
6032 					btrfs_dev_stat_inc(dev,
6033 						BTRFS_DEV_STAT_READ_ERRS);
6034 				if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH)
6035 					btrfs_dev_stat_inc(dev,
6036 						BTRFS_DEV_STAT_FLUSH_ERRS);
6037 				btrfs_dev_stat_print_on_error(dev);
6038 			}
6039 		}
6040 	}
6041 
6042 	if (bio == bbio->orig_bio)
6043 		is_orig_bio = 1;
6044 
6045 	btrfs_bio_counter_dec(bbio->fs_info);
6046 
6047 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6048 		if (!is_orig_bio) {
6049 			bio_put(bio);
6050 			bio = bbio->orig_bio;
6051 		}
6052 
6053 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6054 		/* only send an error to the higher layers if it is
6055 		 * beyond the tolerance of the btrfs bio
6056 		 */
6057 		if (atomic_read(&bbio->error) > bbio->max_errors) {
6058 			bio->bi_error = -EIO;
6059 		} else {
6060 			/*
6061 			 * this bio is actually up to date, we didn't
6062 			 * go over the max number of errors
6063 			 */
6064 			bio->bi_error = 0;
6065 		}
6066 
6067 		btrfs_end_bbio(bbio, bio);
6068 	} else if (!is_orig_bio) {
6069 		bio_put(bio);
6070 	}
6071 }
6072 
6073 /*
6074  * see run_scheduled_bios for a description of why bios are collected for
6075  * async submit.
6076  *
6077  * This will add one bio to the pending list for a device and make sure
6078  * the work struct is scheduled.
6079  */
btrfs_schedule_bio(struct btrfs_root * root,struct btrfs_device * device,struct bio * bio)6080 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
6081 					struct btrfs_device *device,
6082 					struct bio *bio)
6083 {
6084 	int should_queue = 1;
6085 	struct btrfs_pending_bios *pending_bios;
6086 
6087 	if (device->missing || !device->bdev) {
6088 		bio_io_error(bio);
6089 		return;
6090 	}
6091 
6092 	/* don't bother with additional async steps for reads, right now */
6093 	if (bio_op(bio) == REQ_OP_READ) {
6094 		bio_get(bio);
6095 		btrfsic_submit_bio(bio);
6096 		bio_put(bio);
6097 		return;
6098 	}
6099 
6100 	/*
6101 	 * nr_async_bios allows us to reliably return congestion to the
6102 	 * higher layers.  Otherwise, the async bio makes it appear we have
6103 	 * made progress against dirty pages when we've really just put it
6104 	 * on a queue for later
6105 	 */
6106 	atomic_inc(&root->fs_info->nr_async_bios);
6107 	WARN_ON(bio->bi_next);
6108 	bio->bi_next = NULL;
6109 
6110 	spin_lock(&device->io_lock);
6111 	if (bio->bi_opf & REQ_SYNC)
6112 		pending_bios = &device->pending_sync_bios;
6113 	else
6114 		pending_bios = &device->pending_bios;
6115 
6116 	if (pending_bios->tail)
6117 		pending_bios->tail->bi_next = bio;
6118 
6119 	pending_bios->tail = bio;
6120 	if (!pending_bios->head)
6121 		pending_bios->head = bio;
6122 	if (device->running_pending)
6123 		should_queue = 0;
6124 
6125 	spin_unlock(&device->io_lock);
6126 
6127 	if (should_queue)
6128 		btrfs_queue_work(root->fs_info->submit_workers,
6129 				 &device->work);
6130 }
6131 
submit_stripe_bio(struct btrfs_root * root,struct btrfs_bio * bbio,struct bio * bio,u64 physical,int dev_nr,int async)6132 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6133 			      struct bio *bio, u64 physical, int dev_nr,
6134 			      int async)
6135 {
6136 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6137 
6138 	bio->bi_private = bbio;
6139 	btrfs_io_bio(bio)->stripe_index = dev_nr;
6140 	bio->bi_end_io = btrfs_end_bio;
6141 	bio->bi_iter.bi_sector = physical >> 9;
6142 #ifdef DEBUG
6143 	{
6144 		struct rcu_string *name;
6145 
6146 		rcu_read_lock();
6147 		name = rcu_dereference(dev->name);
6148 		btrfs_debug(fs_info,
6149 			"btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6150 			bio_op(bio), bio->bi_opf,
6151 			(u64)bio->bi_iter.bi_sector,
6152 			(u_long)dev->bdev->bd_dev, name->str, dev->devid,
6153 			bio->bi_iter.bi_size);
6154 		rcu_read_unlock();
6155 	}
6156 #endif
6157 	bio->bi_bdev = dev->bdev;
6158 
6159 	btrfs_bio_counter_inc_noblocked(root->fs_info);
6160 
6161 	if (async)
6162 		btrfs_schedule_bio(root, dev, bio);
6163 	else
6164 		btrfsic_submit_bio(bio);
6165 }
6166 
bbio_error(struct btrfs_bio * bbio,struct bio * bio,u64 logical)6167 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6168 {
6169 	atomic_inc(&bbio->error);
6170 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
6171 		/* Should be the original bio. */
6172 		WARN_ON(bio != bbio->orig_bio);
6173 
6174 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6175 		bio->bi_iter.bi_sector = logical >> 9;
6176 		bio->bi_error = -EIO;
6177 		btrfs_end_bbio(bbio, bio);
6178 	}
6179 }
6180 
btrfs_map_bio(struct btrfs_root * root,struct bio * bio,int mirror_num,int async_submit)6181 int btrfs_map_bio(struct btrfs_root *root, struct bio *bio,
6182 		  int mirror_num, int async_submit)
6183 {
6184 	struct btrfs_device *dev;
6185 	struct bio *first_bio = bio;
6186 	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6187 	u64 length = 0;
6188 	u64 map_length;
6189 	int ret;
6190 	int dev_nr;
6191 	int total_devs;
6192 	struct btrfs_bio *bbio = NULL;
6193 
6194 	length = bio->bi_iter.bi_size;
6195 	map_length = length;
6196 
6197 	btrfs_bio_counter_inc_blocked(root->fs_info);
6198 	ret = __btrfs_map_block(root->fs_info, bio_op(bio), logical,
6199 				&map_length, &bbio, mirror_num, 1);
6200 	if (ret) {
6201 		btrfs_bio_counter_dec(root->fs_info);
6202 		return ret;
6203 	}
6204 
6205 	total_devs = bbio->num_stripes;
6206 	bbio->orig_bio = first_bio;
6207 	bbio->private = first_bio->bi_private;
6208 	bbio->end_io = first_bio->bi_end_io;
6209 	bbio->fs_info = root->fs_info;
6210 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6211 
6212 	if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6213 	    ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6214 		/* In this case, map_length has been set to the length of
6215 		   a single stripe; not the whole write */
6216 		if (bio_op(bio) == REQ_OP_WRITE) {
6217 			ret = raid56_parity_write(root, bio, bbio, map_length);
6218 		} else {
6219 			ret = raid56_parity_recover(root, bio, bbio, map_length,
6220 						    mirror_num, 1);
6221 		}
6222 
6223 		btrfs_bio_counter_dec(root->fs_info);
6224 		return ret;
6225 	}
6226 
6227 	if (map_length < length) {
6228 		btrfs_crit(root->fs_info,
6229 			   "mapping failed logical %llu bio len %llu len %llu",
6230 			   logical, length, map_length);
6231 		BUG();
6232 	}
6233 
6234 	for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6235 		dev = bbio->stripes[dev_nr].dev;
6236 		if (!dev || !dev->bdev ||
6237 		    (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6238 			bbio_error(bbio, first_bio, logical);
6239 			continue;
6240 		}
6241 
6242 		if (dev_nr < total_devs - 1) {
6243 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6244 			BUG_ON(!bio); /* -ENOMEM */
6245 		} else
6246 			bio = first_bio;
6247 
6248 		submit_stripe_bio(root, bbio, bio,
6249 				  bbio->stripes[dev_nr].physical, dev_nr,
6250 				  async_submit);
6251 	}
6252 	btrfs_bio_counter_dec(root->fs_info);
6253 	return 0;
6254 }
6255 
btrfs_find_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,u8 * fsid)6256 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6257 				       u8 *uuid, u8 *fsid)
6258 {
6259 	struct btrfs_device *device;
6260 	struct btrfs_fs_devices *cur_devices;
6261 
6262 	cur_devices = fs_info->fs_devices;
6263 	while (cur_devices) {
6264 		if (!fsid ||
6265 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6266 			device = __find_device(&cur_devices->devices,
6267 					       devid, uuid);
6268 			if (device)
6269 				return device;
6270 		}
6271 		cur_devices = cur_devices->seed;
6272 	}
6273 	return NULL;
6274 }
6275 
add_missing_dev(struct btrfs_root * root,struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6276 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6277 					    struct btrfs_fs_devices *fs_devices,
6278 					    u64 devid, u8 *dev_uuid)
6279 {
6280 	struct btrfs_device *device;
6281 
6282 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6283 	if (IS_ERR(device))
6284 		return NULL;
6285 
6286 	list_add(&device->dev_list, &fs_devices->devices);
6287 	device->fs_devices = fs_devices;
6288 	fs_devices->num_devices++;
6289 
6290 	device->missing = 1;
6291 	fs_devices->missing_devices++;
6292 
6293 	return device;
6294 }
6295 
6296 /**
6297  * btrfs_alloc_device - allocate struct btrfs_device
6298  * @fs_info:	used only for generating a new devid, can be NULL if
6299  *		devid is provided (i.e. @devid != NULL).
6300  * @devid:	a pointer to devid for this device.  If NULL a new devid
6301  *		is generated.
6302  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
6303  *		is generated.
6304  *
6305  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6306  * on error.  Returned struct is not linked onto any lists and can be
6307  * destroyed with kfree() right away.
6308  */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)6309 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6310 					const u64 *devid,
6311 					const u8 *uuid)
6312 {
6313 	struct btrfs_device *dev;
6314 	u64 tmp;
6315 
6316 	if (WARN_ON(!devid && !fs_info))
6317 		return ERR_PTR(-EINVAL);
6318 
6319 	dev = __alloc_device();
6320 	if (IS_ERR(dev))
6321 		return dev;
6322 
6323 	if (devid)
6324 		tmp = *devid;
6325 	else {
6326 		int ret;
6327 
6328 		ret = find_next_devid(fs_info, &tmp);
6329 		if (ret) {
6330 			kfree(dev);
6331 			return ERR_PTR(ret);
6332 		}
6333 	}
6334 	dev->devid = tmp;
6335 
6336 	if (uuid)
6337 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6338 	else
6339 		generate_random_uuid(dev->uuid);
6340 
6341 	btrfs_init_work(&dev->work, btrfs_submit_helper,
6342 			pending_bios_fn, NULL, NULL);
6343 
6344 	return dev;
6345 }
6346 
6347 /* Return -EIO if any error, otherwise return 0. */
btrfs_check_chunk_valid(struct btrfs_root * root,struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 logical)6348 static int btrfs_check_chunk_valid(struct btrfs_root *root,
6349 				   struct extent_buffer *leaf,
6350 				   struct btrfs_chunk *chunk, u64 logical)
6351 {
6352 	u64 length;
6353 	u64 stripe_len;
6354 	u16 num_stripes;
6355 	u16 sub_stripes;
6356 	u64 type;
6357 
6358 	length = btrfs_chunk_length(leaf, chunk);
6359 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6360 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6361 	sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6362 	type = btrfs_chunk_type(leaf, chunk);
6363 
6364 	if (!num_stripes) {
6365 		btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6366 			  num_stripes);
6367 		return -EIO;
6368 	}
6369 	if (!IS_ALIGNED(logical, root->sectorsize)) {
6370 		btrfs_err(root->fs_info,
6371 			  "invalid chunk logical %llu", logical);
6372 		return -EIO;
6373 	}
6374 	if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) {
6375 		btrfs_err(root->fs_info, "invalid chunk sectorsize %u",
6376 			  btrfs_chunk_sector_size(leaf, chunk));
6377 		return -EIO;
6378 	}
6379 	if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6380 		btrfs_err(root->fs_info,
6381 			"invalid chunk length %llu", length);
6382 		return -EIO;
6383 	}
6384 	if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6385 		btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6386 			  stripe_len);
6387 		return -EIO;
6388 	}
6389 	if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6390 	    type) {
6391 		btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6392 			  ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6393 			    BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6394 			  btrfs_chunk_type(leaf, chunk));
6395 		return -EIO;
6396 	}
6397 	if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6398 	    (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6399 	    (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6400 	    (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6401 	    (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6402 	    ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6403 	     num_stripes != 1)) {
6404 		btrfs_err(root->fs_info,
6405 			"invalid num_stripes:sub_stripes %u:%u for profile %llu",
6406 			num_stripes, sub_stripes,
6407 			type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6408 		return -EIO;
6409 	}
6410 
6411 	return 0;
6412 }
6413 
read_one_chunk(struct btrfs_root * root,struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6414 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6415 			  struct extent_buffer *leaf,
6416 			  struct btrfs_chunk *chunk)
6417 {
6418 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6419 	struct map_lookup *map;
6420 	struct extent_map *em;
6421 	u64 logical;
6422 	u64 length;
6423 	u64 stripe_len;
6424 	u64 devid;
6425 	u8 uuid[BTRFS_UUID_SIZE];
6426 	int num_stripes;
6427 	int ret;
6428 	int i;
6429 
6430 	logical = key->offset;
6431 	length = btrfs_chunk_length(leaf, chunk);
6432 	stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6433 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6434 
6435 	ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6436 	if (ret)
6437 		return ret;
6438 
6439 	read_lock(&map_tree->map_tree.lock);
6440 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6441 	read_unlock(&map_tree->map_tree.lock);
6442 
6443 	/* already mapped? */
6444 	if (em && em->start <= logical && em->start + em->len > logical) {
6445 		free_extent_map(em);
6446 		return 0;
6447 	} else if (em) {
6448 		free_extent_map(em);
6449 	}
6450 
6451 	em = alloc_extent_map();
6452 	if (!em)
6453 		return -ENOMEM;
6454 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6455 	if (!map) {
6456 		free_extent_map(em);
6457 		return -ENOMEM;
6458 	}
6459 
6460 	set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6461 	em->map_lookup = map;
6462 	em->start = logical;
6463 	em->len = length;
6464 	em->orig_start = 0;
6465 	em->block_start = 0;
6466 	em->block_len = em->len;
6467 
6468 	map->num_stripes = num_stripes;
6469 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
6470 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
6471 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6472 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6473 	map->type = btrfs_chunk_type(leaf, chunk);
6474 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6475 	for (i = 0; i < num_stripes; i++) {
6476 		map->stripes[i].physical =
6477 			btrfs_stripe_offset_nr(leaf, chunk, i);
6478 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6479 		read_extent_buffer(leaf, uuid, (unsigned long)
6480 				   btrfs_stripe_dev_uuid_nr(chunk, i),
6481 				   BTRFS_UUID_SIZE);
6482 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6483 							uuid, NULL);
6484 		if (!map->stripes[i].dev &&
6485 		    !btrfs_test_opt(root->fs_info, DEGRADED)) {
6486 			free_extent_map(em);
6487 			return -EIO;
6488 		}
6489 		if (!map->stripes[i].dev) {
6490 			map->stripes[i].dev =
6491 				add_missing_dev(root, root->fs_info->fs_devices,
6492 						devid, uuid);
6493 			if (!map->stripes[i].dev) {
6494 				free_extent_map(em);
6495 				return -EIO;
6496 			}
6497 			btrfs_warn(root->fs_info,
6498 				   "devid %llu uuid %pU is missing",
6499 				   devid, uuid);
6500 		}
6501 		map->stripes[i].dev->in_fs_metadata = 1;
6502 	}
6503 
6504 	write_lock(&map_tree->map_tree.lock);
6505 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6506 	write_unlock(&map_tree->map_tree.lock);
6507 	BUG_ON(ret); /* Tree corruption */
6508 	free_extent_map(em);
6509 
6510 	return 0;
6511 }
6512 
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6513 static void fill_device_from_item(struct extent_buffer *leaf,
6514 				 struct btrfs_dev_item *dev_item,
6515 				 struct btrfs_device *device)
6516 {
6517 	unsigned long ptr;
6518 
6519 	device->devid = btrfs_device_id(leaf, dev_item);
6520 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6521 	device->total_bytes = device->disk_total_bytes;
6522 	device->commit_total_bytes = device->disk_total_bytes;
6523 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6524 	device->commit_bytes_used = device->bytes_used;
6525 	device->type = btrfs_device_type(leaf, dev_item);
6526 	device->io_align = btrfs_device_io_align(leaf, dev_item);
6527 	device->io_width = btrfs_device_io_width(leaf, dev_item);
6528 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6529 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6530 	device->is_tgtdev_for_dev_replace = 0;
6531 
6532 	ptr = btrfs_device_uuid(dev_item);
6533 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6534 }
6535 
open_seed_devices(struct btrfs_root * root,u8 * fsid)6536 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6537 						  u8 *fsid)
6538 {
6539 	struct btrfs_fs_devices *fs_devices;
6540 	int ret;
6541 
6542 	BUG_ON(!mutex_is_locked(&uuid_mutex));
6543 
6544 	fs_devices = root->fs_info->fs_devices->seed;
6545 	while (fs_devices) {
6546 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6547 			return fs_devices;
6548 
6549 		fs_devices = fs_devices->seed;
6550 	}
6551 
6552 	fs_devices = find_fsid(fsid);
6553 	if (!fs_devices) {
6554 		if (!btrfs_test_opt(root->fs_info, DEGRADED))
6555 			return ERR_PTR(-ENOENT);
6556 
6557 		fs_devices = alloc_fs_devices(fsid);
6558 		if (IS_ERR(fs_devices))
6559 			return fs_devices;
6560 
6561 		fs_devices->seeding = 1;
6562 		fs_devices->opened = 1;
6563 		return fs_devices;
6564 	}
6565 
6566 	fs_devices = clone_fs_devices(fs_devices);
6567 	if (IS_ERR(fs_devices))
6568 		return fs_devices;
6569 
6570 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6571 				   root->fs_info->bdev_holder);
6572 	if (ret) {
6573 		free_fs_devices(fs_devices);
6574 		fs_devices = ERR_PTR(ret);
6575 		goto out;
6576 	}
6577 
6578 	if (!fs_devices->seeding) {
6579 		__btrfs_close_devices(fs_devices);
6580 		free_fs_devices(fs_devices);
6581 		fs_devices = ERR_PTR(-EINVAL);
6582 		goto out;
6583 	}
6584 
6585 	fs_devices->seed = root->fs_info->fs_devices->seed;
6586 	root->fs_info->fs_devices->seed = fs_devices;
6587 out:
6588 	return fs_devices;
6589 }
6590 
read_one_dev(struct btrfs_root * root,struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)6591 static int read_one_dev(struct btrfs_root *root,
6592 			struct extent_buffer *leaf,
6593 			struct btrfs_dev_item *dev_item)
6594 {
6595 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6596 	struct btrfs_device *device;
6597 	u64 devid;
6598 	int ret;
6599 	u8 fs_uuid[BTRFS_UUID_SIZE];
6600 	u8 dev_uuid[BTRFS_UUID_SIZE];
6601 
6602 	devid = btrfs_device_id(leaf, dev_item);
6603 	read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6604 			   BTRFS_UUID_SIZE);
6605 	read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6606 			   BTRFS_UUID_SIZE);
6607 
6608 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6609 		fs_devices = open_seed_devices(root, fs_uuid);
6610 		if (IS_ERR(fs_devices))
6611 			return PTR_ERR(fs_devices);
6612 	}
6613 
6614 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6615 	if (!device) {
6616 		if (!btrfs_test_opt(root->fs_info, DEGRADED))
6617 			return -EIO;
6618 
6619 		device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6620 		if (!device)
6621 			return -ENOMEM;
6622 		btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6623 				devid, dev_uuid);
6624 	} else {
6625 		if (!device->bdev && !btrfs_test_opt(root->fs_info, DEGRADED))
6626 			return -EIO;
6627 
6628 		if(!device->bdev && !device->missing) {
6629 			/*
6630 			 * this happens when a device that was properly setup
6631 			 * in the device info lists suddenly goes bad.
6632 			 * device->bdev is NULL, and so we have to set
6633 			 * device->missing to one here
6634 			 */
6635 			device->fs_devices->missing_devices++;
6636 			device->missing = 1;
6637 		}
6638 
6639 		/* Move the device to its own fs_devices */
6640 		if (device->fs_devices != fs_devices) {
6641 			ASSERT(device->missing);
6642 
6643 			list_move(&device->dev_list, &fs_devices->devices);
6644 			device->fs_devices->num_devices--;
6645 			fs_devices->num_devices++;
6646 
6647 			device->fs_devices->missing_devices--;
6648 			fs_devices->missing_devices++;
6649 
6650 			device->fs_devices = fs_devices;
6651 		}
6652 	}
6653 
6654 	if (device->fs_devices != root->fs_info->fs_devices) {
6655 		BUG_ON(device->writeable);
6656 		if (device->generation !=
6657 		    btrfs_device_generation(leaf, dev_item))
6658 			return -EINVAL;
6659 	}
6660 
6661 	fill_device_from_item(leaf, dev_item, device);
6662 	device->in_fs_metadata = 1;
6663 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6664 		device->fs_devices->total_rw_bytes += device->total_bytes;
6665 		spin_lock(&root->fs_info->free_chunk_lock);
6666 		root->fs_info->free_chunk_space += device->total_bytes -
6667 			device->bytes_used;
6668 		spin_unlock(&root->fs_info->free_chunk_lock);
6669 	}
6670 	ret = 0;
6671 	return ret;
6672 }
6673 
btrfs_read_sys_array(struct btrfs_root * root)6674 int btrfs_read_sys_array(struct btrfs_root *root)
6675 {
6676 	struct btrfs_fs_info *fs_info = root->fs_info;
6677 	struct btrfs_super_block *super_copy = fs_info->super_copy;
6678 	struct extent_buffer *sb;
6679 	struct btrfs_disk_key *disk_key;
6680 	struct btrfs_chunk *chunk;
6681 	u8 *array_ptr;
6682 	unsigned long sb_array_offset;
6683 	int ret = 0;
6684 	u32 num_stripes;
6685 	u32 array_size;
6686 	u32 len = 0;
6687 	u32 cur_offset;
6688 	u64 type;
6689 	struct btrfs_key key;
6690 
6691 	ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6692 	/*
6693 	 * This will create extent buffer of nodesize, superblock size is
6694 	 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6695 	 * overallocate but we can keep it as-is, only the first page is used.
6696 	 */
6697 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6698 	if (IS_ERR(sb))
6699 		return PTR_ERR(sb);
6700 	set_extent_buffer_uptodate(sb);
6701 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6702 	/*
6703 	 * The sb extent buffer is artificial and just used to read the system array.
6704 	 * set_extent_buffer_uptodate() call does not properly mark all it's
6705 	 * pages up-to-date when the page is larger: extent does not cover the
6706 	 * whole page and consequently check_page_uptodate does not find all
6707 	 * the page's extents up-to-date (the hole beyond sb),
6708 	 * write_extent_buffer then triggers a WARN_ON.
6709 	 *
6710 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6711 	 * but sb spans only this function. Add an explicit SetPageUptodate call
6712 	 * to silence the warning eg. on PowerPC 64.
6713 	 */
6714 	if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6715 		SetPageUptodate(sb->pages[0]);
6716 
6717 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6718 	array_size = btrfs_super_sys_array_size(super_copy);
6719 
6720 	array_ptr = super_copy->sys_chunk_array;
6721 	sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6722 	cur_offset = 0;
6723 
6724 	while (cur_offset < array_size) {
6725 		disk_key = (struct btrfs_disk_key *)array_ptr;
6726 		len = sizeof(*disk_key);
6727 		if (cur_offset + len > array_size)
6728 			goto out_short_read;
6729 
6730 		btrfs_disk_key_to_cpu(&key, disk_key);
6731 
6732 		array_ptr += len;
6733 		sb_array_offset += len;
6734 		cur_offset += len;
6735 
6736 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6737 			chunk = (struct btrfs_chunk *)sb_array_offset;
6738 			/*
6739 			 * At least one btrfs_chunk with one stripe must be
6740 			 * present, exact stripe count check comes afterwards
6741 			 */
6742 			len = btrfs_chunk_item_size(1);
6743 			if (cur_offset + len > array_size)
6744 				goto out_short_read;
6745 
6746 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6747 			if (!num_stripes) {
6748 				btrfs_err(fs_info,
6749 					"invalid number of stripes %u in sys_array at offset %u",
6750 					num_stripes, cur_offset);
6751 				ret = -EIO;
6752 				break;
6753 			}
6754 
6755 			type = btrfs_chunk_type(sb, chunk);
6756 			if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6757 				btrfs_err(fs_info,
6758 			    "invalid chunk type %llu in sys_array at offset %u",
6759 					type, cur_offset);
6760 				ret = -EIO;
6761 				break;
6762 			}
6763 
6764 			len = btrfs_chunk_item_size(num_stripes);
6765 			if (cur_offset + len > array_size)
6766 				goto out_short_read;
6767 
6768 			ret = read_one_chunk(root, &key, sb, chunk);
6769 			if (ret)
6770 				break;
6771 		} else {
6772 			btrfs_err(fs_info,
6773 			    "unexpected item type %u in sys_array at offset %u",
6774 				  (u32)key.type, cur_offset);
6775 			ret = -EIO;
6776 			break;
6777 		}
6778 		array_ptr += len;
6779 		sb_array_offset += len;
6780 		cur_offset += len;
6781 	}
6782 	clear_extent_buffer_uptodate(sb);
6783 	free_extent_buffer_stale(sb);
6784 	return ret;
6785 
6786 out_short_read:
6787 	btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6788 			len, cur_offset);
6789 	clear_extent_buffer_uptodate(sb);
6790 	free_extent_buffer_stale(sb);
6791 	return -EIO;
6792 }
6793 
btrfs_read_chunk_tree(struct btrfs_root * root)6794 int btrfs_read_chunk_tree(struct btrfs_root *root)
6795 {
6796 	struct btrfs_path *path;
6797 	struct extent_buffer *leaf;
6798 	struct btrfs_key key;
6799 	struct btrfs_key found_key;
6800 	int ret;
6801 	int slot;
6802 	u64 total_dev = 0;
6803 
6804 	root = root->fs_info->chunk_root;
6805 
6806 	path = btrfs_alloc_path();
6807 	if (!path)
6808 		return -ENOMEM;
6809 
6810 	mutex_lock(&uuid_mutex);
6811 	lock_chunks(root);
6812 
6813 	/*
6814 	 * Read all device items, and then all the chunk items. All
6815 	 * device items are found before any chunk item (their object id
6816 	 * is smaller than the lowest possible object id for a chunk
6817 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6818 	 */
6819 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6820 	key.offset = 0;
6821 	key.type = 0;
6822 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6823 	if (ret < 0)
6824 		goto error;
6825 	while (1) {
6826 		leaf = path->nodes[0];
6827 		slot = path->slots[0];
6828 		if (slot >= btrfs_header_nritems(leaf)) {
6829 			ret = btrfs_next_leaf(root, path);
6830 			if (ret == 0)
6831 				continue;
6832 			if (ret < 0)
6833 				goto error;
6834 			break;
6835 		}
6836 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
6837 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6838 			struct btrfs_dev_item *dev_item;
6839 			dev_item = btrfs_item_ptr(leaf, slot,
6840 						  struct btrfs_dev_item);
6841 			ret = read_one_dev(root, leaf, dev_item);
6842 			if (ret)
6843 				goto error;
6844 			total_dev++;
6845 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6846 			struct btrfs_chunk *chunk;
6847 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6848 			ret = read_one_chunk(root, &found_key, leaf, chunk);
6849 			if (ret)
6850 				goto error;
6851 		}
6852 		path->slots[0]++;
6853 	}
6854 
6855 	/*
6856 	 * After loading chunk tree, we've got all device information,
6857 	 * do another round of validation checks.
6858 	 */
6859 	if (total_dev != root->fs_info->fs_devices->total_devices) {
6860 		btrfs_err(root->fs_info,
6861 	   "super_num_devices %llu mismatch with num_devices %llu found here",
6862 			  btrfs_super_num_devices(root->fs_info->super_copy),
6863 			  total_dev);
6864 		ret = -EINVAL;
6865 		goto error;
6866 	}
6867 	if (btrfs_super_total_bytes(root->fs_info->super_copy) <
6868 	    root->fs_info->fs_devices->total_rw_bytes) {
6869 		btrfs_err(root->fs_info,
6870 	"super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6871 			  btrfs_super_total_bytes(root->fs_info->super_copy),
6872 			  root->fs_info->fs_devices->total_rw_bytes);
6873 		ret = -EINVAL;
6874 		goto error;
6875 	}
6876 	ret = 0;
6877 error:
6878 	unlock_chunks(root);
6879 	mutex_unlock(&uuid_mutex);
6880 
6881 	btrfs_free_path(path);
6882 	return ret;
6883 }
6884 
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)6885 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6886 {
6887 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6888 	struct btrfs_device *device;
6889 
6890 	while (fs_devices) {
6891 		mutex_lock(&fs_devices->device_list_mutex);
6892 		list_for_each_entry(device, &fs_devices->devices, dev_list)
6893 			device->dev_root = fs_info->dev_root;
6894 		mutex_unlock(&fs_devices->device_list_mutex);
6895 
6896 		fs_devices = fs_devices->seed;
6897 	}
6898 }
6899 
__btrfs_reset_dev_stats(struct btrfs_device * dev)6900 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6901 {
6902 	int i;
6903 
6904 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6905 		btrfs_dev_stat_reset(dev, i);
6906 }
6907 
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)6908 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6909 {
6910 	struct btrfs_key key;
6911 	struct btrfs_key found_key;
6912 	struct btrfs_root *dev_root = fs_info->dev_root;
6913 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6914 	struct extent_buffer *eb;
6915 	int slot;
6916 	int ret = 0;
6917 	struct btrfs_device *device;
6918 	struct btrfs_path *path = NULL;
6919 	int i;
6920 
6921 	path = btrfs_alloc_path();
6922 	if (!path) {
6923 		ret = -ENOMEM;
6924 		goto out;
6925 	}
6926 
6927 	mutex_lock(&fs_devices->device_list_mutex);
6928 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6929 		int item_size;
6930 		struct btrfs_dev_stats_item *ptr;
6931 
6932 		key.objectid = BTRFS_DEV_STATS_OBJECTID;
6933 		key.type = BTRFS_PERSISTENT_ITEM_KEY;
6934 		key.offset = device->devid;
6935 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6936 		if (ret) {
6937 			__btrfs_reset_dev_stats(device);
6938 			device->dev_stats_valid = 1;
6939 			btrfs_release_path(path);
6940 			continue;
6941 		}
6942 		slot = path->slots[0];
6943 		eb = path->nodes[0];
6944 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6945 		item_size = btrfs_item_size_nr(eb, slot);
6946 
6947 		ptr = btrfs_item_ptr(eb, slot,
6948 				     struct btrfs_dev_stats_item);
6949 
6950 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6951 			if (item_size >= (1 + i) * sizeof(__le64))
6952 				btrfs_dev_stat_set(device, i,
6953 					btrfs_dev_stats_value(eb, ptr, i));
6954 			else
6955 				btrfs_dev_stat_reset(device, i);
6956 		}
6957 
6958 		device->dev_stats_valid = 1;
6959 		btrfs_dev_stat_print_on_load(device);
6960 		btrfs_release_path(path);
6961 	}
6962 	mutex_unlock(&fs_devices->device_list_mutex);
6963 
6964 out:
6965 	btrfs_free_path(path);
6966 	return ret < 0 ? ret : 0;
6967 }
6968 
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_root * dev_root,struct btrfs_device * device)6969 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6970 				struct btrfs_root *dev_root,
6971 				struct btrfs_device *device)
6972 {
6973 	struct btrfs_path *path;
6974 	struct btrfs_key key;
6975 	struct extent_buffer *eb;
6976 	struct btrfs_dev_stats_item *ptr;
6977 	int ret;
6978 	int i;
6979 
6980 	key.objectid = BTRFS_DEV_STATS_OBJECTID;
6981 	key.type = BTRFS_PERSISTENT_ITEM_KEY;
6982 	key.offset = device->devid;
6983 
6984 	path = btrfs_alloc_path();
6985 	BUG_ON(!path);
6986 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6987 	if (ret < 0) {
6988 		btrfs_warn_in_rcu(dev_root->fs_info,
6989 			"error %d while searching for dev_stats item for device %s",
6990 			      ret, rcu_str_deref(device->name));
6991 		goto out;
6992 	}
6993 
6994 	if (ret == 0 &&
6995 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6996 		/* need to delete old one and insert a new one */
6997 		ret = btrfs_del_item(trans, dev_root, path);
6998 		if (ret != 0) {
6999 			btrfs_warn_in_rcu(dev_root->fs_info,
7000 				"delete too small dev_stats item for device %s failed %d",
7001 				      rcu_str_deref(device->name), ret);
7002 			goto out;
7003 		}
7004 		ret = 1;
7005 	}
7006 
7007 	if (ret == 1) {
7008 		/* need to insert a new item */
7009 		btrfs_release_path(path);
7010 		ret = btrfs_insert_empty_item(trans, dev_root, path,
7011 					      &key, sizeof(*ptr));
7012 		if (ret < 0) {
7013 			btrfs_warn_in_rcu(dev_root->fs_info,
7014 				"insert dev_stats item for device %s failed %d",
7015 				rcu_str_deref(device->name), ret);
7016 			goto out;
7017 		}
7018 	}
7019 
7020 	eb = path->nodes[0];
7021 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7022 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7023 		btrfs_set_dev_stats_value(eb, ptr, i,
7024 					  btrfs_dev_stat_read(device, i));
7025 	btrfs_mark_buffer_dirty(eb);
7026 
7027 out:
7028 	btrfs_free_path(path);
7029 	return ret;
7030 }
7031 
7032 /*
7033  * called from commit_transaction. Writes all changed device stats to disk.
7034  */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)7035 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7036 			struct btrfs_fs_info *fs_info)
7037 {
7038 	struct btrfs_root *dev_root = fs_info->dev_root;
7039 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7040 	struct btrfs_device *device;
7041 	int stats_cnt;
7042 	int ret = 0;
7043 
7044 	mutex_lock(&fs_devices->device_list_mutex);
7045 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
7046 		if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7047 			continue;
7048 
7049 		stats_cnt = atomic_read(&device->dev_stats_ccnt);
7050 		ret = update_dev_stat_item(trans, dev_root, device);
7051 		if (!ret)
7052 			atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7053 	}
7054 	mutex_unlock(&fs_devices->device_list_mutex);
7055 
7056 	return ret;
7057 }
7058 
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7059 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7060 {
7061 	btrfs_dev_stat_inc(dev, index);
7062 	btrfs_dev_stat_print_on_error(dev);
7063 }
7064 
btrfs_dev_stat_print_on_error(struct btrfs_device * dev)7065 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7066 {
7067 	if (!dev->dev_stats_valid)
7068 		return;
7069 	btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
7070 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7071 			   rcu_str_deref(dev->name),
7072 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7073 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7074 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7075 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7076 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7077 }
7078 
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7079 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7080 {
7081 	int i;
7082 
7083 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7084 		if (btrfs_dev_stat_read(dev, i) != 0)
7085 			break;
7086 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
7087 		return; /* all values == 0, suppress message */
7088 
7089 	btrfs_info_in_rcu(dev->dev_root->fs_info,
7090 		"bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7091 	       rcu_str_deref(dev->name),
7092 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7093 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7094 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7095 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7096 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7097 }
7098 
btrfs_get_dev_stats(struct btrfs_root * root,struct btrfs_ioctl_get_dev_stats * stats)7099 int btrfs_get_dev_stats(struct btrfs_root *root,
7100 			struct btrfs_ioctl_get_dev_stats *stats)
7101 {
7102 	struct btrfs_device *dev;
7103 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7104 	int i;
7105 
7106 	mutex_lock(&fs_devices->device_list_mutex);
7107 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
7108 	mutex_unlock(&fs_devices->device_list_mutex);
7109 
7110 	if (!dev) {
7111 		btrfs_warn(root->fs_info,
7112 			   "get dev_stats failed, device not found");
7113 		return -ENODEV;
7114 	} else if (!dev->dev_stats_valid) {
7115 		btrfs_warn(root->fs_info,
7116 			   "get dev_stats failed, not yet valid");
7117 		return -ENODEV;
7118 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7119 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7120 			if (stats->nr_items > i)
7121 				stats->values[i] =
7122 					btrfs_dev_stat_read_and_reset(dev, i);
7123 			else
7124 				btrfs_dev_stat_reset(dev, i);
7125 		}
7126 	} else {
7127 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7128 			if (stats->nr_items > i)
7129 				stats->values[i] = btrfs_dev_stat_read(dev, i);
7130 	}
7131 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7132 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7133 	return 0;
7134 }
7135 
btrfs_scratch_superblocks(struct block_device * bdev,char * device_path)7136 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7137 {
7138 	struct buffer_head *bh;
7139 	struct btrfs_super_block *disk_super;
7140 	int copy_num;
7141 
7142 	if (!bdev)
7143 		return;
7144 
7145 	for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7146 		copy_num++) {
7147 
7148 		if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7149 			continue;
7150 
7151 		disk_super = (struct btrfs_super_block *)bh->b_data;
7152 
7153 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7154 		set_buffer_dirty(bh);
7155 		sync_dirty_buffer(bh);
7156 		brelse(bh);
7157 	}
7158 
7159 	/* Notify udev that device has changed */
7160 	btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7161 
7162 	/* Update ctime/mtime for device path for libblkid */
7163 	update_dev_time(device_path);
7164 }
7165 
7166 /*
7167  * Update the size of all devices, which is used for writing out the
7168  * super blocks.
7169  */
btrfs_update_commit_device_size(struct btrfs_fs_info * fs_info)7170 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7171 {
7172 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7173 	struct btrfs_device *curr, *next;
7174 
7175 	if (list_empty(&fs_devices->resized_devices))
7176 		return;
7177 
7178 	mutex_lock(&fs_devices->device_list_mutex);
7179 	lock_chunks(fs_info->dev_root);
7180 	list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7181 				 resized_list) {
7182 		list_del_init(&curr->resized_list);
7183 		curr->commit_total_bytes = curr->disk_total_bytes;
7184 	}
7185 	unlock_chunks(fs_info->dev_root);
7186 	mutex_unlock(&fs_devices->device_list_mutex);
7187 }
7188 
7189 /* Must be invoked during the transaction commit */
btrfs_update_commit_device_bytes_used(struct btrfs_root * root,struct btrfs_transaction * transaction)7190 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7191 					struct btrfs_transaction *transaction)
7192 {
7193 	struct extent_map *em;
7194 	struct map_lookup *map;
7195 	struct btrfs_device *dev;
7196 	int i;
7197 
7198 	if (list_empty(&transaction->pending_chunks))
7199 		return;
7200 
7201 	/* In order to kick the device replace finish process */
7202 	lock_chunks(root);
7203 	list_for_each_entry(em, &transaction->pending_chunks, list) {
7204 		map = em->map_lookup;
7205 
7206 		for (i = 0; i < map->num_stripes; i++) {
7207 			dev = map->stripes[i].dev;
7208 			dev->commit_bytes_used = dev->bytes_used;
7209 		}
7210 	}
7211 	unlock_chunks(root);
7212 }
7213 
btrfs_set_fs_info_ptr(struct btrfs_fs_info * fs_info)7214 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7215 {
7216 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7217 	while (fs_devices) {
7218 		fs_devices->fs_info = fs_info;
7219 		fs_devices = fs_devices->seed;
7220 	}
7221 }
7222 
btrfs_reset_fs_info_ptr(struct btrfs_fs_info * fs_info)7223 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7224 {
7225 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7226 	while (fs_devices) {
7227 		fs_devices->fs_info = NULL;
7228 		fs_devices = fs_devices->seed;
7229 	}
7230 }
7231