1 /*
2 * Copyright (C) 2009 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 #include "inode-map.h"
34 #include "qgroup.h"
35
36 /*
37 * backref_node, mapping_node and tree_block start with this
38 */
39 struct tree_entry {
40 struct rb_node rb_node;
41 u64 bytenr;
42 };
43
44 /*
45 * present a tree block in the backref cache
46 */
47 struct backref_node {
48 struct rb_node rb_node;
49 u64 bytenr;
50
51 u64 new_bytenr;
52 /* objectid of tree block owner, can be not uptodate */
53 u64 owner;
54 /* link to pending, changed or detached list */
55 struct list_head list;
56 /* list of upper level blocks reference this block */
57 struct list_head upper;
58 /* list of child blocks in the cache */
59 struct list_head lower;
60 /* NULL if this node is not tree root */
61 struct btrfs_root *root;
62 /* extent buffer got by COW the block */
63 struct extent_buffer *eb;
64 /* level of tree block */
65 unsigned int level:8;
66 /* is the block in non-reference counted tree */
67 unsigned int cowonly:1;
68 /* 1 if no child node in the cache */
69 unsigned int lowest:1;
70 /* is the extent buffer locked */
71 unsigned int locked:1;
72 /* has the block been processed */
73 unsigned int processed:1;
74 /* have backrefs of this block been checked */
75 unsigned int checked:1;
76 /*
77 * 1 if corresponding block has been cowed but some upper
78 * level block pointers may not point to the new location
79 */
80 unsigned int pending:1;
81 /*
82 * 1 if the backref node isn't connected to any other
83 * backref node.
84 */
85 unsigned int detached:1;
86 };
87
88 /*
89 * present a block pointer in the backref cache
90 */
91 struct backref_edge {
92 struct list_head list[2];
93 struct backref_node *node[2];
94 };
95
96 #define LOWER 0
97 #define UPPER 1
98 #define RELOCATION_RESERVED_NODES 256
99
100 struct backref_cache {
101 /* red black tree of all backref nodes in the cache */
102 struct rb_root rb_root;
103 /* for passing backref nodes to btrfs_reloc_cow_block */
104 struct backref_node *path[BTRFS_MAX_LEVEL];
105 /*
106 * list of blocks that have been cowed but some block
107 * pointers in upper level blocks may not reflect the
108 * new location
109 */
110 struct list_head pending[BTRFS_MAX_LEVEL];
111 /* list of backref nodes with no child node */
112 struct list_head leaves;
113 /* list of blocks that have been cowed in current transaction */
114 struct list_head changed;
115 /* list of detached backref node. */
116 struct list_head detached;
117
118 u64 last_trans;
119
120 int nr_nodes;
121 int nr_edges;
122 };
123
124 /*
125 * map address of tree root to tree
126 */
127 struct mapping_node {
128 struct rb_node rb_node;
129 u64 bytenr;
130 void *data;
131 };
132
133 struct mapping_tree {
134 struct rb_root rb_root;
135 spinlock_t lock;
136 };
137
138 /*
139 * present a tree block to process
140 */
141 struct tree_block {
142 struct rb_node rb_node;
143 u64 bytenr;
144 struct btrfs_key key;
145 unsigned int level:8;
146 unsigned int key_ready:1;
147 };
148
149 #define MAX_EXTENTS 128
150
151 struct file_extent_cluster {
152 u64 start;
153 u64 end;
154 u64 boundary[MAX_EXTENTS];
155 unsigned int nr;
156 };
157
158 struct reloc_control {
159 /* block group to relocate */
160 struct btrfs_block_group_cache *block_group;
161 /* extent tree */
162 struct btrfs_root *extent_root;
163 /* inode for moving data */
164 struct inode *data_inode;
165
166 struct btrfs_block_rsv *block_rsv;
167
168 struct backref_cache backref_cache;
169
170 struct file_extent_cluster cluster;
171 /* tree blocks have been processed */
172 struct extent_io_tree processed_blocks;
173 /* map start of tree root to corresponding reloc tree */
174 struct mapping_tree reloc_root_tree;
175 /* list of reloc trees */
176 struct list_head reloc_roots;
177 /* size of metadata reservation for merging reloc trees */
178 u64 merging_rsv_size;
179 /* size of relocated tree nodes */
180 u64 nodes_relocated;
181 /* reserved size for block group relocation*/
182 u64 reserved_bytes;
183
184 u64 search_start;
185 u64 extents_found;
186
187 unsigned int stage:8;
188 unsigned int create_reloc_tree:1;
189 unsigned int merge_reloc_tree:1;
190 unsigned int found_file_extent:1;
191 };
192
193 /* stages of data relocation */
194 #define MOVE_DATA_EXTENTS 0
195 #define UPDATE_DATA_PTRS 1
196
197 static void remove_backref_node(struct backref_cache *cache,
198 struct backref_node *node);
199 static void __mark_block_processed(struct reloc_control *rc,
200 struct backref_node *node);
201
mapping_tree_init(struct mapping_tree * tree)202 static void mapping_tree_init(struct mapping_tree *tree)
203 {
204 tree->rb_root = RB_ROOT;
205 spin_lock_init(&tree->lock);
206 }
207
backref_cache_init(struct backref_cache * cache)208 static void backref_cache_init(struct backref_cache *cache)
209 {
210 int i;
211 cache->rb_root = RB_ROOT;
212 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
213 INIT_LIST_HEAD(&cache->pending[i]);
214 INIT_LIST_HEAD(&cache->changed);
215 INIT_LIST_HEAD(&cache->detached);
216 INIT_LIST_HEAD(&cache->leaves);
217 }
218
backref_cache_cleanup(struct backref_cache * cache)219 static void backref_cache_cleanup(struct backref_cache *cache)
220 {
221 struct backref_node *node;
222 int i;
223
224 while (!list_empty(&cache->detached)) {
225 node = list_entry(cache->detached.next,
226 struct backref_node, list);
227 remove_backref_node(cache, node);
228 }
229
230 while (!list_empty(&cache->leaves)) {
231 node = list_entry(cache->leaves.next,
232 struct backref_node, lower);
233 remove_backref_node(cache, node);
234 }
235
236 cache->last_trans = 0;
237
238 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
239 ASSERT(list_empty(&cache->pending[i]));
240 ASSERT(list_empty(&cache->changed));
241 ASSERT(list_empty(&cache->detached));
242 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
243 ASSERT(!cache->nr_nodes);
244 ASSERT(!cache->nr_edges);
245 }
246
alloc_backref_node(struct backref_cache * cache)247 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
248 {
249 struct backref_node *node;
250
251 node = kzalloc(sizeof(*node), GFP_NOFS);
252 if (node) {
253 INIT_LIST_HEAD(&node->list);
254 INIT_LIST_HEAD(&node->upper);
255 INIT_LIST_HEAD(&node->lower);
256 RB_CLEAR_NODE(&node->rb_node);
257 cache->nr_nodes++;
258 }
259 return node;
260 }
261
free_backref_node(struct backref_cache * cache,struct backref_node * node)262 static void free_backref_node(struct backref_cache *cache,
263 struct backref_node *node)
264 {
265 if (node) {
266 cache->nr_nodes--;
267 kfree(node);
268 }
269 }
270
alloc_backref_edge(struct backref_cache * cache)271 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
272 {
273 struct backref_edge *edge;
274
275 edge = kzalloc(sizeof(*edge), GFP_NOFS);
276 if (edge)
277 cache->nr_edges++;
278 return edge;
279 }
280
free_backref_edge(struct backref_cache * cache,struct backref_edge * edge)281 static void free_backref_edge(struct backref_cache *cache,
282 struct backref_edge *edge)
283 {
284 if (edge) {
285 cache->nr_edges--;
286 kfree(edge);
287 }
288 }
289
tree_insert(struct rb_root * root,u64 bytenr,struct rb_node * node)290 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
291 struct rb_node *node)
292 {
293 struct rb_node **p = &root->rb_node;
294 struct rb_node *parent = NULL;
295 struct tree_entry *entry;
296
297 while (*p) {
298 parent = *p;
299 entry = rb_entry(parent, struct tree_entry, rb_node);
300
301 if (bytenr < entry->bytenr)
302 p = &(*p)->rb_left;
303 else if (bytenr > entry->bytenr)
304 p = &(*p)->rb_right;
305 else
306 return parent;
307 }
308
309 rb_link_node(node, parent, p);
310 rb_insert_color(node, root);
311 return NULL;
312 }
313
tree_search(struct rb_root * root,u64 bytenr)314 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
315 {
316 struct rb_node *n = root->rb_node;
317 struct tree_entry *entry;
318
319 while (n) {
320 entry = rb_entry(n, struct tree_entry, rb_node);
321
322 if (bytenr < entry->bytenr)
323 n = n->rb_left;
324 else if (bytenr > entry->bytenr)
325 n = n->rb_right;
326 else
327 return n;
328 }
329 return NULL;
330 }
331
backref_tree_panic(struct rb_node * rb_node,int errno,u64 bytenr)332 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
333 {
334
335 struct btrfs_fs_info *fs_info = NULL;
336 struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
337 rb_node);
338 if (bnode->root)
339 fs_info = bnode->root->fs_info;
340 btrfs_panic(fs_info, errno,
341 "Inconsistency in backref cache found at offset %llu",
342 bytenr);
343 }
344
345 /*
346 * walk up backref nodes until reach node presents tree root
347 */
walk_up_backref(struct backref_node * node,struct backref_edge * edges[],int * index)348 static struct backref_node *walk_up_backref(struct backref_node *node,
349 struct backref_edge *edges[],
350 int *index)
351 {
352 struct backref_edge *edge;
353 int idx = *index;
354
355 while (!list_empty(&node->upper)) {
356 edge = list_entry(node->upper.next,
357 struct backref_edge, list[LOWER]);
358 edges[idx++] = edge;
359 node = edge->node[UPPER];
360 }
361 BUG_ON(node->detached);
362 *index = idx;
363 return node;
364 }
365
366 /*
367 * walk down backref nodes to find start of next reference path
368 */
walk_down_backref(struct backref_edge * edges[],int * index)369 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
370 int *index)
371 {
372 struct backref_edge *edge;
373 struct backref_node *lower;
374 int idx = *index;
375
376 while (idx > 0) {
377 edge = edges[idx - 1];
378 lower = edge->node[LOWER];
379 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
380 idx--;
381 continue;
382 }
383 edge = list_entry(edge->list[LOWER].next,
384 struct backref_edge, list[LOWER]);
385 edges[idx - 1] = edge;
386 *index = idx;
387 return edge->node[UPPER];
388 }
389 *index = 0;
390 return NULL;
391 }
392
unlock_node_buffer(struct backref_node * node)393 static void unlock_node_buffer(struct backref_node *node)
394 {
395 if (node->locked) {
396 btrfs_tree_unlock(node->eb);
397 node->locked = 0;
398 }
399 }
400
drop_node_buffer(struct backref_node * node)401 static void drop_node_buffer(struct backref_node *node)
402 {
403 if (node->eb) {
404 unlock_node_buffer(node);
405 free_extent_buffer(node->eb);
406 node->eb = NULL;
407 }
408 }
409
drop_backref_node(struct backref_cache * tree,struct backref_node * node)410 static void drop_backref_node(struct backref_cache *tree,
411 struct backref_node *node)
412 {
413 BUG_ON(!list_empty(&node->upper));
414
415 drop_node_buffer(node);
416 list_del(&node->list);
417 list_del(&node->lower);
418 if (!RB_EMPTY_NODE(&node->rb_node))
419 rb_erase(&node->rb_node, &tree->rb_root);
420 free_backref_node(tree, node);
421 }
422
423 /*
424 * remove a backref node from the backref cache
425 */
remove_backref_node(struct backref_cache * cache,struct backref_node * node)426 static void remove_backref_node(struct backref_cache *cache,
427 struct backref_node *node)
428 {
429 struct backref_node *upper;
430 struct backref_edge *edge;
431
432 if (!node)
433 return;
434
435 BUG_ON(!node->lowest && !node->detached);
436 while (!list_empty(&node->upper)) {
437 edge = list_entry(node->upper.next, struct backref_edge,
438 list[LOWER]);
439 upper = edge->node[UPPER];
440 list_del(&edge->list[LOWER]);
441 list_del(&edge->list[UPPER]);
442 free_backref_edge(cache, edge);
443
444 if (RB_EMPTY_NODE(&upper->rb_node)) {
445 BUG_ON(!list_empty(&node->upper));
446 drop_backref_node(cache, node);
447 node = upper;
448 node->lowest = 1;
449 continue;
450 }
451 /*
452 * add the node to leaf node list if no other
453 * child block cached.
454 */
455 if (list_empty(&upper->lower)) {
456 list_add_tail(&upper->lower, &cache->leaves);
457 upper->lowest = 1;
458 }
459 }
460
461 drop_backref_node(cache, node);
462 }
463
update_backref_node(struct backref_cache * cache,struct backref_node * node,u64 bytenr)464 static void update_backref_node(struct backref_cache *cache,
465 struct backref_node *node, u64 bytenr)
466 {
467 struct rb_node *rb_node;
468 rb_erase(&node->rb_node, &cache->rb_root);
469 node->bytenr = bytenr;
470 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
471 if (rb_node)
472 backref_tree_panic(rb_node, -EEXIST, bytenr);
473 }
474
475 /*
476 * update backref cache after a transaction commit
477 */
update_backref_cache(struct btrfs_trans_handle * trans,struct backref_cache * cache)478 static int update_backref_cache(struct btrfs_trans_handle *trans,
479 struct backref_cache *cache)
480 {
481 struct backref_node *node;
482 int level = 0;
483
484 if (cache->last_trans == 0) {
485 cache->last_trans = trans->transid;
486 return 0;
487 }
488
489 if (cache->last_trans == trans->transid)
490 return 0;
491
492 /*
493 * detached nodes are used to avoid unnecessary backref
494 * lookup. transaction commit changes the extent tree.
495 * so the detached nodes are no longer useful.
496 */
497 while (!list_empty(&cache->detached)) {
498 node = list_entry(cache->detached.next,
499 struct backref_node, list);
500 remove_backref_node(cache, node);
501 }
502
503 while (!list_empty(&cache->changed)) {
504 node = list_entry(cache->changed.next,
505 struct backref_node, list);
506 list_del_init(&node->list);
507 BUG_ON(node->pending);
508 update_backref_node(cache, node, node->new_bytenr);
509 }
510
511 /*
512 * some nodes can be left in the pending list if there were
513 * errors during processing the pending nodes.
514 */
515 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
516 list_for_each_entry(node, &cache->pending[level], list) {
517 BUG_ON(!node->pending);
518 if (node->bytenr == node->new_bytenr)
519 continue;
520 update_backref_node(cache, node, node->new_bytenr);
521 }
522 }
523
524 cache->last_trans = 0;
525 return 1;
526 }
527
528
should_ignore_root(struct btrfs_root * root)529 static int should_ignore_root(struct btrfs_root *root)
530 {
531 struct btrfs_root *reloc_root;
532
533 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
534 return 0;
535
536 reloc_root = root->reloc_root;
537 if (!reloc_root)
538 return 0;
539
540 if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
541 root->fs_info->running_transaction->transid - 1)
542 return 0;
543 /*
544 * if there is reloc tree and it was created in previous
545 * transaction backref lookup can find the reloc tree,
546 * so backref node for the fs tree root is useless for
547 * relocation.
548 */
549 return 1;
550 }
551 /*
552 * find reloc tree by address of tree root
553 */
find_reloc_root(struct reloc_control * rc,u64 bytenr)554 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
555 u64 bytenr)
556 {
557 struct rb_node *rb_node;
558 struct mapping_node *node;
559 struct btrfs_root *root = NULL;
560
561 spin_lock(&rc->reloc_root_tree.lock);
562 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
563 if (rb_node) {
564 node = rb_entry(rb_node, struct mapping_node, rb_node);
565 root = (struct btrfs_root *)node->data;
566 }
567 spin_unlock(&rc->reloc_root_tree.lock);
568 return root;
569 }
570
is_cowonly_root(u64 root_objectid)571 static int is_cowonly_root(u64 root_objectid)
572 {
573 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
574 root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
575 root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
576 root_objectid == BTRFS_DEV_TREE_OBJECTID ||
577 root_objectid == BTRFS_TREE_LOG_OBJECTID ||
578 root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
579 root_objectid == BTRFS_UUID_TREE_OBJECTID ||
580 root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
581 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
582 return 1;
583 return 0;
584 }
585
read_fs_root(struct btrfs_fs_info * fs_info,u64 root_objectid)586 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
587 u64 root_objectid)
588 {
589 struct btrfs_key key;
590
591 key.objectid = root_objectid;
592 key.type = BTRFS_ROOT_ITEM_KEY;
593 if (is_cowonly_root(root_objectid))
594 key.offset = 0;
595 else
596 key.offset = (u64)-1;
597
598 return btrfs_get_fs_root(fs_info, &key, false);
599 }
600
601 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
602 static noinline_for_stack
find_tree_root(struct reloc_control * rc,struct extent_buffer * leaf,struct btrfs_extent_ref_v0 * ref0)603 struct btrfs_root *find_tree_root(struct reloc_control *rc,
604 struct extent_buffer *leaf,
605 struct btrfs_extent_ref_v0 *ref0)
606 {
607 struct btrfs_root *root;
608 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
609 u64 generation = btrfs_ref_generation_v0(leaf, ref0);
610
611 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
612
613 root = read_fs_root(rc->extent_root->fs_info, root_objectid);
614 BUG_ON(IS_ERR(root));
615
616 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
617 generation != btrfs_root_generation(&root->root_item))
618 return NULL;
619
620 return root;
621 }
622 #endif
623
624 static noinline_for_stack
find_inline_backref(struct extent_buffer * leaf,int slot,unsigned long * ptr,unsigned long * end)625 int find_inline_backref(struct extent_buffer *leaf, int slot,
626 unsigned long *ptr, unsigned long *end)
627 {
628 struct btrfs_key key;
629 struct btrfs_extent_item *ei;
630 struct btrfs_tree_block_info *bi;
631 u32 item_size;
632
633 btrfs_item_key_to_cpu(leaf, &key, slot);
634
635 item_size = btrfs_item_size_nr(leaf, slot);
636 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
637 if (item_size < sizeof(*ei)) {
638 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
639 return 1;
640 }
641 #endif
642 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
643 WARN_ON(!(btrfs_extent_flags(leaf, ei) &
644 BTRFS_EXTENT_FLAG_TREE_BLOCK));
645
646 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
647 item_size <= sizeof(*ei) + sizeof(*bi)) {
648 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
649 return 1;
650 }
651 if (key.type == BTRFS_METADATA_ITEM_KEY &&
652 item_size <= sizeof(*ei)) {
653 WARN_ON(item_size < sizeof(*ei));
654 return 1;
655 }
656
657 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
658 bi = (struct btrfs_tree_block_info *)(ei + 1);
659 *ptr = (unsigned long)(bi + 1);
660 } else {
661 *ptr = (unsigned long)(ei + 1);
662 }
663 *end = (unsigned long)ei + item_size;
664 return 0;
665 }
666
667 /*
668 * build backref tree for a given tree block. root of the backref tree
669 * corresponds the tree block, leaves of the backref tree correspond
670 * roots of b-trees that reference the tree block.
671 *
672 * the basic idea of this function is check backrefs of a given block
673 * to find upper level blocks that reference the block, and then check
674 * backrefs of these upper level blocks recursively. the recursion stop
675 * when tree root is reached or backrefs for the block is cached.
676 *
677 * NOTE: if we find backrefs for a block are cached, we know backrefs
678 * for all upper level blocks that directly/indirectly reference the
679 * block are also cached.
680 */
681 static noinline_for_stack
build_backref_tree(struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)682 struct backref_node *build_backref_tree(struct reloc_control *rc,
683 struct btrfs_key *node_key,
684 int level, u64 bytenr)
685 {
686 struct backref_cache *cache = &rc->backref_cache;
687 struct btrfs_path *path1;
688 struct btrfs_path *path2;
689 struct extent_buffer *eb;
690 struct btrfs_root *root;
691 struct backref_node *cur;
692 struct backref_node *upper;
693 struct backref_node *lower;
694 struct backref_node *node = NULL;
695 struct backref_node *exist = NULL;
696 struct backref_edge *edge;
697 struct rb_node *rb_node;
698 struct btrfs_key key;
699 unsigned long end;
700 unsigned long ptr;
701 LIST_HEAD(list);
702 LIST_HEAD(useless);
703 int cowonly;
704 int ret;
705 int err = 0;
706 bool need_check = true;
707
708 path1 = btrfs_alloc_path();
709 path2 = btrfs_alloc_path();
710 if (!path1 || !path2) {
711 err = -ENOMEM;
712 goto out;
713 }
714 path1->reada = READA_FORWARD;
715 path2->reada = READA_FORWARD;
716
717 node = alloc_backref_node(cache);
718 if (!node) {
719 err = -ENOMEM;
720 goto out;
721 }
722
723 node->bytenr = bytenr;
724 node->level = level;
725 node->lowest = 1;
726 cur = node;
727 again:
728 end = 0;
729 ptr = 0;
730 key.objectid = cur->bytenr;
731 key.type = BTRFS_METADATA_ITEM_KEY;
732 key.offset = (u64)-1;
733
734 path1->search_commit_root = 1;
735 path1->skip_locking = 1;
736 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
737 0, 0);
738 if (ret < 0) {
739 err = ret;
740 goto out;
741 }
742 ASSERT(ret);
743 ASSERT(path1->slots[0]);
744
745 path1->slots[0]--;
746
747 WARN_ON(cur->checked);
748 if (!list_empty(&cur->upper)) {
749 /*
750 * the backref was added previously when processing
751 * backref of type BTRFS_TREE_BLOCK_REF_KEY
752 */
753 ASSERT(list_is_singular(&cur->upper));
754 edge = list_entry(cur->upper.next, struct backref_edge,
755 list[LOWER]);
756 ASSERT(list_empty(&edge->list[UPPER]));
757 exist = edge->node[UPPER];
758 /*
759 * add the upper level block to pending list if we need
760 * check its backrefs
761 */
762 if (!exist->checked)
763 list_add_tail(&edge->list[UPPER], &list);
764 } else {
765 exist = NULL;
766 }
767
768 while (1) {
769 cond_resched();
770 eb = path1->nodes[0];
771
772 if (ptr >= end) {
773 if (path1->slots[0] >= btrfs_header_nritems(eb)) {
774 ret = btrfs_next_leaf(rc->extent_root, path1);
775 if (ret < 0) {
776 err = ret;
777 goto out;
778 }
779 if (ret > 0)
780 break;
781 eb = path1->nodes[0];
782 }
783
784 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
785 if (key.objectid != cur->bytenr) {
786 WARN_ON(exist);
787 break;
788 }
789
790 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
791 key.type == BTRFS_METADATA_ITEM_KEY) {
792 ret = find_inline_backref(eb, path1->slots[0],
793 &ptr, &end);
794 if (ret)
795 goto next;
796 }
797 }
798
799 if (ptr < end) {
800 /* update key for inline back ref */
801 struct btrfs_extent_inline_ref *iref;
802 iref = (struct btrfs_extent_inline_ref *)ptr;
803 key.type = btrfs_extent_inline_ref_type(eb, iref);
804 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
805 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
806 key.type != BTRFS_SHARED_BLOCK_REF_KEY);
807 }
808
809 if (exist &&
810 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
811 exist->owner == key.offset) ||
812 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
813 exist->bytenr == key.offset))) {
814 exist = NULL;
815 goto next;
816 }
817
818 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
819 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
820 key.type == BTRFS_EXTENT_REF_V0_KEY) {
821 if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
822 struct btrfs_extent_ref_v0 *ref0;
823 ref0 = btrfs_item_ptr(eb, path1->slots[0],
824 struct btrfs_extent_ref_v0);
825 if (key.objectid == key.offset) {
826 root = find_tree_root(rc, eb, ref0);
827 if (root && !should_ignore_root(root))
828 cur->root = root;
829 else
830 list_add(&cur->list, &useless);
831 break;
832 }
833 if (is_cowonly_root(btrfs_ref_root_v0(eb,
834 ref0)))
835 cur->cowonly = 1;
836 }
837 #else
838 ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
839 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
840 #endif
841 if (key.objectid == key.offset) {
842 /*
843 * only root blocks of reloc trees use
844 * backref of this type.
845 */
846 root = find_reloc_root(rc, cur->bytenr);
847 ASSERT(root);
848 cur->root = root;
849 break;
850 }
851
852 edge = alloc_backref_edge(cache);
853 if (!edge) {
854 err = -ENOMEM;
855 goto out;
856 }
857 rb_node = tree_search(&cache->rb_root, key.offset);
858 if (!rb_node) {
859 upper = alloc_backref_node(cache);
860 if (!upper) {
861 free_backref_edge(cache, edge);
862 err = -ENOMEM;
863 goto out;
864 }
865 upper->bytenr = key.offset;
866 upper->level = cur->level + 1;
867 /*
868 * backrefs for the upper level block isn't
869 * cached, add the block to pending list
870 */
871 list_add_tail(&edge->list[UPPER], &list);
872 } else {
873 upper = rb_entry(rb_node, struct backref_node,
874 rb_node);
875 ASSERT(upper->checked);
876 INIT_LIST_HEAD(&edge->list[UPPER]);
877 }
878 list_add_tail(&edge->list[LOWER], &cur->upper);
879 edge->node[LOWER] = cur;
880 edge->node[UPPER] = upper;
881
882 goto next;
883 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
884 goto next;
885 }
886
887 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */
888 root = read_fs_root(rc->extent_root->fs_info, key.offset);
889 if (IS_ERR(root)) {
890 err = PTR_ERR(root);
891 goto out;
892 }
893
894 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
895 cur->cowonly = 1;
896
897 if (btrfs_root_level(&root->root_item) == cur->level) {
898 /* tree root */
899 ASSERT(btrfs_root_bytenr(&root->root_item) ==
900 cur->bytenr);
901 if (should_ignore_root(root))
902 list_add(&cur->list, &useless);
903 else
904 cur->root = root;
905 break;
906 }
907
908 level = cur->level + 1;
909
910 /*
911 * searching the tree to find upper level blocks
912 * reference the block.
913 */
914 path2->search_commit_root = 1;
915 path2->skip_locking = 1;
916 path2->lowest_level = level;
917 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
918 path2->lowest_level = 0;
919 if (ret < 0) {
920 err = ret;
921 goto out;
922 }
923 if (ret > 0 && path2->slots[level] > 0)
924 path2->slots[level]--;
925
926 eb = path2->nodes[level];
927 if (btrfs_node_blockptr(eb, path2->slots[level]) !=
928 cur->bytenr) {
929 btrfs_err(root->fs_info,
930 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
931 cur->bytenr, level - 1, root->objectid,
932 node_key->objectid, node_key->type,
933 node_key->offset);
934 err = -ENOENT;
935 goto out;
936 }
937 lower = cur;
938 need_check = true;
939 for (; level < BTRFS_MAX_LEVEL; level++) {
940 if (!path2->nodes[level]) {
941 ASSERT(btrfs_root_bytenr(&root->root_item) ==
942 lower->bytenr);
943 if (should_ignore_root(root))
944 list_add(&lower->list, &useless);
945 else
946 lower->root = root;
947 break;
948 }
949
950 edge = alloc_backref_edge(cache);
951 if (!edge) {
952 err = -ENOMEM;
953 goto out;
954 }
955
956 eb = path2->nodes[level];
957 rb_node = tree_search(&cache->rb_root, eb->start);
958 if (!rb_node) {
959 upper = alloc_backref_node(cache);
960 if (!upper) {
961 free_backref_edge(cache, edge);
962 err = -ENOMEM;
963 goto out;
964 }
965 upper->bytenr = eb->start;
966 upper->owner = btrfs_header_owner(eb);
967 upper->level = lower->level + 1;
968 if (!test_bit(BTRFS_ROOT_REF_COWS,
969 &root->state))
970 upper->cowonly = 1;
971
972 /*
973 * if we know the block isn't shared
974 * we can void checking its backrefs.
975 */
976 if (btrfs_block_can_be_shared(root, eb))
977 upper->checked = 0;
978 else
979 upper->checked = 1;
980
981 /*
982 * add the block to pending list if we
983 * need check its backrefs, we only do this once
984 * while walking up a tree as we will catch
985 * anything else later on.
986 */
987 if (!upper->checked && need_check) {
988 need_check = false;
989 list_add_tail(&edge->list[UPPER],
990 &list);
991 } else {
992 if (upper->checked)
993 need_check = true;
994 INIT_LIST_HEAD(&edge->list[UPPER]);
995 }
996 } else {
997 upper = rb_entry(rb_node, struct backref_node,
998 rb_node);
999 ASSERT(upper->checked);
1000 INIT_LIST_HEAD(&edge->list[UPPER]);
1001 if (!upper->owner)
1002 upper->owner = btrfs_header_owner(eb);
1003 }
1004 list_add_tail(&edge->list[LOWER], &lower->upper);
1005 edge->node[LOWER] = lower;
1006 edge->node[UPPER] = upper;
1007
1008 if (rb_node)
1009 break;
1010 lower = upper;
1011 upper = NULL;
1012 }
1013 btrfs_release_path(path2);
1014 next:
1015 if (ptr < end) {
1016 ptr += btrfs_extent_inline_ref_size(key.type);
1017 if (ptr >= end) {
1018 WARN_ON(ptr > end);
1019 ptr = 0;
1020 end = 0;
1021 }
1022 }
1023 if (ptr >= end)
1024 path1->slots[0]++;
1025 }
1026 btrfs_release_path(path1);
1027
1028 cur->checked = 1;
1029 WARN_ON(exist);
1030
1031 /* the pending list isn't empty, take the first block to process */
1032 if (!list_empty(&list)) {
1033 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1034 list_del_init(&edge->list[UPPER]);
1035 cur = edge->node[UPPER];
1036 goto again;
1037 }
1038
1039 /*
1040 * everything goes well, connect backref nodes and insert backref nodes
1041 * into the cache.
1042 */
1043 ASSERT(node->checked);
1044 cowonly = node->cowonly;
1045 if (!cowonly) {
1046 rb_node = tree_insert(&cache->rb_root, node->bytenr,
1047 &node->rb_node);
1048 if (rb_node)
1049 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1050 list_add_tail(&node->lower, &cache->leaves);
1051 }
1052
1053 list_for_each_entry(edge, &node->upper, list[LOWER])
1054 list_add_tail(&edge->list[UPPER], &list);
1055
1056 while (!list_empty(&list)) {
1057 edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1058 list_del_init(&edge->list[UPPER]);
1059 upper = edge->node[UPPER];
1060 if (upper->detached) {
1061 list_del(&edge->list[LOWER]);
1062 lower = edge->node[LOWER];
1063 free_backref_edge(cache, edge);
1064 if (list_empty(&lower->upper))
1065 list_add(&lower->list, &useless);
1066 continue;
1067 }
1068
1069 if (!RB_EMPTY_NODE(&upper->rb_node)) {
1070 if (upper->lowest) {
1071 list_del_init(&upper->lower);
1072 upper->lowest = 0;
1073 }
1074
1075 list_add_tail(&edge->list[UPPER], &upper->lower);
1076 continue;
1077 }
1078
1079 if (!upper->checked) {
1080 /*
1081 * Still want to blow up for developers since this is a
1082 * logic bug.
1083 */
1084 ASSERT(0);
1085 err = -EINVAL;
1086 goto out;
1087 }
1088 if (cowonly != upper->cowonly) {
1089 ASSERT(0);
1090 err = -EINVAL;
1091 goto out;
1092 }
1093
1094 if (!cowonly) {
1095 rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1096 &upper->rb_node);
1097 if (rb_node)
1098 backref_tree_panic(rb_node, -EEXIST,
1099 upper->bytenr);
1100 }
1101
1102 list_add_tail(&edge->list[UPPER], &upper->lower);
1103
1104 list_for_each_entry(edge, &upper->upper, list[LOWER])
1105 list_add_tail(&edge->list[UPPER], &list);
1106 }
1107 /*
1108 * process useless backref nodes. backref nodes for tree leaves
1109 * are deleted from the cache. backref nodes for upper level
1110 * tree blocks are left in the cache to avoid unnecessary backref
1111 * lookup.
1112 */
1113 while (!list_empty(&useless)) {
1114 upper = list_entry(useless.next, struct backref_node, list);
1115 list_del_init(&upper->list);
1116 ASSERT(list_empty(&upper->upper));
1117 if (upper == node)
1118 node = NULL;
1119 if (upper->lowest) {
1120 list_del_init(&upper->lower);
1121 upper->lowest = 0;
1122 }
1123 while (!list_empty(&upper->lower)) {
1124 edge = list_entry(upper->lower.next,
1125 struct backref_edge, list[UPPER]);
1126 list_del(&edge->list[UPPER]);
1127 list_del(&edge->list[LOWER]);
1128 lower = edge->node[LOWER];
1129 free_backref_edge(cache, edge);
1130
1131 if (list_empty(&lower->upper))
1132 list_add(&lower->list, &useless);
1133 }
1134 __mark_block_processed(rc, upper);
1135 if (upper->level > 0) {
1136 list_add(&upper->list, &cache->detached);
1137 upper->detached = 1;
1138 } else {
1139 rb_erase(&upper->rb_node, &cache->rb_root);
1140 free_backref_node(cache, upper);
1141 }
1142 }
1143 out:
1144 btrfs_free_path(path1);
1145 btrfs_free_path(path2);
1146 if (err) {
1147 while (!list_empty(&useless)) {
1148 lower = list_entry(useless.next,
1149 struct backref_node, list);
1150 list_del_init(&lower->list);
1151 }
1152 while (!list_empty(&list)) {
1153 edge = list_first_entry(&list, struct backref_edge,
1154 list[UPPER]);
1155 list_del(&edge->list[UPPER]);
1156 list_del(&edge->list[LOWER]);
1157 lower = edge->node[LOWER];
1158 upper = edge->node[UPPER];
1159 free_backref_edge(cache, edge);
1160
1161 /*
1162 * Lower is no longer linked to any upper backref nodes
1163 * and isn't in the cache, we can free it ourselves.
1164 */
1165 if (list_empty(&lower->upper) &&
1166 RB_EMPTY_NODE(&lower->rb_node))
1167 list_add(&lower->list, &useless);
1168
1169 if (!RB_EMPTY_NODE(&upper->rb_node))
1170 continue;
1171
1172 /* Add this guy's upper edges to the list to process */
1173 list_for_each_entry(edge, &upper->upper, list[LOWER])
1174 list_add_tail(&edge->list[UPPER], &list);
1175 if (list_empty(&upper->upper))
1176 list_add(&upper->list, &useless);
1177 }
1178
1179 while (!list_empty(&useless)) {
1180 lower = list_entry(useless.next,
1181 struct backref_node, list);
1182 list_del_init(&lower->list);
1183 if (lower == node)
1184 node = NULL;
1185 free_backref_node(cache, lower);
1186 }
1187
1188 free_backref_node(cache, node);
1189 return ERR_PTR(err);
1190 }
1191 ASSERT(!node || !node->detached);
1192 return node;
1193 }
1194
1195 /*
1196 * helper to add backref node for the newly created snapshot.
1197 * the backref node is created by cloning backref node that
1198 * corresponds to root of source tree
1199 */
1200 static int clone_backref_node(struct btrfs_trans_handle *trans,
1201 struct reloc_control *rc,
1202 struct btrfs_root *src,
1203 struct btrfs_root *dest)
1204 {
1205 struct btrfs_root *reloc_root = src->reloc_root;
1206 struct backref_cache *cache = &rc->backref_cache;
1207 struct backref_node *node = NULL;
1208 struct backref_node *new_node;
1209 struct backref_edge *edge;
1210 struct backref_edge *new_edge;
1211 struct rb_node *rb_node;
1212
1213 if (cache->last_trans > 0)
1214 update_backref_cache(trans, cache);
1215
1216 rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1217 if (rb_node) {
1218 node = rb_entry(rb_node, struct backref_node, rb_node);
1219 if (node->detached)
1220 node = NULL;
1221 else
1222 BUG_ON(node->new_bytenr != reloc_root->node->start);
1223 }
1224
1225 if (!node) {
1226 rb_node = tree_search(&cache->rb_root,
1227 reloc_root->commit_root->start);
1228 if (rb_node) {
1229 node = rb_entry(rb_node, struct backref_node,
1230 rb_node);
1231 BUG_ON(node->detached);
1232 }
1233 }
1234
1235 if (!node)
1236 return 0;
1237
1238 new_node = alloc_backref_node(cache);
1239 if (!new_node)
1240 return -ENOMEM;
1241
1242 new_node->bytenr = dest->node->start;
1243 new_node->level = node->level;
1244 new_node->lowest = node->lowest;
1245 new_node->checked = 1;
1246 new_node->root = dest;
1247
1248 if (!node->lowest) {
1249 list_for_each_entry(edge, &node->lower, list[UPPER]) {
1250 new_edge = alloc_backref_edge(cache);
1251 if (!new_edge)
1252 goto fail;
1253
1254 new_edge->node[UPPER] = new_node;
1255 new_edge->node[LOWER] = edge->node[LOWER];
1256 list_add_tail(&new_edge->list[UPPER],
1257 &new_node->lower);
1258 }
1259 } else {
1260 list_add_tail(&new_node->lower, &cache->leaves);
1261 }
1262
1263 rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1264 &new_node->rb_node);
1265 if (rb_node)
1266 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1267
1268 if (!new_node->lowest) {
1269 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1270 list_add_tail(&new_edge->list[LOWER],
1271 &new_edge->node[LOWER]->upper);
1272 }
1273 }
1274 return 0;
1275 fail:
1276 while (!list_empty(&new_node->lower)) {
1277 new_edge = list_entry(new_node->lower.next,
1278 struct backref_edge, list[UPPER]);
1279 list_del(&new_edge->list[UPPER]);
1280 free_backref_edge(cache, new_edge);
1281 }
1282 free_backref_node(cache, new_node);
1283 return -ENOMEM;
1284 }
1285
1286 /*
1287 * helper to add 'address of tree root -> reloc tree' mapping
1288 */
1289 static int __must_check __add_reloc_root(struct btrfs_root *root)
1290 {
1291 struct rb_node *rb_node;
1292 struct mapping_node *node;
1293 struct reloc_control *rc = root->fs_info->reloc_ctl;
1294
1295 node = kmalloc(sizeof(*node), GFP_NOFS);
1296 if (!node)
1297 return -ENOMEM;
1298
1299 node->bytenr = root->node->start;
1300 node->data = root;
1301
1302 spin_lock(&rc->reloc_root_tree.lock);
1303 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1304 node->bytenr, &node->rb_node);
1305 spin_unlock(&rc->reloc_root_tree.lock);
1306 if (rb_node) {
1307 btrfs_panic(root->fs_info, -EEXIST,
1308 "Duplicate root found for start=%llu while inserting into relocation tree",
1309 node->bytenr);
1310 kfree(node);
1311 return -EEXIST;
1312 }
1313
1314 list_add_tail(&root->root_list, &rc->reloc_roots);
1315 return 0;
1316 }
1317
1318 /*
1319 * helper to delete the 'address of tree root -> reloc tree'
1320 * mapping
1321 */
1322 static void __del_reloc_root(struct btrfs_root *root)
1323 {
1324 struct rb_node *rb_node;
1325 struct mapping_node *node = NULL;
1326 struct reloc_control *rc = root->fs_info->reloc_ctl;
1327
1328 spin_lock(&rc->reloc_root_tree.lock);
1329 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1330 root->node->start);
1331 if (rb_node) {
1332 node = rb_entry(rb_node, struct mapping_node, rb_node);
1333 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1334 }
1335 spin_unlock(&rc->reloc_root_tree.lock);
1336
1337 if (!node)
1338 return;
1339 BUG_ON((struct btrfs_root *)node->data != root);
1340
1341 spin_lock(&root->fs_info->trans_lock);
1342 list_del_init(&root->root_list);
1343 spin_unlock(&root->fs_info->trans_lock);
1344 kfree(node);
1345 }
1346
1347 /*
1348 * helper to update the 'address of tree root -> reloc tree'
1349 * mapping
1350 */
1351 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1352 {
1353 struct rb_node *rb_node;
1354 struct mapping_node *node = NULL;
1355 struct reloc_control *rc = root->fs_info->reloc_ctl;
1356
1357 spin_lock(&rc->reloc_root_tree.lock);
1358 rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1359 root->node->start);
1360 if (rb_node) {
1361 node = rb_entry(rb_node, struct mapping_node, rb_node);
1362 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1363 }
1364 spin_unlock(&rc->reloc_root_tree.lock);
1365
1366 if (!node)
1367 return 0;
1368 BUG_ON((struct btrfs_root *)node->data != root);
1369
1370 spin_lock(&rc->reloc_root_tree.lock);
1371 node->bytenr = new_bytenr;
1372 rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1373 node->bytenr, &node->rb_node);
1374 spin_unlock(&rc->reloc_root_tree.lock);
1375 if (rb_node)
1376 backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1377 return 0;
1378 }
1379
1380 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1381 struct btrfs_root *root, u64 objectid)
1382 {
1383 struct btrfs_root *reloc_root;
1384 struct extent_buffer *eb;
1385 struct btrfs_root_item *root_item;
1386 struct btrfs_key root_key;
1387 u64 last_snap = 0;
1388 int ret;
1389
1390 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1391 BUG_ON(!root_item);
1392
1393 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1394 root_key.type = BTRFS_ROOT_ITEM_KEY;
1395 root_key.offset = objectid;
1396
1397 if (root->root_key.objectid == objectid) {
1398 u64 commit_root_gen;
1399
1400 /* called by btrfs_init_reloc_root */
1401 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1402 BTRFS_TREE_RELOC_OBJECTID);
1403 BUG_ON(ret);
1404 last_snap = btrfs_root_last_snapshot(&root->root_item);
1405 /*
1406 * Set the last_snapshot field to the generation of the commit
1407 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1408 * correctly (returns true) when the relocation root is created
1409 * either inside the critical section of a transaction commit
1410 * (through transaction.c:qgroup_account_snapshot()) and when
1411 * it's created before the transaction commit is started.
1412 */
1413 commit_root_gen = btrfs_header_generation(root->commit_root);
1414 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1415 } else {
1416 /*
1417 * called by btrfs_reloc_post_snapshot_hook.
1418 * the source tree is a reloc tree, all tree blocks
1419 * modified after it was created have RELOC flag
1420 * set in their headers. so it's OK to not update
1421 * the 'last_snapshot'.
1422 */
1423 ret = btrfs_copy_root(trans, root, root->node, &eb,
1424 BTRFS_TREE_RELOC_OBJECTID);
1425 BUG_ON(ret);
1426 }
1427
1428 memcpy(root_item, &root->root_item, sizeof(*root_item));
1429 btrfs_set_root_bytenr(root_item, eb->start);
1430 btrfs_set_root_level(root_item, btrfs_header_level(eb));
1431 btrfs_set_root_generation(root_item, trans->transid);
1432
1433 if (root->root_key.objectid == objectid) {
1434 btrfs_set_root_refs(root_item, 0);
1435 memset(&root_item->drop_progress, 0,
1436 sizeof(struct btrfs_disk_key));
1437 root_item->drop_level = 0;
1438 /*
1439 * abuse rtransid, it is safe because it is impossible to
1440 * receive data into a relocation tree.
1441 */
1442 btrfs_set_root_rtransid(root_item, last_snap);
1443 btrfs_set_root_otransid(root_item, trans->transid);
1444 }
1445
1446 btrfs_tree_unlock(eb);
1447 free_extent_buffer(eb);
1448
1449 ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1450 &root_key, root_item);
1451 BUG_ON(ret);
1452 kfree(root_item);
1453
1454 reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
1455 BUG_ON(IS_ERR(reloc_root));
1456 reloc_root->last_trans = trans->transid;
1457 return reloc_root;
1458 }
1459
1460 /*
1461 * create reloc tree for a given fs tree. reloc tree is just a
1462 * snapshot of the fs tree with special root objectid.
1463 */
1464 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1465 struct btrfs_root *root)
1466 {
1467 struct btrfs_root *reloc_root;
1468 struct reloc_control *rc = root->fs_info->reloc_ctl;
1469 struct btrfs_block_rsv *rsv;
1470 int clear_rsv = 0;
1471 int ret;
1472
1473 if (root->reloc_root) {
1474 reloc_root = root->reloc_root;
1475 reloc_root->last_trans = trans->transid;
1476 return 0;
1477 }
1478
1479 if (!rc || !rc->create_reloc_tree ||
1480 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1481 return 0;
1482
1483 if (!trans->reloc_reserved) {
1484 rsv = trans->block_rsv;
1485 trans->block_rsv = rc->block_rsv;
1486 clear_rsv = 1;
1487 }
1488 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1489 if (clear_rsv)
1490 trans->block_rsv = rsv;
1491
1492 ret = __add_reloc_root(reloc_root);
1493 BUG_ON(ret < 0);
1494 root->reloc_root = reloc_root;
1495 return 0;
1496 }
1497
1498 /*
1499 * update root item of reloc tree
1500 */
1501 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1502 struct btrfs_root *root)
1503 {
1504 struct btrfs_root *reloc_root;
1505 struct btrfs_root_item *root_item;
1506 int ret;
1507
1508 if (!root->reloc_root)
1509 goto out;
1510
1511 reloc_root = root->reloc_root;
1512 root_item = &reloc_root->root_item;
1513
1514 if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1515 btrfs_root_refs(root_item) == 0) {
1516 root->reloc_root = NULL;
1517 __del_reloc_root(reloc_root);
1518 }
1519
1520 if (reloc_root->commit_root != reloc_root->node) {
1521 btrfs_set_root_node(root_item, reloc_root->node);
1522 free_extent_buffer(reloc_root->commit_root);
1523 reloc_root->commit_root = btrfs_root_node(reloc_root);
1524 }
1525
1526 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1527 &reloc_root->root_key, root_item);
1528 BUG_ON(ret);
1529
1530 out:
1531 return 0;
1532 }
1533
1534 /*
1535 * helper to find first cached inode with inode number >= objectid
1536 * in a subvolume
1537 */
1538 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1539 {
1540 struct rb_node *node;
1541 struct rb_node *prev;
1542 struct btrfs_inode *entry;
1543 struct inode *inode;
1544
1545 spin_lock(&root->inode_lock);
1546 again:
1547 node = root->inode_tree.rb_node;
1548 prev = NULL;
1549 while (node) {
1550 prev = node;
1551 entry = rb_entry(node, struct btrfs_inode, rb_node);
1552
1553 if (objectid < btrfs_ino(&entry->vfs_inode))
1554 node = node->rb_left;
1555 else if (objectid > btrfs_ino(&entry->vfs_inode))
1556 node = node->rb_right;
1557 else
1558 break;
1559 }
1560 if (!node) {
1561 while (prev) {
1562 entry = rb_entry(prev, struct btrfs_inode, rb_node);
1563 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1564 node = prev;
1565 break;
1566 }
1567 prev = rb_next(prev);
1568 }
1569 }
1570 while (node) {
1571 entry = rb_entry(node, struct btrfs_inode, rb_node);
1572 inode = igrab(&entry->vfs_inode);
1573 if (inode) {
1574 spin_unlock(&root->inode_lock);
1575 return inode;
1576 }
1577
1578 objectid = btrfs_ino(&entry->vfs_inode) + 1;
1579 if (cond_resched_lock(&root->inode_lock))
1580 goto again;
1581
1582 node = rb_next(node);
1583 }
1584 spin_unlock(&root->inode_lock);
1585 return NULL;
1586 }
1587
1588 static int in_block_group(u64 bytenr,
1589 struct btrfs_block_group_cache *block_group)
1590 {
1591 if (bytenr >= block_group->key.objectid &&
1592 bytenr < block_group->key.objectid + block_group->key.offset)
1593 return 1;
1594 return 0;
1595 }
1596
1597 /*
1598 * get new location of data
1599 */
1600 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1601 u64 bytenr, u64 num_bytes)
1602 {
1603 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1604 struct btrfs_path *path;
1605 struct btrfs_file_extent_item *fi;
1606 struct extent_buffer *leaf;
1607 int ret;
1608
1609 path = btrfs_alloc_path();
1610 if (!path)
1611 return -ENOMEM;
1612
1613 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1614 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1615 bytenr, 0);
1616 if (ret < 0)
1617 goto out;
1618 if (ret > 0) {
1619 ret = -ENOENT;
1620 goto out;
1621 }
1622
1623 leaf = path->nodes[0];
1624 fi = btrfs_item_ptr(leaf, path->slots[0],
1625 struct btrfs_file_extent_item);
1626
1627 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1628 btrfs_file_extent_compression(leaf, fi) ||
1629 btrfs_file_extent_encryption(leaf, fi) ||
1630 btrfs_file_extent_other_encoding(leaf, fi));
1631
1632 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1633 ret = -EINVAL;
1634 goto out;
1635 }
1636
1637 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1638 ret = 0;
1639 out:
1640 btrfs_free_path(path);
1641 return ret;
1642 }
1643
1644 /*
1645 * update file extent items in the tree leaf to point to
1646 * the new locations.
1647 */
1648 static noinline_for_stack
1649 int replace_file_extents(struct btrfs_trans_handle *trans,
1650 struct reloc_control *rc,
1651 struct btrfs_root *root,
1652 struct extent_buffer *leaf)
1653 {
1654 struct btrfs_key key;
1655 struct btrfs_file_extent_item *fi;
1656 struct inode *inode = NULL;
1657 u64 parent;
1658 u64 bytenr;
1659 u64 new_bytenr = 0;
1660 u64 num_bytes;
1661 u64 end;
1662 u32 nritems;
1663 u32 i;
1664 int ret = 0;
1665 int first = 1;
1666 int dirty = 0;
1667
1668 if (rc->stage != UPDATE_DATA_PTRS)
1669 return 0;
1670
1671 /* reloc trees always use full backref */
1672 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1673 parent = leaf->start;
1674 else
1675 parent = 0;
1676
1677 nritems = btrfs_header_nritems(leaf);
1678 for (i = 0; i < nritems; i++) {
1679 cond_resched();
1680 btrfs_item_key_to_cpu(leaf, &key, i);
1681 if (key.type != BTRFS_EXTENT_DATA_KEY)
1682 continue;
1683 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1684 if (btrfs_file_extent_type(leaf, fi) ==
1685 BTRFS_FILE_EXTENT_INLINE)
1686 continue;
1687 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1688 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1689 if (bytenr == 0)
1690 continue;
1691 if (!in_block_group(bytenr, rc->block_group))
1692 continue;
1693
1694 /*
1695 * if we are modifying block in fs tree, wait for readpage
1696 * to complete and drop the extent cache
1697 */
1698 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1699 if (first) {
1700 inode = find_next_inode(root, key.objectid);
1701 first = 0;
1702 } else if (inode && btrfs_ino(inode) < key.objectid) {
1703 btrfs_add_delayed_iput(inode);
1704 inode = find_next_inode(root, key.objectid);
1705 }
1706 if (inode && btrfs_ino(inode) == key.objectid) {
1707 end = key.offset +
1708 btrfs_file_extent_num_bytes(leaf, fi);
1709 WARN_ON(!IS_ALIGNED(key.offset,
1710 root->sectorsize));
1711 WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1712 end--;
1713 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1714 key.offset, end);
1715 if (!ret)
1716 continue;
1717
1718 btrfs_drop_extent_cache(inode, key.offset, end,
1719 1);
1720 unlock_extent(&BTRFS_I(inode)->io_tree,
1721 key.offset, end);
1722 }
1723 }
1724
1725 ret = get_new_location(rc->data_inode, &new_bytenr,
1726 bytenr, num_bytes);
1727 if (ret) {
1728 /*
1729 * Don't have to abort since we've not changed anything
1730 * in the file extent yet.
1731 */
1732 break;
1733 }
1734
1735 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1736 dirty = 1;
1737
1738 key.offset -= btrfs_file_extent_offset(leaf, fi);
1739 ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1740 num_bytes, parent,
1741 btrfs_header_owner(leaf),
1742 key.objectid, key.offset);
1743 if (ret) {
1744 btrfs_abort_transaction(trans, ret);
1745 break;
1746 }
1747
1748 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1749 parent, btrfs_header_owner(leaf),
1750 key.objectid, key.offset);
1751 if (ret) {
1752 btrfs_abort_transaction(trans, ret);
1753 break;
1754 }
1755 }
1756 if (dirty)
1757 btrfs_mark_buffer_dirty(leaf);
1758 if (inode)
1759 btrfs_add_delayed_iput(inode);
1760 return ret;
1761 }
1762
1763 static noinline_for_stack
1764 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1765 struct btrfs_path *path, int level)
1766 {
1767 struct btrfs_disk_key key1;
1768 struct btrfs_disk_key key2;
1769 btrfs_node_key(eb, &key1, slot);
1770 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1771 return memcmp(&key1, &key2, sizeof(key1));
1772 }
1773
1774 /*
1775 * try to replace tree blocks in fs tree with the new blocks
1776 * in reloc tree. tree blocks haven't been modified since the
1777 * reloc tree was create can be replaced.
1778 *
1779 * if a block was replaced, level of the block + 1 is returned.
1780 * if no block got replaced, 0 is returned. if there are other
1781 * errors, a negative error number is returned.
1782 */
1783 static noinline_for_stack
1784 int replace_path(struct btrfs_trans_handle *trans,
1785 struct btrfs_root *dest, struct btrfs_root *src,
1786 struct btrfs_path *path, struct btrfs_key *next_key,
1787 int lowest_level, int max_level)
1788 {
1789 struct extent_buffer *eb;
1790 struct extent_buffer *parent;
1791 struct btrfs_key key;
1792 u64 old_bytenr;
1793 u64 new_bytenr;
1794 u64 old_ptr_gen;
1795 u64 new_ptr_gen;
1796 u64 last_snapshot;
1797 u32 blocksize;
1798 int cow = 0;
1799 int level;
1800 int ret;
1801 int slot;
1802
1803 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1804 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1805
1806 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1807 again:
1808 slot = path->slots[lowest_level];
1809 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1810
1811 eb = btrfs_lock_root_node(dest);
1812 btrfs_set_lock_blocking(eb);
1813 level = btrfs_header_level(eb);
1814
1815 if (level < lowest_level) {
1816 btrfs_tree_unlock(eb);
1817 free_extent_buffer(eb);
1818 return 0;
1819 }
1820
1821 if (cow) {
1822 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1823 BUG_ON(ret);
1824 }
1825 btrfs_set_lock_blocking(eb);
1826
1827 if (next_key) {
1828 next_key->objectid = (u64)-1;
1829 next_key->type = (u8)-1;
1830 next_key->offset = (u64)-1;
1831 }
1832
1833 parent = eb;
1834 while (1) {
1835 level = btrfs_header_level(parent);
1836 BUG_ON(level < lowest_level);
1837
1838 ret = btrfs_bin_search(parent, &key, level, &slot);
1839 if (ret && slot > 0)
1840 slot--;
1841
1842 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1843 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1844
1845 old_bytenr = btrfs_node_blockptr(parent, slot);
1846 blocksize = dest->nodesize;
1847 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1848
1849 if (level <= max_level) {
1850 eb = path->nodes[level];
1851 new_bytenr = btrfs_node_blockptr(eb,
1852 path->slots[level]);
1853 new_ptr_gen = btrfs_node_ptr_generation(eb,
1854 path->slots[level]);
1855 } else {
1856 new_bytenr = 0;
1857 new_ptr_gen = 0;
1858 }
1859
1860 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1861 ret = level;
1862 break;
1863 }
1864
1865 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1866 memcmp_node_keys(parent, slot, path, level)) {
1867 if (level <= lowest_level) {
1868 ret = 0;
1869 break;
1870 }
1871
1872 eb = read_tree_block(dest, old_bytenr, old_ptr_gen);
1873 if (IS_ERR(eb)) {
1874 ret = PTR_ERR(eb);
1875 break;
1876 } else if (!extent_buffer_uptodate(eb)) {
1877 ret = -EIO;
1878 free_extent_buffer(eb);
1879 break;
1880 }
1881 btrfs_tree_lock(eb);
1882 if (cow) {
1883 ret = btrfs_cow_block(trans, dest, eb, parent,
1884 slot, &eb);
1885 BUG_ON(ret);
1886 }
1887 btrfs_set_lock_blocking(eb);
1888
1889 btrfs_tree_unlock(parent);
1890 free_extent_buffer(parent);
1891
1892 parent = eb;
1893 continue;
1894 }
1895
1896 if (!cow) {
1897 btrfs_tree_unlock(parent);
1898 free_extent_buffer(parent);
1899 cow = 1;
1900 goto again;
1901 }
1902
1903 btrfs_node_key_to_cpu(path->nodes[level], &key,
1904 path->slots[level]);
1905 btrfs_release_path(path);
1906
1907 path->lowest_level = level;
1908 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1909 path->lowest_level = 0;
1910 BUG_ON(ret);
1911
1912 /*
1913 * swap blocks in fs tree and reloc tree.
1914 */
1915 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1916 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1917 btrfs_mark_buffer_dirty(parent);
1918
1919 btrfs_set_node_blockptr(path->nodes[level],
1920 path->slots[level], old_bytenr);
1921 btrfs_set_node_ptr_generation(path->nodes[level],
1922 path->slots[level], old_ptr_gen);
1923 btrfs_mark_buffer_dirty(path->nodes[level]);
1924
1925 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1926 path->nodes[level]->start,
1927 src->root_key.objectid, level - 1, 0);
1928 BUG_ON(ret);
1929 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1930 0, dest->root_key.objectid, level - 1,
1931 0);
1932 BUG_ON(ret);
1933
1934 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1935 path->nodes[level]->start,
1936 src->root_key.objectid, level - 1, 0);
1937 BUG_ON(ret);
1938
1939 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1940 0, dest->root_key.objectid, level - 1,
1941 0);
1942 BUG_ON(ret);
1943
1944 btrfs_unlock_up_safe(path, 0);
1945
1946 ret = level;
1947 break;
1948 }
1949 btrfs_tree_unlock(parent);
1950 free_extent_buffer(parent);
1951 return ret;
1952 }
1953
1954 /*
1955 * helper to find next relocated block in reloc tree
1956 */
1957 static noinline_for_stack
1958 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1959 int *level)
1960 {
1961 struct extent_buffer *eb;
1962 int i;
1963 u64 last_snapshot;
1964 u32 nritems;
1965
1966 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1967
1968 for (i = 0; i < *level; i++) {
1969 free_extent_buffer(path->nodes[i]);
1970 path->nodes[i] = NULL;
1971 }
1972
1973 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1974 eb = path->nodes[i];
1975 nritems = btrfs_header_nritems(eb);
1976 while (path->slots[i] + 1 < nritems) {
1977 path->slots[i]++;
1978 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1979 last_snapshot)
1980 continue;
1981
1982 *level = i;
1983 return 0;
1984 }
1985 free_extent_buffer(path->nodes[i]);
1986 path->nodes[i] = NULL;
1987 }
1988 return 1;
1989 }
1990
1991 /*
1992 * walk down reloc tree to find relocated block of lowest level
1993 */
1994 static noinline_for_stack
1995 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1996 int *level)
1997 {
1998 struct extent_buffer *eb = NULL;
1999 int i;
2000 u64 bytenr;
2001 u64 ptr_gen = 0;
2002 u64 last_snapshot;
2003 u32 nritems;
2004
2005 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2006
2007 for (i = *level; i > 0; i--) {
2008 eb = path->nodes[i];
2009 nritems = btrfs_header_nritems(eb);
2010 while (path->slots[i] < nritems) {
2011 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2012 if (ptr_gen > last_snapshot)
2013 break;
2014 path->slots[i]++;
2015 }
2016 if (path->slots[i] >= nritems) {
2017 if (i == *level)
2018 break;
2019 *level = i + 1;
2020 return 0;
2021 }
2022 if (i == 1) {
2023 *level = i;
2024 return 0;
2025 }
2026
2027 bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2028 eb = read_tree_block(root, bytenr, ptr_gen);
2029 if (IS_ERR(eb)) {
2030 return PTR_ERR(eb);
2031 } else if (!extent_buffer_uptodate(eb)) {
2032 free_extent_buffer(eb);
2033 return -EIO;
2034 }
2035 BUG_ON(btrfs_header_level(eb) != i - 1);
2036 path->nodes[i - 1] = eb;
2037 path->slots[i - 1] = 0;
2038 }
2039 return 1;
2040 }
2041
2042 /*
2043 * invalidate extent cache for file extents whose key in range of
2044 * [min_key, max_key)
2045 */
2046 static int invalidate_extent_cache(struct btrfs_root *root,
2047 struct btrfs_key *min_key,
2048 struct btrfs_key *max_key)
2049 {
2050 struct inode *inode = NULL;
2051 u64 objectid;
2052 u64 start, end;
2053 u64 ino;
2054
2055 objectid = min_key->objectid;
2056 while (1) {
2057 cond_resched();
2058 iput(inode);
2059
2060 if (objectid > max_key->objectid)
2061 break;
2062
2063 inode = find_next_inode(root, objectid);
2064 if (!inode)
2065 break;
2066 ino = btrfs_ino(inode);
2067
2068 if (ino > max_key->objectid) {
2069 iput(inode);
2070 break;
2071 }
2072
2073 objectid = ino + 1;
2074 if (!S_ISREG(inode->i_mode))
2075 continue;
2076
2077 if (unlikely(min_key->objectid == ino)) {
2078 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2079 continue;
2080 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2081 start = 0;
2082 else {
2083 start = min_key->offset;
2084 WARN_ON(!IS_ALIGNED(start, root->sectorsize));
2085 }
2086 } else {
2087 start = 0;
2088 }
2089
2090 if (unlikely(max_key->objectid == ino)) {
2091 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2092 continue;
2093 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2094 end = (u64)-1;
2095 } else {
2096 if (max_key->offset == 0)
2097 continue;
2098 end = max_key->offset;
2099 WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2100 end--;
2101 }
2102 } else {
2103 end = (u64)-1;
2104 }
2105
2106 /* the lock_extent waits for readpage to complete */
2107 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2108 btrfs_drop_extent_cache(inode, start, end, 1);
2109 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2110 }
2111 return 0;
2112 }
2113
2114 static int find_next_key(struct btrfs_path *path, int level,
2115 struct btrfs_key *key)
2116
2117 {
2118 while (level < BTRFS_MAX_LEVEL) {
2119 if (!path->nodes[level])
2120 break;
2121 if (path->slots[level] + 1 <
2122 btrfs_header_nritems(path->nodes[level])) {
2123 btrfs_node_key_to_cpu(path->nodes[level], key,
2124 path->slots[level] + 1);
2125 return 0;
2126 }
2127 level++;
2128 }
2129 return 1;
2130 }
2131
2132 /*
2133 * merge the relocated tree blocks in reloc tree with corresponding
2134 * fs tree.
2135 */
2136 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2137 struct btrfs_root *root)
2138 {
2139 LIST_HEAD(inode_list);
2140 struct btrfs_key key;
2141 struct btrfs_key next_key;
2142 struct btrfs_trans_handle *trans = NULL;
2143 struct btrfs_root *reloc_root;
2144 struct btrfs_root_item *root_item;
2145 struct btrfs_path *path;
2146 struct extent_buffer *leaf;
2147 int level;
2148 int max_level;
2149 int replaced = 0;
2150 int ret;
2151 int err = 0;
2152 u32 min_reserved;
2153
2154 path = btrfs_alloc_path();
2155 if (!path)
2156 return -ENOMEM;
2157 path->reada = READA_FORWARD;
2158
2159 reloc_root = root->reloc_root;
2160 root_item = &reloc_root->root_item;
2161
2162 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2163 level = btrfs_root_level(root_item);
2164 extent_buffer_get(reloc_root->node);
2165 path->nodes[level] = reloc_root->node;
2166 path->slots[level] = 0;
2167 } else {
2168 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2169
2170 level = root_item->drop_level;
2171 BUG_ON(level == 0);
2172 path->lowest_level = level;
2173 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2174 path->lowest_level = 0;
2175 if (ret < 0) {
2176 btrfs_free_path(path);
2177 return ret;
2178 }
2179
2180 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2181 path->slots[level]);
2182 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2183
2184 btrfs_unlock_up_safe(path, 0);
2185 }
2186
2187 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2188 memset(&next_key, 0, sizeof(next_key));
2189
2190 while (1) {
2191 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2192 BTRFS_RESERVE_FLUSH_ALL);
2193 if (ret) {
2194 err = ret;
2195 goto out;
2196 }
2197 trans = btrfs_start_transaction(root, 0);
2198 if (IS_ERR(trans)) {
2199 err = PTR_ERR(trans);
2200 trans = NULL;
2201 goto out;
2202 }
2203 trans->block_rsv = rc->block_rsv;
2204
2205 replaced = 0;
2206 max_level = level;
2207
2208 ret = walk_down_reloc_tree(reloc_root, path, &level);
2209 if (ret < 0) {
2210 err = ret;
2211 goto out;
2212 }
2213 if (ret > 0)
2214 break;
2215
2216 if (!find_next_key(path, level, &key) &&
2217 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2218 ret = 0;
2219 } else {
2220 ret = replace_path(trans, root, reloc_root, path,
2221 &next_key, level, max_level);
2222 }
2223 if (ret < 0) {
2224 err = ret;
2225 goto out;
2226 }
2227
2228 if (ret > 0) {
2229 level = ret;
2230 btrfs_node_key_to_cpu(path->nodes[level], &key,
2231 path->slots[level]);
2232 replaced = 1;
2233 }
2234
2235 ret = walk_up_reloc_tree(reloc_root, path, &level);
2236 if (ret > 0)
2237 break;
2238
2239 BUG_ON(level == 0);
2240 /*
2241 * save the merging progress in the drop_progress.
2242 * this is OK since root refs == 1 in this case.
2243 */
2244 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2245 path->slots[level]);
2246 root_item->drop_level = level;
2247
2248 btrfs_end_transaction_throttle(trans, root);
2249 trans = NULL;
2250
2251 btrfs_btree_balance_dirty(root);
2252
2253 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2254 invalidate_extent_cache(root, &key, &next_key);
2255 }
2256
2257 /*
2258 * handle the case only one block in the fs tree need to be
2259 * relocated and the block is tree root.
2260 */
2261 leaf = btrfs_lock_root_node(root);
2262 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2263 btrfs_tree_unlock(leaf);
2264 free_extent_buffer(leaf);
2265 if (ret < 0)
2266 err = ret;
2267 out:
2268 btrfs_free_path(path);
2269
2270 if (err == 0) {
2271 memset(&root_item->drop_progress, 0,
2272 sizeof(root_item->drop_progress));
2273 root_item->drop_level = 0;
2274 btrfs_set_root_refs(root_item, 0);
2275 btrfs_update_reloc_root(trans, root);
2276 }
2277
2278 if (trans)
2279 btrfs_end_transaction_throttle(trans, root);
2280
2281 btrfs_btree_balance_dirty(root);
2282
2283 if (replaced && rc->stage == UPDATE_DATA_PTRS)
2284 invalidate_extent_cache(root, &key, &next_key);
2285
2286 return err;
2287 }
2288
2289 static noinline_for_stack
2290 int prepare_to_merge(struct reloc_control *rc, int err)
2291 {
2292 struct btrfs_root *root = rc->extent_root;
2293 struct btrfs_root *reloc_root;
2294 struct btrfs_trans_handle *trans;
2295 LIST_HEAD(reloc_roots);
2296 u64 num_bytes = 0;
2297 int ret;
2298
2299 mutex_lock(&root->fs_info->reloc_mutex);
2300 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2301 rc->merging_rsv_size += rc->nodes_relocated * 2;
2302 mutex_unlock(&root->fs_info->reloc_mutex);
2303
2304 again:
2305 if (!err) {
2306 num_bytes = rc->merging_rsv_size;
2307 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2308 BTRFS_RESERVE_FLUSH_ALL);
2309 if (ret)
2310 err = ret;
2311 }
2312
2313 trans = btrfs_join_transaction(rc->extent_root);
2314 if (IS_ERR(trans)) {
2315 if (!err)
2316 btrfs_block_rsv_release(rc->extent_root,
2317 rc->block_rsv, num_bytes);
2318 return PTR_ERR(trans);
2319 }
2320
2321 if (!err) {
2322 if (num_bytes != rc->merging_rsv_size) {
2323 btrfs_end_transaction(trans, rc->extent_root);
2324 btrfs_block_rsv_release(rc->extent_root,
2325 rc->block_rsv, num_bytes);
2326 goto again;
2327 }
2328 }
2329
2330 rc->merge_reloc_tree = 1;
2331
2332 while (!list_empty(&rc->reloc_roots)) {
2333 reloc_root = list_entry(rc->reloc_roots.next,
2334 struct btrfs_root, root_list);
2335 list_del_init(&reloc_root->root_list);
2336
2337 root = read_fs_root(reloc_root->fs_info,
2338 reloc_root->root_key.offset);
2339 BUG_ON(IS_ERR(root));
2340 BUG_ON(root->reloc_root != reloc_root);
2341
2342 /*
2343 * set reference count to 1, so btrfs_recover_relocation
2344 * knows it should resumes merging
2345 */
2346 if (!err)
2347 btrfs_set_root_refs(&reloc_root->root_item, 1);
2348 btrfs_update_reloc_root(trans, root);
2349
2350 list_add(&reloc_root->root_list, &reloc_roots);
2351 }
2352
2353 list_splice(&reloc_roots, &rc->reloc_roots);
2354
2355 if (!err)
2356 btrfs_commit_transaction(trans, rc->extent_root);
2357 else
2358 btrfs_end_transaction(trans, rc->extent_root);
2359 return err;
2360 }
2361
2362 static noinline_for_stack
2363 void free_reloc_roots(struct list_head *list)
2364 {
2365 struct btrfs_root *reloc_root;
2366
2367 while (!list_empty(list)) {
2368 reloc_root = list_entry(list->next, struct btrfs_root,
2369 root_list);
2370 __del_reloc_root(reloc_root);
2371 free_extent_buffer(reloc_root->node);
2372 free_extent_buffer(reloc_root->commit_root);
2373 reloc_root->node = NULL;
2374 reloc_root->commit_root = NULL;
2375 }
2376 }
2377
2378 static noinline_for_stack
2379 void merge_reloc_roots(struct reloc_control *rc)
2380 {
2381 struct btrfs_root *root;
2382 struct btrfs_root *reloc_root;
2383 u64 last_snap;
2384 u64 otransid;
2385 u64 objectid;
2386 LIST_HEAD(reloc_roots);
2387 int found = 0;
2388 int ret = 0;
2389 again:
2390 root = rc->extent_root;
2391
2392 /*
2393 * this serializes us with btrfs_record_root_in_transaction,
2394 * we have to make sure nobody is in the middle of
2395 * adding their roots to the list while we are
2396 * doing this splice
2397 */
2398 mutex_lock(&root->fs_info->reloc_mutex);
2399 list_splice_init(&rc->reloc_roots, &reloc_roots);
2400 mutex_unlock(&root->fs_info->reloc_mutex);
2401
2402 while (!list_empty(&reloc_roots)) {
2403 found = 1;
2404 reloc_root = list_entry(reloc_roots.next,
2405 struct btrfs_root, root_list);
2406
2407 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2408 root = read_fs_root(reloc_root->fs_info,
2409 reloc_root->root_key.offset);
2410 BUG_ON(IS_ERR(root));
2411 BUG_ON(root->reloc_root != reloc_root);
2412
2413 ret = merge_reloc_root(rc, root);
2414 if (ret) {
2415 if (list_empty(&reloc_root->root_list))
2416 list_add_tail(&reloc_root->root_list,
2417 &reloc_roots);
2418 goto out;
2419 }
2420 } else {
2421 list_del_init(&reloc_root->root_list);
2422 }
2423
2424 /*
2425 * we keep the old last snapshot transid in rtranid when we
2426 * created the relocation tree.
2427 */
2428 last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2429 otransid = btrfs_root_otransid(&reloc_root->root_item);
2430 objectid = reloc_root->root_key.offset;
2431
2432 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2433 if (ret < 0) {
2434 if (list_empty(&reloc_root->root_list))
2435 list_add_tail(&reloc_root->root_list,
2436 &reloc_roots);
2437 goto out;
2438 }
2439 }
2440
2441 if (found) {
2442 found = 0;
2443 goto again;
2444 }
2445 out:
2446 if (ret) {
2447 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2448 if (!list_empty(&reloc_roots))
2449 free_reloc_roots(&reloc_roots);
2450
2451 /* new reloc root may be added */
2452 mutex_lock(&root->fs_info->reloc_mutex);
2453 list_splice_init(&rc->reloc_roots, &reloc_roots);
2454 mutex_unlock(&root->fs_info->reloc_mutex);
2455 if (!list_empty(&reloc_roots))
2456 free_reloc_roots(&reloc_roots);
2457 }
2458
2459 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2460 }
2461
2462 static void free_block_list(struct rb_root *blocks)
2463 {
2464 struct tree_block *block;
2465 struct rb_node *rb_node;
2466 while ((rb_node = rb_first(blocks))) {
2467 block = rb_entry(rb_node, struct tree_block, rb_node);
2468 rb_erase(rb_node, blocks);
2469 kfree(block);
2470 }
2471 }
2472
2473 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2474 struct btrfs_root *reloc_root)
2475 {
2476 struct btrfs_root *root;
2477
2478 if (reloc_root->last_trans == trans->transid)
2479 return 0;
2480
2481 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2482 BUG_ON(IS_ERR(root));
2483 BUG_ON(root->reloc_root != reloc_root);
2484
2485 return btrfs_record_root_in_trans(trans, root);
2486 }
2487
2488 static noinline_for_stack
2489 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2490 struct reloc_control *rc,
2491 struct backref_node *node,
2492 struct backref_edge *edges[])
2493 {
2494 struct backref_node *next;
2495 struct btrfs_root *root;
2496 int index = 0;
2497
2498 next = node;
2499 while (1) {
2500 cond_resched();
2501 next = walk_up_backref(next, edges, &index);
2502 root = next->root;
2503 BUG_ON(!root);
2504 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2505
2506 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2507 record_reloc_root_in_trans(trans, root);
2508 break;
2509 }
2510
2511 btrfs_record_root_in_trans(trans, root);
2512 root = root->reloc_root;
2513
2514 if (next->new_bytenr != root->node->start) {
2515 BUG_ON(next->new_bytenr);
2516 BUG_ON(!list_empty(&next->list));
2517 next->new_bytenr = root->node->start;
2518 next->root = root;
2519 list_add_tail(&next->list,
2520 &rc->backref_cache.changed);
2521 __mark_block_processed(rc, next);
2522 break;
2523 }
2524
2525 WARN_ON(1);
2526 root = NULL;
2527 next = walk_down_backref(edges, &index);
2528 if (!next || next->level <= node->level)
2529 break;
2530 }
2531 if (!root)
2532 return NULL;
2533
2534 next = node;
2535 /* setup backref node path for btrfs_reloc_cow_block */
2536 while (1) {
2537 rc->backref_cache.path[next->level] = next;
2538 if (--index < 0)
2539 break;
2540 next = edges[index]->node[UPPER];
2541 }
2542 return root;
2543 }
2544
2545 /*
2546 * select a tree root for relocation. return NULL if the block
2547 * is reference counted. we should use do_relocation() in this
2548 * case. return a tree root pointer if the block isn't reference
2549 * counted. return -ENOENT if the block is root of reloc tree.
2550 */
2551 static noinline_for_stack
2552 struct btrfs_root *select_one_root(struct backref_node *node)
2553 {
2554 struct backref_node *next;
2555 struct btrfs_root *root;
2556 struct btrfs_root *fs_root = NULL;
2557 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2558 int index = 0;
2559
2560 next = node;
2561 while (1) {
2562 cond_resched();
2563 next = walk_up_backref(next, edges, &index);
2564 root = next->root;
2565 BUG_ON(!root);
2566
2567 /* no other choice for non-references counted tree */
2568 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2569 return root;
2570
2571 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2572 fs_root = root;
2573
2574 if (next != node)
2575 return NULL;
2576
2577 next = walk_down_backref(edges, &index);
2578 if (!next || next->level <= node->level)
2579 break;
2580 }
2581
2582 if (!fs_root)
2583 return ERR_PTR(-ENOENT);
2584 return fs_root;
2585 }
2586
2587 static noinline_for_stack
2588 u64 calcu_metadata_size(struct reloc_control *rc,
2589 struct backref_node *node, int reserve)
2590 {
2591 struct backref_node *next = node;
2592 struct backref_edge *edge;
2593 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2594 u64 num_bytes = 0;
2595 int index = 0;
2596
2597 BUG_ON(reserve && node->processed);
2598
2599 while (next) {
2600 cond_resched();
2601 while (1) {
2602 if (next->processed && (reserve || next != node))
2603 break;
2604
2605 num_bytes += rc->extent_root->nodesize;
2606
2607 if (list_empty(&next->upper))
2608 break;
2609
2610 edge = list_entry(next->upper.next,
2611 struct backref_edge, list[LOWER]);
2612 edges[index++] = edge;
2613 next = edge->node[UPPER];
2614 }
2615 next = walk_down_backref(edges, &index);
2616 }
2617 return num_bytes;
2618 }
2619
2620 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2621 struct reloc_control *rc,
2622 struct backref_node *node)
2623 {
2624 struct btrfs_root *root = rc->extent_root;
2625 u64 num_bytes;
2626 int ret;
2627 u64 tmp;
2628
2629 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2630
2631 trans->block_rsv = rc->block_rsv;
2632 rc->reserved_bytes += num_bytes;
2633
2634 /*
2635 * We are under a transaction here so we can only do limited flushing.
2636 * If we get an enospc just kick back -EAGAIN so we know to drop the
2637 * transaction and try to refill when we can flush all the things.
2638 */
2639 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2640 BTRFS_RESERVE_FLUSH_LIMIT);
2641 if (ret) {
2642 tmp = rc->extent_root->nodesize * RELOCATION_RESERVED_NODES;
2643 while (tmp <= rc->reserved_bytes)
2644 tmp <<= 1;
2645 /*
2646 * only one thread can access block_rsv at this point,
2647 * so we don't need hold lock to protect block_rsv.
2648 * we expand more reservation size here to allow enough
2649 * space for relocation and we will return eailer in
2650 * enospc case.
2651 */
2652 rc->block_rsv->size = tmp + rc->extent_root->nodesize *
2653 RELOCATION_RESERVED_NODES;
2654 return -EAGAIN;
2655 }
2656
2657 return 0;
2658 }
2659
2660 /*
2661 * relocate a block tree, and then update pointers in upper level
2662 * blocks that reference the block to point to the new location.
2663 *
2664 * if called by link_to_upper, the block has already been relocated.
2665 * in that case this function just updates pointers.
2666 */
2667 static int do_relocation(struct btrfs_trans_handle *trans,
2668 struct reloc_control *rc,
2669 struct backref_node *node,
2670 struct btrfs_key *key,
2671 struct btrfs_path *path, int lowest)
2672 {
2673 struct backref_node *upper;
2674 struct backref_edge *edge;
2675 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2676 struct btrfs_root *root;
2677 struct extent_buffer *eb;
2678 u32 blocksize;
2679 u64 bytenr;
2680 u64 generation;
2681 int slot;
2682 int ret;
2683 int err = 0;
2684
2685 BUG_ON(lowest && node->eb);
2686
2687 path->lowest_level = node->level + 1;
2688 rc->backref_cache.path[node->level] = node;
2689 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2690 cond_resched();
2691
2692 upper = edge->node[UPPER];
2693 root = select_reloc_root(trans, rc, upper, edges);
2694 BUG_ON(!root);
2695
2696 if (upper->eb && !upper->locked) {
2697 if (!lowest) {
2698 ret = btrfs_bin_search(upper->eb, key,
2699 upper->level, &slot);
2700 BUG_ON(ret);
2701 bytenr = btrfs_node_blockptr(upper->eb, slot);
2702 if (node->eb->start == bytenr)
2703 goto next;
2704 }
2705 drop_node_buffer(upper);
2706 }
2707
2708 if (!upper->eb) {
2709 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2710 if (ret) {
2711 if (ret < 0)
2712 err = ret;
2713 else
2714 err = -ENOENT;
2715
2716 btrfs_release_path(path);
2717 break;
2718 }
2719
2720 if (!upper->eb) {
2721 upper->eb = path->nodes[upper->level];
2722 path->nodes[upper->level] = NULL;
2723 } else {
2724 BUG_ON(upper->eb != path->nodes[upper->level]);
2725 }
2726
2727 upper->locked = 1;
2728 path->locks[upper->level] = 0;
2729
2730 slot = path->slots[upper->level];
2731 btrfs_release_path(path);
2732 } else {
2733 ret = btrfs_bin_search(upper->eb, key, upper->level,
2734 &slot);
2735 BUG_ON(ret);
2736 }
2737
2738 bytenr = btrfs_node_blockptr(upper->eb, slot);
2739 if (lowest) {
2740 if (bytenr != node->bytenr) {
2741 btrfs_err(root->fs_info,
2742 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2743 bytenr, node->bytenr, slot,
2744 upper->eb->start);
2745 err = -EIO;
2746 goto next;
2747 }
2748 } else {
2749 if (node->eb->start == bytenr)
2750 goto next;
2751 }
2752
2753 blocksize = root->nodesize;
2754 generation = btrfs_node_ptr_generation(upper->eb, slot);
2755 eb = read_tree_block(root, bytenr, generation);
2756 if (IS_ERR(eb)) {
2757 err = PTR_ERR(eb);
2758 goto next;
2759 } else if (!extent_buffer_uptodate(eb)) {
2760 free_extent_buffer(eb);
2761 err = -EIO;
2762 goto next;
2763 }
2764 btrfs_tree_lock(eb);
2765 btrfs_set_lock_blocking(eb);
2766
2767 if (!node->eb) {
2768 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2769 slot, &eb);
2770 btrfs_tree_unlock(eb);
2771 free_extent_buffer(eb);
2772 if (ret < 0) {
2773 err = ret;
2774 goto next;
2775 }
2776 BUG_ON(node->eb != eb);
2777 } else {
2778 btrfs_set_node_blockptr(upper->eb, slot,
2779 node->eb->start);
2780 btrfs_set_node_ptr_generation(upper->eb, slot,
2781 trans->transid);
2782 btrfs_mark_buffer_dirty(upper->eb);
2783
2784 ret = btrfs_inc_extent_ref(trans, root,
2785 node->eb->start, blocksize,
2786 upper->eb->start,
2787 btrfs_header_owner(upper->eb),
2788 node->level, 0);
2789 BUG_ON(ret);
2790
2791 ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2792 BUG_ON(ret);
2793 }
2794 next:
2795 if (!upper->pending)
2796 drop_node_buffer(upper);
2797 else
2798 unlock_node_buffer(upper);
2799 if (err)
2800 break;
2801 }
2802
2803 if (!err && node->pending) {
2804 drop_node_buffer(node);
2805 list_move_tail(&node->list, &rc->backref_cache.changed);
2806 node->pending = 0;
2807 }
2808
2809 path->lowest_level = 0;
2810 BUG_ON(err == -ENOSPC);
2811 return err;
2812 }
2813
2814 static int link_to_upper(struct btrfs_trans_handle *trans,
2815 struct reloc_control *rc,
2816 struct backref_node *node,
2817 struct btrfs_path *path)
2818 {
2819 struct btrfs_key key;
2820
2821 btrfs_node_key_to_cpu(node->eb, &key, 0);
2822 return do_relocation(trans, rc, node, &key, path, 0);
2823 }
2824
2825 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2826 struct reloc_control *rc,
2827 struct btrfs_path *path, int err)
2828 {
2829 LIST_HEAD(list);
2830 struct backref_cache *cache = &rc->backref_cache;
2831 struct backref_node *node;
2832 int level;
2833 int ret;
2834
2835 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2836 while (!list_empty(&cache->pending[level])) {
2837 node = list_entry(cache->pending[level].next,
2838 struct backref_node, list);
2839 list_move_tail(&node->list, &list);
2840 BUG_ON(!node->pending);
2841
2842 if (!err) {
2843 ret = link_to_upper(trans, rc, node, path);
2844 if (ret < 0)
2845 err = ret;
2846 }
2847 }
2848 list_splice_init(&list, &cache->pending[level]);
2849 }
2850 return err;
2851 }
2852
2853 static void mark_block_processed(struct reloc_control *rc,
2854 u64 bytenr, u32 blocksize)
2855 {
2856 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2857 EXTENT_DIRTY);
2858 }
2859
2860 static void __mark_block_processed(struct reloc_control *rc,
2861 struct backref_node *node)
2862 {
2863 u32 blocksize;
2864 if (node->level == 0 ||
2865 in_block_group(node->bytenr, rc->block_group)) {
2866 blocksize = rc->extent_root->nodesize;
2867 mark_block_processed(rc, node->bytenr, blocksize);
2868 }
2869 node->processed = 1;
2870 }
2871
2872 /*
2873 * mark a block and all blocks directly/indirectly reference the block
2874 * as processed.
2875 */
2876 static void update_processed_blocks(struct reloc_control *rc,
2877 struct backref_node *node)
2878 {
2879 struct backref_node *next = node;
2880 struct backref_edge *edge;
2881 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2882 int index = 0;
2883
2884 while (next) {
2885 cond_resched();
2886 while (1) {
2887 if (next->processed)
2888 break;
2889
2890 __mark_block_processed(rc, next);
2891
2892 if (list_empty(&next->upper))
2893 break;
2894
2895 edge = list_entry(next->upper.next,
2896 struct backref_edge, list[LOWER]);
2897 edges[index++] = edge;
2898 next = edge->node[UPPER];
2899 }
2900 next = walk_down_backref(edges, &index);
2901 }
2902 }
2903
2904 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2905 {
2906 u32 blocksize = rc->extent_root->nodesize;
2907
2908 if (test_range_bit(&rc->processed_blocks, bytenr,
2909 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2910 return 1;
2911 return 0;
2912 }
2913
2914 static int get_tree_block_key(struct reloc_control *rc,
2915 struct tree_block *block)
2916 {
2917 struct extent_buffer *eb;
2918
2919 BUG_ON(block->key_ready);
2920 eb = read_tree_block(rc->extent_root, block->bytenr,
2921 block->key.offset);
2922 if (IS_ERR(eb)) {
2923 return PTR_ERR(eb);
2924 } else if (!extent_buffer_uptodate(eb)) {
2925 free_extent_buffer(eb);
2926 return -EIO;
2927 }
2928 WARN_ON(btrfs_header_level(eb) != block->level);
2929 if (block->level == 0)
2930 btrfs_item_key_to_cpu(eb, &block->key, 0);
2931 else
2932 btrfs_node_key_to_cpu(eb, &block->key, 0);
2933 free_extent_buffer(eb);
2934 block->key_ready = 1;
2935 return 0;
2936 }
2937
2938 /*
2939 * helper function to relocate a tree block
2940 */
2941 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2942 struct reloc_control *rc,
2943 struct backref_node *node,
2944 struct btrfs_key *key,
2945 struct btrfs_path *path)
2946 {
2947 struct btrfs_root *root;
2948 int ret = 0;
2949
2950 if (!node)
2951 return 0;
2952
2953 BUG_ON(node->processed);
2954 root = select_one_root(node);
2955 if (root == ERR_PTR(-ENOENT)) {
2956 update_processed_blocks(rc, node);
2957 goto out;
2958 }
2959
2960 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2961 ret = reserve_metadata_space(trans, rc, node);
2962 if (ret)
2963 goto out;
2964 }
2965
2966 if (root) {
2967 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2968 BUG_ON(node->new_bytenr);
2969 BUG_ON(!list_empty(&node->list));
2970 btrfs_record_root_in_trans(trans, root);
2971 root = root->reloc_root;
2972 node->new_bytenr = root->node->start;
2973 node->root = root;
2974 list_add_tail(&node->list, &rc->backref_cache.changed);
2975 } else {
2976 path->lowest_level = node->level;
2977 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2978 btrfs_release_path(path);
2979 if (ret > 0)
2980 ret = 0;
2981 }
2982 if (!ret)
2983 update_processed_blocks(rc, node);
2984 } else {
2985 ret = do_relocation(trans, rc, node, key, path, 1);
2986 }
2987 out:
2988 if (ret || node->level == 0 || node->cowonly)
2989 remove_backref_node(&rc->backref_cache, node);
2990 return ret;
2991 }
2992
2993 /*
2994 * relocate a list of blocks
2995 */
2996 static noinline_for_stack
2997 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2998 struct reloc_control *rc, struct rb_root *blocks)
2999 {
3000 struct backref_node *node;
3001 struct btrfs_path *path;
3002 struct tree_block *block;
3003 struct rb_node *rb_node;
3004 int ret;
3005 int err = 0;
3006
3007 path = btrfs_alloc_path();
3008 if (!path) {
3009 err = -ENOMEM;
3010 goto out_free_blocks;
3011 }
3012
3013 rb_node = rb_first(blocks);
3014 while (rb_node) {
3015 block = rb_entry(rb_node, struct tree_block, rb_node);
3016 if (!block->key_ready)
3017 readahead_tree_block(rc->extent_root, block->bytenr);
3018 rb_node = rb_next(rb_node);
3019 }
3020
3021 rb_node = rb_first(blocks);
3022 while (rb_node) {
3023 block = rb_entry(rb_node, struct tree_block, rb_node);
3024 if (!block->key_ready) {
3025 err = get_tree_block_key(rc, block);
3026 if (err)
3027 goto out_free_path;
3028 }
3029 rb_node = rb_next(rb_node);
3030 }
3031
3032 rb_node = rb_first(blocks);
3033 while (rb_node) {
3034 block = rb_entry(rb_node, struct tree_block, rb_node);
3035
3036 node = build_backref_tree(rc, &block->key,
3037 block->level, block->bytenr);
3038 if (IS_ERR(node)) {
3039 err = PTR_ERR(node);
3040 goto out;
3041 }
3042
3043 ret = relocate_tree_block(trans, rc, node, &block->key,
3044 path);
3045 if (ret < 0) {
3046 if (ret != -EAGAIN || rb_node == rb_first(blocks))
3047 err = ret;
3048 goto out;
3049 }
3050 rb_node = rb_next(rb_node);
3051 }
3052 out:
3053 err = finish_pending_nodes(trans, rc, path, err);
3054
3055 out_free_path:
3056 btrfs_free_path(path);
3057 out_free_blocks:
3058 free_block_list(blocks);
3059 return err;
3060 }
3061
3062 static noinline_for_stack
3063 int prealloc_file_extent_cluster(struct inode *inode,
3064 struct file_extent_cluster *cluster)
3065 {
3066 u64 alloc_hint = 0;
3067 u64 start;
3068 u64 end;
3069 u64 offset = BTRFS_I(inode)->index_cnt;
3070 u64 num_bytes;
3071 int nr = 0;
3072 int ret = 0;
3073 u64 prealloc_start = cluster->start - offset;
3074 u64 prealloc_end = cluster->end - offset;
3075 u64 cur_offset;
3076
3077 BUG_ON(cluster->start != cluster->boundary[0]);
3078 inode_lock(inode);
3079
3080 ret = btrfs_check_data_free_space(inode, prealloc_start,
3081 prealloc_end + 1 - prealloc_start);
3082 if (ret)
3083 goto out;
3084
3085 cur_offset = prealloc_start;
3086 while (nr < cluster->nr) {
3087 start = cluster->boundary[nr] - offset;
3088 if (nr + 1 < cluster->nr)
3089 end = cluster->boundary[nr + 1] - 1 - offset;
3090 else
3091 end = cluster->end - offset;
3092
3093 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3094 num_bytes = end + 1 - start;
3095 if (cur_offset < start)
3096 btrfs_free_reserved_data_space(inode, cur_offset,
3097 start - cur_offset);
3098 ret = btrfs_prealloc_file_range(inode, 0, start,
3099 num_bytes, num_bytes,
3100 end + 1, &alloc_hint);
3101 cur_offset = end + 1;
3102 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3103 if (ret)
3104 break;
3105 nr++;
3106 }
3107 if (cur_offset < prealloc_end)
3108 btrfs_free_reserved_data_space(inode, cur_offset,
3109 prealloc_end + 1 - cur_offset);
3110 out:
3111 inode_unlock(inode);
3112 return ret;
3113 }
3114
3115 static noinline_for_stack
3116 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3117 u64 block_start)
3118 {
3119 struct btrfs_root *root = BTRFS_I(inode)->root;
3120 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3121 struct extent_map *em;
3122 int ret = 0;
3123
3124 em = alloc_extent_map();
3125 if (!em)
3126 return -ENOMEM;
3127
3128 em->start = start;
3129 em->len = end + 1 - start;
3130 em->block_len = em->len;
3131 em->block_start = block_start;
3132 em->bdev = root->fs_info->fs_devices->latest_bdev;
3133 set_bit(EXTENT_FLAG_PINNED, &em->flags);
3134
3135 lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3136 while (1) {
3137 write_lock(&em_tree->lock);
3138 ret = add_extent_mapping(em_tree, em, 0);
3139 write_unlock(&em_tree->lock);
3140 if (ret != -EEXIST) {
3141 free_extent_map(em);
3142 break;
3143 }
3144 btrfs_drop_extent_cache(inode, start, end, 0);
3145 }
3146 unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3147 return ret;
3148 }
3149
3150 static int relocate_file_extent_cluster(struct inode *inode,
3151 struct file_extent_cluster *cluster)
3152 {
3153 u64 page_start;
3154 u64 page_end;
3155 u64 offset = BTRFS_I(inode)->index_cnt;
3156 unsigned long index;
3157 unsigned long last_index;
3158 struct page *page;
3159 struct file_ra_state *ra;
3160 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3161 int nr = 0;
3162 int ret = 0;
3163
3164 if (!cluster->nr)
3165 return 0;
3166
3167 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3168 if (!ra)
3169 return -ENOMEM;
3170
3171 ret = prealloc_file_extent_cluster(inode, cluster);
3172 if (ret)
3173 goto out;
3174
3175 file_ra_state_init(ra, inode->i_mapping);
3176
3177 ret = setup_extent_mapping(inode, cluster->start - offset,
3178 cluster->end - offset, cluster->start);
3179 if (ret)
3180 goto out;
3181
3182 index = (cluster->start - offset) >> PAGE_SHIFT;
3183 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3184 while (index <= last_index) {
3185 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_SIZE);
3186 if (ret)
3187 goto out;
3188
3189 page = find_lock_page(inode->i_mapping, index);
3190 if (!page) {
3191 page_cache_sync_readahead(inode->i_mapping,
3192 ra, NULL, index,
3193 last_index + 1 - index);
3194 page = find_or_create_page(inode->i_mapping, index,
3195 mask);
3196 if (!page) {
3197 btrfs_delalloc_release_metadata(inode,
3198 PAGE_SIZE);
3199 ret = -ENOMEM;
3200 goto out;
3201 }
3202 }
3203
3204 if (PageReadahead(page)) {
3205 page_cache_async_readahead(inode->i_mapping,
3206 ra, NULL, page, index,
3207 last_index + 1 - index);
3208 }
3209
3210 if (!PageUptodate(page)) {
3211 btrfs_readpage(NULL, page);
3212 lock_page(page);
3213 if (!PageUptodate(page)) {
3214 unlock_page(page);
3215 put_page(page);
3216 btrfs_delalloc_release_metadata(inode,
3217 PAGE_SIZE);
3218 ret = -EIO;
3219 goto out;
3220 }
3221 }
3222
3223 page_start = page_offset(page);
3224 page_end = page_start + PAGE_SIZE - 1;
3225
3226 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3227
3228 set_page_extent_mapped(page);
3229
3230 if (nr < cluster->nr &&
3231 page_start + offset == cluster->boundary[nr]) {
3232 set_extent_bits(&BTRFS_I(inode)->io_tree,
3233 page_start, page_end,
3234 EXTENT_BOUNDARY);
3235 nr++;
3236 }
3237
3238 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL, 0);
3239 set_page_dirty(page);
3240
3241 unlock_extent(&BTRFS_I(inode)->io_tree,
3242 page_start, page_end);
3243 unlock_page(page);
3244 put_page(page);
3245
3246 index++;
3247 balance_dirty_pages_ratelimited(inode->i_mapping);
3248 btrfs_throttle(BTRFS_I(inode)->root);
3249 }
3250 WARN_ON(nr != cluster->nr);
3251 out:
3252 kfree(ra);
3253 return ret;
3254 }
3255
3256 static noinline_for_stack
3257 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3258 struct file_extent_cluster *cluster)
3259 {
3260 int ret;
3261
3262 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3263 ret = relocate_file_extent_cluster(inode, cluster);
3264 if (ret)
3265 return ret;
3266 cluster->nr = 0;
3267 }
3268
3269 if (!cluster->nr)
3270 cluster->start = extent_key->objectid;
3271 else
3272 BUG_ON(cluster->nr >= MAX_EXTENTS);
3273 cluster->end = extent_key->objectid + extent_key->offset - 1;
3274 cluster->boundary[cluster->nr] = extent_key->objectid;
3275 cluster->nr++;
3276
3277 if (cluster->nr >= MAX_EXTENTS) {
3278 ret = relocate_file_extent_cluster(inode, cluster);
3279 if (ret)
3280 return ret;
3281 cluster->nr = 0;
3282 }
3283 return 0;
3284 }
3285
3286 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3287 static int get_ref_objectid_v0(struct reloc_control *rc,
3288 struct btrfs_path *path,
3289 struct btrfs_key *extent_key,
3290 u64 *ref_objectid, int *path_change)
3291 {
3292 struct btrfs_key key;
3293 struct extent_buffer *leaf;
3294 struct btrfs_extent_ref_v0 *ref0;
3295 int ret;
3296 int slot;
3297
3298 leaf = path->nodes[0];
3299 slot = path->slots[0];
3300 while (1) {
3301 if (slot >= btrfs_header_nritems(leaf)) {
3302 ret = btrfs_next_leaf(rc->extent_root, path);
3303 if (ret < 0)
3304 return ret;
3305 BUG_ON(ret > 0);
3306 leaf = path->nodes[0];
3307 slot = path->slots[0];
3308 if (path_change)
3309 *path_change = 1;
3310 }
3311 btrfs_item_key_to_cpu(leaf, &key, slot);
3312 if (key.objectid != extent_key->objectid)
3313 return -ENOENT;
3314
3315 if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3316 slot++;
3317 continue;
3318 }
3319 ref0 = btrfs_item_ptr(leaf, slot,
3320 struct btrfs_extent_ref_v0);
3321 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3322 break;
3323 }
3324 return 0;
3325 }
3326 #endif
3327
3328 /*
3329 * helper to add a tree block to the list.
3330 * the major work is getting the generation and level of the block
3331 */
3332 static int add_tree_block(struct reloc_control *rc,
3333 struct btrfs_key *extent_key,
3334 struct btrfs_path *path,
3335 struct rb_root *blocks)
3336 {
3337 struct extent_buffer *eb;
3338 struct btrfs_extent_item *ei;
3339 struct btrfs_tree_block_info *bi;
3340 struct tree_block *block;
3341 struct rb_node *rb_node;
3342 u32 item_size;
3343 int level = -1;
3344 u64 generation;
3345
3346 eb = path->nodes[0];
3347 item_size = btrfs_item_size_nr(eb, path->slots[0]);
3348
3349 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3350 item_size >= sizeof(*ei) + sizeof(*bi)) {
3351 ei = btrfs_item_ptr(eb, path->slots[0],
3352 struct btrfs_extent_item);
3353 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3354 bi = (struct btrfs_tree_block_info *)(ei + 1);
3355 level = btrfs_tree_block_level(eb, bi);
3356 } else {
3357 level = (int)extent_key->offset;
3358 }
3359 generation = btrfs_extent_generation(eb, ei);
3360 } else {
3361 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3362 u64 ref_owner;
3363 int ret;
3364
3365 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3366 ret = get_ref_objectid_v0(rc, path, extent_key,
3367 &ref_owner, NULL);
3368 if (ret < 0)
3369 return ret;
3370 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3371 level = (int)ref_owner;
3372 /* FIXME: get real generation */
3373 generation = 0;
3374 #else
3375 BUG();
3376 #endif
3377 }
3378
3379 btrfs_release_path(path);
3380
3381 BUG_ON(level == -1);
3382
3383 block = kmalloc(sizeof(*block), GFP_NOFS);
3384 if (!block)
3385 return -ENOMEM;
3386
3387 block->bytenr = extent_key->objectid;
3388 block->key.objectid = rc->extent_root->nodesize;
3389 block->key.offset = generation;
3390 block->level = level;
3391 block->key_ready = 0;
3392
3393 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3394 if (rb_node)
3395 backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3396
3397 return 0;
3398 }
3399
3400 /*
3401 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3402 */
3403 static int __add_tree_block(struct reloc_control *rc,
3404 u64 bytenr, u32 blocksize,
3405 struct rb_root *blocks)
3406 {
3407 struct btrfs_path *path;
3408 struct btrfs_key key;
3409 int ret;
3410 bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3411 SKINNY_METADATA);
3412
3413 if (tree_block_processed(bytenr, rc))
3414 return 0;
3415
3416 if (tree_search(blocks, bytenr))
3417 return 0;
3418
3419 path = btrfs_alloc_path();
3420 if (!path)
3421 return -ENOMEM;
3422 again:
3423 key.objectid = bytenr;
3424 if (skinny) {
3425 key.type = BTRFS_METADATA_ITEM_KEY;
3426 key.offset = (u64)-1;
3427 } else {
3428 key.type = BTRFS_EXTENT_ITEM_KEY;
3429 key.offset = blocksize;
3430 }
3431
3432 path->search_commit_root = 1;
3433 path->skip_locking = 1;
3434 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3435 if (ret < 0)
3436 goto out;
3437
3438 if (ret > 0 && skinny) {
3439 if (path->slots[0]) {
3440 path->slots[0]--;
3441 btrfs_item_key_to_cpu(path->nodes[0], &key,
3442 path->slots[0]);
3443 if (key.objectid == bytenr &&
3444 (key.type == BTRFS_METADATA_ITEM_KEY ||
3445 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3446 key.offset == blocksize)))
3447 ret = 0;
3448 }
3449
3450 if (ret) {
3451 skinny = false;
3452 btrfs_release_path(path);
3453 goto again;
3454 }
3455 }
3456 BUG_ON(ret);
3457
3458 ret = add_tree_block(rc, &key, path, blocks);
3459 out:
3460 btrfs_free_path(path);
3461 return ret;
3462 }
3463
3464 /*
3465 * helper to check if the block use full backrefs for pointers in it
3466 */
3467 static int block_use_full_backref(struct reloc_control *rc,
3468 struct extent_buffer *eb)
3469 {
3470 u64 flags;
3471 int ret;
3472
3473 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3474 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3475 return 1;
3476
3477 ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3478 eb->start, btrfs_header_level(eb), 1,
3479 NULL, &flags);
3480 BUG_ON(ret);
3481
3482 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3483 ret = 1;
3484 else
3485 ret = 0;
3486 return ret;
3487 }
3488
3489 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3490 struct btrfs_block_group_cache *block_group,
3491 struct inode *inode,
3492 u64 ino)
3493 {
3494 struct btrfs_key key;
3495 struct btrfs_root *root = fs_info->tree_root;
3496 struct btrfs_trans_handle *trans;
3497 int ret = 0;
3498
3499 if (inode)
3500 goto truncate;
3501
3502 key.objectid = ino;
3503 key.type = BTRFS_INODE_ITEM_KEY;
3504 key.offset = 0;
3505
3506 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3507 if (IS_ERR(inode) || is_bad_inode(inode)) {
3508 if (!IS_ERR(inode))
3509 iput(inode);
3510 return -ENOENT;
3511 }
3512
3513 truncate:
3514 ret = btrfs_check_trunc_cache_free_space(root,
3515 &fs_info->global_block_rsv);
3516 if (ret)
3517 goto out;
3518
3519 trans = btrfs_join_transaction(root);
3520 if (IS_ERR(trans)) {
3521 ret = PTR_ERR(trans);
3522 goto out;
3523 }
3524
3525 ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
3526
3527 btrfs_end_transaction(trans, root);
3528 btrfs_btree_balance_dirty(root);
3529 out:
3530 iput(inode);
3531 return ret;
3532 }
3533
3534 /*
3535 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3536 * this function scans fs tree to find blocks reference the data extent
3537 */
3538 static int find_data_references(struct reloc_control *rc,
3539 struct btrfs_key *extent_key,
3540 struct extent_buffer *leaf,
3541 struct btrfs_extent_data_ref *ref,
3542 struct rb_root *blocks)
3543 {
3544 struct btrfs_path *path;
3545 struct tree_block *block;
3546 struct btrfs_root *root;
3547 struct btrfs_file_extent_item *fi;
3548 struct rb_node *rb_node;
3549 struct btrfs_key key;
3550 u64 ref_root;
3551 u64 ref_objectid;
3552 u64 ref_offset;
3553 u32 ref_count;
3554 u32 nritems;
3555 int err = 0;
3556 int added = 0;
3557 int counted;
3558 int ret;
3559
3560 ref_root = btrfs_extent_data_ref_root(leaf, ref);
3561 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3562 ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3563 ref_count = btrfs_extent_data_ref_count(leaf, ref);
3564
3565 /*
3566 * This is an extent belonging to the free space cache, lets just delete
3567 * it and redo the search.
3568 */
3569 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3570 ret = delete_block_group_cache(rc->extent_root->fs_info,
3571 rc->block_group,
3572 NULL, ref_objectid);
3573 if (ret != -ENOENT)
3574 return ret;
3575 ret = 0;
3576 }
3577
3578 path = btrfs_alloc_path();
3579 if (!path)
3580 return -ENOMEM;
3581 path->reada = READA_FORWARD;
3582
3583 root = read_fs_root(rc->extent_root->fs_info, ref_root);
3584 if (IS_ERR(root)) {
3585 err = PTR_ERR(root);
3586 goto out;
3587 }
3588
3589 key.objectid = ref_objectid;
3590 key.type = BTRFS_EXTENT_DATA_KEY;
3591 if (ref_offset > ((u64)-1 << 32))
3592 key.offset = 0;
3593 else
3594 key.offset = ref_offset;
3595
3596 path->search_commit_root = 1;
3597 path->skip_locking = 1;
3598 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3599 if (ret < 0) {
3600 err = ret;
3601 goto out;
3602 }
3603
3604 leaf = path->nodes[0];
3605 nritems = btrfs_header_nritems(leaf);
3606 /*
3607 * the references in tree blocks that use full backrefs
3608 * are not counted in
3609 */
3610 if (block_use_full_backref(rc, leaf))
3611 counted = 0;
3612 else
3613 counted = 1;
3614 rb_node = tree_search(blocks, leaf->start);
3615 if (rb_node) {
3616 if (counted)
3617 added = 1;
3618 else
3619 path->slots[0] = nritems;
3620 }
3621
3622 while (ref_count > 0) {
3623 while (path->slots[0] >= nritems) {
3624 ret = btrfs_next_leaf(root, path);
3625 if (ret < 0) {
3626 err = ret;
3627 goto out;
3628 }
3629 if (WARN_ON(ret > 0))
3630 goto out;
3631
3632 leaf = path->nodes[0];
3633 nritems = btrfs_header_nritems(leaf);
3634 added = 0;
3635
3636 if (block_use_full_backref(rc, leaf))
3637 counted = 0;
3638 else
3639 counted = 1;
3640 rb_node = tree_search(blocks, leaf->start);
3641 if (rb_node) {
3642 if (counted)
3643 added = 1;
3644 else
3645 path->slots[0] = nritems;
3646 }
3647 }
3648
3649 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3650 if (WARN_ON(key.objectid != ref_objectid ||
3651 key.type != BTRFS_EXTENT_DATA_KEY))
3652 break;
3653
3654 fi = btrfs_item_ptr(leaf, path->slots[0],
3655 struct btrfs_file_extent_item);
3656
3657 if (btrfs_file_extent_type(leaf, fi) ==
3658 BTRFS_FILE_EXTENT_INLINE)
3659 goto next;
3660
3661 if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3662 extent_key->objectid)
3663 goto next;
3664
3665 key.offset -= btrfs_file_extent_offset(leaf, fi);
3666 if (key.offset != ref_offset)
3667 goto next;
3668
3669 if (counted)
3670 ref_count--;
3671 if (added)
3672 goto next;
3673
3674 if (!tree_block_processed(leaf->start, rc)) {
3675 block = kmalloc(sizeof(*block), GFP_NOFS);
3676 if (!block) {
3677 err = -ENOMEM;
3678 break;
3679 }
3680 block->bytenr = leaf->start;
3681 btrfs_item_key_to_cpu(leaf, &block->key, 0);
3682 block->level = 0;
3683 block->key_ready = 1;
3684 rb_node = tree_insert(blocks, block->bytenr,
3685 &block->rb_node);
3686 if (rb_node)
3687 backref_tree_panic(rb_node, -EEXIST,
3688 block->bytenr);
3689 }
3690 if (counted)
3691 added = 1;
3692 else
3693 path->slots[0] = nritems;
3694 next:
3695 path->slots[0]++;
3696
3697 }
3698 out:
3699 btrfs_free_path(path);
3700 return err;
3701 }
3702
3703 /*
3704 * helper to find all tree blocks that reference a given data extent
3705 */
3706 static noinline_for_stack
3707 int add_data_references(struct reloc_control *rc,
3708 struct btrfs_key *extent_key,
3709 struct btrfs_path *path,
3710 struct rb_root *blocks)
3711 {
3712 struct btrfs_key key;
3713 struct extent_buffer *eb;
3714 struct btrfs_extent_data_ref *dref;
3715 struct btrfs_extent_inline_ref *iref;
3716 unsigned long ptr;
3717 unsigned long end;
3718 u32 blocksize = rc->extent_root->nodesize;
3719 int ret = 0;
3720 int err = 0;
3721
3722 eb = path->nodes[0];
3723 ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3724 end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3725 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3726 if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3727 ptr = end;
3728 else
3729 #endif
3730 ptr += sizeof(struct btrfs_extent_item);
3731
3732 while (ptr < end) {
3733 iref = (struct btrfs_extent_inline_ref *)ptr;
3734 key.type = btrfs_extent_inline_ref_type(eb, iref);
3735 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3736 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3737 ret = __add_tree_block(rc, key.offset, blocksize,
3738 blocks);
3739 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3740 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3741 ret = find_data_references(rc, extent_key,
3742 eb, dref, blocks);
3743 } else {
3744 BUG();
3745 }
3746 if (ret) {
3747 err = ret;
3748 goto out;
3749 }
3750 ptr += btrfs_extent_inline_ref_size(key.type);
3751 }
3752 WARN_ON(ptr > end);
3753
3754 while (1) {
3755 cond_resched();
3756 eb = path->nodes[0];
3757 if (path->slots[0] >= btrfs_header_nritems(eb)) {
3758 ret = btrfs_next_leaf(rc->extent_root, path);
3759 if (ret < 0) {
3760 err = ret;
3761 break;
3762 }
3763 if (ret > 0)
3764 break;
3765 eb = path->nodes[0];
3766 }
3767
3768 btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3769 if (key.objectid != extent_key->objectid)
3770 break;
3771
3772 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3773 if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3774 key.type == BTRFS_EXTENT_REF_V0_KEY) {
3775 #else
3776 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3777 if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3778 #endif
3779 ret = __add_tree_block(rc, key.offset, blocksize,
3780 blocks);
3781 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3782 dref = btrfs_item_ptr(eb, path->slots[0],
3783 struct btrfs_extent_data_ref);
3784 ret = find_data_references(rc, extent_key,
3785 eb, dref, blocks);
3786 } else {
3787 ret = 0;
3788 }
3789 if (ret) {
3790 err = ret;
3791 break;
3792 }
3793 path->slots[0]++;
3794 }
3795 out:
3796 btrfs_release_path(path);
3797 if (err)
3798 free_block_list(blocks);
3799 return err;
3800 }
3801
3802 /*
3803 * helper to find next unprocessed extent
3804 */
3805 static noinline_for_stack
3806 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3807 struct btrfs_key *extent_key)
3808 {
3809 struct btrfs_key key;
3810 struct extent_buffer *leaf;
3811 u64 start, end, last;
3812 int ret;
3813
3814 last = rc->block_group->key.objectid + rc->block_group->key.offset;
3815 while (1) {
3816 cond_resched();
3817 if (rc->search_start >= last) {
3818 ret = 1;
3819 break;
3820 }
3821
3822 key.objectid = rc->search_start;
3823 key.type = BTRFS_EXTENT_ITEM_KEY;
3824 key.offset = 0;
3825
3826 path->search_commit_root = 1;
3827 path->skip_locking = 1;
3828 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3829 0, 0);
3830 if (ret < 0)
3831 break;
3832 next:
3833 leaf = path->nodes[0];
3834 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3835 ret = btrfs_next_leaf(rc->extent_root, path);
3836 if (ret != 0)
3837 break;
3838 leaf = path->nodes[0];
3839 }
3840
3841 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3842 if (key.objectid >= last) {
3843 ret = 1;
3844 break;
3845 }
3846
3847 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3848 key.type != BTRFS_METADATA_ITEM_KEY) {
3849 path->slots[0]++;
3850 goto next;
3851 }
3852
3853 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3854 key.objectid + key.offset <= rc->search_start) {
3855 path->slots[0]++;
3856 goto next;
3857 }
3858
3859 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3860 key.objectid + rc->extent_root->nodesize <=
3861 rc->search_start) {
3862 path->slots[0]++;
3863 goto next;
3864 }
3865
3866 ret = find_first_extent_bit(&rc->processed_blocks,
3867 key.objectid, &start, &end,
3868 EXTENT_DIRTY, NULL);
3869
3870 if (ret == 0 && start <= key.objectid) {
3871 btrfs_release_path(path);
3872 rc->search_start = end + 1;
3873 } else {
3874 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3875 rc->search_start = key.objectid + key.offset;
3876 else
3877 rc->search_start = key.objectid +
3878 rc->extent_root->nodesize;
3879 memcpy(extent_key, &key, sizeof(key));
3880 return 0;
3881 }
3882 }
3883 btrfs_release_path(path);
3884 return ret;
3885 }
3886
3887 static void set_reloc_control(struct reloc_control *rc)
3888 {
3889 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3890
3891 mutex_lock(&fs_info->reloc_mutex);
3892 fs_info->reloc_ctl = rc;
3893 mutex_unlock(&fs_info->reloc_mutex);
3894 }
3895
3896 static void unset_reloc_control(struct reloc_control *rc)
3897 {
3898 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3899
3900 mutex_lock(&fs_info->reloc_mutex);
3901 fs_info->reloc_ctl = NULL;
3902 mutex_unlock(&fs_info->reloc_mutex);
3903 }
3904
3905 static int check_extent_flags(u64 flags)
3906 {
3907 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3908 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3909 return 1;
3910 if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3911 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3912 return 1;
3913 if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3914 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3915 return 1;
3916 return 0;
3917 }
3918
3919 static noinline_for_stack
3920 int prepare_to_relocate(struct reloc_control *rc)
3921 {
3922 struct btrfs_trans_handle *trans;
3923 int ret;
3924
3925 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3926 BTRFS_BLOCK_RSV_TEMP);
3927 if (!rc->block_rsv)
3928 return -ENOMEM;
3929
3930 memset(&rc->cluster, 0, sizeof(rc->cluster));
3931 rc->search_start = rc->block_group->key.objectid;
3932 rc->extents_found = 0;
3933 rc->nodes_relocated = 0;
3934 rc->merging_rsv_size = 0;
3935 rc->reserved_bytes = 0;
3936 rc->block_rsv->size = rc->extent_root->nodesize *
3937 RELOCATION_RESERVED_NODES;
3938 ret = btrfs_block_rsv_refill(rc->extent_root,
3939 rc->block_rsv, rc->block_rsv->size,
3940 BTRFS_RESERVE_FLUSH_ALL);
3941 if (ret)
3942 return ret;
3943
3944 rc->create_reloc_tree = 1;
3945 set_reloc_control(rc);
3946
3947 trans = btrfs_join_transaction(rc->extent_root);
3948 if (IS_ERR(trans)) {
3949 unset_reloc_control(rc);
3950 /*
3951 * extent tree is not a ref_cow tree and has no reloc_root to
3952 * cleanup. And callers are responsible to free the above
3953 * block rsv.
3954 */
3955 return PTR_ERR(trans);
3956 }
3957 btrfs_commit_transaction(trans, rc->extent_root);
3958 return 0;
3959 }
3960
3961 /*
3962 * Qgroup fixer for data chunk relocation.
3963 * The data relocation is done in the following steps
3964 * 1) Copy data extents into data reloc tree
3965 * 2) Create tree reloc tree(special snapshot) for related subvolumes
3966 * 3) Modify file extents in tree reloc tree
3967 * 4) Merge tree reloc tree with original fs tree, by swapping tree blocks
3968 *
3969 * The problem is, data and tree reloc tree are not accounted to qgroup,
3970 * and 4) will only info qgroup to track tree blocks change, not file extents
3971 * in the tree blocks.
3972 *
3973 * The good news is, related data extents are all in data reloc tree, so we
3974 * only need to info qgroup to track all file extents in data reloc tree
3975 * before commit trans.
3976 */
3977 static int qgroup_fix_relocated_data_extents(struct btrfs_trans_handle *trans,
3978 struct reloc_control *rc)
3979 {
3980 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3981 struct inode *inode = rc->data_inode;
3982 struct btrfs_root *data_reloc_root = BTRFS_I(inode)->root;
3983 struct btrfs_path *path;
3984 struct btrfs_key key;
3985 int ret = 0;
3986
3987 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
3988 return 0;
3989
3990 /*
3991 * Only for stage where we update data pointers the qgroup fix is
3992 * valid.
3993 * For MOVING_DATA stage, we will miss the timing of swapping tree
3994 * blocks, and won't fix it.
3995 */
3996 if (!(rc->stage == UPDATE_DATA_PTRS && rc->extents_found))
3997 return 0;
3998
3999 path = btrfs_alloc_path();
4000 if (!path)
4001 return -ENOMEM;
4002 key.objectid = btrfs_ino(inode);
4003 key.type = BTRFS_EXTENT_DATA_KEY;
4004 key.offset = 0;
4005
4006 ret = btrfs_search_slot(NULL, data_reloc_root, &key, path, 0, 0);
4007 if (ret < 0)
4008 goto out;
4009
4010 lock_extent(&BTRFS_I(inode)->io_tree, 0, (u64)-1);
4011 while (1) {
4012 struct btrfs_file_extent_item *fi;
4013
4014 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4015 if (key.objectid > btrfs_ino(inode))
4016 break;
4017 if (key.type != BTRFS_EXTENT_DATA_KEY)
4018 goto next;
4019 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
4020 struct btrfs_file_extent_item);
4021 if (btrfs_file_extent_type(path->nodes[0], fi) !=
4022 BTRFS_FILE_EXTENT_REG)
4023 goto next;
4024 ret = btrfs_qgroup_insert_dirty_extent(trans, fs_info,
4025 btrfs_file_extent_disk_bytenr(path->nodes[0], fi),
4026 btrfs_file_extent_disk_num_bytes(path->nodes[0], fi),
4027 GFP_NOFS);
4028 if (ret < 0)
4029 break;
4030 next:
4031 ret = btrfs_next_item(data_reloc_root, path);
4032 if (ret < 0)
4033 break;
4034 if (ret > 0) {
4035 ret = 0;
4036 break;
4037 }
4038 }
4039 unlock_extent(&BTRFS_I(inode)->io_tree, 0 , (u64)-1);
4040 out:
4041 btrfs_free_path(path);
4042 return ret;
4043 }
4044
4045 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
4046 {
4047 struct rb_root blocks = RB_ROOT;
4048 struct btrfs_key key;
4049 struct btrfs_trans_handle *trans = NULL;
4050 struct btrfs_path *path;
4051 struct btrfs_extent_item *ei;
4052 u64 flags;
4053 u32 item_size;
4054 int ret;
4055 int err = 0;
4056 int progress = 0;
4057
4058 path = btrfs_alloc_path();
4059 if (!path)
4060 return -ENOMEM;
4061 path->reada = READA_FORWARD;
4062
4063 ret = prepare_to_relocate(rc);
4064 if (ret) {
4065 err = ret;
4066 goto out_free;
4067 }
4068
4069 while (1) {
4070 rc->reserved_bytes = 0;
4071 ret = btrfs_block_rsv_refill(rc->extent_root,
4072 rc->block_rsv, rc->block_rsv->size,
4073 BTRFS_RESERVE_FLUSH_ALL);
4074 if (ret) {
4075 err = ret;
4076 break;
4077 }
4078 progress++;
4079 trans = btrfs_start_transaction(rc->extent_root, 0);
4080 if (IS_ERR(trans)) {
4081 err = PTR_ERR(trans);
4082 trans = NULL;
4083 break;
4084 }
4085 restart:
4086 if (update_backref_cache(trans, &rc->backref_cache)) {
4087 btrfs_end_transaction(trans, rc->extent_root);
4088 continue;
4089 }
4090
4091 ret = find_next_extent(rc, path, &key);
4092 if (ret < 0)
4093 err = ret;
4094 if (ret != 0)
4095 break;
4096
4097 rc->extents_found++;
4098
4099 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4100 struct btrfs_extent_item);
4101 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4102 if (item_size >= sizeof(*ei)) {
4103 flags = btrfs_extent_flags(path->nodes[0], ei);
4104 ret = check_extent_flags(flags);
4105 BUG_ON(ret);
4106
4107 } else {
4108 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4109 u64 ref_owner;
4110 int path_change = 0;
4111
4112 BUG_ON(item_size !=
4113 sizeof(struct btrfs_extent_item_v0));
4114 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
4115 &path_change);
4116 if (ret < 0) {
4117 err = ret;
4118 break;
4119 }
4120 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
4121 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
4122 else
4123 flags = BTRFS_EXTENT_FLAG_DATA;
4124
4125 if (path_change) {
4126 btrfs_release_path(path);
4127
4128 path->search_commit_root = 1;
4129 path->skip_locking = 1;
4130 ret = btrfs_search_slot(NULL, rc->extent_root,
4131 &key, path, 0, 0);
4132 if (ret < 0) {
4133 err = ret;
4134 break;
4135 }
4136 BUG_ON(ret > 0);
4137 }
4138 #else
4139 BUG();
4140 #endif
4141 }
4142
4143 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4144 ret = add_tree_block(rc, &key, path, &blocks);
4145 } else if (rc->stage == UPDATE_DATA_PTRS &&
4146 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4147 ret = add_data_references(rc, &key, path, &blocks);
4148 } else {
4149 btrfs_release_path(path);
4150 ret = 0;
4151 }
4152 if (ret < 0) {
4153 err = ret;
4154 break;
4155 }
4156
4157 if (!RB_EMPTY_ROOT(&blocks)) {
4158 ret = relocate_tree_blocks(trans, rc, &blocks);
4159 if (ret < 0) {
4160 /*
4161 * if we fail to relocate tree blocks, force to update
4162 * backref cache when committing transaction.
4163 */
4164 rc->backref_cache.last_trans = trans->transid - 1;
4165
4166 if (ret != -EAGAIN) {
4167 err = ret;
4168 break;
4169 }
4170 rc->extents_found--;
4171 rc->search_start = key.objectid;
4172 }
4173 }
4174
4175 btrfs_end_transaction_throttle(trans, rc->extent_root);
4176 btrfs_btree_balance_dirty(rc->extent_root);
4177 trans = NULL;
4178
4179 if (rc->stage == MOVE_DATA_EXTENTS &&
4180 (flags & BTRFS_EXTENT_FLAG_DATA)) {
4181 rc->found_file_extent = 1;
4182 ret = relocate_data_extent(rc->data_inode,
4183 &key, &rc->cluster);
4184 if (ret < 0) {
4185 err = ret;
4186 break;
4187 }
4188 }
4189 }
4190 if (trans && progress && err == -ENOSPC) {
4191 ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4192 rc->block_group->flags);
4193 if (ret == 1) {
4194 err = 0;
4195 progress = 0;
4196 goto restart;
4197 }
4198 }
4199
4200 btrfs_release_path(path);
4201 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4202
4203 if (trans) {
4204 btrfs_end_transaction_throttle(trans, rc->extent_root);
4205 btrfs_btree_balance_dirty(rc->extent_root);
4206 }
4207
4208 if (!err) {
4209 ret = relocate_file_extent_cluster(rc->data_inode,
4210 &rc->cluster);
4211 if (ret < 0)
4212 err = ret;
4213 }
4214
4215 rc->create_reloc_tree = 0;
4216 set_reloc_control(rc);
4217
4218 backref_cache_cleanup(&rc->backref_cache);
4219 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4220
4221 err = prepare_to_merge(rc, err);
4222
4223 merge_reloc_roots(rc);
4224
4225 rc->merge_reloc_tree = 0;
4226 unset_reloc_control(rc);
4227 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4228
4229 /* get rid of pinned extents */
4230 trans = btrfs_join_transaction(rc->extent_root);
4231 if (IS_ERR(trans)) {
4232 err = PTR_ERR(trans);
4233 goto out_free;
4234 }
4235 ret = qgroup_fix_relocated_data_extents(trans, rc);
4236 if (ret < 0) {
4237 btrfs_abort_transaction(trans, ret);
4238 if (!err)
4239 err = ret;
4240 goto out_free;
4241 }
4242 btrfs_commit_transaction(trans, rc->extent_root);
4243 out_free:
4244 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
4245 btrfs_free_path(path);
4246 return err;
4247 }
4248
4249 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4250 struct btrfs_root *root, u64 objectid)
4251 {
4252 struct btrfs_path *path;
4253 struct btrfs_inode_item *item;
4254 struct extent_buffer *leaf;
4255 int ret;
4256
4257 path = btrfs_alloc_path();
4258 if (!path)
4259 return -ENOMEM;
4260
4261 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4262 if (ret)
4263 goto out;
4264
4265 leaf = path->nodes[0];
4266 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4267 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4268 btrfs_set_inode_generation(leaf, item, 1);
4269 btrfs_set_inode_size(leaf, item, 0);
4270 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4271 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4272 BTRFS_INODE_PREALLOC);
4273 btrfs_mark_buffer_dirty(leaf);
4274 out:
4275 btrfs_free_path(path);
4276 return ret;
4277 }
4278
4279 /*
4280 * helper to create inode for data relocation.
4281 * the inode is in data relocation tree and its link count is 0
4282 */
4283 static noinline_for_stack
4284 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4285 struct btrfs_block_group_cache *group)
4286 {
4287 struct inode *inode = NULL;
4288 struct btrfs_trans_handle *trans;
4289 struct btrfs_root *root;
4290 struct btrfs_key key;
4291 u64 objectid;
4292 int err = 0;
4293
4294 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4295 if (IS_ERR(root))
4296 return ERR_CAST(root);
4297
4298 trans = btrfs_start_transaction(root, 6);
4299 if (IS_ERR(trans))
4300 return ERR_CAST(trans);
4301
4302 err = btrfs_find_free_objectid(root, &objectid);
4303 if (err)
4304 goto out;
4305
4306 err = __insert_orphan_inode(trans, root, objectid);
4307 BUG_ON(err);
4308
4309 key.objectid = objectid;
4310 key.type = BTRFS_INODE_ITEM_KEY;
4311 key.offset = 0;
4312 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4313 BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4314 BTRFS_I(inode)->index_cnt = group->key.objectid;
4315
4316 err = btrfs_orphan_add(trans, inode);
4317 out:
4318 btrfs_end_transaction(trans, root);
4319 btrfs_btree_balance_dirty(root);
4320 if (err) {
4321 if (inode)
4322 iput(inode);
4323 inode = ERR_PTR(err);
4324 }
4325 return inode;
4326 }
4327
4328 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4329 {
4330 struct reloc_control *rc;
4331
4332 rc = kzalloc(sizeof(*rc), GFP_NOFS);
4333 if (!rc)
4334 return NULL;
4335
4336 INIT_LIST_HEAD(&rc->reloc_roots);
4337 backref_cache_init(&rc->backref_cache);
4338 mapping_tree_init(&rc->reloc_root_tree);
4339 extent_io_tree_init(&rc->processed_blocks,
4340 fs_info->btree_inode->i_mapping);
4341 return rc;
4342 }
4343
4344 /*
4345 * function to relocate all extents in a block group.
4346 */
4347 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4348 {
4349 struct btrfs_fs_info *fs_info = extent_root->fs_info;
4350 struct reloc_control *rc;
4351 struct inode *inode;
4352 struct btrfs_path *path;
4353 int ret;
4354 int rw = 0;
4355 int err = 0;
4356
4357 rc = alloc_reloc_control(fs_info);
4358 if (!rc)
4359 return -ENOMEM;
4360
4361 rc->extent_root = extent_root;
4362
4363 rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4364 BUG_ON(!rc->block_group);
4365
4366 ret = btrfs_inc_block_group_ro(extent_root, rc->block_group);
4367 if (ret) {
4368 err = ret;
4369 goto out;
4370 }
4371 rw = 1;
4372
4373 path = btrfs_alloc_path();
4374 if (!path) {
4375 err = -ENOMEM;
4376 goto out;
4377 }
4378
4379 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4380 path);
4381 btrfs_free_path(path);
4382
4383 if (!IS_ERR(inode))
4384 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4385 else
4386 ret = PTR_ERR(inode);
4387
4388 if (ret && ret != -ENOENT) {
4389 err = ret;
4390 goto out;
4391 }
4392
4393 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4394 if (IS_ERR(rc->data_inode)) {
4395 err = PTR_ERR(rc->data_inode);
4396 rc->data_inode = NULL;
4397 goto out;
4398 }
4399
4400 btrfs_info(extent_root->fs_info,
4401 "relocating block group %llu flags %llu",
4402 rc->block_group->key.objectid, rc->block_group->flags);
4403
4404 btrfs_wait_block_group_reservations(rc->block_group);
4405 btrfs_wait_nocow_writers(rc->block_group);
4406 btrfs_wait_ordered_roots(fs_info, -1,
4407 rc->block_group->key.objectid,
4408 rc->block_group->key.offset);
4409
4410 while (1) {
4411 mutex_lock(&fs_info->cleaner_mutex);
4412 ret = relocate_block_group(rc);
4413 mutex_unlock(&fs_info->cleaner_mutex);
4414 if (ret < 0) {
4415 err = ret;
4416 goto out;
4417 }
4418
4419 if (rc->extents_found == 0)
4420 break;
4421
4422 btrfs_info(extent_root->fs_info, "found %llu extents",
4423 rc->extents_found);
4424
4425 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4426 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4427 (u64)-1);
4428 if (ret) {
4429 err = ret;
4430 goto out;
4431 }
4432 invalidate_mapping_pages(rc->data_inode->i_mapping,
4433 0, -1);
4434 rc->stage = UPDATE_DATA_PTRS;
4435 }
4436 }
4437
4438 WARN_ON(rc->block_group->pinned > 0);
4439 WARN_ON(rc->block_group->reserved > 0);
4440 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4441 out:
4442 if (err && rw)
4443 btrfs_dec_block_group_ro(extent_root, rc->block_group);
4444 iput(rc->data_inode);
4445 btrfs_put_block_group(rc->block_group);
4446 kfree(rc);
4447 return err;
4448 }
4449
4450 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4451 {
4452 struct btrfs_trans_handle *trans;
4453 int ret, err;
4454
4455 trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4456 if (IS_ERR(trans))
4457 return PTR_ERR(trans);
4458
4459 memset(&root->root_item.drop_progress, 0,
4460 sizeof(root->root_item.drop_progress));
4461 root->root_item.drop_level = 0;
4462 btrfs_set_root_refs(&root->root_item, 0);
4463 ret = btrfs_update_root(trans, root->fs_info->tree_root,
4464 &root->root_key, &root->root_item);
4465
4466 err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4467 if (err)
4468 return err;
4469 return ret;
4470 }
4471
4472 /*
4473 * recover relocation interrupted by system crash.
4474 *
4475 * this function resumes merging reloc trees with corresponding fs trees.
4476 * this is important for keeping the sharing of tree blocks
4477 */
4478 int btrfs_recover_relocation(struct btrfs_root *root)
4479 {
4480 LIST_HEAD(reloc_roots);
4481 struct btrfs_key key;
4482 struct btrfs_root *fs_root;
4483 struct btrfs_root *reloc_root;
4484 struct btrfs_path *path;
4485 struct extent_buffer *leaf;
4486 struct reloc_control *rc = NULL;
4487 struct btrfs_trans_handle *trans;
4488 int ret;
4489 int err = 0;
4490
4491 path = btrfs_alloc_path();
4492 if (!path)
4493 return -ENOMEM;
4494 path->reada = READA_BACK;
4495
4496 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4497 key.type = BTRFS_ROOT_ITEM_KEY;
4498 key.offset = (u64)-1;
4499
4500 while (1) {
4501 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4502 path, 0, 0);
4503 if (ret < 0) {
4504 err = ret;
4505 goto out;
4506 }
4507 if (ret > 0) {
4508 if (path->slots[0] == 0)
4509 break;
4510 path->slots[0]--;
4511 }
4512 leaf = path->nodes[0];
4513 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4514 btrfs_release_path(path);
4515
4516 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4517 key.type != BTRFS_ROOT_ITEM_KEY)
4518 break;
4519
4520 reloc_root = btrfs_read_fs_root(root, &key);
4521 if (IS_ERR(reloc_root)) {
4522 err = PTR_ERR(reloc_root);
4523 goto out;
4524 }
4525
4526 list_add(&reloc_root->root_list, &reloc_roots);
4527
4528 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4529 fs_root = read_fs_root(root->fs_info,
4530 reloc_root->root_key.offset);
4531 if (IS_ERR(fs_root)) {
4532 ret = PTR_ERR(fs_root);
4533 if (ret != -ENOENT) {
4534 err = ret;
4535 goto out;
4536 }
4537 ret = mark_garbage_root(reloc_root);
4538 if (ret < 0) {
4539 err = ret;
4540 goto out;
4541 }
4542 }
4543 }
4544
4545 if (key.offset == 0)
4546 break;
4547
4548 key.offset--;
4549 }
4550 btrfs_release_path(path);
4551
4552 if (list_empty(&reloc_roots))
4553 goto out;
4554
4555 rc = alloc_reloc_control(root->fs_info);
4556 if (!rc) {
4557 err = -ENOMEM;
4558 goto out;
4559 }
4560
4561 rc->extent_root = root->fs_info->extent_root;
4562
4563 set_reloc_control(rc);
4564
4565 trans = btrfs_join_transaction(rc->extent_root);
4566 if (IS_ERR(trans)) {
4567 unset_reloc_control(rc);
4568 err = PTR_ERR(trans);
4569 goto out_free;
4570 }
4571
4572 rc->merge_reloc_tree = 1;
4573
4574 while (!list_empty(&reloc_roots)) {
4575 reloc_root = list_entry(reloc_roots.next,
4576 struct btrfs_root, root_list);
4577 list_del(&reloc_root->root_list);
4578
4579 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4580 list_add_tail(&reloc_root->root_list,
4581 &rc->reloc_roots);
4582 continue;
4583 }
4584
4585 fs_root = read_fs_root(root->fs_info,
4586 reloc_root->root_key.offset);
4587 if (IS_ERR(fs_root)) {
4588 err = PTR_ERR(fs_root);
4589 goto out_free;
4590 }
4591
4592 err = __add_reloc_root(reloc_root);
4593 BUG_ON(err < 0); /* -ENOMEM or logic error */
4594 fs_root->reloc_root = reloc_root;
4595 }
4596
4597 err = btrfs_commit_transaction(trans, rc->extent_root);
4598 if (err)
4599 goto out_free;
4600
4601 merge_reloc_roots(rc);
4602
4603 unset_reloc_control(rc);
4604
4605 trans = btrfs_join_transaction(rc->extent_root);
4606 if (IS_ERR(trans)) {
4607 err = PTR_ERR(trans);
4608 goto out_free;
4609 }
4610 err = qgroup_fix_relocated_data_extents(trans, rc);
4611 if (err < 0) {
4612 btrfs_abort_transaction(trans, err);
4613 goto out_free;
4614 }
4615 err = btrfs_commit_transaction(trans, rc->extent_root);
4616 out_free:
4617 kfree(rc);
4618 out:
4619 if (!list_empty(&reloc_roots))
4620 free_reloc_roots(&reloc_roots);
4621
4622 btrfs_free_path(path);
4623
4624 if (err == 0) {
4625 /* cleanup orphan inode in data relocation tree */
4626 fs_root = read_fs_root(root->fs_info,
4627 BTRFS_DATA_RELOC_TREE_OBJECTID);
4628 if (IS_ERR(fs_root))
4629 err = PTR_ERR(fs_root);
4630 else
4631 err = btrfs_orphan_cleanup(fs_root);
4632 }
4633 return err;
4634 }
4635
4636 /*
4637 * helper to add ordered checksum for data relocation.
4638 *
4639 * cloning checksum properly handles the nodatasum extents.
4640 * it also saves CPU time to re-calculate the checksum.
4641 */
4642 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4643 {
4644 struct btrfs_ordered_sum *sums;
4645 struct btrfs_ordered_extent *ordered;
4646 struct btrfs_root *root = BTRFS_I(inode)->root;
4647 int ret;
4648 u64 disk_bytenr;
4649 u64 new_bytenr;
4650 LIST_HEAD(list);
4651
4652 ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4653 BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4654
4655 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4656 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4657 disk_bytenr + len - 1, &list, 0);
4658 if (ret)
4659 goto out;
4660
4661 while (!list_empty(&list)) {
4662 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4663 list_del_init(&sums->list);
4664
4665 /*
4666 * We need to offset the new_bytenr based on where the csum is.
4667 * We need to do this because we will read in entire prealloc
4668 * extents but we may have written to say the middle of the
4669 * prealloc extent, so we need to make sure the csum goes with
4670 * the right disk offset.
4671 *
4672 * We can do this because the data reloc inode refers strictly
4673 * to the on disk bytes, so we don't have to worry about
4674 * disk_len vs real len like with real inodes since it's all
4675 * disk length.
4676 */
4677 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4678 sums->bytenr = new_bytenr;
4679
4680 btrfs_add_ordered_sum(inode, ordered, sums);
4681 }
4682 out:
4683 btrfs_put_ordered_extent(ordered);
4684 return ret;
4685 }
4686
4687 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4688 struct btrfs_root *root, struct extent_buffer *buf,
4689 struct extent_buffer *cow)
4690 {
4691 struct reloc_control *rc;
4692 struct backref_node *node;
4693 int first_cow = 0;
4694 int level;
4695 int ret = 0;
4696
4697 rc = root->fs_info->reloc_ctl;
4698 if (!rc)
4699 return 0;
4700
4701 BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4702 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4703
4704 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4705 if (buf == root->node)
4706 __update_reloc_root(root, cow->start);
4707 }
4708
4709 level = btrfs_header_level(buf);
4710 if (btrfs_header_generation(buf) <=
4711 btrfs_root_last_snapshot(&root->root_item))
4712 first_cow = 1;
4713
4714 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4715 rc->create_reloc_tree) {
4716 WARN_ON(!first_cow && level == 0);
4717
4718 node = rc->backref_cache.path[level];
4719 BUG_ON(node->bytenr != buf->start &&
4720 node->new_bytenr != buf->start);
4721
4722 drop_node_buffer(node);
4723 extent_buffer_get(cow);
4724 node->eb = cow;
4725 node->new_bytenr = cow->start;
4726
4727 if (!node->pending) {
4728 list_move_tail(&node->list,
4729 &rc->backref_cache.pending[level]);
4730 node->pending = 1;
4731 }
4732
4733 if (first_cow)
4734 __mark_block_processed(rc, node);
4735
4736 if (first_cow && level > 0)
4737 rc->nodes_relocated += buf->len;
4738 }
4739
4740 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4741 ret = replace_file_extents(trans, rc, root, cow);
4742 return ret;
4743 }
4744
4745 /*
4746 * called before creating snapshot. it calculates metadata reservation
4747 * required for relocating tree blocks in the snapshot
4748 */
4749 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4750 u64 *bytes_to_reserve)
4751 {
4752 struct btrfs_root *root;
4753 struct reloc_control *rc;
4754
4755 root = pending->root;
4756 if (!root->reloc_root)
4757 return;
4758
4759 rc = root->fs_info->reloc_ctl;
4760 if (!rc->merge_reloc_tree)
4761 return;
4762
4763 root = root->reloc_root;
4764 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4765 /*
4766 * relocation is in the stage of merging trees. the space
4767 * used by merging a reloc tree is twice the size of
4768 * relocated tree nodes in the worst case. half for cowing
4769 * the reloc tree, half for cowing the fs tree. the space
4770 * used by cowing the reloc tree will be freed after the
4771 * tree is dropped. if we create snapshot, cowing the fs
4772 * tree may use more space than it frees. so we need
4773 * reserve extra space.
4774 */
4775 *bytes_to_reserve += rc->nodes_relocated;
4776 }
4777
4778 /*
4779 * called after snapshot is created. migrate block reservation
4780 * and create reloc root for the newly created snapshot
4781 */
4782 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4783 struct btrfs_pending_snapshot *pending)
4784 {
4785 struct btrfs_root *root = pending->root;
4786 struct btrfs_root *reloc_root;
4787 struct btrfs_root *new_root;
4788 struct reloc_control *rc;
4789 int ret;
4790
4791 if (!root->reloc_root)
4792 return 0;
4793
4794 rc = root->fs_info->reloc_ctl;
4795 rc->merging_rsv_size += rc->nodes_relocated;
4796
4797 if (rc->merge_reloc_tree) {
4798 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4799 rc->block_rsv,
4800 rc->nodes_relocated, 1);
4801 if (ret)
4802 return ret;
4803 }
4804
4805 new_root = pending->snap;
4806 reloc_root = create_reloc_root(trans, root->reloc_root,
4807 new_root->root_key.objectid);
4808 if (IS_ERR(reloc_root))
4809 return PTR_ERR(reloc_root);
4810
4811 ret = __add_reloc_root(reloc_root);
4812 BUG_ON(ret < 0);
4813 new_root->reloc_root = reloc_root;
4814
4815 if (rc->create_reloc_tree)
4816 ret = clone_backref_node(trans, rc, root, reloc_root);
4817 return ret;
4818 }
4819