1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
44
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
54 },
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
63 },
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 },
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
90 },
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
99 },
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
108 },
109 };
110
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
119 };
120
121 /*
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
125 */
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
134 };
135
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_root *root,
138 struct btrfs_device *device);
139 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
140 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
142 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
143
144 DEFINE_MUTEX(uuid_mutex);
145 static LIST_HEAD(fs_uuids);
btrfs_get_fs_uuids(void)146 struct list_head *btrfs_get_fs_uuids(void)
147 {
148 return &fs_uuids;
149 }
150
__alloc_fs_devices(void)151 static struct btrfs_fs_devices *__alloc_fs_devices(void)
152 {
153 struct btrfs_fs_devices *fs_devs;
154
155 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
156 if (!fs_devs)
157 return ERR_PTR(-ENOMEM);
158
159 mutex_init(&fs_devs->device_list_mutex);
160
161 INIT_LIST_HEAD(&fs_devs->devices);
162 INIT_LIST_HEAD(&fs_devs->resized_devices);
163 INIT_LIST_HEAD(&fs_devs->alloc_list);
164 INIT_LIST_HEAD(&fs_devs->list);
165
166 return fs_devs;
167 }
168
169 /**
170 * alloc_fs_devices - allocate struct btrfs_fs_devices
171 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is
172 * generated.
173 *
174 * Return: a pointer to a new &struct btrfs_fs_devices on success;
175 * ERR_PTR() on error. Returned struct is not linked onto any lists and
176 * can be destroyed with kfree() right away.
177 */
alloc_fs_devices(const u8 * fsid)178 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
179 {
180 struct btrfs_fs_devices *fs_devs;
181
182 fs_devs = __alloc_fs_devices();
183 if (IS_ERR(fs_devs))
184 return fs_devs;
185
186 if (fsid)
187 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
188 else
189 generate_random_uuid(fs_devs->fsid);
190
191 return fs_devs;
192 }
193
free_fs_devices(struct btrfs_fs_devices * fs_devices)194 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
195 {
196 struct btrfs_device *device;
197 WARN_ON(fs_devices->opened);
198 while (!list_empty(&fs_devices->devices)) {
199 device = list_entry(fs_devices->devices.next,
200 struct btrfs_device, dev_list);
201 list_del(&device->dev_list);
202 rcu_string_free(device->name);
203 kfree(device);
204 }
205 kfree(fs_devices);
206 }
207
btrfs_kobject_uevent(struct block_device * bdev,enum kobject_action action)208 static void btrfs_kobject_uevent(struct block_device *bdev,
209 enum kobject_action action)
210 {
211 int ret;
212
213 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
214 if (ret)
215 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
216 action,
217 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
218 &disk_to_dev(bdev->bd_disk)->kobj);
219 }
220
btrfs_cleanup_fs_uuids(void)221 void btrfs_cleanup_fs_uuids(void)
222 {
223 struct btrfs_fs_devices *fs_devices;
224
225 while (!list_empty(&fs_uuids)) {
226 fs_devices = list_entry(fs_uuids.next,
227 struct btrfs_fs_devices, list);
228 list_del(&fs_devices->list);
229 free_fs_devices(fs_devices);
230 }
231 }
232
__alloc_device(void)233 static struct btrfs_device *__alloc_device(void)
234 {
235 struct btrfs_device *dev;
236
237 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
238 if (!dev)
239 return ERR_PTR(-ENOMEM);
240
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
243 INIT_LIST_HEAD(&dev->resized_list);
244
245 spin_lock_init(&dev->io_lock);
246
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
249 atomic_set(&dev->dev_stats_ccnt, 0);
250 btrfs_device_data_ordered_init(dev);
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
253
254 return dev;
255 }
256
__find_device(struct list_head * head,u64 devid,u8 * uuid)257 static noinline struct btrfs_device *__find_device(struct list_head *head,
258 u64 devid, u8 *uuid)
259 {
260 struct btrfs_device *dev;
261
262 list_for_each_entry(dev, head, dev_list) {
263 if (dev->devid == devid &&
264 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
265 return dev;
266 }
267 }
268 return NULL;
269 }
270
find_fsid(u8 * fsid)271 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
272 {
273 struct btrfs_fs_devices *fs_devices;
274
275 list_for_each_entry(fs_devices, &fs_uuids, list) {
276 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
277 return fs_devices;
278 }
279 return NULL;
280 }
281
282 static int
btrfs_get_bdev_and_sb(const char * device_path,fmode_t flags,void * holder,int flush,struct block_device ** bdev,struct buffer_head ** bh)283 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
284 int flush, struct block_device **bdev,
285 struct buffer_head **bh)
286 {
287 int ret;
288
289 *bdev = blkdev_get_by_path(device_path, flags, holder);
290
291 if (IS_ERR(*bdev)) {
292 ret = PTR_ERR(*bdev);
293 goto error;
294 }
295
296 if (flush)
297 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
298 ret = set_blocksize(*bdev, 4096);
299 if (ret) {
300 blkdev_put(*bdev, flags);
301 goto error;
302 }
303 invalidate_bdev(*bdev);
304 *bh = btrfs_read_dev_super(*bdev);
305 if (IS_ERR(*bh)) {
306 ret = PTR_ERR(*bh);
307 blkdev_put(*bdev, flags);
308 goto error;
309 }
310
311 return 0;
312
313 error:
314 *bdev = NULL;
315 *bh = NULL;
316 return ret;
317 }
318
requeue_list(struct btrfs_pending_bios * pending_bios,struct bio * head,struct bio * tail)319 static void requeue_list(struct btrfs_pending_bios *pending_bios,
320 struct bio *head, struct bio *tail)
321 {
322
323 struct bio *old_head;
324
325 old_head = pending_bios->head;
326 pending_bios->head = head;
327 if (pending_bios->tail)
328 tail->bi_next = old_head;
329 else
330 pending_bios->tail = tail;
331 }
332
333 /*
334 * we try to collect pending bios for a device so we don't get a large
335 * number of procs sending bios down to the same device. This greatly
336 * improves the schedulers ability to collect and merge the bios.
337 *
338 * But, it also turns into a long list of bios to process and that is sure
339 * to eventually make the worker thread block. The solution here is to
340 * make some progress and then put this work struct back at the end of
341 * the list if the block device is congested. This way, multiple devices
342 * can make progress from a single worker thread.
343 */
run_scheduled_bios(struct btrfs_device * device)344 static noinline void run_scheduled_bios(struct btrfs_device *device)
345 {
346 struct bio *pending;
347 struct backing_dev_info *bdi;
348 struct btrfs_fs_info *fs_info;
349 struct btrfs_pending_bios *pending_bios;
350 struct bio *tail;
351 struct bio *cur;
352 int again = 0;
353 unsigned long num_run;
354 unsigned long batch_run = 0;
355 unsigned long limit;
356 unsigned long last_waited = 0;
357 int force_reg = 0;
358 int sync_pending = 0;
359 struct blk_plug plug;
360
361 /*
362 * this function runs all the bios we've collected for
363 * a particular device. We don't want to wander off to
364 * another device without first sending all of these down.
365 * So, setup a plug here and finish it off before we return
366 */
367 blk_start_plug(&plug);
368
369 bdi = blk_get_backing_dev_info(device->bdev);
370 fs_info = device->dev_root->fs_info;
371 limit = btrfs_async_submit_limit(fs_info);
372 limit = limit * 2 / 3;
373
374 loop:
375 spin_lock(&device->io_lock);
376
377 loop_lock:
378 num_run = 0;
379
380 /* take all the bios off the list at once and process them
381 * later on (without the lock held). But, remember the
382 * tail and other pointers so the bios can be properly reinserted
383 * into the list if we hit congestion
384 */
385 if (!force_reg && device->pending_sync_bios.head) {
386 pending_bios = &device->pending_sync_bios;
387 force_reg = 1;
388 } else {
389 pending_bios = &device->pending_bios;
390 force_reg = 0;
391 }
392
393 pending = pending_bios->head;
394 tail = pending_bios->tail;
395 WARN_ON(pending && !tail);
396
397 /*
398 * if pending was null this time around, no bios need processing
399 * at all and we can stop. Otherwise it'll loop back up again
400 * and do an additional check so no bios are missed.
401 *
402 * device->running_pending is used to synchronize with the
403 * schedule_bio code.
404 */
405 if (device->pending_sync_bios.head == NULL &&
406 device->pending_bios.head == NULL) {
407 again = 0;
408 device->running_pending = 0;
409 } else {
410 again = 1;
411 device->running_pending = 1;
412 }
413
414 pending_bios->head = NULL;
415 pending_bios->tail = NULL;
416
417 spin_unlock(&device->io_lock);
418
419 while (pending) {
420
421 rmb();
422 /* we want to work on both lists, but do more bios on the
423 * sync list than the regular list
424 */
425 if ((num_run > 32 &&
426 pending_bios != &device->pending_sync_bios &&
427 device->pending_sync_bios.head) ||
428 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
429 device->pending_bios.head)) {
430 spin_lock(&device->io_lock);
431 requeue_list(pending_bios, pending, tail);
432 goto loop_lock;
433 }
434
435 cur = pending;
436 pending = pending->bi_next;
437 cur->bi_next = NULL;
438
439 /*
440 * atomic_dec_return implies a barrier for waitqueue_active
441 */
442 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
443 waitqueue_active(&fs_info->async_submit_wait))
444 wake_up(&fs_info->async_submit_wait);
445
446 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
447
448 /*
449 * if we're doing the sync list, record that our
450 * plug has some sync requests on it
451 *
452 * If we're doing the regular list and there are
453 * sync requests sitting around, unplug before
454 * we add more
455 */
456 if (pending_bios == &device->pending_sync_bios) {
457 sync_pending = 1;
458 } else if (sync_pending) {
459 blk_finish_plug(&plug);
460 blk_start_plug(&plug);
461 sync_pending = 0;
462 }
463
464 btrfsic_submit_bio(cur);
465 num_run++;
466 batch_run++;
467
468 cond_resched();
469
470 /*
471 * we made progress, there is more work to do and the bdi
472 * is now congested. Back off and let other work structs
473 * run instead
474 */
475 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
476 fs_info->fs_devices->open_devices > 1) {
477 struct io_context *ioc;
478
479 ioc = current->io_context;
480
481 /*
482 * the main goal here is that we don't want to
483 * block if we're going to be able to submit
484 * more requests without blocking.
485 *
486 * This code does two great things, it pokes into
487 * the elevator code from a filesystem _and_
488 * it makes assumptions about how batching works.
489 */
490 if (ioc && ioc->nr_batch_requests > 0 &&
491 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
492 (last_waited == 0 ||
493 ioc->last_waited == last_waited)) {
494 /*
495 * we want to go through our batch of
496 * requests and stop. So, we copy out
497 * the ioc->last_waited time and test
498 * against it before looping
499 */
500 last_waited = ioc->last_waited;
501 cond_resched();
502 continue;
503 }
504 spin_lock(&device->io_lock);
505 requeue_list(pending_bios, pending, tail);
506 device->running_pending = 1;
507
508 spin_unlock(&device->io_lock);
509 btrfs_queue_work(fs_info->submit_workers,
510 &device->work);
511 goto done;
512 }
513 /* unplug every 64 requests just for good measure */
514 if (batch_run % 64 == 0) {
515 blk_finish_plug(&plug);
516 blk_start_plug(&plug);
517 sync_pending = 0;
518 }
519 }
520
521 cond_resched();
522 if (again)
523 goto loop;
524
525 spin_lock(&device->io_lock);
526 if (device->pending_bios.head || device->pending_sync_bios.head)
527 goto loop_lock;
528 spin_unlock(&device->io_lock);
529
530 done:
531 blk_finish_plug(&plug);
532 }
533
pending_bios_fn(struct btrfs_work * work)534 static void pending_bios_fn(struct btrfs_work *work)
535 {
536 struct btrfs_device *device;
537
538 device = container_of(work, struct btrfs_device, work);
539 run_scheduled_bios(device);
540 }
541
542
btrfs_free_stale_device(struct btrfs_device * cur_dev)543 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
544 {
545 struct btrfs_fs_devices *fs_devs;
546 struct btrfs_device *dev;
547
548 if (!cur_dev->name)
549 return;
550
551 list_for_each_entry(fs_devs, &fs_uuids, list) {
552 int del = 1;
553
554 if (fs_devs->opened)
555 continue;
556 if (fs_devs->seeding)
557 continue;
558
559 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
560
561 if (dev == cur_dev)
562 continue;
563 if (!dev->name)
564 continue;
565
566 /*
567 * Todo: This won't be enough. What if the same device
568 * comes back (with new uuid and) with its mapper path?
569 * But for now, this does help as mostly an admin will
570 * either use mapper or non mapper path throughout.
571 */
572 rcu_read_lock();
573 del = strcmp(rcu_str_deref(dev->name),
574 rcu_str_deref(cur_dev->name));
575 rcu_read_unlock();
576 if (!del)
577 break;
578 }
579
580 if (!del) {
581 /* delete the stale device */
582 if (fs_devs->num_devices == 1) {
583 btrfs_sysfs_remove_fsid(fs_devs);
584 list_del(&fs_devs->list);
585 free_fs_devices(fs_devs);
586 break;
587 } else {
588 fs_devs->num_devices--;
589 list_del(&dev->dev_list);
590 rcu_string_free(dev->name);
591 kfree(dev);
592 }
593 break;
594 }
595 }
596 }
597
598 /*
599 * Add new device to list of registered devices
600 *
601 * Returns:
602 * 1 - first time device is seen
603 * 0 - device already known
604 * < 0 - error
605 */
device_list_add(const char * path,struct btrfs_super_block * disk_super,u64 devid,struct btrfs_fs_devices ** fs_devices_ret)606 static noinline int device_list_add(const char *path,
607 struct btrfs_super_block *disk_super,
608 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
609 {
610 struct btrfs_device *device;
611 struct btrfs_fs_devices *fs_devices;
612 struct rcu_string *name;
613 int ret = 0;
614 u64 found_transid = btrfs_super_generation(disk_super);
615
616 fs_devices = find_fsid(disk_super->fsid);
617 if (!fs_devices) {
618 fs_devices = alloc_fs_devices(disk_super->fsid);
619 if (IS_ERR(fs_devices))
620 return PTR_ERR(fs_devices);
621
622 list_add(&fs_devices->list, &fs_uuids);
623
624 device = NULL;
625 } else {
626 device = __find_device(&fs_devices->devices, devid,
627 disk_super->dev_item.uuid);
628 }
629
630 if (!device) {
631 if (fs_devices->opened)
632 return -EBUSY;
633
634 device = btrfs_alloc_device(NULL, &devid,
635 disk_super->dev_item.uuid);
636 if (IS_ERR(device)) {
637 /* we can safely leave the fs_devices entry around */
638 return PTR_ERR(device);
639 }
640
641 name = rcu_string_strdup(path, GFP_NOFS);
642 if (!name) {
643 kfree(device);
644 return -ENOMEM;
645 }
646 rcu_assign_pointer(device->name, name);
647
648 mutex_lock(&fs_devices->device_list_mutex);
649 list_add_rcu(&device->dev_list, &fs_devices->devices);
650 fs_devices->num_devices++;
651 mutex_unlock(&fs_devices->device_list_mutex);
652
653 ret = 1;
654 device->fs_devices = fs_devices;
655 } else if (!device->name || strcmp(device->name->str, path)) {
656 /*
657 * When FS is already mounted.
658 * 1. If you are here and if the device->name is NULL that
659 * means this device was missing at time of FS mount.
660 * 2. If you are here and if the device->name is different
661 * from 'path' that means either
662 * a. The same device disappeared and reappeared with
663 * different name. or
664 * b. The missing-disk-which-was-replaced, has
665 * reappeared now.
666 *
667 * We must allow 1 and 2a above. But 2b would be a spurious
668 * and unintentional.
669 *
670 * Further in case of 1 and 2a above, the disk at 'path'
671 * would have missed some transaction when it was away and
672 * in case of 2a the stale bdev has to be updated as well.
673 * 2b must not be allowed at all time.
674 */
675
676 /*
677 * For now, we do allow update to btrfs_fs_device through the
678 * btrfs dev scan cli after FS has been mounted. We're still
679 * tracking a problem where systems fail mount by subvolume id
680 * when we reject replacement on a mounted FS.
681 */
682 if (!fs_devices->opened && found_transid < device->generation) {
683 /*
684 * That is if the FS is _not_ mounted and if you
685 * are here, that means there is more than one
686 * disk with same uuid and devid.We keep the one
687 * with larger generation number or the last-in if
688 * generation are equal.
689 */
690 return -EEXIST;
691 }
692
693 name = rcu_string_strdup(path, GFP_NOFS);
694 if (!name)
695 return -ENOMEM;
696 rcu_string_free(device->name);
697 rcu_assign_pointer(device->name, name);
698 if (device->missing) {
699 fs_devices->missing_devices--;
700 device->missing = 0;
701 }
702 }
703
704 /*
705 * Unmount does not free the btrfs_device struct but would zero
706 * generation along with most of the other members. So just update
707 * it back. We need it to pick the disk with largest generation
708 * (as above).
709 */
710 if (!fs_devices->opened)
711 device->generation = found_transid;
712
713 /*
714 * if there is new btrfs on an already registered device,
715 * then remove the stale device entry.
716 */
717 if (ret > 0)
718 btrfs_free_stale_device(device);
719
720 *fs_devices_ret = fs_devices;
721
722 return ret;
723 }
724
clone_fs_devices(struct btrfs_fs_devices * orig)725 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
726 {
727 struct btrfs_fs_devices *fs_devices;
728 struct btrfs_device *device;
729 struct btrfs_device *orig_dev;
730
731 fs_devices = alloc_fs_devices(orig->fsid);
732 if (IS_ERR(fs_devices))
733 return fs_devices;
734
735 mutex_lock(&orig->device_list_mutex);
736 fs_devices->total_devices = orig->total_devices;
737
738 /* We have held the volume lock, it is safe to get the devices. */
739 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
740 struct rcu_string *name;
741
742 device = btrfs_alloc_device(NULL, &orig_dev->devid,
743 orig_dev->uuid);
744 if (IS_ERR(device))
745 goto error;
746
747 /*
748 * This is ok to do without rcu read locked because we hold the
749 * uuid mutex so nothing we touch in here is going to disappear.
750 */
751 if (orig_dev->name) {
752 name = rcu_string_strdup(orig_dev->name->str,
753 GFP_KERNEL);
754 if (!name) {
755 kfree(device);
756 goto error;
757 }
758 rcu_assign_pointer(device->name, name);
759 }
760
761 list_add(&device->dev_list, &fs_devices->devices);
762 device->fs_devices = fs_devices;
763 fs_devices->num_devices++;
764 }
765 mutex_unlock(&orig->device_list_mutex);
766 return fs_devices;
767 error:
768 mutex_unlock(&orig->device_list_mutex);
769 free_fs_devices(fs_devices);
770 return ERR_PTR(-ENOMEM);
771 }
772
btrfs_close_extra_devices(struct btrfs_fs_devices * fs_devices,int step)773 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
774 {
775 struct btrfs_device *device, *next;
776 struct btrfs_device *latest_dev = NULL;
777
778 mutex_lock(&uuid_mutex);
779 again:
780 /* This is the initialized path, it is safe to release the devices. */
781 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
782 if (device->in_fs_metadata) {
783 if (!device->is_tgtdev_for_dev_replace &&
784 (!latest_dev ||
785 device->generation > latest_dev->generation)) {
786 latest_dev = device;
787 }
788 continue;
789 }
790
791 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
792 /*
793 * In the first step, keep the device which has
794 * the correct fsid and the devid that is used
795 * for the dev_replace procedure.
796 * In the second step, the dev_replace state is
797 * read from the device tree and it is known
798 * whether the procedure is really active or
799 * not, which means whether this device is
800 * used or whether it should be removed.
801 */
802 if (step == 0 || device->is_tgtdev_for_dev_replace) {
803 continue;
804 }
805 }
806 if (device->bdev) {
807 blkdev_put(device->bdev, device->mode);
808 device->bdev = NULL;
809 fs_devices->open_devices--;
810 }
811 if (device->writeable) {
812 list_del_init(&device->dev_alloc_list);
813 device->writeable = 0;
814 if (!device->is_tgtdev_for_dev_replace)
815 fs_devices->rw_devices--;
816 }
817 list_del_init(&device->dev_list);
818 fs_devices->num_devices--;
819 rcu_string_free(device->name);
820 kfree(device);
821 }
822
823 if (fs_devices->seed) {
824 fs_devices = fs_devices->seed;
825 goto again;
826 }
827
828 fs_devices->latest_bdev = latest_dev->bdev;
829
830 mutex_unlock(&uuid_mutex);
831 }
832
__free_device(struct work_struct * work)833 static void __free_device(struct work_struct *work)
834 {
835 struct btrfs_device *device;
836
837 device = container_of(work, struct btrfs_device, rcu_work);
838 rcu_string_free(device->name);
839 kfree(device);
840 }
841
free_device(struct rcu_head * head)842 static void free_device(struct rcu_head *head)
843 {
844 struct btrfs_device *device;
845
846 device = container_of(head, struct btrfs_device, rcu);
847
848 INIT_WORK(&device->rcu_work, __free_device);
849 schedule_work(&device->rcu_work);
850 }
851
btrfs_close_bdev(struct btrfs_device * device)852 static void btrfs_close_bdev(struct btrfs_device *device)
853 {
854 if (device->bdev && device->writeable) {
855 sync_blockdev(device->bdev);
856 invalidate_bdev(device->bdev);
857 }
858
859 if (device->bdev)
860 blkdev_put(device->bdev, device->mode);
861 }
862
btrfs_prepare_close_one_device(struct btrfs_device * device)863 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
864 {
865 struct btrfs_fs_devices *fs_devices = device->fs_devices;
866 struct btrfs_device *new_device;
867 struct rcu_string *name;
868
869 if (device->bdev)
870 fs_devices->open_devices--;
871
872 if (device->writeable &&
873 device->devid != BTRFS_DEV_REPLACE_DEVID) {
874 list_del_init(&device->dev_alloc_list);
875 fs_devices->rw_devices--;
876 }
877
878 if (device->missing)
879 fs_devices->missing_devices--;
880
881 new_device = btrfs_alloc_device(NULL, &device->devid,
882 device->uuid);
883 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
884
885 /* Safe because we are under uuid_mutex */
886 if (device->name) {
887 name = rcu_string_strdup(device->name->str, GFP_NOFS);
888 BUG_ON(!name); /* -ENOMEM */
889 rcu_assign_pointer(new_device->name, name);
890 }
891
892 list_replace_rcu(&device->dev_list, &new_device->dev_list);
893 new_device->fs_devices = device->fs_devices;
894 }
895
__btrfs_close_devices(struct btrfs_fs_devices * fs_devices)896 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
897 {
898 struct btrfs_device *device, *tmp;
899 struct list_head pending_put;
900
901 INIT_LIST_HEAD(&pending_put);
902
903 if (--fs_devices->opened > 0)
904 return 0;
905
906 mutex_lock(&fs_devices->device_list_mutex);
907 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
908 btrfs_prepare_close_one_device(device);
909 list_add(&device->dev_list, &pending_put);
910 }
911 mutex_unlock(&fs_devices->device_list_mutex);
912
913 /*
914 * btrfs_show_devname() is using the device_list_mutex,
915 * sometimes call to blkdev_put() leads vfs calling
916 * into this func. So do put outside of device_list_mutex,
917 * as of now.
918 */
919 while (!list_empty(&pending_put)) {
920 device = list_first_entry(&pending_put,
921 struct btrfs_device, dev_list);
922 list_del(&device->dev_list);
923 btrfs_close_bdev(device);
924 call_rcu(&device->rcu, free_device);
925 }
926
927 WARN_ON(fs_devices->open_devices);
928 WARN_ON(fs_devices->rw_devices);
929 fs_devices->opened = 0;
930 fs_devices->seeding = 0;
931
932 return 0;
933 }
934
btrfs_close_devices(struct btrfs_fs_devices * fs_devices)935 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
936 {
937 struct btrfs_fs_devices *seed_devices = NULL;
938 int ret;
939
940 mutex_lock(&uuid_mutex);
941 ret = __btrfs_close_devices(fs_devices);
942 if (!fs_devices->opened) {
943 seed_devices = fs_devices->seed;
944 fs_devices->seed = NULL;
945 }
946 mutex_unlock(&uuid_mutex);
947
948 while (seed_devices) {
949 fs_devices = seed_devices;
950 seed_devices = fs_devices->seed;
951 __btrfs_close_devices(fs_devices);
952 free_fs_devices(fs_devices);
953 }
954 /*
955 * Wait for rcu kworkers under __btrfs_close_devices
956 * to finish all blkdev_puts so device is really
957 * free when umount is done.
958 */
959 rcu_barrier();
960 return ret;
961 }
962
__btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)963 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
964 fmode_t flags, void *holder)
965 {
966 struct request_queue *q;
967 struct block_device *bdev;
968 struct list_head *head = &fs_devices->devices;
969 struct btrfs_device *device;
970 struct btrfs_device *latest_dev = NULL;
971 struct buffer_head *bh;
972 struct btrfs_super_block *disk_super;
973 u64 devid;
974 int seeding = 1;
975 int ret = 0;
976
977 flags |= FMODE_EXCL;
978
979 list_for_each_entry(device, head, dev_list) {
980 if (device->bdev)
981 continue;
982 if (!device->name)
983 continue;
984
985 /* Just open everything we can; ignore failures here */
986 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
987 &bdev, &bh))
988 continue;
989
990 disk_super = (struct btrfs_super_block *)bh->b_data;
991 devid = btrfs_stack_device_id(&disk_super->dev_item);
992 if (devid != device->devid)
993 goto error_brelse;
994
995 if (memcmp(device->uuid, disk_super->dev_item.uuid,
996 BTRFS_UUID_SIZE))
997 goto error_brelse;
998
999 device->generation = btrfs_super_generation(disk_super);
1000 if (!latest_dev ||
1001 device->generation > latest_dev->generation)
1002 latest_dev = device;
1003
1004 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1005 device->writeable = 0;
1006 } else {
1007 device->writeable = !bdev_read_only(bdev);
1008 seeding = 0;
1009 }
1010
1011 q = bdev_get_queue(bdev);
1012 if (blk_queue_discard(q))
1013 device->can_discard = 1;
1014
1015 device->bdev = bdev;
1016 device->in_fs_metadata = 0;
1017 device->mode = flags;
1018
1019 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1020 fs_devices->rotating = 1;
1021
1022 fs_devices->open_devices++;
1023 if (device->writeable &&
1024 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1025 fs_devices->rw_devices++;
1026 list_add(&device->dev_alloc_list,
1027 &fs_devices->alloc_list);
1028 }
1029 brelse(bh);
1030 continue;
1031
1032 error_brelse:
1033 brelse(bh);
1034 blkdev_put(bdev, flags);
1035 continue;
1036 }
1037 if (fs_devices->open_devices == 0) {
1038 ret = -EINVAL;
1039 goto out;
1040 }
1041 fs_devices->seeding = seeding;
1042 fs_devices->opened = 1;
1043 fs_devices->latest_bdev = latest_dev->bdev;
1044 fs_devices->total_rw_bytes = 0;
1045 out:
1046 return ret;
1047 }
1048
btrfs_open_devices(struct btrfs_fs_devices * fs_devices,fmode_t flags,void * holder)1049 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1050 fmode_t flags, void *holder)
1051 {
1052 int ret;
1053
1054 mutex_lock(&uuid_mutex);
1055 if (fs_devices->opened) {
1056 fs_devices->opened++;
1057 ret = 0;
1058 } else {
1059 ret = __btrfs_open_devices(fs_devices, flags, holder);
1060 }
1061 mutex_unlock(&uuid_mutex);
1062 return ret;
1063 }
1064
btrfs_release_disk_super(struct page * page)1065 void btrfs_release_disk_super(struct page *page)
1066 {
1067 kunmap(page);
1068 put_page(page);
1069 }
1070
btrfs_read_disk_super(struct block_device * bdev,u64 bytenr,struct page ** page,struct btrfs_super_block ** disk_super)1071 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1072 struct page **page, struct btrfs_super_block **disk_super)
1073 {
1074 void *p;
1075 pgoff_t index;
1076
1077 /* make sure our super fits in the device */
1078 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1079 return 1;
1080
1081 /* make sure our super fits in the page */
1082 if (sizeof(**disk_super) > PAGE_SIZE)
1083 return 1;
1084
1085 /* make sure our super doesn't straddle pages on disk */
1086 index = bytenr >> PAGE_SHIFT;
1087 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1088 return 1;
1089
1090 /* pull in the page with our super */
1091 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1092 index, GFP_KERNEL);
1093
1094 if (IS_ERR_OR_NULL(*page))
1095 return 1;
1096
1097 p = kmap(*page);
1098
1099 /* align our pointer to the offset of the super block */
1100 *disk_super = p + (bytenr & ~PAGE_MASK);
1101
1102 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1103 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1104 btrfs_release_disk_super(*page);
1105 return 1;
1106 }
1107
1108 if ((*disk_super)->label[0] &&
1109 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1110 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1111
1112 return 0;
1113 }
1114
1115 /*
1116 * Look for a btrfs signature on a device. This may be called out of the mount path
1117 * and we are not allowed to call set_blocksize during the scan. The superblock
1118 * is read via pagecache
1119 */
btrfs_scan_one_device(const char * path,fmode_t flags,void * holder,struct btrfs_fs_devices ** fs_devices_ret)1120 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1121 struct btrfs_fs_devices **fs_devices_ret)
1122 {
1123 struct btrfs_super_block *disk_super;
1124 struct block_device *bdev;
1125 struct page *page;
1126 int ret = -EINVAL;
1127 u64 devid;
1128 u64 transid;
1129 u64 total_devices;
1130 u64 bytenr;
1131
1132 /*
1133 * we would like to check all the supers, but that would make
1134 * a btrfs mount succeed after a mkfs from a different FS.
1135 * So, we need to add a special mount option to scan for
1136 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1137 */
1138 bytenr = btrfs_sb_offset(0);
1139 flags |= FMODE_EXCL;
1140 mutex_lock(&uuid_mutex);
1141
1142 bdev = blkdev_get_by_path(path, flags, holder);
1143 if (IS_ERR(bdev)) {
1144 ret = PTR_ERR(bdev);
1145 goto error;
1146 }
1147
1148 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1149 goto error_bdev_put;
1150
1151 devid = btrfs_stack_device_id(&disk_super->dev_item);
1152 transid = btrfs_super_generation(disk_super);
1153 total_devices = btrfs_super_num_devices(disk_super);
1154
1155 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1156 if (ret > 0) {
1157 if (disk_super->label[0]) {
1158 pr_info("BTRFS: device label %s ", disk_super->label);
1159 } else {
1160 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1161 }
1162
1163 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1164 ret = 0;
1165 }
1166 if (!ret && fs_devices_ret)
1167 (*fs_devices_ret)->total_devices = total_devices;
1168
1169 btrfs_release_disk_super(page);
1170
1171 error_bdev_put:
1172 blkdev_put(bdev, flags);
1173 error:
1174 mutex_unlock(&uuid_mutex);
1175 return ret;
1176 }
1177
1178 /* helper to account the used device space in the range */
btrfs_account_dev_extents_size(struct btrfs_device * device,u64 start,u64 end,u64 * length)1179 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1180 u64 end, u64 *length)
1181 {
1182 struct btrfs_key key;
1183 struct btrfs_root *root = device->dev_root;
1184 struct btrfs_dev_extent *dev_extent;
1185 struct btrfs_path *path;
1186 u64 extent_end;
1187 int ret;
1188 int slot;
1189 struct extent_buffer *l;
1190
1191 *length = 0;
1192
1193 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1194 return 0;
1195
1196 path = btrfs_alloc_path();
1197 if (!path)
1198 return -ENOMEM;
1199 path->reada = READA_FORWARD;
1200
1201 key.objectid = device->devid;
1202 key.offset = start;
1203 key.type = BTRFS_DEV_EXTENT_KEY;
1204
1205 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1206 if (ret < 0)
1207 goto out;
1208 if (ret > 0) {
1209 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1210 if (ret < 0)
1211 goto out;
1212 }
1213
1214 while (1) {
1215 l = path->nodes[0];
1216 slot = path->slots[0];
1217 if (slot >= btrfs_header_nritems(l)) {
1218 ret = btrfs_next_leaf(root, path);
1219 if (ret == 0)
1220 continue;
1221 if (ret < 0)
1222 goto out;
1223
1224 break;
1225 }
1226 btrfs_item_key_to_cpu(l, &key, slot);
1227
1228 if (key.objectid < device->devid)
1229 goto next;
1230
1231 if (key.objectid > device->devid)
1232 break;
1233
1234 if (key.type != BTRFS_DEV_EXTENT_KEY)
1235 goto next;
1236
1237 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1238 extent_end = key.offset + btrfs_dev_extent_length(l,
1239 dev_extent);
1240 if (key.offset <= start && extent_end > end) {
1241 *length = end - start + 1;
1242 break;
1243 } else if (key.offset <= start && extent_end > start)
1244 *length += extent_end - start;
1245 else if (key.offset > start && extent_end <= end)
1246 *length += extent_end - key.offset;
1247 else if (key.offset > start && key.offset <= end) {
1248 *length += end - key.offset + 1;
1249 break;
1250 } else if (key.offset > end)
1251 break;
1252
1253 next:
1254 path->slots[0]++;
1255 }
1256 ret = 0;
1257 out:
1258 btrfs_free_path(path);
1259 return ret;
1260 }
1261
contains_pending_extent(struct btrfs_transaction * transaction,struct btrfs_device * device,u64 * start,u64 len)1262 static int contains_pending_extent(struct btrfs_transaction *transaction,
1263 struct btrfs_device *device,
1264 u64 *start, u64 len)
1265 {
1266 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
1267 struct extent_map *em;
1268 struct list_head *search_list = &fs_info->pinned_chunks;
1269 int ret = 0;
1270 u64 physical_start = *start;
1271
1272 if (transaction)
1273 search_list = &transaction->pending_chunks;
1274 again:
1275 list_for_each_entry(em, search_list, list) {
1276 struct map_lookup *map;
1277 int i;
1278
1279 map = em->map_lookup;
1280 for (i = 0; i < map->num_stripes; i++) {
1281 u64 end;
1282
1283 if (map->stripes[i].dev != device)
1284 continue;
1285 if (map->stripes[i].physical >= physical_start + len ||
1286 map->stripes[i].physical + em->orig_block_len <=
1287 physical_start)
1288 continue;
1289 /*
1290 * Make sure that while processing the pinned list we do
1291 * not override our *start with a lower value, because
1292 * we can have pinned chunks that fall within this
1293 * device hole and that have lower physical addresses
1294 * than the pending chunks we processed before. If we
1295 * do not take this special care we can end up getting
1296 * 2 pending chunks that start at the same physical
1297 * device offsets because the end offset of a pinned
1298 * chunk can be equal to the start offset of some
1299 * pending chunk.
1300 */
1301 end = map->stripes[i].physical + em->orig_block_len;
1302 if (end > *start) {
1303 *start = end;
1304 ret = 1;
1305 }
1306 }
1307 }
1308 if (search_list != &fs_info->pinned_chunks) {
1309 search_list = &fs_info->pinned_chunks;
1310 goto again;
1311 }
1312
1313 return ret;
1314 }
1315
1316
1317 /*
1318 * find_free_dev_extent_start - find free space in the specified device
1319 * @device: the device which we search the free space in
1320 * @num_bytes: the size of the free space that we need
1321 * @search_start: the position from which to begin the search
1322 * @start: store the start of the free space.
1323 * @len: the size of the free space. that we find, or the size
1324 * of the max free space if we don't find suitable free space
1325 *
1326 * this uses a pretty simple search, the expectation is that it is
1327 * called very infrequently and that a given device has a small number
1328 * of extents
1329 *
1330 * @start is used to store the start of the free space if we find. But if we
1331 * don't find suitable free space, it will be used to store the start position
1332 * of the max free space.
1333 *
1334 * @len is used to store the size of the free space that we find.
1335 * But if we don't find suitable free space, it is used to store the size of
1336 * the max free space.
1337 */
find_free_dev_extent_start(struct btrfs_transaction * transaction,struct btrfs_device * device,u64 num_bytes,u64 search_start,u64 * start,u64 * len)1338 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1339 struct btrfs_device *device, u64 num_bytes,
1340 u64 search_start, u64 *start, u64 *len)
1341 {
1342 struct btrfs_key key;
1343 struct btrfs_root *root = device->dev_root;
1344 struct btrfs_dev_extent *dev_extent;
1345 struct btrfs_path *path;
1346 u64 hole_size;
1347 u64 max_hole_start;
1348 u64 max_hole_size;
1349 u64 extent_end;
1350 u64 search_end = device->total_bytes;
1351 int ret;
1352 int slot;
1353 struct extent_buffer *l;
1354 u64 min_search_start;
1355
1356 /*
1357 * We don't want to overwrite the superblock on the drive nor any area
1358 * used by the boot loader (grub for example), so we make sure to start
1359 * at an offset of at least 1MB.
1360 */
1361 min_search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1362 search_start = max(search_start, min_search_start);
1363
1364 path = btrfs_alloc_path();
1365 if (!path)
1366 return -ENOMEM;
1367
1368 max_hole_start = search_start;
1369 max_hole_size = 0;
1370
1371 again:
1372 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1373 ret = -ENOSPC;
1374 goto out;
1375 }
1376
1377 path->reada = READA_FORWARD;
1378 path->search_commit_root = 1;
1379 path->skip_locking = 1;
1380
1381 key.objectid = device->devid;
1382 key.offset = search_start;
1383 key.type = BTRFS_DEV_EXTENT_KEY;
1384
1385 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1386 if (ret < 0)
1387 goto out;
1388 if (ret > 0) {
1389 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1390 if (ret < 0)
1391 goto out;
1392 }
1393
1394 while (1) {
1395 l = path->nodes[0];
1396 slot = path->slots[0];
1397 if (slot >= btrfs_header_nritems(l)) {
1398 ret = btrfs_next_leaf(root, path);
1399 if (ret == 0)
1400 continue;
1401 if (ret < 0)
1402 goto out;
1403
1404 break;
1405 }
1406 btrfs_item_key_to_cpu(l, &key, slot);
1407
1408 if (key.objectid < device->devid)
1409 goto next;
1410
1411 if (key.objectid > device->devid)
1412 break;
1413
1414 if (key.type != BTRFS_DEV_EXTENT_KEY)
1415 goto next;
1416
1417 if (key.offset > search_start) {
1418 hole_size = key.offset - search_start;
1419
1420 /*
1421 * Have to check before we set max_hole_start, otherwise
1422 * we could end up sending back this offset anyway.
1423 */
1424 if (contains_pending_extent(transaction, device,
1425 &search_start,
1426 hole_size)) {
1427 if (key.offset >= search_start) {
1428 hole_size = key.offset - search_start;
1429 } else {
1430 WARN_ON_ONCE(1);
1431 hole_size = 0;
1432 }
1433 }
1434
1435 if (hole_size > max_hole_size) {
1436 max_hole_start = search_start;
1437 max_hole_size = hole_size;
1438 }
1439
1440 /*
1441 * If this free space is greater than which we need,
1442 * it must be the max free space that we have found
1443 * until now, so max_hole_start must point to the start
1444 * of this free space and the length of this free space
1445 * is stored in max_hole_size. Thus, we return
1446 * max_hole_start and max_hole_size and go back to the
1447 * caller.
1448 */
1449 if (hole_size >= num_bytes) {
1450 ret = 0;
1451 goto out;
1452 }
1453 }
1454
1455 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1456 extent_end = key.offset + btrfs_dev_extent_length(l,
1457 dev_extent);
1458 if (extent_end > search_start)
1459 search_start = extent_end;
1460 next:
1461 path->slots[0]++;
1462 cond_resched();
1463 }
1464
1465 /*
1466 * At this point, search_start should be the end of
1467 * allocated dev extents, and when shrinking the device,
1468 * search_end may be smaller than search_start.
1469 */
1470 if (search_end > search_start) {
1471 hole_size = search_end - search_start;
1472
1473 if (contains_pending_extent(transaction, device, &search_start,
1474 hole_size)) {
1475 btrfs_release_path(path);
1476 goto again;
1477 }
1478
1479 if (hole_size > max_hole_size) {
1480 max_hole_start = search_start;
1481 max_hole_size = hole_size;
1482 }
1483 }
1484
1485 /* See above. */
1486 if (max_hole_size < num_bytes)
1487 ret = -ENOSPC;
1488 else
1489 ret = 0;
1490
1491 out:
1492 btrfs_free_path(path);
1493 *start = max_hole_start;
1494 if (len)
1495 *len = max_hole_size;
1496 return ret;
1497 }
1498
find_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 num_bytes,u64 * start,u64 * len)1499 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1500 struct btrfs_device *device, u64 num_bytes,
1501 u64 *start, u64 *len)
1502 {
1503 /* FIXME use last free of some kind */
1504 return find_free_dev_extent_start(trans->transaction, device,
1505 num_bytes, 0, start, len);
1506 }
1507
btrfs_free_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 start,u64 * dev_extent_len)1508 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1509 struct btrfs_device *device,
1510 u64 start, u64 *dev_extent_len)
1511 {
1512 int ret;
1513 struct btrfs_path *path;
1514 struct btrfs_root *root = device->dev_root;
1515 struct btrfs_key key;
1516 struct btrfs_key found_key;
1517 struct extent_buffer *leaf = NULL;
1518 struct btrfs_dev_extent *extent = NULL;
1519
1520 path = btrfs_alloc_path();
1521 if (!path)
1522 return -ENOMEM;
1523
1524 key.objectid = device->devid;
1525 key.offset = start;
1526 key.type = BTRFS_DEV_EXTENT_KEY;
1527 again:
1528 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1529 if (ret > 0) {
1530 ret = btrfs_previous_item(root, path, key.objectid,
1531 BTRFS_DEV_EXTENT_KEY);
1532 if (ret)
1533 goto out;
1534 leaf = path->nodes[0];
1535 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1536 extent = btrfs_item_ptr(leaf, path->slots[0],
1537 struct btrfs_dev_extent);
1538 BUG_ON(found_key.offset > start || found_key.offset +
1539 btrfs_dev_extent_length(leaf, extent) < start);
1540 key = found_key;
1541 btrfs_release_path(path);
1542 goto again;
1543 } else if (ret == 0) {
1544 leaf = path->nodes[0];
1545 extent = btrfs_item_ptr(leaf, path->slots[0],
1546 struct btrfs_dev_extent);
1547 } else {
1548 btrfs_handle_fs_error(root->fs_info, ret, "Slot search failed");
1549 goto out;
1550 }
1551
1552 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1553
1554 ret = btrfs_del_item(trans, root, path);
1555 if (ret) {
1556 btrfs_handle_fs_error(root->fs_info, ret,
1557 "Failed to remove dev extent item");
1558 } else {
1559 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1560 }
1561 out:
1562 btrfs_free_path(path);
1563 return ret;
1564 }
1565
btrfs_alloc_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_tree,u64 chunk_objectid,u64 chunk_offset,u64 start,u64 num_bytes)1566 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1567 struct btrfs_device *device,
1568 u64 chunk_tree, u64 chunk_objectid,
1569 u64 chunk_offset, u64 start, u64 num_bytes)
1570 {
1571 int ret;
1572 struct btrfs_path *path;
1573 struct btrfs_root *root = device->dev_root;
1574 struct btrfs_dev_extent *extent;
1575 struct extent_buffer *leaf;
1576 struct btrfs_key key;
1577
1578 WARN_ON(!device->in_fs_metadata);
1579 WARN_ON(device->is_tgtdev_for_dev_replace);
1580 path = btrfs_alloc_path();
1581 if (!path)
1582 return -ENOMEM;
1583
1584 key.objectid = device->devid;
1585 key.offset = start;
1586 key.type = BTRFS_DEV_EXTENT_KEY;
1587 ret = btrfs_insert_empty_item(trans, root, path, &key,
1588 sizeof(*extent));
1589 if (ret)
1590 goto out;
1591
1592 leaf = path->nodes[0];
1593 extent = btrfs_item_ptr(leaf, path->slots[0],
1594 struct btrfs_dev_extent);
1595 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1596 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1597 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1598
1599 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1600 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE);
1601
1602 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1603 btrfs_mark_buffer_dirty(leaf);
1604 out:
1605 btrfs_free_path(path);
1606 return ret;
1607 }
1608
find_next_chunk(struct btrfs_fs_info * fs_info)1609 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1610 {
1611 struct extent_map_tree *em_tree;
1612 struct extent_map *em;
1613 struct rb_node *n;
1614 u64 ret = 0;
1615
1616 em_tree = &fs_info->mapping_tree.map_tree;
1617 read_lock(&em_tree->lock);
1618 n = rb_last(&em_tree->map);
1619 if (n) {
1620 em = rb_entry(n, struct extent_map, rb_node);
1621 ret = em->start + em->len;
1622 }
1623 read_unlock(&em_tree->lock);
1624
1625 return ret;
1626 }
1627
find_next_devid(struct btrfs_fs_info * fs_info,u64 * devid_ret)1628 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1629 u64 *devid_ret)
1630 {
1631 int ret;
1632 struct btrfs_key key;
1633 struct btrfs_key found_key;
1634 struct btrfs_path *path;
1635
1636 path = btrfs_alloc_path();
1637 if (!path)
1638 return -ENOMEM;
1639
1640 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1641 key.type = BTRFS_DEV_ITEM_KEY;
1642 key.offset = (u64)-1;
1643
1644 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1645 if (ret < 0)
1646 goto error;
1647
1648 BUG_ON(ret == 0); /* Corruption */
1649
1650 ret = btrfs_previous_item(fs_info->chunk_root, path,
1651 BTRFS_DEV_ITEMS_OBJECTID,
1652 BTRFS_DEV_ITEM_KEY);
1653 if (ret) {
1654 *devid_ret = 1;
1655 } else {
1656 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1657 path->slots[0]);
1658 *devid_ret = found_key.offset + 1;
1659 }
1660 ret = 0;
1661 error:
1662 btrfs_free_path(path);
1663 return ret;
1664 }
1665
1666 /*
1667 * the device information is stored in the chunk root
1668 * the btrfs_device struct should be fully filled in
1669 */
btrfs_add_device(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_device * device)1670 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1671 struct btrfs_root *root,
1672 struct btrfs_device *device)
1673 {
1674 int ret;
1675 struct btrfs_path *path;
1676 struct btrfs_dev_item *dev_item;
1677 struct extent_buffer *leaf;
1678 struct btrfs_key key;
1679 unsigned long ptr;
1680
1681 root = root->fs_info->chunk_root;
1682
1683 path = btrfs_alloc_path();
1684 if (!path)
1685 return -ENOMEM;
1686
1687 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1688 key.type = BTRFS_DEV_ITEM_KEY;
1689 key.offset = device->devid;
1690
1691 ret = btrfs_insert_empty_item(trans, root, path, &key,
1692 sizeof(*dev_item));
1693 if (ret)
1694 goto out;
1695
1696 leaf = path->nodes[0];
1697 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1698
1699 btrfs_set_device_id(leaf, dev_item, device->devid);
1700 btrfs_set_device_generation(leaf, dev_item, 0);
1701 btrfs_set_device_type(leaf, dev_item, device->type);
1702 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1703 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1704 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1705 btrfs_set_device_total_bytes(leaf, dev_item,
1706 btrfs_device_get_disk_total_bytes(device));
1707 btrfs_set_device_bytes_used(leaf, dev_item,
1708 btrfs_device_get_bytes_used(device));
1709 btrfs_set_device_group(leaf, dev_item, 0);
1710 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1711 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1712 btrfs_set_device_start_offset(leaf, dev_item, 0);
1713
1714 ptr = btrfs_device_uuid(dev_item);
1715 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1716 ptr = btrfs_device_fsid(dev_item);
1717 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1718 btrfs_mark_buffer_dirty(leaf);
1719
1720 ret = 0;
1721 out:
1722 btrfs_free_path(path);
1723 return ret;
1724 }
1725
1726 /*
1727 * Function to update ctime/mtime for a given device path.
1728 * Mainly used for ctime/mtime based probe like libblkid.
1729 */
update_dev_time(char * path_name)1730 static void update_dev_time(char *path_name)
1731 {
1732 struct file *filp;
1733
1734 filp = filp_open(path_name, O_RDWR, 0);
1735 if (IS_ERR(filp))
1736 return;
1737 file_update_time(filp);
1738 filp_close(filp, NULL);
1739 }
1740
btrfs_rm_dev_item(struct btrfs_root * root,struct btrfs_device * device)1741 static int btrfs_rm_dev_item(struct btrfs_root *root,
1742 struct btrfs_device *device)
1743 {
1744 int ret;
1745 struct btrfs_path *path;
1746 struct btrfs_key key;
1747 struct btrfs_trans_handle *trans;
1748
1749 root = root->fs_info->chunk_root;
1750
1751 path = btrfs_alloc_path();
1752 if (!path)
1753 return -ENOMEM;
1754
1755 trans = btrfs_start_transaction(root, 0);
1756 if (IS_ERR(trans)) {
1757 btrfs_free_path(path);
1758 return PTR_ERR(trans);
1759 }
1760 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1761 key.type = BTRFS_DEV_ITEM_KEY;
1762 key.offset = device->devid;
1763
1764 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1765 if (ret < 0)
1766 goto out;
1767
1768 if (ret > 0) {
1769 ret = -ENOENT;
1770 goto out;
1771 }
1772
1773 ret = btrfs_del_item(trans, root, path);
1774 if (ret)
1775 goto out;
1776 out:
1777 btrfs_free_path(path);
1778 btrfs_commit_transaction(trans, root);
1779 return ret;
1780 }
1781
1782 /*
1783 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1784 * filesystem. It's up to the caller to adjust that number regarding eg. device
1785 * replace.
1786 */
btrfs_check_raid_min_devices(struct btrfs_fs_info * fs_info,u64 num_devices)1787 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1788 u64 num_devices)
1789 {
1790 u64 all_avail;
1791 unsigned seq;
1792 int i;
1793
1794 do {
1795 seq = read_seqbegin(&fs_info->profiles_lock);
1796
1797 all_avail = fs_info->avail_data_alloc_bits |
1798 fs_info->avail_system_alloc_bits |
1799 fs_info->avail_metadata_alloc_bits;
1800 } while (read_seqretry(&fs_info->profiles_lock, seq));
1801
1802 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1803 if (!(all_avail & btrfs_raid_group[i]))
1804 continue;
1805
1806 if (num_devices < btrfs_raid_array[i].devs_min) {
1807 int ret = btrfs_raid_mindev_error[i];
1808
1809 if (ret)
1810 return ret;
1811 }
1812 }
1813
1814 return 0;
1815 }
1816
btrfs_find_next_active_device(struct btrfs_fs_devices * fs_devs,struct btrfs_device * device)1817 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1818 struct btrfs_device *device)
1819 {
1820 struct btrfs_device *next_device;
1821
1822 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1823 if (next_device != device &&
1824 !next_device->missing && next_device->bdev)
1825 return next_device;
1826 }
1827
1828 return NULL;
1829 }
1830
1831 /*
1832 * Helper function to check if the given device is part of s_bdev / latest_bdev
1833 * and replace it with the provided or the next active device, in the context
1834 * where this function called, there should be always be another device (or
1835 * this_dev) which is active.
1836 */
btrfs_assign_next_active_device(struct btrfs_fs_info * fs_info,struct btrfs_device * device,struct btrfs_device * this_dev)1837 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1838 struct btrfs_device *device, struct btrfs_device *this_dev)
1839 {
1840 struct btrfs_device *next_device;
1841
1842 if (this_dev)
1843 next_device = this_dev;
1844 else
1845 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1846 device);
1847 ASSERT(next_device);
1848
1849 if (fs_info->sb->s_bdev &&
1850 (fs_info->sb->s_bdev == device->bdev))
1851 fs_info->sb->s_bdev = next_device->bdev;
1852
1853 if (fs_info->fs_devices->latest_bdev == device->bdev)
1854 fs_info->fs_devices->latest_bdev = next_device->bdev;
1855 }
1856
btrfs_rm_device(struct btrfs_root * root,char * device_path,u64 devid)1857 int btrfs_rm_device(struct btrfs_root *root, char *device_path, u64 devid)
1858 {
1859 struct btrfs_device *device;
1860 struct btrfs_fs_devices *cur_devices;
1861 u64 num_devices;
1862 int ret = 0;
1863 bool clear_super = false;
1864
1865 mutex_lock(&uuid_mutex);
1866
1867 num_devices = root->fs_info->fs_devices->num_devices;
1868 btrfs_dev_replace_lock(&root->fs_info->dev_replace, 0);
1869 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1870 WARN_ON(num_devices < 1);
1871 num_devices--;
1872 }
1873 btrfs_dev_replace_unlock(&root->fs_info->dev_replace, 0);
1874
1875 ret = btrfs_check_raid_min_devices(root->fs_info, num_devices - 1);
1876 if (ret)
1877 goto out;
1878
1879 ret = btrfs_find_device_by_devspec(root, devid, device_path,
1880 &device);
1881 if (ret)
1882 goto out;
1883
1884 if (device->is_tgtdev_for_dev_replace) {
1885 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1886 goto out;
1887 }
1888
1889 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1890 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1891 goto out;
1892 }
1893
1894 if (device->writeable) {
1895 lock_chunks(root);
1896 list_del_init(&device->dev_alloc_list);
1897 device->fs_devices->rw_devices--;
1898 unlock_chunks(root);
1899 clear_super = true;
1900 }
1901
1902 mutex_unlock(&uuid_mutex);
1903 ret = btrfs_shrink_device(device, 0);
1904 mutex_lock(&uuid_mutex);
1905 if (ret)
1906 goto error_undo;
1907
1908 /*
1909 * TODO: the superblock still includes this device in its num_devices
1910 * counter although write_all_supers() is not locked out. This
1911 * could give a filesystem state which requires a degraded mount.
1912 */
1913 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1914 if (ret)
1915 goto error_undo;
1916
1917 device->in_fs_metadata = 0;
1918 btrfs_scrub_cancel_dev(root->fs_info, device);
1919
1920 /*
1921 * the device list mutex makes sure that we don't change
1922 * the device list while someone else is writing out all
1923 * the device supers. Whoever is writing all supers, should
1924 * lock the device list mutex before getting the number of
1925 * devices in the super block (super_copy). Conversely,
1926 * whoever updates the number of devices in the super block
1927 * (super_copy) should hold the device list mutex.
1928 */
1929
1930 cur_devices = device->fs_devices;
1931 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1932 list_del_rcu(&device->dev_list);
1933
1934 device->fs_devices->num_devices--;
1935 device->fs_devices->total_devices--;
1936
1937 if (device->missing)
1938 device->fs_devices->missing_devices--;
1939
1940 btrfs_assign_next_active_device(root->fs_info, device, NULL);
1941
1942 if (device->bdev) {
1943 device->fs_devices->open_devices--;
1944 /* remove sysfs entry */
1945 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
1946 }
1947
1948 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1949 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1950 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1951
1952 /*
1953 * at this point, the device is zero sized and detached from
1954 * the devices list. All that's left is to zero out the old
1955 * supers and free the device.
1956 */
1957 if (device->writeable)
1958 btrfs_scratch_superblocks(device->bdev, device->name->str);
1959
1960 btrfs_close_bdev(device);
1961 call_rcu(&device->rcu, free_device);
1962
1963 if (cur_devices->open_devices == 0) {
1964 struct btrfs_fs_devices *fs_devices;
1965 fs_devices = root->fs_info->fs_devices;
1966 while (fs_devices) {
1967 if (fs_devices->seed == cur_devices) {
1968 fs_devices->seed = cur_devices->seed;
1969 break;
1970 }
1971 fs_devices = fs_devices->seed;
1972 }
1973 cur_devices->seed = NULL;
1974 __btrfs_close_devices(cur_devices);
1975 free_fs_devices(cur_devices);
1976 }
1977
1978 root->fs_info->num_tolerated_disk_barrier_failures =
1979 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1980
1981 out:
1982 mutex_unlock(&uuid_mutex);
1983 return ret;
1984
1985 error_undo:
1986 if (device->writeable) {
1987 lock_chunks(root);
1988 list_add(&device->dev_alloc_list,
1989 &root->fs_info->fs_devices->alloc_list);
1990 device->fs_devices->rw_devices++;
1991 unlock_chunks(root);
1992 }
1993 goto out;
1994 }
1995
btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info * fs_info,struct btrfs_device * srcdev)1996 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1997 struct btrfs_device *srcdev)
1998 {
1999 struct btrfs_fs_devices *fs_devices;
2000
2001 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2002
2003 /*
2004 * in case of fs with no seed, srcdev->fs_devices will point
2005 * to fs_devices of fs_info. However when the dev being replaced is
2006 * a seed dev it will point to the seed's local fs_devices. In short
2007 * srcdev will have its correct fs_devices in both the cases.
2008 */
2009 fs_devices = srcdev->fs_devices;
2010
2011 list_del_rcu(&srcdev->dev_list);
2012 list_del_rcu(&srcdev->dev_alloc_list);
2013 fs_devices->num_devices--;
2014 if (srcdev->missing)
2015 fs_devices->missing_devices--;
2016
2017 if (srcdev->writeable)
2018 fs_devices->rw_devices--;
2019
2020 if (srcdev->bdev)
2021 fs_devices->open_devices--;
2022 }
2023
btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info * fs_info,struct btrfs_device * srcdev)2024 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2025 struct btrfs_device *srcdev)
2026 {
2027 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2028
2029 if (srcdev->writeable) {
2030 /* zero out the old super if it is writable */
2031 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2032 }
2033
2034 btrfs_close_bdev(srcdev);
2035
2036 call_rcu(&srcdev->rcu, free_device);
2037
2038 /*
2039 * unless fs_devices is seed fs, num_devices shouldn't go
2040 * zero
2041 */
2042 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2043
2044 /* if this is no devs we rather delete the fs_devices */
2045 if (!fs_devices->num_devices) {
2046 struct btrfs_fs_devices *tmp_fs_devices;
2047
2048 tmp_fs_devices = fs_info->fs_devices;
2049 while (tmp_fs_devices) {
2050 if (tmp_fs_devices->seed == fs_devices) {
2051 tmp_fs_devices->seed = fs_devices->seed;
2052 break;
2053 }
2054 tmp_fs_devices = tmp_fs_devices->seed;
2055 }
2056 fs_devices->seed = NULL;
2057 __btrfs_close_devices(fs_devices);
2058 free_fs_devices(fs_devices);
2059 }
2060 }
2061
btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info * fs_info,struct btrfs_device * tgtdev)2062 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2063 struct btrfs_device *tgtdev)
2064 {
2065 mutex_lock(&uuid_mutex);
2066 WARN_ON(!tgtdev);
2067 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2068
2069 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2070
2071 if (tgtdev->bdev)
2072 fs_info->fs_devices->open_devices--;
2073
2074 fs_info->fs_devices->num_devices--;
2075
2076 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2077
2078 list_del_rcu(&tgtdev->dev_list);
2079
2080 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2081 mutex_unlock(&uuid_mutex);
2082
2083 /*
2084 * The update_dev_time() with in btrfs_scratch_superblocks()
2085 * may lead to a call to btrfs_show_devname() which will try
2086 * to hold device_list_mutex. And here this device
2087 * is already out of device list, so we don't have to hold
2088 * the device_list_mutex lock.
2089 */
2090 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2091
2092 btrfs_close_bdev(tgtdev);
2093 call_rcu(&tgtdev->rcu, free_device);
2094 }
2095
btrfs_find_device_by_path(struct btrfs_root * root,char * device_path,struct btrfs_device ** device)2096 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
2097 struct btrfs_device **device)
2098 {
2099 int ret = 0;
2100 struct btrfs_super_block *disk_super;
2101 u64 devid;
2102 u8 *dev_uuid;
2103 struct block_device *bdev;
2104 struct buffer_head *bh;
2105
2106 *device = NULL;
2107 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2108 root->fs_info->bdev_holder, 0, &bdev, &bh);
2109 if (ret)
2110 return ret;
2111 disk_super = (struct btrfs_super_block *)bh->b_data;
2112 devid = btrfs_stack_device_id(&disk_super->dev_item);
2113 dev_uuid = disk_super->dev_item.uuid;
2114 *device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2115 disk_super->fsid);
2116 brelse(bh);
2117 if (!*device)
2118 ret = -ENOENT;
2119 blkdev_put(bdev, FMODE_READ);
2120 return ret;
2121 }
2122
btrfs_find_device_missing_or_by_path(struct btrfs_root * root,char * device_path,struct btrfs_device ** device)2123 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
2124 char *device_path,
2125 struct btrfs_device **device)
2126 {
2127 *device = NULL;
2128 if (strcmp(device_path, "missing") == 0) {
2129 struct list_head *devices;
2130 struct btrfs_device *tmp;
2131
2132 devices = &root->fs_info->fs_devices->devices;
2133 /*
2134 * It is safe to read the devices since the volume_mutex
2135 * is held by the caller.
2136 */
2137 list_for_each_entry(tmp, devices, dev_list) {
2138 if (tmp->in_fs_metadata && !tmp->bdev) {
2139 *device = tmp;
2140 break;
2141 }
2142 }
2143
2144 if (!*device)
2145 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2146
2147 return 0;
2148 } else {
2149 return btrfs_find_device_by_path(root, device_path, device);
2150 }
2151 }
2152
2153 /*
2154 * Lookup a device given by device id, or the path if the id is 0.
2155 */
btrfs_find_device_by_devspec(struct btrfs_root * root,u64 devid,char * devpath,struct btrfs_device ** device)2156 int btrfs_find_device_by_devspec(struct btrfs_root *root, u64 devid,
2157 char *devpath,
2158 struct btrfs_device **device)
2159 {
2160 int ret;
2161
2162 if (devid) {
2163 ret = 0;
2164 *device = btrfs_find_device(root->fs_info, devid, NULL,
2165 NULL);
2166 if (!*device)
2167 ret = -ENOENT;
2168 } else {
2169 if (!devpath || !devpath[0])
2170 return -EINVAL;
2171
2172 ret = btrfs_find_device_missing_or_by_path(root, devpath,
2173 device);
2174 }
2175 return ret;
2176 }
2177
2178 /*
2179 * does all the dirty work required for changing file system's UUID.
2180 */
btrfs_prepare_sprout(struct btrfs_root * root)2181 static int btrfs_prepare_sprout(struct btrfs_root *root)
2182 {
2183 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2184 struct btrfs_fs_devices *old_devices;
2185 struct btrfs_fs_devices *seed_devices;
2186 struct btrfs_super_block *disk_super = root->fs_info->super_copy;
2187 struct btrfs_device *device;
2188 u64 super_flags;
2189
2190 BUG_ON(!mutex_is_locked(&uuid_mutex));
2191 if (!fs_devices->seeding)
2192 return -EINVAL;
2193
2194 seed_devices = __alloc_fs_devices();
2195 if (IS_ERR(seed_devices))
2196 return PTR_ERR(seed_devices);
2197
2198 old_devices = clone_fs_devices(fs_devices);
2199 if (IS_ERR(old_devices)) {
2200 kfree(seed_devices);
2201 return PTR_ERR(old_devices);
2202 }
2203
2204 list_add(&old_devices->list, &fs_uuids);
2205
2206 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2207 seed_devices->opened = 1;
2208 INIT_LIST_HEAD(&seed_devices->devices);
2209 INIT_LIST_HEAD(&seed_devices->alloc_list);
2210 mutex_init(&seed_devices->device_list_mutex);
2211
2212 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2213 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2214 synchronize_rcu);
2215 list_for_each_entry(device, &seed_devices->devices, dev_list)
2216 device->fs_devices = seed_devices;
2217
2218 lock_chunks(root);
2219 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2220 unlock_chunks(root);
2221
2222 fs_devices->seeding = 0;
2223 fs_devices->num_devices = 0;
2224 fs_devices->open_devices = 0;
2225 fs_devices->missing_devices = 0;
2226 fs_devices->rotating = 0;
2227 fs_devices->seed = seed_devices;
2228
2229 generate_random_uuid(fs_devices->fsid);
2230 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2231 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2232 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2233
2234 super_flags = btrfs_super_flags(disk_super) &
2235 ~BTRFS_SUPER_FLAG_SEEDING;
2236 btrfs_set_super_flags(disk_super, super_flags);
2237
2238 return 0;
2239 }
2240
2241 /*
2242 * Store the expected generation for seed devices in device items.
2243 */
btrfs_finish_sprout(struct btrfs_trans_handle * trans,struct btrfs_root * root)2244 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2245 struct btrfs_root *root)
2246 {
2247 struct btrfs_path *path;
2248 struct extent_buffer *leaf;
2249 struct btrfs_dev_item *dev_item;
2250 struct btrfs_device *device;
2251 struct btrfs_key key;
2252 u8 fs_uuid[BTRFS_UUID_SIZE];
2253 u8 dev_uuid[BTRFS_UUID_SIZE];
2254 u64 devid;
2255 int ret;
2256
2257 path = btrfs_alloc_path();
2258 if (!path)
2259 return -ENOMEM;
2260
2261 root = root->fs_info->chunk_root;
2262 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2263 key.offset = 0;
2264 key.type = BTRFS_DEV_ITEM_KEY;
2265
2266 while (1) {
2267 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2268 if (ret < 0)
2269 goto error;
2270
2271 leaf = path->nodes[0];
2272 next_slot:
2273 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2274 ret = btrfs_next_leaf(root, path);
2275 if (ret > 0)
2276 break;
2277 if (ret < 0)
2278 goto error;
2279 leaf = path->nodes[0];
2280 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2281 btrfs_release_path(path);
2282 continue;
2283 }
2284
2285 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2286 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2287 key.type != BTRFS_DEV_ITEM_KEY)
2288 break;
2289
2290 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2291 struct btrfs_dev_item);
2292 devid = btrfs_device_id(leaf, dev_item);
2293 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2294 BTRFS_UUID_SIZE);
2295 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2296 BTRFS_UUID_SIZE);
2297 device = btrfs_find_device(root->fs_info, devid, dev_uuid,
2298 fs_uuid);
2299 BUG_ON(!device); /* Logic error */
2300
2301 if (device->fs_devices->seeding) {
2302 btrfs_set_device_generation(leaf, dev_item,
2303 device->generation);
2304 btrfs_mark_buffer_dirty(leaf);
2305 }
2306
2307 path->slots[0]++;
2308 goto next_slot;
2309 }
2310 ret = 0;
2311 error:
2312 btrfs_free_path(path);
2313 return ret;
2314 }
2315
btrfs_init_new_device(struct btrfs_root * root,char * device_path)2316 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
2317 {
2318 struct request_queue *q;
2319 struct btrfs_trans_handle *trans;
2320 struct btrfs_device *device;
2321 struct block_device *bdev;
2322 struct list_head *devices;
2323 struct super_block *sb = root->fs_info->sb;
2324 struct rcu_string *name;
2325 u64 tmp;
2326 int seeding_dev = 0;
2327 int ret = 0;
2328
2329 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
2330 return -EROFS;
2331
2332 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2333 root->fs_info->bdev_holder);
2334 if (IS_ERR(bdev))
2335 return PTR_ERR(bdev);
2336
2337 if (root->fs_info->fs_devices->seeding) {
2338 seeding_dev = 1;
2339 down_write(&sb->s_umount);
2340 mutex_lock(&uuid_mutex);
2341 }
2342
2343 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2344
2345 devices = &root->fs_info->fs_devices->devices;
2346
2347 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2348 list_for_each_entry(device, devices, dev_list) {
2349 if (device->bdev == bdev) {
2350 ret = -EEXIST;
2351 mutex_unlock(
2352 &root->fs_info->fs_devices->device_list_mutex);
2353 goto error;
2354 }
2355 }
2356 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2357
2358 device = btrfs_alloc_device(root->fs_info, NULL, NULL);
2359 if (IS_ERR(device)) {
2360 /* we can safely leave the fs_devices entry around */
2361 ret = PTR_ERR(device);
2362 goto error;
2363 }
2364
2365 name = rcu_string_strdup(device_path, GFP_KERNEL);
2366 if (!name) {
2367 kfree(device);
2368 ret = -ENOMEM;
2369 goto error;
2370 }
2371 rcu_assign_pointer(device->name, name);
2372
2373 trans = btrfs_start_transaction(root, 0);
2374 if (IS_ERR(trans)) {
2375 rcu_string_free(device->name);
2376 kfree(device);
2377 ret = PTR_ERR(trans);
2378 goto error;
2379 }
2380
2381 q = bdev_get_queue(bdev);
2382 if (blk_queue_discard(q))
2383 device->can_discard = 1;
2384 device->writeable = 1;
2385 device->generation = trans->transid;
2386 device->io_width = root->sectorsize;
2387 device->io_align = root->sectorsize;
2388 device->sector_size = root->sectorsize;
2389 device->total_bytes = i_size_read(bdev->bd_inode);
2390 device->disk_total_bytes = device->total_bytes;
2391 device->commit_total_bytes = device->total_bytes;
2392 device->dev_root = root->fs_info->dev_root;
2393 device->bdev = bdev;
2394 device->in_fs_metadata = 1;
2395 device->is_tgtdev_for_dev_replace = 0;
2396 device->mode = FMODE_EXCL;
2397 device->dev_stats_valid = 1;
2398 set_blocksize(device->bdev, 4096);
2399
2400 if (seeding_dev) {
2401 sb->s_flags &= ~MS_RDONLY;
2402 ret = btrfs_prepare_sprout(root);
2403 BUG_ON(ret); /* -ENOMEM */
2404 }
2405
2406 device->fs_devices = root->fs_info->fs_devices;
2407
2408 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2409 lock_chunks(root);
2410 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2411 list_add(&device->dev_alloc_list,
2412 &root->fs_info->fs_devices->alloc_list);
2413 root->fs_info->fs_devices->num_devices++;
2414 root->fs_info->fs_devices->open_devices++;
2415 root->fs_info->fs_devices->rw_devices++;
2416 root->fs_info->fs_devices->total_devices++;
2417 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2418
2419 spin_lock(&root->fs_info->free_chunk_lock);
2420 root->fs_info->free_chunk_space += device->total_bytes;
2421 spin_unlock(&root->fs_info->free_chunk_lock);
2422
2423 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2424 root->fs_info->fs_devices->rotating = 1;
2425
2426 tmp = btrfs_super_total_bytes(root->fs_info->super_copy);
2427 btrfs_set_super_total_bytes(root->fs_info->super_copy,
2428 tmp + device->total_bytes);
2429
2430 tmp = btrfs_super_num_devices(root->fs_info->super_copy);
2431 btrfs_set_super_num_devices(root->fs_info->super_copy,
2432 tmp + 1);
2433
2434 /* add sysfs device entry */
2435 btrfs_sysfs_add_device_link(root->fs_info->fs_devices, device);
2436
2437 /*
2438 * we've got more storage, clear any full flags on the space
2439 * infos
2440 */
2441 btrfs_clear_space_info_full(root->fs_info);
2442
2443 unlock_chunks(root);
2444 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2445
2446 if (seeding_dev) {
2447 lock_chunks(root);
2448 ret = init_first_rw_device(trans, root, device);
2449 unlock_chunks(root);
2450 if (ret) {
2451 btrfs_abort_transaction(trans, ret);
2452 goto error_trans;
2453 }
2454 }
2455
2456 ret = btrfs_add_device(trans, root, device);
2457 if (ret) {
2458 btrfs_abort_transaction(trans, ret);
2459 goto error_trans;
2460 }
2461
2462 if (seeding_dev) {
2463 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2464
2465 ret = btrfs_finish_sprout(trans, root);
2466 if (ret) {
2467 btrfs_abort_transaction(trans, ret);
2468 goto error_trans;
2469 }
2470
2471 /* Sprouting would change fsid of the mounted root,
2472 * so rename the fsid on the sysfs
2473 */
2474 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2475 root->fs_info->fsid);
2476 if (kobject_rename(&root->fs_info->fs_devices->fsid_kobj,
2477 fsid_buf))
2478 btrfs_warn(root->fs_info,
2479 "sysfs: failed to create fsid for sprout");
2480 }
2481
2482 root->fs_info->num_tolerated_disk_barrier_failures =
2483 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2484 ret = btrfs_commit_transaction(trans, root);
2485
2486 if (seeding_dev) {
2487 mutex_unlock(&uuid_mutex);
2488 up_write(&sb->s_umount);
2489
2490 if (ret) /* transaction commit */
2491 return ret;
2492
2493 ret = btrfs_relocate_sys_chunks(root);
2494 if (ret < 0)
2495 btrfs_handle_fs_error(root->fs_info, ret,
2496 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2497 trans = btrfs_attach_transaction(root);
2498 if (IS_ERR(trans)) {
2499 if (PTR_ERR(trans) == -ENOENT)
2500 return 0;
2501 return PTR_ERR(trans);
2502 }
2503 ret = btrfs_commit_transaction(trans, root);
2504 }
2505
2506 /* Update ctime/mtime for libblkid */
2507 update_dev_time(device_path);
2508 return ret;
2509
2510 error_trans:
2511 btrfs_end_transaction(trans, root);
2512 rcu_string_free(device->name);
2513 btrfs_sysfs_rm_device_link(root->fs_info->fs_devices, device);
2514 kfree(device);
2515 error:
2516 blkdev_put(bdev, FMODE_EXCL);
2517 if (seeding_dev) {
2518 mutex_unlock(&uuid_mutex);
2519 up_write(&sb->s_umount);
2520 }
2521 return ret;
2522 }
2523
btrfs_init_dev_replace_tgtdev(struct btrfs_root * root,char * device_path,struct btrfs_device * srcdev,struct btrfs_device ** device_out)2524 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2525 struct btrfs_device *srcdev,
2526 struct btrfs_device **device_out)
2527 {
2528 struct request_queue *q;
2529 struct btrfs_device *device;
2530 struct block_device *bdev;
2531 struct btrfs_fs_info *fs_info = root->fs_info;
2532 struct list_head *devices;
2533 struct rcu_string *name;
2534 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2535 int ret = 0;
2536
2537 *device_out = NULL;
2538 if (fs_info->fs_devices->seeding) {
2539 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2540 return -EINVAL;
2541 }
2542
2543 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2544 fs_info->bdev_holder);
2545 if (IS_ERR(bdev)) {
2546 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2547 return PTR_ERR(bdev);
2548 }
2549
2550 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2551
2552 devices = &fs_info->fs_devices->devices;
2553 list_for_each_entry(device, devices, dev_list) {
2554 if (device->bdev == bdev) {
2555 btrfs_err(fs_info,
2556 "target device is in the filesystem!");
2557 ret = -EEXIST;
2558 goto error;
2559 }
2560 }
2561
2562
2563 if (i_size_read(bdev->bd_inode) <
2564 btrfs_device_get_total_bytes(srcdev)) {
2565 btrfs_err(fs_info,
2566 "target device is smaller than source device!");
2567 ret = -EINVAL;
2568 goto error;
2569 }
2570
2571
2572 device = btrfs_alloc_device(NULL, &devid, NULL);
2573 if (IS_ERR(device)) {
2574 ret = PTR_ERR(device);
2575 goto error;
2576 }
2577
2578 name = rcu_string_strdup(device_path, GFP_NOFS);
2579 if (!name) {
2580 kfree(device);
2581 ret = -ENOMEM;
2582 goto error;
2583 }
2584 rcu_assign_pointer(device->name, name);
2585
2586 q = bdev_get_queue(bdev);
2587 if (blk_queue_discard(q))
2588 device->can_discard = 1;
2589 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2590 device->writeable = 1;
2591 device->generation = 0;
2592 device->io_width = root->sectorsize;
2593 device->io_align = root->sectorsize;
2594 device->sector_size = root->sectorsize;
2595 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2596 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2597 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2598 ASSERT(list_empty(&srcdev->resized_list));
2599 device->commit_total_bytes = srcdev->commit_total_bytes;
2600 device->commit_bytes_used = device->bytes_used;
2601 device->dev_root = fs_info->dev_root;
2602 device->bdev = bdev;
2603 device->in_fs_metadata = 1;
2604 device->is_tgtdev_for_dev_replace = 1;
2605 device->mode = FMODE_EXCL;
2606 device->dev_stats_valid = 1;
2607 set_blocksize(device->bdev, 4096);
2608 device->fs_devices = fs_info->fs_devices;
2609 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2610 fs_info->fs_devices->num_devices++;
2611 fs_info->fs_devices->open_devices++;
2612 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2613
2614 *device_out = device;
2615 return ret;
2616
2617 error:
2618 blkdev_put(bdev, FMODE_EXCL);
2619 return ret;
2620 }
2621
btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info * fs_info,struct btrfs_device * tgtdev)2622 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2623 struct btrfs_device *tgtdev)
2624 {
2625 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2626 tgtdev->io_width = fs_info->dev_root->sectorsize;
2627 tgtdev->io_align = fs_info->dev_root->sectorsize;
2628 tgtdev->sector_size = fs_info->dev_root->sectorsize;
2629 tgtdev->dev_root = fs_info->dev_root;
2630 tgtdev->in_fs_metadata = 1;
2631 }
2632
btrfs_update_device(struct btrfs_trans_handle * trans,struct btrfs_device * device)2633 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2634 struct btrfs_device *device)
2635 {
2636 int ret;
2637 struct btrfs_path *path;
2638 struct btrfs_root *root;
2639 struct btrfs_dev_item *dev_item;
2640 struct extent_buffer *leaf;
2641 struct btrfs_key key;
2642
2643 root = device->dev_root->fs_info->chunk_root;
2644
2645 path = btrfs_alloc_path();
2646 if (!path)
2647 return -ENOMEM;
2648
2649 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2650 key.type = BTRFS_DEV_ITEM_KEY;
2651 key.offset = device->devid;
2652
2653 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2654 if (ret < 0)
2655 goto out;
2656
2657 if (ret > 0) {
2658 ret = -ENOENT;
2659 goto out;
2660 }
2661
2662 leaf = path->nodes[0];
2663 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2664
2665 btrfs_set_device_id(leaf, dev_item, device->devid);
2666 btrfs_set_device_type(leaf, dev_item, device->type);
2667 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2668 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2669 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2670 btrfs_set_device_total_bytes(leaf, dev_item,
2671 btrfs_device_get_disk_total_bytes(device));
2672 btrfs_set_device_bytes_used(leaf, dev_item,
2673 btrfs_device_get_bytes_used(device));
2674 btrfs_mark_buffer_dirty(leaf);
2675
2676 out:
2677 btrfs_free_path(path);
2678 return ret;
2679 }
2680
btrfs_grow_device(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 new_size)2681 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2682 struct btrfs_device *device, u64 new_size)
2683 {
2684 struct btrfs_super_block *super_copy =
2685 device->dev_root->fs_info->super_copy;
2686 struct btrfs_fs_devices *fs_devices;
2687 u64 old_total;
2688 u64 diff;
2689
2690 if (!device->writeable)
2691 return -EACCES;
2692
2693 lock_chunks(device->dev_root);
2694 old_total = btrfs_super_total_bytes(super_copy);
2695 diff = new_size - device->total_bytes;
2696
2697 if (new_size <= device->total_bytes ||
2698 device->is_tgtdev_for_dev_replace) {
2699 unlock_chunks(device->dev_root);
2700 return -EINVAL;
2701 }
2702
2703 fs_devices = device->dev_root->fs_info->fs_devices;
2704
2705 btrfs_set_super_total_bytes(super_copy, old_total + diff);
2706 device->fs_devices->total_rw_bytes += diff;
2707
2708 btrfs_device_set_total_bytes(device, new_size);
2709 btrfs_device_set_disk_total_bytes(device, new_size);
2710 btrfs_clear_space_info_full(device->dev_root->fs_info);
2711 if (list_empty(&device->resized_list))
2712 list_add_tail(&device->resized_list,
2713 &fs_devices->resized_devices);
2714 unlock_chunks(device->dev_root);
2715
2716 return btrfs_update_device(trans, device);
2717 }
2718
btrfs_free_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 chunk_objectid,u64 chunk_offset)2719 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2720 struct btrfs_root *root, u64 chunk_objectid,
2721 u64 chunk_offset)
2722 {
2723 int ret;
2724 struct btrfs_path *path;
2725 struct btrfs_key key;
2726
2727 root = root->fs_info->chunk_root;
2728 path = btrfs_alloc_path();
2729 if (!path)
2730 return -ENOMEM;
2731
2732 key.objectid = chunk_objectid;
2733 key.offset = chunk_offset;
2734 key.type = BTRFS_CHUNK_ITEM_KEY;
2735
2736 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2737 if (ret < 0)
2738 goto out;
2739 else if (ret > 0) { /* Logic error or corruption */
2740 btrfs_handle_fs_error(root->fs_info, -ENOENT,
2741 "Failed lookup while freeing chunk.");
2742 ret = -ENOENT;
2743 goto out;
2744 }
2745
2746 ret = btrfs_del_item(trans, root, path);
2747 if (ret < 0)
2748 btrfs_handle_fs_error(root->fs_info, ret,
2749 "Failed to delete chunk item.");
2750 out:
2751 btrfs_free_path(path);
2752 return ret;
2753 }
2754
btrfs_del_sys_chunk(struct btrfs_root * root,u64 chunk_objectid,u64 chunk_offset)2755 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2756 chunk_offset)
2757 {
2758 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2759 struct btrfs_disk_key *disk_key;
2760 struct btrfs_chunk *chunk;
2761 u8 *ptr;
2762 int ret = 0;
2763 u32 num_stripes;
2764 u32 array_size;
2765 u32 len = 0;
2766 u32 cur;
2767 struct btrfs_key key;
2768
2769 lock_chunks(root);
2770 array_size = btrfs_super_sys_array_size(super_copy);
2771
2772 ptr = super_copy->sys_chunk_array;
2773 cur = 0;
2774
2775 while (cur < array_size) {
2776 disk_key = (struct btrfs_disk_key *)ptr;
2777 btrfs_disk_key_to_cpu(&key, disk_key);
2778
2779 len = sizeof(*disk_key);
2780
2781 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2782 chunk = (struct btrfs_chunk *)(ptr + len);
2783 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2784 len += btrfs_chunk_item_size(num_stripes);
2785 } else {
2786 ret = -EIO;
2787 break;
2788 }
2789 if (key.objectid == chunk_objectid &&
2790 key.offset == chunk_offset) {
2791 memmove(ptr, ptr + len, array_size - (cur + len));
2792 array_size -= len;
2793 btrfs_set_super_sys_array_size(super_copy, array_size);
2794 } else {
2795 ptr += len;
2796 cur += len;
2797 }
2798 }
2799 unlock_chunks(root);
2800 return ret;
2801 }
2802
btrfs_remove_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 chunk_offset)2803 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2804 struct btrfs_root *root, u64 chunk_offset)
2805 {
2806 struct extent_map_tree *em_tree;
2807 struct extent_map *em;
2808 struct btrfs_root *extent_root = root->fs_info->extent_root;
2809 struct map_lookup *map;
2810 u64 dev_extent_len = 0;
2811 u64 chunk_objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2812 int i, ret = 0;
2813 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2814
2815 /* Just in case */
2816 root = root->fs_info->chunk_root;
2817 em_tree = &root->fs_info->mapping_tree.map_tree;
2818
2819 read_lock(&em_tree->lock);
2820 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2821 read_unlock(&em_tree->lock);
2822
2823 if (!em || em->start > chunk_offset ||
2824 em->start + em->len < chunk_offset) {
2825 /*
2826 * This is a logic error, but we don't want to just rely on the
2827 * user having built with ASSERT enabled, so if ASSERT doesn't
2828 * do anything we still error out.
2829 */
2830 ASSERT(0);
2831 if (em)
2832 free_extent_map(em);
2833 return -EINVAL;
2834 }
2835 map = em->map_lookup;
2836 lock_chunks(root->fs_info->chunk_root);
2837 check_system_chunk(trans, extent_root, map->type);
2838 unlock_chunks(root->fs_info->chunk_root);
2839
2840 /*
2841 * Take the device list mutex to prevent races with the final phase of
2842 * a device replace operation that replaces the device object associated
2843 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2844 */
2845 mutex_lock(&fs_devices->device_list_mutex);
2846 for (i = 0; i < map->num_stripes; i++) {
2847 struct btrfs_device *device = map->stripes[i].dev;
2848 ret = btrfs_free_dev_extent(trans, device,
2849 map->stripes[i].physical,
2850 &dev_extent_len);
2851 if (ret) {
2852 mutex_unlock(&fs_devices->device_list_mutex);
2853 btrfs_abort_transaction(trans, ret);
2854 goto out;
2855 }
2856
2857 if (device->bytes_used > 0) {
2858 lock_chunks(root);
2859 btrfs_device_set_bytes_used(device,
2860 device->bytes_used - dev_extent_len);
2861 spin_lock(&root->fs_info->free_chunk_lock);
2862 root->fs_info->free_chunk_space += dev_extent_len;
2863 spin_unlock(&root->fs_info->free_chunk_lock);
2864 btrfs_clear_space_info_full(root->fs_info);
2865 unlock_chunks(root);
2866 }
2867
2868 if (map->stripes[i].dev) {
2869 ret = btrfs_update_device(trans, map->stripes[i].dev);
2870 if (ret) {
2871 mutex_unlock(&fs_devices->device_list_mutex);
2872 btrfs_abort_transaction(trans, ret);
2873 goto out;
2874 }
2875 }
2876 }
2877 mutex_unlock(&fs_devices->device_list_mutex);
2878
2879 ret = btrfs_free_chunk(trans, root, chunk_objectid, chunk_offset);
2880 if (ret) {
2881 btrfs_abort_transaction(trans, ret);
2882 goto out;
2883 }
2884
2885 trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2886
2887 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2888 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2889 if (ret) {
2890 btrfs_abort_transaction(trans, ret);
2891 goto out;
2892 }
2893 }
2894
2895 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset, em);
2896 if (ret) {
2897 btrfs_abort_transaction(trans, ret);
2898 goto out;
2899 }
2900
2901 out:
2902 /* once for us */
2903 free_extent_map(em);
2904 return ret;
2905 }
2906
btrfs_relocate_chunk(struct btrfs_root * root,u64 chunk_offset)2907 static int btrfs_relocate_chunk(struct btrfs_root *root, u64 chunk_offset)
2908 {
2909 struct btrfs_root *extent_root;
2910 struct btrfs_trans_handle *trans;
2911 int ret;
2912
2913 root = root->fs_info->chunk_root;
2914 extent_root = root->fs_info->extent_root;
2915
2916 /*
2917 * Prevent races with automatic removal of unused block groups.
2918 * After we relocate and before we remove the chunk with offset
2919 * chunk_offset, automatic removal of the block group can kick in,
2920 * resulting in a failure when calling btrfs_remove_chunk() below.
2921 *
2922 * Make sure to acquire this mutex before doing a tree search (dev
2923 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2924 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2925 * we release the path used to search the chunk/dev tree and before
2926 * the current task acquires this mutex and calls us.
2927 */
2928 ASSERT(mutex_is_locked(&root->fs_info->delete_unused_bgs_mutex));
2929
2930 ret = btrfs_can_relocate(extent_root, chunk_offset);
2931 if (ret)
2932 return -ENOSPC;
2933
2934 /* step one, relocate all the extents inside this chunk */
2935 btrfs_scrub_pause(root);
2936 ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2937 btrfs_scrub_continue(root);
2938 if (ret)
2939 return ret;
2940
2941 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2942 chunk_offset);
2943 if (IS_ERR(trans)) {
2944 ret = PTR_ERR(trans);
2945 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2946 return ret;
2947 }
2948
2949 /*
2950 * step two, delete the device extents and the
2951 * chunk tree entries
2952 */
2953 ret = btrfs_remove_chunk(trans, root, chunk_offset);
2954 btrfs_end_transaction(trans, extent_root);
2955 return ret;
2956 }
2957
btrfs_relocate_sys_chunks(struct btrfs_root * root)2958 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2959 {
2960 struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2961 struct btrfs_path *path;
2962 struct extent_buffer *leaf;
2963 struct btrfs_chunk *chunk;
2964 struct btrfs_key key;
2965 struct btrfs_key found_key;
2966 u64 chunk_type;
2967 bool retried = false;
2968 int failed = 0;
2969 int ret;
2970
2971 path = btrfs_alloc_path();
2972 if (!path)
2973 return -ENOMEM;
2974
2975 again:
2976 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2977 key.offset = (u64)-1;
2978 key.type = BTRFS_CHUNK_ITEM_KEY;
2979
2980 while (1) {
2981 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
2982 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2983 if (ret < 0) {
2984 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2985 goto error;
2986 }
2987 BUG_ON(ret == 0); /* Corruption */
2988
2989 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2990 key.type);
2991 if (ret)
2992 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
2993 if (ret < 0)
2994 goto error;
2995 if (ret > 0)
2996 break;
2997
2998 leaf = path->nodes[0];
2999 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3000
3001 chunk = btrfs_item_ptr(leaf, path->slots[0],
3002 struct btrfs_chunk);
3003 chunk_type = btrfs_chunk_type(leaf, chunk);
3004 btrfs_release_path(path);
3005
3006 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3007 ret = btrfs_relocate_chunk(chunk_root,
3008 found_key.offset);
3009 if (ret == -ENOSPC)
3010 failed++;
3011 else
3012 BUG_ON(ret);
3013 }
3014 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
3015
3016 if (found_key.offset == 0)
3017 break;
3018 key.offset = found_key.offset - 1;
3019 }
3020 ret = 0;
3021 if (failed && !retried) {
3022 failed = 0;
3023 retried = true;
3024 goto again;
3025 } else if (WARN_ON(failed && retried)) {
3026 ret = -ENOSPC;
3027 }
3028 error:
3029 btrfs_free_path(path);
3030 return ret;
3031 }
3032
insert_balance_item(struct btrfs_root * root,struct btrfs_balance_control * bctl)3033 static int insert_balance_item(struct btrfs_root *root,
3034 struct btrfs_balance_control *bctl)
3035 {
3036 struct btrfs_trans_handle *trans;
3037 struct btrfs_balance_item *item;
3038 struct btrfs_disk_balance_args disk_bargs;
3039 struct btrfs_path *path;
3040 struct extent_buffer *leaf;
3041 struct btrfs_key key;
3042 int ret, err;
3043
3044 path = btrfs_alloc_path();
3045 if (!path)
3046 return -ENOMEM;
3047
3048 trans = btrfs_start_transaction(root, 0);
3049 if (IS_ERR(trans)) {
3050 btrfs_free_path(path);
3051 return PTR_ERR(trans);
3052 }
3053
3054 key.objectid = BTRFS_BALANCE_OBJECTID;
3055 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3056 key.offset = 0;
3057
3058 ret = btrfs_insert_empty_item(trans, root, path, &key,
3059 sizeof(*item));
3060 if (ret)
3061 goto out;
3062
3063 leaf = path->nodes[0];
3064 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3065
3066 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3067
3068 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3069 btrfs_set_balance_data(leaf, item, &disk_bargs);
3070 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3071 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3072 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3073 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3074
3075 btrfs_set_balance_flags(leaf, item, bctl->flags);
3076
3077 btrfs_mark_buffer_dirty(leaf);
3078 out:
3079 btrfs_free_path(path);
3080 err = btrfs_commit_transaction(trans, root);
3081 if (err && !ret)
3082 ret = err;
3083 return ret;
3084 }
3085
del_balance_item(struct btrfs_root * root)3086 static int del_balance_item(struct btrfs_root *root)
3087 {
3088 struct btrfs_trans_handle *trans;
3089 struct btrfs_path *path;
3090 struct btrfs_key key;
3091 int ret, err;
3092
3093 path = btrfs_alloc_path();
3094 if (!path)
3095 return -ENOMEM;
3096
3097 trans = btrfs_start_transaction(root, 0);
3098 if (IS_ERR(trans)) {
3099 btrfs_free_path(path);
3100 return PTR_ERR(trans);
3101 }
3102
3103 key.objectid = BTRFS_BALANCE_OBJECTID;
3104 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3105 key.offset = 0;
3106
3107 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3108 if (ret < 0)
3109 goto out;
3110 if (ret > 0) {
3111 ret = -ENOENT;
3112 goto out;
3113 }
3114
3115 ret = btrfs_del_item(trans, root, path);
3116 out:
3117 btrfs_free_path(path);
3118 err = btrfs_commit_transaction(trans, root);
3119 if (err && !ret)
3120 ret = err;
3121 return ret;
3122 }
3123
3124 /*
3125 * This is a heuristic used to reduce the number of chunks balanced on
3126 * resume after balance was interrupted.
3127 */
update_balance_args(struct btrfs_balance_control * bctl)3128 static void update_balance_args(struct btrfs_balance_control *bctl)
3129 {
3130 /*
3131 * Turn on soft mode for chunk types that were being converted.
3132 */
3133 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3134 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3135 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3136 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3137 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3138 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3139
3140 /*
3141 * Turn on usage filter if is not already used. The idea is
3142 * that chunks that we have already balanced should be
3143 * reasonably full. Don't do it for chunks that are being
3144 * converted - that will keep us from relocating unconverted
3145 * (albeit full) chunks.
3146 */
3147 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3148 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3149 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3150 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3151 bctl->data.usage = 90;
3152 }
3153 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3154 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3155 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3156 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3157 bctl->sys.usage = 90;
3158 }
3159 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3160 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3161 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3162 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3163 bctl->meta.usage = 90;
3164 }
3165 }
3166
3167 /*
3168 * Should be called with both balance and volume mutexes held to
3169 * serialize other volume operations (add_dev/rm_dev/resize) with
3170 * restriper. Same goes for unset_balance_control.
3171 */
set_balance_control(struct btrfs_balance_control * bctl)3172 static void set_balance_control(struct btrfs_balance_control *bctl)
3173 {
3174 struct btrfs_fs_info *fs_info = bctl->fs_info;
3175
3176 BUG_ON(fs_info->balance_ctl);
3177
3178 spin_lock(&fs_info->balance_lock);
3179 fs_info->balance_ctl = bctl;
3180 spin_unlock(&fs_info->balance_lock);
3181 }
3182
unset_balance_control(struct btrfs_fs_info * fs_info)3183 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3184 {
3185 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3186
3187 BUG_ON(!fs_info->balance_ctl);
3188
3189 spin_lock(&fs_info->balance_lock);
3190 fs_info->balance_ctl = NULL;
3191 spin_unlock(&fs_info->balance_lock);
3192
3193 kfree(bctl);
3194 }
3195
3196 /*
3197 * Balance filters. Return 1 if chunk should be filtered out
3198 * (should not be balanced).
3199 */
chunk_profiles_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3200 static int chunk_profiles_filter(u64 chunk_type,
3201 struct btrfs_balance_args *bargs)
3202 {
3203 chunk_type = chunk_to_extended(chunk_type) &
3204 BTRFS_EXTENDED_PROFILE_MASK;
3205
3206 if (bargs->profiles & chunk_type)
3207 return 0;
3208
3209 return 1;
3210 }
3211
chunk_usage_range_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3212 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3213 struct btrfs_balance_args *bargs)
3214 {
3215 struct btrfs_block_group_cache *cache;
3216 u64 chunk_used;
3217 u64 user_thresh_min;
3218 u64 user_thresh_max;
3219 int ret = 1;
3220
3221 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3222 chunk_used = btrfs_block_group_used(&cache->item);
3223
3224 if (bargs->usage_min == 0)
3225 user_thresh_min = 0;
3226 else
3227 user_thresh_min = div_factor_fine(cache->key.offset,
3228 bargs->usage_min);
3229
3230 if (bargs->usage_max == 0)
3231 user_thresh_max = 1;
3232 else if (bargs->usage_max > 100)
3233 user_thresh_max = cache->key.offset;
3234 else
3235 user_thresh_max = div_factor_fine(cache->key.offset,
3236 bargs->usage_max);
3237
3238 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3239 ret = 0;
3240
3241 btrfs_put_block_group(cache);
3242 return ret;
3243 }
3244
chunk_usage_filter(struct btrfs_fs_info * fs_info,u64 chunk_offset,struct btrfs_balance_args * bargs)3245 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3246 u64 chunk_offset, struct btrfs_balance_args *bargs)
3247 {
3248 struct btrfs_block_group_cache *cache;
3249 u64 chunk_used, user_thresh;
3250 int ret = 1;
3251
3252 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3253 chunk_used = btrfs_block_group_used(&cache->item);
3254
3255 if (bargs->usage_min == 0)
3256 user_thresh = 1;
3257 else if (bargs->usage > 100)
3258 user_thresh = cache->key.offset;
3259 else
3260 user_thresh = div_factor_fine(cache->key.offset,
3261 bargs->usage);
3262
3263 if (chunk_used < user_thresh)
3264 ret = 0;
3265
3266 btrfs_put_block_group(cache);
3267 return ret;
3268 }
3269
chunk_devid_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3270 static int chunk_devid_filter(struct extent_buffer *leaf,
3271 struct btrfs_chunk *chunk,
3272 struct btrfs_balance_args *bargs)
3273 {
3274 struct btrfs_stripe *stripe;
3275 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3276 int i;
3277
3278 for (i = 0; i < num_stripes; i++) {
3279 stripe = btrfs_stripe_nr(chunk, i);
3280 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3281 return 0;
3282 }
3283
3284 return 1;
3285 }
3286
3287 /* [pstart, pend) */
chunk_drange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3288 static int chunk_drange_filter(struct extent_buffer *leaf,
3289 struct btrfs_chunk *chunk,
3290 u64 chunk_offset,
3291 struct btrfs_balance_args *bargs)
3292 {
3293 struct btrfs_stripe *stripe;
3294 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3295 u64 stripe_offset;
3296 u64 stripe_length;
3297 int factor;
3298 int i;
3299
3300 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3301 return 0;
3302
3303 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3304 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3305 factor = num_stripes / 2;
3306 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3307 factor = num_stripes - 1;
3308 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3309 factor = num_stripes - 2;
3310 } else {
3311 factor = num_stripes;
3312 }
3313
3314 for (i = 0; i < num_stripes; i++) {
3315 stripe = btrfs_stripe_nr(chunk, i);
3316 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3317 continue;
3318
3319 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3320 stripe_length = btrfs_chunk_length(leaf, chunk);
3321 stripe_length = div_u64(stripe_length, factor);
3322
3323 if (stripe_offset < bargs->pend &&
3324 stripe_offset + stripe_length > bargs->pstart)
3325 return 0;
3326 }
3327
3328 return 1;
3329 }
3330
3331 /* [vstart, vend) */
chunk_vrange_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset,struct btrfs_balance_args * bargs)3332 static int chunk_vrange_filter(struct extent_buffer *leaf,
3333 struct btrfs_chunk *chunk,
3334 u64 chunk_offset,
3335 struct btrfs_balance_args *bargs)
3336 {
3337 if (chunk_offset < bargs->vend &&
3338 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3339 /* at least part of the chunk is inside this vrange */
3340 return 0;
3341
3342 return 1;
3343 }
3344
chunk_stripes_range_filter(struct extent_buffer * leaf,struct btrfs_chunk * chunk,struct btrfs_balance_args * bargs)3345 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3346 struct btrfs_chunk *chunk,
3347 struct btrfs_balance_args *bargs)
3348 {
3349 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3350
3351 if (bargs->stripes_min <= num_stripes
3352 && num_stripes <= bargs->stripes_max)
3353 return 0;
3354
3355 return 1;
3356 }
3357
chunk_soft_convert_filter(u64 chunk_type,struct btrfs_balance_args * bargs)3358 static int chunk_soft_convert_filter(u64 chunk_type,
3359 struct btrfs_balance_args *bargs)
3360 {
3361 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3362 return 0;
3363
3364 chunk_type = chunk_to_extended(chunk_type) &
3365 BTRFS_EXTENDED_PROFILE_MASK;
3366
3367 if (bargs->target == chunk_type)
3368 return 1;
3369
3370 return 0;
3371 }
3372
should_balance_chunk(struct btrfs_root * root,struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 chunk_offset)3373 static int should_balance_chunk(struct btrfs_root *root,
3374 struct extent_buffer *leaf,
3375 struct btrfs_chunk *chunk, u64 chunk_offset)
3376 {
3377 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
3378 struct btrfs_balance_args *bargs = NULL;
3379 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3380
3381 /* type filter */
3382 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3383 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3384 return 0;
3385 }
3386
3387 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3388 bargs = &bctl->data;
3389 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3390 bargs = &bctl->sys;
3391 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3392 bargs = &bctl->meta;
3393
3394 /* profiles filter */
3395 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3396 chunk_profiles_filter(chunk_type, bargs)) {
3397 return 0;
3398 }
3399
3400 /* usage filter */
3401 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3402 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
3403 return 0;
3404 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3405 chunk_usage_range_filter(bctl->fs_info, chunk_offset, bargs)) {
3406 return 0;
3407 }
3408
3409 /* devid filter */
3410 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3411 chunk_devid_filter(leaf, chunk, bargs)) {
3412 return 0;
3413 }
3414
3415 /* drange filter, makes sense only with devid filter */
3416 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3417 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
3418 return 0;
3419 }
3420
3421 /* vrange filter */
3422 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3423 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3424 return 0;
3425 }
3426
3427 /* stripes filter */
3428 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3429 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3430 return 0;
3431 }
3432
3433 /* soft profile changing mode */
3434 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3435 chunk_soft_convert_filter(chunk_type, bargs)) {
3436 return 0;
3437 }
3438
3439 /*
3440 * limited by count, must be the last filter
3441 */
3442 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3443 if (bargs->limit == 0)
3444 return 0;
3445 else
3446 bargs->limit--;
3447 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3448 /*
3449 * Same logic as the 'limit' filter; the minimum cannot be
3450 * determined here because we do not have the global information
3451 * about the count of all chunks that satisfy the filters.
3452 */
3453 if (bargs->limit_max == 0)
3454 return 0;
3455 else
3456 bargs->limit_max--;
3457 }
3458
3459 return 1;
3460 }
3461
__btrfs_balance(struct btrfs_fs_info * fs_info)3462 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3463 {
3464 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3465 struct btrfs_root *chunk_root = fs_info->chunk_root;
3466 struct btrfs_root *dev_root = fs_info->dev_root;
3467 struct list_head *devices;
3468 struct btrfs_device *device;
3469 u64 old_size;
3470 u64 size_to_free;
3471 u64 chunk_type;
3472 struct btrfs_chunk *chunk;
3473 struct btrfs_path *path = NULL;
3474 struct btrfs_key key;
3475 struct btrfs_key found_key;
3476 struct btrfs_trans_handle *trans;
3477 struct extent_buffer *leaf;
3478 int slot;
3479 int ret;
3480 int enospc_errors = 0;
3481 bool counting = true;
3482 /* The single value limit and min/max limits use the same bytes in the */
3483 u64 limit_data = bctl->data.limit;
3484 u64 limit_meta = bctl->meta.limit;
3485 u64 limit_sys = bctl->sys.limit;
3486 u32 count_data = 0;
3487 u32 count_meta = 0;
3488 u32 count_sys = 0;
3489 int chunk_reserved = 0;
3490 u64 bytes_used = 0;
3491
3492 /* step one make some room on all the devices */
3493 devices = &fs_info->fs_devices->devices;
3494 list_for_each_entry(device, devices, dev_list) {
3495 old_size = btrfs_device_get_total_bytes(device);
3496 size_to_free = div_factor(old_size, 1);
3497 size_to_free = min_t(u64, size_to_free, SZ_1M);
3498 if (!device->writeable ||
3499 btrfs_device_get_total_bytes(device) -
3500 btrfs_device_get_bytes_used(device) > size_to_free ||
3501 device->is_tgtdev_for_dev_replace)
3502 continue;
3503
3504 ret = btrfs_shrink_device(device, old_size - size_to_free);
3505 if (ret == -ENOSPC)
3506 break;
3507 if (ret) {
3508 /* btrfs_shrink_device never returns ret > 0 */
3509 WARN_ON(ret > 0);
3510 goto error;
3511 }
3512
3513 trans = btrfs_start_transaction(dev_root, 0);
3514 if (IS_ERR(trans)) {
3515 ret = PTR_ERR(trans);
3516 btrfs_info_in_rcu(fs_info,
3517 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3518 rcu_str_deref(device->name), ret,
3519 old_size, old_size - size_to_free);
3520 goto error;
3521 }
3522
3523 ret = btrfs_grow_device(trans, device, old_size);
3524 if (ret) {
3525 btrfs_end_transaction(trans, dev_root);
3526 /* btrfs_grow_device never returns ret > 0 */
3527 WARN_ON(ret > 0);
3528 btrfs_info_in_rcu(fs_info,
3529 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3530 rcu_str_deref(device->name), ret,
3531 old_size, old_size - size_to_free);
3532 goto error;
3533 }
3534
3535 btrfs_end_transaction(trans, dev_root);
3536 }
3537
3538 /* step two, relocate all the chunks */
3539 path = btrfs_alloc_path();
3540 if (!path) {
3541 ret = -ENOMEM;
3542 goto error;
3543 }
3544
3545 /* zero out stat counters */
3546 spin_lock(&fs_info->balance_lock);
3547 memset(&bctl->stat, 0, sizeof(bctl->stat));
3548 spin_unlock(&fs_info->balance_lock);
3549 again:
3550 if (!counting) {
3551 /*
3552 * The single value limit and min/max limits use the same bytes
3553 * in the
3554 */
3555 bctl->data.limit = limit_data;
3556 bctl->meta.limit = limit_meta;
3557 bctl->sys.limit = limit_sys;
3558 }
3559 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3560 key.offset = (u64)-1;
3561 key.type = BTRFS_CHUNK_ITEM_KEY;
3562
3563 while (1) {
3564 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3565 atomic_read(&fs_info->balance_cancel_req)) {
3566 ret = -ECANCELED;
3567 goto error;
3568 }
3569
3570 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3571 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3572 if (ret < 0) {
3573 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3574 goto error;
3575 }
3576
3577 /*
3578 * this shouldn't happen, it means the last relocate
3579 * failed
3580 */
3581 if (ret == 0)
3582 BUG(); /* FIXME break ? */
3583
3584 ret = btrfs_previous_item(chunk_root, path, 0,
3585 BTRFS_CHUNK_ITEM_KEY);
3586 if (ret) {
3587 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3588 ret = 0;
3589 break;
3590 }
3591
3592 leaf = path->nodes[0];
3593 slot = path->slots[0];
3594 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3595
3596 if (found_key.objectid != key.objectid) {
3597 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3598 break;
3599 }
3600
3601 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3602 chunk_type = btrfs_chunk_type(leaf, chunk);
3603
3604 if (!counting) {
3605 spin_lock(&fs_info->balance_lock);
3606 bctl->stat.considered++;
3607 spin_unlock(&fs_info->balance_lock);
3608 }
3609
3610 ret = should_balance_chunk(chunk_root, leaf, chunk,
3611 found_key.offset);
3612
3613 btrfs_release_path(path);
3614 if (!ret) {
3615 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3616 goto loop;
3617 }
3618
3619 if (counting) {
3620 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3621 spin_lock(&fs_info->balance_lock);
3622 bctl->stat.expected++;
3623 spin_unlock(&fs_info->balance_lock);
3624
3625 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3626 count_data++;
3627 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3628 count_sys++;
3629 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3630 count_meta++;
3631
3632 goto loop;
3633 }
3634
3635 /*
3636 * Apply limit_min filter, no need to check if the LIMITS
3637 * filter is used, limit_min is 0 by default
3638 */
3639 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3640 count_data < bctl->data.limit_min)
3641 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3642 count_meta < bctl->meta.limit_min)
3643 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3644 count_sys < bctl->sys.limit_min)) {
3645 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3646 goto loop;
3647 }
3648
3649 ASSERT(fs_info->data_sinfo);
3650 spin_lock(&fs_info->data_sinfo->lock);
3651 bytes_used = fs_info->data_sinfo->bytes_used;
3652 spin_unlock(&fs_info->data_sinfo->lock);
3653
3654 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3655 !chunk_reserved && !bytes_used) {
3656 trans = btrfs_start_transaction(chunk_root, 0);
3657 if (IS_ERR(trans)) {
3658 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3659 ret = PTR_ERR(trans);
3660 goto error;
3661 }
3662
3663 ret = btrfs_force_chunk_alloc(trans, chunk_root,
3664 BTRFS_BLOCK_GROUP_DATA);
3665 btrfs_end_transaction(trans, chunk_root);
3666 if (ret < 0) {
3667 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3668 goto error;
3669 }
3670 chunk_reserved = 1;
3671 }
3672
3673 ret = btrfs_relocate_chunk(chunk_root,
3674 found_key.offset);
3675 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3676 if (ret && ret != -ENOSPC)
3677 goto error;
3678 if (ret == -ENOSPC) {
3679 enospc_errors++;
3680 } else {
3681 spin_lock(&fs_info->balance_lock);
3682 bctl->stat.completed++;
3683 spin_unlock(&fs_info->balance_lock);
3684 }
3685 loop:
3686 if (found_key.offset == 0)
3687 break;
3688 key.offset = found_key.offset - 1;
3689 }
3690
3691 if (counting) {
3692 btrfs_release_path(path);
3693 counting = false;
3694 goto again;
3695 }
3696 error:
3697 btrfs_free_path(path);
3698 if (enospc_errors) {
3699 btrfs_info(fs_info, "%d enospc errors during balance",
3700 enospc_errors);
3701 if (!ret)
3702 ret = -ENOSPC;
3703 }
3704
3705 return ret;
3706 }
3707
3708 /**
3709 * alloc_profile_is_valid - see if a given profile is valid and reduced
3710 * @flags: profile to validate
3711 * @extended: if true @flags is treated as an extended profile
3712 */
alloc_profile_is_valid(u64 flags,int extended)3713 static int alloc_profile_is_valid(u64 flags, int extended)
3714 {
3715 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3716 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3717
3718 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3719
3720 /* 1) check that all other bits are zeroed */
3721 if (flags & ~mask)
3722 return 0;
3723
3724 /* 2) see if profile is reduced */
3725 if (flags == 0)
3726 return !extended; /* "0" is valid for usual profiles */
3727
3728 /* true if exactly one bit set */
3729 return (flags & (flags - 1)) == 0;
3730 }
3731
balance_need_close(struct btrfs_fs_info * fs_info)3732 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3733 {
3734 /* cancel requested || normal exit path */
3735 return atomic_read(&fs_info->balance_cancel_req) ||
3736 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3737 atomic_read(&fs_info->balance_cancel_req) == 0);
3738 }
3739
__cancel_balance(struct btrfs_fs_info * fs_info)3740 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3741 {
3742 int ret;
3743
3744 unset_balance_control(fs_info);
3745 ret = del_balance_item(fs_info->tree_root);
3746 if (ret)
3747 btrfs_handle_fs_error(fs_info, ret, NULL);
3748
3749 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3750 }
3751
3752 /* Non-zero return value signifies invalidity */
validate_convert_profile(struct btrfs_balance_args * bctl_arg,u64 allowed)3753 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3754 u64 allowed)
3755 {
3756 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3757 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3758 (bctl_arg->target & ~allowed)));
3759 }
3760
3761 /*
3762 * Should be called with both balance and volume mutexes held
3763 */
btrfs_balance(struct btrfs_balance_control * bctl,struct btrfs_ioctl_balance_args * bargs)3764 int btrfs_balance(struct btrfs_balance_control *bctl,
3765 struct btrfs_ioctl_balance_args *bargs)
3766 {
3767 struct btrfs_fs_info *fs_info = bctl->fs_info;
3768 u64 meta_target, data_target;
3769 u64 allowed;
3770 int mixed = 0;
3771 int ret;
3772 u64 num_devices;
3773 unsigned seq;
3774
3775 if (btrfs_fs_closing(fs_info) ||
3776 atomic_read(&fs_info->balance_pause_req) ||
3777 atomic_read(&fs_info->balance_cancel_req)) {
3778 ret = -EINVAL;
3779 goto out;
3780 }
3781
3782 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3783 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3784 mixed = 1;
3785
3786 /*
3787 * In case of mixed groups both data and meta should be picked,
3788 * and identical options should be given for both of them.
3789 */
3790 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3791 if (mixed && (bctl->flags & allowed)) {
3792 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3793 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3794 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3795 btrfs_err(fs_info,
3796 "with mixed groups data and metadata balance options must be the same");
3797 ret = -EINVAL;
3798 goto out;
3799 }
3800 }
3801
3802 num_devices = fs_info->fs_devices->num_devices;
3803 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3804 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3805 BUG_ON(num_devices < 1);
3806 num_devices--;
3807 }
3808 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3809 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3810 if (num_devices > 1)
3811 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3812 if (num_devices > 2)
3813 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3814 if (num_devices > 3)
3815 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3816 BTRFS_BLOCK_GROUP_RAID6);
3817 if (validate_convert_profile(&bctl->data, allowed)) {
3818 btrfs_err(fs_info,
3819 "unable to start balance with target data profile %llu",
3820 bctl->data.target);
3821 ret = -EINVAL;
3822 goto out;
3823 }
3824 if (validate_convert_profile(&bctl->meta, allowed)) {
3825 btrfs_err(fs_info,
3826 "unable to start balance with target metadata profile %llu",
3827 bctl->meta.target);
3828 ret = -EINVAL;
3829 goto out;
3830 }
3831 if (validate_convert_profile(&bctl->sys, allowed)) {
3832 btrfs_err(fs_info,
3833 "unable to start balance with target system profile %llu",
3834 bctl->sys.target);
3835 ret = -EINVAL;
3836 goto out;
3837 }
3838
3839 /* allow to reduce meta or sys integrity only if force set */
3840 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3841 BTRFS_BLOCK_GROUP_RAID10 |
3842 BTRFS_BLOCK_GROUP_RAID5 |
3843 BTRFS_BLOCK_GROUP_RAID6;
3844 do {
3845 seq = read_seqbegin(&fs_info->profiles_lock);
3846
3847 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3848 (fs_info->avail_system_alloc_bits & allowed) &&
3849 !(bctl->sys.target & allowed)) ||
3850 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3851 (fs_info->avail_metadata_alloc_bits & allowed) &&
3852 !(bctl->meta.target & allowed))) {
3853 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3854 btrfs_info(fs_info,
3855 "force reducing metadata integrity");
3856 } else {
3857 btrfs_err(fs_info,
3858 "balance will reduce metadata integrity, use force if you want this");
3859 ret = -EINVAL;
3860 goto out;
3861 }
3862 }
3863 } while (read_seqretry(&fs_info->profiles_lock, seq));
3864
3865 /* if we're not converting, the target field is uninitialized */
3866 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3867 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3868 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3869 bctl->data.target : fs_info->avail_data_alloc_bits;
3870 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3871 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3872 btrfs_warn(fs_info,
3873 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3874 meta_target, data_target);
3875 }
3876
3877 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3878 fs_info->num_tolerated_disk_barrier_failures = min(
3879 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info),
3880 btrfs_get_num_tolerated_disk_barrier_failures(
3881 bctl->sys.target));
3882 }
3883
3884 ret = insert_balance_item(fs_info->tree_root, bctl);
3885 if (ret && ret != -EEXIST)
3886 goto out;
3887
3888 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3889 BUG_ON(ret == -EEXIST);
3890 set_balance_control(bctl);
3891 } else {
3892 BUG_ON(ret != -EEXIST);
3893 spin_lock(&fs_info->balance_lock);
3894 update_balance_args(bctl);
3895 spin_unlock(&fs_info->balance_lock);
3896 }
3897
3898 atomic_inc(&fs_info->balance_running);
3899 mutex_unlock(&fs_info->balance_mutex);
3900
3901 ret = __btrfs_balance(fs_info);
3902
3903 mutex_lock(&fs_info->balance_mutex);
3904 atomic_dec(&fs_info->balance_running);
3905
3906 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3907 fs_info->num_tolerated_disk_barrier_failures =
3908 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3909 }
3910
3911 if (bargs) {
3912 memset(bargs, 0, sizeof(*bargs));
3913 update_ioctl_balance_args(fs_info, 0, bargs);
3914 }
3915
3916 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3917 balance_need_close(fs_info)) {
3918 __cancel_balance(fs_info);
3919 }
3920
3921 wake_up(&fs_info->balance_wait_q);
3922
3923 return ret;
3924 out:
3925 if (bctl->flags & BTRFS_BALANCE_RESUME)
3926 __cancel_balance(fs_info);
3927 else {
3928 kfree(bctl);
3929 atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3930 }
3931 return ret;
3932 }
3933
balance_kthread(void * data)3934 static int balance_kthread(void *data)
3935 {
3936 struct btrfs_fs_info *fs_info = data;
3937 int ret = 0;
3938
3939 mutex_lock(&fs_info->volume_mutex);
3940 mutex_lock(&fs_info->balance_mutex);
3941
3942 if (fs_info->balance_ctl) {
3943 btrfs_info(fs_info, "continuing balance");
3944 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3945 }
3946
3947 mutex_unlock(&fs_info->balance_mutex);
3948 mutex_unlock(&fs_info->volume_mutex);
3949
3950 return ret;
3951 }
3952
btrfs_resume_balance_async(struct btrfs_fs_info * fs_info)3953 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3954 {
3955 struct task_struct *tsk;
3956
3957 spin_lock(&fs_info->balance_lock);
3958 if (!fs_info->balance_ctl) {
3959 spin_unlock(&fs_info->balance_lock);
3960 return 0;
3961 }
3962 spin_unlock(&fs_info->balance_lock);
3963
3964 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3965 btrfs_info(fs_info, "force skipping balance");
3966 return 0;
3967 }
3968
3969 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3970 return PTR_ERR_OR_ZERO(tsk);
3971 }
3972
btrfs_recover_balance(struct btrfs_fs_info * fs_info)3973 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3974 {
3975 struct btrfs_balance_control *bctl;
3976 struct btrfs_balance_item *item;
3977 struct btrfs_disk_balance_args disk_bargs;
3978 struct btrfs_path *path;
3979 struct extent_buffer *leaf;
3980 struct btrfs_key key;
3981 int ret;
3982
3983 path = btrfs_alloc_path();
3984 if (!path)
3985 return -ENOMEM;
3986
3987 key.objectid = BTRFS_BALANCE_OBJECTID;
3988 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3989 key.offset = 0;
3990
3991 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3992 if (ret < 0)
3993 goto out;
3994 if (ret > 0) { /* ret = -ENOENT; */
3995 ret = 0;
3996 goto out;
3997 }
3998
3999 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4000 if (!bctl) {
4001 ret = -ENOMEM;
4002 goto out;
4003 }
4004
4005 leaf = path->nodes[0];
4006 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4007
4008 bctl->fs_info = fs_info;
4009 bctl->flags = btrfs_balance_flags(leaf, item);
4010 bctl->flags |= BTRFS_BALANCE_RESUME;
4011
4012 btrfs_balance_data(leaf, item, &disk_bargs);
4013 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4014 btrfs_balance_meta(leaf, item, &disk_bargs);
4015 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4016 btrfs_balance_sys(leaf, item, &disk_bargs);
4017 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4018
4019 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
4020
4021 mutex_lock(&fs_info->volume_mutex);
4022 mutex_lock(&fs_info->balance_mutex);
4023
4024 set_balance_control(bctl);
4025
4026 mutex_unlock(&fs_info->balance_mutex);
4027 mutex_unlock(&fs_info->volume_mutex);
4028 out:
4029 btrfs_free_path(path);
4030 return ret;
4031 }
4032
btrfs_pause_balance(struct btrfs_fs_info * fs_info)4033 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4034 {
4035 int ret = 0;
4036
4037 mutex_lock(&fs_info->balance_mutex);
4038 if (!fs_info->balance_ctl) {
4039 mutex_unlock(&fs_info->balance_mutex);
4040 return -ENOTCONN;
4041 }
4042
4043 if (atomic_read(&fs_info->balance_running)) {
4044 atomic_inc(&fs_info->balance_pause_req);
4045 mutex_unlock(&fs_info->balance_mutex);
4046
4047 wait_event(fs_info->balance_wait_q,
4048 atomic_read(&fs_info->balance_running) == 0);
4049
4050 mutex_lock(&fs_info->balance_mutex);
4051 /* we are good with balance_ctl ripped off from under us */
4052 BUG_ON(atomic_read(&fs_info->balance_running));
4053 atomic_dec(&fs_info->balance_pause_req);
4054 } else {
4055 ret = -ENOTCONN;
4056 }
4057
4058 mutex_unlock(&fs_info->balance_mutex);
4059 return ret;
4060 }
4061
btrfs_cancel_balance(struct btrfs_fs_info * fs_info)4062 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4063 {
4064 if (fs_info->sb->s_flags & MS_RDONLY)
4065 return -EROFS;
4066
4067 mutex_lock(&fs_info->balance_mutex);
4068 if (!fs_info->balance_ctl) {
4069 mutex_unlock(&fs_info->balance_mutex);
4070 return -ENOTCONN;
4071 }
4072
4073 atomic_inc(&fs_info->balance_cancel_req);
4074 /*
4075 * if we are running just wait and return, balance item is
4076 * deleted in btrfs_balance in this case
4077 */
4078 if (atomic_read(&fs_info->balance_running)) {
4079 mutex_unlock(&fs_info->balance_mutex);
4080 wait_event(fs_info->balance_wait_q,
4081 atomic_read(&fs_info->balance_running) == 0);
4082 mutex_lock(&fs_info->balance_mutex);
4083 } else {
4084 /* __cancel_balance needs volume_mutex */
4085 mutex_unlock(&fs_info->balance_mutex);
4086 mutex_lock(&fs_info->volume_mutex);
4087 mutex_lock(&fs_info->balance_mutex);
4088
4089 if (fs_info->balance_ctl)
4090 __cancel_balance(fs_info);
4091
4092 mutex_unlock(&fs_info->volume_mutex);
4093 }
4094
4095 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4096 atomic_dec(&fs_info->balance_cancel_req);
4097 mutex_unlock(&fs_info->balance_mutex);
4098 return 0;
4099 }
4100
btrfs_uuid_scan_kthread(void * data)4101 static int btrfs_uuid_scan_kthread(void *data)
4102 {
4103 struct btrfs_fs_info *fs_info = data;
4104 struct btrfs_root *root = fs_info->tree_root;
4105 struct btrfs_key key;
4106 struct btrfs_key max_key;
4107 struct btrfs_path *path = NULL;
4108 int ret = 0;
4109 struct extent_buffer *eb;
4110 int slot;
4111 struct btrfs_root_item root_item;
4112 u32 item_size;
4113 struct btrfs_trans_handle *trans = NULL;
4114
4115 path = btrfs_alloc_path();
4116 if (!path) {
4117 ret = -ENOMEM;
4118 goto out;
4119 }
4120
4121 key.objectid = 0;
4122 key.type = BTRFS_ROOT_ITEM_KEY;
4123 key.offset = 0;
4124
4125 max_key.objectid = (u64)-1;
4126 max_key.type = BTRFS_ROOT_ITEM_KEY;
4127 max_key.offset = (u64)-1;
4128
4129 while (1) {
4130 ret = btrfs_search_forward(root, &key, path, 0);
4131 if (ret) {
4132 if (ret > 0)
4133 ret = 0;
4134 break;
4135 }
4136
4137 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4138 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4139 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4140 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4141 goto skip;
4142
4143 eb = path->nodes[0];
4144 slot = path->slots[0];
4145 item_size = btrfs_item_size_nr(eb, slot);
4146 if (item_size < sizeof(root_item))
4147 goto skip;
4148
4149 read_extent_buffer(eb, &root_item,
4150 btrfs_item_ptr_offset(eb, slot),
4151 (int)sizeof(root_item));
4152 if (btrfs_root_refs(&root_item) == 0)
4153 goto skip;
4154
4155 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4156 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4157 if (trans)
4158 goto update_tree;
4159
4160 btrfs_release_path(path);
4161 /*
4162 * 1 - subvol uuid item
4163 * 1 - received_subvol uuid item
4164 */
4165 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4166 if (IS_ERR(trans)) {
4167 ret = PTR_ERR(trans);
4168 break;
4169 }
4170 continue;
4171 } else {
4172 goto skip;
4173 }
4174 update_tree:
4175 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4176 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4177 root_item.uuid,
4178 BTRFS_UUID_KEY_SUBVOL,
4179 key.objectid);
4180 if (ret < 0) {
4181 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4182 ret);
4183 break;
4184 }
4185 }
4186
4187 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4188 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
4189 root_item.received_uuid,
4190 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4191 key.objectid);
4192 if (ret < 0) {
4193 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4194 ret);
4195 break;
4196 }
4197 }
4198
4199 skip:
4200 if (trans) {
4201 ret = btrfs_end_transaction(trans, fs_info->uuid_root);
4202 trans = NULL;
4203 if (ret)
4204 break;
4205 }
4206
4207 btrfs_release_path(path);
4208 if (key.offset < (u64)-1) {
4209 key.offset++;
4210 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4211 key.offset = 0;
4212 key.type = BTRFS_ROOT_ITEM_KEY;
4213 } else if (key.objectid < (u64)-1) {
4214 key.offset = 0;
4215 key.type = BTRFS_ROOT_ITEM_KEY;
4216 key.objectid++;
4217 } else {
4218 break;
4219 }
4220 cond_resched();
4221 }
4222
4223 out:
4224 btrfs_free_path(path);
4225 if (trans && !IS_ERR(trans))
4226 btrfs_end_transaction(trans, fs_info->uuid_root);
4227 if (ret)
4228 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4229 else
4230 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4231 up(&fs_info->uuid_tree_rescan_sem);
4232 return 0;
4233 }
4234
4235 /*
4236 * Callback for btrfs_uuid_tree_iterate().
4237 * returns:
4238 * 0 check succeeded, the entry is not outdated.
4239 * < 0 if an error occurred.
4240 * > 0 if the check failed, which means the caller shall remove the entry.
4241 */
btrfs_check_uuid_tree_entry(struct btrfs_fs_info * fs_info,u8 * uuid,u8 type,u64 subid)4242 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4243 u8 *uuid, u8 type, u64 subid)
4244 {
4245 struct btrfs_key key;
4246 int ret = 0;
4247 struct btrfs_root *subvol_root;
4248
4249 if (type != BTRFS_UUID_KEY_SUBVOL &&
4250 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4251 goto out;
4252
4253 key.objectid = subid;
4254 key.type = BTRFS_ROOT_ITEM_KEY;
4255 key.offset = (u64)-1;
4256 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4257 if (IS_ERR(subvol_root)) {
4258 ret = PTR_ERR(subvol_root);
4259 if (ret == -ENOENT)
4260 ret = 1;
4261 goto out;
4262 }
4263
4264 switch (type) {
4265 case BTRFS_UUID_KEY_SUBVOL:
4266 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4267 ret = 1;
4268 break;
4269 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4270 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4271 BTRFS_UUID_SIZE))
4272 ret = 1;
4273 break;
4274 }
4275
4276 out:
4277 return ret;
4278 }
4279
btrfs_uuid_rescan_kthread(void * data)4280 static int btrfs_uuid_rescan_kthread(void *data)
4281 {
4282 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4283 int ret;
4284
4285 /*
4286 * 1st step is to iterate through the existing UUID tree and
4287 * to delete all entries that contain outdated data.
4288 * 2nd step is to add all missing entries to the UUID tree.
4289 */
4290 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4291 if (ret < 0) {
4292 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4293 up(&fs_info->uuid_tree_rescan_sem);
4294 return ret;
4295 }
4296 return btrfs_uuid_scan_kthread(data);
4297 }
4298
btrfs_create_uuid_tree(struct btrfs_fs_info * fs_info)4299 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4300 {
4301 struct btrfs_trans_handle *trans;
4302 struct btrfs_root *tree_root = fs_info->tree_root;
4303 struct btrfs_root *uuid_root;
4304 struct task_struct *task;
4305 int ret;
4306
4307 /*
4308 * 1 - root node
4309 * 1 - root item
4310 */
4311 trans = btrfs_start_transaction(tree_root, 2);
4312 if (IS_ERR(trans))
4313 return PTR_ERR(trans);
4314
4315 uuid_root = btrfs_create_tree(trans, fs_info,
4316 BTRFS_UUID_TREE_OBJECTID);
4317 if (IS_ERR(uuid_root)) {
4318 ret = PTR_ERR(uuid_root);
4319 btrfs_abort_transaction(trans, ret);
4320 btrfs_end_transaction(trans, tree_root);
4321 return ret;
4322 }
4323
4324 fs_info->uuid_root = uuid_root;
4325
4326 ret = btrfs_commit_transaction(trans, tree_root);
4327 if (ret)
4328 return ret;
4329
4330 down(&fs_info->uuid_tree_rescan_sem);
4331 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4332 if (IS_ERR(task)) {
4333 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4334 btrfs_warn(fs_info, "failed to start uuid_scan task");
4335 up(&fs_info->uuid_tree_rescan_sem);
4336 return PTR_ERR(task);
4337 }
4338
4339 return 0;
4340 }
4341
btrfs_check_uuid_tree(struct btrfs_fs_info * fs_info)4342 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4343 {
4344 struct task_struct *task;
4345
4346 down(&fs_info->uuid_tree_rescan_sem);
4347 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4348 if (IS_ERR(task)) {
4349 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4350 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4351 up(&fs_info->uuid_tree_rescan_sem);
4352 return PTR_ERR(task);
4353 }
4354
4355 return 0;
4356 }
4357
4358 /*
4359 * shrinking a device means finding all of the device extents past
4360 * the new size, and then following the back refs to the chunks.
4361 * The chunk relocation code actually frees the device extent
4362 */
btrfs_shrink_device(struct btrfs_device * device,u64 new_size)4363 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4364 {
4365 struct btrfs_trans_handle *trans;
4366 struct btrfs_root *root = device->dev_root;
4367 struct btrfs_dev_extent *dev_extent = NULL;
4368 struct btrfs_path *path;
4369 u64 length;
4370 u64 chunk_offset;
4371 int ret;
4372 int slot;
4373 int failed = 0;
4374 bool retried = false;
4375 bool checked_pending_chunks = false;
4376 struct extent_buffer *l;
4377 struct btrfs_key key;
4378 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4379 u64 old_total = btrfs_super_total_bytes(super_copy);
4380 u64 old_size = btrfs_device_get_total_bytes(device);
4381 u64 diff = old_size - new_size;
4382
4383 if (device->is_tgtdev_for_dev_replace)
4384 return -EINVAL;
4385
4386 path = btrfs_alloc_path();
4387 if (!path)
4388 return -ENOMEM;
4389
4390 path->reada = READA_FORWARD;
4391
4392 lock_chunks(root);
4393
4394 btrfs_device_set_total_bytes(device, new_size);
4395 if (device->writeable) {
4396 device->fs_devices->total_rw_bytes -= diff;
4397 spin_lock(&root->fs_info->free_chunk_lock);
4398 root->fs_info->free_chunk_space -= diff;
4399 spin_unlock(&root->fs_info->free_chunk_lock);
4400 }
4401 unlock_chunks(root);
4402
4403 again:
4404 key.objectid = device->devid;
4405 key.offset = (u64)-1;
4406 key.type = BTRFS_DEV_EXTENT_KEY;
4407
4408 do {
4409 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
4410 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4411 if (ret < 0) {
4412 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4413 goto done;
4414 }
4415
4416 ret = btrfs_previous_item(root, path, 0, key.type);
4417 if (ret)
4418 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4419 if (ret < 0)
4420 goto done;
4421 if (ret) {
4422 ret = 0;
4423 btrfs_release_path(path);
4424 break;
4425 }
4426
4427 l = path->nodes[0];
4428 slot = path->slots[0];
4429 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4430
4431 if (key.objectid != device->devid) {
4432 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4433 btrfs_release_path(path);
4434 break;
4435 }
4436
4437 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4438 length = btrfs_dev_extent_length(l, dev_extent);
4439
4440 if (key.offset + length <= new_size) {
4441 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4442 btrfs_release_path(path);
4443 break;
4444 }
4445
4446 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4447 btrfs_release_path(path);
4448
4449 ret = btrfs_relocate_chunk(root, chunk_offset);
4450 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
4451 if (ret && ret != -ENOSPC)
4452 goto done;
4453 if (ret == -ENOSPC)
4454 failed++;
4455 } while (key.offset-- > 0);
4456
4457 if (failed && !retried) {
4458 failed = 0;
4459 retried = true;
4460 goto again;
4461 } else if (failed && retried) {
4462 ret = -ENOSPC;
4463 goto done;
4464 }
4465
4466 /* Shrinking succeeded, else we would be at "done". */
4467 trans = btrfs_start_transaction(root, 0);
4468 if (IS_ERR(trans)) {
4469 ret = PTR_ERR(trans);
4470 goto done;
4471 }
4472
4473 lock_chunks(root);
4474
4475 /*
4476 * We checked in the above loop all device extents that were already in
4477 * the device tree. However before we have updated the device's
4478 * total_bytes to the new size, we might have had chunk allocations that
4479 * have not complete yet (new block groups attached to transaction
4480 * handles), and therefore their device extents were not yet in the
4481 * device tree and we missed them in the loop above. So if we have any
4482 * pending chunk using a device extent that overlaps the device range
4483 * that we can not use anymore, commit the current transaction and
4484 * repeat the search on the device tree - this way we guarantee we will
4485 * not have chunks using device extents that end beyond 'new_size'.
4486 */
4487 if (!checked_pending_chunks) {
4488 u64 start = new_size;
4489 u64 len = old_size - new_size;
4490
4491 if (contains_pending_extent(trans->transaction, device,
4492 &start, len)) {
4493 unlock_chunks(root);
4494 checked_pending_chunks = true;
4495 failed = 0;
4496 retried = false;
4497 ret = btrfs_commit_transaction(trans, root);
4498 if (ret)
4499 goto done;
4500 goto again;
4501 }
4502 }
4503
4504 btrfs_device_set_disk_total_bytes(device, new_size);
4505 if (list_empty(&device->resized_list))
4506 list_add_tail(&device->resized_list,
4507 &root->fs_info->fs_devices->resized_devices);
4508
4509 WARN_ON(diff > old_total);
4510 btrfs_set_super_total_bytes(super_copy, old_total - diff);
4511 unlock_chunks(root);
4512
4513 /* Now btrfs_update_device() will change the on-disk size. */
4514 ret = btrfs_update_device(trans, device);
4515 btrfs_end_transaction(trans, root);
4516 done:
4517 btrfs_free_path(path);
4518 if (ret) {
4519 lock_chunks(root);
4520 btrfs_device_set_total_bytes(device, old_size);
4521 if (device->writeable)
4522 device->fs_devices->total_rw_bytes += diff;
4523 spin_lock(&root->fs_info->free_chunk_lock);
4524 root->fs_info->free_chunk_space += diff;
4525 spin_unlock(&root->fs_info->free_chunk_lock);
4526 unlock_chunks(root);
4527 }
4528 return ret;
4529 }
4530
btrfs_add_system_chunk(struct btrfs_root * root,struct btrfs_key * key,struct btrfs_chunk * chunk,int item_size)4531 static int btrfs_add_system_chunk(struct btrfs_root *root,
4532 struct btrfs_key *key,
4533 struct btrfs_chunk *chunk, int item_size)
4534 {
4535 struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4536 struct btrfs_disk_key disk_key;
4537 u32 array_size;
4538 u8 *ptr;
4539
4540 lock_chunks(root);
4541 array_size = btrfs_super_sys_array_size(super_copy);
4542 if (array_size + item_size + sizeof(disk_key)
4543 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4544 unlock_chunks(root);
4545 return -EFBIG;
4546 }
4547
4548 ptr = super_copy->sys_chunk_array + array_size;
4549 btrfs_cpu_key_to_disk(&disk_key, key);
4550 memcpy(ptr, &disk_key, sizeof(disk_key));
4551 ptr += sizeof(disk_key);
4552 memcpy(ptr, chunk, item_size);
4553 item_size += sizeof(disk_key);
4554 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4555 unlock_chunks(root);
4556
4557 return 0;
4558 }
4559
4560 /*
4561 * sort the devices in descending order by max_avail, total_avail
4562 */
btrfs_cmp_device_info(const void * a,const void * b)4563 static int btrfs_cmp_device_info(const void *a, const void *b)
4564 {
4565 const struct btrfs_device_info *di_a = a;
4566 const struct btrfs_device_info *di_b = b;
4567
4568 if (di_a->max_avail > di_b->max_avail)
4569 return -1;
4570 if (di_a->max_avail < di_b->max_avail)
4571 return 1;
4572 if (di_a->total_avail > di_b->total_avail)
4573 return -1;
4574 if (di_a->total_avail < di_b->total_avail)
4575 return 1;
4576 return 0;
4577 }
4578
find_raid56_stripe_len(u32 data_devices,u32 dev_stripe_target)4579 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
4580 {
4581 /* TODO allow them to set a preferred stripe size */
4582 return SZ_64K;
4583 }
4584
check_raid56_incompat_flag(struct btrfs_fs_info * info,u64 type)4585 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4586 {
4587 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4588 return;
4589
4590 btrfs_set_fs_incompat(info, RAID56);
4591 }
4592
4593 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r) \
4594 - sizeof(struct btrfs_chunk)) \
4595 / sizeof(struct btrfs_stripe) + 1)
4596
4597 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4598 - 2 * sizeof(struct btrfs_disk_key) \
4599 - 2 * sizeof(struct btrfs_chunk)) \
4600 / sizeof(struct btrfs_stripe) + 1)
4601
__btrfs_alloc_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 start,u64 type)4602 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4603 struct btrfs_root *extent_root, u64 start,
4604 u64 type)
4605 {
4606 struct btrfs_fs_info *info = extent_root->fs_info;
4607 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4608 struct list_head *cur;
4609 struct map_lookup *map = NULL;
4610 struct extent_map_tree *em_tree;
4611 struct extent_map *em;
4612 struct btrfs_device_info *devices_info = NULL;
4613 u64 total_avail;
4614 int num_stripes; /* total number of stripes to allocate */
4615 int data_stripes; /* number of stripes that count for
4616 block group size */
4617 int sub_stripes; /* sub_stripes info for map */
4618 int dev_stripes; /* stripes per dev */
4619 int devs_max; /* max devs to use */
4620 int devs_min; /* min devs needed */
4621 int devs_increment; /* ndevs has to be a multiple of this */
4622 int ncopies; /* how many copies to data has */
4623 int ret;
4624 u64 max_stripe_size;
4625 u64 max_chunk_size;
4626 u64 stripe_size;
4627 u64 num_bytes;
4628 u64 raid_stripe_len = BTRFS_STRIPE_LEN;
4629 int ndevs;
4630 int i;
4631 int j;
4632 int index;
4633
4634 BUG_ON(!alloc_profile_is_valid(type, 0));
4635
4636 if (list_empty(&fs_devices->alloc_list))
4637 return -ENOSPC;
4638
4639 index = __get_raid_index(type);
4640
4641 sub_stripes = btrfs_raid_array[index].sub_stripes;
4642 dev_stripes = btrfs_raid_array[index].dev_stripes;
4643 devs_max = btrfs_raid_array[index].devs_max;
4644 devs_min = btrfs_raid_array[index].devs_min;
4645 devs_increment = btrfs_raid_array[index].devs_increment;
4646 ncopies = btrfs_raid_array[index].ncopies;
4647
4648 if (type & BTRFS_BLOCK_GROUP_DATA) {
4649 max_stripe_size = SZ_1G;
4650 max_chunk_size = 10 * max_stripe_size;
4651 if (!devs_max)
4652 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4653 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4654 /* for larger filesystems, use larger metadata chunks */
4655 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4656 max_stripe_size = SZ_1G;
4657 else
4658 max_stripe_size = SZ_256M;
4659 max_chunk_size = max_stripe_size;
4660 if (!devs_max)
4661 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4662 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4663 max_stripe_size = SZ_32M;
4664 max_chunk_size = 2 * max_stripe_size;
4665 if (!devs_max)
4666 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4667 } else {
4668 btrfs_err(info, "invalid chunk type 0x%llx requested",
4669 type);
4670 BUG_ON(1);
4671 }
4672
4673 /* we don't want a chunk larger than 10% of writeable space */
4674 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4675 max_chunk_size);
4676
4677 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4678 GFP_NOFS);
4679 if (!devices_info)
4680 return -ENOMEM;
4681
4682 cur = fs_devices->alloc_list.next;
4683
4684 /*
4685 * in the first pass through the devices list, we gather information
4686 * about the available holes on each device.
4687 */
4688 ndevs = 0;
4689 while (cur != &fs_devices->alloc_list) {
4690 struct btrfs_device *device;
4691 u64 max_avail;
4692 u64 dev_offset;
4693
4694 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4695
4696 cur = cur->next;
4697
4698 if (!device->writeable) {
4699 WARN(1, KERN_ERR
4700 "BTRFS: read-only device in alloc_list\n");
4701 continue;
4702 }
4703
4704 if (!device->in_fs_metadata ||
4705 device->is_tgtdev_for_dev_replace)
4706 continue;
4707
4708 if (device->total_bytes > device->bytes_used)
4709 total_avail = device->total_bytes - device->bytes_used;
4710 else
4711 total_avail = 0;
4712
4713 /* If there is no space on this device, skip it. */
4714 if (total_avail == 0)
4715 continue;
4716
4717 ret = find_free_dev_extent(trans, device,
4718 max_stripe_size * dev_stripes,
4719 &dev_offset, &max_avail);
4720 if (ret && ret != -ENOSPC)
4721 goto error;
4722
4723 if (ret == 0)
4724 max_avail = max_stripe_size * dev_stripes;
4725
4726 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4727 continue;
4728
4729 if (ndevs == fs_devices->rw_devices) {
4730 WARN(1, "%s: found more than %llu devices\n",
4731 __func__, fs_devices->rw_devices);
4732 break;
4733 }
4734 devices_info[ndevs].dev_offset = dev_offset;
4735 devices_info[ndevs].max_avail = max_avail;
4736 devices_info[ndevs].total_avail = total_avail;
4737 devices_info[ndevs].dev = device;
4738 ++ndevs;
4739 }
4740
4741 /*
4742 * now sort the devices by hole size / available space
4743 */
4744 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4745 btrfs_cmp_device_info, NULL);
4746
4747 /* round down to number of usable stripes */
4748 ndevs -= ndevs % devs_increment;
4749
4750 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4751 ret = -ENOSPC;
4752 goto error;
4753 }
4754
4755 if (devs_max && ndevs > devs_max)
4756 ndevs = devs_max;
4757 /*
4758 * The primary goal is to maximize the number of stripes, so use as
4759 * many devices as possible, even if the stripes are not maximum sized.
4760 *
4761 * The DUP profile stores more than one stripe per device, the
4762 * max_avail is the total size so we have to adjust.
4763 */
4764 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4765 num_stripes = ndevs * dev_stripes;
4766
4767 /*
4768 * this will have to be fixed for RAID1 and RAID10 over
4769 * more drives
4770 */
4771 data_stripes = num_stripes / ncopies;
4772
4773 if (type & BTRFS_BLOCK_GROUP_RAID5) {
4774 raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4775 extent_root->stripesize);
4776 data_stripes = num_stripes - 1;
4777 }
4778 if (type & BTRFS_BLOCK_GROUP_RAID6) {
4779 raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4780 extent_root->stripesize);
4781 data_stripes = num_stripes - 2;
4782 }
4783
4784 /*
4785 * Use the number of data stripes to figure out how big this chunk
4786 * is really going to be in terms of logical address space,
4787 * and compare that answer with the max chunk size
4788 */
4789 if (stripe_size * data_stripes > max_chunk_size) {
4790 u64 mask = (1ULL << 24) - 1;
4791
4792 stripe_size = div_u64(max_chunk_size, data_stripes);
4793
4794 /* bump the answer up to a 16MB boundary */
4795 stripe_size = (stripe_size + mask) & ~mask;
4796
4797 /* but don't go higher than the limits we found
4798 * while searching for free extents
4799 */
4800 if (stripe_size > devices_info[ndevs-1].max_avail)
4801 stripe_size = devices_info[ndevs-1].max_avail;
4802 }
4803
4804 /* align to BTRFS_STRIPE_LEN */
4805 stripe_size = div_u64(stripe_size, raid_stripe_len);
4806 stripe_size *= raid_stripe_len;
4807
4808 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4809 if (!map) {
4810 ret = -ENOMEM;
4811 goto error;
4812 }
4813 map->num_stripes = num_stripes;
4814
4815 for (i = 0; i < ndevs; ++i) {
4816 for (j = 0; j < dev_stripes; ++j) {
4817 int s = i * dev_stripes + j;
4818 map->stripes[s].dev = devices_info[i].dev;
4819 map->stripes[s].physical = devices_info[i].dev_offset +
4820 j * stripe_size;
4821 }
4822 }
4823 map->sector_size = extent_root->sectorsize;
4824 map->stripe_len = raid_stripe_len;
4825 map->io_align = raid_stripe_len;
4826 map->io_width = raid_stripe_len;
4827 map->type = type;
4828 map->sub_stripes = sub_stripes;
4829
4830 num_bytes = stripe_size * data_stripes;
4831
4832 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4833
4834 em = alloc_extent_map();
4835 if (!em) {
4836 kfree(map);
4837 ret = -ENOMEM;
4838 goto error;
4839 }
4840 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4841 em->map_lookup = map;
4842 em->start = start;
4843 em->len = num_bytes;
4844 em->block_start = 0;
4845 em->block_len = em->len;
4846 em->orig_block_len = stripe_size;
4847
4848 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4849 write_lock(&em_tree->lock);
4850 ret = add_extent_mapping(em_tree, em, 0);
4851 if (!ret) {
4852 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4853 atomic_inc(&em->refs);
4854 }
4855 write_unlock(&em_tree->lock);
4856 if (ret) {
4857 free_extent_map(em);
4858 goto error;
4859 }
4860
4861 ret = btrfs_make_block_group(trans, extent_root, 0, type,
4862 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4863 start, num_bytes);
4864 if (ret)
4865 goto error_del_extent;
4866
4867 for (i = 0; i < map->num_stripes; i++) {
4868 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4869 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4870 }
4871
4872 spin_lock(&extent_root->fs_info->free_chunk_lock);
4873 extent_root->fs_info->free_chunk_space -= (stripe_size *
4874 map->num_stripes);
4875 spin_unlock(&extent_root->fs_info->free_chunk_lock);
4876
4877 free_extent_map(em);
4878 check_raid56_incompat_flag(extent_root->fs_info, type);
4879
4880 kfree(devices_info);
4881 return 0;
4882
4883 error_del_extent:
4884 write_lock(&em_tree->lock);
4885 remove_extent_mapping(em_tree, em);
4886 write_unlock(&em_tree->lock);
4887
4888 /* One for our allocation */
4889 free_extent_map(em);
4890 /* One for the tree reference */
4891 free_extent_map(em);
4892 /* One for the pending_chunks list reference */
4893 free_extent_map(em);
4894 error:
4895 kfree(devices_info);
4896 return ret;
4897 }
4898
btrfs_finish_chunk_alloc(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 chunk_offset,u64 chunk_size)4899 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4900 struct btrfs_root *extent_root,
4901 u64 chunk_offset, u64 chunk_size)
4902 {
4903 struct btrfs_key key;
4904 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4905 struct btrfs_device *device;
4906 struct btrfs_chunk *chunk;
4907 struct btrfs_stripe *stripe;
4908 struct extent_map_tree *em_tree;
4909 struct extent_map *em;
4910 struct map_lookup *map;
4911 size_t item_size;
4912 u64 dev_offset;
4913 u64 stripe_size;
4914 int i = 0;
4915 int ret = 0;
4916
4917 em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4918 read_lock(&em_tree->lock);
4919 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4920 read_unlock(&em_tree->lock);
4921
4922 if (!em) {
4923 btrfs_crit(extent_root->fs_info,
4924 "unable to find logical %Lu len %Lu",
4925 chunk_offset, chunk_size);
4926 return -EINVAL;
4927 }
4928
4929 if (em->start != chunk_offset || em->len != chunk_size) {
4930 btrfs_crit(extent_root->fs_info,
4931 "found a bad mapping, wanted %Lu-%Lu, found %Lu-%Lu",
4932 chunk_offset, chunk_size, em->start, em->len);
4933 free_extent_map(em);
4934 return -EINVAL;
4935 }
4936
4937 map = em->map_lookup;
4938 item_size = btrfs_chunk_item_size(map->num_stripes);
4939 stripe_size = em->orig_block_len;
4940
4941 chunk = kzalloc(item_size, GFP_NOFS);
4942 if (!chunk) {
4943 ret = -ENOMEM;
4944 goto out;
4945 }
4946
4947 /*
4948 * Take the device list mutex to prevent races with the final phase of
4949 * a device replace operation that replaces the device object associated
4950 * with the map's stripes, because the device object's id can change
4951 * at any time during that final phase of the device replace operation
4952 * (dev-replace.c:btrfs_dev_replace_finishing()).
4953 */
4954 mutex_lock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4955 for (i = 0; i < map->num_stripes; i++) {
4956 device = map->stripes[i].dev;
4957 dev_offset = map->stripes[i].physical;
4958
4959 ret = btrfs_update_device(trans, device);
4960 if (ret)
4961 break;
4962 ret = btrfs_alloc_dev_extent(trans, device,
4963 chunk_root->root_key.objectid,
4964 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4965 chunk_offset, dev_offset,
4966 stripe_size);
4967 if (ret)
4968 break;
4969 }
4970 if (ret) {
4971 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4972 goto out;
4973 }
4974
4975 stripe = &chunk->stripe;
4976 for (i = 0; i < map->num_stripes; i++) {
4977 device = map->stripes[i].dev;
4978 dev_offset = map->stripes[i].physical;
4979
4980 btrfs_set_stack_stripe_devid(stripe, device->devid);
4981 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4982 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4983 stripe++;
4984 }
4985 mutex_unlock(&chunk_root->fs_info->fs_devices->device_list_mutex);
4986
4987 btrfs_set_stack_chunk_length(chunk, chunk_size);
4988 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4989 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4990 btrfs_set_stack_chunk_type(chunk, map->type);
4991 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4992 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4993 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4994 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4995 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4996
4997 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4998 key.type = BTRFS_CHUNK_ITEM_KEY;
4999 key.offset = chunk_offset;
5000
5001 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5002 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5003 /*
5004 * TODO: Cleanup of inserted chunk root in case of
5005 * failure.
5006 */
5007 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
5008 item_size);
5009 }
5010
5011 out:
5012 kfree(chunk);
5013 free_extent_map(em);
5014 return ret;
5015 }
5016
5017 /*
5018 * Chunk allocation falls into two parts. The first part does works
5019 * that make the new allocated chunk useable, but not do any operation
5020 * that modifies the chunk tree. The second part does the works that
5021 * require modifying the chunk tree. This division is important for the
5022 * bootstrap process of adding storage to a seed btrfs.
5023 */
btrfs_alloc_chunk(struct btrfs_trans_handle * trans,struct btrfs_root * extent_root,u64 type)5024 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5025 struct btrfs_root *extent_root, u64 type)
5026 {
5027 u64 chunk_offset;
5028
5029 ASSERT(mutex_is_locked(&extent_root->fs_info->chunk_mutex));
5030 chunk_offset = find_next_chunk(extent_root->fs_info);
5031 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
5032 }
5033
init_first_rw_device(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_device * device)5034 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5035 struct btrfs_root *root,
5036 struct btrfs_device *device)
5037 {
5038 u64 chunk_offset;
5039 u64 sys_chunk_offset;
5040 u64 alloc_profile;
5041 struct btrfs_fs_info *fs_info = root->fs_info;
5042 struct btrfs_root *extent_root = fs_info->extent_root;
5043 int ret;
5044
5045 chunk_offset = find_next_chunk(fs_info);
5046 alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
5047 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
5048 alloc_profile);
5049 if (ret)
5050 return ret;
5051
5052 sys_chunk_offset = find_next_chunk(root->fs_info);
5053 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
5054 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
5055 alloc_profile);
5056 return ret;
5057 }
5058
btrfs_chunk_max_errors(struct map_lookup * map)5059 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5060 {
5061 int max_errors;
5062
5063 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5064 BTRFS_BLOCK_GROUP_RAID10 |
5065 BTRFS_BLOCK_GROUP_RAID5 |
5066 BTRFS_BLOCK_GROUP_DUP)) {
5067 max_errors = 1;
5068 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5069 max_errors = 2;
5070 } else {
5071 max_errors = 0;
5072 }
5073
5074 return max_errors;
5075 }
5076
btrfs_chunk_readonly(struct btrfs_root * root,u64 chunk_offset)5077 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
5078 {
5079 struct extent_map *em;
5080 struct map_lookup *map;
5081 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5082 int readonly = 0;
5083 int miss_ndevs = 0;
5084 int i;
5085
5086 read_lock(&map_tree->map_tree.lock);
5087 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
5088 read_unlock(&map_tree->map_tree.lock);
5089 if (!em)
5090 return 1;
5091
5092 map = em->map_lookup;
5093 for (i = 0; i < map->num_stripes; i++) {
5094 if (map->stripes[i].dev->missing) {
5095 miss_ndevs++;
5096 continue;
5097 }
5098
5099 if (!map->stripes[i].dev->writeable) {
5100 readonly = 1;
5101 goto end;
5102 }
5103 }
5104
5105 /*
5106 * If the number of missing devices is larger than max errors,
5107 * we can not write the data into that chunk successfully, so
5108 * set it readonly.
5109 */
5110 if (miss_ndevs > btrfs_chunk_max_errors(map))
5111 readonly = 1;
5112 end:
5113 free_extent_map(em);
5114 return readonly;
5115 }
5116
btrfs_mapping_init(struct btrfs_mapping_tree * tree)5117 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5118 {
5119 extent_map_tree_init(&tree->map_tree);
5120 }
5121
btrfs_mapping_tree_free(struct btrfs_mapping_tree * tree)5122 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5123 {
5124 struct extent_map *em;
5125
5126 while (1) {
5127 write_lock(&tree->map_tree.lock);
5128 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5129 if (em)
5130 remove_extent_mapping(&tree->map_tree, em);
5131 write_unlock(&tree->map_tree.lock);
5132 if (!em)
5133 break;
5134 /* once for us */
5135 free_extent_map(em);
5136 /* once for the tree */
5137 free_extent_map(em);
5138 }
5139 }
5140
btrfs_num_copies(struct btrfs_fs_info * fs_info,u64 logical,u64 len)5141 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5142 {
5143 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5144 struct extent_map *em;
5145 struct map_lookup *map;
5146 struct extent_map_tree *em_tree = &map_tree->map_tree;
5147 int ret;
5148
5149 read_lock(&em_tree->lock);
5150 em = lookup_extent_mapping(em_tree, logical, len);
5151 read_unlock(&em_tree->lock);
5152
5153 /*
5154 * We could return errors for these cases, but that could get ugly and
5155 * we'd probably do the same thing which is just not do anything else
5156 * and exit, so return 1 so the callers don't try to use other copies.
5157 */
5158 if (!em) {
5159 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical,
5160 logical+len);
5161 return 1;
5162 }
5163
5164 if (em->start > logical || em->start + em->len < logical) {
5165 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got %Lu-%Lu",
5166 logical, logical+len, em->start,
5167 em->start + em->len);
5168 free_extent_map(em);
5169 return 1;
5170 }
5171
5172 map = em->map_lookup;
5173 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5174 ret = map->num_stripes;
5175 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5176 ret = map->sub_stripes;
5177 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5178 ret = 2;
5179 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5180 ret = 3;
5181 else
5182 ret = 1;
5183 free_extent_map(em);
5184
5185 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5186 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
5187 ret++;
5188 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5189
5190 return ret;
5191 }
5192
btrfs_full_stripe_len(struct btrfs_root * root,struct btrfs_mapping_tree * map_tree,u64 logical)5193 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
5194 struct btrfs_mapping_tree *map_tree,
5195 u64 logical)
5196 {
5197 struct extent_map *em;
5198 struct map_lookup *map;
5199 struct extent_map_tree *em_tree = &map_tree->map_tree;
5200 unsigned long len = root->sectorsize;
5201
5202 read_lock(&em_tree->lock);
5203 em = lookup_extent_mapping(em_tree, logical, len);
5204 read_unlock(&em_tree->lock);
5205 BUG_ON(!em);
5206
5207 BUG_ON(em->start > logical || em->start + em->len < logical);
5208 map = em->map_lookup;
5209 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5210 len = map->stripe_len * nr_data_stripes(map);
5211 free_extent_map(em);
5212 return len;
5213 }
5214
btrfs_is_parity_mirror(struct btrfs_mapping_tree * map_tree,u64 logical,u64 len,int mirror_num)5215 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
5216 u64 logical, u64 len, int mirror_num)
5217 {
5218 struct extent_map *em;
5219 struct map_lookup *map;
5220 struct extent_map_tree *em_tree = &map_tree->map_tree;
5221 int ret = 0;
5222
5223 read_lock(&em_tree->lock);
5224 em = lookup_extent_mapping(em_tree, logical, len);
5225 read_unlock(&em_tree->lock);
5226 BUG_ON(!em);
5227
5228 BUG_ON(em->start > logical || em->start + em->len < logical);
5229 map = em->map_lookup;
5230 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5231 ret = 1;
5232 free_extent_map(em);
5233 return ret;
5234 }
5235
find_live_mirror(struct btrfs_fs_info * fs_info,struct map_lookup * map,int first,int num,int optimal,int dev_replace_is_ongoing)5236 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5237 struct map_lookup *map, int first, int num,
5238 int optimal, int dev_replace_is_ongoing)
5239 {
5240 int i;
5241 int tolerance;
5242 struct btrfs_device *srcdev;
5243
5244 if (dev_replace_is_ongoing &&
5245 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5246 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5247 srcdev = fs_info->dev_replace.srcdev;
5248 else
5249 srcdev = NULL;
5250
5251 /*
5252 * try to avoid the drive that is the source drive for a
5253 * dev-replace procedure, only choose it if no other non-missing
5254 * mirror is available
5255 */
5256 for (tolerance = 0; tolerance < 2; tolerance++) {
5257 if (map->stripes[optimal].dev->bdev &&
5258 (tolerance || map->stripes[optimal].dev != srcdev))
5259 return optimal;
5260 for (i = first; i < first + num; i++) {
5261 if (map->stripes[i].dev->bdev &&
5262 (tolerance || map->stripes[i].dev != srcdev))
5263 return i;
5264 }
5265 }
5266
5267 /* we couldn't find one that doesn't fail. Just return something
5268 * and the io error handling code will clean up eventually
5269 */
5270 return optimal;
5271 }
5272
parity_smaller(u64 a,u64 b)5273 static inline int parity_smaller(u64 a, u64 b)
5274 {
5275 return a > b;
5276 }
5277
5278 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
sort_parity_stripes(struct btrfs_bio * bbio,int num_stripes)5279 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5280 {
5281 struct btrfs_bio_stripe s;
5282 int i;
5283 u64 l;
5284 int again = 1;
5285
5286 while (again) {
5287 again = 0;
5288 for (i = 0; i < num_stripes - 1; i++) {
5289 if (parity_smaller(bbio->raid_map[i],
5290 bbio->raid_map[i+1])) {
5291 s = bbio->stripes[i];
5292 l = bbio->raid_map[i];
5293 bbio->stripes[i] = bbio->stripes[i+1];
5294 bbio->raid_map[i] = bbio->raid_map[i+1];
5295 bbio->stripes[i+1] = s;
5296 bbio->raid_map[i+1] = l;
5297
5298 again = 1;
5299 }
5300 }
5301 }
5302 }
5303
alloc_btrfs_bio(int total_stripes,int real_stripes)5304 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5305 {
5306 struct btrfs_bio *bbio = kzalloc(
5307 /* the size of the btrfs_bio */
5308 sizeof(struct btrfs_bio) +
5309 /* plus the variable array for the stripes */
5310 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5311 /* plus the variable array for the tgt dev */
5312 sizeof(int) * (real_stripes) +
5313 /*
5314 * plus the raid_map, which includes both the tgt dev
5315 * and the stripes
5316 */
5317 sizeof(u64) * (total_stripes),
5318 GFP_NOFS|__GFP_NOFAIL);
5319
5320 atomic_set(&bbio->error, 0);
5321 atomic_set(&bbio->refs, 1);
5322
5323 return bbio;
5324 }
5325
btrfs_get_bbio(struct btrfs_bio * bbio)5326 void btrfs_get_bbio(struct btrfs_bio *bbio)
5327 {
5328 WARN_ON(!atomic_read(&bbio->refs));
5329 atomic_inc(&bbio->refs);
5330 }
5331
btrfs_put_bbio(struct btrfs_bio * bbio)5332 void btrfs_put_bbio(struct btrfs_bio *bbio)
5333 {
5334 if (!bbio)
5335 return;
5336 if (atomic_dec_and_test(&bbio->refs))
5337 kfree(bbio);
5338 }
5339
__btrfs_map_block(struct btrfs_fs_info * fs_info,int op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)5340 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5341 u64 logical, u64 *length,
5342 struct btrfs_bio **bbio_ret,
5343 int mirror_num, int need_raid_map)
5344 {
5345 struct extent_map *em;
5346 struct map_lookup *map;
5347 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5348 struct extent_map_tree *em_tree = &map_tree->map_tree;
5349 u64 offset;
5350 u64 stripe_offset;
5351 u64 stripe_end_offset;
5352 u64 stripe_nr;
5353 u64 stripe_nr_orig;
5354 u64 stripe_nr_end;
5355 u64 stripe_len;
5356 u32 stripe_index;
5357 int i;
5358 int ret = 0;
5359 int num_stripes;
5360 int max_errors = 0;
5361 int tgtdev_indexes = 0;
5362 struct btrfs_bio *bbio = NULL;
5363 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5364 int dev_replace_is_ongoing = 0;
5365 int num_alloc_stripes;
5366 int patch_the_first_stripe_for_dev_replace = 0;
5367 u64 physical_to_patch_in_first_stripe = 0;
5368 u64 raid56_full_stripe_start = (u64)-1;
5369
5370 read_lock(&em_tree->lock);
5371 em = lookup_extent_mapping(em_tree, logical, *length);
5372 read_unlock(&em_tree->lock);
5373
5374 if (!em) {
5375 btrfs_crit(fs_info, "unable to find logical %llu len %llu",
5376 logical, *length);
5377 return -EINVAL;
5378 }
5379
5380 if (em->start > logical || em->start + em->len < logical) {
5381 btrfs_crit(fs_info,
5382 "found a bad mapping, wanted %Lu, found %Lu-%Lu",
5383 logical, em->start, em->start + em->len);
5384 free_extent_map(em);
5385 return -EINVAL;
5386 }
5387
5388 map = em->map_lookup;
5389 offset = logical - em->start;
5390
5391 stripe_len = map->stripe_len;
5392 stripe_nr = offset;
5393 /*
5394 * stripe_nr counts the total number of stripes we have to stride
5395 * to get to this block
5396 */
5397 stripe_nr = div64_u64(stripe_nr, stripe_len);
5398
5399 stripe_offset = stripe_nr * stripe_len;
5400 if (offset < stripe_offset) {
5401 btrfs_crit(fs_info,
5402 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5403 stripe_offset, offset, em->start, logical,
5404 stripe_len);
5405 free_extent_map(em);
5406 return -EINVAL;
5407 }
5408
5409 /* stripe_offset is the offset of this block in its stripe*/
5410 stripe_offset = offset - stripe_offset;
5411
5412 /* if we're here for raid56, we need to know the stripe aligned start */
5413 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5414 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5415 raid56_full_stripe_start = offset;
5416
5417 /* allow a write of a full stripe, but make sure we don't
5418 * allow straddling of stripes
5419 */
5420 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5421 full_stripe_len);
5422 raid56_full_stripe_start *= full_stripe_len;
5423 }
5424
5425 if (op == REQ_OP_DISCARD) {
5426 /* we don't discard raid56 yet */
5427 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5428 ret = -EOPNOTSUPP;
5429 goto out;
5430 }
5431 *length = min_t(u64, em->len - offset, *length);
5432 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5433 u64 max_len;
5434 /* For writes to RAID[56], allow a full stripeset across all disks.
5435 For other RAID types and for RAID[56] reads, just allow a single
5436 stripe (on a single disk). */
5437 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5438 (op == REQ_OP_WRITE)) {
5439 max_len = stripe_len * nr_data_stripes(map) -
5440 (offset - raid56_full_stripe_start);
5441 } else {
5442 /* we limit the length of each bio to what fits in a stripe */
5443 max_len = stripe_len - stripe_offset;
5444 }
5445 *length = min_t(u64, em->len - offset, max_len);
5446 } else {
5447 *length = em->len - offset;
5448 }
5449
5450 /* This is for when we're called from btrfs_merge_bio_hook() and all
5451 it cares about is the length */
5452 if (!bbio_ret)
5453 goto out;
5454
5455 btrfs_dev_replace_lock(dev_replace, 0);
5456 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5457 if (!dev_replace_is_ongoing)
5458 btrfs_dev_replace_unlock(dev_replace, 0);
5459 else
5460 btrfs_dev_replace_set_lock_blocking(dev_replace);
5461
5462 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5463 op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5464 op != REQ_GET_READ_MIRRORS && dev_replace->tgtdev != NULL) {
5465 /*
5466 * in dev-replace case, for repair case (that's the only
5467 * case where the mirror is selected explicitly when
5468 * calling btrfs_map_block), blocks left of the left cursor
5469 * can also be read from the target drive.
5470 * For REQ_GET_READ_MIRRORS, the target drive is added as
5471 * the last one to the array of stripes. For READ, it also
5472 * needs to be supported using the same mirror number.
5473 * If the requested block is not left of the left cursor,
5474 * EIO is returned. This can happen because btrfs_num_copies()
5475 * returns one more in the dev-replace case.
5476 */
5477 u64 tmp_length = *length;
5478 struct btrfs_bio *tmp_bbio = NULL;
5479 int tmp_num_stripes;
5480 u64 srcdev_devid = dev_replace->srcdev->devid;
5481 int index_srcdev = 0;
5482 int found = 0;
5483 u64 physical_of_found = 0;
5484
5485 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
5486 logical, &tmp_length, &tmp_bbio, 0, 0);
5487 if (ret) {
5488 WARN_ON(tmp_bbio != NULL);
5489 goto out;
5490 }
5491
5492 tmp_num_stripes = tmp_bbio->num_stripes;
5493 if (mirror_num > tmp_num_stripes) {
5494 /*
5495 * REQ_GET_READ_MIRRORS does not contain this
5496 * mirror, that means that the requested area
5497 * is not left of the left cursor
5498 */
5499 ret = -EIO;
5500 btrfs_put_bbio(tmp_bbio);
5501 goto out;
5502 }
5503
5504 /*
5505 * process the rest of the function using the mirror_num
5506 * of the source drive. Therefore look it up first.
5507 * At the end, patch the device pointer to the one of the
5508 * target drive.
5509 */
5510 for (i = 0; i < tmp_num_stripes; i++) {
5511 if (tmp_bbio->stripes[i].dev->devid != srcdev_devid)
5512 continue;
5513
5514 /*
5515 * In case of DUP, in order to keep it simple, only add
5516 * the mirror with the lowest physical address
5517 */
5518 if (found &&
5519 physical_of_found <= tmp_bbio->stripes[i].physical)
5520 continue;
5521
5522 index_srcdev = i;
5523 found = 1;
5524 physical_of_found = tmp_bbio->stripes[i].physical;
5525 }
5526
5527 btrfs_put_bbio(tmp_bbio);
5528
5529 if (!found) {
5530 WARN_ON(1);
5531 ret = -EIO;
5532 goto out;
5533 }
5534
5535 mirror_num = index_srcdev + 1;
5536 patch_the_first_stripe_for_dev_replace = 1;
5537 physical_to_patch_in_first_stripe = physical_of_found;
5538 } else if (mirror_num > map->num_stripes) {
5539 mirror_num = 0;
5540 }
5541
5542 num_stripes = 1;
5543 stripe_index = 0;
5544 stripe_nr_orig = stripe_nr;
5545 stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
5546 stripe_nr_end = div_u64(stripe_nr_end, map->stripe_len);
5547 stripe_end_offset = stripe_nr_end * map->stripe_len -
5548 (offset + *length);
5549
5550 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5551 if (op == REQ_OP_DISCARD)
5552 num_stripes = min_t(u64, map->num_stripes,
5553 stripe_nr_end - stripe_nr_orig);
5554 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5555 &stripe_index);
5556 if (op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5557 op != REQ_GET_READ_MIRRORS)
5558 mirror_num = 1;
5559 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5560 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5561 op == REQ_GET_READ_MIRRORS)
5562 num_stripes = map->num_stripes;
5563 else if (mirror_num)
5564 stripe_index = mirror_num - 1;
5565 else {
5566 stripe_index = find_live_mirror(fs_info, map, 0,
5567 map->num_stripes,
5568 current->pid % map->num_stripes,
5569 dev_replace_is_ongoing);
5570 mirror_num = stripe_index + 1;
5571 }
5572
5573 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5574 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD ||
5575 op == REQ_GET_READ_MIRRORS) {
5576 num_stripes = map->num_stripes;
5577 } else if (mirror_num) {
5578 stripe_index = mirror_num - 1;
5579 } else {
5580 mirror_num = 1;
5581 }
5582
5583 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5584 u32 factor = map->num_stripes / map->sub_stripes;
5585
5586 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5587 stripe_index *= map->sub_stripes;
5588
5589 if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5590 num_stripes = map->sub_stripes;
5591 else if (op == REQ_OP_DISCARD)
5592 num_stripes = min_t(u64, map->sub_stripes *
5593 (stripe_nr_end - stripe_nr_orig),
5594 map->num_stripes);
5595 else if (mirror_num)
5596 stripe_index += mirror_num - 1;
5597 else {
5598 int old_stripe_index = stripe_index;
5599 stripe_index = find_live_mirror(fs_info, map,
5600 stripe_index,
5601 map->sub_stripes, stripe_index +
5602 current->pid % map->sub_stripes,
5603 dev_replace_is_ongoing);
5604 mirror_num = stripe_index - old_stripe_index + 1;
5605 }
5606
5607 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5608 if (need_raid_map &&
5609 (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS ||
5610 mirror_num > 1)) {
5611 /* push stripe_nr back to the start of the full stripe */
5612 stripe_nr = div_u64(raid56_full_stripe_start,
5613 stripe_len * nr_data_stripes(map));
5614
5615 /* RAID[56] write or recovery. Return all stripes */
5616 num_stripes = map->num_stripes;
5617 max_errors = nr_parity_stripes(map);
5618
5619 *length = map->stripe_len;
5620 stripe_index = 0;
5621 stripe_offset = 0;
5622 } else {
5623 /*
5624 * Mirror #0 or #1 means the original data block.
5625 * Mirror #2 is RAID5 parity block.
5626 * Mirror #3 is RAID6 Q block.
5627 */
5628 stripe_nr = div_u64_rem(stripe_nr,
5629 nr_data_stripes(map), &stripe_index);
5630 if (mirror_num > 1)
5631 stripe_index = nr_data_stripes(map) +
5632 mirror_num - 2;
5633
5634 /* We distribute the parity blocks across stripes */
5635 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5636 &stripe_index);
5637 if ((op != REQ_OP_WRITE && op != REQ_OP_DISCARD &&
5638 op != REQ_GET_READ_MIRRORS) && mirror_num <= 1)
5639 mirror_num = 1;
5640 }
5641 } else {
5642 /*
5643 * after this, stripe_nr is the number of stripes on this
5644 * device we have to walk to find the data, and stripe_index is
5645 * the number of our device in the stripe array
5646 */
5647 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5648 &stripe_index);
5649 mirror_num = stripe_index + 1;
5650 }
5651 if (stripe_index >= map->num_stripes) {
5652 btrfs_crit(fs_info,
5653 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5654 stripe_index, map->num_stripes);
5655 ret = -EINVAL;
5656 goto out;
5657 }
5658
5659 num_alloc_stripes = num_stripes;
5660 if (dev_replace_is_ongoing) {
5661 if (op == REQ_OP_WRITE || op == REQ_OP_DISCARD)
5662 num_alloc_stripes <<= 1;
5663 if (op == REQ_GET_READ_MIRRORS)
5664 num_alloc_stripes++;
5665 tgtdev_indexes = num_stripes;
5666 }
5667
5668 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5669 if (!bbio) {
5670 ret = -ENOMEM;
5671 goto out;
5672 }
5673 if (dev_replace_is_ongoing)
5674 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5675
5676 /* build raid_map */
5677 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK &&
5678 need_raid_map &&
5679 ((op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS) ||
5680 mirror_num > 1)) {
5681 u64 tmp;
5682 unsigned rot;
5683
5684 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5685 sizeof(struct btrfs_bio_stripe) *
5686 num_alloc_stripes +
5687 sizeof(int) * tgtdev_indexes);
5688
5689 /* Work out the disk rotation on this stripe-set */
5690 div_u64_rem(stripe_nr, num_stripes, &rot);
5691
5692 /* Fill in the logical address of each stripe */
5693 tmp = stripe_nr * nr_data_stripes(map);
5694 for (i = 0; i < nr_data_stripes(map); i++)
5695 bbio->raid_map[(i+rot) % num_stripes] =
5696 em->start + (tmp + i) * map->stripe_len;
5697
5698 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5699 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5700 bbio->raid_map[(i+rot+1) % num_stripes] =
5701 RAID6_Q_STRIPE;
5702 }
5703
5704 if (op == REQ_OP_DISCARD) {
5705 u32 factor = 0;
5706 u32 sub_stripes = 0;
5707 u64 stripes_per_dev = 0;
5708 u32 remaining_stripes = 0;
5709 u32 last_stripe = 0;
5710
5711 if (map->type &
5712 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
5713 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5714 sub_stripes = 1;
5715 else
5716 sub_stripes = map->sub_stripes;
5717
5718 factor = map->num_stripes / sub_stripes;
5719 stripes_per_dev = div_u64_rem(stripe_nr_end -
5720 stripe_nr_orig,
5721 factor,
5722 &remaining_stripes);
5723 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5724 last_stripe *= sub_stripes;
5725 }
5726
5727 for (i = 0; i < num_stripes; i++) {
5728 bbio->stripes[i].physical =
5729 map->stripes[stripe_index].physical +
5730 stripe_offset + stripe_nr * map->stripe_len;
5731 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5732
5733 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5734 BTRFS_BLOCK_GROUP_RAID10)) {
5735 bbio->stripes[i].length = stripes_per_dev *
5736 map->stripe_len;
5737
5738 if (i / sub_stripes < remaining_stripes)
5739 bbio->stripes[i].length +=
5740 map->stripe_len;
5741
5742 /*
5743 * Special for the first stripe and
5744 * the last stripe:
5745 *
5746 * |-------|...|-------|
5747 * |----------|
5748 * off end_off
5749 */
5750 if (i < sub_stripes)
5751 bbio->stripes[i].length -=
5752 stripe_offset;
5753
5754 if (stripe_index >= last_stripe &&
5755 stripe_index <= (last_stripe +
5756 sub_stripes - 1))
5757 bbio->stripes[i].length -=
5758 stripe_end_offset;
5759
5760 if (i == sub_stripes - 1)
5761 stripe_offset = 0;
5762 } else
5763 bbio->stripes[i].length = *length;
5764
5765 stripe_index++;
5766 if (stripe_index == map->num_stripes) {
5767 /* This could only happen for RAID0/10 */
5768 stripe_index = 0;
5769 stripe_nr++;
5770 }
5771 }
5772 } else {
5773 for (i = 0; i < num_stripes; i++) {
5774 bbio->stripes[i].physical =
5775 map->stripes[stripe_index].physical +
5776 stripe_offset +
5777 stripe_nr * map->stripe_len;
5778 bbio->stripes[i].dev =
5779 map->stripes[stripe_index].dev;
5780 stripe_index++;
5781 }
5782 }
5783
5784 if (op == REQ_OP_WRITE || op == REQ_GET_READ_MIRRORS)
5785 max_errors = btrfs_chunk_max_errors(map);
5786
5787 if (bbio->raid_map)
5788 sort_parity_stripes(bbio, num_stripes);
5789
5790 tgtdev_indexes = 0;
5791 if (dev_replace_is_ongoing &&
5792 (op == REQ_OP_WRITE || op == REQ_OP_DISCARD) &&
5793 dev_replace->tgtdev != NULL) {
5794 int index_where_to_add;
5795 u64 srcdev_devid = dev_replace->srcdev->devid;
5796
5797 /*
5798 * duplicate the write operations while the dev replace
5799 * procedure is running. Since the copying of the old disk
5800 * to the new disk takes place at run time while the
5801 * filesystem is mounted writable, the regular write
5802 * operations to the old disk have to be duplicated to go
5803 * to the new disk as well.
5804 * Note that device->missing is handled by the caller, and
5805 * that the write to the old disk is already set up in the
5806 * stripes array.
5807 */
5808 index_where_to_add = num_stripes;
5809 for (i = 0; i < num_stripes; i++) {
5810 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5811 /* write to new disk, too */
5812 struct btrfs_bio_stripe *new =
5813 bbio->stripes + index_where_to_add;
5814 struct btrfs_bio_stripe *old =
5815 bbio->stripes + i;
5816
5817 new->physical = old->physical;
5818 new->length = old->length;
5819 new->dev = dev_replace->tgtdev;
5820 bbio->tgtdev_map[i] = index_where_to_add;
5821 index_where_to_add++;
5822 max_errors++;
5823 tgtdev_indexes++;
5824 }
5825 }
5826 num_stripes = index_where_to_add;
5827 } else if (dev_replace_is_ongoing && (op == REQ_GET_READ_MIRRORS) &&
5828 dev_replace->tgtdev != NULL) {
5829 u64 srcdev_devid = dev_replace->srcdev->devid;
5830 int index_srcdev = 0;
5831 int found = 0;
5832 u64 physical_of_found = 0;
5833
5834 /*
5835 * During the dev-replace procedure, the target drive can
5836 * also be used to read data in case it is needed to repair
5837 * a corrupt block elsewhere. This is possible if the
5838 * requested area is left of the left cursor. In this area,
5839 * the target drive is a full copy of the source drive.
5840 */
5841 for (i = 0; i < num_stripes; i++) {
5842 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5843 /*
5844 * In case of DUP, in order to keep it
5845 * simple, only add the mirror with the
5846 * lowest physical address
5847 */
5848 if (found &&
5849 physical_of_found <=
5850 bbio->stripes[i].physical)
5851 continue;
5852 index_srcdev = i;
5853 found = 1;
5854 physical_of_found = bbio->stripes[i].physical;
5855 }
5856 }
5857 if (found) {
5858 struct btrfs_bio_stripe *tgtdev_stripe =
5859 bbio->stripes + num_stripes;
5860
5861 tgtdev_stripe->physical = physical_of_found;
5862 tgtdev_stripe->length =
5863 bbio->stripes[index_srcdev].length;
5864 tgtdev_stripe->dev = dev_replace->tgtdev;
5865 bbio->tgtdev_map[index_srcdev] = num_stripes;
5866
5867 tgtdev_indexes++;
5868 num_stripes++;
5869 }
5870 }
5871
5872 *bbio_ret = bbio;
5873 bbio->map_type = map->type;
5874 bbio->num_stripes = num_stripes;
5875 bbio->max_errors = max_errors;
5876 bbio->mirror_num = mirror_num;
5877 bbio->num_tgtdevs = tgtdev_indexes;
5878
5879 /*
5880 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5881 * mirror_num == num_stripes + 1 && dev_replace target drive is
5882 * available as a mirror
5883 */
5884 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5885 WARN_ON(num_stripes > 1);
5886 bbio->stripes[0].dev = dev_replace->tgtdev;
5887 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5888 bbio->mirror_num = map->num_stripes + 1;
5889 }
5890 out:
5891 if (dev_replace_is_ongoing) {
5892 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5893 btrfs_dev_replace_unlock(dev_replace, 0);
5894 }
5895 free_extent_map(em);
5896 return ret;
5897 }
5898
btrfs_map_block(struct btrfs_fs_info * fs_info,int op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num)5899 int btrfs_map_block(struct btrfs_fs_info *fs_info, int op,
5900 u64 logical, u64 *length,
5901 struct btrfs_bio **bbio_ret, int mirror_num)
5902 {
5903 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5904 mirror_num, 0);
5905 }
5906
5907 /* For Scrub/replace */
btrfs_map_sblock(struct btrfs_fs_info * fs_info,int op,u64 logical,u64 * length,struct btrfs_bio ** bbio_ret,int mirror_num,int need_raid_map)5908 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, int op,
5909 u64 logical, u64 *length,
5910 struct btrfs_bio **bbio_ret, int mirror_num,
5911 int need_raid_map)
5912 {
5913 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5914 mirror_num, need_raid_map);
5915 }
5916
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,u64 physical,u64 devid,u64 ** logical,int * naddrs,int * stripe_len)5917 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5918 u64 chunk_start, u64 physical, u64 devid,
5919 u64 **logical, int *naddrs, int *stripe_len)
5920 {
5921 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
5922 struct extent_map_tree *em_tree = &map_tree->map_tree;
5923 struct extent_map *em;
5924 struct map_lookup *map;
5925 u64 *buf;
5926 u64 bytenr;
5927 u64 length;
5928 u64 stripe_nr;
5929 u64 rmap_len;
5930 int i, j, nr = 0;
5931
5932 read_lock(&em_tree->lock);
5933 em = lookup_extent_mapping(em_tree, chunk_start, 1);
5934 read_unlock(&em_tree->lock);
5935
5936 if (!em) {
5937 btrfs_err(fs_info, "couldn't find em for chunk %Lu",
5938 chunk_start);
5939 return -EIO;
5940 }
5941
5942 if (em->start != chunk_start) {
5943 btrfs_err(fs_info, "bad chunk start, em=%Lu, wanted=%Lu",
5944 em->start, chunk_start);
5945 free_extent_map(em);
5946 return -EIO;
5947 }
5948 map = em->map_lookup;
5949
5950 length = em->len;
5951 rmap_len = map->stripe_len;
5952
5953 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5954 length = div_u64(length, map->num_stripes / map->sub_stripes);
5955 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5956 length = div_u64(length, map->num_stripes);
5957 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5958 length = div_u64(length, nr_data_stripes(map));
5959 rmap_len = map->stripe_len * nr_data_stripes(map);
5960 }
5961
5962 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5963 BUG_ON(!buf); /* -ENOMEM */
5964
5965 for (i = 0; i < map->num_stripes; i++) {
5966 if (devid && map->stripes[i].dev->devid != devid)
5967 continue;
5968 if (map->stripes[i].physical > physical ||
5969 map->stripes[i].physical + length <= physical)
5970 continue;
5971
5972 stripe_nr = physical - map->stripes[i].physical;
5973 stripe_nr = div_u64(stripe_nr, map->stripe_len);
5974
5975 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5976 stripe_nr = stripe_nr * map->num_stripes + i;
5977 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5978 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5979 stripe_nr = stripe_nr * map->num_stripes + i;
5980 } /* else if RAID[56], multiply by nr_data_stripes().
5981 * Alternatively, just use rmap_len below instead of
5982 * map->stripe_len */
5983
5984 bytenr = chunk_start + stripe_nr * rmap_len;
5985 WARN_ON(nr >= map->num_stripes);
5986 for (j = 0; j < nr; j++) {
5987 if (buf[j] == bytenr)
5988 break;
5989 }
5990 if (j == nr) {
5991 WARN_ON(nr >= map->num_stripes);
5992 buf[nr++] = bytenr;
5993 }
5994 }
5995
5996 *logical = buf;
5997 *naddrs = nr;
5998 *stripe_len = rmap_len;
5999
6000 free_extent_map(em);
6001 return 0;
6002 }
6003
btrfs_end_bbio(struct btrfs_bio * bbio,struct bio * bio)6004 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6005 {
6006 bio->bi_private = bbio->private;
6007 bio->bi_end_io = bbio->end_io;
6008 bio_endio(bio);
6009
6010 btrfs_put_bbio(bbio);
6011 }
6012
btrfs_end_bio(struct bio * bio)6013 static void btrfs_end_bio(struct bio *bio)
6014 {
6015 struct btrfs_bio *bbio = bio->bi_private;
6016 int is_orig_bio = 0;
6017
6018 if (bio->bi_error) {
6019 atomic_inc(&bbio->error);
6020 if (bio->bi_error == -EIO || bio->bi_error == -EREMOTEIO) {
6021 unsigned int stripe_index =
6022 btrfs_io_bio(bio)->stripe_index;
6023 struct btrfs_device *dev;
6024
6025 BUG_ON(stripe_index >= bbio->num_stripes);
6026 dev = bbio->stripes[stripe_index].dev;
6027 if (dev->bdev) {
6028 if (bio_op(bio) == REQ_OP_WRITE)
6029 btrfs_dev_stat_inc(dev,
6030 BTRFS_DEV_STAT_WRITE_ERRS);
6031 else
6032 btrfs_dev_stat_inc(dev,
6033 BTRFS_DEV_STAT_READ_ERRS);
6034 if ((bio->bi_opf & WRITE_FLUSH) == WRITE_FLUSH)
6035 btrfs_dev_stat_inc(dev,
6036 BTRFS_DEV_STAT_FLUSH_ERRS);
6037 btrfs_dev_stat_print_on_error(dev);
6038 }
6039 }
6040 }
6041
6042 if (bio == bbio->orig_bio)
6043 is_orig_bio = 1;
6044
6045 btrfs_bio_counter_dec(bbio->fs_info);
6046
6047 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6048 if (!is_orig_bio) {
6049 bio_put(bio);
6050 bio = bbio->orig_bio;
6051 }
6052
6053 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6054 /* only send an error to the higher layers if it is
6055 * beyond the tolerance of the btrfs bio
6056 */
6057 if (atomic_read(&bbio->error) > bbio->max_errors) {
6058 bio->bi_error = -EIO;
6059 } else {
6060 /*
6061 * this bio is actually up to date, we didn't
6062 * go over the max number of errors
6063 */
6064 bio->bi_error = 0;
6065 }
6066
6067 btrfs_end_bbio(bbio, bio);
6068 } else if (!is_orig_bio) {
6069 bio_put(bio);
6070 }
6071 }
6072
6073 /*
6074 * see run_scheduled_bios for a description of why bios are collected for
6075 * async submit.
6076 *
6077 * This will add one bio to the pending list for a device and make sure
6078 * the work struct is scheduled.
6079 */
btrfs_schedule_bio(struct btrfs_root * root,struct btrfs_device * device,struct bio * bio)6080 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
6081 struct btrfs_device *device,
6082 struct bio *bio)
6083 {
6084 int should_queue = 1;
6085 struct btrfs_pending_bios *pending_bios;
6086
6087 if (device->missing || !device->bdev) {
6088 bio_io_error(bio);
6089 return;
6090 }
6091
6092 /* don't bother with additional async steps for reads, right now */
6093 if (bio_op(bio) == REQ_OP_READ) {
6094 bio_get(bio);
6095 btrfsic_submit_bio(bio);
6096 bio_put(bio);
6097 return;
6098 }
6099
6100 /*
6101 * nr_async_bios allows us to reliably return congestion to the
6102 * higher layers. Otherwise, the async bio makes it appear we have
6103 * made progress against dirty pages when we've really just put it
6104 * on a queue for later
6105 */
6106 atomic_inc(&root->fs_info->nr_async_bios);
6107 WARN_ON(bio->bi_next);
6108 bio->bi_next = NULL;
6109
6110 spin_lock(&device->io_lock);
6111 if (bio->bi_opf & REQ_SYNC)
6112 pending_bios = &device->pending_sync_bios;
6113 else
6114 pending_bios = &device->pending_bios;
6115
6116 if (pending_bios->tail)
6117 pending_bios->tail->bi_next = bio;
6118
6119 pending_bios->tail = bio;
6120 if (!pending_bios->head)
6121 pending_bios->head = bio;
6122 if (device->running_pending)
6123 should_queue = 0;
6124
6125 spin_unlock(&device->io_lock);
6126
6127 if (should_queue)
6128 btrfs_queue_work(root->fs_info->submit_workers,
6129 &device->work);
6130 }
6131
submit_stripe_bio(struct btrfs_root * root,struct btrfs_bio * bbio,struct bio * bio,u64 physical,int dev_nr,int async)6132 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
6133 struct bio *bio, u64 physical, int dev_nr,
6134 int async)
6135 {
6136 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6137
6138 bio->bi_private = bbio;
6139 btrfs_io_bio(bio)->stripe_index = dev_nr;
6140 bio->bi_end_io = btrfs_end_bio;
6141 bio->bi_iter.bi_sector = physical >> 9;
6142 #ifdef DEBUG
6143 {
6144 struct rcu_string *name;
6145
6146 rcu_read_lock();
6147 name = rcu_dereference(dev->name);
6148 btrfs_debug(fs_info,
6149 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6150 bio_op(bio), bio->bi_opf,
6151 (u64)bio->bi_iter.bi_sector,
6152 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6153 bio->bi_iter.bi_size);
6154 rcu_read_unlock();
6155 }
6156 #endif
6157 bio->bi_bdev = dev->bdev;
6158
6159 btrfs_bio_counter_inc_noblocked(root->fs_info);
6160
6161 if (async)
6162 btrfs_schedule_bio(root, dev, bio);
6163 else
6164 btrfsic_submit_bio(bio);
6165 }
6166
bbio_error(struct btrfs_bio * bbio,struct bio * bio,u64 logical)6167 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6168 {
6169 atomic_inc(&bbio->error);
6170 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6171 /* Should be the original bio. */
6172 WARN_ON(bio != bbio->orig_bio);
6173
6174 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6175 bio->bi_iter.bi_sector = logical >> 9;
6176 bio->bi_error = -EIO;
6177 btrfs_end_bbio(bbio, bio);
6178 }
6179 }
6180
btrfs_map_bio(struct btrfs_root * root,struct bio * bio,int mirror_num,int async_submit)6181 int btrfs_map_bio(struct btrfs_root *root, struct bio *bio,
6182 int mirror_num, int async_submit)
6183 {
6184 struct btrfs_device *dev;
6185 struct bio *first_bio = bio;
6186 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6187 u64 length = 0;
6188 u64 map_length;
6189 int ret;
6190 int dev_nr;
6191 int total_devs;
6192 struct btrfs_bio *bbio = NULL;
6193
6194 length = bio->bi_iter.bi_size;
6195 map_length = length;
6196
6197 btrfs_bio_counter_inc_blocked(root->fs_info);
6198 ret = __btrfs_map_block(root->fs_info, bio_op(bio), logical,
6199 &map_length, &bbio, mirror_num, 1);
6200 if (ret) {
6201 btrfs_bio_counter_dec(root->fs_info);
6202 return ret;
6203 }
6204
6205 total_devs = bbio->num_stripes;
6206 bbio->orig_bio = first_bio;
6207 bbio->private = first_bio->bi_private;
6208 bbio->end_io = first_bio->bi_end_io;
6209 bbio->fs_info = root->fs_info;
6210 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6211
6212 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6213 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6214 /* In this case, map_length has been set to the length of
6215 a single stripe; not the whole write */
6216 if (bio_op(bio) == REQ_OP_WRITE) {
6217 ret = raid56_parity_write(root, bio, bbio, map_length);
6218 } else {
6219 ret = raid56_parity_recover(root, bio, bbio, map_length,
6220 mirror_num, 1);
6221 }
6222
6223 btrfs_bio_counter_dec(root->fs_info);
6224 return ret;
6225 }
6226
6227 if (map_length < length) {
6228 btrfs_crit(root->fs_info,
6229 "mapping failed logical %llu bio len %llu len %llu",
6230 logical, length, map_length);
6231 BUG();
6232 }
6233
6234 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6235 dev = bbio->stripes[dev_nr].dev;
6236 if (!dev || !dev->bdev ||
6237 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6238 bbio_error(bbio, first_bio, logical);
6239 continue;
6240 }
6241
6242 if (dev_nr < total_devs - 1) {
6243 bio = btrfs_bio_clone(first_bio, GFP_NOFS);
6244 BUG_ON(!bio); /* -ENOMEM */
6245 } else
6246 bio = first_bio;
6247
6248 submit_stripe_bio(root, bbio, bio,
6249 bbio->stripes[dev_nr].physical, dev_nr,
6250 async_submit);
6251 }
6252 btrfs_bio_counter_dec(root->fs_info);
6253 return 0;
6254 }
6255
btrfs_find_device(struct btrfs_fs_info * fs_info,u64 devid,u8 * uuid,u8 * fsid)6256 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6257 u8 *uuid, u8 *fsid)
6258 {
6259 struct btrfs_device *device;
6260 struct btrfs_fs_devices *cur_devices;
6261
6262 cur_devices = fs_info->fs_devices;
6263 while (cur_devices) {
6264 if (!fsid ||
6265 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
6266 device = __find_device(&cur_devices->devices,
6267 devid, uuid);
6268 if (device)
6269 return device;
6270 }
6271 cur_devices = cur_devices->seed;
6272 }
6273 return NULL;
6274 }
6275
add_missing_dev(struct btrfs_root * root,struct btrfs_fs_devices * fs_devices,u64 devid,u8 * dev_uuid)6276 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
6277 struct btrfs_fs_devices *fs_devices,
6278 u64 devid, u8 *dev_uuid)
6279 {
6280 struct btrfs_device *device;
6281
6282 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6283 if (IS_ERR(device))
6284 return NULL;
6285
6286 list_add(&device->dev_list, &fs_devices->devices);
6287 device->fs_devices = fs_devices;
6288 fs_devices->num_devices++;
6289
6290 device->missing = 1;
6291 fs_devices->missing_devices++;
6292
6293 return device;
6294 }
6295
6296 /**
6297 * btrfs_alloc_device - allocate struct btrfs_device
6298 * @fs_info: used only for generating a new devid, can be NULL if
6299 * devid is provided (i.e. @devid != NULL).
6300 * @devid: a pointer to devid for this device. If NULL a new devid
6301 * is generated.
6302 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6303 * is generated.
6304 *
6305 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6306 * on error. Returned struct is not linked onto any lists and can be
6307 * destroyed with kfree() right away.
6308 */
btrfs_alloc_device(struct btrfs_fs_info * fs_info,const u64 * devid,const u8 * uuid)6309 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6310 const u64 *devid,
6311 const u8 *uuid)
6312 {
6313 struct btrfs_device *dev;
6314 u64 tmp;
6315
6316 if (WARN_ON(!devid && !fs_info))
6317 return ERR_PTR(-EINVAL);
6318
6319 dev = __alloc_device();
6320 if (IS_ERR(dev))
6321 return dev;
6322
6323 if (devid)
6324 tmp = *devid;
6325 else {
6326 int ret;
6327
6328 ret = find_next_devid(fs_info, &tmp);
6329 if (ret) {
6330 kfree(dev);
6331 return ERR_PTR(ret);
6332 }
6333 }
6334 dev->devid = tmp;
6335
6336 if (uuid)
6337 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6338 else
6339 generate_random_uuid(dev->uuid);
6340
6341 btrfs_init_work(&dev->work, btrfs_submit_helper,
6342 pending_bios_fn, NULL, NULL);
6343
6344 return dev;
6345 }
6346
6347 /* Return -EIO if any error, otherwise return 0. */
btrfs_check_chunk_valid(struct btrfs_root * root,struct extent_buffer * leaf,struct btrfs_chunk * chunk,u64 logical)6348 static int btrfs_check_chunk_valid(struct btrfs_root *root,
6349 struct extent_buffer *leaf,
6350 struct btrfs_chunk *chunk, u64 logical)
6351 {
6352 u64 length;
6353 u64 stripe_len;
6354 u16 num_stripes;
6355 u16 sub_stripes;
6356 u64 type;
6357
6358 length = btrfs_chunk_length(leaf, chunk);
6359 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6360 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6361 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6362 type = btrfs_chunk_type(leaf, chunk);
6363
6364 if (!num_stripes) {
6365 btrfs_err(root->fs_info, "invalid chunk num_stripes: %u",
6366 num_stripes);
6367 return -EIO;
6368 }
6369 if (!IS_ALIGNED(logical, root->sectorsize)) {
6370 btrfs_err(root->fs_info,
6371 "invalid chunk logical %llu", logical);
6372 return -EIO;
6373 }
6374 if (btrfs_chunk_sector_size(leaf, chunk) != root->sectorsize) {
6375 btrfs_err(root->fs_info, "invalid chunk sectorsize %u",
6376 btrfs_chunk_sector_size(leaf, chunk));
6377 return -EIO;
6378 }
6379 if (!length || !IS_ALIGNED(length, root->sectorsize)) {
6380 btrfs_err(root->fs_info,
6381 "invalid chunk length %llu", length);
6382 return -EIO;
6383 }
6384 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6385 btrfs_err(root->fs_info, "invalid chunk stripe length: %llu",
6386 stripe_len);
6387 return -EIO;
6388 }
6389 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6390 type) {
6391 btrfs_err(root->fs_info, "unrecognized chunk type: %llu",
6392 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6393 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6394 btrfs_chunk_type(leaf, chunk));
6395 return -EIO;
6396 }
6397 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6398 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6399 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6400 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6401 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6402 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6403 num_stripes != 1)) {
6404 btrfs_err(root->fs_info,
6405 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6406 num_stripes, sub_stripes,
6407 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6408 return -EIO;
6409 }
6410
6411 return 0;
6412 }
6413
read_one_chunk(struct btrfs_root * root,struct btrfs_key * key,struct extent_buffer * leaf,struct btrfs_chunk * chunk)6414 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
6415 struct extent_buffer *leaf,
6416 struct btrfs_chunk *chunk)
6417 {
6418 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6419 struct map_lookup *map;
6420 struct extent_map *em;
6421 u64 logical;
6422 u64 length;
6423 u64 stripe_len;
6424 u64 devid;
6425 u8 uuid[BTRFS_UUID_SIZE];
6426 int num_stripes;
6427 int ret;
6428 int i;
6429
6430 logical = key->offset;
6431 length = btrfs_chunk_length(leaf, chunk);
6432 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6433 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6434
6435 ret = btrfs_check_chunk_valid(root, leaf, chunk, logical);
6436 if (ret)
6437 return ret;
6438
6439 read_lock(&map_tree->map_tree.lock);
6440 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6441 read_unlock(&map_tree->map_tree.lock);
6442
6443 /* already mapped? */
6444 if (em && em->start <= logical && em->start + em->len > logical) {
6445 free_extent_map(em);
6446 return 0;
6447 } else if (em) {
6448 free_extent_map(em);
6449 }
6450
6451 em = alloc_extent_map();
6452 if (!em)
6453 return -ENOMEM;
6454 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6455 if (!map) {
6456 free_extent_map(em);
6457 return -ENOMEM;
6458 }
6459
6460 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6461 em->map_lookup = map;
6462 em->start = logical;
6463 em->len = length;
6464 em->orig_start = 0;
6465 em->block_start = 0;
6466 em->block_len = em->len;
6467
6468 map->num_stripes = num_stripes;
6469 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6470 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6471 map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
6472 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6473 map->type = btrfs_chunk_type(leaf, chunk);
6474 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6475 for (i = 0; i < num_stripes; i++) {
6476 map->stripes[i].physical =
6477 btrfs_stripe_offset_nr(leaf, chunk, i);
6478 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6479 read_extent_buffer(leaf, uuid, (unsigned long)
6480 btrfs_stripe_dev_uuid_nr(chunk, i),
6481 BTRFS_UUID_SIZE);
6482 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
6483 uuid, NULL);
6484 if (!map->stripes[i].dev &&
6485 !btrfs_test_opt(root->fs_info, DEGRADED)) {
6486 free_extent_map(em);
6487 return -EIO;
6488 }
6489 if (!map->stripes[i].dev) {
6490 map->stripes[i].dev =
6491 add_missing_dev(root, root->fs_info->fs_devices,
6492 devid, uuid);
6493 if (!map->stripes[i].dev) {
6494 free_extent_map(em);
6495 return -EIO;
6496 }
6497 btrfs_warn(root->fs_info,
6498 "devid %llu uuid %pU is missing",
6499 devid, uuid);
6500 }
6501 map->stripes[i].dev->in_fs_metadata = 1;
6502 }
6503
6504 write_lock(&map_tree->map_tree.lock);
6505 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6506 write_unlock(&map_tree->map_tree.lock);
6507 BUG_ON(ret); /* Tree corruption */
6508 free_extent_map(em);
6509
6510 return 0;
6511 }
6512
fill_device_from_item(struct extent_buffer * leaf,struct btrfs_dev_item * dev_item,struct btrfs_device * device)6513 static void fill_device_from_item(struct extent_buffer *leaf,
6514 struct btrfs_dev_item *dev_item,
6515 struct btrfs_device *device)
6516 {
6517 unsigned long ptr;
6518
6519 device->devid = btrfs_device_id(leaf, dev_item);
6520 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6521 device->total_bytes = device->disk_total_bytes;
6522 device->commit_total_bytes = device->disk_total_bytes;
6523 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6524 device->commit_bytes_used = device->bytes_used;
6525 device->type = btrfs_device_type(leaf, dev_item);
6526 device->io_align = btrfs_device_io_align(leaf, dev_item);
6527 device->io_width = btrfs_device_io_width(leaf, dev_item);
6528 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6529 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6530 device->is_tgtdev_for_dev_replace = 0;
6531
6532 ptr = btrfs_device_uuid(dev_item);
6533 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6534 }
6535
open_seed_devices(struct btrfs_root * root,u8 * fsid)6536 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_root *root,
6537 u8 *fsid)
6538 {
6539 struct btrfs_fs_devices *fs_devices;
6540 int ret;
6541
6542 BUG_ON(!mutex_is_locked(&uuid_mutex));
6543
6544 fs_devices = root->fs_info->fs_devices->seed;
6545 while (fs_devices) {
6546 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE))
6547 return fs_devices;
6548
6549 fs_devices = fs_devices->seed;
6550 }
6551
6552 fs_devices = find_fsid(fsid);
6553 if (!fs_devices) {
6554 if (!btrfs_test_opt(root->fs_info, DEGRADED))
6555 return ERR_PTR(-ENOENT);
6556
6557 fs_devices = alloc_fs_devices(fsid);
6558 if (IS_ERR(fs_devices))
6559 return fs_devices;
6560
6561 fs_devices->seeding = 1;
6562 fs_devices->opened = 1;
6563 return fs_devices;
6564 }
6565
6566 fs_devices = clone_fs_devices(fs_devices);
6567 if (IS_ERR(fs_devices))
6568 return fs_devices;
6569
6570 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6571 root->fs_info->bdev_holder);
6572 if (ret) {
6573 free_fs_devices(fs_devices);
6574 fs_devices = ERR_PTR(ret);
6575 goto out;
6576 }
6577
6578 if (!fs_devices->seeding) {
6579 __btrfs_close_devices(fs_devices);
6580 free_fs_devices(fs_devices);
6581 fs_devices = ERR_PTR(-EINVAL);
6582 goto out;
6583 }
6584
6585 fs_devices->seed = root->fs_info->fs_devices->seed;
6586 root->fs_info->fs_devices->seed = fs_devices;
6587 out:
6588 return fs_devices;
6589 }
6590
read_one_dev(struct btrfs_root * root,struct extent_buffer * leaf,struct btrfs_dev_item * dev_item)6591 static int read_one_dev(struct btrfs_root *root,
6592 struct extent_buffer *leaf,
6593 struct btrfs_dev_item *dev_item)
6594 {
6595 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6596 struct btrfs_device *device;
6597 u64 devid;
6598 int ret;
6599 u8 fs_uuid[BTRFS_UUID_SIZE];
6600 u8 dev_uuid[BTRFS_UUID_SIZE];
6601
6602 devid = btrfs_device_id(leaf, dev_item);
6603 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6604 BTRFS_UUID_SIZE);
6605 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6606 BTRFS_UUID_SIZE);
6607
6608 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
6609 fs_devices = open_seed_devices(root, fs_uuid);
6610 if (IS_ERR(fs_devices))
6611 return PTR_ERR(fs_devices);
6612 }
6613
6614 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
6615 if (!device) {
6616 if (!btrfs_test_opt(root->fs_info, DEGRADED))
6617 return -EIO;
6618
6619 device = add_missing_dev(root, fs_devices, devid, dev_uuid);
6620 if (!device)
6621 return -ENOMEM;
6622 btrfs_warn(root->fs_info, "devid %llu uuid %pU missing",
6623 devid, dev_uuid);
6624 } else {
6625 if (!device->bdev && !btrfs_test_opt(root->fs_info, DEGRADED))
6626 return -EIO;
6627
6628 if(!device->bdev && !device->missing) {
6629 /*
6630 * this happens when a device that was properly setup
6631 * in the device info lists suddenly goes bad.
6632 * device->bdev is NULL, and so we have to set
6633 * device->missing to one here
6634 */
6635 device->fs_devices->missing_devices++;
6636 device->missing = 1;
6637 }
6638
6639 /* Move the device to its own fs_devices */
6640 if (device->fs_devices != fs_devices) {
6641 ASSERT(device->missing);
6642
6643 list_move(&device->dev_list, &fs_devices->devices);
6644 device->fs_devices->num_devices--;
6645 fs_devices->num_devices++;
6646
6647 device->fs_devices->missing_devices--;
6648 fs_devices->missing_devices++;
6649
6650 device->fs_devices = fs_devices;
6651 }
6652 }
6653
6654 if (device->fs_devices != root->fs_info->fs_devices) {
6655 BUG_ON(device->writeable);
6656 if (device->generation !=
6657 btrfs_device_generation(leaf, dev_item))
6658 return -EINVAL;
6659 }
6660
6661 fill_device_from_item(leaf, dev_item, device);
6662 device->in_fs_metadata = 1;
6663 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6664 device->fs_devices->total_rw_bytes += device->total_bytes;
6665 spin_lock(&root->fs_info->free_chunk_lock);
6666 root->fs_info->free_chunk_space += device->total_bytes -
6667 device->bytes_used;
6668 spin_unlock(&root->fs_info->free_chunk_lock);
6669 }
6670 ret = 0;
6671 return ret;
6672 }
6673
btrfs_read_sys_array(struct btrfs_root * root)6674 int btrfs_read_sys_array(struct btrfs_root *root)
6675 {
6676 struct btrfs_fs_info *fs_info = root->fs_info;
6677 struct btrfs_super_block *super_copy = fs_info->super_copy;
6678 struct extent_buffer *sb;
6679 struct btrfs_disk_key *disk_key;
6680 struct btrfs_chunk *chunk;
6681 u8 *array_ptr;
6682 unsigned long sb_array_offset;
6683 int ret = 0;
6684 u32 num_stripes;
6685 u32 array_size;
6686 u32 len = 0;
6687 u32 cur_offset;
6688 u64 type;
6689 struct btrfs_key key;
6690
6691 ASSERT(BTRFS_SUPER_INFO_SIZE <= root->nodesize);
6692 /*
6693 * This will create extent buffer of nodesize, superblock size is
6694 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6695 * overallocate but we can keep it as-is, only the first page is used.
6696 */
6697 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET);
6698 if (IS_ERR(sb))
6699 return PTR_ERR(sb);
6700 set_extent_buffer_uptodate(sb);
6701 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6702 /*
6703 * The sb extent buffer is artificial and just used to read the system array.
6704 * set_extent_buffer_uptodate() call does not properly mark all it's
6705 * pages up-to-date when the page is larger: extent does not cover the
6706 * whole page and consequently check_page_uptodate does not find all
6707 * the page's extents up-to-date (the hole beyond sb),
6708 * write_extent_buffer then triggers a WARN_ON.
6709 *
6710 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6711 * but sb spans only this function. Add an explicit SetPageUptodate call
6712 * to silence the warning eg. on PowerPC 64.
6713 */
6714 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6715 SetPageUptodate(sb->pages[0]);
6716
6717 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6718 array_size = btrfs_super_sys_array_size(super_copy);
6719
6720 array_ptr = super_copy->sys_chunk_array;
6721 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6722 cur_offset = 0;
6723
6724 while (cur_offset < array_size) {
6725 disk_key = (struct btrfs_disk_key *)array_ptr;
6726 len = sizeof(*disk_key);
6727 if (cur_offset + len > array_size)
6728 goto out_short_read;
6729
6730 btrfs_disk_key_to_cpu(&key, disk_key);
6731
6732 array_ptr += len;
6733 sb_array_offset += len;
6734 cur_offset += len;
6735
6736 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6737 chunk = (struct btrfs_chunk *)sb_array_offset;
6738 /*
6739 * At least one btrfs_chunk with one stripe must be
6740 * present, exact stripe count check comes afterwards
6741 */
6742 len = btrfs_chunk_item_size(1);
6743 if (cur_offset + len > array_size)
6744 goto out_short_read;
6745
6746 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6747 if (!num_stripes) {
6748 btrfs_err(fs_info,
6749 "invalid number of stripes %u in sys_array at offset %u",
6750 num_stripes, cur_offset);
6751 ret = -EIO;
6752 break;
6753 }
6754
6755 type = btrfs_chunk_type(sb, chunk);
6756 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6757 btrfs_err(fs_info,
6758 "invalid chunk type %llu in sys_array at offset %u",
6759 type, cur_offset);
6760 ret = -EIO;
6761 break;
6762 }
6763
6764 len = btrfs_chunk_item_size(num_stripes);
6765 if (cur_offset + len > array_size)
6766 goto out_short_read;
6767
6768 ret = read_one_chunk(root, &key, sb, chunk);
6769 if (ret)
6770 break;
6771 } else {
6772 btrfs_err(fs_info,
6773 "unexpected item type %u in sys_array at offset %u",
6774 (u32)key.type, cur_offset);
6775 ret = -EIO;
6776 break;
6777 }
6778 array_ptr += len;
6779 sb_array_offset += len;
6780 cur_offset += len;
6781 }
6782 clear_extent_buffer_uptodate(sb);
6783 free_extent_buffer_stale(sb);
6784 return ret;
6785
6786 out_short_read:
6787 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6788 len, cur_offset);
6789 clear_extent_buffer_uptodate(sb);
6790 free_extent_buffer_stale(sb);
6791 return -EIO;
6792 }
6793
btrfs_read_chunk_tree(struct btrfs_root * root)6794 int btrfs_read_chunk_tree(struct btrfs_root *root)
6795 {
6796 struct btrfs_path *path;
6797 struct extent_buffer *leaf;
6798 struct btrfs_key key;
6799 struct btrfs_key found_key;
6800 int ret;
6801 int slot;
6802 u64 total_dev = 0;
6803
6804 root = root->fs_info->chunk_root;
6805
6806 path = btrfs_alloc_path();
6807 if (!path)
6808 return -ENOMEM;
6809
6810 mutex_lock(&uuid_mutex);
6811 lock_chunks(root);
6812
6813 /*
6814 * Read all device items, and then all the chunk items. All
6815 * device items are found before any chunk item (their object id
6816 * is smaller than the lowest possible object id for a chunk
6817 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6818 */
6819 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6820 key.offset = 0;
6821 key.type = 0;
6822 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6823 if (ret < 0)
6824 goto error;
6825 while (1) {
6826 leaf = path->nodes[0];
6827 slot = path->slots[0];
6828 if (slot >= btrfs_header_nritems(leaf)) {
6829 ret = btrfs_next_leaf(root, path);
6830 if (ret == 0)
6831 continue;
6832 if (ret < 0)
6833 goto error;
6834 break;
6835 }
6836 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6837 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6838 struct btrfs_dev_item *dev_item;
6839 dev_item = btrfs_item_ptr(leaf, slot,
6840 struct btrfs_dev_item);
6841 ret = read_one_dev(root, leaf, dev_item);
6842 if (ret)
6843 goto error;
6844 total_dev++;
6845 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6846 struct btrfs_chunk *chunk;
6847 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6848 ret = read_one_chunk(root, &found_key, leaf, chunk);
6849 if (ret)
6850 goto error;
6851 }
6852 path->slots[0]++;
6853 }
6854
6855 /*
6856 * After loading chunk tree, we've got all device information,
6857 * do another round of validation checks.
6858 */
6859 if (total_dev != root->fs_info->fs_devices->total_devices) {
6860 btrfs_err(root->fs_info,
6861 "super_num_devices %llu mismatch with num_devices %llu found here",
6862 btrfs_super_num_devices(root->fs_info->super_copy),
6863 total_dev);
6864 ret = -EINVAL;
6865 goto error;
6866 }
6867 if (btrfs_super_total_bytes(root->fs_info->super_copy) <
6868 root->fs_info->fs_devices->total_rw_bytes) {
6869 btrfs_err(root->fs_info,
6870 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6871 btrfs_super_total_bytes(root->fs_info->super_copy),
6872 root->fs_info->fs_devices->total_rw_bytes);
6873 ret = -EINVAL;
6874 goto error;
6875 }
6876 ret = 0;
6877 error:
6878 unlock_chunks(root);
6879 mutex_unlock(&uuid_mutex);
6880
6881 btrfs_free_path(path);
6882 return ret;
6883 }
6884
btrfs_init_devices_late(struct btrfs_fs_info * fs_info)6885 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6886 {
6887 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6888 struct btrfs_device *device;
6889
6890 while (fs_devices) {
6891 mutex_lock(&fs_devices->device_list_mutex);
6892 list_for_each_entry(device, &fs_devices->devices, dev_list)
6893 device->dev_root = fs_info->dev_root;
6894 mutex_unlock(&fs_devices->device_list_mutex);
6895
6896 fs_devices = fs_devices->seed;
6897 }
6898 }
6899
__btrfs_reset_dev_stats(struct btrfs_device * dev)6900 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6901 {
6902 int i;
6903
6904 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6905 btrfs_dev_stat_reset(dev, i);
6906 }
6907
btrfs_init_dev_stats(struct btrfs_fs_info * fs_info)6908 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6909 {
6910 struct btrfs_key key;
6911 struct btrfs_key found_key;
6912 struct btrfs_root *dev_root = fs_info->dev_root;
6913 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6914 struct extent_buffer *eb;
6915 int slot;
6916 int ret = 0;
6917 struct btrfs_device *device;
6918 struct btrfs_path *path = NULL;
6919 int i;
6920
6921 path = btrfs_alloc_path();
6922 if (!path) {
6923 ret = -ENOMEM;
6924 goto out;
6925 }
6926
6927 mutex_lock(&fs_devices->device_list_mutex);
6928 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6929 int item_size;
6930 struct btrfs_dev_stats_item *ptr;
6931
6932 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6933 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6934 key.offset = device->devid;
6935 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6936 if (ret) {
6937 __btrfs_reset_dev_stats(device);
6938 device->dev_stats_valid = 1;
6939 btrfs_release_path(path);
6940 continue;
6941 }
6942 slot = path->slots[0];
6943 eb = path->nodes[0];
6944 btrfs_item_key_to_cpu(eb, &found_key, slot);
6945 item_size = btrfs_item_size_nr(eb, slot);
6946
6947 ptr = btrfs_item_ptr(eb, slot,
6948 struct btrfs_dev_stats_item);
6949
6950 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6951 if (item_size >= (1 + i) * sizeof(__le64))
6952 btrfs_dev_stat_set(device, i,
6953 btrfs_dev_stats_value(eb, ptr, i));
6954 else
6955 btrfs_dev_stat_reset(device, i);
6956 }
6957
6958 device->dev_stats_valid = 1;
6959 btrfs_dev_stat_print_on_load(device);
6960 btrfs_release_path(path);
6961 }
6962 mutex_unlock(&fs_devices->device_list_mutex);
6963
6964 out:
6965 btrfs_free_path(path);
6966 return ret < 0 ? ret : 0;
6967 }
6968
update_dev_stat_item(struct btrfs_trans_handle * trans,struct btrfs_root * dev_root,struct btrfs_device * device)6969 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6970 struct btrfs_root *dev_root,
6971 struct btrfs_device *device)
6972 {
6973 struct btrfs_path *path;
6974 struct btrfs_key key;
6975 struct extent_buffer *eb;
6976 struct btrfs_dev_stats_item *ptr;
6977 int ret;
6978 int i;
6979
6980 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6981 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6982 key.offset = device->devid;
6983
6984 path = btrfs_alloc_path();
6985 BUG_ON(!path);
6986 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6987 if (ret < 0) {
6988 btrfs_warn_in_rcu(dev_root->fs_info,
6989 "error %d while searching for dev_stats item for device %s",
6990 ret, rcu_str_deref(device->name));
6991 goto out;
6992 }
6993
6994 if (ret == 0 &&
6995 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6996 /* need to delete old one and insert a new one */
6997 ret = btrfs_del_item(trans, dev_root, path);
6998 if (ret != 0) {
6999 btrfs_warn_in_rcu(dev_root->fs_info,
7000 "delete too small dev_stats item for device %s failed %d",
7001 rcu_str_deref(device->name), ret);
7002 goto out;
7003 }
7004 ret = 1;
7005 }
7006
7007 if (ret == 1) {
7008 /* need to insert a new item */
7009 btrfs_release_path(path);
7010 ret = btrfs_insert_empty_item(trans, dev_root, path,
7011 &key, sizeof(*ptr));
7012 if (ret < 0) {
7013 btrfs_warn_in_rcu(dev_root->fs_info,
7014 "insert dev_stats item for device %s failed %d",
7015 rcu_str_deref(device->name), ret);
7016 goto out;
7017 }
7018 }
7019
7020 eb = path->nodes[0];
7021 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7022 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7023 btrfs_set_dev_stats_value(eb, ptr, i,
7024 btrfs_dev_stat_read(device, i));
7025 btrfs_mark_buffer_dirty(eb);
7026
7027 out:
7028 btrfs_free_path(path);
7029 return ret;
7030 }
7031
7032 /*
7033 * called from commit_transaction. Writes all changed device stats to disk.
7034 */
btrfs_run_dev_stats(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)7035 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7036 struct btrfs_fs_info *fs_info)
7037 {
7038 struct btrfs_root *dev_root = fs_info->dev_root;
7039 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7040 struct btrfs_device *device;
7041 int stats_cnt;
7042 int ret = 0;
7043
7044 mutex_lock(&fs_devices->device_list_mutex);
7045 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7046 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7047 continue;
7048
7049 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7050 ret = update_dev_stat_item(trans, dev_root, device);
7051 if (!ret)
7052 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7053 }
7054 mutex_unlock(&fs_devices->device_list_mutex);
7055
7056 return ret;
7057 }
7058
btrfs_dev_stat_inc_and_print(struct btrfs_device * dev,int index)7059 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7060 {
7061 btrfs_dev_stat_inc(dev, index);
7062 btrfs_dev_stat_print_on_error(dev);
7063 }
7064
btrfs_dev_stat_print_on_error(struct btrfs_device * dev)7065 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7066 {
7067 if (!dev->dev_stats_valid)
7068 return;
7069 btrfs_err_rl_in_rcu(dev->dev_root->fs_info,
7070 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7071 rcu_str_deref(dev->name),
7072 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7073 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7074 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7075 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7076 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7077 }
7078
btrfs_dev_stat_print_on_load(struct btrfs_device * dev)7079 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7080 {
7081 int i;
7082
7083 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7084 if (btrfs_dev_stat_read(dev, i) != 0)
7085 break;
7086 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7087 return; /* all values == 0, suppress message */
7088
7089 btrfs_info_in_rcu(dev->dev_root->fs_info,
7090 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7091 rcu_str_deref(dev->name),
7092 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7093 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7094 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7095 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7096 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7097 }
7098
btrfs_get_dev_stats(struct btrfs_root * root,struct btrfs_ioctl_get_dev_stats * stats)7099 int btrfs_get_dev_stats(struct btrfs_root *root,
7100 struct btrfs_ioctl_get_dev_stats *stats)
7101 {
7102 struct btrfs_device *dev;
7103 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7104 int i;
7105
7106 mutex_lock(&fs_devices->device_list_mutex);
7107 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
7108 mutex_unlock(&fs_devices->device_list_mutex);
7109
7110 if (!dev) {
7111 btrfs_warn(root->fs_info,
7112 "get dev_stats failed, device not found");
7113 return -ENODEV;
7114 } else if (!dev->dev_stats_valid) {
7115 btrfs_warn(root->fs_info,
7116 "get dev_stats failed, not yet valid");
7117 return -ENODEV;
7118 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7119 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7120 if (stats->nr_items > i)
7121 stats->values[i] =
7122 btrfs_dev_stat_read_and_reset(dev, i);
7123 else
7124 btrfs_dev_stat_reset(dev, i);
7125 }
7126 } else {
7127 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7128 if (stats->nr_items > i)
7129 stats->values[i] = btrfs_dev_stat_read(dev, i);
7130 }
7131 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7132 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7133 return 0;
7134 }
7135
btrfs_scratch_superblocks(struct block_device * bdev,char * device_path)7136 void btrfs_scratch_superblocks(struct block_device *bdev, char *device_path)
7137 {
7138 struct buffer_head *bh;
7139 struct btrfs_super_block *disk_super;
7140 int copy_num;
7141
7142 if (!bdev)
7143 return;
7144
7145 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7146 copy_num++) {
7147
7148 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7149 continue;
7150
7151 disk_super = (struct btrfs_super_block *)bh->b_data;
7152
7153 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7154 set_buffer_dirty(bh);
7155 sync_dirty_buffer(bh);
7156 brelse(bh);
7157 }
7158
7159 /* Notify udev that device has changed */
7160 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7161
7162 /* Update ctime/mtime for device path for libblkid */
7163 update_dev_time(device_path);
7164 }
7165
7166 /*
7167 * Update the size of all devices, which is used for writing out the
7168 * super blocks.
7169 */
btrfs_update_commit_device_size(struct btrfs_fs_info * fs_info)7170 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7171 {
7172 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7173 struct btrfs_device *curr, *next;
7174
7175 if (list_empty(&fs_devices->resized_devices))
7176 return;
7177
7178 mutex_lock(&fs_devices->device_list_mutex);
7179 lock_chunks(fs_info->dev_root);
7180 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7181 resized_list) {
7182 list_del_init(&curr->resized_list);
7183 curr->commit_total_bytes = curr->disk_total_bytes;
7184 }
7185 unlock_chunks(fs_info->dev_root);
7186 mutex_unlock(&fs_devices->device_list_mutex);
7187 }
7188
7189 /* Must be invoked during the transaction commit */
btrfs_update_commit_device_bytes_used(struct btrfs_root * root,struct btrfs_transaction * transaction)7190 void btrfs_update_commit_device_bytes_used(struct btrfs_root *root,
7191 struct btrfs_transaction *transaction)
7192 {
7193 struct extent_map *em;
7194 struct map_lookup *map;
7195 struct btrfs_device *dev;
7196 int i;
7197
7198 if (list_empty(&transaction->pending_chunks))
7199 return;
7200
7201 /* In order to kick the device replace finish process */
7202 lock_chunks(root);
7203 list_for_each_entry(em, &transaction->pending_chunks, list) {
7204 map = em->map_lookup;
7205
7206 for (i = 0; i < map->num_stripes; i++) {
7207 dev = map->stripes[i].dev;
7208 dev->commit_bytes_used = dev->bytes_used;
7209 }
7210 }
7211 unlock_chunks(root);
7212 }
7213
btrfs_set_fs_info_ptr(struct btrfs_fs_info * fs_info)7214 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7215 {
7216 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7217 while (fs_devices) {
7218 fs_devices->fs_info = fs_info;
7219 fs_devices = fs_devices->seed;
7220 }
7221 }
7222
btrfs_reset_fs_info_ptr(struct btrfs_fs_info * fs_info)7223 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7224 {
7225 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7226 while (fs_devices) {
7227 fs_devices->fs_info = NULL;
7228 fs_devices = fs_devices->seed;
7229 }
7230 }
7231