1 /*
2 * nvme-lightnvm.c - LightNVM NVMe device
3 *
4 * Copyright (C) 2014-2015 IT University of Copenhagen
5 * Initial release: Matias Bjorling <mb@lightnvm.io>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License version
9 * 2 as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; see the file COPYING. If not, write to
18 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
19 * USA.
20 *
21 */
22
23 #include "nvme.h"
24
25 #include <linux/nvme.h>
26 #include <linux/bitops.h>
27 #include <linux/lightnvm.h>
28 #include <linux/vmalloc.h>
29
30 enum nvme_nvm_admin_opcode {
31 nvme_nvm_admin_identity = 0xe2,
32 nvme_nvm_admin_get_l2p_tbl = 0xea,
33 nvme_nvm_admin_get_bb_tbl = 0xf2,
34 nvme_nvm_admin_set_bb_tbl = 0xf1,
35 };
36
37 struct nvme_nvm_hb_rw {
38 __u8 opcode;
39 __u8 flags;
40 __u16 command_id;
41 __le32 nsid;
42 __u64 rsvd2;
43 __le64 metadata;
44 __le64 prp1;
45 __le64 prp2;
46 __le64 spba;
47 __le16 length;
48 __le16 control;
49 __le32 dsmgmt;
50 __le64 slba;
51 };
52
53 struct nvme_nvm_ph_rw {
54 __u8 opcode;
55 __u8 flags;
56 __u16 command_id;
57 __le32 nsid;
58 __u64 rsvd2;
59 __le64 metadata;
60 __le64 prp1;
61 __le64 prp2;
62 __le64 spba;
63 __le16 length;
64 __le16 control;
65 __le32 dsmgmt;
66 __le64 resv;
67 };
68
69 struct nvme_nvm_identity {
70 __u8 opcode;
71 __u8 flags;
72 __u16 command_id;
73 __le32 nsid;
74 __u64 rsvd[2];
75 __le64 prp1;
76 __le64 prp2;
77 __le32 chnl_off;
78 __u32 rsvd11[5];
79 };
80
81 struct nvme_nvm_l2ptbl {
82 __u8 opcode;
83 __u8 flags;
84 __u16 command_id;
85 __le32 nsid;
86 __le32 cdw2[4];
87 __le64 prp1;
88 __le64 prp2;
89 __le64 slba;
90 __le32 nlb;
91 __le16 cdw14[6];
92 };
93
94 struct nvme_nvm_getbbtbl {
95 __u8 opcode;
96 __u8 flags;
97 __u16 command_id;
98 __le32 nsid;
99 __u64 rsvd[2];
100 __le64 prp1;
101 __le64 prp2;
102 __le64 spba;
103 __u32 rsvd4[4];
104 };
105
106 struct nvme_nvm_setbbtbl {
107 __u8 opcode;
108 __u8 flags;
109 __u16 command_id;
110 __le32 nsid;
111 __le64 rsvd[2];
112 __le64 prp1;
113 __le64 prp2;
114 __le64 spba;
115 __le16 nlb;
116 __u8 value;
117 __u8 rsvd3;
118 __u32 rsvd4[3];
119 };
120
121 struct nvme_nvm_erase_blk {
122 __u8 opcode;
123 __u8 flags;
124 __u16 command_id;
125 __le32 nsid;
126 __u64 rsvd[2];
127 __le64 prp1;
128 __le64 prp2;
129 __le64 spba;
130 __le16 length;
131 __le16 control;
132 __le32 dsmgmt;
133 __le64 resv;
134 };
135
136 struct nvme_nvm_command {
137 union {
138 struct nvme_common_command common;
139 struct nvme_nvm_identity identity;
140 struct nvme_nvm_hb_rw hb_rw;
141 struct nvme_nvm_ph_rw ph_rw;
142 struct nvme_nvm_l2ptbl l2p;
143 struct nvme_nvm_getbbtbl get_bb;
144 struct nvme_nvm_setbbtbl set_bb;
145 struct nvme_nvm_erase_blk erase;
146 };
147 };
148
149 struct nvme_nvm_completion {
150 __le64 result; /* Used by LightNVM to return ppa completions */
151 __le16 sq_head; /* how much of this queue may be reclaimed */
152 __le16 sq_id; /* submission queue that generated this entry */
153 __u16 command_id; /* of the command which completed */
154 __le16 status; /* did the command fail, and if so, why? */
155 };
156
157 #define NVME_NVM_LP_MLC_PAIRS 886
158 struct nvme_nvm_lp_mlc {
159 __le16 num_pairs;
160 __u8 pairs[NVME_NVM_LP_MLC_PAIRS];
161 };
162
163 struct nvme_nvm_lp_tbl {
164 __u8 id[8];
165 struct nvme_nvm_lp_mlc mlc;
166 };
167
168 struct nvme_nvm_id_group {
169 __u8 mtype;
170 __u8 fmtype;
171 __le16 res16;
172 __u8 num_ch;
173 __u8 num_lun;
174 __u8 num_pln;
175 __u8 rsvd1;
176 __le16 num_blk;
177 __le16 num_pg;
178 __le16 fpg_sz;
179 __le16 csecs;
180 __le16 sos;
181 __le16 rsvd2;
182 __le32 trdt;
183 __le32 trdm;
184 __le32 tprt;
185 __le32 tprm;
186 __le32 tbet;
187 __le32 tbem;
188 __le32 mpos;
189 __le32 mccap;
190 __le16 cpar;
191 __u8 reserved[10];
192 struct nvme_nvm_lp_tbl lptbl;
193 } __packed;
194
195 struct nvme_nvm_addr_format {
196 __u8 ch_offset;
197 __u8 ch_len;
198 __u8 lun_offset;
199 __u8 lun_len;
200 __u8 pln_offset;
201 __u8 pln_len;
202 __u8 blk_offset;
203 __u8 blk_len;
204 __u8 pg_offset;
205 __u8 pg_len;
206 __u8 sect_offset;
207 __u8 sect_len;
208 __u8 res[4];
209 } __packed;
210
211 struct nvme_nvm_id {
212 __u8 ver_id;
213 __u8 vmnt;
214 __u8 cgrps;
215 __u8 res;
216 __le32 cap;
217 __le32 dom;
218 struct nvme_nvm_addr_format ppaf;
219 __u8 resv[228];
220 struct nvme_nvm_id_group groups[4];
221 } __packed;
222
223 struct nvme_nvm_bb_tbl {
224 __u8 tblid[4];
225 __le16 verid;
226 __le16 revid;
227 __le32 rvsd1;
228 __le32 tblks;
229 __le32 tfact;
230 __le32 tgrown;
231 __le32 tdresv;
232 __le32 thresv;
233 __le32 rsvd2[8];
234 __u8 blk[0];
235 };
236
237 /*
238 * Check we didn't inadvertently grow the command struct
239 */
_nvme_nvm_check_size(void)240 static inline void _nvme_nvm_check_size(void)
241 {
242 BUILD_BUG_ON(sizeof(struct nvme_nvm_identity) != 64);
243 BUILD_BUG_ON(sizeof(struct nvme_nvm_hb_rw) != 64);
244 BUILD_BUG_ON(sizeof(struct nvme_nvm_ph_rw) != 64);
245 BUILD_BUG_ON(sizeof(struct nvme_nvm_getbbtbl) != 64);
246 BUILD_BUG_ON(sizeof(struct nvme_nvm_setbbtbl) != 64);
247 BUILD_BUG_ON(sizeof(struct nvme_nvm_l2ptbl) != 64);
248 BUILD_BUG_ON(sizeof(struct nvme_nvm_erase_blk) != 64);
249 BUILD_BUG_ON(sizeof(struct nvme_nvm_id_group) != 960);
250 BUILD_BUG_ON(sizeof(struct nvme_nvm_addr_format) != 128);
251 BUILD_BUG_ON(sizeof(struct nvme_nvm_id) != 4096);
252 BUILD_BUG_ON(sizeof(struct nvme_nvm_bb_tbl) != 512);
253 }
254
init_grps(struct nvm_id * nvm_id,struct nvme_nvm_id * nvme_nvm_id)255 static int init_grps(struct nvm_id *nvm_id, struct nvme_nvm_id *nvme_nvm_id)
256 {
257 struct nvme_nvm_id_group *src;
258 struct nvm_id_group *dst;
259 int i, end;
260
261 end = min_t(u32, 4, nvm_id->cgrps);
262
263 for (i = 0; i < end; i++) {
264 src = &nvme_nvm_id->groups[i];
265 dst = &nvm_id->groups[i];
266
267 dst->mtype = src->mtype;
268 dst->fmtype = src->fmtype;
269 dst->num_ch = src->num_ch;
270 dst->num_lun = src->num_lun;
271 dst->num_pln = src->num_pln;
272
273 dst->num_pg = le16_to_cpu(src->num_pg);
274 dst->num_blk = le16_to_cpu(src->num_blk);
275 dst->fpg_sz = le16_to_cpu(src->fpg_sz);
276 dst->csecs = le16_to_cpu(src->csecs);
277 dst->sos = le16_to_cpu(src->sos);
278
279 dst->trdt = le32_to_cpu(src->trdt);
280 dst->trdm = le32_to_cpu(src->trdm);
281 dst->tprt = le32_to_cpu(src->tprt);
282 dst->tprm = le32_to_cpu(src->tprm);
283 dst->tbet = le32_to_cpu(src->tbet);
284 dst->tbem = le32_to_cpu(src->tbem);
285 dst->mpos = le32_to_cpu(src->mpos);
286 dst->mccap = le32_to_cpu(src->mccap);
287
288 dst->cpar = le16_to_cpu(src->cpar);
289
290 if (dst->fmtype == NVM_ID_FMTYPE_MLC) {
291 memcpy(dst->lptbl.id, src->lptbl.id, 8);
292 dst->lptbl.mlc.num_pairs =
293 le16_to_cpu(src->lptbl.mlc.num_pairs);
294
295 if (dst->lptbl.mlc.num_pairs > NVME_NVM_LP_MLC_PAIRS) {
296 pr_err("nvm: number of MLC pairs not supported\n");
297 return -EINVAL;
298 }
299
300 memcpy(dst->lptbl.mlc.pairs, src->lptbl.mlc.pairs,
301 dst->lptbl.mlc.num_pairs);
302 }
303 }
304
305 return 0;
306 }
307
nvme_nvm_identity(struct nvm_dev * nvmdev,struct nvm_id * nvm_id)308 static int nvme_nvm_identity(struct nvm_dev *nvmdev, struct nvm_id *nvm_id)
309 {
310 struct nvme_ns *ns = nvmdev->q->queuedata;
311 struct nvme_nvm_id *nvme_nvm_id;
312 struct nvme_nvm_command c = {};
313 int ret;
314
315 c.identity.opcode = nvme_nvm_admin_identity;
316 c.identity.nsid = cpu_to_le32(ns->ns_id);
317 c.identity.chnl_off = 0;
318
319 nvme_nvm_id = kmalloc(sizeof(struct nvme_nvm_id), GFP_KERNEL);
320 if (!nvme_nvm_id)
321 return -ENOMEM;
322
323 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, (struct nvme_command *)&c,
324 nvme_nvm_id, sizeof(struct nvme_nvm_id));
325 if (ret) {
326 ret = -EIO;
327 goto out;
328 }
329
330 nvm_id->ver_id = nvme_nvm_id->ver_id;
331 nvm_id->vmnt = nvme_nvm_id->vmnt;
332 nvm_id->cgrps = nvme_nvm_id->cgrps;
333 nvm_id->cap = le32_to_cpu(nvme_nvm_id->cap);
334 nvm_id->dom = le32_to_cpu(nvme_nvm_id->dom);
335 memcpy(&nvm_id->ppaf, &nvme_nvm_id->ppaf,
336 sizeof(struct nvme_nvm_addr_format));
337
338 ret = init_grps(nvm_id, nvme_nvm_id);
339 out:
340 kfree(nvme_nvm_id);
341 return ret;
342 }
343
nvme_nvm_get_l2p_tbl(struct nvm_dev * nvmdev,u64 slba,u32 nlb,nvm_l2p_update_fn * update_l2p,void * priv)344 static int nvme_nvm_get_l2p_tbl(struct nvm_dev *nvmdev, u64 slba, u32 nlb,
345 nvm_l2p_update_fn *update_l2p, void *priv)
346 {
347 struct nvme_ns *ns = nvmdev->q->queuedata;
348 struct nvme_nvm_command c = {};
349 u32 len = queue_max_hw_sectors(ns->ctrl->admin_q) << 9;
350 u32 nlb_pr_rq = len / sizeof(u64);
351 u64 cmd_slba = slba;
352 void *entries;
353 int ret = 0;
354
355 c.l2p.opcode = nvme_nvm_admin_get_l2p_tbl;
356 c.l2p.nsid = cpu_to_le32(ns->ns_id);
357 entries = kmalloc(len, GFP_KERNEL);
358 if (!entries)
359 return -ENOMEM;
360
361 while (nlb) {
362 u32 cmd_nlb = min(nlb_pr_rq, nlb);
363
364 c.l2p.slba = cpu_to_le64(cmd_slba);
365 c.l2p.nlb = cpu_to_le32(cmd_nlb);
366
367 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q,
368 (struct nvme_command *)&c, entries, len);
369 if (ret) {
370 dev_err(ns->ctrl->device,
371 "L2P table transfer failed (%d)\n", ret);
372 ret = -EIO;
373 goto out;
374 }
375
376 if (update_l2p(cmd_slba, cmd_nlb, entries, priv)) {
377 ret = -EINTR;
378 goto out;
379 }
380
381 cmd_slba += cmd_nlb;
382 nlb -= cmd_nlb;
383 }
384
385 out:
386 kfree(entries);
387 return ret;
388 }
389
nvme_nvm_get_bb_tbl(struct nvm_dev * nvmdev,struct ppa_addr ppa,u8 * blks)390 static int nvme_nvm_get_bb_tbl(struct nvm_dev *nvmdev, struct ppa_addr ppa,
391 u8 *blks)
392 {
393 struct request_queue *q = nvmdev->q;
394 struct nvme_ns *ns = q->queuedata;
395 struct nvme_ctrl *ctrl = ns->ctrl;
396 struct nvme_nvm_command c = {};
397 struct nvme_nvm_bb_tbl *bb_tbl;
398 int nr_blks = nvmdev->blks_per_lun * nvmdev->plane_mode;
399 int tblsz = sizeof(struct nvme_nvm_bb_tbl) + nr_blks;
400 int ret = 0;
401
402 c.get_bb.opcode = nvme_nvm_admin_get_bb_tbl;
403 c.get_bb.nsid = cpu_to_le32(ns->ns_id);
404 c.get_bb.spba = cpu_to_le64(ppa.ppa);
405
406 bb_tbl = kzalloc(tblsz, GFP_KERNEL);
407 if (!bb_tbl)
408 return -ENOMEM;
409
410 ret = nvme_submit_sync_cmd(ctrl->admin_q, (struct nvme_command *)&c,
411 bb_tbl, tblsz);
412 if (ret) {
413 dev_err(ctrl->device, "get bad block table failed (%d)\n", ret);
414 ret = -EIO;
415 goto out;
416 }
417
418 if (bb_tbl->tblid[0] != 'B' || bb_tbl->tblid[1] != 'B' ||
419 bb_tbl->tblid[2] != 'L' || bb_tbl->tblid[3] != 'T') {
420 dev_err(ctrl->device, "bbt format mismatch\n");
421 ret = -EINVAL;
422 goto out;
423 }
424
425 if (le16_to_cpu(bb_tbl->verid) != 1) {
426 ret = -EINVAL;
427 dev_err(ctrl->device, "bbt version not supported\n");
428 goto out;
429 }
430
431 if (le32_to_cpu(bb_tbl->tblks) != nr_blks) {
432 ret = -EINVAL;
433 dev_err(ctrl->device,
434 "bbt unsuspected blocks returned (%u!=%u)",
435 le32_to_cpu(bb_tbl->tblks), nr_blks);
436 goto out;
437 }
438
439 memcpy(blks, bb_tbl->blk, nvmdev->blks_per_lun * nvmdev->plane_mode);
440 out:
441 kfree(bb_tbl);
442 return ret;
443 }
444
nvme_nvm_set_bb_tbl(struct nvm_dev * nvmdev,struct ppa_addr * ppas,int nr_ppas,int type)445 static int nvme_nvm_set_bb_tbl(struct nvm_dev *nvmdev, struct ppa_addr *ppas,
446 int nr_ppas, int type)
447 {
448 struct nvme_ns *ns = nvmdev->q->queuedata;
449 struct nvme_nvm_command c = {};
450 int ret = 0;
451
452 c.set_bb.opcode = nvme_nvm_admin_set_bb_tbl;
453 c.set_bb.nsid = cpu_to_le32(ns->ns_id);
454 c.set_bb.spba = cpu_to_le64(ppas->ppa);
455 c.set_bb.nlb = cpu_to_le16(nr_ppas - 1);
456 c.set_bb.value = type;
457
458 ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, (struct nvme_command *)&c,
459 NULL, 0);
460 if (ret)
461 dev_err(ns->ctrl->device, "set bad block table failed (%d)\n",
462 ret);
463 return ret;
464 }
465
nvme_nvm_rqtocmd(struct request * rq,struct nvm_rq * rqd,struct nvme_ns * ns,struct nvme_nvm_command * c)466 static inline void nvme_nvm_rqtocmd(struct request *rq, struct nvm_rq *rqd,
467 struct nvme_ns *ns, struct nvme_nvm_command *c)
468 {
469 c->ph_rw.opcode = rqd->opcode;
470 c->ph_rw.nsid = cpu_to_le32(ns->ns_id);
471 c->ph_rw.spba = cpu_to_le64(rqd->ppa_addr.ppa);
472 c->ph_rw.metadata = cpu_to_le64(rqd->dma_meta_list);
473 c->ph_rw.control = cpu_to_le16(rqd->flags);
474 c->ph_rw.length = cpu_to_le16(rqd->nr_ppas - 1);
475
476 if (rqd->opcode == NVM_OP_HBWRITE || rqd->opcode == NVM_OP_HBREAD)
477 c->hb_rw.slba = cpu_to_le64(nvme_block_nr(ns,
478 rqd->bio->bi_iter.bi_sector));
479 }
480
nvme_nvm_end_io(struct request * rq,int error)481 static void nvme_nvm_end_io(struct request *rq, int error)
482 {
483 struct nvm_rq *rqd = rq->end_io_data;
484 struct nvme_nvm_completion *cqe = rq->special;
485
486 if (cqe)
487 rqd->ppa_status = le64_to_cpu(cqe->result);
488
489 nvm_end_io(rqd, error);
490
491 kfree(rq->cmd);
492 blk_mq_free_request(rq);
493 }
494
nvme_nvm_submit_io(struct nvm_dev * dev,struct nvm_rq * rqd)495 static int nvme_nvm_submit_io(struct nvm_dev *dev, struct nvm_rq *rqd)
496 {
497 struct request_queue *q = dev->q;
498 struct nvme_ns *ns = q->queuedata;
499 struct request *rq;
500 struct bio *bio = rqd->bio;
501 struct nvme_nvm_command *cmd;
502
503 rq = blk_mq_alloc_request(q, bio_data_dir(bio), 0);
504 if (IS_ERR(rq))
505 return -ENOMEM;
506
507 cmd = kzalloc(sizeof(struct nvme_nvm_command) +
508 sizeof(struct nvme_nvm_completion), GFP_KERNEL);
509 if (!cmd) {
510 blk_mq_free_request(rq);
511 return -ENOMEM;
512 }
513
514 rq->cmd_type = REQ_TYPE_DRV_PRIV;
515 rq->ioprio = bio_prio(bio);
516
517 if (bio_has_data(bio))
518 rq->nr_phys_segments = bio_phys_segments(q, bio);
519
520 rq->__data_len = bio->bi_iter.bi_size;
521 rq->bio = rq->biotail = bio;
522
523 nvme_nvm_rqtocmd(rq, rqd, ns, cmd);
524
525 rq->cmd = (unsigned char *)cmd;
526 rq->cmd_len = sizeof(struct nvme_nvm_command);
527 rq->special = cmd + 1;
528
529 rq->end_io_data = rqd;
530
531 blk_execute_rq_nowait(q, NULL, rq, 0, nvme_nvm_end_io);
532
533 return 0;
534 }
535
nvme_nvm_erase_block(struct nvm_dev * dev,struct nvm_rq * rqd)536 static int nvme_nvm_erase_block(struct nvm_dev *dev, struct nvm_rq *rqd)
537 {
538 struct request_queue *q = dev->q;
539 struct nvme_ns *ns = q->queuedata;
540 struct nvme_nvm_command c = {};
541
542 c.erase.opcode = NVM_OP_ERASE;
543 c.erase.nsid = cpu_to_le32(ns->ns_id);
544 c.erase.spba = cpu_to_le64(rqd->ppa_addr.ppa);
545 c.erase.length = cpu_to_le16(rqd->nr_ppas - 1);
546
547 return nvme_submit_sync_cmd(q, (struct nvme_command *)&c, NULL, 0);
548 }
549
nvme_nvm_create_dma_pool(struct nvm_dev * nvmdev,char * name)550 static void *nvme_nvm_create_dma_pool(struct nvm_dev *nvmdev, char *name)
551 {
552 struct nvme_ns *ns = nvmdev->q->queuedata;
553
554 return dma_pool_create(name, ns->ctrl->dev, PAGE_SIZE, PAGE_SIZE, 0);
555 }
556
nvme_nvm_destroy_dma_pool(void * pool)557 static void nvme_nvm_destroy_dma_pool(void *pool)
558 {
559 struct dma_pool *dma_pool = pool;
560
561 dma_pool_destroy(dma_pool);
562 }
563
nvme_nvm_dev_dma_alloc(struct nvm_dev * dev,void * pool,gfp_t mem_flags,dma_addr_t * dma_handler)564 static void *nvme_nvm_dev_dma_alloc(struct nvm_dev *dev, void *pool,
565 gfp_t mem_flags, dma_addr_t *dma_handler)
566 {
567 return dma_pool_alloc(pool, mem_flags, dma_handler);
568 }
569
nvme_nvm_dev_dma_free(void * pool,void * addr,dma_addr_t dma_handler)570 static void nvme_nvm_dev_dma_free(void *pool, void *addr,
571 dma_addr_t dma_handler)
572 {
573 dma_pool_free(pool, addr, dma_handler);
574 }
575
576 static struct nvm_dev_ops nvme_nvm_dev_ops = {
577 .identity = nvme_nvm_identity,
578
579 .get_l2p_tbl = nvme_nvm_get_l2p_tbl,
580
581 .get_bb_tbl = nvme_nvm_get_bb_tbl,
582 .set_bb_tbl = nvme_nvm_set_bb_tbl,
583
584 .submit_io = nvme_nvm_submit_io,
585 .erase_block = nvme_nvm_erase_block,
586
587 .create_dma_pool = nvme_nvm_create_dma_pool,
588 .destroy_dma_pool = nvme_nvm_destroy_dma_pool,
589 .dev_dma_alloc = nvme_nvm_dev_dma_alloc,
590 .dev_dma_free = nvme_nvm_dev_dma_free,
591
592 .max_phys_sect = 64,
593 };
594
nvme_nvm_register(struct nvme_ns * ns,char * disk_name,int node,const struct attribute_group * attrs)595 int nvme_nvm_register(struct nvme_ns *ns, char *disk_name, int node,
596 const struct attribute_group *attrs)
597 {
598 struct request_queue *q = ns->queue;
599 struct nvm_dev *dev;
600 int ret;
601
602 dev = nvm_alloc_dev(node);
603 if (!dev)
604 return -ENOMEM;
605
606 dev->q = q;
607 memcpy(dev->name, disk_name, DISK_NAME_LEN);
608 dev->ops = &nvme_nvm_dev_ops;
609 dev->parent_dev = ns->ctrl->device;
610 dev->private_data = ns;
611 ns->ndev = dev;
612
613 ret = nvm_register(dev);
614
615 ns->lba_shift = ilog2(dev->sec_size);
616
617 if (sysfs_create_group(&dev->dev.kobj, attrs))
618 pr_warn("%s: failed to create sysfs group for identification\n",
619 disk_name);
620 return ret;
621 }
622
nvme_nvm_unregister(struct nvme_ns * ns)623 void nvme_nvm_unregister(struct nvme_ns *ns)
624 {
625 nvm_unregister(ns->ndev);
626 }
627
628 /* move to shared place when used in multiple places. */
629 #define PCI_VENDOR_ID_CNEX 0x1d1d
630 #define PCI_DEVICE_ID_CNEX_WL 0x2807
631 #define PCI_DEVICE_ID_CNEX_QEMU 0x1f1f
632
nvme_nvm_ns_supported(struct nvme_ns * ns,struct nvme_id_ns * id)633 int nvme_nvm_ns_supported(struct nvme_ns *ns, struct nvme_id_ns *id)
634 {
635 struct nvme_ctrl *ctrl = ns->ctrl;
636 /* XXX: this is poking into PCI structures from generic code! */
637 struct pci_dev *pdev = to_pci_dev(ctrl->dev);
638
639 /* QEMU NVMe simulator - PCI ID + Vendor specific bit */
640 if (pdev->vendor == PCI_VENDOR_ID_CNEX &&
641 pdev->device == PCI_DEVICE_ID_CNEX_QEMU &&
642 id->vs[0] == 0x1)
643 return 1;
644
645 /* CNEX Labs - PCI ID + Vendor specific bit */
646 if (pdev->vendor == PCI_VENDOR_ID_CNEX &&
647 pdev->device == PCI_DEVICE_ID_CNEX_WL &&
648 id->vs[0] == 0x1)
649 return 1;
650
651 return 0;
652 }
653