• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include "core.h"
17 #include "rdev-ops.h"
18 
19 
20 struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
22 			    u32 basic_rates, int bitrate)
23 {
24 	struct ieee80211_rate *result = &sband->bitrates[0];
25 	int i;
26 
27 	for (i = 0; i < sband->n_bitrates; i++) {
28 		if (!(basic_rates & BIT(i)))
29 			continue;
30 		if (sband->bitrates[i].bitrate > bitrate)
31 			continue;
32 		result = &sband->bitrates[i];
33 	}
34 
35 	return result;
36 }
37 EXPORT_SYMBOL(ieee80211_get_response_rate);
38 
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
40 			      enum nl80211_bss_scan_width scan_width)
41 {
42 	struct ieee80211_rate *bitrates;
43 	u32 mandatory_rates = 0;
44 	enum ieee80211_rate_flags mandatory_flag;
45 	int i;
46 
47 	if (WARN_ON(!sband))
48 		return 1;
49 
50 	if (sband->band == NL80211_BAND_2GHZ) {
51 		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
52 		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
53 			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
54 		else
55 			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
56 	} else {
57 		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
58 	}
59 
60 	bitrates = sband->bitrates;
61 	for (i = 0; i < sband->n_bitrates; i++)
62 		if (bitrates[i].flags & mandatory_flag)
63 			mandatory_rates |= BIT(i);
64 	return mandatory_rates;
65 }
66 EXPORT_SYMBOL(ieee80211_mandatory_rates);
67 
ieee80211_channel_to_frequency(int chan,enum nl80211_band band)68 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
69 {
70 	/* see 802.11 17.3.8.3.2 and Annex J
71 	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
72 	if (chan <= 0)
73 		return 0; /* not supported */
74 	switch (band) {
75 	case NL80211_BAND_2GHZ:
76 		if (chan == 14)
77 			return 2484;
78 		else if (chan < 14)
79 			return 2407 + chan * 5;
80 		break;
81 	case NL80211_BAND_5GHZ:
82 		if (chan >= 182 && chan <= 196)
83 			return 4000 + chan * 5;
84 		else
85 			return 5000 + chan * 5;
86 		break;
87 	case NL80211_BAND_60GHZ:
88 		if (chan < 5)
89 			return 56160 + chan * 2160;
90 		break;
91 	default:
92 		;
93 	}
94 	return 0; /* not supported */
95 }
96 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
97 
ieee80211_frequency_to_channel(int freq)98 int ieee80211_frequency_to_channel(int freq)
99 {
100 	/* see 802.11 17.3.8.3.2 and Annex J */
101 	if (freq == 2484)
102 		return 14;
103 	else if (freq < 2484)
104 		return (freq - 2407) / 5;
105 	else if (freq >= 4910 && freq <= 4980)
106 		return (freq - 4000) / 5;
107 	else if (freq <= 45000) /* DMG band lower limit */
108 		return (freq - 5000) / 5;
109 	else if (freq >= 58320 && freq <= 64800)
110 		return (freq - 56160) / 2160;
111 	else
112 		return 0;
113 }
114 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
115 
__ieee80211_get_channel(struct wiphy * wiphy,int freq)116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
117 						  int freq)
118 {
119 	enum nl80211_band band;
120 	struct ieee80211_supported_band *sband;
121 	int i;
122 
123 	for (band = 0; band < NUM_NL80211_BANDS; band++) {
124 		sband = wiphy->bands[band];
125 
126 		if (!sband)
127 			continue;
128 
129 		for (i = 0; i < sband->n_channels; i++) {
130 			if (sband->channels[i].center_freq == freq)
131 				return &sband->channels[i];
132 		}
133 	}
134 
135 	return NULL;
136 }
137 EXPORT_SYMBOL(__ieee80211_get_channel);
138 
set_mandatory_flags_band(struct ieee80211_supported_band * sband,enum nl80211_band band)139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
140 				     enum nl80211_band band)
141 {
142 	int i, want;
143 
144 	switch (band) {
145 	case NL80211_BAND_5GHZ:
146 		want = 3;
147 		for (i = 0; i < sband->n_bitrates; i++) {
148 			if (sband->bitrates[i].bitrate == 60 ||
149 			    sband->bitrates[i].bitrate == 120 ||
150 			    sband->bitrates[i].bitrate == 240) {
151 				sband->bitrates[i].flags |=
152 					IEEE80211_RATE_MANDATORY_A;
153 				want--;
154 			}
155 		}
156 		WARN_ON(want);
157 		break;
158 	case NL80211_BAND_2GHZ:
159 		want = 7;
160 		for (i = 0; i < sband->n_bitrates; i++) {
161 			if (sband->bitrates[i].bitrate == 10) {
162 				sband->bitrates[i].flags |=
163 					IEEE80211_RATE_MANDATORY_B |
164 					IEEE80211_RATE_MANDATORY_G;
165 				want--;
166 			}
167 
168 			if (sband->bitrates[i].bitrate == 20 ||
169 			    sband->bitrates[i].bitrate == 55 ||
170 			    sband->bitrates[i].bitrate == 110 ||
171 			    sband->bitrates[i].bitrate == 60 ||
172 			    sband->bitrates[i].bitrate == 120 ||
173 			    sband->bitrates[i].bitrate == 240) {
174 				sband->bitrates[i].flags |=
175 					IEEE80211_RATE_MANDATORY_G;
176 				want--;
177 			}
178 
179 			if (sband->bitrates[i].bitrate != 10 &&
180 			    sband->bitrates[i].bitrate != 20 &&
181 			    sband->bitrates[i].bitrate != 55 &&
182 			    sband->bitrates[i].bitrate != 110)
183 				sband->bitrates[i].flags |=
184 					IEEE80211_RATE_ERP_G;
185 		}
186 		WARN_ON(want != 0 && want != 3 && want != 6);
187 		break;
188 	case NL80211_BAND_60GHZ:
189 		/* check for mandatory HT MCS 1..4 */
190 		WARN_ON(!sband->ht_cap.ht_supported);
191 		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
192 		break;
193 	case NUM_NL80211_BANDS:
194 		WARN_ON(1);
195 		break;
196 	}
197 }
198 
ieee80211_set_bitrate_flags(struct wiphy * wiphy)199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 	enum nl80211_band band;
202 
203 	for (band = 0; band < NUM_NL80211_BANDS; band++)
204 		if (wiphy->bands[band])
205 			set_mandatory_flags_band(wiphy->bands[band], band);
206 }
207 
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 	int i;
211 	for (i = 0; i < wiphy->n_cipher_suites; i++)
212 		if (cipher == wiphy->cipher_suites[i])
213 			return true;
214 	return false;
215 }
216 
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 				   struct key_params *params, int key_idx,
219 				   bool pairwise, const u8 *mac_addr)
220 {
221 	if (key_idx < 0 || key_idx > 5)
222 		return -EINVAL;
223 
224 	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 		return -EINVAL;
226 
227 	if (pairwise && !mac_addr)
228 		return -EINVAL;
229 
230 	switch (params->cipher) {
231 	case WLAN_CIPHER_SUITE_TKIP:
232 	case WLAN_CIPHER_SUITE_CCMP:
233 	case WLAN_CIPHER_SUITE_CCMP_256:
234 	case WLAN_CIPHER_SUITE_GCMP:
235 	case WLAN_CIPHER_SUITE_GCMP_256:
236 		/* Disallow pairwise keys with non-zero index unless it's WEP
237 		 * or a vendor specific cipher (because current deployments use
238 		 * pairwise WEP keys with non-zero indices and for vendor
239 		 * specific ciphers this should be validated in the driver or
240 		 * hardware level - but 802.11i clearly specifies to use zero)
241 		 */
242 		if (pairwise && key_idx)
243 			return -EINVAL;
244 		break;
245 	case WLAN_CIPHER_SUITE_AES_CMAC:
246 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 		/* Disallow BIP (group-only) cipher as pairwise cipher */
250 		if (pairwise)
251 			return -EINVAL;
252 		if (key_idx < 4)
253 			return -EINVAL;
254 		break;
255 	case WLAN_CIPHER_SUITE_WEP40:
256 	case WLAN_CIPHER_SUITE_WEP104:
257 		if (key_idx > 3)
258 			return -EINVAL;
259 	default:
260 		break;
261 	}
262 
263 	switch (params->cipher) {
264 	case WLAN_CIPHER_SUITE_WEP40:
265 		if (params->key_len != WLAN_KEY_LEN_WEP40)
266 			return -EINVAL;
267 		break;
268 	case WLAN_CIPHER_SUITE_TKIP:
269 		if (params->key_len != WLAN_KEY_LEN_TKIP)
270 			return -EINVAL;
271 		break;
272 	case WLAN_CIPHER_SUITE_CCMP:
273 		if (params->key_len != WLAN_KEY_LEN_CCMP)
274 			return -EINVAL;
275 		break;
276 	case WLAN_CIPHER_SUITE_CCMP_256:
277 		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
278 			return -EINVAL;
279 		break;
280 	case WLAN_CIPHER_SUITE_GCMP:
281 		if (params->key_len != WLAN_KEY_LEN_GCMP)
282 			return -EINVAL;
283 		break;
284 	case WLAN_CIPHER_SUITE_GCMP_256:
285 		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
286 			return -EINVAL;
287 		break;
288 	case WLAN_CIPHER_SUITE_WEP104:
289 		if (params->key_len != WLAN_KEY_LEN_WEP104)
290 			return -EINVAL;
291 		break;
292 	case WLAN_CIPHER_SUITE_AES_CMAC:
293 		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
294 			return -EINVAL;
295 		break;
296 	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297 		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
298 			return -EINVAL;
299 		break;
300 	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
301 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
302 			return -EINVAL;
303 		break;
304 	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
305 		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
306 			return -EINVAL;
307 		break;
308 	default:
309 		/*
310 		 * We don't know anything about this algorithm,
311 		 * allow using it -- but the driver must check
312 		 * all parameters! We still check below whether
313 		 * or not the driver supports this algorithm,
314 		 * of course.
315 		 */
316 		break;
317 	}
318 
319 	if (params->seq) {
320 		switch (params->cipher) {
321 		case WLAN_CIPHER_SUITE_WEP40:
322 		case WLAN_CIPHER_SUITE_WEP104:
323 			/* These ciphers do not use key sequence */
324 			return -EINVAL;
325 		case WLAN_CIPHER_SUITE_TKIP:
326 		case WLAN_CIPHER_SUITE_CCMP:
327 		case WLAN_CIPHER_SUITE_CCMP_256:
328 		case WLAN_CIPHER_SUITE_GCMP:
329 		case WLAN_CIPHER_SUITE_GCMP_256:
330 		case WLAN_CIPHER_SUITE_AES_CMAC:
331 		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
332 		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333 		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
334 			if (params->seq_len != 6)
335 				return -EINVAL;
336 			break;
337 		}
338 	}
339 
340 	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
341 		return -EINVAL;
342 
343 	return 0;
344 }
345 
ieee80211_hdrlen(__le16 fc)346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
347 {
348 	unsigned int hdrlen = 24;
349 
350 	if (ieee80211_is_data(fc)) {
351 		if (ieee80211_has_a4(fc))
352 			hdrlen = 30;
353 		if (ieee80211_is_data_qos(fc)) {
354 			hdrlen += IEEE80211_QOS_CTL_LEN;
355 			if (ieee80211_has_order(fc))
356 				hdrlen += IEEE80211_HT_CTL_LEN;
357 		}
358 		goto out;
359 	}
360 
361 	if (ieee80211_is_mgmt(fc)) {
362 		if (ieee80211_has_order(fc))
363 			hdrlen += IEEE80211_HT_CTL_LEN;
364 		goto out;
365 	}
366 
367 	if (ieee80211_is_ctl(fc)) {
368 		/*
369 		 * ACK and CTS are 10 bytes, all others 16. To see how
370 		 * to get this condition consider
371 		 *   subtype mask:   0b0000000011110000 (0x00F0)
372 		 *   ACK subtype:    0b0000000011010000 (0x00D0)
373 		 *   CTS subtype:    0b0000000011000000 (0x00C0)
374 		 *   bits that matter:         ^^^      (0x00E0)
375 		 *   value of those: 0b0000000011000000 (0x00C0)
376 		 */
377 		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
378 			hdrlen = 10;
379 		else
380 			hdrlen = 16;
381 	}
382 out:
383 	return hdrlen;
384 }
385 EXPORT_SYMBOL(ieee80211_hdrlen);
386 
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
388 {
389 	const struct ieee80211_hdr *hdr =
390 			(const struct ieee80211_hdr *)skb->data;
391 	unsigned int hdrlen;
392 
393 	if (unlikely(skb->len < 10))
394 		return 0;
395 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
396 	if (unlikely(hdrlen > skb->len))
397 		return 0;
398 	return hdrlen;
399 }
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
401 
__ieee80211_get_mesh_hdrlen(u8 flags)402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
403 {
404 	int ae = flags & MESH_FLAGS_AE;
405 	/* 802.11-2012, 8.2.4.7.3 */
406 	switch (ae) {
407 	default:
408 	case 0:
409 		return 6;
410 	case MESH_FLAGS_AE_A4:
411 		return 12;
412 	case MESH_FLAGS_AE_A5_A6:
413 		return 18;
414 	}
415 }
416 
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
418 {
419 	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
420 }
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
422 
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype)423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
424 				  const u8 *addr, enum nl80211_iftype iftype)
425 {
426 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
427 	struct {
428 		u8 hdr[ETH_ALEN] __aligned(2);
429 		__be16 proto;
430 	} payload;
431 	struct ethhdr tmp;
432 	u16 hdrlen;
433 	u8 mesh_flags = 0;
434 
435 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
436 		return -1;
437 
438 	hdrlen = ieee80211_hdrlen(hdr->frame_control);
439 	if (skb->len < hdrlen + 8)
440 		return -1;
441 
442 	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
443 	 * header
444 	 * IEEE 802.11 address fields:
445 	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
446 	 *   0     0   DA    SA    BSSID n/a
447 	 *   0     1   DA    BSSID SA    n/a
448 	 *   1     0   BSSID SA    DA    n/a
449 	 *   1     1   RA    TA    DA    SA
450 	 */
451 	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
452 	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
453 
454 	if (iftype == NL80211_IFTYPE_MESH_POINT)
455 		skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
456 
457 	mesh_flags &= MESH_FLAGS_AE;
458 
459 	switch (hdr->frame_control &
460 		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
461 	case cpu_to_le16(IEEE80211_FCTL_TODS):
462 		if (unlikely(iftype != NL80211_IFTYPE_AP &&
463 			     iftype != NL80211_IFTYPE_AP_VLAN &&
464 			     iftype != NL80211_IFTYPE_P2P_GO))
465 			return -1;
466 		break;
467 	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
468 		if (unlikely(iftype != NL80211_IFTYPE_WDS &&
469 			     iftype != NL80211_IFTYPE_MESH_POINT &&
470 			     iftype != NL80211_IFTYPE_AP_VLAN &&
471 			     iftype != NL80211_IFTYPE_STATION))
472 			return -1;
473 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
474 			if (mesh_flags == MESH_FLAGS_AE_A4)
475 				return -1;
476 			if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
477 				skb_copy_bits(skb, hdrlen +
478 					offsetof(struct ieee80211s_hdr, eaddr1),
479 					tmp.h_dest, 2 * ETH_ALEN);
480 			}
481 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
482 		}
483 		break;
484 	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
485 		if ((iftype != NL80211_IFTYPE_STATION &&
486 		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
487 		     iftype != NL80211_IFTYPE_MESH_POINT) ||
488 		    (is_multicast_ether_addr(tmp.h_dest) &&
489 		     ether_addr_equal(tmp.h_source, addr)))
490 			return -1;
491 		if (iftype == NL80211_IFTYPE_MESH_POINT) {
492 			if (mesh_flags == MESH_FLAGS_AE_A5_A6)
493 				return -1;
494 			if (mesh_flags == MESH_FLAGS_AE_A4)
495 				skb_copy_bits(skb, hdrlen +
496 					offsetof(struct ieee80211s_hdr, eaddr1),
497 					tmp.h_source, ETH_ALEN);
498 			hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
499 		}
500 		break;
501 	case cpu_to_le16(0):
502 		if (iftype != NL80211_IFTYPE_ADHOC &&
503 		    iftype != NL80211_IFTYPE_STATION &&
504 		    iftype != NL80211_IFTYPE_OCB)
505 				return -1;
506 		break;
507 	}
508 
509 	skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
510 	tmp.h_proto = payload.proto;
511 
512 	if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
513 		    tmp.h_proto != htons(ETH_P_AARP) &&
514 		    tmp.h_proto != htons(ETH_P_IPX)) ||
515 		   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
516 		/* remove RFC1042 or Bridge-Tunnel encapsulation and
517 		 * replace EtherType */
518 		hdrlen += ETH_ALEN + 2;
519 	else
520 		tmp.h_proto = htons(skb->len - hdrlen);
521 
522 	pskb_pull(skb, hdrlen);
523 
524 	if (!ehdr)
525 		ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
526 	memcpy(ehdr, &tmp, sizeof(tmp));
527 
528 	return 0;
529 }
530 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
531 
ieee80211_data_from_8023(struct sk_buff * skb,const u8 * addr,enum nl80211_iftype iftype,const u8 * bssid,bool qos)532 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
533 			     enum nl80211_iftype iftype,
534 			     const u8 *bssid, bool qos)
535 {
536 	struct ieee80211_hdr hdr;
537 	u16 hdrlen, ethertype;
538 	__le16 fc;
539 	const u8 *encaps_data;
540 	int encaps_len, skip_header_bytes;
541 	int nh_pos, h_pos;
542 	int head_need;
543 
544 	if (unlikely(skb->len < ETH_HLEN))
545 		return -EINVAL;
546 
547 	nh_pos = skb_network_header(skb) - skb->data;
548 	h_pos = skb_transport_header(skb) - skb->data;
549 
550 	/* convert Ethernet header to proper 802.11 header (based on
551 	 * operation mode) */
552 	ethertype = (skb->data[12] << 8) | skb->data[13];
553 	fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
554 
555 	switch (iftype) {
556 	case NL80211_IFTYPE_AP:
557 	case NL80211_IFTYPE_AP_VLAN:
558 	case NL80211_IFTYPE_P2P_GO:
559 		fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
560 		/* DA BSSID SA */
561 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
562 		memcpy(hdr.addr2, addr, ETH_ALEN);
563 		memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
564 		hdrlen = 24;
565 		break;
566 	case NL80211_IFTYPE_STATION:
567 	case NL80211_IFTYPE_P2P_CLIENT:
568 		fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
569 		/* BSSID SA DA */
570 		memcpy(hdr.addr1, bssid, ETH_ALEN);
571 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
572 		memcpy(hdr.addr3, skb->data, ETH_ALEN);
573 		hdrlen = 24;
574 		break;
575 	case NL80211_IFTYPE_OCB:
576 	case NL80211_IFTYPE_ADHOC:
577 		/* DA SA BSSID */
578 		memcpy(hdr.addr1, skb->data, ETH_ALEN);
579 		memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
580 		memcpy(hdr.addr3, bssid, ETH_ALEN);
581 		hdrlen = 24;
582 		break;
583 	default:
584 		return -EOPNOTSUPP;
585 	}
586 
587 	if (qos) {
588 		fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
589 		hdrlen += 2;
590 	}
591 
592 	hdr.frame_control = fc;
593 	hdr.duration_id = 0;
594 	hdr.seq_ctrl = 0;
595 
596 	skip_header_bytes = ETH_HLEN;
597 	if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
598 		encaps_data = bridge_tunnel_header;
599 		encaps_len = sizeof(bridge_tunnel_header);
600 		skip_header_bytes -= 2;
601 	} else if (ethertype >= ETH_P_802_3_MIN) {
602 		encaps_data = rfc1042_header;
603 		encaps_len = sizeof(rfc1042_header);
604 		skip_header_bytes -= 2;
605 	} else {
606 		encaps_data = NULL;
607 		encaps_len = 0;
608 	}
609 
610 	skb_pull(skb, skip_header_bytes);
611 	nh_pos -= skip_header_bytes;
612 	h_pos -= skip_header_bytes;
613 
614 	head_need = hdrlen + encaps_len - skb_headroom(skb);
615 
616 	if (head_need > 0 || skb_cloned(skb)) {
617 		head_need = max(head_need, 0);
618 		if (head_need)
619 			skb_orphan(skb);
620 
621 		if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
622 			return -ENOMEM;
623 
624 		skb->truesize += head_need;
625 	}
626 
627 	if (encaps_data) {
628 		memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
629 		nh_pos += encaps_len;
630 		h_pos += encaps_len;
631 	}
632 
633 	memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
634 
635 	nh_pos += hdrlen;
636 	h_pos += hdrlen;
637 
638 	/* Update skb pointers to various headers since this modified frame
639 	 * is going to go through Linux networking code that may potentially
640 	 * need things like pointer to IP header. */
641 	skb_reset_mac_header(skb);
642 	skb_set_network_header(skb, nh_pos);
643 	skb_set_transport_header(skb, h_pos);
644 
645 	return 0;
646 }
647 EXPORT_SYMBOL(ieee80211_data_from_8023);
648 
649 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)650 __frame_add_frag(struct sk_buff *skb, struct page *page,
651 		 void *ptr, int len, int size)
652 {
653 	struct skb_shared_info *sh = skb_shinfo(skb);
654 	int page_offset;
655 
656 	page_ref_inc(page);
657 	page_offset = ptr - page_address(page);
658 	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
659 }
660 
661 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)662 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
663 			    int offset, int len)
664 {
665 	struct skb_shared_info *sh = skb_shinfo(skb);
666 	const skb_frag_t *frag = &sh->frags[0];
667 	struct page *frag_page;
668 	void *frag_ptr;
669 	int frag_len, frag_size;
670 	int head_size = skb->len - skb->data_len;
671 	int cur_len;
672 
673 	frag_page = virt_to_head_page(skb->head);
674 	frag_ptr = skb->data;
675 	frag_size = head_size;
676 
677 	while (offset >= frag_size) {
678 		offset -= frag_size;
679 		frag_page = skb_frag_page(frag);
680 		frag_ptr = skb_frag_address(frag);
681 		frag_size = skb_frag_size(frag);
682 		frag++;
683 	}
684 
685 	frag_ptr += offset;
686 	frag_len = frag_size - offset;
687 
688 	cur_len = min(len, frag_len);
689 
690 	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
691 	len -= cur_len;
692 
693 	while (len > 0) {
694 		frag_len = skb_frag_size(frag);
695 		cur_len = min(len, frag_len);
696 		__frame_add_frag(frame, skb_frag_page(frag),
697 				 skb_frag_address(frag), cur_len, frag_len);
698 		len -= cur_len;
699 		frag++;
700 	}
701 }
702 
703 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag)704 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
705 		       int offset, int len, bool reuse_frag)
706 {
707 	struct sk_buff *frame;
708 	int cur_len = len;
709 
710 	if (skb->len - offset < len)
711 		return NULL;
712 
713 	/*
714 	 * When reusing framents, copy some data to the head to simplify
715 	 * ethernet header handling and speed up protocol header processing
716 	 * in the stack later.
717 	 */
718 	if (reuse_frag)
719 		cur_len = min_t(int, len, 32);
720 
721 	/*
722 	 * Allocate and reserve two bytes more for payload
723 	 * alignment since sizeof(struct ethhdr) is 14.
724 	 */
725 	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
726 	if (!frame)
727 		return NULL;
728 
729 	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
730 	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
731 
732 	len -= cur_len;
733 	if (!len)
734 		return frame;
735 
736 	offset += cur_len;
737 	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
738 
739 	return frame;
740 }
741 
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa)742 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
743 			      const u8 *addr, enum nl80211_iftype iftype,
744 			      const unsigned int extra_headroom,
745 			      const u8 *check_da, const u8 *check_sa)
746 {
747 	unsigned int hlen = ALIGN(extra_headroom, 4);
748 	struct sk_buff *frame = NULL;
749 	u16 ethertype;
750 	u8 *payload;
751 	int offset = 0, remaining;
752 	struct ethhdr eth;
753 	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
754 	bool reuse_skb = false;
755 	bool last = false;
756 
757 	while (!last) {
758 		unsigned int subframe_len;
759 		int len;
760 		u8 padding;
761 
762 		skb_copy_bits(skb, offset, &eth, sizeof(eth));
763 		len = ntohs(eth.h_proto);
764 		subframe_len = sizeof(struct ethhdr) + len;
765 		padding = (4 - subframe_len) & 0x3;
766 
767 		/* the last MSDU has no padding */
768 		remaining = skb->len - offset;
769 		if (subframe_len > remaining)
770 			goto purge;
771 
772 		offset += sizeof(struct ethhdr);
773 		last = remaining <= subframe_len + padding;
774 
775 		/* FIXME: should we really accept multicast DA? */
776 		if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
777 		     !ether_addr_equal(check_da, eth.h_dest)) ||
778 		    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
779 			offset += len + padding;
780 			continue;
781 		}
782 
783 		/* reuse skb for the last subframe */
784 		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
785 			skb_pull(skb, offset);
786 			frame = skb;
787 			reuse_skb = true;
788 		} else {
789 			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
790 						       reuse_frag);
791 			if (!frame)
792 				goto purge;
793 
794 			offset += len + padding;
795 		}
796 
797 		skb_reset_network_header(frame);
798 		frame->dev = skb->dev;
799 		frame->priority = skb->priority;
800 
801 		payload = frame->data;
802 		ethertype = (payload[6] << 8) | payload[7];
803 		if (likely((ether_addr_equal(payload, rfc1042_header) &&
804 			    ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
805 			   ether_addr_equal(payload, bridge_tunnel_header))) {
806 			eth.h_proto = htons(ethertype);
807 			skb_pull(frame, ETH_ALEN + 2);
808 		}
809 
810 		memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
811 		__skb_queue_tail(list, frame);
812 	}
813 
814 	if (!reuse_skb)
815 		dev_kfree_skb(skb);
816 
817 	return;
818 
819  purge:
820 	__skb_queue_purge(list);
821 	dev_kfree_skb(skb);
822 }
823 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
824 
825 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)826 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
827 				    struct cfg80211_qos_map *qos_map)
828 {
829 	unsigned int dscp;
830 	unsigned char vlan_priority;
831 
832 	/* skb->priority values from 256->263 are magic values to
833 	 * directly indicate a specific 802.1d priority.  This is used
834 	 * to allow 802.1d priority to be passed directly in from VLAN
835 	 * tags, etc.
836 	 */
837 	if (skb->priority >= 256 && skb->priority <= 263)
838 		return skb->priority - 256;
839 
840 	if (skb_vlan_tag_present(skb)) {
841 		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
842 			>> VLAN_PRIO_SHIFT;
843 		if (vlan_priority > 0)
844 			return vlan_priority;
845 	}
846 
847 	switch (skb->protocol) {
848 	case htons(ETH_P_IP):
849 		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
850 		break;
851 	case htons(ETH_P_IPV6):
852 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
853 		break;
854 	case htons(ETH_P_MPLS_UC):
855 	case htons(ETH_P_MPLS_MC): {
856 		struct mpls_label mpls_tmp, *mpls;
857 
858 		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
859 					  sizeof(*mpls), &mpls_tmp);
860 		if (!mpls)
861 			return 0;
862 
863 		return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
864 			>> MPLS_LS_TC_SHIFT;
865 	}
866 	case htons(ETH_P_80221):
867 		/* 802.21 is always network control traffic */
868 		return 7;
869 	default:
870 		return 0;
871 	}
872 
873 	if (qos_map) {
874 		unsigned int i, tmp_dscp = dscp >> 2;
875 
876 		for (i = 0; i < qos_map->num_des; i++) {
877 			if (tmp_dscp == qos_map->dscp_exception[i].dscp)
878 				return qos_map->dscp_exception[i].up;
879 		}
880 
881 		for (i = 0; i < 8; i++) {
882 			if (tmp_dscp >= qos_map->up[i].low &&
883 			    tmp_dscp <= qos_map->up[i].high)
884 				return i;
885 		}
886 	}
887 
888 	return dscp >> 5;
889 }
890 EXPORT_SYMBOL(cfg80211_classify8021d);
891 
ieee80211_bss_get_ie(struct cfg80211_bss * bss,u8 ie)892 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
893 {
894 	const struct cfg80211_bss_ies *ies;
895 
896 	ies = rcu_dereference(bss->ies);
897 	if (!ies)
898 		return NULL;
899 
900 	return cfg80211_find_ie(ie, ies->data, ies->len);
901 }
902 EXPORT_SYMBOL(ieee80211_bss_get_ie);
903 
cfg80211_upload_connect_keys(struct wireless_dev * wdev)904 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
905 {
906 	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
907 	struct net_device *dev = wdev->netdev;
908 	int i;
909 
910 	if (!wdev->connect_keys)
911 		return;
912 
913 	for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
914 		if (!wdev->connect_keys->params[i].cipher)
915 			continue;
916 		if (rdev_add_key(rdev, dev, i, false, NULL,
917 				 &wdev->connect_keys->params[i])) {
918 			netdev_err(dev, "failed to set key %d\n", i);
919 			continue;
920 		}
921 		if (wdev->connect_keys->def == i)
922 			if (rdev_set_default_key(rdev, dev, i, true, true)) {
923 				netdev_err(dev, "failed to set defkey %d\n", i);
924 				continue;
925 			}
926 	}
927 
928 	kzfree(wdev->connect_keys);
929 	wdev->connect_keys = NULL;
930 }
931 
cfg80211_process_wdev_events(struct wireless_dev * wdev)932 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
933 {
934 	struct cfg80211_event *ev;
935 	unsigned long flags;
936 	const u8 *bssid = NULL;
937 
938 	spin_lock_irqsave(&wdev->event_lock, flags);
939 	while (!list_empty(&wdev->event_list)) {
940 		ev = list_first_entry(&wdev->event_list,
941 				      struct cfg80211_event, list);
942 		list_del(&ev->list);
943 		spin_unlock_irqrestore(&wdev->event_lock, flags);
944 
945 		wdev_lock(wdev);
946 		switch (ev->type) {
947 		case EVENT_CONNECT_RESULT:
948 			if (!is_zero_ether_addr(ev->cr.bssid))
949 				bssid = ev->cr.bssid;
950 			__cfg80211_connect_result(
951 				wdev->netdev, bssid,
952 				ev->cr.req_ie, ev->cr.req_ie_len,
953 				ev->cr.resp_ie, ev->cr.resp_ie_len,
954 				ev->cr.status,
955 				ev->cr.status == WLAN_STATUS_SUCCESS,
956 				ev->cr.bss);
957 			break;
958 		case EVENT_ROAMED:
959 			__cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
960 					  ev->rm.req_ie_len, ev->rm.resp_ie,
961 					  ev->rm.resp_ie_len);
962 			break;
963 		case EVENT_DISCONNECTED:
964 			__cfg80211_disconnected(wdev->netdev,
965 						ev->dc.ie, ev->dc.ie_len,
966 						ev->dc.reason,
967 						!ev->dc.locally_generated);
968 			break;
969 		case EVENT_IBSS_JOINED:
970 			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
971 					       ev->ij.channel);
972 			break;
973 		case EVENT_STOPPED:
974 			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
975 			break;
976 		}
977 		wdev_unlock(wdev);
978 
979 		kfree(ev);
980 
981 		spin_lock_irqsave(&wdev->event_lock, flags);
982 	}
983 	spin_unlock_irqrestore(&wdev->event_lock, flags);
984 }
985 
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)986 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
987 {
988 	struct wireless_dev *wdev;
989 
990 	ASSERT_RTNL();
991 
992 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
993 		cfg80211_process_wdev_events(wdev);
994 }
995 
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,u32 * flags,struct vif_params * params)996 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
997 			  struct net_device *dev, enum nl80211_iftype ntype,
998 			  u32 *flags, struct vif_params *params)
999 {
1000 	int err;
1001 	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1002 
1003 	ASSERT_RTNL();
1004 
1005 	/* don't support changing VLANs, you just re-create them */
1006 	if (otype == NL80211_IFTYPE_AP_VLAN)
1007 		return -EOPNOTSUPP;
1008 
1009 	/* cannot change into P2P device or NAN */
1010 	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1011 	    ntype == NL80211_IFTYPE_NAN)
1012 		return -EOPNOTSUPP;
1013 
1014 	if (!rdev->ops->change_virtual_intf ||
1015 	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1016 		return -EOPNOTSUPP;
1017 
1018 	/* if it's part of a bridge, reject changing type to station/ibss */
1019 	if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1020 	    (ntype == NL80211_IFTYPE_ADHOC ||
1021 	     ntype == NL80211_IFTYPE_STATION ||
1022 	     ntype == NL80211_IFTYPE_P2P_CLIENT))
1023 		return -EBUSY;
1024 
1025 	if (ntype != otype) {
1026 		dev->ieee80211_ptr->use_4addr = false;
1027 		dev->ieee80211_ptr->mesh_id_up_len = 0;
1028 		wdev_lock(dev->ieee80211_ptr);
1029 		rdev_set_qos_map(rdev, dev, NULL);
1030 		wdev_unlock(dev->ieee80211_ptr);
1031 
1032 		switch (otype) {
1033 		case NL80211_IFTYPE_AP:
1034 			cfg80211_stop_ap(rdev, dev, true);
1035 			break;
1036 		case NL80211_IFTYPE_ADHOC:
1037 			cfg80211_leave_ibss(rdev, dev, false);
1038 			break;
1039 		case NL80211_IFTYPE_STATION:
1040 		case NL80211_IFTYPE_P2P_CLIENT:
1041 			wdev_lock(dev->ieee80211_ptr);
1042 			cfg80211_disconnect(rdev, dev,
1043 					    WLAN_REASON_DEAUTH_LEAVING, true);
1044 			wdev_unlock(dev->ieee80211_ptr);
1045 			break;
1046 		case NL80211_IFTYPE_MESH_POINT:
1047 			/* mesh should be handled? */
1048 			break;
1049 		default:
1050 			break;
1051 		}
1052 
1053 		cfg80211_process_rdev_events(rdev);
1054 	}
1055 
1056 	err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1057 
1058 	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1059 
1060 	if (!err && params && params->use_4addr != -1)
1061 		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1062 
1063 	if (!err) {
1064 		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1065 		switch (ntype) {
1066 		case NL80211_IFTYPE_STATION:
1067 			if (dev->ieee80211_ptr->use_4addr)
1068 				break;
1069 			/* fall through */
1070 		case NL80211_IFTYPE_OCB:
1071 		case NL80211_IFTYPE_P2P_CLIENT:
1072 		case NL80211_IFTYPE_ADHOC:
1073 			dev->priv_flags |= IFF_DONT_BRIDGE;
1074 			break;
1075 		case NL80211_IFTYPE_P2P_GO:
1076 		case NL80211_IFTYPE_AP:
1077 		case NL80211_IFTYPE_AP_VLAN:
1078 		case NL80211_IFTYPE_WDS:
1079 		case NL80211_IFTYPE_MESH_POINT:
1080 			/* bridging OK */
1081 			break;
1082 		case NL80211_IFTYPE_MONITOR:
1083 			/* monitor can't bridge anyway */
1084 			break;
1085 		case NL80211_IFTYPE_UNSPECIFIED:
1086 		case NUM_NL80211_IFTYPES:
1087 			/* not happening */
1088 			break;
1089 		case NL80211_IFTYPE_P2P_DEVICE:
1090 		case NL80211_IFTYPE_NAN:
1091 			WARN_ON(1);
1092 			break;
1093 		}
1094 	}
1095 
1096 	if (!err && ntype != otype && netif_running(dev)) {
1097 		cfg80211_update_iface_num(rdev, ntype, 1);
1098 		cfg80211_update_iface_num(rdev, otype, -1);
1099 	}
1100 
1101 	return err;
1102 }
1103 
cfg80211_calculate_bitrate_60g(struct rate_info * rate)1104 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1105 {
1106 	static const u32 __mcs2bitrate[] = {
1107 		/* control PHY */
1108 		[0] =   275,
1109 		/* SC PHY */
1110 		[1] =  3850,
1111 		[2] =  7700,
1112 		[3] =  9625,
1113 		[4] = 11550,
1114 		[5] = 12512, /* 1251.25 mbps */
1115 		[6] = 15400,
1116 		[7] = 19250,
1117 		[8] = 23100,
1118 		[9] = 25025,
1119 		[10] = 30800,
1120 		[11] = 38500,
1121 		[12] = 46200,
1122 		/* OFDM PHY */
1123 		[13] =  6930,
1124 		[14] =  8662, /* 866.25 mbps */
1125 		[15] = 13860,
1126 		[16] = 17325,
1127 		[17] = 20790,
1128 		[18] = 27720,
1129 		[19] = 34650,
1130 		[20] = 41580,
1131 		[21] = 45045,
1132 		[22] = 51975,
1133 		[23] = 62370,
1134 		[24] = 67568, /* 6756.75 mbps */
1135 		/* LP-SC PHY */
1136 		[25] =  6260,
1137 		[26] =  8340,
1138 		[27] = 11120,
1139 		[28] = 12510,
1140 		[29] = 16680,
1141 		[30] = 22240,
1142 		[31] = 25030,
1143 	};
1144 
1145 	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1146 		return 0;
1147 
1148 	return __mcs2bitrate[rate->mcs];
1149 }
1150 
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1151 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1152 {
1153 	static const u32 base[4][10] = {
1154 		{   6500000,
1155 		   13000000,
1156 		   19500000,
1157 		   26000000,
1158 		   39000000,
1159 		   52000000,
1160 		   58500000,
1161 		   65000000,
1162 		   78000000,
1163 		/* not in the spec, but some devices use this: */
1164 		   86500000,
1165 		},
1166 		{  13500000,
1167 		   27000000,
1168 		   40500000,
1169 		   54000000,
1170 		   81000000,
1171 		  108000000,
1172 		  121500000,
1173 		  135000000,
1174 		  162000000,
1175 		  180000000,
1176 		},
1177 		{  29300000,
1178 		   58500000,
1179 		   87800000,
1180 		  117000000,
1181 		  175500000,
1182 		  234000000,
1183 		  263300000,
1184 		  292500000,
1185 		  351000000,
1186 		  390000000,
1187 		},
1188 		{  58500000,
1189 		  117000000,
1190 		  175500000,
1191 		  234000000,
1192 		  351000000,
1193 		  468000000,
1194 		  526500000,
1195 		  585000000,
1196 		  702000000,
1197 		  780000000,
1198 		},
1199 	};
1200 	u32 bitrate;
1201 	int idx;
1202 
1203 	if (WARN_ON_ONCE(rate->mcs > 9))
1204 		return 0;
1205 
1206 	switch (rate->bw) {
1207 	case RATE_INFO_BW_160:
1208 		idx = 3;
1209 		break;
1210 	case RATE_INFO_BW_80:
1211 		idx = 2;
1212 		break;
1213 	case RATE_INFO_BW_40:
1214 		idx = 1;
1215 		break;
1216 	case RATE_INFO_BW_5:
1217 	case RATE_INFO_BW_10:
1218 	default:
1219 		WARN_ON(1);
1220 		/* fall through */
1221 	case RATE_INFO_BW_20:
1222 		idx = 0;
1223 	}
1224 
1225 	bitrate = base[idx][rate->mcs];
1226 	bitrate *= rate->nss;
1227 
1228 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1229 		bitrate = (bitrate / 9) * 10;
1230 
1231 	/* do NOT round down here */
1232 	return (bitrate + 50000) / 100000;
1233 }
1234 
cfg80211_calculate_bitrate(struct rate_info * rate)1235 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1236 {
1237 	int modulation, streams, bitrate;
1238 
1239 	if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1240 	    !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1241 		return rate->legacy;
1242 	if (rate->flags & RATE_INFO_FLAGS_60G)
1243 		return cfg80211_calculate_bitrate_60g(rate);
1244 	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1245 		return cfg80211_calculate_bitrate_vht(rate);
1246 
1247 	/* the formula below does only work for MCS values smaller than 32 */
1248 	if (WARN_ON_ONCE(rate->mcs >= 32))
1249 		return 0;
1250 
1251 	modulation = rate->mcs & 7;
1252 	streams = (rate->mcs >> 3) + 1;
1253 
1254 	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1255 
1256 	if (modulation < 4)
1257 		bitrate *= (modulation + 1);
1258 	else if (modulation == 4)
1259 		bitrate *= (modulation + 2);
1260 	else
1261 		bitrate *= (modulation + 3);
1262 
1263 	bitrate *= streams;
1264 
1265 	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1266 		bitrate = (bitrate / 9) * 10;
1267 
1268 	/* do NOT round down here */
1269 	return (bitrate + 50000) / 100000;
1270 }
1271 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1272 
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1273 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1274 			  enum ieee80211_p2p_attr_id attr,
1275 			  u8 *buf, unsigned int bufsize)
1276 {
1277 	u8 *out = buf;
1278 	u16 attr_remaining = 0;
1279 	bool desired_attr = false;
1280 	u16 desired_len = 0;
1281 
1282 	while (len > 0) {
1283 		unsigned int iedatalen;
1284 		unsigned int copy;
1285 		const u8 *iedata;
1286 
1287 		if (len < 2)
1288 			return -EILSEQ;
1289 		iedatalen = ies[1];
1290 		if (iedatalen + 2 > len)
1291 			return -EILSEQ;
1292 
1293 		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1294 			goto cont;
1295 
1296 		if (iedatalen < 4)
1297 			goto cont;
1298 
1299 		iedata = ies + 2;
1300 
1301 		/* check WFA OUI, P2P subtype */
1302 		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1303 		    iedata[2] != 0x9a || iedata[3] != 0x09)
1304 			goto cont;
1305 
1306 		iedatalen -= 4;
1307 		iedata += 4;
1308 
1309 		/* check attribute continuation into this IE */
1310 		copy = min_t(unsigned int, attr_remaining, iedatalen);
1311 		if (copy && desired_attr) {
1312 			desired_len += copy;
1313 			if (out) {
1314 				memcpy(out, iedata, min(bufsize, copy));
1315 				out += min(bufsize, copy);
1316 				bufsize -= min(bufsize, copy);
1317 			}
1318 
1319 
1320 			if (copy == attr_remaining)
1321 				return desired_len;
1322 		}
1323 
1324 		attr_remaining -= copy;
1325 		if (attr_remaining)
1326 			goto cont;
1327 
1328 		iedatalen -= copy;
1329 		iedata += copy;
1330 
1331 		while (iedatalen > 0) {
1332 			u16 attr_len;
1333 
1334 			/* P2P attribute ID & size must fit */
1335 			if (iedatalen < 3)
1336 				return -EILSEQ;
1337 			desired_attr = iedata[0] == attr;
1338 			attr_len = get_unaligned_le16(iedata + 1);
1339 			iedatalen -= 3;
1340 			iedata += 3;
1341 
1342 			copy = min_t(unsigned int, attr_len, iedatalen);
1343 
1344 			if (desired_attr) {
1345 				desired_len += copy;
1346 				if (out) {
1347 					memcpy(out, iedata, min(bufsize, copy));
1348 					out += min(bufsize, copy);
1349 					bufsize -= min(bufsize, copy);
1350 				}
1351 
1352 				if (copy == attr_len)
1353 					return desired_len;
1354 			}
1355 
1356 			iedata += copy;
1357 			iedatalen -= copy;
1358 			attr_remaining = attr_len - copy;
1359 		}
1360 
1361  cont:
1362 		len -= ies[1] + 2;
1363 		ies += ies[1] + 2;
1364 	}
1365 
1366 	if (attr_remaining && desired_attr)
1367 		return -EILSEQ;
1368 
1369 	return -ENOENT;
1370 }
1371 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1372 
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id)1373 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1374 {
1375 	int i;
1376 
1377 	for (i = 0; i < n_ids; i++)
1378 		if (ids[i] == id)
1379 			return true;
1380 	return false;
1381 }
1382 
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1383 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1384 			      const u8 *ids, int n_ids,
1385 			      const u8 *after_ric, int n_after_ric,
1386 			      size_t offset)
1387 {
1388 	size_t pos = offset;
1389 
1390 	while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1391 		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1392 			pos += 2 + ies[pos + 1];
1393 
1394 			while (pos < ielen &&
1395 			       !ieee80211_id_in_list(after_ric, n_after_ric,
1396 						     ies[pos]))
1397 				pos += 2 + ies[pos + 1];
1398 		} else {
1399 			pos += 2 + ies[pos + 1];
1400 		}
1401 	}
1402 
1403 	return pos;
1404 }
1405 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1406 
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1407 bool ieee80211_operating_class_to_band(u8 operating_class,
1408 				       enum nl80211_band *band)
1409 {
1410 	switch (operating_class) {
1411 	case 112:
1412 	case 115 ... 127:
1413 	case 128 ... 130:
1414 		*band = NL80211_BAND_5GHZ;
1415 		return true;
1416 	case 81:
1417 	case 82:
1418 	case 83:
1419 	case 84:
1420 		*band = NL80211_BAND_2GHZ;
1421 		return true;
1422 	case 180:
1423 		*band = NL80211_BAND_60GHZ;
1424 		return true;
1425 	}
1426 
1427 	return false;
1428 }
1429 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1430 
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)1431 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1432 					  u8 *op_class)
1433 {
1434 	u8 vht_opclass;
1435 	u16 freq = chandef->center_freq1;
1436 
1437 	if (freq >= 2412 && freq <= 2472) {
1438 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1439 			return false;
1440 
1441 		/* 2.407 GHz, channels 1..13 */
1442 		if (chandef->width == NL80211_CHAN_WIDTH_40) {
1443 			if (freq > chandef->chan->center_freq)
1444 				*op_class = 83; /* HT40+ */
1445 			else
1446 				*op_class = 84; /* HT40- */
1447 		} else {
1448 			*op_class = 81;
1449 		}
1450 
1451 		return true;
1452 	}
1453 
1454 	if (freq == 2484) {
1455 		if (chandef->width > NL80211_CHAN_WIDTH_40)
1456 			return false;
1457 
1458 		*op_class = 82; /* channel 14 */
1459 		return true;
1460 	}
1461 
1462 	switch (chandef->width) {
1463 	case NL80211_CHAN_WIDTH_80:
1464 		vht_opclass = 128;
1465 		break;
1466 	case NL80211_CHAN_WIDTH_160:
1467 		vht_opclass = 129;
1468 		break;
1469 	case NL80211_CHAN_WIDTH_80P80:
1470 		vht_opclass = 130;
1471 		break;
1472 	case NL80211_CHAN_WIDTH_10:
1473 	case NL80211_CHAN_WIDTH_5:
1474 		return false; /* unsupported for now */
1475 	default:
1476 		vht_opclass = 0;
1477 		break;
1478 	}
1479 
1480 	/* 5 GHz, channels 36..48 */
1481 	if (freq >= 5180 && freq <= 5240) {
1482 		if (vht_opclass) {
1483 			*op_class = vht_opclass;
1484 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1485 			if (freq > chandef->chan->center_freq)
1486 				*op_class = 116;
1487 			else
1488 				*op_class = 117;
1489 		} else {
1490 			*op_class = 115;
1491 		}
1492 
1493 		return true;
1494 	}
1495 
1496 	/* 5 GHz, channels 52..64 */
1497 	if (freq >= 5260 && freq <= 5320) {
1498 		if (vht_opclass) {
1499 			*op_class = vht_opclass;
1500 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1501 			if (freq > chandef->chan->center_freq)
1502 				*op_class = 119;
1503 			else
1504 				*op_class = 120;
1505 		} else {
1506 			*op_class = 118;
1507 		}
1508 
1509 		return true;
1510 	}
1511 
1512 	/* 5 GHz, channels 100..144 */
1513 	if (freq >= 5500 && freq <= 5720) {
1514 		if (vht_opclass) {
1515 			*op_class = vht_opclass;
1516 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1517 			if (freq > chandef->chan->center_freq)
1518 				*op_class = 122;
1519 			else
1520 				*op_class = 123;
1521 		} else {
1522 			*op_class = 121;
1523 		}
1524 
1525 		return true;
1526 	}
1527 
1528 	/* 5 GHz, channels 149..169 */
1529 	if (freq >= 5745 && freq <= 5845) {
1530 		if (vht_opclass) {
1531 			*op_class = vht_opclass;
1532 		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1533 			if (freq > chandef->chan->center_freq)
1534 				*op_class = 126;
1535 			else
1536 				*op_class = 127;
1537 		} else if (freq <= 5805) {
1538 			*op_class = 124;
1539 		} else {
1540 			*op_class = 125;
1541 		}
1542 
1543 		return true;
1544 	}
1545 
1546 	/* 56.16 GHz, channel 1..4 */
1547 	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1548 		if (chandef->width >= NL80211_CHAN_WIDTH_40)
1549 			return false;
1550 
1551 		*op_class = 180;
1552 		return true;
1553 	}
1554 
1555 	/* not supported yet */
1556 	return false;
1557 }
1558 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1559 
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,u32 beacon_int)1560 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1561 				 u32 beacon_int)
1562 {
1563 	struct wireless_dev *wdev;
1564 	int res = 0;
1565 
1566 	if (beacon_int < 10 || beacon_int > 10000)
1567 		return -EINVAL;
1568 
1569 	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
1570 		if (!wdev->beacon_interval)
1571 			continue;
1572 		if (wdev->beacon_interval != beacon_int) {
1573 			res = -EINVAL;
1574 			break;
1575 		}
1576 	}
1577 
1578 	return res;
1579 }
1580 
cfg80211_iter_combinations(struct wiphy * wiphy,const int num_different_channels,const u8 radar_detect,const int iftype_num[NUM_NL80211_IFTYPES],void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)1581 int cfg80211_iter_combinations(struct wiphy *wiphy,
1582 			       const int num_different_channels,
1583 			       const u8 radar_detect,
1584 			       const int iftype_num[NUM_NL80211_IFTYPES],
1585 			       void (*iter)(const struct ieee80211_iface_combination *c,
1586 					    void *data),
1587 			       void *data)
1588 {
1589 	const struct ieee80211_regdomain *regdom;
1590 	enum nl80211_dfs_regions region = 0;
1591 	int i, j, iftype;
1592 	int num_interfaces = 0;
1593 	u32 used_iftypes = 0;
1594 
1595 	if (radar_detect) {
1596 		rcu_read_lock();
1597 		regdom = rcu_dereference(cfg80211_regdomain);
1598 		if (regdom)
1599 			region = regdom->dfs_region;
1600 		rcu_read_unlock();
1601 	}
1602 
1603 	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1604 		num_interfaces += iftype_num[iftype];
1605 		if (iftype_num[iftype] > 0 &&
1606 		    !(wiphy->software_iftypes & BIT(iftype)))
1607 			used_iftypes |= BIT(iftype);
1608 	}
1609 
1610 	for (i = 0; i < wiphy->n_iface_combinations; i++) {
1611 		const struct ieee80211_iface_combination *c;
1612 		struct ieee80211_iface_limit *limits;
1613 		u32 all_iftypes = 0;
1614 
1615 		c = &wiphy->iface_combinations[i];
1616 
1617 		if (num_interfaces > c->max_interfaces)
1618 			continue;
1619 		if (num_different_channels > c->num_different_channels)
1620 			continue;
1621 
1622 		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1623 				 GFP_KERNEL);
1624 		if (!limits)
1625 			return -ENOMEM;
1626 
1627 		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1628 			if (wiphy->software_iftypes & BIT(iftype))
1629 				continue;
1630 			for (j = 0; j < c->n_limits; j++) {
1631 				all_iftypes |= limits[j].types;
1632 				if (!(limits[j].types & BIT(iftype)))
1633 					continue;
1634 				if (limits[j].max < iftype_num[iftype])
1635 					goto cont;
1636 				limits[j].max -= iftype_num[iftype];
1637 			}
1638 		}
1639 
1640 		if (radar_detect != (c->radar_detect_widths & radar_detect))
1641 			goto cont;
1642 
1643 		if (radar_detect && c->radar_detect_regions &&
1644 		    !(c->radar_detect_regions & BIT(region)))
1645 			goto cont;
1646 
1647 		/* Finally check that all iftypes that we're currently
1648 		 * using are actually part of this combination. If they
1649 		 * aren't then we can't use this combination and have
1650 		 * to continue to the next.
1651 		 */
1652 		if ((all_iftypes & used_iftypes) != used_iftypes)
1653 			goto cont;
1654 
1655 		/* This combination covered all interface types and
1656 		 * supported the requested numbers, so we're good.
1657 		 */
1658 
1659 		(*iter)(c, data);
1660  cont:
1661 		kfree(limits);
1662 	}
1663 
1664 	return 0;
1665 }
1666 EXPORT_SYMBOL(cfg80211_iter_combinations);
1667 
1668 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)1669 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1670 			  void *data)
1671 {
1672 	int *num = data;
1673 	(*num)++;
1674 }
1675 
cfg80211_check_combinations(struct wiphy * wiphy,const int num_different_channels,const u8 radar_detect,const int iftype_num[NUM_NL80211_IFTYPES])1676 int cfg80211_check_combinations(struct wiphy *wiphy,
1677 				const int num_different_channels,
1678 				const u8 radar_detect,
1679 				const int iftype_num[NUM_NL80211_IFTYPES])
1680 {
1681 	int err, num = 0;
1682 
1683 	err = cfg80211_iter_combinations(wiphy, num_different_channels,
1684 					 radar_detect, iftype_num,
1685 					 cfg80211_iter_sum_ifcombs, &num);
1686 	if (err)
1687 		return err;
1688 	if (num == 0)
1689 		return -EBUSY;
1690 
1691 	return 0;
1692 }
1693 EXPORT_SYMBOL(cfg80211_check_combinations);
1694 
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)1695 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1696 			   const u8 *rates, unsigned int n_rates,
1697 			   u32 *mask)
1698 {
1699 	int i, j;
1700 
1701 	if (!sband)
1702 		return -EINVAL;
1703 
1704 	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1705 		return -EINVAL;
1706 
1707 	*mask = 0;
1708 
1709 	for (i = 0; i < n_rates; i++) {
1710 		int rate = (rates[i] & 0x7f) * 5;
1711 		bool found = false;
1712 
1713 		for (j = 0; j < sband->n_bitrates; j++) {
1714 			if (sband->bitrates[j].bitrate == rate) {
1715 				found = true;
1716 				*mask |= BIT(j);
1717 				break;
1718 			}
1719 		}
1720 		if (!found)
1721 			return -EINVAL;
1722 	}
1723 
1724 	/*
1725 	 * mask must have at least one bit set here since we
1726 	 * didn't accept a 0-length rates array nor allowed
1727 	 * entries in the array that didn't exist
1728 	 */
1729 
1730 	return 0;
1731 }
1732 
ieee80211_get_num_supported_channels(struct wiphy * wiphy)1733 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1734 {
1735 	enum nl80211_band band;
1736 	unsigned int n_channels = 0;
1737 
1738 	for (band = 0; band < NUM_NL80211_BANDS; band++)
1739 		if (wiphy->bands[band])
1740 			n_channels += wiphy->bands[band]->n_channels;
1741 
1742 	return n_channels;
1743 }
1744 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1745 
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)1746 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1747 			 struct station_info *sinfo)
1748 {
1749 	struct cfg80211_registered_device *rdev;
1750 	struct wireless_dev *wdev;
1751 
1752 	wdev = dev->ieee80211_ptr;
1753 	if (!wdev)
1754 		return -EOPNOTSUPP;
1755 
1756 	rdev = wiphy_to_rdev(wdev->wiphy);
1757 	if (!rdev->ops->get_station)
1758 		return -EOPNOTSUPP;
1759 
1760 	return rdev_get_station(rdev, dev, mac_addr, sinfo);
1761 }
1762 EXPORT_SYMBOL(cfg80211_get_station);
1763 
cfg80211_free_nan_func(struct cfg80211_nan_func * f)1764 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1765 {
1766 	int i;
1767 
1768 	if (!f)
1769 		return;
1770 
1771 	kfree(f->serv_spec_info);
1772 	kfree(f->srf_bf);
1773 	kfree(f->srf_macs);
1774 	for (i = 0; i < f->num_rx_filters; i++)
1775 		kfree(f->rx_filters[i].filter);
1776 
1777 	for (i = 0; i < f->num_tx_filters; i++)
1778 		kfree(f->tx_filters[i].filter);
1779 
1780 	kfree(f->rx_filters);
1781 	kfree(f->tx_filters);
1782 	kfree(f);
1783 }
1784 EXPORT_SYMBOL(cfg80211_free_nan_func);
1785 
1786 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1787 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1788 const unsigned char rfc1042_header[] __aligned(2) =
1789 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1790 EXPORT_SYMBOL(rfc1042_header);
1791 
1792 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1793 const unsigned char bridge_tunnel_header[] __aligned(2) =
1794 	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1795 EXPORT_SYMBOL(bridge_tunnel_header);
1796