1 /*
2 * Wireless utility functions
3 *
4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
6 */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include "core.h"
17 #include "rdev-ops.h"
18
19
20 struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)21 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
22 u32 basic_rates, int bitrate)
23 {
24 struct ieee80211_rate *result = &sband->bitrates[0];
25 int i;
26
27 for (i = 0; i < sband->n_bitrates; i++) {
28 if (!(basic_rates & BIT(i)))
29 continue;
30 if (sband->bitrates[i].bitrate > bitrate)
31 continue;
32 result = &sband->bitrates[i];
33 }
34
35 return result;
36 }
37 EXPORT_SYMBOL(ieee80211_get_response_rate);
38
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)39 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
40 enum nl80211_bss_scan_width scan_width)
41 {
42 struct ieee80211_rate *bitrates;
43 u32 mandatory_rates = 0;
44 enum ieee80211_rate_flags mandatory_flag;
45 int i;
46
47 if (WARN_ON(!sband))
48 return 1;
49
50 if (sband->band == NL80211_BAND_2GHZ) {
51 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
52 scan_width == NL80211_BSS_CHAN_WIDTH_10)
53 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
54 else
55 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
56 } else {
57 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
58 }
59
60 bitrates = sband->bitrates;
61 for (i = 0; i < sband->n_bitrates; i++)
62 if (bitrates[i].flags & mandatory_flag)
63 mandatory_rates |= BIT(i);
64 return mandatory_rates;
65 }
66 EXPORT_SYMBOL(ieee80211_mandatory_rates);
67
ieee80211_channel_to_frequency(int chan,enum nl80211_band band)68 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
69 {
70 /* see 802.11 17.3.8.3.2 and Annex J
71 * there are overlapping channel numbers in 5GHz and 2GHz bands */
72 if (chan <= 0)
73 return 0; /* not supported */
74 switch (band) {
75 case NL80211_BAND_2GHZ:
76 if (chan == 14)
77 return 2484;
78 else if (chan < 14)
79 return 2407 + chan * 5;
80 break;
81 case NL80211_BAND_5GHZ:
82 if (chan >= 182 && chan <= 196)
83 return 4000 + chan * 5;
84 else
85 return 5000 + chan * 5;
86 break;
87 case NL80211_BAND_60GHZ:
88 if (chan < 5)
89 return 56160 + chan * 2160;
90 break;
91 default:
92 ;
93 }
94 return 0; /* not supported */
95 }
96 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
97
ieee80211_frequency_to_channel(int freq)98 int ieee80211_frequency_to_channel(int freq)
99 {
100 /* see 802.11 17.3.8.3.2 and Annex J */
101 if (freq == 2484)
102 return 14;
103 else if (freq < 2484)
104 return (freq - 2407) / 5;
105 else if (freq >= 4910 && freq <= 4980)
106 return (freq - 4000) / 5;
107 else if (freq <= 45000) /* DMG band lower limit */
108 return (freq - 5000) / 5;
109 else if (freq >= 58320 && freq <= 64800)
110 return (freq - 56160) / 2160;
111 else
112 return 0;
113 }
114 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
115
__ieee80211_get_channel(struct wiphy * wiphy,int freq)116 struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
117 int freq)
118 {
119 enum nl80211_band band;
120 struct ieee80211_supported_band *sband;
121 int i;
122
123 for (band = 0; band < NUM_NL80211_BANDS; band++) {
124 sband = wiphy->bands[band];
125
126 if (!sband)
127 continue;
128
129 for (i = 0; i < sband->n_channels; i++) {
130 if (sband->channels[i].center_freq == freq)
131 return &sband->channels[i];
132 }
133 }
134
135 return NULL;
136 }
137 EXPORT_SYMBOL(__ieee80211_get_channel);
138
set_mandatory_flags_band(struct ieee80211_supported_band * sband,enum nl80211_band band)139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
140 enum nl80211_band band)
141 {
142 int i, want;
143
144 switch (band) {
145 case NL80211_BAND_5GHZ:
146 want = 3;
147 for (i = 0; i < sband->n_bitrates; i++) {
148 if (sband->bitrates[i].bitrate == 60 ||
149 sband->bitrates[i].bitrate == 120 ||
150 sband->bitrates[i].bitrate == 240) {
151 sband->bitrates[i].flags |=
152 IEEE80211_RATE_MANDATORY_A;
153 want--;
154 }
155 }
156 WARN_ON(want);
157 break;
158 case NL80211_BAND_2GHZ:
159 want = 7;
160 for (i = 0; i < sband->n_bitrates; i++) {
161 if (sband->bitrates[i].bitrate == 10) {
162 sband->bitrates[i].flags |=
163 IEEE80211_RATE_MANDATORY_B |
164 IEEE80211_RATE_MANDATORY_G;
165 want--;
166 }
167
168 if (sband->bitrates[i].bitrate == 20 ||
169 sband->bitrates[i].bitrate == 55 ||
170 sband->bitrates[i].bitrate == 110 ||
171 sband->bitrates[i].bitrate == 60 ||
172 sband->bitrates[i].bitrate == 120 ||
173 sband->bitrates[i].bitrate == 240) {
174 sband->bitrates[i].flags |=
175 IEEE80211_RATE_MANDATORY_G;
176 want--;
177 }
178
179 if (sband->bitrates[i].bitrate != 10 &&
180 sband->bitrates[i].bitrate != 20 &&
181 sband->bitrates[i].bitrate != 55 &&
182 sband->bitrates[i].bitrate != 110)
183 sband->bitrates[i].flags |=
184 IEEE80211_RATE_ERP_G;
185 }
186 WARN_ON(want != 0 && want != 3 && want != 6);
187 break;
188 case NL80211_BAND_60GHZ:
189 /* check for mandatory HT MCS 1..4 */
190 WARN_ON(!sband->ht_cap.ht_supported);
191 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
192 break;
193 case NUM_NL80211_BANDS:
194 WARN_ON(1);
195 break;
196 }
197 }
198
ieee80211_set_bitrate_flags(struct wiphy * wiphy)199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201 enum nl80211_band band;
202
203 for (band = 0; band < NUM_NL80211_BANDS; band++)
204 if (wiphy->bands[band])
205 set_mandatory_flags_band(wiphy->bands[band], band);
206 }
207
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210 int i;
211 for (i = 0; i < wiphy->n_cipher_suites; i++)
212 if (cipher == wiphy->cipher_suites[i])
213 return true;
214 return false;
215 }
216
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218 struct key_params *params, int key_idx,
219 bool pairwise, const u8 *mac_addr)
220 {
221 if (key_idx < 0 || key_idx > 5)
222 return -EINVAL;
223
224 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225 return -EINVAL;
226
227 if (pairwise && !mac_addr)
228 return -EINVAL;
229
230 switch (params->cipher) {
231 case WLAN_CIPHER_SUITE_TKIP:
232 case WLAN_CIPHER_SUITE_CCMP:
233 case WLAN_CIPHER_SUITE_CCMP_256:
234 case WLAN_CIPHER_SUITE_GCMP:
235 case WLAN_CIPHER_SUITE_GCMP_256:
236 /* Disallow pairwise keys with non-zero index unless it's WEP
237 * or a vendor specific cipher (because current deployments use
238 * pairwise WEP keys with non-zero indices and for vendor
239 * specific ciphers this should be validated in the driver or
240 * hardware level - but 802.11i clearly specifies to use zero)
241 */
242 if (pairwise && key_idx)
243 return -EINVAL;
244 break;
245 case WLAN_CIPHER_SUITE_AES_CMAC:
246 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249 /* Disallow BIP (group-only) cipher as pairwise cipher */
250 if (pairwise)
251 return -EINVAL;
252 if (key_idx < 4)
253 return -EINVAL;
254 break;
255 case WLAN_CIPHER_SUITE_WEP40:
256 case WLAN_CIPHER_SUITE_WEP104:
257 if (key_idx > 3)
258 return -EINVAL;
259 default:
260 break;
261 }
262
263 switch (params->cipher) {
264 case WLAN_CIPHER_SUITE_WEP40:
265 if (params->key_len != WLAN_KEY_LEN_WEP40)
266 return -EINVAL;
267 break;
268 case WLAN_CIPHER_SUITE_TKIP:
269 if (params->key_len != WLAN_KEY_LEN_TKIP)
270 return -EINVAL;
271 break;
272 case WLAN_CIPHER_SUITE_CCMP:
273 if (params->key_len != WLAN_KEY_LEN_CCMP)
274 return -EINVAL;
275 break;
276 case WLAN_CIPHER_SUITE_CCMP_256:
277 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
278 return -EINVAL;
279 break;
280 case WLAN_CIPHER_SUITE_GCMP:
281 if (params->key_len != WLAN_KEY_LEN_GCMP)
282 return -EINVAL;
283 break;
284 case WLAN_CIPHER_SUITE_GCMP_256:
285 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
286 return -EINVAL;
287 break;
288 case WLAN_CIPHER_SUITE_WEP104:
289 if (params->key_len != WLAN_KEY_LEN_WEP104)
290 return -EINVAL;
291 break;
292 case WLAN_CIPHER_SUITE_AES_CMAC:
293 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
294 return -EINVAL;
295 break;
296 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
298 return -EINVAL;
299 break;
300 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
301 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
302 return -EINVAL;
303 break;
304 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
305 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
306 return -EINVAL;
307 break;
308 default:
309 /*
310 * We don't know anything about this algorithm,
311 * allow using it -- but the driver must check
312 * all parameters! We still check below whether
313 * or not the driver supports this algorithm,
314 * of course.
315 */
316 break;
317 }
318
319 if (params->seq) {
320 switch (params->cipher) {
321 case WLAN_CIPHER_SUITE_WEP40:
322 case WLAN_CIPHER_SUITE_WEP104:
323 /* These ciphers do not use key sequence */
324 return -EINVAL;
325 case WLAN_CIPHER_SUITE_TKIP:
326 case WLAN_CIPHER_SUITE_CCMP:
327 case WLAN_CIPHER_SUITE_CCMP_256:
328 case WLAN_CIPHER_SUITE_GCMP:
329 case WLAN_CIPHER_SUITE_GCMP_256:
330 case WLAN_CIPHER_SUITE_AES_CMAC:
331 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
332 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
334 if (params->seq_len != 6)
335 return -EINVAL;
336 break;
337 }
338 }
339
340 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
341 return -EINVAL;
342
343 return 0;
344 }
345
ieee80211_hdrlen(__le16 fc)346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
347 {
348 unsigned int hdrlen = 24;
349
350 if (ieee80211_is_data(fc)) {
351 if (ieee80211_has_a4(fc))
352 hdrlen = 30;
353 if (ieee80211_is_data_qos(fc)) {
354 hdrlen += IEEE80211_QOS_CTL_LEN;
355 if (ieee80211_has_order(fc))
356 hdrlen += IEEE80211_HT_CTL_LEN;
357 }
358 goto out;
359 }
360
361 if (ieee80211_is_mgmt(fc)) {
362 if (ieee80211_has_order(fc))
363 hdrlen += IEEE80211_HT_CTL_LEN;
364 goto out;
365 }
366
367 if (ieee80211_is_ctl(fc)) {
368 /*
369 * ACK and CTS are 10 bytes, all others 16. To see how
370 * to get this condition consider
371 * subtype mask: 0b0000000011110000 (0x00F0)
372 * ACK subtype: 0b0000000011010000 (0x00D0)
373 * CTS subtype: 0b0000000011000000 (0x00C0)
374 * bits that matter: ^^^ (0x00E0)
375 * value of those: 0b0000000011000000 (0x00C0)
376 */
377 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
378 hdrlen = 10;
379 else
380 hdrlen = 16;
381 }
382 out:
383 return hdrlen;
384 }
385 EXPORT_SYMBOL(ieee80211_hdrlen);
386
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
388 {
389 const struct ieee80211_hdr *hdr =
390 (const struct ieee80211_hdr *)skb->data;
391 unsigned int hdrlen;
392
393 if (unlikely(skb->len < 10))
394 return 0;
395 hdrlen = ieee80211_hdrlen(hdr->frame_control);
396 if (unlikely(hdrlen > skb->len))
397 return 0;
398 return hdrlen;
399 }
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
401
__ieee80211_get_mesh_hdrlen(u8 flags)402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
403 {
404 int ae = flags & MESH_FLAGS_AE;
405 /* 802.11-2012, 8.2.4.7.3 */
406 switch (ae) {
407 default:
408 case 0:
409 return 6;
410 case MESH_FLAGS_AE_A4:
411 return 12;
412 case MESH_FLAGS_AE_A5_A6:
413 return 18;
414 }
415 }
416
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
418 {
419 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
420 }
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
422
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype)423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
424 const u8 *addr, enum nl80211_iftype iftype)
425 {
426 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
427 struct {
428 u8 hdr[ETH_ALEN] __aligned(2);
429 __be16 proto;
430 } payload;
431 struct ethhdr tmp;
432 u16 hdrlen;
433 u8 mesh_flags = 0;
434
435 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
436 return -1;
437
438 hdrlen = ieee80211_hdrlen(hdr->frame_control);
439 if (skb->len < hdrlen + 8)
440 return -1;
441
442 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
443 * header
444 * IEEE 802.11 address fields:
445 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
446 * 0 0 DA SA BSSID n/a
447 * 0 1 DA BSSID SA n/a
448 * 1 0 BSSID SA DA n/a
449 * 1 1 RA TA DA SA
450 */
451 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
452 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
453
454 if (iftype == NL80211_IFTYPE_MESH_POINT)
455 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
456
457 mesh_flags &= MESH_FLAGS_AE;
458
459 switch (hdr->frame_control &
460 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
461 case cpu_to_le16(IEEE80211_FCTL_TODS):
462 if (unlikely(iftype != NL80211_IFTYPE_AP &&
463 iftype != NL80211_IFTYPE_AP_VLAN &&
464 iftype != NL80211_IFTYPE_P2P_GO))
465 return -1;
466 break;
467 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
468 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
469 iftype != NL80211_IFTYPE_MESH_POINT &&
470 iftype != NL80211_IFTYPE_AP_VLAN &&
471 iftype != NL80211_IFTYPE_STATION))
472 return -1;
473 if (iftype == NL80211_IFTYPE_MESH_POINT) {
474 if (mesh_flags == MESH_FLAGS_AE_A4)
475 return -1;
476 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
477 skb_copy_bits(skb, hdrlen +
478 offsetof(struct ieee80211s_hdr, eaddr1),
479 tmp.h_dest, 2 * ETH_ALEN);
480 }
481 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
482 }
483 break;
484 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
485 if ((iftype != NL80211_IFTYPE_STATION &&
486 iftype != NL80211_IFTYPE_P2P_CLIENT &&
487 iftype != NL80211_IFTYPE_MESH_POINT) ||
488 (is_multicast_ether_addr(tmp.h_dest) &&
489 ether_addr_equal(tmp.h_source, addr)))
490 return -1;
491 if (iftype == NL80211_IFTYPE_MESH_POINT) {
492 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
493 return -1;
494 if (mesh_flags == MESH_FLAGS_AE_A4)
495 skb_copy_bits(skb, hdrlen +
496 offsetof(struct ieee80211s_hdr, eaddr1),
497 tmp.h_source, ETH_ALEN);
498 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
499 }
500 break;
501 case cpu_to_le16(0):
502 if (iftype != NL80211_IFTYPE_ADHOC &&
503 iftype != NL80211_IFTYPE_STATION &&
504 iftype != NL80211_IFTYPE_OCB)
505 return -1;
506 break;
507 }
508
509 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
510 tmp.h_proto = payload.proto;
511
512 if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
513 tmp.h_proto != htons(ETH_P_AARP) &&
514 tmp.h_proto != htons(ETH_P_IPX)) ||
515 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
516 /* remove RFC1042 or Bridge-Tunnel encapsulation and
517 * replace EtherType */
518 hdrlen += ETH_ALEN + 2;
519 else
520 tmp.h_proto = htons(skb->len - hdrlen);
521
522 pskb_pull(skb, hdrlen);
523
524 if (!ehdr)
525 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
526 memcpy(ehdr, &tmp, sizeof(tmp));
527
528 return 0;
529 }
530 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
531
ieee80211_data_from_8023(struct sk_buff * skb,const u8 * addr,enum nl80211_iftype iftype,const u8 * bssid,bool qos)532 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
533 enum nl80211_iftype iftype,
534 const u8 *bssid, bool qos)
535 {
536 struct ieee80211_hdr hdr;
537 u16 hdrlen, ethertype;
538 __le16 fc;
539 const u8 *encaps_data;
540 int encaps_len, skip_header_bytes;
541 int nh_pos, h_pos;
542 int head_need;
543
544 if (unlikely(skb->len < ETH_HLEN))
545 return -EINVAL;
546
547 nh_pos = skb_network_header(skb) - skb->data;
548 h_pos = skb_transport_header(skb) - skb->data;
549
550 /* convert Ethernet header to proper 802.11 header (based on
551 * operation mode) */
552 ethertype = (skb->data[12] << 8) | skb->data[13];
553 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
554
555 switch (iftype) {
556 case NL80211_IFTYPE_AP:
557 case NL80211_IFTYPE_AP_VLAN:
558 case NL80211_IFTYPE_P2P_GO:
559 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
560 /* DA BSSID SA */
561 memcpy(hdr.addr1, skb->data, ETH_ALEN);
562 memcpy(hdr.addr2, addr, ETH_ALEN);
563 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
564 hdrlen = 24;
565 break;
566 case NL80211_IFTYPE_STATION:
567 case NL80211_IFTYPE_P2P_CLIENT:
568 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
569 /* BSSID SA DA */
570 memcpy(hdr.addr1, bssid, ETH_ALEN);
571 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
572 memcpy(hdr.addr3, skb->data, ETH_ALEN);
573 hdrlen = 24;
574 break;
575 case NL80211_IFTYPE_OCB:
576 case NL80211_IFTYPE_ADHOC:
577 /* DA SA BSSID */
578 memcpy(hdr.addr1, skb->data, ETH_ALEN);
579 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
580 memcpy(hdr.addr3, bssid, ETH_ALEN);
581 hdrlen = 24;
582 break;
583 default:
584 return -EOPNOTSUPP;
585 }
586
587 if (qos) {
588 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
589 hdrlen += 2;
590 }
591
592 hdr.frame_control = fc;
593 hdr.duration_id = 0;
594 hdr.seq_ctrl = 0;
595
596 skip_header_bytes = ETH_HLEN;
597 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
598 encaps_data = bridge_tunnel_header;
599 encaps_len = sizeof(bridge_tunnel_header);
600 skip_header_bytes -= 2;
601 } else if (ethertype >= ETH_P_802_3_MIN) {
602 encaps_data = rfc1042_header;
603 encaps_len = sizeof(rfc1042_header);
604 skip_header_bytes -= 2;
605 } else {
606 encaps_data = NULL;
607 encaps_len = 0;
608 }
609
610 skb_pull(skb, skip_header_bytes);
611 nh_pos -= skip_header_bytes;
612 h_pos -= skip_header_bytes;
613
614 head_need = hdrlen + encaps_len - skb_headroom(skb);
615
616 if (head_need > 0 || skb_cloned(skb)) {
617 head_need = max(head_need, 0);
618 if (head_need)
619 skb_orphan(skb);
620
621 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
622 return -ENOMEM;
623
624 skb->truesize += head_need;
625 }
626
627 if (encaps_data) {
628 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
629 nh_pos += encaps_len;
630 h_pos += encaps_len;
631 }
632
633 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
634
635 nh_pos += hdrlen;
636 h_pos += hdrlen;
637
638 /* Update skb pointers to various headers since this modified frame
639 * is going to go through Linux networking code that may potentially
640 * need things like pointer to IP header. */
641 skb_reset_mac_header(skb);
642 skb_set_network_header(skb, nh_pos);
643 skb_set_transport_header(skb, h_pos);
644
645 return 0;
646 }
647 EXPORT_SYMBOL(ieee80211_data_from_8023);
648
649 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)650 __frame_add_frag(struct sk_buff *skb, struct page *page,
651 void *ptr, int len, int size)
652 {
653 struct skb_shared_info *sh = skb_shinfo(skb);
654 int page_offset;
655
656 page_ref_inc(page);
657 page_offset = ptr - page_address(page);
658 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
659 }
660
661 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)662 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
663 int offset, int len)
664 {
665 struct skb_shared_info *sh = skb_shinfo(skb);
666 const skb_frag_t *frag = &sh->frags[0];
667 struct page *frag_page;
668 void *frag_ptr;
669 int frag_len, frag_size;
670 int head_size = skb->len - skb->data_len;
671 int cur_len;
672
673 frag_page = virt_to_head_page(skb->head);
674 frag_ptr = skb->data;
675 frag_size = head_size;
676
677 while (offset >= frag_size) {
678 offset -= frag_size;
679 frag_page = skb_frag_page(frag);
680 frag_ptr = skb_frag_address(frag);
681 frag_size = skb_frag_size(frag);
682 frag++;
683 }
684
685 frag_ptr += offset;
686 frag_len = frag_size - offset;
687
688 cur_len = min(len, frag_len);
689
690 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
691 len -= cur_len;
692
693 while (len > 0) {
694 frag_len = skb_frag_size(frag);
695 cur_len = min(len, frag_len);
696 __frame_add_frag(frame, skb_frag_page(frag),
697 skb_frag_address(frag), cur_len, frag_len);
698 len -= cur_len;
699 frag++;
700 }
701 }
702
703 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag)704 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
705 int offset, int len, bool reuse_frag)
706 {
707 struct sk_buff *frame;
708 int cur_len = len;
709
710 if (skb->len - offset < len)
711 return NULL;
712
713 /*
714 * When reusing framents, copy some data to the head to simplify
715 * ethernet header handling and speed up protocol header processing
716 * in the stack later.
717 */
718 if (reuse_frag)
719 cur_len = min_t(int, len, 32);
720
721 /*
722 * Allocate and reserve two bytes more for payload
723 * alignment since sizeof(struct ethhdr) is 14.
724 */
725 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
726 if (!frame)
727 return NULL;
728
729 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
730 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
731
732 len -= cur_len;
733 if (!len)
734 return frame;
735
736 offset += cur_len;
737 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
738
739 return frame;
740 }
741
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa)742 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
743 const u8 *addr, enum nl80211_iftype iftype,
744 const unsigned int extra_headroom,
745 const u8 *check_da, const u8 *check_sa)
746 {
747 unsigned int hlen = ALIGN(extra_headroom, 4);
748 struct sk_buff *frame = NULL;
749 u16 ethertype;
750 u8 *payload;
751 int offset = 0, remaining;
752 struct ethhdr eth;
753 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
754 bool reuse_skb = false;
755 bool last = false;
756
757 while (!last) {
758 unsigned int subframe_len;
759 int len;
760 u8 padding;
761
762 skb_copy_bits(skb, offset, ð, sizeof(eth));
763 len = ntohs(eth.h_proto);
764 subframe_len = sizeof(struct ethhdr) + len;
765 padding = (4 - subframe_len) & 0x3;
766
767 /* the last MSDU has no padding */
768 remaining = skb->len - offset;
769 if (subframe_len > remaining)
770 goto purge;
771
772 offset += sizeof(struct ethhdr);
773 last = remaining <= subframe_len + padding;
774
775 /* FIXME: should we really accept multicast DA? */
776 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
777 !ether_addr_equal(check_da, eth.h_dest)) ||
778 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
779 offset += len + padding;
780 continue;
781 }
782
783 /* reuse skb for the last subframe */
784 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
785 skb_pull(skb, offset);
786 frame = skb;
787 reuse_skb = true;
788 } else {
789 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
790 reuse_frag);
791 if (!frame)
792 goto purge;
793
794 offset += len + padding;
795 }
796
797 skb_reset_network_header(frame);
798 frame->dev = skb->dev;
799 frame->priority = skb->priority;
800
801 payload = frame->data;
802 ethertype = (payload[6] << 8) | payload[7];
803 if (likely((ether_addr_equal(payload, rfc1042_header) &&
804 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
805 ether_addr_equal(payload, bridge_tunnel_header))) {
806 eth.h_proto = htons(ethertype);
807 skb_pull(frame, ETH_ALEN + 2);
808 }
809
810 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth));
811 __skb_queue_tail(list, frame);
812 }
813
814 if (!reuse_skb)
815 dev_kfree_skb(skb);
816
817 return;
818
819 purge:
820 __skb_queue_purge(list);
821 dev_kfree_skb(skb);
822 }
823 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
824
825 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)826 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
827 struct cfg80211_qos_map *qos_map)
828 {
829 unsigned int dscp;
830 unsigned char vlan_priority;
831
832 /* skb->priority values from 256->263 are magic values to
833 * directly indicate a specific 802.1d priority. This is used
834 * to allow 802.1d priority to be passed directly in from VLAN
835 * tags, etc.
836 */
837 if (skb->priority >= 256 && skb->priority <= 263)
838 return skb->priority - 256;
839
840 if (skb_vlan_tag_present(skb)) {
841 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
842 >> VLAN_PRIO_SHIFT;
843 if (vlan_priority > 0)
844 return vlan_priority;
845 }
846
847 switch (skb->protocol) {
848 case htons(ETH_P_IP):
849 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
850 break;
851 case htons(ETH_P_IPV6):
852 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
853 break;
854 case htons(ETH_P_MPLS_UC):
855 case htons(ETH_P_MPLS_MC): {
856 struct mpls_label mpls_tmp, *mpls;
857
858 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
859 sizeof(*mpls), &mpls_tmp);
860 if (!mpls)
861 return 0;
862
863 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
864 >> MPLS_LS_TC_SHIFT;
865 }
866 case htons(ETH_P_80221):
867 /* 802.21 is always network control traffic */
868 return 7;
869 default:
870 return 0;
871 }
872
873 if (qos_map) {
874 unsigned int i, tmp_dscp = dscp >> 2;
875
876 for (i = 0; i < qos_map->num_des; i++) {
877 if (tmp_dscp == qos_map->dscp_exception[i].dscp)
878 return qos_map->dscp_exception[i].up;
879 }
880
881 for (i = 0; i < 8; i++) {
882 if (tmp_dscp >= qos_map->up[i].low &&
883 tmp_dscp <= qos_map->up[i].high)
884 return i;
885 }
886 }
887
888 return dscp >> 5;
889 }
890 EXPORT_SYMBOL(cfg80211_classify8021d);
891
ieee80211_bss_get_ie(struct cfg80211_bss * bss,u8 ie)892 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
893 {
894 const struct cfg80211_bss_ies *ies;
895
896 ies = rcu_dereference(bss->ies);
897 if (!ies)
898 return NULL;
899
900 return cfg80211_find_ie(ie, ies->data, ies->len);
901 }
902 EXPORT_SYMBOL(ieee80211_bss_get_ie);
903
cfg80211_upload_connect_keys(struct wireless_dev * wdev)904 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
905 {
906 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
907 struct net_device *dev = wdev->netdev;
908 int i;
909
910 if (!wdev->connect_keys)
911 return;
912
913 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
914 if (!wdev->connect_keys->params[i].cipher)
915 continue;
916 if (rdev_add_key(rdev, dev, i, false, NULL,
917 &wdev->connect_keys->params[i])) {
918 netdev_err(dev, "failed to set key %d\n", i);
919 continue;
920 }
921 if (wdev->connect_keys->def == i)
922 if (rdev_set_default_key(rdev, dev, i, true, true)) {
923 netdev_err(dev, "failed to set defkey %d\n", i);
924 continue;
925 }
926 }
927
928 kzfree(wdev->connect_keys);
929 wdev->connect_keys = NULL;
930 }
931
cfg80211_process_wdev_events(struct wireless_dev * wdev)932 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
933 {
934 struct cfg80211_event *ev;
935 unsigned long flags;
936 const u8 *bssid = NULL;
937
938 spin_lock_irqsave(&wdev->event_lock, flags);
939 while (!list_empty(&wdev->event_list)) {
940 ev = list_first_entry(&wdev->event_list,
941 struct cfg80211_event, list);
942 list_del(&ev->list);
943 spin_unlock_irqrestore(&wdev->event_lock, flags);
944
945 wdev_lock(wdev);
946 switch (ev->type) {
947 case EVENT_CONNECT_RESULT:
948 if (!is_zero_ether_addr(ev->cr.bssid))
949 bssid = ev->cr.bssid;
950 __cfg80211_connect_result(
951 wdev->netdev, bssid,
952 ev->cr.req_ie, ev->cr.req_ie_len,
953 ev->cr.resp_ie, ev->cr.resp_ie_len,
954 ev->cr.status,
955 ev->cr.status == WLAN_STATUS_SUCCESS,
956 ev->cr.bss);
957 break;
958 case EVENT_ROAMED:
959 __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
960 ev->rm.req_ie_len, ev->rm.resp_ie,
961 ev->rm.resp_ie_len);
962 break;
963 case EVENT_DISCONNECTED:
964 __cfg80211_disconnected(wdev->netdev,
965 ev->dc.ie, ev->dc.ie_len,
966 ev->dc.reason,
967 !ev->dc.locally_generated);
968 break;
969 case EVENT_IBSS_JOINED:
970 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
971 ev->ij.channel);
972 break;
973 case EVENT_STOPPED:
974 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
975 break;
976 }
977 wdev_unlock(wdev);
978
979 kfree(ev);
980
981 spin_lock_irqsave(&wdev->event_lock, flags);
982 }
983 spin_unlock_irqrestore(&wdev->event_lock, flags);
984 }
985
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)986 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
987 {
988 struct wireless_dev *wdev;
989
990 ASSERT_RTNL();
991
992 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
993 cfg80211_process_wdev_events(wdev);
994 }
995
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,u32 * flags,struct vif_params * params)996 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
997 struct net_device *dev, enum nl80211_iftype ntype,
998 u32 *flags, struct vif_params *params)
999 {
1000 int err;
1001 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1002
1003 ASSERT_RTNL();
1004
1005 /* don't support changing VLANs, you just re-create them */
1006 if (otype == NL80211_IFTYPE_AP_VLAN)
1007 return -EOPNOTSUPP;
1008
1009 /* cannot change into P2P device or NAN */
1010 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1011 ntype == NL80211_IFTYPE_NAN)
1012 return -EOPNOTSUPP;
1013
1014 if (!rdev->ops->change_virtual_intf ||
1015 !(rdev->wiphy.interface_modes & (1 << ntype)))
1016 return -EOPNOTSUPP;
1017
1018 /* if it's part of a bridge, reject changing type to station/ibss */
1019 if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1020 (ntype == NL80211_IFTYPE_ADHOC ||
1021 ntype == NL80211_IFTYPE_STATION ||
1022 ntype == NL80211_IFTYPE_P2P_CLIENT))
1023 return -EBUSY;
1024
1025 if (ntype != otype) {
1026 dev->ieee80211_ptr->use_4addr = false;
1027 dev->ieee80211_ptr->mesh_id_up_len = 0;
1028 wdev_lock(dev->ieee80211_ptr);
1029 rdev_set_qos_map(rdev, dev, NULL);
1030 wdev_unlock(dev->ieee80211_ptr);
1031
1032 switch (otype) {
1033 case NL80211_IFTYPE_AP:
1034 cfg80211_stop_ap(rdev, dev, true);
1035 break;
1036 case NL80211_IFTYPE_ADHOC:
1037 cfg80211_leave_ibss(rdev, dev, false);
1038 break;
1039 case NL80211_IFTYPE_STATION:
1040 case NL80211_IFTYPE_P2P_CLIENT:
1041 wdev_lock(dev->ieee80211_ptr);
1042 cfg80211_disconnect(rdev, dev,
1043 WLAN_REASON_DEAUTH_LEAVING, true);
1044 wdev_unlock(dev->ieee80211_ptr);
1045 break;
1046 case NL80211_IFTYPE_MESH_POINT:
1047 /* mesh should be handled? */
1048 break;
1049 default:
1050 break;
1051 }
1052
1053 cfg80211_process_rdev_events(rdev);
1054 }
1055
1056 err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1057
1058 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1059
1060 if (!err && params && params->use_4addr != -1)
1061 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1062
1063 if (!err) {
1064 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1065 switch (ntype) {
1066 case NL80211_IFTYPE_STATION:
1067 if (dev->ieee80211_ptr->use_4addr)
1068 break;
1069 /* fall through */
1070 case NL80211_IFTYPE_OCB:
1071 case NL80211_IFTYPE_P2P_CLIENT:
1072 case NL80211_IFTYPE_ADHOC:
1073 dev->priv_flags |= IFF_DONT_BRIDGE;
1074 break;
1075 case NL80211_IFTYPE_P2P_GO:
1076 case NL80211_IFTYPE_AP:
1077 case NL80211_IFTYPE_AP_VLAN:
1078 case NL80211_IFTYPE_WDS:
1079 case NL80211_IFTYPE_MESH_POINT:
1080 /* bridging OK */
1081 break;
1082 case NL80211_IFTYPE_MONITOR:
1083 /* monitor can't bridge anyway */
1084 break;
1085 case NL80211_IFTYPE_UNSPECIFIED:
1086 case NUM_NL80211_IFTYPES:
1087 /* not happening */
1088 break;
1089 case NL80211_IFTYPE_P2P_DEVICE:
1090 case NL80211_IFTYPE_NAN:
1091 WARN_ON(1);
1092 break;
1093 }
1094 }
1095
1096 if (!err && ntype != otype && netif_running(dev)) {
1097 cfg80211_update_iface_num(rdev, ntype, 1);
1098 cfg80211_update_iface_num(rdev, otype, -1);
1099 }
1100
1101 return err;
1102 }
1103
cfg80211_calculate_bitrate_60g(struct rate_info * rate)1104 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1105 {
1106 static const u32 __mcs2bitrate[] = {
1107 /* control PHY */
1108 [0] = 275,
1109 /* SC PHY */
1110 [1] = 3850,
1111 [2] = 7700,
1112 [3] = 9625,
1113 [4] = 11550,
1114 [5] = 12512, /* 1251.25 mbps */
1115 [6] = 15400,
1116 [7] = 19250,
1117 [8] = 23100,
1118 [9] = 25025,
1119 [10] = 30800,
1120 [11] = 38500,
1121 [12] = 46200,
1122 /* OFDM PHY */
1123 [13] = 6930,
1124 [14] = 8662, /* 866.25 mbps */
1125 [15] = 13860,
1126 [16] = 17325,
1127 [17] = 20790,
1128 [18] = 27720,
1129 [19] = 34650,
1130 [20] = 41580,
1131 [21] = 45045,
1132 [22] = 51975,
1133 [23] = 62370,
1134 [24] = 67568, /* 6756.75 mbps */
1135 /* LP-SC PHY */
1136 [25] = 6260,
1137 [26] = 8340,
1138 [27] = 11120,
1139 [28] = 12510,
1140 [29] = 16680,
1141 [30] = 22240,
1142 [31] = 25030,
1143 };
1144
1145 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1146 return 0;
1147
1148 return __mcs2bitrate[rate->mcs];
1149 }
1150
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1151 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1152 {
1153 static const u32 base[4][10] = {
1154 { 6500000,
1155 13000000,
1156 19500000,
1157 26000000,
1158 39000000,
1159 52000000,
1160 58500000,
1161 65000000,
1162 78000000,
1163 /* not in the spec, but some devices use this: */
1164 86500000,
1165 },
1166 { 13500000,
1167 27000000,
1168 40500000,
1169 54000000,
1170 81000000,
1171 108000000,
1172 121500000,
1173 135000000,
1174 162000000,
1175 180000000,
1176 },
1177 { 29300000,
1178 58500000,
1179 87800000,
1180 117000000,
1181 175500000,
1182 234000000,
1183 263300000,
1184 292500000,
1185 351000000,
1186 390000000,
1187 },
1188 { 58500000,
1189 117000000,
1190 175500000,
1191 234000000,
1192 351000000,
1193 468000000,
1194 526500000,
1195 585000000,
1196 702000000,
1197 780000000,
1198 },
1199 };
1200 u32 bitrate;
1201 int idx;
1202
1203 if (WARN_ON_ONCE(rate->mcs > 9))
1204 return 0;
1205
1206 switch (rate->bw) {
1207 case RATE_INFO_BW_160:
1208 idx = 3;
1209 break;
1210 case RATE_INFO_BW_80:
1211 idx = 2;
1212 break;
1213 case RATE_INFO_BW_40:
1214 idx = 1;
1215 break;
1216 case RATE_INFO_BW_5:
1217 case RATE_INFO_BW_10:
1218 default:
1219 WARN_ON(1);
1220 /* fall through */
1221 case RATE_INFO_BW_20:
1222 idx = 0;
1223 }
1224
1225 bitrate = base[idx][rate->mcs];
1226 bitrate *= rate->nss;
1227
1228 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1229 bitrate = (bitrate / 9) * 10;
1230
1231 /* do NOT round down here */
1232 return (bitrate + 50000) / 100000;
1233 }
1234
cfg80211_calculate_bitrate(struct rate_info * rate)1235 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1236 {
1237 int modulation, streams, bitrate;
1238
1239 if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1240 !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1241 return rate->legacy;
1242 if (rate->flags & RATE_INFO_FLAGS_60G)
1243 return cfg80211_calculate_bitrate_60g(rate);
1244 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1245 return cfg80211_calculate_bitrate_vht(rate);
1246
1247 /* the formula below does only work for MCS values smaller than 32 */
1248 if (WARN_ON_ONCE(rate->mcs >= 32))
1249 return 0;
1250
1251 modulation = rate->mcs & 7;
1252 streams = (rate->mcs >> 3) + 1;
1253
1254 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1255
1256 if (modulation < 4)
1257 bitrate *= (modulation + 1);
1258 else if (modulation == 4)
1259 bitrate *= (modulation + 2);
1260 else
1261 bitrate *= (modulation + 3);
1262
1263 bitrate *= streams;
1264
1265 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1266 bitrate = (bitrate / 9) * 10;
1267
1268 /* do NOT round down here */
1269 return (bitrate + 50000) / 100000;
1270 }
1271 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1272
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1273 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1274 enum ieee80211_p2p_attr_id attr,
1275 u8 *buf, unsigned int bufsize)
1276 {
1277 u8 *out = buf;
1278 u16 attr_remaining = 0;
1279 bool desired_attr = false;
1280 u16 desired_len = 0;
1281
1282 while (len > 0) {
1283 unsigned int iedatalen;
1284 unsigned int copy;
1285 const u8 *iedata;
1286
1287 if (len < 2)
1288 return -EILSEQ;
1289 iedatalen = ies[1];
1290 if (iedatalen + 2 > len)
1291 return -EILSEQ;
1292
1293 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1294 goto cont;
1295
1296 if (iedatalen < 4)
1297 goto cont;
1298
1299 iedata = ies + 2;
1300
1301 /* check WFA OUI, P2P subtype */
1302 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1303 iedata[2] != 0x9a || iedata[3] != 0x09)
1304 goto cont;
1305
1306 iedatalen -= 4;
1307 iedata += 4;
1308
1309 /* check attribute continuation into this IE */
1310 copy = min_t(unsigned int, attr_remaining, iedatalen);
1311 if (copy && desired_attr) {
1312 desired_len += copy;
1313 if (out) {
1314 memcpy(out, iedata, min(bufsize, copy));
1315 out += min(bufsize, copy);
1316 bufsize -= min(bufsize, copy);
1317 }
1318
1319
1320 if (copy == attr_remaining)
1321 return desired_len;
1322 }
1323
1324 attr_remaining -= copy;
1325 if (attr_remaining)
1326 goto cont;
1327
1328 iedatalen -= copy;
1329 iedata += copy;
1330
1331 while (iedatalen > 0) {
1332 u16 attr_len;
1333
1334 /* P2P attribute ID & size must fit */
1335 if (iedatalen < 3)
1336 return -EILSEQ;
1337 desired_attr = iedata[0] == attr;
1338 attr_len = get_unaligned_le16(iedata + 1);
1339 iedatalen -= 3;
1340 iedata += 3;
1341
1342 copy = min_t(unsigned int, attr_len, iedatalen);
1343
1344 if (desired_attr) {
1345 desired_len += copy;
1346 if (out) {
1347 memcpy(out, iedata, min(bufsize, copy));
1348 out += min(bufsize, copy);
1349 bufsize -= min(bufsize, copy);
1350 }
1351
1352 if (copy == attr_len)
1353 return desired_len;
1354 }
1355
1356 iedata += copy;
1357 iedatalen -= copy;
1358 attr_remaining = attr_len - copy;
1359 }
1360
1361 cont:
1362 len -= ies[1] + 2;
1363 ies += ies[1] + 2;
1364 }
1365
1366 if (attr_remaining && desired_attr)
1367 return -EILSEQ;
1368
1369 return -ENOENT;
1370 }
1371 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1372
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id)1373 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1374 {
1375 int i;
1376
1377 for (i = 0; i < n_ids; i++)
1378 if (ids[i] == id)
1379 return true;
1380 return false;
1381 }
1382
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1383 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1384 const u8 *ids, int n_ids,
1385 const u8 *after_ric, int n_after_ric,
1386 size_t offset)
1387 {
1388 size_t pos = offset;
1389
1390 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1391 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1392 pos += 2 + ies[pos + 1];
1393
1394 while (pos < ielen &&
1395 !ieee80211_id_in_list(after_ric, n_after_ric,
1396 ies[pos]))
1397 pos += 2 + ies[pos + 1];
1398 } else {
1399 pos += 2 + ies[pos + 1];
1400 }
1401 }
1402
1403 return pos;
1404 }
1405 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1406
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1407 bool ieee80211_operating_class_to_band(u8 operating_class,
1408 enum nl80211_band *band)
1409 {
1410 switch (operating_class) {
1411 case 112:
1412 case 115 ... 127:
1413 case 128 ... 130:
1414 *band = NL80211_BAND_5GHZ;
1415 return true;
1416 case 81:
1417 case 82:
1418 case 83:
1419 case 84:
1420 *band = NL80211_BAND_2GHZ;
1421 return true;
1422 case 180:
1423 *band = NL80211_BAND_60GHZ;
1424 return true;
1425 }
1426
1427 return false;
1428 }
1429 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1430
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)1431 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1432 u8 *op_class)
1433 {
1434 u8 vht_opclass;
1435 u16 freq = chandef->center_freq1;
1436
1437 if (freq >= 2412 && freq <= 2472) {
1438 if (chandef->width > NL80211_CHAN_WIDTH_40)
1439 return false;
1440
1441 /* 2.407 GHz, channels 1..13 */
1442 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1443 if (freq > chandef->chan->center_freq)
1444 *op_class = 83; /* HT40+ */
1445 else
1446 *op_class = 84; /* HT40- */
1447 } else {
1448 *op_class = 81;
1449 }
1450
1451 return true;
1452 }
1453
1454 if (freq == 2484) {
1455 if (chandef->width > NL80211_CHAN_WIDTH_40)
1456 return false;
1457
1458 *op_class = 82; /* channel 14 */
1459 return true;
1460 }
1461
1462 switch (chandef->width) {
1463 case NL80211_CHAN_WIDTH_80:
1464 vht_opclass = 128;
1465 break;
1466 case NL80211_CHAN_WIDTH_160:
1467 vht_opclass = 129;
1468 break;
1469 case NL80211_CHAN_WIDTH_80P80:
1470 vht_opclass = 130;
1471 break;
1472 case NL80211_CHAN_WIDTH_10:
1473 case NL80211_CHAN_WIDTH_5:
1474 return false; /* unsupported for now */
1475 default:
1476 vht_opclass = 0;
1477 break;
1478 }
1479
1480 /* 5 GHz, channels 36..48 */
1481 if (freq >= 5180 && freq <= 5240) {
1482 if (vht_opclass) {
1483 *op_class = vht_opclass;
1484 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1485 if (freq > chandef->chan->center_freq)
1486 *op_class = 116;
1487 else
1488 *op_class = 117;
1489 } else {
1490 *op_class = 115;
1491 }
1492
1493 return true;
1494 }
1495
1496 /* 5 GHz, channels 52..64 */
1497 if (freq >= 5260 && freq <= 5320) {
1498 if (vht_opclass) {
1499 *op_class = vht_opclass;
1500 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1501 if (freq > chandef->chan->center_freq)
1502 *op_class = 119;
1503 else
1504 *op_class = 120;
1505 } else {
1506 *op_class = 118;
1507 }
1508
1509 return true;
1510 }
1511
1512 /* 5 GHz, channels 100..144 */
1513 if (freq >= 5500 && freq <= 5720) {
1514 if (vht_opclass) {
1515 *op_class = vht_opclass;
1516 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1517 if (freq > chandef->chan->center_freq)
1518 *op_class = 122;
1519 else
1520 *op_class = 123;
1521 } else {
1522 *op_class = 121;
1523 }
1524
1525 return true;
1526 }
1527
1528 /* 5 GHz, channels 149..169 */
1529 if (freq >= 5745 && freq <= 5845) {
1530 if (vht_opclass) {
1531 *op_class = vht_opclass;
1532 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1533 if (freq > chandef->chan->center_freq)
1534 *op_class = 126;
1535 else
1536 *op_class = 127;
1537 } else if (freq <= 5805) {
1538 *op_class = 124;
1539 } else {
1540 *op_class = 125;
1541 }
1542
1543 return true;
1544 }
1545
1546 /* 56.16 GHz, channel 1..4 */
1547 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1548 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1549 return false;
1550
1551 *op_class = 180;
1552 return true;
1553 }
1554
1555 /* not supported yet */
1556 return false;
1557 }
1558 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1559
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,u32 beacon_int)1560 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1561 u32 beacon_int)
1562 {
1563 struct wireless_dev *wdev;
1564 int res = 0;
1565
1566 if (beacon_int < 10 || beacon_int > 10000)
1567 return -EINVAL;
1568
1569 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
1570 if (!wdev->beacon_interval)
1571 continue;
1572 if (wdev->beacon_interval != beacon_int) {
1573 res = -EINVAL;
1574 break;
1575 }
1576 }
1577
1578 return res;
1579 }
1580
cfg80211_iter_combinations(struct wiphy * wiphy,const int num_different_channels,const u8 radar_detect,const int iftype_num[NUM_NL80211_IFTYPES],void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)1581 int cfg80211_iter_combinations(struct wiphy *wiphy,
1582 const int num_different_channels,
1583 const u8 radar_detect,
1584 const int iftype_num[NUM_NL80211_IFTYPES],
1585 void (*iter)(const struct ieee80211_iface_combination *c,
1586 void *data),
1587 void *data)
1588 {
1589 const struct ieee80211_regdomain *regdom;
1590 enum nl80211_dfs_regions region = 0;
1591 int i, j, iftype;
1592 int num_interfaces = 0;
1593 u32 used_iftypes = 0;
1594
1595 if (radar_detect) {
1596 rcu_read_lock();
1597 regdom = rcu_dereference(cfg80211_regdomain);
1598 if (regdom)
1599 region = regdom->dfs_region;
1600 rcu_read_unlock();
1601 }
1602
1603 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1604 num_interfaces += iftype_num[iftype];
1605 if (iftype_num[iftype] > 0 &&
1606 !(wiphy->software_iftypes & BIT(iftype)))
1607 used_iftypes |= BIT(iftype);
1608 }
1609
1610 for (i = 0; i < wiphy->n_iface_combinations; i++) {
1611 const struct ieee80211_iface_combination *c;
1612 struct ieee80211_iface_limit *limits;
1613 u32 all_iftypes = 0;
1614
1615 c = &wiphy->iface_combinations[i];
1616
1617 if (num_interfaces > c->max_interfaces)
1618 continue;
1619 if (num_different_channels > c->num_different_channels)
1620 continue;
1621
1622 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1623 GFP_KERNEL);
1624 if (!limits)
1625 return -ENOMEM;
1626
1627 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1628 if (wiphy->software_iftypes & BIT(iftype))
1629 continue;
1630 for (j = 0; j < c->n_limits; j++) {
1631 all_iftypes |= limits[j].types;
1632 if (!(limits[j].types & BIT(iftype)))
1633 continue;
1634 if (limits[j].max < iftype_num[iftype])
1635 goto cont;
1636 limits[j].max -= iftype_num[iftype];
1637 }
1638 }
1639
1640 if (radar_detect != (c->radar_detect_widths & radar_detect))
1641 goto cont;
1642
1643 if (radar_detect && c->radar_detect_regions &&
1644 !(c->radar_detect_regions & BIT(region)))
1645 goto cont;
1646
1647 /* Finally check that all iftypes that we're currently
1648 * using are actually part of this combination. If they
1649 * aren't then we can't use this combination and have
1650 * to continue to the next.
1651 */
1652 if ((all_iftypes & used_iftypes) != used_iftypes)
1653 goto cont;
1654
1655 /* This combination covered all interface types and
1656 * supported the requested numbers, so we're good.
1657 */
1658
1659 (*iter)(c, data);
1660 cont:
1661 kfree(limits);
1662 }
1663
1664 return 0;
1665 }
1666 EXPORT_SYMBOL(cfg80211_iter_combinations);
1667
1668 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)1669 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1670 void *data)
1671 {
1672 int *num = data;
1673 (*num)++;
1674 }
1675
cfg80211_check_combinations(struct wiphy * wiphy,const int num_different_channels,const u8 radar_detect,const int iftype_num[NUM_NL80211_IFTYPES])1676 int cfg80211_check_combinations(struct wiphy *wiphy,
1677 const int num_different_channels,
1678 const u8 radar_detect,
1679 const int iftype_num[NUM_NL80211_IFTYPES])
1680 {
1681 int err, num = 0;
1682
1683 err = cfg80211_iter_combinations(wiphy, num_different_channels,
1684 radar_detect, iftype_num,
1685 cfg80211_iter_sum_ifcombs, &num);
1686 if (err)
1687 return err;
1688 if (num == 0)
1689 return -EBUSY;
1690
1691 return 0;
1692 }
1693 EXPORT_SYMBOL(cfg80211_check_combinations);
1694
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)1695 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1696 const u8 *rates, unsigned int n_rates,
1697 u32 *mask)
1698 {
1699 int i, j;
1700
1701 if (!sband)
1702 return -EINVAL;
1703
1704 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1705 return -EINVAL;
1706
1707 *mask = 0;
1708
1709 for (i = 0; i < n_rates; i++) {
1710 int rate = (rates[i] & 0x7f) * 5;
1711 bool found = false;
1712
1713 for (j = 0; j < sband->n_bitrates; j++) {
1714 if (sband->bitrates[j].bitrate == rate) {
1715 found = true;
1716 *mask |= BIT(j);
1717 break;
1718 }
1719 }
1720 if (!found)
1721 return -EINVAL;
1722 }
1723
1724 /*
1725 * mask must have at least one bit set here since we
1726 * didn't accept a 0-length rates array nor allowed
1727 * entries in the array that didn't exist
1728 */
1729
1730 return 0;
1731 }
1732
ieee80211_get_num_supported_channels(struct wiphy * wiphy)1733 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1734 {
1735 enum nl80211_band band;
1736 unsigned int n_channels = 0;
1737
1738 for (band = 0; band < NUM_NL80211_BANDS; band++)
1739 if (wiphy->bands[band])
1740 n_channels += wiphy->bands[band]->n_channels;
1741
1742 return n_channels;
1743 }
1744 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1745
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)1746 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1747 struct station_info *sinfo)
1748 {
1749 struct cfg80211_registered_device *rdev;
1750 struct wireless_dev *wdev;
1751
1752 wdev = dev->ieee80211_ptr;
1753 if (!wdev)
1754 return -EOPNOTSUPP;
1755
1756 rdev = wiphy_to_rdev(wdev->wiphy);
1757 if (!rdev->ops->get_station)
1758 return -EOPNOTSUPP;
1759
1760 return rdev_get_station(rdev, dev, mac_addr, sinfo);
1761 }
1762 EXPORT_SYMBOL(cfg80211_get_station);
1763
cfg80211_free_nan_func(struct cfg80211_nan_func * f)1764 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1765 {
1766 int i;
1767
1768 if (!f)
1769 return;
1770
1771 kfree(f->serv_spec_info);
1772 kfree(f->srf_bf);
1773 kfree(f->srf_macs);
1774 for (i = 0; i < f->num_rx_filters; i++)
1775 kfree(f->rx_filters[i].filter);
1776
1777 for (i = 0; i < f->num_tx_filters; i++)
1778 kfree(f->tx_filters[i].filter);
1779
1780 kfree(f->rx_filters);
1781 kfree(f->tx_filters);
1782 kfree(f);
1783 }
1784 EXPORT_SYMBOL(cfg80211_free_nan_func);
1785
1786 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1787 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1788 const unsigned char rfc1042_header[] __aligned(2) =
1789 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1790 EXPORT_SYMBOL(rfc1042_header);
1791
1792 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1793 const unsigned char bridge_tunnel_header[] __aligned(2) =
1794 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1795 EXPORT_SYMBOL(bridge_tunnel_header);
1796