1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/atomic.h>
61 #include <linux/cpuset.h>
62 #include <linux/proc_ns.h>
63 #include <linux/nsproxy.h>
64 #include <linux/file.h>
65 #include <net/sock.h>
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/cgroup.h>
69
70 /*
71 * pidlists linger the following amount before being destroyed. The goal
72 * is avoiding frequent destruction in the middle of consecutive read calls
73 * Expiring in the middle is a performance problem not a correctness one.
74 * 1 sec should be enough.
75 */
76 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
77
78 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
79 MAX_CFTYPE_NAME + 2)
80
81 /*
82 * cgroup_mutex is the master lock. Any modification to cgroup or its
83 * hierarchy must be performed while holding it.
84 *
85 * css_set_lock protects task->cgroups pointer, the list of css_set
86 * objects, and the chain of tasks off each css_set.
87 *
88 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
89 * cgroup.h can use them for lockdep annotations.
90 */
91 #ifdef CONFIG_PROVE_RCU
92 DEFINE_MUTEX(cgroup_mutex);
93 DEFINE_SPINLOCK(css_set_lock);
94 EXPORT_SYMBOL_GPL(cgroup_mutex);
95 EXPORT_SYMBOL_GPL(css_set_lock);
96 #else
97 static DEFINE_MUTEX(cgroup_mutex);
98 static DEFINE_SPINLOCK(css_set_lock);
99 #endif
100
101 /*
102 * Protects cgroup_idr and css_idr so that IDs can be released without
103 * grabbing cgroup_mutex.
104 */
105 static DEFINE_SPINLOCK(cgroup_idr_lock);
106
107 /*
108 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
109 * against file removal/re-creation across css hiding.
110 */
111 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
112
113 /*
114 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
115 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
116 */
117 static DEFINE_SPINLOCK(release_agent_path_lock);
118
119 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
120
121 #define cgroup_assert_mutex_or_rcu_locked() \
122 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
123 !lockdep_is_held(&cgroup_mutex), \
124 "cgroup_mutex or RCU read lock required");
125
126 /*
127 * cgroup destruction makes heavy use of work items and there can be a lot
128 * of concurrent destructions. Use a separate workqueue so that cgroup
129 * destruction work items don't end up filling up max_active of system_wq
130 * which may lead to deadlock.
131 */
132 static struct workqueue_struct *cgroup_destroy_wq;
133
134 /*
135 * pidlist destructions need to be flushed on cgroup destruction. Use a
136 * separate workqueue as flush domain.
137 */
138 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
139
140 /* generate an array of cgroup subsystem pointers */
141 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
142 static struct cgroup_subsys *cgroup_subsys[] = {
143 #include <linux/cgroup_subsys.h>
144 };
145 #undef SUBSYS
146
147 /* array of cgroup subsystem names */
148 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
149 static const char *cgroup_subsys_name[] = {
150 #include <linux/cgroup_subsys.h>
151 };
152 #undef SUBSYS
153
154 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
155 #define SUBSYS(_x) \
156 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
157 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
158 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
159 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
160 #include <linux/cgroup_subsys.h>
161 #undef SUBSYS
162
163 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
164 static struct static_key_true *cgroup_subsys_enabled_key[] = {
165 #include <linux/cgroup_subsys.h>
166 };
167 #undef SUBSYS
168
169 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
170 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
171 #include <linux/cgroup_subsys.h>
172 };
173 #undef SUBSYS
174
175 /*
176 * The default hierarchy, reserved for the subsystems that are otherwise
177 * unattached - it never has more than a single cgroup, and all tasks are
178 * part of that cgroup.
179 */
180 struct cgroup_root cgrp_dfl_root;
181 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
182
183 /*
184 * The default hierarchy always exists but is hidden until mounted for the
185 * first time. This is for backward compatibility.
186 */
187 static bool cgrp_dfl_visible;
188
189 /* Controllers blocked by the commandline in v1 */
190 static u16 cgroup_no_v1_mask;
191
192 /* some controllers are not supported in the default hierarchy */
193 static u16 cgrp_dfl_inhibit_ss_mask;
194
195 /* some controllers are implicitly enabled on the default hierarchy */
196 static unsigned long cgrp_dfl_implicit_ss_mask;
197
198 /* The list of hierarchy roots */
199
200 static LIST_HEAD(cgroup_roots);
201 static int cgroup_root_count;
202
203 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
204 static DEFINE_IDR(cgroup_hierarchy_idr);
205
206 /*
207 * Assign a monotonically increasing serial number to csses. It guarantees
208 * cgroups with bigger numbers are newer than those with smaller numbers.
209 * Also, as csses are always appended to the parent's ->children list, it
210 * guarantees that sibling csses are always sorted in the ascending serial
211 * number order on the list. Protected by cgroup_mutex.
212 */
213 static u64 css_serial_nr_next = 1;
214
215 /*
216 * These bitmask flags indicate whether tasks in the fork and exit paths have
217 * fork/exit handlers to call. This avoids us having to do extra work in the
218 * fork/exit path to check which subsystems have fork/exit callbacks.
219 */
220 static u16 have_fork_callback __read_mostly;
221 static u16 have_exit_callback __read_mostly;
222 static u16 have_free_callback __read_mostly;
223
224 /* cgroup namespace for init task */
225 struct cgroup_namespace init_cgroup_ns = {
226 .count = { .counter = 2, },
227 .user_ns = &init_user_ns,
228 .ns.ops = &cgroupns_operations,
229 .ns.inum = PROC_CGROUP_INIT_INO,
230 .root_cset = &init_css_set,
231 };
232
233 /* Ditto for the can_fork callback. */
234 static u16 have_canfork_callback __read_mostly;
235
236 static struct file_system_type cgroup2_fs_type;
237 static struct cftype cgroup_dfl_base_files[];
238 static struct cftype cgroup_legacy_base_files[];
239
240 static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
241 static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
242 static int cgroup_apply_control(struct cgroup *cgrp);
243 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
244 static void css_task_iter_advance(struct css_task_iter *it);
245 static int cgroup_destroy_locked(struct cgroup *cgrp);
246 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
247 struct cgroup_subsys *ss);
248 static void css_release(struct percpu_ref *ref);
249 static void kill_css(struct cgroup_subsys_state *css);
250 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
251 struct cgroup *cgrp, struct cftype cfts[],
252 bool is_add);
253
254 /**
255 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
256 * @ssid: subsys ID of interest
257 *
258 * cgroup_subsys_enabled() can only be used with literal subsys names which
259 * is fine for individual subsystems but unsuitable for cgroup core. This
260 * is slower static_key_enabled() based test indexed by @ssid.
261 */
cgroup_ssid_enabled(int ssid)262 static bool cgroup_ssid_enabled(int ssid)
263 {
264 if (CGROUP_SUBSYS_COUNT == 0)
265 return false;
266
267 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
268 }
269
cgroup_ssid_no_v1(int ssid)270 static bool cgroup_ssid_no_v1(int ssid)
271 {
272 return cgroup_no_v1_mask & (1 << ssid);
273 }
274
275 /**
276 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
277 * @cgrp: the cgroup of interest
278 *
279 * The default hierarchy is the v2 interface of cgroup and this function
280 * can be used to test whether a cgroup is on the default hierarchy for
281 * cases where a subsystem should behave differnetly depending on the
282 * interface version.
283 *
284 * The set of behaviors which change on the default hierarchy are still
285 * being determined and the mount option is prefixed with __DEVEL__.
286 *
287 * List of changed behaviors:
288 *
289 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
290 * and "name" are disallowed.
291 *
292 * - When mounting an existing superblock, mount options should match.
293 *
294 * - Remount is disallowed.
295 *
296 * - rename(2) is disallowed.
297 *
298 * - "tasks" is removed. Everything should be at process granularity. Use
299 * "cgroup.procs" instead.
300 *
301 * - "cgroup.procs" is not sorted. pids will be unique unless they got
302 * recycled inbetween reads.
303 *
304 * - "release_agent" and "notify_on_release" are removed. Replacement
305 * notification mechanism will be implemented.
306 *
307 * - "cgroup.clone_children" is removed.
308 *
309 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
310 * and its descendants contain no task; otherwise, 1. The file also
311 * generates kernfs notification which can be monitored through poll and
312 * [di]notify when the value of the file changes.
313 *
314 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
315 * take masks of ancestors with non-empty cpus/mems, instead of being
316 * moved to an ancestor.
317 *
318 * - cpuset: a task can be moved into an empty cpuset, and again it takes
319 * masks of ancestors.
320 *
321 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
322 * is not created.
323 *
324 * - blkcg: blk-throttle becomes properly hierarchical.
325 *
326 * - debug: disallowed on the default hierarchy.
327 */
cgroup_on_dfl(const struct cgroup * cgrp)328 static bool cgroup_on_dfl(const struct cgroup *cgrp)
329 {
330 return cgrp->root == &cgrp_dfl_root;
331 }
332
333 /* IDR wrappers which synchronize using cgroup_idr_lock */
cgroup_idr_alloc(struct idr * idr,void * ptr,int start,int end,gfp_t gfp_mask)334 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
335 gfp_t gfp_mask)
336 {
337 int ret;
338
339 idr_preload(gfp_mask);
340 spin_lock_bh(&cgroup_idr_lock);
341 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
342 spin_unlock_bh(&cgroup_idr_lock);
343 idr_preload_end();
344 return ret;
345 }
346
cgroup_idr_replace(struct idr * idr,void * ptr,int id)347 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
348 {
349 void *ret;
350
351 spin_lock_bh(&cgroup_idr_lock);
352 ret = idr_replace(idr, ptr, id);
353 spin_unlock_bh(&cgroup_idr_lock);
354 return ret;
355 }
356
cgroup_idr_remove(struct idr * idr,int id)357 static void cgroup_idr_remove(struct idr *idr, int id)
358 {
359 spin_lock_bh(&cgroup_idr_lock);
360 idr_remove(idr, id);
361 spin_unlock_bh(&cgroup_idr_lock);
362 }
363
cgroup_parent(struct cgroup * cgrp)364 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
365 {
366 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
367
368 if (parent_css)
369 return container_of(parent_css, struct cgroup, self);
370 return NULL;
371 }
372
373 /* subsystems visibly enabled on a cgroup */
cgroup_control(struct cgroup * cgrp)374 static u16 cgroup_control(struct cgroup *cgrp)
375 {
376 struct cgroup *parent = cgroup_parent(cgrp);
377 u16 root_ss_mask = cgrp->root->subsys_mask;
378
379 if (parent)
380 return parent->subtree_control;
381
382 if (cgroup_on_dfl(cgrp))
383 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
384 cgrp_dfl_implicit_ss_mask);
385 return root_ss_mask;
386 }
387
388 /* subsystems enabled on a cgroup */
cgroup_ss_mask(struct cgroup * cgrp)389 static u16 cgroup_ss_mask(struct cgroup *cgrp)
390 {
391 struct cgroup *parent = cgroup_parent(cgrp);
392
393 if (parent)
394 return parent->subtree_ss_mask;
395
396 return cgrp->root->subsys_mask;
397 }
398
399 /**
400 * cgroup_css - obtain a cgroup's css for the specified subsystem
401 * @cgrp: the cgroup of interest
402 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
403 *
404 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
405 * function must be called either under cgroup_mutex or rcu_read_lock() and
406 * the caller is responsible for pinning the returned css if it wants to
407 * keep accessing it outside the said locks. This function may return
408 * %NULL if @cgrp doesn't have @subsys_id enabled.
409 */
cgroup_css(struct cgroup * cgrp,struct cgroup_subsys * ss)410 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
411 struct cgroup_subsys *ss)
412 {
413 if (ss)
414 return rcu_dereference_check(cgrp->subsys[ss->id],
415 lockdep_is_held(&cgroup_mutex));
416 else
417 return &cgrp->self;
418 }
419
420 /**
421 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
422 * @cgrp: the cgroup of interest
423 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
424 *
425 * Similar to cgroup_css() but returns the effective css, which is defined
426 * as the matching css of the nearest ancestor including self which has @ss
427 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
428 * function is guaranteed to return non-NULL css.
429 */
cgroup_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)430 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
431 struct cgroup_subsys *ss)
432 {
433 lockdep_assert_held(&cgroup_mutex);
434
435 if (!ss)
436 return &cgrp->self;
437
438 /*
439 * This function is used while updating css associations and thus
440 * can't test the csses directly. Test ss_mask.
441 */
442 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
443 cgrp = cgroup_parent(cgrp);
444 if (!cgrp)
445 return NULL;
446 }
447
448 return cgroup_css(cgrp, ss);
449 }
450
451 /**
452 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
453 * @cgrp: the cgroup of interest
454 * @ss: the subsystem of interest
455 *
456 * Find and get the effective css of @cgrp for @ss. The effective css is
457 * defined as the matching css of the nearest ancestor including self which
458 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
459 * the root css is returned, so this function always returns a valid css.
460 * The returned css must be put using css_put().
461 */
cgroup_get_e_css(struct cgroup * cgrp,struct cgroup_subsys * ss)462 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
463 struct cgroup_subsys *ss)
464 {
465 struct cgroup_subsys_state *css;
466
467 rcu_read_lock();
468
469 do {
470 css = cgroup_css(cgrp, ss);
471
472 if (css && css_tryget_online(css))
473 goto out_unlock;
474 cgrp = cgroup_parent(cgrp);
475 } while (cgrp);
476
477 css = init_css_set.subsys[ss->id];
478 css_get(css);
479 out_unlock:
480 rcu_read_unlock();
481 return css;
482 }
483
484 /* convenient tests for these bits */
cgroup_is_dead(const struct cgroup * cgrp)485 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
486 {
487 return !(cgrp->self.flags & CSS_ONLINE);
488 }
489
cgroup_get(struct cgroup * cgrp)490 static void cgroup_get(struct cgroup *cgrp)
491 {
492 WARN_ON_ONCE(cgroup_is_dead(cgrp));
493 css_get(&cgrp->self);
494 }
495
cgroup_tryget(struct cgroup * cgrp)496 static bool cgroup_tryget(struct cgroup *cgrp)
497 {
498 return css_tryget(&cgrp->self);
499 }
500
of_css(struct kernfs_open_file * of)501 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
502 {
503 struct cgroup *cgrp = of->kn->parent->priv;
504 struct cftype *cft = of_cft(of);
505
506 /*
507 * This is open and unprotected implementation of cgroup_css().
508 * seq_css() is only called from a kernfs file operation which has
509 * an active reference on the file. Because all the subsystem
510 * files are drained before a css is disassociated with a cgroup,
511 * the matching css from the cgroup's subsys table is guaranteed to
512 * be and stay valid until the enclosing operation is complete.
513 */
514 if (cft->ss)
515 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
516 else
517 return &cgrp->self;
518 }
519 EXPORT_SYMBOL_GPL(of_css);
520
notify_on_release(const struct cgroup * cgrp)521 static int notify_on_release(const struct cgroup *cgrp)
522 {
523 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
524 }
525
526 /**
527 * for_each_css - iterate all css's of a cgroup
528 * @css: the iteration cursor
529 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
530 * @cgrp: the target cgroup to iterate css's of
531 *
532 * Should be called under cgroup_[tree_]mutex.
533 */
534 #define for_each_css(css, ssid, cgrp) \
535 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
536 if (!((css) = rcu_dereference_check( \
537 (cgrp)->subsys[(ssid)], \
538 lockdep_is_held(&cgroup_mutex)))) { } \
539 else
540
541 /**
542 * for_each_e_css - iterate all effective css's of a cgroup
543 * @css: the iteration cursor
544 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
545 * @cgrp: the target cgroup to iterate css's of
546 *
547 * Should be called under cgroup_[tree_]mutex.
548 */
549 #define for_each_e_css(css, ssid, cgrp) \
550 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
551 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
552 ; \
553 else
554
555 /**
556 * for_each_subsys - iterate all enabled cgroup subsystems
557 * @ss: the iteration cursor
558 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
559 */
560 #define for_each_subsys(ss, ssid) \
561 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
562 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
563
564 /**
565 * do_each_subsys_mask - filter for_each_subsys with a bitmask
566 * @ss: the iteration cursor
567 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
568 * @ss_mask: the bitmask
569 *
570 * The block will only run for cases where the ssid-th bit (1 << ssid) of
571 * @ss_mask is set.
572 */
573 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
574 unsigned long __ss_mask = (ss_mask); \
575 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
576 (ssid) = 0; \
577 break; \
578 } \
579 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
580 (ss) = cgroup_subsys[ssid]; \
581 {
582
583 #define while_each_subsys_mask() \
584 } \
585 } \
586 } while (false)
587
588 /* iterate across the hierarchies */
589 #define for_each_root(root) \
590 list_for_each_entry((root), &cgroup_roots, root_list)
591
592 /* iterate over child cgrps, lock should be held throughout iteration */
593 #define cgroup_for_each_live_child(child, cgrp) \
594 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
595 if (({ lockdep_assert_held(&cgroup_mutex); \
596 cgroup_is_dead(child); })) \
597 ; \
598 else
599
600 /* walk live descendants in preorder */
601 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
602 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
603 if (({ lockdep_assert_held(&cgroup_mutex); \
604 (dsct) = (d_css)->cgroup; \
605 cgroup_is_dead(dsct); })) \
606 ; \
607 else
608
609 /* walk live descendants in postorder */
610 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
611 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
612 if (({ lockdep_assert_held(&cgroup_mutex); \
613 (dsct) = (d_css)->cgroup; \
614 cgroup_is_dead(dsct); })) \
615 ; \
616 else
617
618 static void cgroup_release_agent(struct work_struct *work);
619 static void check_for_release(struct cgroup *cgrp);
620
621 /*
622 * A cgroup can be associated with multiple css_sets as different tasks may
623 * belong to different cgroups on different hierarchies. In the other
624 * direction, a css_set is naturally associated with multiple cgroups.
625 * This M:N relationship is represented by the following link structure
626 * which exists for each association and allows traversing the associations
627 * from both sides.
628 */
629 struct cgrp_cset_link {
630 /* the cgroup and css_set this link associates */
631 struct cgroup *cgrp;
632 struct css_set *cset;
633
634 /* list of cgrp_cset_links anchored at cgrp->cset_links */
635 struct list_head cset_link;
636
637 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
638 struct list_head cgrp_link;
639 };
640
641 /*
642 * The default css_set - used by init and its children prior to any
643 * hierarchies being mounted. It contains a pointer to the root state
644 * for each subsystem. Also used to anchor the list of css_sets. Not
645 * reference-counted, to improve performance when child cgroups
646 * haven't been created.
647 */
648 struct css_set init_css_set = {
649 .refcount = ATOMIC_INIT(1),
650 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
651 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
652 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
653 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
654 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
655 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
656 };
657
658 static int css_set_count = 1; /* 1 for init_css_set */
659
660 /**
661 * css_set_populated - does a css_set contain any tasks?
662 * @cset: target css_set
663 */
css_set_populated(struct css_set * cset)664 static bool css_set_populated(struct css_set *cset)
665 {
666 lockdep_assert_held(&css_set_lock);
667
668 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
669 }
670
671 /**
672 * cgroup_update_populated - updated populated count of a cgroup
673 * @cgrp: the target cgroup
674 * @populated: inc or dec populated count
675 *
676 * One of the css_sets associated with @cgrp is either getting its first
677 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
678 * count is propagated towards root so that a given cgroup's populated_cnt
679 * is zero iff the cgroup and all its descendants don't contain any tasks.
680 *
681 * @cgrp's interface file "cgroup.populated" is zero if
682 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
683 * changes from or to zero, userland is notified that the content of the
684 * interface file has changed. This can be used to detect when @cgrp and
685 * its descendants become populated or empty.
686 */
cgroup_update_populated(struct cgroup * cgrp,bool populated)687 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
688 {
689 lockdep_assert_held(&css_set_lock);
690
691 do {
692 bool trigger;
693
694 if (populated)
695 trigger = !cgrp->populated_cnt++;
696 else
697 trigger = !--cgrp->populated_cnt;
698
699 if (!trigger)
700 break;
701
702 check_for_release(cgrp);
703 cgroup_file_notify(&cgrp->events_file);
704
705 cgrp = cgroup_parent(cgrp);
706 } while (cgrp);
707 }
708
709 /**
710 * css_set_update_populated - update populated state of a css_set
711 * @cset: target css_set
712 * @populated: whether @cset is populated or depopulated
713 *
714 * @cset is either getting the first task or losing the last. Update the
715 * ->populated_cnt of all associated cgroups accordingly.
716 */
css_set_update_populated(struct css_set * cset,bool populated)717 static void css_set_update_populated(struct css_set *cset, bool populated)
718 {
719 struct cgrp_cset_link *link;
720
721 lockdep_assert_held(&css_set_lock);
722
723 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
724 cgroup_update_populated(link->cgrp, populated);
725 }
726
727 /**
728 * css_set_move_task - move a task from one css_set to another
729 * @task: task being moved
730 * @from_cset: css_set @task currently belongs to (may be NULL)
731 * @to_cset: new css_set @task is being moved to (may be NULL)
732 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
733 *
734 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
735 * css_set, @from_cset can be NULL. If @task is being disassociated
736 * instead of moved, @to_cset can be NULL.
737 *
738 * This function automatically handles populated_cnt updates and
739 * css_task_iter adjustments but the caller is responsible for managing
740 * @from_cset and @to_cset's reference counts.
741 */
css_set_move_task(struct task_struct * task,struct css_set * from_cset,struct css_set * to_cset,bool use_mg_tasks)742 static void css_set_move_task(struct task_struct *task,
743 struct css_set *from_cset, struct css_set *to_cset,
744 bool use_mg_tasks)
745 {
746 lockdep_assert_held(&css_set_lock);
747
748 if (to_cset && !css_set_populated(to_cset))
749 css_set_update_populated(to_cset, true);
750
751 if (from_cset) {
752 struct css_task_iter *it, *pos;
753
754 WARN_ON_ONCE(list_empty(&task->cg_list));
755
756 /*
757 * @task is leaving, advance task iterators which are
758 * pointing to it so that they can resume at the next
759 * position. Advancing an iterator might remove it from
760 * the list, use safe walk. See css_task_iter_advance*()
761 * for details.
762 */
763 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
764 iters_node)
765 if (it->task_pos == &task->cg_list)
766 css_task_iter_advance(it);
767
768 list_del_init(&task->cg_list);
769 if (!css_set_populated(from_cset))
770 css_set_update_populated(from_cset, false);
771 } else {
772 WARN_ON_ONCE(!list_empty(&task->cg_list));
773 }
774
775 if (to_cset) {
776 /*
777 * We are synchronized through cgroup_threadgroup_rwsem
778 * against PF_EXITING setting such that we can't race
779 * against cgroup_exit() changing the css_set to
780 * init_css_set and dropping the old one.
781 */
782 WARN_ON_ONCE(task->flags & PF_EXITING);
783
784 rcu_assign_pointer(task->cgroups, to_cset);
785 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
786 &to_cset->tasks);
787 }
788 }
789
790 /*
791 * hash table for cgroup groups. This improves the performance to find
792 * an existing css_set. This hash doesn't (currently) take into
793 * account cgroups in empty hierarchies.
794 */
795 #define CSS_SET_HASH_BITS 7
796 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
797
css_set_hash(struct cgroup_subsys_state * css[])798 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
799 {
800 unsigned long key = 0UL;
801 struct cgroup_subsys *ss;
802 int i;
803
804 for_each_subsys(ss, i)
805 key += (unsigned long)css[i];
806 key = (key >> 16) ^ key;
807
808 return key;
809 }
810
put_css_set_locked(struct css_set * cset)811 static void put_css_set_locked(struct css_set *cset)
812 {
813 struct cgrp_cset_link *link, *tmp_link;
814 struct cgroup_subsys *ss;
815 int ssid;
816
817 lockdep_assert_held(&css_set_lock);
818
819 if (!atomic_dec_and_test(&cset->refcount))
820 return;
821
822 /* This css_set is dead. unlink it and release cgroup and css refs */
823 for_each_subsys(ss, ssid) {
824 list_del(&cset->e_cset_node[ssid]);
825 css_put(cset->subsys[ssid]);
826 }
827 hash_del(&cset->hlist);
828 css_set_count--;
829
830 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
831 list_del(&link->cset_link);
832 list_del(&link->cgrp_link);
833 if (cgroup_parent(link->cgrp))
834 cgroup_put(link->cgrp);
835 kfree(link);
836 }
837
838 kfree_rcu(cset, rcu_head);
839 }
840
put_css_set(struct css_set * cset)841 static void put_css_set(struct css_set *cset)
842 {
843 unsigned long flags;
844
845 /*
846 * Ensure that the refcount doesn't hit zero while any readers
847 * can see it. Similar to atomic_dec_and_lock(), but for an
848 * rwlock
849 */
850 if (atomic_add_unless(&cset->refcount, -1, 1))
851 return;
852
853 spin_lock_irqsave(&css_set_lock, flags);
854 put_css_set_locked(cset);
855 spin_unlock_irqrestore(&css_set_lock, flags);
856 }
857
858 /*
859 * refcounted get/put for css_set objects
860 */
get_css_set(struct css_set * cset)861 static inline void get_css_set(struct css_set *cset)
862 {
863 atomic_inc(&cset->refcount);
864 }
865
866 /**
867 * compare_css_sets - helper function for find_existing_css_set().
868 * @cset: candidate css_set being tested
869 * @old_cset: existing css_set for a task
870 * @new_cgrp: cgroup that's being entered by the task
871 * @template: desired set of css pointers in css_set (pre-calculated)
872 *
873 * Returns true if "cset" matches "old_cset" except for the hierarchy
874 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
875 */
compare_css_sets(struct css_set * cset,struct css_set * old_cset,struct cgroup * new_cgrp,struct cgroup_subsys_state * template[])876 static bool compare_css_sets(struct css_set *cset,
877 struct css_set *old_cset,
878 struct cgroup *new_cgrp,
879 struct cgroup_subsys_state *template[])
880 {
881 struct list_head *l1, *l2;
882
883 /*
884 * On the default hierarchy, there can be csets which are
885 * associated with the same set of cgroups but different csses.
886 * Let's first ensure that csses match.
887 */
888 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
889 return false;
890
891 /*
892 * Compare cgroup pointers in order to distinguish between
893 * different cgroups in hierarchies. As different cgroups may
894 * share the same effective css, this comparison is always
895 * necessary.
896 */
897 l1 = &cset->cgrp_links;
898 l2 = &old_cset->cgrp_links;
899 while (1) {
900 struct cgrp_cset_link *link1, *link2;
901 struct cgroup *cgrp1, *cgrp2;
902
903 l1 = l1->next;
904 l2 = l2->next;
905 /* See if we reached the end - both lists are equal length. */
906 if (l1 == &cset->cgrp_links) {
907 BUG_ON(l2 != &old_cset->cgrp_links);
908 break;
909 } else {
910 BUG_ON(l2 == &old_cset->cgrp_links);
911 }
912 /* Locate the cgroups associated with these links. */
913 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
914 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
915 cgrp1 = link1->cgrp;
916 cgrp2 = link2->cgrp;
917 /* Hierarchies should be linked in the same order. */
918 BUG_ON(cgrp1->root != cgrp2->root);
919
920 /*
921 * If this hierarchy is the hierarchy of the cgroup
922 * that's changing, then we need to check that this
923 * css_set points to the new cgroup; if it's any other
924 * hierarchy, then this css_set should point to the
925 * same cgroup as the old css_set.
926 */
927 if (cgrp1->root == new_cgrp->root) {
928 if (cgrp1 != new_cgrp)
929 return false;
930 } else {
931 if (cgrp1 != cgrp2)
932 return false;
933 }
934 }
935 return true;
936 }
937
938 /**
939 * find_existing_css_set - init css array and find the matching css_set
940 * @old_cset: the css_set that we're using before the cgroup transition
941 * @cgrp: the cgroup that we're moving into
942 * @template: out param for the new set of csses, should be clear on entry
943 */
find_existing_css_set(struct css_set * old_cset,struct cgroup * cgrp,struct cgroup_subsys_state * template[])944 static struct css_set *find_existing_css_set(struct css_set *old_cset,
945 struct cgroup *cgrp,
946 struct cgroup_subsys_state *template[])
947 {
948 struct cgroup_root *root = cgrp->root;
949 struct cgroup_subsys *ss;
950 struct css_set *cset;
951 unsigned long key;
952 int i;
953
954 /*
955 * Build the set of subsystem state objects that we want to see in the
956 * new css_set. while subsystems can change globally, the entries here
957 * won't change, so no need for locking.
958 */
959 for_each_subsys(ss, i) {
960 if (root->subsys_mask & (1UL << i)) {
961 /*
962 * @ss is in this hierarchy, so we want the
963 * effective css from @cgrp.
964 */
965 template[i] = cgroup_e_css(cgrp, ss);
966 } else {
967 /*
968 * @ss is not in this hierarchy, so we don't want
969 * to change the css.
970 */
971 template[i] = old_cset->subsys[i];
972 }
973 }
974
975 key = css_set_hash(template);
976 hash_for_each_possible(css_set_table, cset, hlist, key) {
977 if (!compare_css_sets(cset, old_cset, cgrp, template))
978 continue;
979
980 /* This css_set matches what we need */
981 return cset;
982 }
983
984 /* No existing cgroup group matched */
985 return NULL;
986 }
987
free_cgrp_cset_links(struct list_head * links_to_free)988 static void free_cgrp_cset_links(struct list_head *links_to_free)
989 {
990 struct cgrp_cset_link *link, *tmp_link;
991
992 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
993 list_del(&link->cset_link);
994 kfree(link);
995 }
996 }
997
998 /**
999 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1000 * @count: the number of links to allocate
1001 * @tmp_links: list_head the allocated links are put on
1002 *
1003 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1004 * through ->cset_link. Returns 0 on success or -errno.
1005 */
allocate_cgrp_cset_links(int count,struct list_head * tmp_links)1006 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1007 {
1008 struct cgrp_cset_link *link;
1009 int i;
1010
1011 INIT_LIST_HEAD(tmp_links);
1012
1013 for (i = 0; i < count; i++) {
1014 link = kzalloc(sizeof(*link), GFP_KERNEL);
1015 if (!link) {
1016 free_cgrp_cset_links(tmp_links);
1017 return -ENOMEM;
1018 }
1019 list_add(&link->cset_link, tmp_links);
1020 }
1021 return 0;
1022 }
1023
1024 /**
1025 * link_css_set - a helper function to link a css_set to a cgroup
1026 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1027 * @cset: the css_set to be linked
1028 * @cgrp: the destination cgroup
1029 */
link_css_set(struct list_head * tmp_links,struct css_set * cset,struct cgroup * cgrp)1030 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1031 struct cgroup *cgrp)
1032 {
1033 struct cgrp_cset_link *link;
1034
1035 BUG_ON(list_empty(tmp_links));
1036
1037 if (cgroup_on_dfl(cgrp))
1038 cset->dfl_cgrp = cgrp;
1039
1040 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1041 link->cset = cset;
1042 link->cgrp = cgrp;
1043
1044 /*
1045 * Always add links to the tail of the lists so that the lists are
1046 * in choronological order.
1047 */
1048 list_move_tail(&link->cset_link, &cgrp->cset_links);
1049 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1050
1051 if (cgroup_parent(cgrp))
1052 cgroup_get(cgrp);
1053 }
1054
1055 /**
1056 * find_css_set - return a new css_set with one cgroup updated
1057 * @old_cset: the baseline css_set
1058 * @cgrp: the cgroup to be updated
1059 *
1060 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1061 * substituted into the appropriate hierarchy.
1062 */
find_css_set(struct css_set * old_cset,struct cgroup * cgrp)1063 static struct css_set *find_css_set(struct css_set *old_cset,
1064 struct cgroup *cgrp)
1065 {
1066 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1067 struct css_set *cset;
1068 struct list_head tmp_links;
1069 struct cgrp_cset_link *link;
1070 struct cgroup_subsys *ss;
1071 unsigned long key;
1072 int ssid;
1073
1074 lockdep_assert_held(&cgroup_mutex);
1075
1076 /* First see if we already have a cgroup group that matches
1077 * the desired set */
1078 spin_lock_irq(&css_set_lock);
1079 cset = find_existing_css_set(old_cset, cgrp, template);
1080 if (cset)
1081 get_css_set(cset);
1082 spin_unlock_irq(&css_set_lock);
1083
1084 if (cset)
1085 return cset;
1086
1087 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1088 if (!cset)
1089 return NULL;
1090
1091 /* Allocate all the cgrp_cset_link objects that we'll need */
1092 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1093 kfree(cset);
1094 return NULL;
1095 }
1096
1097 atomic_set(&cset->refcount, 1);
1098 INIT_LIST_HEAD(&cset->cgrp_links);
1099 INIT_LIST_HEAD(&cset->tasks);
1100 INIT_LIST_HEAD(&cset->mg_tasks);
1101 INIT_LIST_HEAD(&cset->mg_preload_node);
1102 INIT_LIST_HEAD(&cset->mg_node);
1103 INIT_LIST_HEAD(&cset->task_iters);
1104 INIT_HLIST_NODE(&cset->hlist);
1105
1106 /* Copy the set of subsystem state objects generated in
1107 * find_existing_css_set() */
1108 memcpy(cset->subsys, template, sizeof(cset->subsys));
1109
1110 spin_lock_irq(&css_set_lock);
1111 /* Add reference counts and links from the new css_set. */
1112 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1113 struct cgroup *c = link->cgrp;
1114
1115 if (c->root == cgrp->root)
1116 c = cgrp;
1117 link_css_set(&tmp_links, cset, c);
1118 }
1119
1120 BUG_ON(!list_empty(&tmp_links));
1121
1122 css_set_count++;
1123
1124 /* Add @cset to the hash table */
1125 key = css_set_hash(cset->subsys);
1126 hash_add(css_set_table, &cset->hlist, key);
1127
1128 for_each_subsys(ss, ssid) {
1129 struct cgroup_subsys_state *css = cset->subsys[ssid];
1130
1131 list_add_tail(&cset->e_cset_node[ssid],
1132 &css->cgroup->e_csets[ssid]);
1133 css_get(css);
1134 }
1135
1136 spin_unlock_irq(&css_set_lock);
1137
1138 return cset;
1139 }
1140
cgroup_root_from_kf(struct kernfs_root * kf_root)1141 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1142 {
1143 struct cgroup *root_cgrp = kf_root->kn->priv;
1144
1145 return root_cgrp->root;
1146 }
1147
cgroup_init_root_id(struct cgroup_root * root)1148 static int cgroup_init_root_id(struct cgroup_root *root)
1149 {
1150 int id;
1151
1152 lockdep_assert_held(&cgroup_mutex);
1153
1154 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1155 if (id < 0)
1156 return id;
1157
1158 root->hierarchy_id = id;
1159 return 0;
1160 }
1161
cgroup_exit_root_id(struct cgroup_root * root)1162 static void cgroup_exit_root_id(struct cgroup_root *root)
1163 {
1164 lockdep_assert_held(&cgroup_mutex);
1165
1166 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1167 }
1168
cgroup_free_root(struct cgroup_root * root)1169 static void cgroup_free_root(struct cgroup_root *root)
1170 {
1171 if (root) {
1172 idr_destroy(&root->cgroup_idr);
1173 kfree(root);
1174 }
1175 }
1176
cgroup_destroy_root(struct cgroup_root * root)1177 static void cgroup_destroy_root(struct cgroup_root *root)
1178 {
1179 struct cgroup *cgrp = &root->cgrp;
1180 struct cgrp_cset_link *link, *tmp_link;
1181
1182 trace_cgroup_destroy_root(root);
1183
1184 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1185
1186 BUG_ON(atomic_read(&root->nr_cgrps));
1187 BUG_ON(!list_empty(&cgrp->self.children));
1188
1189 /* Rebind all subsystems back to the default hierarchy */
1190 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1191
1192 /*
1193 * Release all the links from cset_links to this hierarchy's
1194 * root cgroup
1195 */
1196 spin_lock_irq(&css_set_lock);
1197
1198 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1199 list_del(&link->cset_link);
1200 list_del(&link->cgrp_link);
1201 kfree(link);
1202 }
1203
1204 spin_unlock_irq(&css_set_lock);
1205
1206 if (!list_empty(&root->root_list)) {
1207 list_del(&root->root_list);
1208 cgroup_root_count--;
1209 }
1210
1211 cgroup_exit_root_id(root);
1212
1213 mutex_unlock(&cgroup_mutex);
1214
1215 kernfs_destroy_root(root->kf_root);
1216 cgroup_free_root(root);
1217 }
1218
1219 /*
1220 * look up cgroup associated with current task's cgroup namespace on the
1221 * specified hierarchy
1222 */
1223 static struct cgroup *
current_cgns_cgroup_from_root(struct cgroup_root * root)1224 current_cgns_cgroup_from_root(struct cgroup_root *root)
1225 {
1226 struct cgroup *res = NULL;
1227 struct css_set *cset;
1228
1229 lockdep_assert_held(&css_set_lock);
1230
1231 rcu_read_lock();
1232
1233 cset = current->nsproxy->cgroup_ns->root_cset;
1234 if (cset == &init_css_set) {
1235 res = &root->cgrp;
1236 } else {
1237 struct cgrp_cset_link *link;
1238
1239 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1240 struct cgroup *c = link->cgrp;
1241
1242 if (c->root == root) {
1243 res = c;
1244 break;
1245 }
1246 }
1247 }
1248 rcu_read_unlock();
1249
1250 BUG_ON(!res);
1251 return res;
1252 }
1253
1254 /* look up cgroup associated with given css_set on the specified hierarchy */
cset_cgroup_from_root(struct css_set * cset,struct cgroup_root * root)1255 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1256 struct cgroup_root *root)
1257 {
1258 struct cgroup *res = NULL;
1259
1260 lockdep_assert_held(&cgroup_mutex);
1261 lockdep_assert_held(&css_set_lock);
1262
1263 if (cset == &init_css_set) {
1264 res = &root->cgrp;
1265 } else {
1266 struct cgrp_cset_link *link;
1267
1268 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1269 struct cgroup *c = link->cgrp;
1270
1271 if (c->root == root) {
1272 res = c;
1273 break;
1274 }
1275 }
1276 }
1277
1278 BUG_ON(!res);
1279 return res;
1280 }
1281
1282 /*
1283 * Return the cgroup for "task" from the given hierarchy. Must be
1284 * called with cgroup_mutex and css_set_lock held.
1285 */
task_cgroup_from_root(struct task_struct * task,struct cgroup_root * root)1286 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1287 struct cgroup_root *root)
1288 {
1289 /*
1290 * No need to lock the task - since we hold cgroup_mutex the
1291 * task can't change groups, so the only thing that can happen
1292 * is that it exits and its css is set back to init_css_set.
1293 */
1294 return cset_cgroup_from_root(task_css_set(task), root);
1295 }
1296
1297 /*
1298 * A task must hold cgroup_mutex to modify cgroups.
1299 *
1300 * Any task can increment and decrement the count field without lock.
1301 * So in general, code holding cgroup_mutex can't rely on the count
1302 * field not changing. However, if the count goes to zero, then only
1303 * cgroup_attach_task() can increment it again. Because a count of zero
1304 * means that no tasks are currently attached, therefore there is no
1305 * way a task attached to that cgroup can fork (the other way to
1306 * increment the count). So code holding cgroup_mutex can safely
1307 * assume that if the count is zero, it will stay zero. Similarly, if
1308 * a task holds cgroup_mutex on a cgroup with zero count, it
1309 * knows that the cgroup won't be removed, as cgroup_rmdir()
1310 * needs that mutex.
1311 *
1312 * A cgroup can only be deleted if both its 'count' of using tasks
1313 * is zero, and its list of 'children' cgroups is empty. Since all
1314 * tasks in the system use _some_ cgroup, and since there is always at
1315 * least one task in the system (init, pid == 1), therefore, root cgroup
1316 * always has either children cgroups and/or using tasks. So we don't
1317 * need a special hack to ensure that root cgroup cannot be deleted.
1318 *
1319 * P.S. One more locking exception. RCU is used to guard the
1320 * update of a tasks cgroup pointer by cgroup_attach_task()
1321 */
1322
1323 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1324 static const struct file_operations proc_cgroupstats_operations;
1325
cgroup_file_name(struct cgroup * cgrp,const struct cftype * cft,char * buf)1326 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1327 char *buf)
1328 {
1329 struct cgroup_subsys *ss = cft->ss;
1330
1331 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1332 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1333 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1334 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1335 cft->name);
1336 else
1337 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1338 return buf;
1339 }
1340
1341 /**
1342 * cgroup_file_mode - deduce file mode of a control file
1343 * @cft: the control file in question
1344 *
1345 * S_IRUGO for read, S_IWUSR for write.
1346 */
cgroup_file_mode(const struct cftype * cft)1347 static umode_t cgroup_file_mode(const struct cftype *cft)
1348 {
1349 umode_t mode = 0;
1350
1351 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1352 mode |= S_IRUGO;
1353
1354 if (cft->write_u64 || cft->write_s64 || cft->write) {
1355 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1356 mode |= S_IWUGO;
1357 else
1358 mode |= S_IWUSR;
1359 }
1360
1361 return mode;
1362 }
1363
1364 /**
1365 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1366 * @subtree_control: the new subtree_control mask to consider
1367 * @this_ss_mask: available subsystems
1368 *
1369 * On the default hierarchy, a subsystem may request other subsystems to be
1370 * enabled together through its ->depends_on mask. In such cases, more
1371 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1372 *
1373 * This function calculates which subsystems need to be enabled if
1374 * @subtree_control is to be applied while restricted to @this_ss_mask.
1375 */
cgroup_calc_subtree_ss_mask(u16 subtree_control,u16 this_ss_mask)1376 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1377 {
1378 u16 cur_ss_mask = subtree_control;
1379 struct cgroup_subsys *ss;
1380 int ssid;
1381
1382 lockdep_assert_held(&cgroup_mutex);
1383
1384 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1385
1386 while (true) {
1387 u16 new_ss_mask = cur_ss_mask;
1388
1389 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1390 new_ss_mask |= ss->depends_on;
1391 } while_each_subsys_mask();
1392
1393 /*
1394 * Mask out subsystems which aren't available. This can
1395 * happen only if some depended-upon subsystems were bound
1396 * to non-default hierarchies.
1397 */
1398 new_ss_mask &= this_ss_mask;
1399
1400 if (new_ss_mask == cur_ss_mask)
1401 break;
1402 cur_ss_mask = new_ss_mask;
1403 }
1404
1405 return cur_ss_mask;
1406 }
1407
1408 /**
1409 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1410 * @kn: the kernfs_node being serviced
1411 *
1412 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1413 * the method finishes if locking succeeded. Note that once this function
1414 * returns the cgroup returned by cgroup_kn_lock_live() may become
1415 * inaccessible any time. If the caller intends to continue to access the
1416 * cgroup, it should pin it before invoking this function.
1417 */
cgroup_kn_unlock(struct kernfs_node * kn)1418 static void cgroup_kn_unlock(struct kernfs_node *kn)
1419 {
1420 struct cgroup *cgrp;
1421
1422 if (kernfs_type(kn) == KERNFS_DIR)
1423 cgrp = kn->priv;
1424 else
1425 cgrp = kn->parent->priv;
1426
1427 mutex_unlock(&cgroup_mutex);
1428
1429 kernfs_unbreak_active_protection(kn);
1430 cgroup_put(cgrp);
1431 }
1432
1433 /**
1434 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1435 * @kn: the kernfs_node being serviced
1436 * @drain_offline: perform offline draining on the cgroup
1437 *
1438 * This helper is to be used by a cgroup kernfs method currently servicing
1439 * @kn. It breaks the active protection, performs cgroup locking and
1440 * verifies that the associated cgroup is alive. Returns the cgroup if
1441 * alive; otherwise, %NULL. A successful return should be undone by a
1442 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1443 * cgroup is drained of offlining csses before return.
1444 *
1445 * Any cgroup kernfs method implementation which requires locking the
1446 * associated cgroup should use this helper. It avoids nesting cgroup
1447 * locking under kernfs active protection and allows all kernfs operations
1448 * including self-removal.
1449 */
cgroup_kn_lock_live(struct kernfs_node * kn,bool drain_offline)1450 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1451 bool drain_offline)
1452 {
1453 struct cgroup *cgrp;
1454
1455 if (kernfs_type(kn) == KERNFS_DIR)
1456 cgrp = kn->priv;
1457 else
1458 cgrp = kn->parent->priv;
1459
1460 /*
1461 * We're gonna grab cgroup_mutex which nests outside kernfs
1462 * active_ref. cgroup liveliness check alone provides enough
1463 * protection against removal. Ensure @cgrp stays accessible and
1464 * break the active_ref protection.
1465 */
1466 if (!cgroup_tryget(cgrp))
1467 return NULL;
1468 kernfs_break_active_protection(kn);
1469
1470 if (drain_offline)
1471 cgroup_lock_and_drain_offline(cgrp);
1472 else
1473 mutex_lock(&cgroup_mutex);
1474
1475 if (!cgroup_is_dead(cgrp))
1476 return cgrp;
1477
1478 cgroup_kn_unlock(kn);
1479 return NULL;
1480 }
1481
cgroup_rm_file(struct cgroup * cgrp,const struct cftype * cft)1482 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1483 {
1484 char name[CGROUP_FILE_NAME_MAX];
1485
1486 lockdep_assert_held(&cgroup_mutex);
1487
1488 if (cft->file_offset) {
1489 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1490 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1491
1492 spin_lock_irq(&cgroup_file_kn_lock);
1493 cfile->kn = NULL;
1494 spin_unlock_irq(&cgroup_file_kn_lock);
1495 }
1496
1497 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1498 }
1499
1500 /**
1501 * css_clear_dir - remove subsys files in a cgroup directory
1502 * @css: taget css
1503 */
css_clear_dir(struct cgroup_subsys_state * css)1504 static void css_clear_dir(struct cgroup_subsys_state *css)
1505 {
1506 struct cgroup *cgrp = css->cgroup;
1507 struct cftype *cfts;
1508
1509 if (!(css->flags & CSS_VISIBLE))
1510 return;
1511
1512 css->flags &= ~CSS_VISIBLE;
1513
1514 list_for_each_entry(cfts, &css->ss->cfts, node)
1515 cgroup_addrm_files(css, cgrp, cfts, false);
1516 }
1517
1518 /**
1519 * css_populate_dir - create subsys files in a cgroup directory
1520 * @css: target css
1521 *
1522 * On failure, no file is added.
1523 */
css_populate_dir(struct cgroup_subsys_state * css)1524 static int css_populate_dir(struct cgroup_subsys_state *css)
1525 {
1526 struct cgroup *cgrp = css->cgroup;
1527 struct cftype *cfts, *failed_cfts;
1528 int ret;
1529
1530 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1531 return 0;
1532
1533 if (!css->ss) {
1534 if (cgroup_on_dfl(cgrp))
1535 cfts = cgroup_dfl_base_files;
1536 else
1537 cfts = cgroup_legacy_base_files;
1538
1539 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1540 }
1541
1542 list_for_each_entry(cfts, &css->ss->cfts, node) {
1543 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1544 if (ret < 0) {
1545 failed_cfts = cfts;
1546 goto err;
1547 }
1548 }
1549
1550 css->flags |= CSS_VISIBLE;
1551
1552 return 0;
1553 err:
1554 list_for_each_entry(cfts, &css->ss->cfts, node) {
1555 if (cfts == failed_cfts)
1556 break;
1557 cgroup_addrm_files(css, cgrp, cfts, false);
1558 }
1559 return ret;
1560 }
1561
rebind_subsystems(struct cgroup_root * dst_root,u16 ss_mask)1562 static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1563 {
1564 struct cgroup *dcgrp = &dst_root->cgrp;
1565 struct cgroup_subsys *ss;
1566 int ssid, i, ret;
1567
1568 lockdep_assert_held(&cgroup_mutex);
1569
1570 do_each_subsys_mask(ss, ssid, ss_mask) {
1571 /*
1572 * If @ss has non-root csses attached to it, can't move.
1573 * If @ss is an implicit controller, it is exempt from this
1574 * rule and can be stolen.
1575 */
1576 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1577 !ss->implicit_on_dfl)
1578 return -EBUSY;
1579
1580 /* can't move between two non-dummy roots either */
1581 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1582 return -EBUSY;
1583 } while_each_subsys_mask();
1584
1585 do_each_subsys_mask(ss, ssid, ss_mask) {
1586 struct cgroup_root *src_root = ss->root;
1587 struct cgroup *scgrp = &src_root->cgrp;
1588 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1589 struct css_set *cset;
1590
1591 WARN_ON(!css || cgroup_css(dcgrp, ss));
1592
1593 /* disable from the source */
1594 src_root->subsys_mask &= ~(1 << ssid);
1595 WARN_ON(cgroup_apply_control(scgrp));
1596 cgroup_finalize_control(scgrp, 0);
1597
1598 /* rebind */
1599 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1600 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1601 ss->root = dst_root;
1602 css->cgroup = dcgrp;
1603
1604 spin_lock_irq(&css_set_lock);
1605 hash_for_each(css_set_table, i, cset, hlist)
1606 list_move_tail(&cset->e_cset_node[ss->id],
1607 &dcgrp->e_csets[ss->id]);
1608 spin_unlock_irq(&css_set_lock);
1609
1610 /* default hierarchy doesn't enable controllers by default */
1611 dst_root->subsys_mask |= 1 << ssid;
1612 if (dst_root == &cgrp_dfl_root) {
1613 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1614 } else {
1615 dcgrp->subtree_control |= 1 << ssid;
1616 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1617 }
1618
1619 ret = cgroup_apply_control(dcgrp);
1620 if (ret)
1621 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1622 ss->name, ret);
1623
1624 if (ss->bind)
1625 ss->bind(css);
1626 } while_each_subsys_mask();
1627
1628 kernfs_activate(dcgrp->kn);
1629 return 0;
1630 }
1631
cgroup_show_path(struct seq_file * sf,struct kernfs_node * kf_node,struct kernfs_root * kf_root)1632 static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1633 struct kernfs_root *kf_root)
1634 {
1635 int len = 0;
1636 char *buf = NULL;
1637 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1638 struct cgroup *ns_cgroup;
1639
1640 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1641 if (!buf)
1642 return -ENOMEM;
1643
1644 spin_lock_irq(&css_set_lock);
1645 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1646 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1647 spin_unlock_irq(&css_set_lock);
1648
1649 if (len >= PATH_MAX)
1650 len = -ERANGE;
1651 else if (len > 0) {
1652 seq_escape(sf, buf, " \t\n\\");
1653 len = 0;
1654 }
1655 kfree(buf);
1656 return len;
1657 }
1658
cgroup_show_options(struct seq_file * seq,struct kernfs_root * kf_root)1659 static int cgroup_show_options(struct seq_file *seq,
1660 struct kernfs_root *kf_root)
1661 {
1662 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1663 struct cgroup_subsys *ss;
1664 int ssid;
1665
1666 if (root != &cgrp_dfl_root)
1667 for_each_subsys(ss, ssid)
1668 if (root->subsys_mask & (1 << ssid))
1669 seq_show_option(seq, ss->legacy_name, NULL);
1670 if (root->flags & CGRP_ROOT_NOPREFIX)
1671 seq_puts(seq, ",noprefix");
1672 if (root->flags & CGRP_ROOT_XATTR)
1673 seq_puts(seq, ",xattr");
1674
1675 spin_lock(&release_agent_path_lock);
1676 if (strlen(root->release_agent_path))
1677 seq_show_option(seq, "release_agent",
1678 root->release_agent_path);
1679 spin_unlock(&release_agent_path_lock);
1680
1681 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1682 seq_puts(seq, ",clone_children");
1683 if (strlen(root->name))
1684 seq_show_option(seq, "name", root->name);
1685 return 0;
1686 }
1687
1688 struct cgroup_sb_opts {
1689 u16 subsys_mask;
1690 unsigned int flags;
1691 char *release_agent;
1692 bool cpuset_clone_children;
1693 char *name;
1694 /* User explicitly requested empty subsystem */
1695 bool none;
1696 };
1697
parse_cgroupfs_options(char * data,struct cgroup_sb_opts * opts)1698 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1699 {
1700 char *token, *o = data;
1701 bool all_ss = false, one_ss = false;
1702 u16 mask = U16_MAX;
1703 struct cgroup_subsys *ss;
1704 int nr_opts = 0;
1705 int i;
1706
1707 #ifdef CONFIG_CPUSETS
1708 mask = ~((u16)1 << cpuset_cgrp_id);
1709 #endif
1710
1711 memset(opts, 0, sizeof(*opts));
1712
1713 while ((token = strsep(&o, ",")) != NULL) {
1714 nr_opts++;
1715
1716 if (!*token)
1717 return -EINVAL;
1718 if (!strcmp(token, "none")) {
1719 /* Explicitly have no subsystems */
1720 opts->none = true;
1721 continue;
1722 }
1723 if (!strcmp(token, "all")) {
1724 /* Mutually exclusive option 'all' + subsystem name */
1725 if (one_ss)
1726 return -EINVAL;
1727 all_ss = true;
1728 continue;
1729 }
1730 if (!strcmp(token, "noprefix")) {
1731 opts->flags |= CGRP_ROOT_NOPREFIX;
1732 continue;
1733 }
1734 if (!strcmp(token, "clone_children")) {
1735 opts->cpuset_clone_children = true;
1736 continue;
1737 }
1738 if (!strcmp(token, "xattr")) {
1739 opts->flags |= CGRP_ROOT_XATTR;
1740 continue;
1741 }
1742 if (!strncmp(token, "release_agent=", 14)) {
1743 /* Specifying two release agents is forbidden */
1744 if (opts->release_agent)
1745 return -EINVAL;
1746 opts->release_agent =
1747 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1748 if (!opts->release_agent)
1749 return -ENOMEM;
1750 continue;
1751 }
1752 if (!strncmp(token, "name=", 5)) {
1753 const char *name = token + 5;
1754 /* Can't specify an empty name */
1755 if (!strlen(name))
1756 return -EINVAL;
1757 /* Must match [\w.-]+ */
1758 for (i = 0; i < strlen(name); i++) {
1759 char c = name[i];
1760 if (isalnum(c))
1761 continue;
1762 if ((c == '.') || (c == '-') || (c == '_'))
1763 continue;
1764 return -EINVAL;
1765 }
1766 /* Specifying two names is forbidden */
1767 if (opts->name)
1768 return -EINVAL;
1769 opts->name = kstrndup(name,
1770 MAX_CGROUP_ROOT_NAMELEN - 1,
1771 GFP_KERNEL);
1772 if (!opts->name)
1773 return -ENOMEM;
1774
1775 continue;
1776 }
1777
1778 for_each_subsys(ss, i) {
1779 if (strcmp(token, ss->legacy_name))
1780 continue;
1781 if (!cgroup_ssid_enabled(i))
1782 continue;
1783 if (cgroup_ssid_no_v1(i))
1784 continue;
1785
1786 /* Mutually exclusive option 'all' + subsystem name */
1787 if (all_ss)
1788 return -EINVAL;
1789 opts->subsys_mask |= (1 << i);
1790 one_ss = true;
1791
1792 break;
1793 }
1794 if (i == CGROUP_SUBSYS_COUNT)
1795 return -ENOENT;
1796 }
1797
1798 /*
1799 * If the 'all' option was specified select all the subsystems,
1800 * otherwise if 'none', 'name=' and a subsystem name options were
1801 * not specified, let's default to 'all'
1802 */
1803 if (all_ss || (!one_ss && !opts->none && !opts->name))
1804 for_each_subsys(ss, i)
1805 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
1806 opts->subsys_mask |= (1 << i);
1807
1808 /*
1809 * We either have to specify by name or by subsystems. (So all
1810 * empty hierarchies must have a name).
1811 */
1812 if (!opts->subsys_mask && !opts->name)
1813 return -EINVAL;
1814
1815 /*
1816 * Option noprefix was introduced just for backward compatibility
1817 * with the old cpuset, so we allow noprefix only if mounting just
1818 * the cpuset subsystem.
1819 */
1820 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1821 return -EINVAL;
1822
1823 /* Can't specify "none" and some subsystems */
1824 if (opts->subsys_mask && opts->none)
1825 return -EINVAL;
1826
1827 return 0;
1828 }
1829
cgroup_remount(struct kernfs_root * kf_root,int * flags,char * data)1830 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1831 {
1832 int ret = 0;
1833 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1834 struct cgroup_sb_opts opts;
1835 u16 added_mask, removed_mask;
1836
1837 if (root == &cgrp_dfl_root) {
1838 pr_err("remount is not allowed\n");
1839 return -EINVAL;
1840 }
1841
1842 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1843
1844 /* See what subsystems are wanted */
1845 ret = parse_cgroupfs_options(data, &opts);
1846 if (ret)
1847 goto out_unlock;
1848
1849 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1850 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1851 task_tgid_nr(current), current->comm);
1852
1853 added_mask = opts.subsys_mask & ~root->subsys_mask;
1854 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1855
1856 /* Don't allow flags or name to change at remount */
1857 if ((opts.flags ^ root->flags) ||
1858 (opts.name && strcmp(opts.name, root->name))) {
1859 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1860 opts.flags, opts.name ?: "", root->flags, root->name);
1861 ret = -EINVAL;
1862 goto out_unlock;
1863 }
1864
1865 /* remounting is not allowed for populated hierarchies */
1866 if (!list_empty(&root->cgrp.self.children)) {
1867 ret = -EBUSY;
1868 goto out_unlock;
1869 }
1870
1871 ret = rebind_subsystems(root, added_mask);
1872 if (ret)
1873 goto out_unlock;
1874
1875 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
1876
1877 if (opts.release_agent) {
1878 spin_lock(&release_agent_path_lock);
1879 strcpy(root->release_agent_path, opts.release_agent);
1880 spin_unlock(&release_agent_path_lock);
1881 }
1882
1883 trace_cgroup_remount(root);
1884
1885 out_unlock:
1886 kfree(opts.release_agent);
1887 kfree(opts.name);
1888 mutex_unlock(&cgroup_mutex);
1889 return ret;
1890 }
1891
1892 /*
1893 * To reduce the fork() overhead for systems that are not actually using
1894 * their cgroups capability, we don't maintain the lists running through
1895 * each css_set to its tasks until we see the list actually used - in other
1896 * words after the first mount.
1897 */
1898 static bool use_task_css_set_links __read_mostly;
1899
cgroup_enable_task_cg_lists(void)1900 static void cgroup_enable_task_cg_lists(void)
1901 {
1902 struct task_struct *p, *g;
1903
1904 spin_lock_irq(&css_set_lock);
1905
1906 if (use_task_css_set_links)
1907 goto out_unlock;
1908
1909 use_task_css_set_links = true;
1910
1911 /*
1912 * We need tasklist_lock because RCU is not safe against
1913 * while_each_thread(). Besides, a forking task that has passed
1914 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1915 * is not guaranteed to have its child immediately visible in the
1916 * tasklist if we walk through it with RCU.
1917 */
1918 read_lock(&tasklist_lock);
1919 do_each_thread(g, p) {
1920 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1921 task_css_set(p) != &init_css_set);
1922
1923 /*
1924 * We should check if the process is exiting, otherwise
1925 * it will race with cgroup_exit() in that the list
1926 * entry won't be deleted though the process has exited.
1927 * Do it while holding siglock so that we don't end up
1928 * racing against cgroup_exit().
1929 *
1930 * Interrupts were already disabled while acquiring
1931 * the css_set_lock, so we do not need to disable it
1932 * again when acquiring the sighand->siglock here.
1933 */
1934 spin_lock(&p->sighand->siglock);
1935 if (!(p->flags & PF_EXITING)) {
1936 struct css_set *cset = task_css_set(p);
1937
1938 if (!css_set_populated(cset))
1939 css_set_update_populated(cset, true);
1940 list_add_tail(&p->cg_list, &cset->tasks);
1941 get_css_set(cset);
1942 }
1943 spin_unlock(&p->sighand->siglock);
1944 } while_each_thread(g, p);
1945 read_unlock(&tasklist_lock);
1946 out_unlock:
1947 spin_unlock_irq(&css_set_lock);
1948 }
1949
init_cgroup_housekeeping(struct cgroup * cgrp)1950 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1951 {
1952 struct cgroup_subsys *ss;
1953 int ssid;
1954
1955 INIT_LIST_HEAD(&cgrp->self.sibling);
1956 INIT_LIST_HEAD(&cgrp->self.children);
1957 INIT_LIST_HEAD(&cgrp->cset_links);
1958 INIT_LIST_HEAD(&cgrp->pidlists);
1959 mutex_init(&cgrp->pidlist_mutex);
1960 cgrp->self.cgroup = cgrp;
1961 cgrp->self.flags |= CSS_ONLINE;
1962
1963 for_each_subsys(ss, ssid)
1964 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1965
1966 init_waitqueue_head(&cgrp->offline_waitq);
1967 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1968 }
1969
init_cgroup_root(struct cgroup_root * root,struct cgroup_sb_opts * opts)1970 static void init_cgroup_root(struct cgroup_root *root,
1971 struct cgroup_sb_opts *opts)
1972 {
1973 struct cgroup *cgrp = &root->cgrp;
1974
1975 INIT_LIST_HEAD(&root->root_list);
1976 atomic_set(&root->nr_cgrps, 1);
1977 cgrp->root = root;
1978 init_cgroup_housekeeping(cgrp);
1979 idr_init(&root->cgroup_idr);
1980
1981 root->flags = opts->flags;
1982 if (opts->release_agent)
1983 strcpy(root->release_agent_path, opts->release_agent);
1984 if (opts->name)
1985 strcpy(root->name, opts->name);
1986 if (opts->cpuset_clone_children)
1987 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1988 }
1989
cgroup_setup_root(struct cgroup_root * root,u16 ss_mask)1990 static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1991 {
1992 LIST_HEAD(tmp_links);
1993 struct cgroup *root_cgrp = &root->cgrp;
1994 struct css_set *cset;
1995 int i, ret;
1996
1997 lockdep_assert_held(&cgroup_mutex);
1998
1999 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
2000 if (ret < 0)
2001 goto out;
2002 root_cgrp->id = ret;
2003 root_cgrp->ancestor_ids[0] = ret;
2004
2005 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
2006 GFP_KERNEL);
2007 if (ret)
2008 goto out;
2009
2010 /*
2011 * We're accessing css_set_count without locking css_set_lock here,
2012 * but that's OK - it can only be increased by someone holding
2013 * cgroup_lock, and that's us. Later rebinding may disable
2014 * controllers on the default hierarchy and thus create new csets,
2015 * which can't be more than the existing ones. Allocate 2x.
2016 */
2017 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2018 if (ret)
2019 goto cancel_ref;
2020
2021 ret = cgroup_init_root_id(root);
2022 if (ret)
2023 goto cancel_ref;
2024
2025 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
2026 KERNFS_ROOT_CREATE_DEACTIVATED,
2027 root_cgrp);
2028 if (IS_ERR(root->kf_root)) {
2029 ret = PTR_ERR(root->kf_root);
2030 goto exit_root_id;
2031 }
2032 root_cgrp->kn = root->kf_root->kn;
2033
2034 ret = css_populate_dir(&root_cgrp->self);
2035 if (ret)
2036 goto destroy_root;
2037
2038 ret = rebind_subsystems(root, ss_mask);
2039 if (ret)
2040 goto destroy_root;
2041
2042 trace_cgroup_setup_root(root);
2043
2044 /*
2045 * There must be no failure case after here, since rebinding takes
2046 * care of subsystems' refcounts, which are explicitly dropped in
2047 * the failure exit path.
2048 */
2049 list_add(&root->root_list, &cgroup_roots);
2050 cgroup_root_count++;
2051
2052 /*
2053 * Link the root cgroup in this hierarchy into all the css_set
2054 * objects.
2055 */
2056 spin_lock_irq(&css_set_lock);
2057 hash_for_each(css_set_table, i, cset, hlist) {
2058 link_css_set(&tmp_links, cset, root_cgrp);
2059 if (css_set_populated(cset))
2060 cgroup_update_populated(root_cgrp, true);
2061 }
2062 spin_unlock_irq(&css_set_lock);
2063
2064 BUG_ON(!list_empty(&root_cgrp->self.children));
2065 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2066
2067 kernfs_activate(root_cgrp->kn);
2068 ret = 0;
2069 goto out;
2070
2071 destroy_root:
2072 kernfs_destroy_root(root->kf_root);
2073 root->kf_root = NULL;
2074 exit_root_id:
2075 cgroup_exit_root_id(root);
2076 cancel_ref:
2077 percpu_ref_exit(&root_cgrp->self.refcnt);
2078 out:
2079 free_cgrp_cset_links(&tmp_links);
2080 return ret;
2081 }
2082
cgroup_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)2083 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2084 int flags, const char *unused_dev_name,
2085 void *data)
2086 {
2087 bool is_v2 = fs_type == &cgroup2_fs_type;
2088 struct super_block *pinned_sb = NULL;
2089 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2090 struct cgroup_subsys *ss;
2091 struct cgroup_root *root;
2092 struct cgroup_sb_opts opts;
2093 struct dentry *dentry;
2094 int ret;
2095 int i;
2096 bool new_sb;
2097
2098 get_cgroup_ns(ns);
2099
2100 /* Check if the caller has permission to mount. */
2101 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2102 put_cgroup_ns(ns);
2103 return ERR_PTR(-EPERM);
2104 }
2105
2106 /*
2107 * The first time anyone tries to mount a cgroup, enable the list
2108 * linking each css_set to its tasks and fix up all existing tasks.
2109 */
2110 if (!use_task_css_set_links)
2111 cgroup_enable_task_cg_lists();
2112
2113 if (is_v2) {
2114 if (data) {
2115 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2116 put_cgroup_ns(ns);
2117 return ERR_PTR(-EINVAL);
2118 }
2119 cgrp_dfl_visible = true;
2120 root = &cgrp_dfl_root;
2121 cgroup_get(&root->cgrp);
2122 goto out_mount;
2123 }
2124
2125 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
2126
2127 /* First find the desired set of subsystems */
2128 ret = parse_cgroupfs_options(data, &opts);
2129 if (ret)
2130 goto out_unlock;
2131
2132 /*
2133 * Destruction of cgroup root is asynchronous, so subsystems may
2134 * still be dying after the previous unmount. Let's drain the
2135 * dying subsystems. We just need to ensure that the ones
2136 * unmounted previously finish dying and don't care about new ones
2137 * starting. Testing ref liveliness is good enough.
2138 */
2139 for_each_subsys(ss, i) {
2140 if (!(opts.subsys_mask & (1 << i)) ||
2141 ss->root == &cgrp_dfl_root)
2142 continue;
2143
2144 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2145 mutex_unlock(&cgroup_mutex);
2146 msleep(10);
2147 ret = restart_syscall();
2148 goto out_free;
2149 }
2150 cgroup_put(&ss->root->cgrp);
2151 }
2152
2153 for_each_root(root) {
2154 bool name_match = false;
2155
2156 if (root == &cgrp_dfl_root)
2157 continue;
2158
2159 /*
2160 * If we asked for a name then it must match. Also, if
2161 * name matches but sybsys_mask doesn't, we should fail.
2162 * Remember whether name matched.
2163 */
2164 if (opts.name) {
2165 if (strcmp(opts.name, root->name))
2166 continue;
2167 name_match = true;
2168 }
2169
2170 /*
2171 * If we asked for subsystems (or explicitly for no
2172 * subsystems) then they must match.
2173 */
2174 if ((opts.subsys_mask || opts.none) &&
2175 (opts.subsys_mask != root->subsys_mask)) {
2176 if (!name_match)
2177 continue;
2178 ret = -EBUSY;
2179 goto out_unlock;
2180 }
2181
2182 if (root->flags ^ opts.flags)
2183 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2184
2185 /*
2186 * We want to reuse @root whose lifetime is governed by its
2187 * ->cgrp. Let's check whether @root is alive and keep it
2188 * that way. As cgroup_kill_sb() can happen anytime, we
2189 * want to block it by pinning the sb so that @root doesn't
2190 * get killed before mount is complete.
2191 *
2192 * With the sb pinned, tryget_live can reliably indicate
2193 * whether @root can be reused. If it's being killed,
2194 * drain it. We can use wait_queue for the wait but this
2195 * path is super cold. Let's just sleep a bit and retry.
2196 */
2197 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2198 if (IS_ERR(pinned_sb) ||
2199 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2200 mutex_unlock(&cgroup_mutex);
2201 if (!IS_ERR_OR_NULL(pinned_sb))
2202 deactivate_super(pinned_sb);
2203 msleep(10);
2204 ret = restart_syscall();
2205 goto out_free;
2206 }
2207
2208 ret = 0;
2209 goto out_unlock;
2210 }
2211
2212 /*
2213 * No such thing, create a new one. name= matching without subsys
2214 * specification is allowed for already existing hierarchies but we
2215 * can't create new one without subsys specification.
2216 */
2217 if (!opts.subsys_mask && !opts.none) {
2218 ret = -EINVAL;
2219 goto out_unlock;
2220 }
2221
2222 /* Hierarchies may only be created in the initial cgroup namespace. */
2223 if (ns != &init_cgroup_ns) {
2224 ret = -EPERM;
2225 goto out_unlock;
2226 }
2227
2228 root = kzalloc(sizeof(*root), GFP_KERNEL);
2229 if (!root) {
2230 ret = -ENOMEM;
2231 goto out_unlock;
2232 }
2233
2234 init_cgroup_root(root, &opts);
2235
2236 ret = cgroup_setup_root(root, opts.subsys_mask);
2237 if (ret)
2238 cgroup_free_root(root);
2239
2240 out_unlock:
2241 mutex_unlock(&cgroup_mutex);
2242 out_free:
2243 kfree(opts.release_agent);
2244 kfree(opts.name);
2245
2246 if (ret) {
2247 put_cgroup_ns(ns);
2248 return ERR_PTR(ret);
2249 }
2250 out_mount:
2251 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2252 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2253 &new_sb);
2254
2255 /*
2256 * In non-init cgroup namespace, instead of root cgroup's
2257 * dentry, we return the dentry corresponding to the
2258 * cgroupns->root_cgrp.
2259 */
2260 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2261 struct dentry *nsdentry;
2262 struct cgroup *cgrp;
2263
2264 mutex_lock(&cgroup_mutex);
2265 spin_lock_irq(&css_set_lock);
2266
2267 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2268
2269 spin_unlock_irq(&css_set_lock);
2270 mutex_unlock(&cgroup_mutex);
2271
2272 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2273 dput(dentry);
2274 dentry = nsdentry;
2275 }
2276
2277 if (IS_ERR(dentry) || !new_sb)
2278 cgroup_put(&root->cgrp);
2279
2280 /*
2281 * If @pinned_sb, we're reusing an existing root and holding an
2282 * extra ref on its sb. Mount is complete. Put the extra ref.
2283 */
2284 if (pinned_sb) {
2285 WARN_ON(new_sb);
2286 deactivate_super(pinned_sb);
2287 }
2288
2289 put_cgroup_ns(ns);
2290 return dentry;
2291 }
2292
cgroup_kill_sb(struct super_block * sb)2293 static void cgroup_kill_sb(struct super_block *sb)
2294 {
2295 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2296 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2297
2298 /*
2299 * If @root doesn't have any mounts or children, start killing it.
2300 * This prevents new mounts by disabling percpu_ref_tryget_live().
2301 * cgroup_mount() may wait for @root's release.
2302 *
2303 * And don't kill the default root.
2304 */
2305 if (!list_empty(&root->cgrp.self.children) ||
2306 root == &cgrp_dfl_root)
2307 cgroup_put(&root->cgrp);
2308 else
2309 percpu_ref_kill(&root->cgrp.self.refcnt);
2310
2311 kernfs_kill_sb(sb);
2312 }
2313
2314 static struct file_system_type cgroup_fs_type = {
2315 .name = "cgroup",
2316 .mount = cgroup_mount,
2317 .kill_sb = cgroup_kill_sb,
2318 .fs_flags = FS_USERNS_MOUNT,
2319 };
2320
2321 static struct file_system_type cgroup2_fs_type = {
2322 .name = "cgroup2",
2323 .mount = cgroup_mount,
2324 .kill_sb = cgroup_kill_sb,
2325 .fs_flags = FS_USERNS_MOUNT,
2326 };
2327
cgroup_path_ns_locked(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2328 static int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2329 struct cgroup_namespace *ns)
2330 {
2331 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2332
2333 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2334 }
2335
cgroup_path_ns(struct cgroup * cgrp,char * buf,size_t buflen,struct cgroup_namespace * ns)2336 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2337 struct cgroup_namespace *ns)
2338 {
2339 int ret;
2340
2341 mutex_lock(&cgroup_mutex);
2342 spin_lock_irq(&css_set_lock);
2343
2344 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2345
2346 spin_unlock_irq(&css_set_lock);
2347 mutex_unlock(&cgroup_mutex);
2348
2349 return ret;
2350 }
2351 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2352
2353 /**
2354 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2355 * @task: target task
2356 * @buf: the buffer to write the path into
2357 * @buflen: the length of the buffer
2358 *
2359 * Determine @task's cgroup on the first (the one with the lowest non-zero
2360 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2361 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2362 * cgroup controller callbacks.
2363 *
2364 * Return value is the same as kernfs_path().
2365 */
task_cgroup_path(struct task_struct * task,char * buf,size_t buflen)2366 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2367 {
2368 struct cgroup_root *root;
2369 struct cgroup *cgrp;
2370 int hierarchy_id = 1;
2371 int ret;
2372
2373 mutex_lock(&cgroup_mutex);
2374 spin_lock_irq(&css_set_lock);
2375
2376 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2377
2378 if (root) {
2379 cgrp = task_cgroup_from_root(task, root);
2380 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2381 } else {
2382 /* if no hierarchy exists, everyone is in "/" */
2383 ret = strlcpy(buf, "/", buflen);
2384 }
2385
2386 spin_unlock_irq(&css_set_lock);
2387 mutex_unlock(&cgroup_mutex);
2388 return ret;
2389 }
2390 EXPORT_SYMBOL_GPL(task_cgroup_path);
2391
2392 /* used to track tasks and other necessary states during migration */
2393 struct cgroup_taskset {
2394 /* the src and dst cset list running through cset->mg_node */
2395 struct list_head src_csets;
2396 struct list_head dst_csets;
2397
2398 /* the subsys currently being processed */
2399 int ssid;
2400
2401 /*
2402 * Fields for cgroup_taskset_*() iteration.
2403 *
2404 * Before migration is committed, the target migration tasks are on
2405 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2406 * the csets on ->dst_csets. ->csets point to either ->src_csets
2407 * or ->dst_csets depending on whether migration is committed.
2408 *
2409 * ->cur_csets and ->cur_task point to the current task position
2410 * during iteration.
2411 */
2412 struct list_head *csets;
2413 struct css_set *cur_cset;
2414 struct task_struct *cur_task;
2415 };
2416
2417 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2418 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2419 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2420 .csets = &tset.src_csets, \
2421 }
2422
2423 /**
2424 * cgroup_taskset_add - try to add a migration target task to a taskset
2425 * @task: target task
2426 * @tset: target taskset
2427 *
2428 * Add @task, which is a migration target, to @tset. This function becomes
2429 * noop if @task doesn't need to be migrated. @task's css_set should have
2430 * been added as a migration source and @task->cg_list will be moved from
2431 * the css_set's tasks list to mg_tasks one.
2432 */
cgroup_taskset_add(struct task_struct * task,struct cgroup_taskset * tset)2433 static void cgroup_taskset_add(struct task_struct *task,
2434 struct cgroup_taskset *tset)
2435 {
2436 struct css_set *cset;
2437
2438 lockdep_assert_held(&css_set_lock);
2439
2440 /* @task either already exited or can't exit until the end */
2441 if (task->flags & PF_EXITING)
2442 return;
2443
2444 /* leave @task alone if post_fork() hasn't linked it yet */
2445 if (list_empty(&task->cg_list))
2446 return;
2447
2448 cset = task_css_set(task);
2449 if (!cset->mg_src_cgrp)
2450 return;
2451
2452 list_move_tail(&task->cg_list, &cset->mg_tasks);
2453 if (list_empty(&cset->mg_node))
2454 list_add_tail(&cset->mg_node, &tset->src_csets);
2455 if (list_empty(&cset->mg_dst_cset->mg_node))
2456 list_move_tail(&cset->mg_dst_cset->mg_node,
2457 &tset->dst_csets);
2458 }
2459
2460 /**
2461 * cgroup_taskset_first - reset taskset and return the first task
2462 * @tset: taskset of interest
2463 * @dst_cssp: output variable for the destination css
2464 *
2465 * @tset iteration is initialized and the first task is returned.
2466 */
cgroup_taskset_first(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2467 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2468 struct cgroup_subsys_state **dst_cssp)
2469 {
2470 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2471 tset->cur_task = NULL;
2472
2473 return cgroup_taskset_next(tset, dst_cssp);
2474 }
2475
2476 /**
2477 * cgroup_taskset_next - iterate to the next task in taskset
2478 * @tset: taskset of interest
2479 * @dst_cssp: output variable for the destination css
2480 *
2481 * Return the next task in @tset. Iteration must have been initialized
2482 * with cgroup_taskset_first().
2483 */
cgroup_taskset_next(struct cgroup_taskset * tset,struct cgroup_subsys_state ** dst_cssp)2484 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2485 struct cgroup_subsys_state **dst_cssp)
2486 {
2487 struct css_set *cset = tset->cur_cset;
2488 struct task_struct *task = tset->cur_task;
2489
2490 while (&cset->mg_node != tset->csets) {
2491 if (!task)
2492 task = list_first_entry(&cset->mg_tasks,
2493 struct task_struct, cg_list);
2494 else
2495 task = list_next_entry(task, cg_list);
2496
2497 if (&task->cg_list != &cset->mg_tasks) {
2498 tset->cur_cset = cset;
2499 tset->cur_task = task;
2500
2501 /*
2502 * This function may be called both before and
2503 * after cgroup_taskset_migrate(). The two cases
2504 * can be distinguished by looking at whether @cset
2505 * has its ->mg_dst_cset set.
2506 */
2507 if (cset->mg_dst_cset)
2508 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2509 else
2510 *dst_cssp = cset->subsys[tset->ssid];
2511
2512 return task;
2513 }
2514
2515 cset = list_next_entry(cset, mg_node);
2516 task = NULL;
2517 }
2518
2519 return NULL;
2520 }
2521
2522 /**
2523 * cgroup_taskset_migrate - migrate a taskset
2524 * @tset: taget taskset
2525 * @root: cgroup root the migration is taking place on
2526 *
2527 * Migrate tasks in @tset as setup by migration preparation functions.
2528 * This function fails iff one of the ->can_attach callbacks fails and
2529 * guarantees that either all or none of the tasks in @tset are migrated.
2530 * @tset is consumed regardless of success.
2531 */
cgroup_taskset_migrate(struct cgroup_taskset * tset,struct cgroup_root * root)2532 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2533 struct cgroup_root *root)
2534 {
2535 struct cgroup_subsys *ss;
2536 struct task_struct *task, *tmp_task;
2537 struct css_set *cset, *tmp_cset;
2538 int ssid, failed_ssid, ret;
2539
2540 /* methods shouldn't be called if no task is actually migrating */
2541 if (list_empty(&tset->src_csets))
2542 return 0;
2543
2544 /* check that we can legitimately attach to the cgroup */
2545 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2546 if (ss->can_attach) {
2547 tset->ssid = ssid;
2548 ret = ss->can_attach(tset);
2549 if (ret) {
2550 failed_ssid = ssid;
2551 goto out_cancel_attach;
2552 }
2553 }
2554 } while_each_subsys_mask();
2555
2556 /*
2557 * Now that we're guaranteed success, proceed to move all tasks to
2558 * the new cgroup. There are no failure cases after here, so this
2559 * is the commit point.
2560 */
2561 spin_lock_irq(&css_set_lock);
2562 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2563 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2564 struct css_set *from_cset = task_css_set(task);
2565 struct css_set *to_cset = cset->mg_dst_cset;
2566
2567 get_css_set(to_cset);
2568 css_set_move_task(task, from_cset, to_cset, true);
2569 put_css_set_locked(from_cset);
2570 }
2571 }
2572 spin_unlock_irq(&css_set_lock);
2573
2574 /*
2575 * Migration is committed, all target tasks are now on dst_csets.
2576 * Nothing is sensitive to fork() after this point. Notify
2577 * controllers that migration is complete.
2578 */
2579 tset->csets = &tset->dst_csets;
2580
2581 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2582 if (ss->attach) {
2583 tset->ssid = ssid;
2584 ss->attach(tset);
2585 }
2586 } while_each_subsys_mask();
2587
2588 ret = 0;
2589 goto out_release_tset;
2590
2591 out_cancel_attach:
2592 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2593 if (ssid == failed_ssid)
2594 break;
2595 if (ss->cancel_attach) {
2596 tset->ssid = ssid;
2597 ss->cancel_attach(tset);
2598 }
2599 } while_each_subsys_mask();
2600 out_release_tset:
2601 spin_lock_irq(&css_set_lock);
2602 list_splice_init(&tset->dst_csets, &tset->src_csets);
2603 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2604 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2605 list_del_init(&cset->mg_node);
2606 }
2607 spin_unlock_irq(&css_set_lock);
2608 return ret;
2609 }
2610
2611 /**
2612 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2613 * @dst_cgrp: destination cgroup to test
2614 *
2615 * On the default hierarchy, except for the root, subtree_control must be
2616 * zero for migration destination cgroups with tasks so that child cgroups
2617 * don't compete against tasks.
2618 */
cgroup_may_migrate_to(struct cgroup * dst_cgrp)2619 static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2620 {
2621 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2622 !dst_cgrp->subtree_control;
2623 }
2624
2625 /**
2626 * cgroup_migrate_finish - cleanup after attach
2627 * @preloaded_csets: list of preloaded css_sets
2628 *
2629 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2630 * those functions for details.
2631 */
cgroup_migrate_finish(struct list_head * preloaded_csets)2632 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2633 {
2634 struct css_set *cset, *tmp_cset;
2635
2636 lockdep_assert_held(&cgroup_mutex);
2637
2638 spin_lock_irq(&css_set_lock);
2639 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2640 cset->mg_src_cgrp = NULL;
2641 cset->mg_dst_cgrp = NULL;
2642 cset->mg_dst_cset = NULL;
2643 list_del_init(&cset->mg_preload_node);
2644 put_css_set_locked(cset);
2645 }
2646 spin_unlock_irq(&css_set_lock);
2647 }
2648
2649 /**
2650 * cgroup_migrate_add_src - add a migration source css_set
2651 * @src_cset: the source css_set to add
2652 * @dst_cgrp: the destination cgroup
2653 * @preloaded_csets: list of preloaded css_sets
2654 *
2655 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2656 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2657 * up by cgroup_migrate_finish().
2658 *
2659 * This function may be called without holding cgroup_threadgroup_rwsem
2660 * even if the target is a process. Threads may be created and destroyed
2661 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2662 * into play and the preloaded css_sets are guaranteed to cover all
2663 * migrations.
2664 */
cgroup_migrate_add_src(struct css_set * src_cset,struct cgroup * dst_cgrp,struct list_head * preloaded_csets)2665 static void cgroup_migrate_add_src(struct css_set *src_cset,
2666 struct cgroup *dst_cgrp,
2667 struct list_head *preloaded_csets)
2668 {
2669 struct cgroup *src_cgrp;
2670
2671 lockdep_assert_held(&cgroup_mutex);
2672 lockdep_assert_held(&css_set_lock);
2673
2674 /*
2675 * If ->dead, @src_set is associated with one or more dead cgroups
2676 * and doesn't contain any migratable tasks. Ignore it early so
2677 * that the rest of migration path doesn't get confused by it.
2678 */
2679 if (src_cset->dead)
2680 return;
2681
2682 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2683
2684 if (!list_empty(&src_cset->mg_preload_node))
2685 return;
2686
2687 WARN_ON(src_cset->mg_src_cgrp);
2688 WARN_ON(src_cset->mg_dst_cgrp);
2689 WARN_ON(!list_empty(&src_cset->mg_tasks));
2690 WARN_ON(!list_empty(&src_cset->mg_node));
2691
2692 src_cset->mg_src_cgrp = src_cgrp;
2693 src_cset->mg_dst_cgrp = dst_cgrp;
2694 get_css_set(src_cset);
2695 list_add(&src_cset->mg_preload_node, preloaded_csets);
2696 }
2697
2698 /**
2699 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2700 * @preloaded_csets: list of preloaded source css_sets
2701 *
2702 * Tasks are about to be moved and all the source css_sets have been
2703 * preloaded to @preloaded_csets. This function looks up and pins all
2704 * destination css_sets, links each to its source, and append them to
2705 * @preloaded_csets.
2706 *
2707 * This function must be called after cgroup_migrate_add_src() has been
2708 * called on each migration source css_set. After migration is performed
2709 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2710 * @preloaded_csets.
2711 */
cgroup_migrate_prepare_dst(struct list_head * preloaded_csets)2712 static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
2713 {
2714 LIST_HEAD(csets);
2715 struct css_set *src_cset, *tmp_cset;
2716
2717 lockdep_assert_held(&cgroup_mutex);
2718
2719 /* look up the dst cset for each src cset and link it to src */
2720 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2721 struct css_set *dst_cset;
2722
2723 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2724 if (!dst_cset)
2725 goto err;
2726
2727 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2728
2729 /*
2730 * If src cset equals dst, it's noop. Drop the src.
2731 * cgroup_migrate() will skip the cset too. Note that we
2732 * can't handle src == dst as some nodes are used by both.
2733 */
2734 if (src_cset == dst_cset) {
2735 src_cset->mg_src_cgrp = NULL;
2736 src_cset->mg_dst_cgrp = NULL;
2737 list_del_init(&src_cset->mg_preload_node);
2738 put_css_set(src_cset);
2739 put_css_set(dst_cset);
2740 continue;
2741 }
2742
2743 src_cset->mg_dst_cset = dst_cset;
2744
2745 if (list_empty(&dst_cset->mg_preload_node))
2746 list_add(&dst_cset->mg_preload_node, &csets);
2747 else
2748 put_css_set(dst_cset);
2749 }
2750
2751 list_splice_tail(&csets, preloaded_csets);
2752 return 0;
2753 err:
2754 cgroup_migrate_finish(&csets);
2755 return -ENOMEM;
2756 }
2757
2758 /**
2759 * cgroup_migrate - migrate a process or task to a cgroup
2760 * @leader: the leader of the process or the task to migrate
2761 * @threadgroup: whether @leader points to the whole process or a single task
2762 * @root: cgroup root migration is taking place on
2763 *
2764 * Migrate a process or task denoted by @leader. If migrating a process,
2765 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2766 * responsible for invoking cgroup_migrate_add_src() and
2767 * cgroup_migrate_prepare_dst() on the targets before invoking this
2768 * function and following up with cgroup_migrate_finish().
2769 *
2770 * As long as a controller's ->can_attach() doesn't fail, this function is
2771 * guaranteed to succeed. This means that, excluding ->can_attach()
2772 * failure, when migrating multiple targets, the success or failure can be
2773 * decided for all targets by invoking group_migrate_prepare_dst() before
2774 * actually starting migrating.
2775 */
cgroup_migrate(struct task_struct * leader,bool threadgroup,struct cgroup_root * root)2776 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2777 struct cgroup_root *root)
2778 {
2779 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2780 struct task_struct *task;
2781
2782 /*
2783 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2784 * already PF_EXITING could be freed from underneath us unless we
2785 * take an rcu_read_lock.
2786 */
2787 spin_lock_irq(&css_set_lock);
2788 rcu_read_lock();
2789 task = leader;
2790 do {
2791 cgroup_taskset_add(task, &tset);
2792 if (!threadgroup)
2793 break;
2794 } while_each_thread(leader, task);
2795 rcu_read_unlock();
2796 spin_unlock_irq(&css_set_lock);
2797
2798 return cgroup_taskset_migrate(&tset, root);
2799 }
2800
2801 /**
2802 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2803 * @dst_cgrp: the cgroup to attach to
2804 * @leader: the task or the leader of the threadgroup to be attached
2805 * @threadgroup: attach the whole threadgroup?
2806 *
2807 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2808 */
cgroup_attach_task(struct cgroup * dst_cgrp,struct task_struct * leader,bool threadgroup)2809 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2810 struct task_struct *leader, bool threadgroup)
2811 {
2812 LIST_HEAD(preloaded_csets);
2813 struct task_struct *task;
2814 int ret;
2815
2816 if (!cgroup_may_migrate_to(dst_cgrp))
2817 return -EBUSY;
2818
2819 /* look up all src csets */
2820 spin_lock_irq(&css_set_lock);
2821 rcu_read_lock();
2822 task = leader;
2823 do {
2824 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2825 &preloaded_csets);
2826 if (!threadgroup)
2827 break;
2828 } while_each_thread(leader, task);
2829 rcu_read_unlock();
2830 spin_unlock_irq(&css_set_lock);
2831
2832 /* prepare dst csets and commit */
2833 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
2834 if (!ret)
2835 ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
2836
2837 cgroup_migrate_finish(&preloaded_csets);
2838
2839 if (!ret)
2840 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2841
2842 return ret;
2843 }
2844
cgroup_procs_write_permission(struct task_struct * task,struct cgroup * dst_cgrp,struct kernfs_open_file * of)2845 static int cgroup_procs_write_permission(struct task_struct *task,
2846 struct cgroup *dst_cgrp,
2847 struct kernfs_open_file *of)
2848 {
2849 const struct cred *cred = current_cred();
2850 const struct cred *tcred = get_task_cred(task);
2851 int ret = 0;
2852
2853 /*
2854 * even if we're attaching all tasks in the thread group, we only
2855 * need to check permissions on one of them.
2856 */
2857 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2858 !uid_eq(cred->euid, tcred->uid) &&
2859 !uid_eq(cred->euid, tcred->suid) &&
2860 !ns_capable(tcred->user_ns, CAP_SYS_NICE))
2861 ret = -EACCES;
2862
2863 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2864 struct super_block *sb = of->file->f_path.dentry->d_sb;
2865 struct cgroup *cgrp;
2866 struct inode *inode;
2867
2868 spin_lock_irq(&css_set_lock);
2869 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2870 spin_unlock_irq(&css_set_lock);
2871
2872 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2873 cgrp = cgroup_parent(cgrp);
2874
2875 ret = -ENOMEM;
2876 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2877 if (inode) {
2878 ret = inode_permission(inode, MAY_WRITE);
2879 iput(inode);
2880 }
2881 }
2882
2883 put_cred(tcred);
2884 return ret;
2885 }
2886
2887 /*
2888 * Find the task_struct of the task to attach by vpid and pass it along to the
2889 * function to attach either it or all tasks in its threadgroup. Will lock
2890 * cgroup_mutex and threadgroup.
2891 */
__cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,bool threadgroup)2892 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2893 size_t nbytes, loff_t off, bool threadgroup)
2894 {
2895 struct task_struct *tsk;
2896 struct cgroup_subsys *ss;
2897 struct cgroup *cgrp;
2898 pid_t pid;
2899 int ssid, ret;
2900
2901 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2902 return -EINVAL;
2903
2904 cgrp = cgroup_kn_lock_live(of->kn, false);
2905 if (!cgrp)
2906 return -ENODEV;
2907
2908 percpu_down_write(&cgroup_threadgroup_rwsem);
2909 rcu_read_lock();
2910 if (pid) {
2911 tsk = find_task_by_vpid(pid);
2912 if (!tsk) {
2913 ret = -ESRCH;
2914 goto out_unlock_rcu;
2915 }
2916 } else {
2917 tsk = current;
2918 }
2919
2920 if (threadgroup)
2921 tsk = tsk->group_leader;
2922
2923 /*
2924 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2925 * If userland migrates such a kthread to a non-root cgroup, it can
2926 * become trapped in a cpuset, or RT kthread may be born in a
2927 * cgroup with no rt_runtime allocated. Just say no.
2928 */
2929 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2930 ret = -EINVAL;
2931 goto out_unlock_rcu;
2932 }
2933
2934 get_task_struct(tsk);
2935 rcu_read_unlock();
2936
2937 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2938 if (!ret)
2939 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2940
2941 put_task_struct(tsk);
2942 goto out_unlock_threadgroup;
2943
2944 out_unlock_rcu:
2945 rcu_read_unlock();
2946 out_unlock_threadgroup:
2947 percpu_up_write(&cgroup_threadgroup_rwsem);
2948 for_each_subsys(ss, ssid)
2949 if (ss->post_attach)
2950 ss->post_attach();
2951 cgroup_kn_unlock(of->kn);
2952 return ret ?: nbytes;
2953 }
2954
2955 /**
2956 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2957 * @from: attach to all cgroups of a given task
2958 * @tsk: the task to be attached
2959 */
cgroup_attach_task_all(struct task_struct * from,struct task_struct * tsk)2960 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2961 {
2962 struct cgroup_root *root;
2963 int retval = 0;
2964
2965 mutex_lock(&cgroup_mutex);
2966 percpu_down_write(&cgroup_threadgroup_rwsem);
2967 for_each_root(root) {
2968 struct cgroup *from_cgrp;
2969
2970 if (root == &cgrp_dfl_root)
2971 continue;
2972
2973 spin_lock_irq(&css_set_lock);
2974 from_cgrp = task_cgroup_from_root(from, root);
2975 spin_unlock_irq(&css_set_lock);
2976
2977 retval = cgroup_attach_task(from_cgrp, tsk, false);
2978 if (retval)
2979 break;
2980 }
2981 percpu_up_write(&cgroup_threadgroup_rwsem);
2982 mutex_unlock(&cgroup_mutex);
2983
2984 return retval;
2985 }
2986 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2987
cgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2988 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2989 char *buf, size_t nbytes, loff_t off)
2990 {
2991 return __cgroup_procs_write(of, buf, nbytes, off, false);
2992 }
2993
cgroup_procs_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2994 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2995 char *buf, size_t nbytes, loff_t off)
2996 {
2997 return __cgroup_procs_write(of, buf, nbytes, off, true);
2998 }
2999
cgroup_release_agent_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3000 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
3001 char *buf, size_t nbytes, loff_t off)
3002 {
3003 struct cgroup *cgrp;
3004
3005 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
3006
3007 cgrp = cgroup_kn_lock_live(of->kn, false);
3008 if (!cgrp)
3009 return -ENODEV;
3010 spin_lock(&release_agent_path_lock);
3011 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
3012 sizeof(cgrp->root->release_agent_path));
3013 spin_unlock(&release_agent_path_lock);
3014 cgroup_kn_unlock(of->kn);
3015 return nbytes;
3016 }
3017
cgroup_release_agent_show(struct seq_file * seq,void * v)3018 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
3019 {
3020 struct cgroup *cgrp = seq_css(seq)->cgroup;
3021
3022 spin_lock(&release_agent_path_lock);
3023 seq_puts(seq, cgrp->root->release_agent_path);
3024 spin_unlock(&release_agent_path_lock);
3025 seq_putc(seq, '\n');
3026 return 0;
3027 }
3028
cgroup_sane_behavior_show(struct seq_file * seq,void * v)3029 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
3030 {
3031 seq_puts(seq, "0\n");
3032 return 0;
3033 }
3034
cgroup_print_ss_mask(struct seq_file * seq,u16 ss_mask)3035 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
3036 {
3037 struct cgroup_subsys *ss;
3038 bool printed = false;
3039 int ssid;
3040
3041 do_each_subsys_mask(ss, ssid, ss_mask) {
3042 if (printed)
3043 seq_putc(seq, ' ');
3044 seq_printf(seq, "%s", ss->name);
3045 printed = true;
3046 } while_each_subsys_mask();
3047 if (printed)
3048 seq_putc(seq, '\n');
3049 }
3050
3051 /* show controllers which are enabled from the parent */
cgroup_controllers_show(struct seq_file * seq,void * v)3052 static int cgroup_controllers_show(struct seq_file *seq, void *v)
3053 {
3054 struct cgroup *cgrp = seq_css(seq)->cgroup;
3055
3056 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
3057 return 0;
3058 }
3059
3060 /* show controllers which are enabled for a given cgroup's children */
cgroup_subtree_control_show(struct seq_file * seq,void * v)3061 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
3062 {
3063 struct cgroup *cgrp = seq_css(seq)->cgroup;
3064
3065 cgroup_print_ss_mask(seq, cgrp->subtree_control);
3066 return 0;
3067 }
3068
3069 /**
3070 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3071 * @cgrp: root of the subtree to update csses for
3072 *
3073 * @cgrp's control masks have changed and its subtree's css associations
3074 * need to be updated accordingly. This function looks up all css_sets
3075 * which are attached to the subtree, creates the matching updated css_sets
3076 * and migrates the tasks to the new ones.
3077 */
cgroup_update_dfl_csses(struct cgroup * cgrp)3078 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3079 {
3080 LIST_HEAD(preloaded_csets);
3081 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
3082 struct cgroup_subsys_state *d_css;
3083 struct cgroup *dsct;
3084 struct css_set *src_cset;
3085 int ret;
3086
3087 lockdep_assert_held(&cgroup_mutex);
3088
3089 percpu_down_write(&cgroup_threadgroup_rwsem);
3090
3091 /* look up all csses currently attached to @cgrp's subtree */
3092 spin_lock_irq(&css_set_lock);
3093 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3094 struct cgrp_cset_link *link;
3095
3096 list_for_each_entry(link, &dsct->cset_links, cset_link)
3097 cgroup_migrate_add_src(link->cset, dsct,
3098 &preloaded_csets);
3099 }
3100 spin_unlock_irq(&css_set_lock);
3101
3102 /* NULL dst indicates self on default hierarchy */
3103 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
3104 if (ret)
3105 goto out_finish;
3106
3107 spin_lock_irq(&css_set_lock);
3108 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
3109 struct task_struct *task, *ntask;
3110
3111 /* src_csets precede dst_csets, break on the first dst_cset */
3112 if (!src_cset->mg_src_cgrp)
3113 break;
3114
3115 /* all tasks in src_csets need to be migrated */
3116 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3117 cgroup_taskset_add(task, &tset);
3118 }
3119 spin_unlock_irq(&css_set_lock);
3120
3121 ret = cgroup_taskset_migrate(&tset, cgrp->root);
3122 out_finish:
3123 cgroup_migrate_finish(&preloaded_csets);
3124 percpu_up_write(&cgroup_threadgroup_rwsem);
3125 return ret;
3126 }
3127
3128 /**
3129 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
3130 * @cgrp: root of the target subtree
3131 *
3132 * Because css offlining is asynchronous, userland may try to re-enable a
3133 * controller while the previous css is still around. This function grabs
3134 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
3135 */
cgroup_lock_and_drain_offline(struct cgroup * cgrp)3136 static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3137 __acquires(&cgroup_mutex)
3138 {
3139 struct cgroup *dsct;
3140 struct cgroup_subsys_state *d_css;
3141 struct cgroup_subsys *ss;
3142 int ssid;
3143
3144 restart:
3145 mutex_lock(&cgroup_mutex);
3146
3147 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3148 for_each_subsys(ss, ssid) {
3149 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3150 DEFINE_WAIT(wait);
3151
3152 if (!css || !percpu_ref_is_dying(&css->refcnt))
3153 continue;
3154
3155 cgroup_get(dsct);
3156 prepare_to_wait(&dsct->offline_waitq, &wait,
3157 TASK_UNINTERRUPTIBLE);
3158
3159 mutex_unlock(&cgroup_mutex);
3160 schedule();
3161 finish_wait(&dsct->offline_waitq, &wait);
3162
3163 cgroup_put(dsct);
3164 goto restart;
3165 }
3166 }
3167 }
3168
3169 /**
3170 * cgroup_save_control - save control masks of a subtree
3171 * @cgrp: root of the target subtree
3172 *
3173 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3174 * prefixed fields for @cgrp's subtree including @cgrp itself.
3175 */
cgroup_save_control(struct cgroup * cgrp)3176 static void cgroup_save_control(struct cgroup *cgrp)
3177 {
3178 struct cgroup *dsct;
3179 struct cgroup_subsys_state *d_css;
3180
3181 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3182 dsct->old_subtree_control = dsct->subtree_control;
3183 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3184 }
3185 }
3186
3187 /**
3188 * cgroup_propagate_control - refresh control masks of a subtree
3189 * @cgrp: root of the target subtree
3190 *
3191 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3192 * ->subtree_control and propagate controller availability through the
3193 * subtree so that descendants don't have unavailable controllers enabled.
3194 */
cgroup_propagate_control(struct cgroup * cgrp)3195 static void cgroup_propagate_control(struct cgroup *cgrp)
3196 {
3197 struct cgroup *dsct;
3198 struct cgroup_subsys_state *d_css;
3199
3200 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3201 dsct->subtree_control &= cgroup_control(dsct);
3202 dsct->subtree_ss_mask =
3203 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3204 cgroup_ss_mask(dsct));
3205 }
3206 }
3207
3208 /**
3209 * cgroup_restore_control - restore control masks of a subtree
3210 * @cgrp: root of the target subtree
3211 *
3212 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3213 * prefixed fields for @cgrp's subtree including @cgrp itself.
3214 */
cgroup_restore_control(struct cgroup * cgrp)3215 static void cgroup_restore_control(struct cgroup *cgrp)
3216 {
3217 struct cgroup *dsct;
3218 struct cgroup_subsys_state *d_css;
3219
3220 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3221 dsct->subtree_control = dsct->old_subtree_control;
3222 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3223 }
3224 }
3225
css_visible(struct cgroup_subsys_state * css)3226 static bool css_visible(struct cgroup_subsys_state *css)
3227 {
3228 struct cgroup_subsys *ss = css->ss;
3229 struct cgroup *cgrp = css->cgroup;
3230
3231 if (cgroup_control(cgrp) & (1 << ss->id))
3232 return true;
3233 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3234 return false;
3235 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3236 }
3237
3238 /**
3239 * cgroup_apply_control_enable - enable or show csses according to control
3240 * @cgrp: root of the target subtree
3241 *
3242 * Walk @cgrp's subtree and create new csses or make the existing ones
3243 * visible. A css is created invisible if it's being implicitly enabled
3244 * through dependency. An invisible css is made visible when the userland
3245 * explicitly enables it.
3246 *
3247 * Returns 0 on success, -errno on failure. On failure, csses which have
3248 * been processed already aren't cleaned up. The caller is responsible for
3249 * cleaning up with cgroup_apply_control_disble().
3250 */
cgroup_apply_control_enable(struct cgroup * cgrp)3251 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3252 {
3253 struct cgroup *dsct;
3254 struct cgroup_subsys_state *d_css;
3255 struct cgroup_subsys *ss;
3256 int ssid, ret;
3257
3258 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3259 for_each_subsys(ss, ssid) {
3260 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3261
3262 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3263
3264 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3265 continue;
3266
3267 if (!css) {
3268 css = css_create(dsct, ss);
3269 if (IS_ERR(css))
3270 return PTR_ERR(css);
3271 }
3272
3273 if (css_visible(css)) {
3274 ret = css_populate_dir(css);
3275 if (ret)
3276 return ret;
3277 }
3278 }
3279 }
3280
3281 return 0;
3282 }
3283
3284 /**
3285 * cgroup_apply_control_disable - kill or hide csses according to control
3286 * @cgrp: root of the target subtree
3287 *
3288 * Walk @cgrp's subtree and kill and hide csses so that they match
3289 * cgroup_ss_mask() and cgroup_visible_mask().
3290 *
3291 * A css is hidden when the userland requests it to be disabled while other
3292 * subsystems are still depending on it. The css must not actively control
3293 * resources and be in the vanilla state if it's made visible again later.
3294 * Controllers which may be depended upon should provide ->css_reset() for
3295 * this purpose.
3296 */
cgroup_apply_control_disable(struct cgroup * cgrp)3297 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3298 {
3299 struct cgroup *dsct;
3300 struct cgroup_subsys_state *d_css;
3301 struct cgroup_subsys *ss;
3302 int ssid;
3303
3304 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3305 for_each_subsys(ss, ssid) {
3306 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3307
3308 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3309
3310 if (!css)
3311 continue;
3312
3313 if (css->parent &&
3314 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3315 kill_css(css);
3316 } else if (!css_visible(css)) {
3317 css_clear_dir(css);
3318 if (ss->css_reset)
3319 ss->css_reset(css);
3320 }
3321 }
3322 }
3323 }
3324
3325 /**
3326 * cgroup_apply_control - apply control mask updates to the subtree
3327 * @cgrp: root of the target subtree
3328 *
3329 * subsystems can be enabled and disabled in a subtree using the following
3330 * steps.
3331 *
3332 * 1. Call cgroup_save_control() to stash the current state.
3333 * 2. Update ->subtree_control masks in the subtree as desired.
3334 * 3. Call cgroup_apply_control() to apply the changes.
3335 * 4. Optionally perform other related operations.
3336 * 5. Call cgroup_finalize_control() to finish up.
3337 *
3338 * This function implements step 3 and propagates the mask changes
3339 * throughout @cgrp's subtree, updates csses accordingly and perform
3340 * process migrations.
3341 */
cgroup_apply_control(struct cgroup * cgrp)3342 static int cgroup_apply_control(struct cgroup *cgrp)
3343 {
3344 int ret;
3345
3346 cgroup_propagate_control(cgrp);
3347
3348 ret = cgroup_apply_control_enable(cgrp);
3349 if (ret)
3350 return ret;
3351
3352 /*
3353 * At this point, cgroup_e_css() results reflect the new csses
3354 * making the following cgroup_update_dfl_csses() properly update
3355 * css associations of all tasks in the subtree.
3356 */
3357 ret = cgroup_update_dfl_csses(cgrp);
3358 if (ret)
3359 return ret;
3360
3361 return 0;
3362 }
3363
3364 /**
3365 * cgroup_finalize_control - finalize control mask update
3366 * @cgrp: root of the target subtree
3367 * @ret: the result of the update
3368 *
3369 * Finalize control mask update. See cgroup_apply_control() for more info.
3370 */
cgroup_finalize_control(struct cgroup * cgrp,int ret)3371 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3372 {
3373 if (ret) {
3374 cgroup_restore_control(cgrp);
3375 cgroup_propagate_control(cgrp);
3376 }
3377
3378 cgroup_apply_control_disable(cgrp);
3379 }
3380
3381 /* change the enabled child controllers for a cgroup in the default hierarchy */
cgroup_subtree_control_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3382 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3383 char *buf, size_t nbytes,
3384 loff_t off)
3385 {
3386 u16 enable = 0, disable = 0;
3387 struct cgroup *cgrp, *child;
3388 struct cgroup_subsys *ss;
3389 char *tok;
3390 int ssid, ret;
3391
3392 /*
3393 * Parse input - space separated list of subsystem names prefixed
3394 * with either + or -.
3395 */
3396 buf = strstrip(buf);
3397 while ((tok = strsep(&buf, " "))) {
3398 if (tok[0] == '\0')
3399 continue;
3400 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3401 if (!cgroup_ssid_enabled(ssid) ||
3402 strcmp(tok + 1, ss->name))
3403 continue;
3404
3405 if (*tok == '+') {
3406 enable |= 1 << ssid;
3407 disable &= ~(1 << ssid);
3408 } else if (*tok == '-') {
3409 disable |= 1 << ssid;
3410 enable &= ~(1 << ssid);
3411 } else {
3412 return -EINVAL;
3413 }
3414 break;
3415 } while_each_subsys_mask();
3416 if (ssid == CGROUP_SUBSYS_COUNT)
3417 return -EINVAL;
3418 }
3419
3420 cgrp = cgroup_kn_lock_live(of->kn, true);
3421 if (!cgrp)
3422 return -ENODEV;
3423
3424 for_each_subsys(ss, ssid) {
3425 if (enable & (1 << ssid)) {
3426 if (cgrp->subtree_control & (1 << ssid)) {
3427 enable &= ~(1 << ssid);
3428 continue;
3429 }
3430
3431 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3432 ret = -ENOENT;
3433 goto out_unlock;
3434 }
3435 } else if (disable & (1 << ssid)) {
3436 if (!(cgrp->subtree_control & (1 << ssid))) {
3437 disable &= ~(1 << ssid);
3438 continue;
3439 }
3440
3441 /* a child has it enabled? */
3442 cgroup_for_each_live_child(child, cgrp) {
3443 if (child->subtree_control & (1 << ssid)) {
3444 ret = -EBUSY;
3445 goto out_unlock;
3446 }
3447 }
3448 }
3449 }
3450
3451 if (!enable && !disable) {
3452 ret = 0;
3453 goto out_unlock;
3454 }
3455
3456 /*
3457 * Except for the root, subtree_control must be zero for a cgroup
3458 * with tasks so that child cgroups don't compete against tasks.
3459 */
3460 if (enable && cgroup_parent(cgrp)) {
3461 struct cgrp_cset_link *link;
3462
3463 /*
3464 * Because namespaces pin csets too, @cgrp->cset_links
3465 * might not be empty even when @cgrp is empty. Walk and
3466 * verify each cset.
3467 */
3468 spin_lock_irq(&css_set_lock);
3469
3470 ret = 0;
3471 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
3472 if (css_set_populated(link->cset)) {
3473 ret = -EBUSY;
3474 break;
3475 }
3476 }
3477
3478 spin_unlock_irq(&css_set_lock);
3479
3480 if (ret)
3481 goto out_unlock;
3482 }
3483
3484 /* save and update control masks and prepare csses */
3485 cgroup_save_control(cgrp);
3486
3487 cgrp->subtree_control |= enable;
3488 cgrp->subtree_control &= ~disable;
3489
3490 ret = cgroup_apply_control(cgrp);
3491 cgroup_finalize_control(cgrp, ret);
3492 if (ret)
3493 goto out_unlock;
3494
3495 kernfs_activate(cgrp->kn);
3496 out_unlock:
3497 cgroup_kn_unlock(of->kn);
3498 return ret ?: nbytes;
3499 }
3500
cgroup_events_show(struct seq_file * seq,void * v)3501 static int cgroup_events_show(struct seq_file *seq, void *v)
3502 {
3503 seq_printf(seq, "populated %d\n",
3504 cgroup_is_populated(seq_css(seq)->cgroup));
3505 return 0;
3506 }
3507
cgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)3508 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3509 size_t nbytes, loff_t off)
3510 {
3511 struct cgroup *cgrp = of->kn->parent->priv;
3512 struct cftype *cft = of->kn->priv;
3513 struct cgroup_subsys_state *css;
3514 int ret;
3515
3516 if (cft->write)
3517 return cft->write(of, buf, nbytes, off);
3518
3519 /*
3520 * kernfs guarantees that a file isn't deleted with operations in
3521 * flight, which means that the matching css is and stays alive and
3522 * doesn't need to be pinned. The RCU locking is not necessary
3523 * either. It's just for the convenience of using cgroup_css().
3524 */
3525 rcu_read_lock();
3526 css = cgroup_css(cgrp, cft->ss);
3527 rcu_read_unlock();
3528
3529 if (cft->write_u64) {
3530 unsigned long long v;
3531 ret = kstrtoull(buf, 0, &v);
3532 if (!ret)
3533 ret = cft->write_u64(css, cft, v);
3534 } else if (cft->write_s64) {
3535 long long v;
3536 ret = kstrtoll(buf, 0, &v);
3537 if (!ret)
3538 ret = cft->write_s64(css, cft, v);
3539 } else {
3540 ret = -EINVAL;
3541 }
3542
3543 return ret ?: nbytes;
3544 }
3545
cgroup_seqfile_start(struct seq_file * seq,loff_t * ppos)3546 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3547 {
3548 return seq_cft(seq)->seq_start(seq, ppos);
3549 }
3550
cgroup_seqfile_next(struct seq_file * seq,void * v,loff_t * ppos)3551 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3552 {
3553 return seq_cft(seq)->seq_next(seq, v, ppos);
3554 }
3555
cgroup_seqfile_stop(struct seq_file * seq,void * v)3556 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3557 {
3558 seq_cft(seq)->seq_stop(seq, v);
3559 }
3560
cgroup_seqfile_show(struct seq_file * m,void * arg)3561 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3562 {
3563 struct cftype *cft = seq_cft(m);
3564 struct cgroup_subsys_state *css = seq_css(m);
3565
3566 if (cft->seq_show)
3567 return cft->seq_show(m, arg);
3568
3569 if (cft->read_u64)
3570 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3571 else if (cft->read_s64)
3572 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3573 else
3574 return -EINVAL;
3575 return 0;
3576 }
3577
3578 static struct kernfs_ops cgroup_kf_single_ops = {
3579 .atomic_write_len = PAGE_SIZE,
3580 .write = cgroup_file_write,
3581 .seq_show = cgroup_seqfile_show,
3582 };
3583
3584 static struct kernfs_ops cgroup_kf_ops = {
3585 .atomic_write_len = PAGE_SIZE,
3586 .write = cgroup_file_write,
3587 .seq_start = cgroup_seqfile_start,
3588 .seq_next = cgroup_seqfile_next,
3589 .seq_stop = cgroup_seqfile_stop,
3590 .seq_show = cgroup_seqfile_show,
3591 };
3592
3593 /*
3594 * cgroup_rename - Only allow simple rename of directories in place.
3595 */
cgroup_rename(struct kernfs_node * kn,struct kernfs_node * new_parent,const char * new_name_str)3596 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3597 const char *new_name_str)
3598 {
3599 struct cgroup *cgrp = kn->priv;
3600 int ret;
3601
3602 if (kernfs_type(kn) != KERNFS_DIR)
3603 return -ENOTDIR;
3604 if (kn->parent != new_parent)
3605 return -EIO;
3606
3607 /*
3608 * This isn't a proper migration and its usefulness is very
3609 * limited. Disallow on the default hierarchy.
3610 */
3611 if (cgroup_on_dfl(cgrp))
3612 return -EPERM;
3613
3614 /*
3615 * We're gonna grab cgroup_mutex which nests outside kernfs
3616 * active_ref. kernfs_rename() doesn't require active_ref
3617 * protection. Break them before grabbing cgroup_mutex.
3618 */
3619 kernfs_break_active_protection(new_parent);
3620 kernfs_break_active_protection(kn);
3621
3622 mutex_lock(&cgroup_mutex);
3623
3624 ret = kernfs_rename(kn, new_parent, new_name_str);
3625 if (!ret)
3626 trace_cgroup_rename(cgrp);
3627
3628 mutex_unlock(&cgroup_mutex);
3629
3630 kernfs_unbreak_active_protection(kn);
3631 kernfs_unbreak_active_protection(new_parent);
3632 return ret;
3633 }
3634
3635 /* set uid and gid of cgroup dirs and files to that of the creator */
cgroup_kn_set_ugid(struct kernfs_node * kn)3636 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3637 {
3638 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3639 .ia_uid = current_fsuid(),
3640 .ia_gid = current_fsgid(), };
3641
3642 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3643 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3644 return 0;
3645
3646 return kernfs_setattr(kn, &iattr);
3647 }
3648
cgroup_add_file(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype * cft)3649 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3650 struct cftype *cft)
3651 {
3652 char name[CGROUP_FILE_NAME_MAX];
3653 struct kernfs_node *kn;
3654 struct lock_class_key *key = NULL;
3655 int ret;
3656
3657 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3658 key = &cft->lockdep_key;
3659 #endif
3660 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3661 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3662 NULL, key);
3663 if (IS_ERR(kn))
3664 return PTR_ERR(kn);
3665
3666 ret = cgroup_kn_set_ugid(kn);
3667 if (ret) {
3668 kernfs_remove(kn);
3669 return ret;
3670 }
3671
3672 if (cft->file_offset) {
3673 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3674
3675 spin_lock_irq(&cgroup_file_kn_lock);
3676 cfile->kn = kn;
3677 spin_unlock_irq(&cgroup_file_kn_lock);
3678 }
3679
3680 return 0;
3681 }
3682
3683 /**
3684 * cgroup_addrm_files - add or remove files to a cgroup directory
3685 * @css: the target css
3686 * @cgrp: the target cgroup (usually css->cgroup)
3687 * @cfts: array of cftypes to be added
3688 * @is_add: whether to add or remove
3689 *
3690 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3691 * For removals, this function never fails.
3692 */
cgroup_addrm_files(struct cgroup_subsys_state * css,struct cgroup * cgrp,struct cftype cfts[],bool is_add)3693 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3694 struct cgroup *cgrp, struct cftype cfts[],
3695 bool is_add)
3696 {
3697 struct cftype *cft, *cft_end = NULL;
3698 int ret = 0;
3699
3700 lockdep_assert_held(&cgroup_mutex);
3701
3702 restart:
3703 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3704 /* does cft->flags tell us to skip this file on @cgrp? */
3705 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3706 continue;
3707 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3708 continue;
3709 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3710 continue;
3711 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3712 continue;
3713
3714 if (is_add) {
3715 ret = cgroup_add_file(css, cgrp, cft);
3716 if (ret) {
3717 pr_warn("%s: failed to add %s, err=%d\n",
3718 __func__, cft->name, ret);
3719 cft_end = cft;
3720 is_add = false;
3721 goto restart;
3722 }
3723 } else {
3724 cgroup_rm_file(cgrp, cft);
3725 }
3726 }
3727 return ret;
3728 }
3729
cgroup_apply_cftypes(struct cftype * cfts,bool is_add)3730 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3731 {
3732 LIST_HEAD(pending);
3733 struct cgroup_subsys *ss = cfts[0].ss;
3734 struct cgroup *root = &ss->root->cgrp;
3735 struct cgroup_subsys_state *css;
3736 int ret = 0;
3737
3738 lockdep_assert_held(&cgroup_mutex);
3739
3740 /* add/rm files for all cgroups created before */
3741 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3742 struct cgroup *cgrp = css->cgroup;
3743
3744 if (!(css->flags & CSS_VISIBLE))
3745 continue;
3746
3747 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3748 if (ret)
3749 break;
3750 }
3751
3752 if (is_add && !ret)
3753 kernfs_activate(root->kn);
3754 return ret;
3755 }
3756
cgroup_exit_cftypes(struct cftype * cfts)3757 static void cgroup_exit_cftypes(struct cftype *cfts)
3758 {
3759 struct cftype *cft;
3760
3761 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3762 /* free copy for custom atomic_write_len, see init_cftypes() */
3763 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3764 kfree(cft->kf_ops);
3765 cft->kf_ops = NULL;
3766 cft->ss = NULL;
3767
3768 /* revert flags set by cgroup core while adding @cfts */
3769 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3770 }
3771 }
3772
cgroup_init_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3773 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3774 {
3775 struct cftype *cft;
3776
3777 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3778 struct kernfs_ops *kf_ops;
3779
3780 WARN_ON(cft->ss || cft->kf_ops);
3781
3782 if (cft->seq_start)
3783 kf_ops = &cgroup_kf_ops;
3784 else
3785 kf_ops = &cgroup_kf_single_ops;
3786
3787 /*
3788 * Ugh... if @cft wants a custom max_write_len, we need to
3789 * make a copy of kf_ops to set its atomic_write_len.
3790 */
3791 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3792 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3793 if (!kf_ops) {
3794 cgroup_exit_cftypes(cfts);
3795 return -ENOMEM;
3796 }
3797 kf_ops->atomic_write_len = cft->max_write_len;
3798 }
3799
3800 cft->kf_ops = kf_ops;
3801 cft->ss = ss;
3802 }
3803
3804 return 0;
3805 }
3806
cgroup_rm_cftypes_locked(struct cftype * cfts)3807 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3808 {
3809 lockdep_assert_held(&cgroup_mutex);
3810
3811 if (!cfts || !cfts[0].ss)
3812 return -ENOENT;
3813
3814 list_del(&cfts->node);
3815 cgroup_apply_cftypes(cfts, false);
3816 cgroup_exit_cftypes(cfts);
3817 return 0;
3818 }
3819
3820 /**
3821 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3822 * @cfts: zero-length name terminated array of cftypes
3823 *
3824 * Unregister @cfts. Files described by @cfts are removed from all
3825 * existing cgroups and all future cgroups won't have them either. This
3826 * function can be called anytime whether @cfts' subsys is attached or not.
3827 *
3828 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3829 * registered.
3830 */
cgroup_rm_cftypes(struct cftype * cfts)3831 int cgroup_rm_cftypes(struct cftype *cfts)
3832 {
3833 int ret;
3834
3835 mutex_lock(&cgroup_mutex);
3836 ret = cgroup_rm_cftypes_locked(cfts);
3837 mutex_unlock(&cgroup_mutex);
3838 return ret;
3839 }
3840
3841 /**
3842 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3843 * @ss: target cgroup subsystem
3844 * @cfts: zero-length name terminated array of cftypes
3845 *
3846 * Register @cfts to @ss. Files described by @cfts are created for all
3847 * existing cgroups to which @ss is attached and all future cgroups will
3848 * have them too. This function can be called anytime whether @ss is
3849 * attached or not.
3850 *
3851 * Returns 0 on successful registration, -errno on failure. Note that this
3852 * function currently returns 0 as long as @cfts registration is successful
3853 * even if some file creation attempts on existing cgroups fail.
3854 */
cgroup_add_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3855 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3856 {
3857 int ret;
3858
3859 if (!cgroup_ssid_enabled(ss->id))
3860 return 0;
3861
3862 if (!cfts || cfts[0].name[0] == '\0')
3863 return 0;
3864
3865 ret = cgroup_init_cftypes(ss, cfts);
3866 if (ret)
3867 return ret;
3868
3869 mutex_lock(&cgroup_mutex);
3870
3871 list_add_tail(&cfts->node, &ss->cfts);
3872 ret = cgroup_apply_cftypes(cfts, true);
3873 if (ret)
3874 cgroup_rm_cftypes_locked(cfts);
3875
3876 mutex_unlock(&cgroup_mutex);
3877 return ret;
3878 }
3879
3880 /**
3881 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3882 * @ss: target cgroup subsystem
3883 * @cfts: zero-length name terminated array of cftypes
3884 *
3885 * Similar to cgroup_add_cftypes() but the added files are only used for
3886 * the default hierarchy.
3887 */
cgroup_add_dfl_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3888 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3889 {
3890 struct cftype *cft;
3891
3892 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3893 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3894 return cgroup_add_cftypes(ss, cfts);
3895 }
3896
3897 /**
3898 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3899 * @ss: target cgroup subsystem
3900 * @cfts: zero-length name terminated array of cftypes
3901 *
3902 * Similar to cgroup_add_cftypes() but the added files are only used for
3903 * the legacy hierarchies.
3904 */
cgroup_add_legacy_cftypes(struct cgroup_subsys * ss,struct cftype * cfts)3905 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3906 {
3907 struct cftype *cft;
3908
3909 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3910 cft->flags |= __CFTYPE_NOT_ON_DFL;
3911 return cgroup_add_cftypes(ss, cfts);
3912 }
3913
3914 /**
3915 * cgroup_file_notify - generate a file modified event for a cgroup_file
3916 * @cfile: target cgroup_file
3917 *
3918 * @cfile must have been obtained by setting cftype->file_offset.
3919 */
cgroup_file_notify(struct cgroup_file * cfile)3920 void cgroup_file_notify(struct cgroup_file *cfile)
3921 {
3922 unsigned long flags;
3923
3924 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3925 if (cfile->kn)
3926 kernfs_notify(cfile->kn);
3927 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3928 }
3929
3930 /**
3931 * cgroup_task_count - count the number of tasks in a cgroup.
3932 * @cgrp: the cgroup in question
3933 *
3934 * Return the number of tasks in the cgroup. The returned number can be
3935 * higher than the actual number of tasks due to css_set references from
3936 * namespace roots and temporary usages.
3937 */
cgroup_task_count(const struct cgroup * cgrp)3938 static int cgroup_task_count(const struct cgroup *cgrp)
3939 {
3940 int count = 0;
3941 struct cgrp_cset_link *link;
3942
3943 spin_lock_irq(&css_set_lock);
3944 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3945 count += atomic_read(&link->cset->refcount);
3946 spin_unlock_irq(&css_set_lock);
3947 return count;
3948 }
3949
3950 /**
3951 * css_next_child - find the next child of a given css
3952 * @pos: the current position (%NULL to initiate traversal)
3953 * @parent: css whose children to walk
3954 *
3955 * This function returns the next child of @parent and should be called
3956 * under either cgroup_mutex or RCU read lock. The only requirement is
3957 * that @parent and @pos are accessible. The next sibling is guaranteed to
3958 * be returned regardless of their states.
3959 *
3960 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3961 * css which finished ->css_online() is guaranteed to be visible in the
3962 * future iterations and will stay visible until the last reference is put.
3963 * A css which hasn't finished ->css_online() or already finished
3964 * ->css_offline() may show up during traversal. It's each subsystem's
3965 * responsibility to synchronize against on/offlining.
3966 */
css_next_child(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * parent)3967 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3968 struct cgroup_subsys_state *parent)
3969 {
3970 struct cgroup_subsys_state *next;
3971
3972 cgroup_assert_mutex_or_rcu_locked();
3973
3974 /*
3975 * @pos could already have been unlinked from the sibling list.
3976 * Once a cgroup is removed, its ->sibling.next is no longer
3977 * updated when its next sibling changes. CSS_RELEASED is set when
3978 * @pos is taken off list, at which time its next pointer is valid,
3979 * and, as releases are serialized, the one pointed to by the next
3980 * pointer is guaranteed to not have started release yet. This
3981 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3982 * critical section, the one pointed to by its next pointer is
3983 * guaranteed to not have finished its RCU grace period even if we
3984 * have dropped rcu_read_lock() inbetween iterations.
3985 *
3986 * If @pos has CSS_RELEASED set, its next pointer can't be
3987 * dereferenced; however, as each css is given a monotonically
3988 * increasing unique serial number and always appended to the
3989 * sibling list, the next one can be found by walking the parent's
3990 * children until the first css with higher serial number than
3991 * @pos's. While this path can be slower, it happens iff iteration
3992 * races against release and the race window is very small.
3993 */
3994 if (!pos) {
3995 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3996 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3997 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3998 } else {
3999 list_for_each_entry_rcu(next, &parent->children, sibling)
4000 if (next->serial_nr > pos->serial_nr)
4001 break;
4002 }
4003
4004 /*
4005 * @next, if not pointing to the head, can be dereferenced and is
4006 * the next sibling.
4007 */
4008 if (&next->sibling != &parent->children)
4009 return next;
4010 return NULL;
4011 }
4012
4013 /**
4014 * css_next_descendant_pre - find the next descendant for pre-order walk
4015 * @pos: the current position (%NULL to initiate traversal)
4016 * @root: css whose descendants to walk
4017 *
4018 * To be used by css_for_each_descendant_pre(). Find the next descendant
4019 * to visit for pre-order traversal of @root's descendants. @root is
4020 * included in the iteration and the first node to be visited.
4021 *
4022 * While this function requires cgroup_mutex or RCU read locking, it
4023 * doesn't require the whole traversal to be contained in a single critical
4024 * section. This function will return the correct next descendant as long
4025 * as both @pos and @root are accessible and @pos is a descendant of @root.
4026 *
4027 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4028 * css which finished ->css_online() is guaranteed to be visible in the
4029 * future iterations and will stay visible until the last reference is put.
4030 * A css which hasn't finished ->css_online() or already finished
4031 * ->css_offline() may show up during traversal. It's each subsystem's
4032 * responsibility to synchronize against on/offlining.
4033 */
4034 struct cgroup_subsys_state *
css_next_descendant_pre(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4035 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4036 struct cgroup_subsys_state *root)
4037 {
4038 struct cgroup_subsys_state *next;
4039
4040 cgroup_assert_mutex_or_rcu_locked();
4041
4042 /* if first iteration, visit @root */
4043 if (!pos)
4044 return root;
4045
4046 /* visit the first child if exists */
4047 next = css_next_child(NULL, pos);
4048 if (next)
4049 return next;
4050
4051 /* no child, visit my or the closest ancestor's next sibling */
4052 while (pos != root) {
4053 next = css_next_child(pos, pos->parent);
4054 if (next)
4055 return next;
4056 pos = pos->parent;
4057 }
4058
4059 return NULL;
4060 }
4061
4062 /**
4063 * css_rightmost_descendant - return the rightmost descendant of a css
4064 * @pos: css of interest
4065 *
4066 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4067 * is returned. This can be used during pre-order traversal to skip
4068 * subtree of @pos.
4069 *
4070 * While this function requires cgroup_mutex or RCU read locking, it
4071 * doesn't require the whole traversal to be contained in a single critical
4072 * section. This function will return the correct rightmost descendant as
4073 * long as @pos is accessible.
4074 */
4075 struct cgroup_subsys_state *
css_rightmost_descendant(struct cgroup_subsys_state * pos)4076 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4077 {
4078 struct cgroup_subsys_state *last, *tmp;
4079
4080 cgroup_assert_mutex_or_rcu_locked();
4081
4082 do {
4083 last = pos;
4084 /* ->prev isn't RCU safe, walk ->next till the end */
4085 pos = NULL;
4086 css_for_each_child(tmp, last)
4087 pos = tmp;
4088 } while (pos);
4089
4090 return last;
4091 }
4092
4093 static struct cgroup_subsys_state *
css_leftmost_descendant(struct cgroup_subsys_state * pos)4094 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4095 {
4096 struct cgroup_subsys_state *last;
4097
4098 do {
4099 last = pos;
4100 pos = css_next_child(NULL, pos);
4101 } while (pos);
4102
4103 return last;
4104 }
4105
4106 /**
4107 * css_next_descendant_post - find the next descendant for post-order walk
4108 * @pos: the current position (%NULL to initiate traversal)
4109 * @root: css whose descendants to walk
4110 *
4111 * To be used by css_for_each_descendant_post(). Find the next descendant
4112 * to visit for post-order traversal of @root's descendants. @root is
4113 * included in the iteration and the last node to be visited.
4114 *
4115 * While this function requires cgroup_mutex or RCU read locking, it
4116 * doesn't require the whole traversal to be contained in a single critical
4117 * section. This function will return the correct next descendant as long
4118 * as both @pos and @cgroup are accessible and @pos is a descendant of
4119 * @cgroup.
4120 *
4121 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4122 * css which finished ->css_online() is guaranteed to be visible in the
4123 * future iterations and will stay visible until the last reference is put.
4124 * A css which hasn't finished ->css_online() or already finished
4125 * ->css_offline() may show up during traversal. It's each subsystem's
4126 * responsibility to synchronize against on/offlining.
4127 */
4128 struct cgroup_subsys_state *
css_next_descendant_post(struct cgroup_subsys_state * pos,struct cgroup_subsys_state * root)4129 css_next_descendant_post(struct cgroup_subsys_state *pos,
4130 struct cgroup_subsys_state *root)
4131 {
4132 struct cgroup_subsys_state *next;
4133
4134 cgroup_assert_mutex_or_rcu_locked();
4135
4136 /* if first iteration, visit leftmost descendant which may be @root */
4137 if (!pos)
4138 return css_leftmost_descendant(root);
4139
4140 /* if we visited @root, we're done */
4141 if (pos == root)
4142 return NULL;
4143
4144 /* if there's an unvisited sibling, visit its leftmost descendant */
4145 next = css_next_child(pos, pos->parent);
4146 if (next)
4147 return css_leftmost_descendant(next);
4148
4149 /* no sibling left, visit parent */
4150 return pos->parent;
4151 }
4152
4153 /**
4154 * css_has_online_children - does a css have online children
4155 * @css: the target css
4156 *
4157 * Returns %true if @css has any online children; otherwise, %false. This
4158 * function can be called from any context but the caller is responsible
4159 * for synchronizing against on/offlining as necessary.
4160 */
css_has_online_children(struct cgroup_subsys_state * css)4161 bool css_has_online_children(struct cgroup_subsys_state *css)
4162 {
4163 struct cgroup_subsys_state *child;
4164 bool ret = false;
4165
4166 rcu_read_lock();
4167 css_for_each_child(child, css) {
4168 if (child->flags & CSS_ONLINE) {
4169 ret = true;
4170 break;
4171 }
4172 }
4173 rcu_read_unlock();
4174 return ret;
4175 }
4176
4177 /**
4178 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4179 * @it: the iterator to advance
4180 *
4181 * Advance @it to the next css_set to walk.
4182 */
css_task_iter_advance_css_set(struct css_task_iter * it)4183 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4184 {
4185 struct list_head *l = it->cset_pos;
4186 struct cgrp_cset_link *link;
4187 struct css_set *cset;
4188
4189 lockdep_assert_held(&css_set_lock);
4190
4191 /* Advance to the next non-empty css_set */
4192 do {
4193 l = l->next;
4194 if (l == it->cset_head) {
4195 it->cset_pos = NULL;
4196 it->task_pos = NULL;
4197 return;
4198 }
4199
4200 if (it->ss) {
4201 cset = container_of(l, struct css_set,
4202 e_cset_node[it->ss->id]);
4203 } else {
4204 link = list_entry(l, struct cgrp_cset_link, cset_link);
4205 cset = link->cset;
4206 }
4207 } while (!css_set_populated(cset));
4208
4209 it->cset_pos = l;
4210
4211 if (!list_empty(&cset->tasks))
4212 it->task_pos = cset->tasks.next;
4213 else
4214 it->task_pos = cset->mg_tasks.next;
4215
4216 it->tasks_head = &cset->tasks;
4217 it->mg_tasks_head = &cset->mg_tasks;
4218
4219 /*
4220 * We don't keep css_sets locked across iteration steps and thus
4221 * need to take steps to ensure that iteration can be resumed after
4222 * the lock is re-acquired. Iteration is performed at two levels -
4223 * css_sets and tasks in them.
4224 *
4225 * Once created, a css_set never leaves its cgroup lists, so a
4226 * pinned css_set is guaranteed to stay put and we can resume
4227 * iteration afterwards.
4228 *
4229 * Tasks may leave @cset across iteration steps. This is resolved
4230 * by registering each iterator with the css_set currently being
4231 * walked and making css_set_move_task() advance iterators whose
4232 * next task is leaving.
4233 */
4234 if (it->cur_cset) {
4235 list_del(&it->iters_node);
4236 put_css_set_locked(it->cur_cset);
4237 }
4238 get_css_set(cset);
4239 it->cur_cset = cset;
4240 list_add(&it->iters_node, &cset->task_iters);
4241 }
4242
css_task_iter_advance(struct css_task_iter * it)4243 static void css_task_iter_advance(struct css_task_iter *it)
4244 {
4245 struct list_head *l = it->task_pos;
4246
4247 lockdep_assert_held(&css_set_lock);
4248 WARN_ON_ONCE(!l);
4249
4250 /*
4251 * Advance iterator to find next entry. cset->tasks is consumed
4252 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4253 * next cset.
4254 */
4255 l = l->next;
4256
4257 if (l == it->tasks_head)
4258 l = it->mg_tasks_head->next;
4259
4260 if (l == it->mg_tasks_head)
4261 css_task_iter_advance_css_set(it);
4262 else
4263 it->task_pos = l;
4264 }
4265
4266 /**
4267 * css_task_iter_start - initiate task iteration
4268 * @css: the css to walk tasks of
4269 * @it: the task iterator to use
4270 *
4271 * Initiate iteration through the tasks of @css. The caller can call
4272 * css_task_iter_next() to walk through the tasks until the function
4273 * returns NULL. On completion of iteration, css_task_iter_end() must be
4274 * called.
4275 */
css_task_iter_start(struct cgroup_subsys_state * css,struct css_task_iter * it)4276 void css_task_iter_start(struct cgroup_subsys_state *css,
4277 struct css_task_iter *it)
4278 {
4279 /* no one should try to iterate before mounting cgroups */
4280 WARN_ON_ONCE(!use_task_css_set_links);
4281
4282 memset(it, 0, sizeof(*it));
4283
4284 spin_lock_irq(&css_set_lock);
4285
4286 it->ss = css->ss;
4287
4288 if (it->ss)
4289 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4290 else
4291 it->cset_pos = &css->cgroup->cset_links;
4292
4293 it->cset_head = it->cset_pos;
4294
4295 css_task_iter_advance_css_set(it);
4296
4297 spin_unlock_irq(&css_set_lock);
4298 }
4299
4300 /**
4301 * css_task_iter_next - return the next task for the iterator
4302 * @it: the task iterator being iterated
4303 *
4304 * The "next" function for task iteration. @it should have been
4305 * initialized via css_task_iter_start(). Returns NULL when the iteration
4306 * reaches the end.
4307 */
css_task_iter_next(struct css_task_iter * it)4308 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4309 {
4310 if (it->cur_task) {
4311 put_task_struct(it->cur_task);
4312 it->cur_task = NULL;
4313 }
4314
4315 spin_lock_irq(&css_set_lock);
4316
4317 if (it->task_pos) {
4318 it->cur_task = list_entry(it->task_pos, struct task_struct,
4319 cg_list);
4320 get_task_struct(it->cur_task);
4321 css_task_iter_advance(it);
4322 }
4323
4324 spin_unlock_irq(&css_set_lock);
4325
4326 return it->cur_task;
4327 }
4328
4329 /**
4330 * css_task_iter_end - finish task iteration
4331 * @it: the task iterator to finish
4332 *
4333 * Finish task iteration started by css_task_iter_start().
4334 */
css_task_iter_end(struct css_task_iter * it)4335 void css_task_iter_end(struct css_task_iter *it)
4336 {
4337 if (it->cur_cset) {
4338 spin_lock_irq(&css_set_lock);
4339 list_del(&it->iters_node);
4340 put_css_set_locked(it->cur_cset);
4341 spin_unlock_irq(&css_set_lock);
4342 }
4343
4344 if (it->cur_task)
4345 put_task_struct(it->cur_task);
4346 }
4347
4348 /**
4349 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4350 * @to: cgroup to which the tasks will be moved
4351 * @from: cgroup in which the tasks currently reside
4352 *
4353 * Locking rules between cgroup_post_fork() and the migration path
4354 * guarantee that, if a task is forking while being migrated, the new child
4355 * is guaranteed to be either visible in the source cgroup after the
4356 * parent's migration is complete or put into the target cgroup. No task
4357 * can slip out of migration through forking.
4358 */
cgroup_transfer_tasks(struct cgroup * to,struct cgroup * from)4359 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4360 {
4361 LIST_HEAD(preloaded_csets);
4362 struct cgrp_cset_link *link;
4363 struct css_task_iter it;
4364 struct task_struct *task;
4365 int ret;
4366
4367 if (!cgroup_may_migrate_to(to))
4368 return -EBUSY;
4369
4370 mutex_lock(&cgroup_mutex);
4371
4372 percpu_down_write(&cgroup_threadgroup_rwsem);
4373
4374 /* all tasks in @from are being moved, all csets are source */
4375 spin_lock_irq(&css_set_lock);
4376 list_for_each_entry(link, &from->cset_links, cset_link)
4377 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4378 spin_unlock_irq(&css_set_lock);
4379
4380 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
4381 if (ret)
4382 goto out_err;
4383
4384 /*
4385 * Migrate tasks one-by-one until @from is empty. This fails iff
4386 * ->can_attach() fails.
4387 */
4388 do {
4389 css_task_iter_start(&from->self, &it);
4390 task = css_task_iter_next(&it);
4391 if (task)
4392 get_task_struct(task);
4393 css_task_iter_end(&it);
4394
4395 if (task) {
4396 ret = cgroup_migrate(task, false, to->root);
4397 if (!ret)
4398 trace_cgroup_transfer_tasks(to, task, false);
4399 put_task_struct(task);
4400 }
4401 } while (task && !ret);
4402 out_err:
4403 cgroup_migrate_finish(&preloaded_csets);
4404 percpu_up_write(&cgroup_threadgroup_rwsem);
4405 mutex_unlock(&cgroup_mutex);
4406 return ret;
4407 }
4408
4409 /*
4410 * Stuff for reading the 'tasks'/'procs' files.
4411 *
4412 * Reading this file can return large amounts of data if a cgroup has
4413 * *lots* of attached tasks. So it may need several calls to read(),
4414 * but we cannot guarantee that the information we produce is correct
4415 * unless we produce it entirely atomically.
4416 *
4417 */
4418
4419 /* which pidlist file are we talking about? */
4420 enum cgroup_filetype {
4421 CGROUP_FILE_PROCS,
4422 CGROUP_FILE_TASKS,
4423 };
4424
4425 /*
4426 * A pidlist is a list of pids that virtually represents the contents of one
4427 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4428 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4429 * to the cgroup.
4430 */
4431 struct cgroup_pidlist {
4432 /*
4433 * used to find which pidlist is wanted. doesn't change as long as
4434 * this particular list stays in the list.
4435 */
4436 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4437 /* array of xids */
4438 pid_t *list;
4439 /* how many elements the above list has */
4440 int length;
4441 /* each of these stored in a list by its cgroup */
4442 struct list_head links;
4443 /* pointer to the cgroup we belong to, for list removal purposes */
4444 struct cgroup *owner;
4445 /* for delayed destruction */
4446 struct delayed_work destroy_dwork;
4447 };
4448
4449 /*
4450 * The following two functions "fix" the issue where there are more pids
4451 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4452 * TODO: replace with a kernel-wide solution to this problem
4453 */
4454 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
pidlist_allocate(int count)4455 static void *pidlist_allocate(int count)
4456 {
4457 if (PIDLIST_TOO_LARGE(count))
4458 return vmalloc(count * sizeof(pid_t));
4459 else
4460 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4461 }
4462
pidlist_free(void * p)4463 static void pidlist_free(void *p)
4464 {
4465 kvfree(p);
4466 }
4467
4468 /*
4469 * Used to destroy all pidlists lingering waiting for destroy timer. None
4470 * should be left afterwards.
4471 */
cgroup_pidlist_destroy_all(struct cgroup * cgrp)4472 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4473 {
4474 struct cgroup_pidlist *l, *tmp_l;
4475
4476 mutex_lock(&cgrp->pidlist_mutex);
4477 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4478 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4479 mutex_unlock(&cgrp->pidlist_mutex);
4480
4481 flush_workqueue(cgroup_pidlist_destroy_wq);
4482 BUG_ON(!list_empty(&cgrp->pidlists));
4483 }
4484
cgroup_pidlist_destroy_work_fn(struct work_struct * work)4485 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4486 {
4487 struct delayed_work *dwork = to_delayed_work(work);
4488 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4489 destroy_dwork);
4490 struct cgroup_pidlist *tofree = NULL;
4491
4492 mutex_lock(&l->owner->pidlist_mutex);
4493
4494 /*
4495 * Destroy iff we didn't get queued again. The state won't change
4496 * as destroy_dwork can only be queued while locked.
4497 */
4498 if (!delayed_work_pending(dwork)) {
4499 list_del(&l->links);
4500 pidlist_free(l->list);
4501 put_pid_ns(l->key.ns);
4502 tofree = l;
4503 }
4504
4505 mutex_unlock(&l->owner->pidlist_mutex);
4506 kfree(tofree);
4507 }
4508
4509 /*
4510 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4511 * Returns the number of unique elements.
4512 */
pidlist_uniq(pid_t * list,int length)4513 static int pidlist_uniq(pid_t *list, int length)
4514 {
4515 int src, dest = 1;
4516
4517 /*
4518 * we presume the 0th element is unique, so i starts at 1. trivial
4519 * edge cases first; no work needs to be done for either
4520 */
4521 if (length == 0 || length == 1)
4522 return length;
4523 /* src and dest walk down the list; dest counts unique elements */
4524 for (src = 1; src < length; src++) {
4525 /* find next unique element */
4526 while (list[src] == list[src-1]) {
4527 src++;
4528 if (src == length)
4529 goto after;
4530 }
4531 /* dest always points to where the next unique element goes */
4532 list[dest] = list[src];
4533 dest++;
4534 }
4535 after:
4536 return dest;
4537 }
4538
4539 /*
4540 * The two pid files - task and cgroup.procs - guaranteed that the result
4541 * is sorted, which forced this whole pidlist fiasco. As pid order is
4542 * different per namespace, each namespace needs differently sorted list,
4543 * making it impossible to use, for example, single rbtree of member tasks
4544 * sorted by task pointer. As pidlists can be fairly large, allocating one
4545 * per open file is dangerous, so cgroup had to implement shared pool of
4546 * pidlists keyed by cgroup and namespace.
4547 *
4548 * All this extra complexity was caused by the original implementation
4549 * committing to an entirely unnecessary property. In the long term, we
4550 * want to do away with it. Explicitly scramble sort order if on the
4551 * default hierarchy so that no such expectation exists in the new
4552 * interface.
4553 *
4554 * Scrambling is done by swapping every two consecutive bits, which is
4555 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4556 */
pid_fry(pid_t pid)4557 static pid_t pid_fry(pid_t pid)
4558 {
4559 unsigned a = pid & 0x55555555;
4560 unsigned b = pid & 0xAAAAAAAA;
4561
4562 return (a << 1) | (b >> 1);
4563 }
4564
cgroup_pid_fry(struct cgroup * cgrp,pid_t pid)4565 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4566 {
4567 if (cgroup_on_dfl(cgrp))
4568 return pid_fry(pid);
4569 else
4570 return pid;
4571 }
4572
cmppid(const void * a,const void * b)4573 static int cmppid(const void *a, const void *b)
4574 {
4575 return *(pid_t *)a - *(pid_t *)b;
4576 }
4577
fried_cmppid(const void * a,const void * b)4578 static int fried_cmppid(const void *a, const void *b)
4579 {
4580 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4581 }
4582
cgroup_pidlist_find(struct cgroup * cgrp,enum cgroup_filetype type)4583 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4584 enum cgroup_filetype type)
4585 {
4586 struct cgroup_pidlist *l;
4587 /* don't need task_nsproxy() if we're looking at ourself */
4588 struct pid_namespace *ns = task_active_pid_ns(current);
4589
4590 lockdep_assert_held(&cgrp->pidlist_mutex);
4591
4592 list_for_each_entry(l, &cgrp->pidlists, links)
4593 if (l->key.type == type && l->key.ns == ns)
4594 return l;
4595 return NULL;
4596 }
4597
4598 /*
4599 * find the appropriate pidlist for our purpose (given procs vs tasks)
4600 * returns with the lock on that pidlist already held, and takes care
4601 * of the use count, or returns NULL with no locks held if we're out of
4602 * memory.
4603 */
cgroup_pidlist_find_create(struct cgroup * cgrp,enum cgroup_filetype type)4604 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4605 enum cgroup_filetype type)
4606 {
4607 struct cgroup_pidlist *l;
4608
4609 lockdep_assert_held(&cgrp->pidlist_mutex);
4610
4611 l = cgroup_pidlist_find(cgrp, type);
4612 if (l)
4613 return l;
4614
4615 /* entry not found; create a new one */
4616 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4617 if (!l)
4618 return l;
4619
4620 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4621 l->key.type = type;
4622 /* don't need task_nsproxy() if we're looking at ourself */
4623 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4624 l->owner = cgrp;
4625 list_add(&l->links, &cgrp->pidlists);
4626 return l;
4627 }
4628
4629 /*
4630 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4631 */
pidlist_array_load(struct cgroup * cgrp,enum cgroup_filetype type,struct cgroup_pidlist ** lp)4632 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4633 struct cgroup_pidlist **lp)
4634 {
4635 pid_t *array;
4636 int length;
4637 int pid, n = 0; /* used for populating the array */
4638 struct css_task_iter it;
4639 struct task_struct *tsk;
4640 struct cgroup_pidlist *l;
4641
4642 lockdep_assert_held(&cgrp->pidlist_mutex);
4643
4644 /*
4645 * If cgroup gets more users after we read count, we won't have
4646 * enough space - tough. This race is indistinguishable to the
4647 * caller from the case that the additional cgroup users didn't
4648 * show up until sometime later on.
4649 */
4650 length = cgroup_task_count(cgrp);
4651 array = pidlist_allocate(length);
4652 if (!array)
4653 return -ENOMEM;
4654 /* now, populate the array */
4655 css_task_iter_start(&cgrp->self, &it);
4656 while ((tsk = css_task_iter_next(&it))) {
4657 if (unlikely(n == length))
4658 break;
4659 /* get tgid or pid for procs or tasks file respectively */
4660 if (type == CGROUP_FILE_PROCS)
4661 pid = task_tgid_vnr(tsk);
4662 else
4663 pid = task_pid_vnr(tsk);
4664 if (pid > 0) /* make sure to only use valid results */
4665 array[n++] = pid;
4666 }
4667 css_task_iter_end(&it);
4668 length = n;
4669 /* now sort & (if procs) strip out duplicates */
4670 if (cgroup_on_dfl(cgrp))
4671 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4672 else
4673 sort(array, length, sizeof(pid_t), cmppid, NULL);
4674 if (type == CGROUP_FILE_PROCS)
4675 length = pidlist_uniq(array, length);
4676
4677 l = cgroup_pidlist_find_create(cgrp, type);
4678 if (!l) {
4679 pidlist_free(array);
4680 return -ENOMEM;
4681 }
4682
4683 /* store array, freeing old if necessary */
4684 pidlist_free(l->list);
4685 l->list = array;
4686 l->length = length;
4687 *lp = l;
4688 return 0;
4689 }
4690
4691 /**
4692 * cgroupstats_build - build and fill cgroupstats
4693 * @stats: cgroupstats to fill information into
4694 * @dentry: A dentry entry belonging to the cgroup for which stats have
4695 * been requested.
4696 *
4697 * Build and fill cgroupstats so that taskstats can export it to user
4698 * space.
4699 */
cgroupstats_build(struct cgroupstats * stats,struct dentry * dentry)4700 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4701 {
4702 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4703 struct cgroup *cgrp;
4704 struct css_task_iter it;
4705 struct task_struct *tsk;
4706
4707 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4708 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4709 kernfs_type(kn) != KERNFS_DIR)
4710 return -EINVAL;
4711
4712 mutex_lock(&cgroup_mutex);
4713
4714 /*
4715 * We aren't being called from kernfs and there's no guarantee on
4716 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4717 * @kn->priv is RCU safe. Let's do the RCU dancing.
4718 */
4719 rcu_read_lock();
4720 cgrp = rcu_dereference(kn->priv);
4721 if (!cgrp || cgroup_is_dead(cgrp)) {
4722 rcu_read_unlock();
4723 mutex_unlock(&cgroup_mutex);
4724 return -ENOENT;
4725 }
4726 rcu_read_unlock();
4727
4728 css_task_iter_start(&cgrp->self, &it);
4729 while ((tsk = css_task_iter_next(&it))) {
4730 switch (tsk->state) {
4731 case TASK_RUNNING:
4732 stats->nr_running++;
4733 break;
4734 case TASK_INTERRUPTIBLE:
4735 stats->nr_sleeping++;
4736 break;
4737 case TASK_UNINTERRUPTIBLE:
4738 stats->nr_uninterruptible++;
4739 break;
4740 case TASK_STOPPED:
4741 stats->nr_stopped++;
4742 break;
4743 default:
4744 if (delayacct_is_task_waiting_on_io(tsk))
4745 stats->nr_io_wait++;
4746 break;
4747 }
4748 }
4749 css_task_iter_end(&it);
4750
4751 mutex_unlock(&cgroup_mutex);
4752 return 0;
4753 }
4754
4755
4756 /*
4757 * seq_file methods for the tasks/procs files. The seq_file position is the
4758 * next pid to display; the seq_file iterator is a pointer to the pid
4759 * in the cgroup->l->list array.
4760 */
4761
cgroup_pidlist_start(struct seq_file * s,loff_t * pos)4762 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4763 {
4764 /*
4765 * Initially we receive a position value that corresponds to
4766 * one more than the last pid shown (or 0 on the first call or
4767 * after a seek to the start). Use a binary-search to find the
4768 * next pid to display, if any
4769 */
4770 struct kernfs_open_file *of = s->private;
4771 struct cgroup *cgrp = seq_css(s)->cgroup;
4772 struct cgroup_pidlist *l;
4773 enum cgroup_filetype type = seq_cft(s)->private;
4774 int index = 0, pid = *pos;
4775 int *iter, ret;
4776
4777 mutex_lock(&cgrp->pidlist_mutex);
4778
4779 /*
4780 * !NULL @of->priv indicates that this isn't the first start()
4781 * after open. If the matching pidlist is around, we can use that.
4782 * Look for it. Note that @of->priv can't be used directly. It
4783 * could already have been destroyed.
4784 */
4785 if (of->priv)
4786 of->priv = cgroup_pidlist_find(cgrp, type);
4787
4788 /*
4789 * Either this is the first start() after open or the matching
4790 * pidlist has been destroyed inbetween. Create a new one.
4791 */
4792 if (!of->priv) {
4793 ret = pidlist_array_load(cgrp, type,
4794 (struct cgroup_pidlist **)&of->priv);
4795 if (ret)
4796 return ERR_PTR(ret);
4797 }
4798 l = of->priv;
4799
4800 if (pid) {
4801 int end = l->length;
4802
4803 while (index < end) {
4804 int mid = (index + end) / 2;
4805 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4806 index = mid;
4807 break;
4808 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4809 index = mid + 1;
4810 else
4811 end = mid;
4812 }
4813 }
4814 /* If we're off the end of the array, we're done */
4815 if (index >= l->length)
4816 return NULL;
4817 /* Update the abstract position to be the actual pid that we found */
4818 iter = l->list + index;
4819 *pos = cgroup_pid_fry(cgrp, *iter);
4820 return iter;
4821 }
4822
cgroup_pidlist_stop(struct seq_file * s,void * v)4823 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4824 {
4825 struct kernfs_open_file *of = s->private;
4826 struct cgroup_pidlist *l = of->priv;
4827
4828 if (l)
4829 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4830 CGROUP_PIDLIST_DESTROY_DELAY);
4831 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4832 }
4833
cgroup_pidlist_next(struct seq_file * s,void * v,loff_t * pos)4834 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4835 {
4836 struct kernfs_open_file *of = s->private;
4837 struct cgroup_pidlist *l = of->priv;
4838 pid_t *p = v;
4839 pid_t *end = l->list + l->length;
4840 /*
4841 * Advance to the next pid in the array. If this goes off the
4842 * end, we're done
4843 */
4844 p++;
4845 if (p >= end) {
4846 return NULL;
4847 } else {
4848 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4849 return p;
4850 }
4851 }
4852
cgroup_pidlist_show(struct seq_file * s,void * v)4853 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4854 {
4855 seq_printf(s, "%d\n", *(int *)v);
4856
4857 return 0;
4858 }
4859
cgroup_read_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft)4860 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4861 struct cftype *cft)
4862 {
4863 return notify_on_release(css->cgroup);
4864 }
4865
cgroup_write_notify_on_release(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4866 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4867 struct cftype *cft, u64 val)
4868 {
4869 if (val)
4870 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4871 else
4872 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4873 return 0;
4874 }
4875
cgroup_clone_children_read(struct cgroup_subsys_state * css,struct cftype * cft)4876 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4877 struct cftype *cft)
4878 {
4879 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4880 }
4881
cgroup_clone_children_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)4882 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4883 struct cftype *cft, u64 val)
4884 {
4885 if (val)
4886 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4887 else
4888 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4889 return 0;
4890 }
4891
4892 /* cgroup core interface files for the default hierarchy */
4893 static struct cftype cgroup_dfl_base_files[] = {
4894 {
4895 .name = "cgroup.procs",
4896 .file_offset = offsetof(struct cgroup, procs_file),
4897 .seq_start = cgroup_pidlist_start,
4898 .seq_next = cgroup_pidlist_next,
4899 .seq_stop = cgroup_pidlist_stop,
4900 .seq_show = cgroup_pidlist_show,
4901 .private = CGROUP_FILE_PROCS,
4902 .write = cgroup_procs_write,
4903 },
4904 {
4905 .name = "cgroup.controllers",
4906 .seq_show = cgroup_controllers_show,
4907 },
4908 {
4909 .name = "cgroup.subtree_control",
4910 .seq_show = cgroup_subtree_control_show,
4911 .write = cgroup_subtree_control_write,
4912 },
4913 {
4914 .name = "cgroup.events",
4915 .flags = CFTYPE_NOT_ON_ROOT,
4916 .file_offset = offsetof(struct cgroup, events_file),
4917 .seq_show = cgroup_events_show,
4918 },
4919 { } /* terminate */
4920 };
4921
4922 /* cgroup core interface files for the legacy hierarchies */
4923 static struct cftype cgroup_legacy_base_files[] = {
4924 {
4925 .name = "cgroup.procs",
4926 .seq_start = cgroup_pidlist_start,
4927 .seq_next = cgroup_pidlist_next,
4928 .seq_stop = cgroup_pidlist_stop,
4929 .seq_show = cgroup_pidlist_show,
4930 .private = CGROUP_FILE_PROCS,
4931 .write = cgroup_procs_write,
4932 },
4933 {
4934 .name = "cgroup.clone_children",
4935 .read_u64 = cgroup_clone_children_read,
4936 .write_u64 = cgroup_clone_children_write,
4937 },
4938 {
4939 .name = "cgroup.sane_behavior",
4940 .flags = CFTYPE_ONLY_ON_ROOT,
4941 .seq_show = cgroup_sane_behavior_show,
4942 },
4943 {
4944 .name = "tasks",
4945 .seq_start = cgroup_pidlist_start,
4946 .seq_next = cgroup_pidlist_next,
4947 .seq_stop = cgroup_pidlist_stop,
4948 .seq_show = cgroup_pidlist_show,
4949 .private = CGROUP_FILE_TASKS,
4950 .write = cgroup_tasks_write,
4951 },
4952 {
4953 .name = "notify_on_release",
4954 .read_u64 = cgroup_read_notify_on_release,
4955 .write_u64 = cgroup_write_notify_on_release,
4956 },
4957 {
4958 .name = "release_agent",
4959 .flags = CFTYPE_ONLY_ON_ROOT,
4960 .seq_show = cgroup_release_agent_show,
4961 .write = cgroup_release_agent_write,
4962 .max_write_len = PATH_MAX - 1,
4963 },
4964 { } /* terminate */
4965 };
4966
4967 /*
4968 * css destruction is four-stage process.
4969 *
4970 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4971 * Implemented in kill_css().
4972 *
4973 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4974 * and thus css_tryget_online() is guaranteed to fail, the css can be
4975 * offlined by invoking offline_css(). After offlining, the base ref is
4976 * put. Implemented in css_killed_work_fn().
4977 *
4978 * 3. When the percpu_ref reaches zero, the only possible remaining
4979 * accessors are inside RCU read sections. css_release() schedules the
4980 * RCU callback.
4981 *
4982 * 4. After the grace period, the css can be freed. Implemented in
4983 * css_free_work_fn().
4984 *
4985 * It is actually hairier because both step 2 and 4 require process context
4986 * and thus involve punting to css->destroy_work adding two additional
4987 * steps to the already complex sequence.
4988 */
css_free_work_fn(struct work_struct * work)4989 static void css_free_work_fn(struct work_struct *work)
4990 {
4991 struct cgroup_subsys_state *css =
4992 container_of(work, struct cgroup_subsys_state, destroy_work);
4993 struct cgroup_subsys *ss = css->ss;
4994 struct cgroup *cgrp = css->cgroup;
4995
4996 percpu_ref_exit(&css->refcnt);
4997
4998 if (ss) {
4999 /* css free path */
5000 struct cgroup_subsys_state *parent = css->parent;
5001 int id = css->id;
5002
5003 ss->css_free(css);
5004 cgroup_idr_remove(&ss->css_idr, id);
5005 cgroup_put(cgrp);
5006
5007 if (parent)
5008 css_put(parent);
5009 } else {
5010 /* cgroup free path */
5011 atomic_dec(&cgrp->root->nr_cgrps);
5012 cgroup_pidlist_destroy_all(cgrp);
5013 cancel_work_sync(&cgrp->release_agent_work);
5014
5015 if (cgroup_parent(cgrp)) {
5016 /*
5017 * We get a ref to the parent, and put the ref when
5018 * this cgroup is being freed, so it's guaranteed
5019 * that the parent won't be destroyed before its
5020 * children.
5021 */
5022 cgroup_put(cgroup_parent(cgrp));
5023 kernfs_put(cgrp->kn);
5024 kfree(cgrp);
5025 } else {
5026 /*
5027 * This is root cgroup's refcnt reaching zero,
5028 * which indicates that the root should be
5029 * released.
5030 */
5031 cgroup_destroy_root(cgrp->root);
5032 }
5033 }
5034 }
5035
css_free_rcu_fn(struct rcu_head * rcu_head)5036 static void css_free_rcu_fn(struct rcu_head *rcu_head)
5037 {
5038 struct cgroup_subsys_state *css =
5039 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
5040
5041 INIT_WORK(&css->destroy_work, css_free_work_fn);
5042 queue_work(cgroup_destroy_wq, &css->destroy_work);
5043 }
5044
css_release_work_fn(struct work_struct * work)5045 static void css_release_work_fn(struct work_struct *work)
5046 {
5047 struct cgroup_subsys_state *css =
5048 container_of(work, struct cgroup_subsys_state, destroy_work);
5049 struct cgroup_subsys *ss = css->ss;
5050 struct cgroup *cgrp = css->cgroup;
5051
5052 mutex_lock(&cgroup_mutex);
5053
5054 css->flags |= CSS_RELEASED;
5055 list_del_rcu(&css->sibling);
5056
5057 if (ss) {
5058 /* css release path */
5059 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
5060 if (ss->css_released)
5061 ss->css_released(css);
5062 } else {
5063 /* cgroup release path */
5064 trace_cgroup_release(cgrp);
5065
5066 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5067 cgrp->id = -1;
5068
5069 /*
5070 * There are two control paths which try to determine
5071 * cgroup from dentry without going through kernfs -
5072 * cgroupstats_build() and css_tryget_online_from_dir().
5073 * Those are supported by RCU protecting clearing of
5074 * cgrp->kn->priv backpointer.
5075 */
5076 if (cgrp->kn)
5077 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5078 NULL);
5079
5080 cgroup_bpf_put(cgrp);
5081 }
5082
5083 mutex_unlock(&cgroup_mutex);
5084
5085 call_rcu(&css->rcu_head, css_free_rcu_fn);
5086 }
5087
css_release(struct percpu_ref * ref)5088 static void css_release(struct percpu_ref *ref)
5089 {
5090 struct cgroup_subsys_state *css =
5091 container_of(ref, struct cgroup_subsys_state, refcnt);
5092
5093 INIT_WORK(&css->destroy_work, css_release_work_fn);
5094 queue_work(cgroup_destroy_wq, &css->destroy_work);
5095 }
5096
init_and_link_css(struct cgroup_subsys_state * css,struct cgroup_subsys * ss,struct cgroup * cgrp)5097 static void init_and_link_css(struct cgroup_subsys_state *css,
5098 struct cgroup_subsys *ss, struct cgroup *cgrp)
5099 {
5100 lockdep_assert_held(&cgroup_mutex);
5101
5102 cgroup_get(cgrp);
5103
5104 memset(css, 0, sizeof(*css));
5105 css->cgroup = cgrp;
5106 css->ss = ss;
5107 css->id = -1;
5108 INIT_LIST_HEAD(&css->sibling);
5109 INIT_LIST_HEAD(&css->children);
5110 css->serial_nr = css_serial_nr_next++;
5111 atomic_set(&css->online_cnt, 0);
5112
5113 if (cgroup_parent(cgrp)) {
5114 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
5115 css_get(css->parent);
5116 }
5117
5118 BUG_ON(cgroup_css(cgrp, ss));
5119 }
5120
5121 /* invoke ->css_online() on a new CSS and mark it online if successful */
online_css(struct cgroup_subsys_state * css)5122 static int online_css(struct cgroup_subsys_state *css)
5123 {
5124 struct cgroup_subsys *ss = css->ss;
5125 int ret = 0;
5126
5127 lockdep_assert_held(&cgroup_mutex);
5128
5129 if (ss->css_online)
5130 ret = ss->css_online(css);
5131 if (!ret) {
5132 css->flags |= CSS_ONLINE;
5133 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5134
5135 atomic_inc(&css->online_cnt);
5136 if (css->parent)
5137 atomic_inc(&css->parent->online_cnt);
5138 }
5139 return ret;
5140 }
5141
5142 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
offline_css(struct cgroup_subsys_state * css)5143 static void offline_css(struct cgroup_subsys_state *css)
5144 {
5145 struct cgroup_subsys *ss = css->ss;
5146
5147 lockdep_assert_held(&cgroup_mutex);
5148
5149 if (!(css->flags & CSS_ONLINE))
5150 return;
5151
5152 if (ss->css_reset)
5153 ss->css_reset(css);
5154
5155 if (ss->css_offline)
5156 ss->css_offline(css);
5157
5158 css->flags &= ~CSS_ONLINE;
5159 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5160
5161 wake_up_all(&css->cgroup->offline_waitq);
5162 }
5163
5164 /**
5165 * css_create - create a cgroup_subsys_state
5166 * @cgrp: the cgroup new css will be associated with
5167 * @ss: the subsys of new css
5168 *
5169 * Create a new css associated with @cgrp - @ss pair. On success, the new
5170 * css is online and installed in @cgrp. This function doesn't create the
5171 * interface files. Returns 0 on success, -errno on failure.
5172 */
css_create(struct cgroup * cgrp,struct cgroup_subsys * ss)5173 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5174 struct cgroup_subsys *ss)
5175 {
5176 struct cgroup *parent = cgroup_parent(cgrp);
5177 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5178 struct cgroup_subsys_state *css;
5179 int err;
5180
5181 lockdep_assert_held(&cgroup_mutex);
5182
5183 css = ss->css_alloc(parent_css);
5184 if (!css)
5185 css = ERR_PTR(-ENOMEM);
5186 if (IS_ERR(css))
5187 return css;
5188
5189 init_and_link_css(css, ss, cgrp);
5190
5191 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5192 if (err)
5193 goto err_free_css;
5194
5195 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5196 if (err < 0)
5197 goto err_free_css;
5198 css->id = err;
5199
5200 /* @css is ready to be brought online now, make it visible */
5201 list_add_tail_rcu(&css->sibling, &parent_css->children);
5202 cgroup_idr_replace(&ss->css_idr, css, css->id);
5203
5204 err = online_css(css);
5205 if (err)
5206 goto err_list_del;
5207
5208 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5209 cgroup_parent(parent)) {
5210 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5211 current->comm, current->pid, ss->name);
5212 if (!strcmp(ss->name, "memory"))
5213 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5214 ss->warned_broken_hierarchy = true;
5215 }
5216
5217 return css;
5218
5219 err_list_del:
5220 list_del_rcu(&css->sibling);
5221 err_free_css:
5222 call_rcu(&css->rcu_head, css_free_rcu_fn);
5223 return ERR_PTR(err);
5224 }
5225
5226 /*
5227 * The returned cgroup is fully initialized including its control mask, but
5228 * it isn't associated with its kernfs_node and doesn't have the control
5229 * mask applied.
5230 */
cgroup_create(struct cgroup * parent)5231 static struct cgroup *cgroup_create(struct cgroup *parent)
5232 {
5233 struct cgroup_root *root = parent->root;
5234 struct cgroup *cgrp, *tcgrp;
5235 int level = parent->level + 1;
5236 int ret;
5237
5238 /* allocate the cgroup and its ID, 0 is reserved for the root */
5239 cgrp = kzalloc(sizeof(*cgrp) +
5240 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
5241 if (!cgrp)
5242 return ERR_PTR(-ENOMEM);
5243
5244 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5245 if (ret)
5246 goto out_free_cgrp;
5247
5248 /*
5249 * Temporarily set the pointer to NULL, so idr_find() won't return
5250 * a half-baked cgroup.
5251 */
5252 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5253 if (cgrp->id < 0) {
5254 ret = -ENOMEM;
5255 goto out_cancel_ref;
5256 }
5257
5258 init_cgroup_housekeeping(cgrp);
5259
5260 cgrp->self.parent = &parent->self;
5261 cgrp->root = root;
5262 cgrp->level = level;
5263
5264 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5265 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5266
5267 if (notify_on_release(parent))
5268 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5269
5270 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5271 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5272
5273 cgrp->self.serial_nr = css_serial_nr_next++;
5274
5275 /* allocation complete, commit to creation */
5276 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5277 atomic_inc(&root->nr_cgrps);
5278 cgroup_get(parent);
5279
5280 /*
5281 * @cgrp is now fully operational. If something fails after this
5282 * point, it'll be released via the normal destruction path.
5283 */
5284 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5285
5286 /*
5287 * On the default hierarchy, a child doesn't automatically inherit
5288 * subtree_control from the parent. Each is configured manually.
5289 */
5290 if (!cgroup_on_dfl(cgrp))
5291 cgrp->subtree_control = cgroup_control(cgrp);
5292
5293 if (parent)
5294 cgroup_bpf_inherit(cgrp, parent);
5295
5296 cgroup_propagate_control(cgrp);
5297
5298 return cgrp;
5299
5300 out_cancel_ref:
5301 percpu_ref_exit(&cgrp->self.refcnt);
5302 out_free_cgrp:
5303 kfree(cgrp);
5304 return ERR_PTR(ret);
5305 }
5306
cgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)5307 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5308 umode_t mode)
5309 {
5310 struct cgroup *parent, *cgrp;
5311 struct kernfs_node *kn;
5312 int ret;
5313
5314 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5315 if (strchr(name, '\n'))
5316 return -EINVAL;
5317
5318 parent = cgroup_kn_lock_live(parent_kn, false);
5319 if (!parent)
5320 return -ENODEV;
5321
5322 cgrp = cgroup_create(parent);
5323 if (IS_ERR(cgrp)) {
5324 ret = PTR_ERR(cgrp);
5325 goto out_unlock;
5326 }
5327
5328 /* create the directory */
5329 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5330 if (IS_ERR(kn)) {
5331 ret = PTR_ERR(kn);
5332 goto out_destroy;
5333 }
5334 cgrp->kn = kn;
5335
5336 /*
5337 * This extra ref will be put in cgroup_free_fn() and guarantees
5338 * that @cgrp->kn is always accessible.
5339 */
5340 kernfs_get(kn);
5341
5342 ret = cgroup_kn_set_ugid(kn);
5343 if (ret)
5344 goto out_destroy;
5345
5346 ret = css_populate_dir(&cgrp->self);
5347 if (ret)
5348 goto out_destroy;
5349
5350 ret = cgroup_apply_control_enable(cgrp);
5351 if (ret)
5352 goto out_destroy;
5353
5354 trace_cgroup_mkdir(cgrp);
5355
5356 /* let's create and online css's */
5357 kernfs_activate(kn);
5358
5359 ret = 0;
5360 goto out_unlock;
5361
5362 out_destroy:
5363 cgroup_destroy_locked(cgrp);
5364 out_unlock:
5365 cgroup_kn_unlock(parent_kn);
5366 return ret;
5367 }
5368
5369 /*
5370 * This is called when the refcnt of a css is confirmed to be killed.
5371 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5372 * initate destruction and put the css ref from kill_css().
5373 */
css_killed_work_fn(struct work_struct * work)5374 static void css_killed_work_fn(struct work_struct *work)
5375 {
5376 struct cgroup_subsys_state *css =
5377 container_of(work, struct cgroup_subsys_state, destroy_work);
5378
5379 mutex_lock(&cgroup_mutex);
5380
5381 do {
5382 offline_css(css);
5383 css_put(css);
5384 /* @css can't go away while we're holding cgroup_mutex */
5385 css = css->parent;
5386 } while (css && atomic_dec_and_test(&css->online_cnt));
5387
5388 mutex_unlock(&cgroup_mutex);
5389 }
5390
5391 /* css kill confirmation processing requires process context, bounce */
css_killed_ref_fn(struct percpu_ref * ref)5392 static void css_killed_ref_fn(struct percpu_ref *ref)
5393 {
5394 struct cgroup_subsys_state *css =
5395 container_of(ref, struct cgroup_subsys_state, refcnt);
5396
5397 if (atomic_dec_and_test(&css->online_cnt)) {
5398 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5399 queue_work(cgroup_destroy_wq, &css->destroy_work);
5400 }
5401 }
5402
5403 /**
5404 * kill_css - destroy a css
5405 * @css: css to destroy
5406 *
5407 * This function initiates destruction of @css by removing cgroup interface
5408 * files and putting its base reference. ->css_offline() will be invoked
5409 * asynchronously once css_tryget_online() is guaranteed to fail and when
5410 * the reference count reaches zero, @css will be released.
5411 */
kill_css(struct cgroup_subsys_state * css)5412 static void kill_css(struct cgroup_subsys_state *css)
5413 {
5414 lockdep_assert_held(&cgroup_mutex);
5415
5416 if (css->flags & CSS_DYING)
5417 return;
5418
5419 css->flags |= CSS_DYING;
5420
5421 /*
5422 * This must happen before css is disassociated with its cgroup.
5423 * See seq_css() for details.
5424 */
5425 css_clear_dir(css);
5426
5427 /*
5428 * Killing would put the base ref, but we need to keep it alive
5429 * until after ->css_offline().
5430 */
5431 css_get(css);
5432
5433 /*
5434 * cgroup core guarantees that, by the time ->css_offline() is
5435 * invoked, no new css reference will be given out via
5436 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5437 * proceed to offlining css's because percpu_ref_kill() doesn't
5438 * guarantee that the ref is seen as killed on all CPUs on return.
5439 *
5440 * Use percpu_ref_kill_and_confirm() to get notifications as each
5441 * css is confirmed to be seen as killed on all CPUs.
5442 */
5443 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5444 }
5445
5446 /**
5447 * cgroup_destroy_locked - the first stage of cgroup destruction
5448 * @cgrp: cgroup to be destroyed
5449 *
5450 * css's make use of percpu refcnts whose killing latency shouldn't be
5451 * exposed to userland and are RCU protected. Also, cgroup core needs to
5452 * guarantee that css_tryget_online() won't succeed by the time
5453 * ->css_offline() is invoked. To satisfy all the requirements,
5454 * destruction is implemented in the following two steps.
5455 *
5456 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5457 * userland visible parts and start killing the percpu refcnts of
5458 * css's. Set up so that the next stage will be kicked off once all
5459 * the percpu refcnts are confirmed to be killed.
5460 *
5461 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5462 * rest of destruction. Once all cgroup references are gone, the
5463 * cgroup is RCU-freed.
5464 *
5465 * This function implements s1. After this step, @cgrp is gone as far as
5466 * the userland is concerned and a new cgroup with the same name may be
5467 * created. As cgroup doesn't care about the names internally, this
5468 * doesn't cause any problem.
5469 */
cgroup_destroy_locked(struct cgroup * cgrp)5470 static int cgroup_destroy_locked(struct cgroup *cgrp)
5471 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5472 {
5473 struct cgroup_subsys_state *css;
5474 struct cgrp_cset_link *link;
5475 int ssid;
5476
5477 lockdep_assert_held(&cgroup_mutex);
5478
5479 /*
5480 * Only migration can raise populated from zero and we're already
5481 * holding cgroup_mutex.
5482 */
5483 if (cgroup_is_populated(cgrp))
5484 return -EBUSY;
5485
5486 /*
5487 * Make sure there's no live children. We can't test emptiness of
5488 * ->self.children as dead children linger on it while being
5489 * drained; otherwise, "rmdir parent/child parent" may fail.
5490 */
5491 if (css_has_online_children(&cgrp->self))
5492 return -EBUSY;
5493
5494 /*
5495 * Mark @cgrp and the associated csets dead. The former prevents
5496 * further task migration and child creation by disabling
5497 * cgroup_lock_live_group(). The latter makes the csets ignored by
5498 * the migration path.
5499 */
5500 cgrp->self.flags &= ~CSS_ONLINE;
5501
5502 spin_lock_irq(&css_set_lock);
5503 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5504 link->cset->dead = true;
5505 spin_unlock_irq(&css_set_lock);
5506
5507 /* initiate massacre of all css's */
5508 for_each_css(css, ssid, cgrp)
5509 kill_css(css);
5510
5511 /*
5512 * Remove @cgrp directory along with the base files. @cgrp has an
5513 * extra ref on its kn.
5514 */
5515 kernfs_remove(cgrp->kn);
5516
5517 check_for_release(cgroup_parent(cgrp));
5518
5519 /* put the base reference */
5520 percpu_ref_kill(&cgrp->self.refcnt);
5521
5522 return 0;
5523 };
5524
cgroup_rmdir(struct kernfs_node * kn)5525 static int cgroup_rmdir(struct kernfs_node *kn)
5526 {
5527 struct cgroup *cgrp;
5528 int ret = 0;
5529
5530 cgrp = cgroup_kn_lock_live(kn, false);
5531 if (!cgrp)
5532 return 0;
5533
5534 ret = cgroup_destroy_locked(cgrp);
5535
5536 if (!ret)
5537 trace_cgroup_rmdir(cgrp);
5538
5539 cgroup_kn_unlock(kn);
5540 return ret;
5541 }
5542
5543 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5544 .remount_fs = cgroup_remount,
5545 .show_options = cgroup_show_options,
5546 .mkdir = cgroup_mkdir,
5547 .rmdir = cgroup_rmdir,
5548 .rename = cgroup_rename,
5549 .show_path = cgroup_show_path,
5550 };
5551
cgroup_init_subsys(struct cgroup_subsys * ss,bool early)5552 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5553 {
5554 struct cgroup_subsys_state *css;
5555
5556 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5557
5558 mutex_lock(&cgroup_mutex);
5559
5560 idr_init(&ss->css_idr);
5561 INIT_LIST_HEAD(&ss->cfts);
5562
5563 /* Create the root cgroup state for this subsystem */
5564 ss->root = &cgrp_dfl_root;
5565 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5566 /* We don't handle early failures gracefully */
5567 BUG_ON(IS_ERR(css));
5568 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5569
5570 /*
5571 * Root csses are never destroyed and we can't initialize
5572 * percpu_ref during early init. Disable refcnting.
5573 */
5574 css->flags |= CSS_NO_REF;
5575
5576 if (early) {
5577 /* allocation can't be done safely during early init */
5578 css->id = 1;
5579 } else {
5580 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5581 BUG_ON(css->id < 0);
5582 }
5583
5584 /* Update the init_css_set to contain a subsys
5585 * pointer to this state - since the subsystem is
5586 * newly registered, all tasks and hence the
5587 * init_css_set is in the subsystem's root cgroup. */
5588 init_css_set.subsys[ss->id] = css;
5589
5590 have_fork_callback |= (bool)ss->fork << ss->id;
5591 have_exit_callback |= (bool)ss->exit << ss->id;
5592 have_free_callback |= (bool)ss->free << ss->id;
5593 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5594
5595 /* At system boot, before all subsystems have been
5596 * registered, no tasks have been forked, so we don't
5597 * need to invoke fork callbacks here. */
5598 BUG_ON(!list_empty(&init_task.tasks));
5599
5600 BUG_ON(online_css(css));
5601
5602 mutex_unlock(&cgroup_mutex);
5603 }
5604
5605 /**
5606 * cgroup_init_early - cgroup initialization at system boot
5607 *
5608 * Initialize cgroups at system boot, and initialize any
5609 * subsystems that request early init.
5610 */
cgroup_init_early(void)5611 int __init cgroup_init_early(void)
5612 {
5613 static struct cgroup_sb_opts __initdata opts;
5614 struct cgroup_subsys *ss;
5615 int i;
5616
5617 init_cgroup_root(&cgrp_dfl_root, &opts);
5618 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5619
5620 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5621
5622 for_each_subsys(ss, i) {
5623 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5624 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5625 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5626 ss->id, ss->name);
5627 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5628 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5629
5630 ss->id = i;
5631 ss->name = cgroup_subsys_name[i];
5632 if (!ss->legacy_name)
5633 ss->legacy_name = cgroup_subsys_name[i];
5634
5635 if (ss->early_init)
5636 cgroup_init_subsys(ss, true);
5637 }
5638 return 0;
5639 }
5640
5641 static u16 cgroup_disable_mask __initdata;
5642
5643 /**
5644 * cgroup_init - cgroup initialization
5645 *
5646 * Register cgroup filesystem and /proc file, and initialize
5647 * any subsystems that didn't request early init.
5648 */
cgroup_init(void)5649 int __init cgroup_init(void)
5650 {
5651 struct cgroup_subsys *ss;
5652 int ssid;
5653
5654 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5655 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5656 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5657 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5658
5659 /*
5660 * The latency of the synchronize_sched() is too high for cgroups,
5661 * avoid it at the cost of forcing all readers into the slow path.
5662 */
5663 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5664
5665 get_user_ns(init_cgroup_ns.user_ns);
5666
5667 mutex_lock(&cgroup_mutex);
5668
5669 /*
5670 * Add init_css_set to the hash table so that dfl_root can link to
5671 * it during init.
5672 */
5673 hash_add(css_set_table, &init_css_set.hlist,
5674 css_set_hash(init_css_set.subsys));
5675
5676 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5677
5678 mutex_unlock(&cgroup_mutex);
5679
5680 for_each_subsys(ss, ssid) {
5681 if (ss->early_init) {
5682 struct cgroup_subsys_state *css =
5683 init_css_set.subsys[ss->id];
5684
5685 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5686 GFP_KERNEL);
5687 BUG_ON(css->id < 0);
5688 } else {
5689 cgroup_init_subsys(ss, false);
5690 }
5691
5692 list_add_tail(&init_css_set.e_cset_node[ssid],
5693 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5694
5695 /*
5696 * Setting dfl_root subsys_mask needs to consider the
5697 * disabled flag and cftype registration needs kmalloc,
5698 * both of which aren't available during early_init.
5699 */
5700 if (cgroup_disable_mask & (1 << ssid)) {
5701 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5702 printk(KERN_INFO "Disabling %s control group subsystem\n",
5703 ss->name);
5704 continue;
5705 }
5706
5707 if (cgroup_ssid_no_v1(ssid))
5708 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5709 ss->name);
5710
5711 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5712
5713 if (ss->implicit_on_dfl)
5714 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5715 else if (!ss->dfl_cftypes)
5716 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5717
5718 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5719 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5720 } else {
5721 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5722 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5723 }
5724
5725 if (ss->bind)
5726 ss->bind(init_css_set.subsys[ssid]);
5727
5728 mutex_lock(&cgroup_mutex);
5729 css_populate_dir(init_css_set.subsys[ssid]);
5730 mutex_unlock(&cgroup_mutex);
5731 }
5732
5733 /* init_css_set.subsys[] has been updated, re-hash */
5734 hash_del(&init_css_set.hlist);
5735 hash_add(css_set_table, &init_css_set.hlist,
5736 css_set_hash(init_css_set.subsys));
5737
5738 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5739 WARN_ON(register_filesystem(&cgroup_fs_type));
5740 WARN_ON(register_filesystem(&cgroup2_fs_type));
5741 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5742
5743 return 0;
5744 }
5745
cgroup_wq_init(void)5746 static int __init cgroup_wq_init(void)
5747 {
5748 /*
5749 * There isn't much point in executing destruction path in
5750 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5751 * Use 1 for @max_active.
5752 *
5753 * We would prefer to do this in cgroup_init() above, but that
5754 * is called before init_workqueues(): so leave this until after.
5755 */
5756 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5757 BUG_ON(!cgroup_destroy_wq);
5758
5759 /*
5760 * Used to destroy pidlists and separate to serve as flush domain.
5761 * Cap @max_active to 1 too.
5762 */
5763 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5764 0, 1);
5765 BUG_ON(!cgroup_pidlist_destroy_wq);
5766
5767 return 0;
5768 }
5769 core_initcall(cgroup_wq_init);
5770
5771 /*
5772 * proc_cgroup_show()
5773 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5774 * - Used for /proc/<pid>/cgroup.
5775 */
proc_cgroup_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)5776 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5777 struct pid *pid, struct task_struct *tsk)
5778 {
5779 char *buf;
5780 int retval;
5781 struct cgroup_root *root;
5782
5783 retval = -ENOMEM;
5784 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5785 if (!buf)
5786 goto out;
5787
5788 mutex_lock(&cgroup_mutex);
5789 spin_lock_irq(&css_set_lock);
5790
5791 for_each_root(root) {
5792 struct cgroup_subsys *ss;
5793 struct cgroup *cgrp;
5794 int ssid, count = 0;
5795
5796 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5797 continue;
5798
5799 seq_printf(m, "%d:", root->hierarchy_id);
5800 if (root != &cgrp_dfl_root)
5801 for_each_subsys(ss, ssid)
5802 if (root->subsys_mask & (1 << ssid))
5803 seq_printf(m, "%s%s", count++ ? "," : "",
5804 ss->legacy_name);
5805 if (strlen(root->name))
5806 seq_printf(m, "%sname=%s", count ? "," : "",
5807 root->name);
5808 seq_putc(m, ':');
5809
5810 cgrp = task_cgroup_from_root(tsk, root);
5811
5812 /*
5813 * On traditional hierarchies, all zombie tasks show up as
5814 * belonging to the root cgroup. On the default hierarchy,
5815 * while a zombie doesn't show up in "cgroup.procs" and
5816 * thus can't be migrated, its /proc/PID/cgroup keeps
5817 * reporting the cgroup it belonged to before exiting. If
5818 * the cgroup is removed before the zombie is reaped,
5819 * " (deleted)" is appended to the cgroup path.
5820 */
5821 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5822 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5823 current->nsproxy->cgroup_ns);
5824 if (retval >= PATH_MAX)
5825 retval = -ENAMETOOLONG;
5826 if (retval < 0)
5827 goto out_unlock;
5828
5829 seq_puts(m, buf);
5830 } else {
5831 seq_puts(m, "/");
5832 }
5833
5834 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5835 seq_puts(m, " (deleted)\n");
5836 else
5837 seq_putc(m, '\n');
5838 }
5839
5840 retval = 0;
5841 out_unlock:
5842 spin_unlock_irq(&css_set_lock);
5843 mutex_unlock(&cgroup_mutex);
5844 kfree(buf);
5845 out:
5846 return retval;
5847 }
5848
5849 /* Display information about each subsystem and each hierarchy */
proc_cgroupstats_show(struct seq_file * m,void * v)5850 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5851 {
5852 struct cgroup_subsys *ss;
5853 int i;
5854
5855 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5856 /*
5857 * ideally we don't want subsystems moving around while we do this.
5858 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5859 * subsys/hierarchy state.
5860 */
5861 mutex_lock(&cgroup_mutex);
5862
5863 for_each_subsys(ss, i)
5864 seq_printf(m, "%s\t%d\t%d\t%d\n",
5865 ss->legacy_name, ss->root->hierarchy_id,
5866 atomic_read(&ss->root->nr_cgrps),
5867 cgroup_ssid_enabled(i));
5868
5869 mutex_unlock(&cgroup_mutex);
5870 return 0;
5871 }
5872
cgroupstats_open(struct inode * inode,struct file * file)5873 static int cgroupstats_open(struct inode *inode, struct file *file)
5874 {
5875 return single_open(file, proc_cgroupstats_show, NULL);
5876 }
5877
5878 static const struct file_operations proc_cgroupstats_operations = {
5879 .open = cgroupstats_open,
5880 .read = seq_read,
5881 .llseek = seq_lseek,
5882 .release = single_release,
5883 };
5884
5885 /**
5886 * cgroup_fork - initialize cgroup related fields during copy_process()
5887 * @child: pointer to task_struct of forking parent process.
5888 *
5889 * A task is associated with the init_css_set until cgroup_post_fork()
5890 * attaches it to the parent's css_set. Empty cg_list indicates that
5891 * @child isn't holding reference to its css_set.
5892 */
cgroup_fork(struct task_struct * child)5893 void cgroup_fork(struct task_struct *child)
5894 {
5895 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5896 INIT_LIST_HEAD(&child->cg_list);
5897 }
5898
5899 /**
5900 * cgroup_can_fork - called on a new task before the process is exposed
5901 * @child: the task in question.
5902 *
5903 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5904 * returns an error, the fork aborts with that error code. This allows for
5905 * a cgroup subsystem to conditionally allow or deny new forks.
5906 */
cgroup_can_fork(struct task_struct * child)5907 int cgroup_can_fork(struct task_struct *child)
5908 {
5909 struct cgroup_subsys *ss;
5910 int i, j, ret;
5911
5912 do_each_subsys_mask(ss, i, have_canfork_callback) {
5913 ret = ss->can_fork(child);
5914 if (ret)
5915 goto out_revert;
5916 } while_each_subsys_mask();
5917
5918 return 0;
5919
5920 out_revert:
5921 for_each_subsys(ss, j) {
5922 if (j >= i)
5923 break;
5924 if (ss->cancel_fork)
5925 ss->cancel_fork(child);
5926 }
5927
5928 return ret;
5929 }
5930
5931 /**
5932 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5933 * @child: the task in question
5934 *
5935 * This calls the cancel_fork() callbacks if a fork failed *after*
5936 * cgroup_can_fork() succeded.
5937 */
cgroup_cancel_fork(struct task_struct * child)5938 void cgroup_cancel_fork(struct task_struct *child)
5939 {
5940 struct cgroup_subsys *ss;
5941 int i;
5942
5943 for_each_subsys(ss, i)
5944 if (ss->cancel_fork)
5945 ss->cancel_fork(child);
5946 }
5947
5948 /**
5949 * cgroup_post_fork - called on a new task after adding it to the task list
5950 * @child: the task in question
5951 *
5952 * Adds the task to the list running through its css_set if necessary and
5953 * call the subsystem fork() callbacks. Has to be after the task is
5954 * visible on the task list in case we race with the first call to
5955 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5956 * list.
5957 */
cgroup_post_fork(struct task_struct * child)5958 void cgroup_post_fork(struct task_struct *child)
5959 {
5960 struct cgroup_subsys *ss;
5961 int i;
5962
5963 /*
5964 * This may race against cgroup_enable_task_cg_lists(). As that
5965 * function sets use_task_css_set_links before grabbing
5966 * tasklist_lock and we just went through tasklist_lock to add
5967 * @child, it's guaranteed that either we see the set
5968 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5969 * @child during its iteration.
5970 *
5971 * If we won the race, @child is associated with %current's
5972 * css_set. Grabbing css_set_lock guarantees both that the
5973 * association is stable, and, on completion of the parent's
5974 * migration, @child is visible in the source of migration or
5975 * already in the destination cgroup. This guarantee is necessary
5976 * when implementing operations which need to migrate all tasks of
5977 * a cgroup to another.
5978 *
5979 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5980 * will remain in init_css_set. This is safe because all tasks are
5981 * in the init_css_set before cg_links is enabled and there's no
5982 * operation which transfers all tasks out of init_css_set.
5983 */
5984 if (use_task_css_set_links) {
5985 struct css_set *cset;
5986
5987 spin_lock_irq(&css_set_lock);
5988 cset = task_css_set(current);
5989 if (list_empty(&child->cg_list)) {
5990 get_css_set(cset);
5991 css_set_move_task(child, NULL, cset, false);
5992 }
5993 spin_unlock_irq(&css_set_lock);
5994 }
5995
5996 /*
5997 * Call ss->fork(). This must happen after @child is linked on
5998 * css_set; otherwise, @child might change state between ->fork()
5999 * and addition to css_set.
6000 */
6001 do_each_subsys_mask(ss, i, have_fork_callback) {
6002 ss->fork(child);
6003 } while_each_subsys_mask();
6004 }
6005
6006 /**
6007 * cgroup_exit - detach cgroup from exiting task
6008 * @tsk: pointer to task_struct of exiting process
6009 *
6010 * Description: Detach cgroup from @tsk and release it.
6011 *
6012 * Note that cgroups marked notify_on_release force every task in
6013 * them to take the global cgroup_mutex mutex when exiting.
6014 * This could impact scaling on very large systems. Be reluctant to
6015 * use notify_on_release cgroups where very high task exit scaling
6016 * is required on large systems.
6017 *
6018 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
6019 * call cgroup_exit() while the task is still competent to handle
6020 * notify_on_release(), then leave the task attached to the root cgroup in
6021 * each hierarchy for the remainder of its exit. No need to bother with
6022 * init_css_set refcnting. init_css_set never goes away and we can't race
6023 * with migration path - PF_EXITING is visible to migration path.
6024 */
cgroup_exit(struct task_struct * tsk)6025 void cgroup_exit(struct task_struct *tsk)
6026 {
6027 struct cgroup_subsys *ss;
6028 struct css_set *cset;
6029 int i;
6030
6031 /*
6032 * Unlink from @tsk from its css_set. As migration path can't race
6033 * with us, we can check css_set and cg_list without synchronization.
6034 */
6035 cset = task_css_set(tsk);
6036
6037 if (!list_empty(&tsk->cg_list)) {
6038 spin_lock_irq(&css_set_lock);
6039 css_set_move_task(tsk, cset, NULL, false);
6040 spin_unlock_irq(&css_set_lock);
6041 } else {
6042 get_css_set(cset);
6043 }
6044
6045 /* see cgroup_post_fork() for details */
6046 do_each_subsys_mask(ss, i, have_exit_callback) {
6047 ss->exit(tsk);
6048 } while_each_subsys_mask();
6049 }
6050
cgroup_free(struct task_struct * task)6051 void cgroup_free(struct task_struct *task)
6052 {
6053 struct css_set *cset = task_css_set(task);
6054 struct cgroup_subsys *ss;
6055 int ssid;
6056
6057 do_each_subsys_mask(ss, ssid, have_free_callback) {
6058 ss->free(task);
6059 } while_each_subsys_mask();
6060
6061 put_css_set(cset);
6062 }
6063
check_for_release(struct cgroup * cgrp)6064 static void check_for_release(struct cgroup *cgrp)
6065 {
6066 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
6067 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
6068 schedule_work(&cgrp->release_agent_work);
6069 }
6070
6071 /*
6072 * Notify userspace when a cgroup is released, by running the
6073 * configured release agent with the name of the cgroup (path
6074 * relative to the root of cgroup file system) as the argument.
6075 *
6076 * Most likely, this user command will try to rmdir this cgroup.
6077 *
6078 * This races with the possibility that some other task will be
6079 * attached to this cgroup before it is removed, or that some other
6080 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
6081 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
6082 * unused, and this cgroup will be reprieved from its death sentence,
6083 * to continue to serve a useful existence. Next time it's released,
6084 * we will get notified again, if it still has 'notify_on_release' set.
6085 *
6086 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
6087 * means only wait until the task is successfully execve()'d. The
6088 * separate release agent task is forked by call_usermodehelper(),
6089 * then control in this thread returns here, without waiting for the
6090 * release agent task. We don't bother to wait because the caller of
6091 * this routine has no use for the exit status of the release agent
6092 * task, so no sense holding our caller up for that.
6093 */
cgroup_release_agent(struct work_struct * work)6094 static void cgroup_release_agent(struct work_struct *work)
6095 {
6096 struct cgroup *cgrp =
6097 container_of(work, struct cgroup, release_agent_work);
6098 char *pathbuf = NULL, *agentbuf = NULL;
6099 char *argv[3], *envp[3];
6100 int ret;
6101
6102 mutex_lock(&cgroup_mutex);
6103
6104 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
6105 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
6106 if (!pathbuf || !agentbuf)
6107 goto out;
6108
6109 spin_lock_irq(&css_set_lock);
6110 ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
6111 spin_unlock_irq(&css_set_lock);
6112 if (ret < 0 || ret >= PATH_MAX)
6113 goto out;
6114
6115 argv[0] = agentbuf;
6116 argv[1] = pathbuf;
6117 argv[2] = NULL;
6118
6119 /* minimal command environment */
6120 envp[0] = "HOME=/";
6121 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
6122 envp[2] = NULL;
6123
6124 mutex_unlock(&cgroup_mutex);
6125 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
6126 goto out_free;
6127 out:
6128 mutex_unlock(&cgroup_mutex);
6129 out_free:
6130 kfree(agentbuf);
6131 kfree(pathbuf);
6132 }
6133
cgroup_disable(char * str)6134 static int __init cgroup_disable(char *str)
6135 {
6136 struct cgroup_subsys *ss;
6137 char *token;
6138 int i;
6139
6140 while ((token = strsep(&str, ",")) != NULL) {
6141 if (!*token)
6142 continue;
6143
6144 for_each_subsys(ss, i) {
6145 if (strcmp(token, ss->name) &&
6146 strcmp(token, ss->legacy_name))
6147 continue;
6148 cgroup_disable_mask |= 1 << i;
6149 }
6150 }
6151 return 1;
6152 }
6153 __setup("cgroup_disable=", cgroup_disable);
6154
cgroup_no_v1(char * str)6155 static int __init cgroup_no_v1(char *str)
6156 {
6157 struct cgroup_subsys *ss;
6158 char *token;
6159 int i;
6160
6161 while ((token = strsep(&str, ",")) != NULL) {
6162 if (!*token)
6163 continue;
6164
6165 if (!strcmp(token, "all")) {
6166 cgroup_no_v1_mask = U16_MAX;
6167 break;
6168 }
6169
6170 for_each_subsys(ss, i) {
6171 if (strcmp(token, ss->name) &&
6172 strcmp(token, ss->legacy_name))
6173 continue;
6174
6175 cgroup_no_v1_mask |= 1 << i;
6176 }
6177 }
6178 return 1;
6179 }
6180 __setup("cgroup_no_v1=", cgroup_no_v1);
6181
6182 /**
6183 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6184 * @dentry: directory dentry of interest
6185 * @ss: subsystem of interest
6186 *
6187 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6188 * to get the corresponding css and return it. If such css doesn't exist
6189 * or can't be pinned, an ERR_PTR value is returned.
6190 */
css_tryget_online_from_dir(struct dentry * dentry,struct cgroup_subsys * ss)6191 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6192 struct cgroup_subsys *ss)
6193 {
6194 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6195 struct file_system_type *s_type = dentry->d_sb->s_type;
6196 struct cgroup_subsys_state *css = NULL;
6197 struct cgroup *cgrp;
6198
6199 /* is @dentry a cgroup dir? */
6200 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6201 !kn || kernfs_type(kn) != KERNFS_DIR)
6202 return ERR_PTR(-EBADF);
6203
6204 rcu_read_lock();
6205
6206 /*
6207 * This path doesn't originate from kernfs and @kn could already
6208 * have been or be removed at any point. @kn->priv is RCU
6209 * protected for this access. See css_release_work_fn() for details.
6210 */
6211 cgrp = rcu_dereference(kn->priv);
6212 if (cgrp)
6213 css = cgroup_css(cgrp, ss);
6214
6215 if (!css || !css_tryget_online(css))
6216 css = ERR_PTR(-ENOENT);
6217
6218 rcu_read_unlock();
6219 return css;
6220 }
6221
6222 /**
6223 * css_from_id - lookup css by id
6224 * @id: the cgroup id
6225 * @ss: cgroup subsys to be looked into
6226 *
6227 * Returns the css if there's valid one with @id, otherwise returns NULL.
6228 * Should be called under rcu_read_lock().
6229 */
css_from_id(int id,struct cgroup_subsys * ss)6230 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6231 {
6232 WARN_ON_ONCE(!rcu_read_lock_held());
6233 return idr_find(&ss->css_idr, id);
6234 }
6235
6236 /**
6237 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6238 * @path: path on the default hierarchy
6239 *
6240 * Find the cgroup at @path on the default hierarchy, increment its
6241 * reference count and return it. Returns pointer to the found cgroup on
6242 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6243 * if @path points to a non-directory.
6244 */
cgroup_get_from_path(const char * path)6245 struct cgroup *cgroup_get_from_path(const char *path)
6246 {
6247 struct kernfs_node *kn;
6248 struct cgroup *cgrp;
6249
6250 mutex_lock(&cgroup_mutex);
6251
6252 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6253 if (kn) {
6254 if (kernfs_type(kn) == KERNFS_DIR) {
6255 cgrp = kn->priv;
6256 cgroup_get(cgrp);
6257 } else {
6258 cgrp = ERR_PTR(-ENOTDIR);
6259 }
6260 kernfs_put(kn);
6261 } else {
6262 cgrp = ERR_PTR(-ENOENT);
6263 }
6264
6265 mutex_unlock(&cgroup_mutex);
6266 return cgrp;
6267 }
6268 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6269
6270 /**
6271 * cgroup_get_from_fd - get a cgroup pointer from a fd
6272 * @fd: fd obtained by open(cgroup2_dir)
6273 *
6274 * Find the cgroup from a fd which should be obtained
6275 * by opening a cgroup directory. Returns a pointer to the
6276 * cgroup on success. ERR_PTR is returned if the cgroup
6277 * cannot be found.
6278 */
cgroup_get_from_fd(int fd)6279 struct cgroup *cgroup_get_from_fd(int fd)
6280 {
6281 struct cgroup_subsys_state *css;
6282 struct cgroup *cgrp;
6283 struct file *f;
6284
6285 f = fget_raw(fd);
6286 if (!f)
6287 return ERR_PTR(-EBADF);
6288
6289 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6290 fput(f);
6291 if (IS_ERR(css))
6292 return ERR_CAST(css);
6293
6294 cgrp = css->cgroup;
6295 if (!cgroup_on_dfl(cgrp)) {
6296 cgroup_put(cgrp);
6297 return ERR_PTR(-EBADF);
6298 }
6299
6300 return cgrp;
6301 }
6302 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6303
6304 /*
6305 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6306 * definition in cgroup-defs.h.
6307 */
6308 #ifdef CONFIG_SOCK_CGROUP_DATA
6309
6310 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6311
6312 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6313 static bool cgroup_sk_alloc_disabled __read_mostly;
6314
cgroup_sk_alloc_disable(void)6315 void cgroup_sk_alloc_disable(void)
6316 {
6317 if (cgroup_sk_alloc_disabled)
6318 return;
6319 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6320 cgroup_sk_alloc_disabled = true;
6321 }
6322
6323 #else
6324
6325 #define cgroup_sk_alloc_disabled false
6326
6327 #endif
6328
cgroup_sk_alloc(struct sock_cgroup_data * skcd)6329 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6330 {
6331 if (cgroup_sk_alloc_disabled)
6332 return;
6333
6334 /* Socket clone path */
6335 if (skcd->val) {
6336 cgroup_get(sock_cgroup_ptr(skcd));
6337 return;
6338 }
6339
6340 rcu_read_lock();
6341
6342 while (true) {
6343 struct css_set *cset;
6344
6345 cset = task_css_set(current);
6346 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6347 skcd->val = (unsigned long)cset->dfl_cgrp;
6348 break;
6349 }
6350 cpu_relax();
6351 }
6352
6353 rcu_read_unlock();
6354 }
6355
cgroup_sk_free(struct sock_cgroup_data * skcd)6356 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6357 {
6358 cgroup_put(sock_cgroup_ptr(skcd));
6359 }
6360
6361 #endif /* CONFIG_SOCK_CGROUP_DATA */
6362
6363 /* cgroup namespaces */
6364
inc_cgroup_namespaces(struct user_namespace * ns)6365 static struct ucounts *inc_cgroup_namespaces(struct user_namespace *ns)
6366 {
6367 return inc_ucount(ns, current_euid(), UCOUNT_CGROUP_NAMESPACES);
6368 }
6369
dec_cgroup_namespaces(struct ucounts * ucounts)6370 static void dec_cgroup_namespaces(struct ucounts *ucounts)
6371 {
6372 dec_ucount(ucounts, UCOUNT_CGROUP_NAMESPACES);
6373 }
6374
alloc_cgroup_ns(void)6375 static struct cgroup_namespace *alloc_cgroup_ns(void)
6376 {
6377 struct cgroup_namespace *new_ns;
6378 int ret;
6379
6380 new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
6381 if (!new_ns)
6382 return ERR_PTR(-ENOMEM);
6383 ret = ns_alloc_inum(&new_ns->ns);
6384 if (ret) {
6385 kfree(new_ns);
6386 return ERR_PTR(ret);
6387 }
6388 atomic_set(&new_ns->count, 1);
6389 new_ns->ns.ops = &cgroupns_operations;
6390 return new_ns;
6391 }
6392
free_cgroup_ns(struct cgroup_namespace * ns)6393 void free_cgroup_ns(struct cgroup_namespace *ns)
6394 {
6395 put_css_set(ns->root_cset);
6396 dec_cgroup_namespaces(ns->ucounts);
6397 put_user_ns(ns->user_ns);
6398 ns_free_inum(&ns->ns);
6399 kfree(ns);
6400 }
6401 EXPORT_SYMBOL(free_cgroup_ns);
6402
copy_cgroup_ns(unsigned long flags,struct user_namespace * user_ns,struct cgroup_namespace * old_ns)6403 struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
6404 struct user_namespace *user_ns,
6405 struct cgroup_namespace *old_ns)
6406 {
6407 struct cgroup_namespace *new_ns;
6408 struct ucounts *ucounts;
6409 struct css_set *cset;
6410
6411 BUG_ON(!old_ns);
6412
6413 if (!(flags & CLONE_NEWCGROUP)) {
6414 get_cgroup_ns(old_ns);
6415 return old_ns;
6416 }
6417
6418 /* Allow only sysadmin to create cgroup namespace. */
6419 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
6420 return ERR_PTR(-EPERM);
6421
6422 ucounts = inc_cgroup_namespaces(user_ns);
6423 if (!ucounts)
6424 return ERR_PTR(-ENOSPC);
6425
6426 /* It is not safe to take cgroup_mutex here */
6427 spin_lock_irq(&css_set_lock);
6428 cset = task_css_set(current);
6429 get_css_set(cset);
6430 spin_unlock_irq(&css_set_lock);
6431
6432 new_ns = alloc_cgroup_ns();
6433 if (IS_ERR(new_ns)) {
6434 put_css_set(cset);
6435 dec_cgroup_namespaces(ucounts);
6436 return new_ns;
6437 }
6438
6439 new_ns->user_ns = get_user_ns(user_ns);
6440 new_ns->ucounts = ucounts;
6441 new_ns->root_cset = cset;
6442
6443 return new_ns;
6444 }
6445
to_cg_ns(struct ns_common * ns)6446 static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
6447 {
6448 return container_of(ns, struct cgroup_namespace, ns);
6449 }
6450
cgroupns_install(struct nsproxy * nsproxy,struct ns_common * ns)6451 static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
6452 {
6453 struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
6454
6455 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
6456 !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
6457 return -EPERM;
6458
6459 /* Don't need to do anything if we are attaching to our own cgroupns. */
6460 if (cgroup_ns == nsproxy->cgroup_ns)
6461 return 0;
6462
6463 get_cgroup_ns(cgroup_ns);
6464 put_cgroup_ns(nsproxy->cgroup_ns);
6465 nsproxy->cgroup_ns = cgroup_ns;
6466
6467 return 0;
6468 }
6469
cgroupns_get(struct task_struct * task)6470 static struct ns_common *cgroupns_get(struct task_struct *task)
6471 {
6472 struct cgroup_namespace *ns = NULL;
6473 struct nsproxy *nsproxy;
6474
6475 task_lock(task);
6476 nsproxy = task->nsproxy;
6477 if (nsproxy) {
6478 ns = nsproxy->cgroup_ns;
6479 get_cgroup_ns(ns);
6480 }
6481 task_unlock(task);
6482
6483 return ns ? &ns->ns : NULL;
6484 }
6485
cgroupns_put(struct ns_common * ns)6486 static void cgroupns_put(struct ns_common *ns)
6487 {
6488 put_cgroup_ns(to_cg_ns(ns));
6489 }
6490
cgroupns_owner(struct ns_common * ns)6491 static struct user_namespace *cgroupns_owner(struct ns_common *ns)
6492 {
6493 return to_cg_ns(ns)->user_ns;
6494 }
6495
6496 const struct proc_ns_operations cgroupns_operations = {
6497 .name = "cgroup",
6498 .type = CLONE_NEWCGROUP,
6499 .get = cgroupns_get,
6500 .put = cgroupns_put,
6501 .install = cgroupns_install,
6502 .owner = cgroupns_owner,
6503 };
6504
cgroup_namespaces_init(void)6505 static __init int cgroup_namespaces_init(void)
6506 {
6507 return 0;
6508 }
6509 subsys_initcall(cgroup_namespaces_init);
6510
6511 #ifdef CONFIG_CGROUP_BPF
cgroup_bpf_update(struct cgroup * cgrp,struct bpf_prog * prog,enum bpf_attach_type type,bool overridable)6512 int cgroup_bpf_update(struct cgroup *cgrp, struct bpf_prog *prog,
6513 enum bpf_attach_type type, bool overridable)
6514 {
6515 struct cgroup *parent = cgroup_parent(cgrp);
6516 int ret;
6517
6518 mutex_lock(&cgroup_mutex);
6519 ret = __cgroup_bpf_update(cgrp, parent, prog, type, overridable);
6520 mutex_unlock(&cgroup_mutex);
6521 return ret;
6522 }
6523 #endif /* CONFIG_CGROUP_BPF */
6524
6525 #ifdef CONFIG_CGROUP_DEBUG
6526 static struct cgroup_subsys_state *
debug_css_alloc(struct cgroup_subsys_state * parent_css)6527 debug_css_alloc(struct cgroup_subsys_state *parent_css)
6528 {
6529 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6530
6531 if (!css)
6532 return ERR_PTR(-ENOMEM);
6533
6534 return css;
6535 }
6536
debug_css_free(struct cgroup_subsys_state * css)6537 static void debug_css_free(struct cgroup_subsys_state *css)
6538 {
6539 kfree(css);
6540 }
6541
debug_taskcount_read(struct cgroup_subsys_state * css,struct cftype * cft)6542 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6543 struct cftype *cft)
6544 {
6545 return cgroup_task_count(css->cgroup);
6546 }
6547
current_css_set_read(struct cgroup_subsys_state * css,struct cftype * cft)6548 static u64 current_css_set_read(struct cgroup_subsys_state *css,
6549 struct cftype *cft)
6550 {
6551 return (u64)(unsigned long)current->cgroups;
6552 }
6553
current_css_set_refcount_read(struct cgroup_subsys_state * css,struct cftype * cft)6554 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
6555 struct cftype *cft)
6556 {
6557 u64 count;
6558
6559 rcu_read_lock();
6560 count = atomic_read(&task_css_set(current)->refcount);
6561 rcu_read_unlock();
6562 return count;
6563 }
6564
current_css_set_cg_links_read(struct seq_file * seq,void * v)6565 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
6566 {
6567 struct cgrp_cset_link *link;
6568 struct css_set *cset;
6569 char *name_buf;
6570
6571 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6572 if (!name_buf)
6573 return -ENOMEM;
6574
6575 spin_lock_irq(&css_set_lock);
6576 rcu_read_lock();
6577 cset = rcu_dereference(current->cgroups);
6578 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
6579 struct cgroup *c = link->cgrp;
6580
6581 cgroup_name(c, name_buf, NAME_MAX + 1);
6582 seq_printf(seq, "Root %d group %s\n",
6583 c->root->hierarchy_id, name_buf);
6584 }
6585 rcu_read_unlock();
6586 spin_unlock_irq(&css_set_lock);
6587 kfree(name_buf);
6588 return 0;
6589 }
6590
6591 #define MAX_TASKS_SHOWN_PER_CSS 25
cgroup_css_links_read(struct seq_file * seq,void * v)6592 static int cgroup_css_links_read(struct seq_file *seq, void *v)
6593 {
6594 struct cgroup_subsys_state *css = seq_css(seq);
6595 struct cgrp_cset_link *link;
6596
6597 spin_lock_irq(&css_set_lock);
6598 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
6599 struct css_set *cset = link->cset;
6600 struct task_struct *task;
6601 int count = 0;
6602
6603 seq_printf(seq, "css_set %p\n", cset);
6604
6605 list_for_each_entry(task, &cset->tasks, cg_list) {
6606 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6607 goto overflow;
6608 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6609 }
6610
6611 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6612 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6613 goto overflow;
6614 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6615 }
6616 continue;
6617 overflow:
6618 seq_puts(seq, " ...\n");
6619 }
6620 spin_unlock_irq(&css_set_lock);
6621 return 0;
6622 }
6623
releasable_read(struct cgroup_subsys_state * css,struct cftype * cft)6624 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
6625 {
6626 return (!cgroup_is_populated(css->cgroup) &&
6627 !css_has_online_children(&css->cgroup->self));
6628 }
6629
6630 static struct cftype debug_files[] = {
6631 {
6632 .name = "taskcount",
6633 .read_u64 = debug_taskcount_read,
6634 },
6635
6636 {
6637 .name = "current_css_set",
6638 .read_u64 = current_css_set_read,
6639 },
6640
6641 {
6642 .name = "current_css_set_refcount",
6643 .read_u64 = current_css_set_refcount_read,
6644 },
6645
6646 {
6647 .name = "current_css_set_cg_links",
6648 .seq_show = current_css_set_cg_links_read,
6649 },
6650
6651 {
6652 .name = "cgroup_css_links",
6653 .seq_show = cgroup_css_links_read,
6654 },
6655
6656 {
6657 .name = "releasable",
6658 .read_u64 = releasable_read,
6659 },
6660
6661 { } /* terminate */
6662 };
6663
6664 struct cgroup_subsys debug_cgrp_subsys = {
6665 .css_alloc = debug_css_alloc,
6666 .css_free = debug_css_free,
6667 .legacy_cftypes = debug_files,
6668 };
6669 #endif /* CONFIG_CGROUP_DEBUG */
6670