1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 enum wb_reason reason; /* why was writeback initiated? */
57
58 struct list_head list; /* pending work list */
59 struct wb_completion *done; /* set if the caller waits */
60 };
61
62 /*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
75 /*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
wb_inode(struct list_head * head)87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
wb_io_lists_populated(struct bdi_writeback * wb)102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
111 return true;
112 }
113 }
114
wb_io_lists_depopulated(struct bdi_writeback * wb)115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 clear_bit(WB_has_dirty_io, &wb->state);
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
122 }
123 }
124
125 /**
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)135 static bool inode_io_list_move_locked(struct inode *inode,
136 struct bdi_writeback *wb,
137 struct list_head *head)
138 {
139 assert_spin_locked(&wb->list_lock);
140
141 list_move(&inode->i_io_list, head);
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149 }
150
151 /**
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
inode_io_list_del_locked(struct inode * inode,struct bdi_writeback * wb)159 static void inode_io_list_del_locked(struct inode *inode,
160 struct bdi_writeback *wb)
161 {
162 assert_spin_locked(&wb->list_lock);
163
164 list_del_init(&inode->i_io_list);
165 wb_io_lists_depopulated(wb);
166 }
167
wb_wakeup(struct bdi_writeback * wb)168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
174 }
175
finish_writeback_work(struct bdi_writeback * wb,struct wb_writeback_work * work)176 static void finish_writeback_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
178 {
179 struct wb_completion *done = work->done;
180
181 if (work->auto_free)
182 kfree(work);
183 if (done && atomic_dec_and_test(&done->cnt))
184 wake_up_all(&wb->bdi->wb_waitq);
185 }
186
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)187 static void wb_queue_work(struct bdi_writeback *wb,
188 struct wb_writeback_work *work)
189 {
190 trace_writeback_queue(wb, work);
191
192 if (work->done)
193 atomic_inc(&work->done->cnt);
194
195 spin_lock_bh(&wb->work_lock);
196
197 if (test_bit(WB_registered, &wb->state)) {
198 list_add_tail(&work->list, &wb->work_list);
199 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 } else
201 finish_writeback_work(wb, work);
202
203 spin_unlock_bh(&wb->work_lock);
204 }
205
206 /**
207 * wb_wait_for_completion - wait for completion of bdi_writeback_works
208 * @bdi: bdi work items were issued to
209 * @done: target wb_completion
210 *
211 * Wait for one or more work items issued to @bdi with their ->done field
212 * set to @done, which should have been defined with
213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
214 * work items are completed. Work items which are waited upon aren't freed
215 * automatically on completion.
216 */
wb_wait_for_completion(struct backing_dev_info * bdi,struct wb_completion * done)217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218 struct wb_completion *done)
219 {
220 atomic_dec(&done->cnt); /* put down the initial count */
221 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223
224 #ifdef CONFIG_CGROUP_WRITEBACK
225
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
231
232 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
236 /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 /* one round can affect upto 5 slots */
239
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242
__inode_attach_wb(struct inode * inode,struct page * page)243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245 struct backing_dev_info *bdi = inode_to_bdi(inode);
246 struct bdi_writeback *wb = NULL;
247
248 if (inode_cgwb_enabled(inode)) {
249 struct cgroup_subsys_state *memcg_css;
250
251 if (page) {
252 memcg_css = mem_cgroup_css_from_page(page);
253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 } else {
255 /* must pin memcg_css, see wb_get_create() */
256 memcg_css = task_get_css(current, memory_cgrp_id);
257 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258 css_put(memcg_css);
259 }
260 }
261
262 if (!wb)
263 wb = &bdi->wb;
264
265 /*
266 * There may be multiple instances of this function racing to
267 * update the same inode. Use cmpxchg() to tell the winner.
268 */
269 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270 wb_put(wb);
271 }
272
273 /**
274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275 * @inode: inode of interest with i_lock held
276 *
277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
278 * held on entry and is released on return. The returned wb is guaranteed
279 * to stay @inode's associated wb until its list_lock is released.
280 */
281 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283 __releases(&inode->i_lock)
284 __acquires(&wb->list_lock)
285 {
286 while (true) {
287 struct bdi_writeback *wb = inode_to_wb(inode);
288
289 /*
290 * inode_to_wb() association is protected by both
291 * @inode->i_lock and @wb->list_lock but list_lock nests
292 * outside i_lock. Drop i_lock and verify that the
293 * association hasn't changed after acquiring list_lock.
294 */
295 wb_get(wb);
296 spin_unlock(&inode->i_lock);
297 spin_lock(&wb->list_lock);
298
299 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300 if (likely(wb == inode->i_wb)) {
301 wb_put(wb); /* @inode already has ref */
302 return wb;
303 }
304
305 spin_unlock(&wb->list_lock);
306 wb_put(wb);
307 cpu_relax();
308 spin_lock(&inode->i_lock);
309 }
310 }
311
312 /**
313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314 * @inode: inode of interest
315 *
316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317 * on entry.
318 */
inode_to_wb_and_lock_list(struct inode * inode)319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320 __acquires(&wb->list_lock)
321 {
322 spin_lock(&inode->i_lock);
323 return locked_inode_to_wb_and_lock_list(inode);
324 }
325
326 struct inode_switch_wbs_context {
327 struct inode *inode;
328 struct bdi_writeback *new_wb;
329
330 struct rcu_head rcu_head;
331 struct work_struct work;
332 };
333
inode_switch_wbs_work_fn(struct work_struct * work)334 static void inode_switch_wbs_work_fn(struct work_struct *work)
335 {
336 struct inode_switch_wbs_context *isw =
337 container_of(work, struct inode_switch_wbs_context, work);
338 struct inode *inode = isw->inode;
339 struct address_space *mapping = inode->i_mapping;
340 struct bdi_writeback *old_wb = inode->i_wb;
341 struct bdi_writeback *new_wb = isw->new_wb;
342 struct radix_tree_iter iter;
343 bool switched = false;
344 void **slot;
345
346 /*
347 * By the time control reaches here, RCU grace period has passed
348 * since I_WB_SWITCH assertion and all wb stat update transactions
349 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
350 * synchronizing against mapping->tree_lock.
351 *
352 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
353 * gives us exclusion against all wb related operations on @inode
354 * including IO list manipulations and stat updates.
355 */
356 if (old_wb < new_wb) {
357 spin_lock(&old_wb->list_lock);
358 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
359 } else {
360 spin_lock(&new_wb->list_lock);
361 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
362 }
363 spin_lock(&inode->i_lock);
364 spin_lock_irq(&mapping->tree_lock);
365
366 /*
367 * Once I_FREEING is visible under i_lock, the eviction path owns
368 * the inode and we shouldn't modify ->i_io_list.
369 */
370 if (unlikely(inode->i_state & I_FREEING))
371 goto skip_switch;
372
373 /*
374 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
375 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
376 * pages actually under underwriteback.
377 */
378 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
379 PAGECACHE_TAG_DIRTY) {
380 struct page *page = radix_tree_deref_slot_protected(slot,
381 &mapping->tree_lock);
382 if (likely(page) && PageDirty(page)) {
383 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
384 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
385 }
386 }
387
388 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
389 PAGECACHE_TAG_WRITEBACK) {
390 struct page *page = radix_tree_deref_slot_protected(slot,
391 &mapping->tree_lock);
392 if (likely(page)) {
393 WARN_ON_ONCE(!PageWriteback(page));
394 __dec_wb_stat(old_wb, WB_WRITEBACK);
395 __inc_wb_stat(new_wb, WB_WRITEBACK);
396 }
397 }
398
399 wb_get(new_wb);
400
401 /*
402 * Transfer to @new_wb's IO list if necessary. The specific list
403 * @inode was on is ignored and the inode is put on ->b_dirty which
404 * is always correct including from ->b_dirty_time. The transfer
405 * preserves @inode->dirtied_when ordering.
406 */
407 if (!list_empty(&inode->i_io_list)) {
408 struct inode *pos;
409
410 inode_io_list_del_locked(inode, old_wb);
411 inode->i_wb = new_wb;
412 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
413 if (time_after_eq(inode->dirtied_when,
414 pos->dirtied_when))
415 break;
416 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
417 } else {
418 inode->i_wb = new_wb;
419 }
420
421 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
422 inode->i_wb_frn_winner = 0;
423 inode->i_wb_frn_avg_time = 0;
424 inode->i_wb_frn_history = 0;
425 switched = true;
426 skip_switch:
427 /*
428 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
429 * ensures that the new wb is visible if they see !I_WB_SWITCH.
430 */
431 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
432
433 spin_unlock_irq(&mapping->tree_lock);
434 spin_unlock(&inode->i_lock);
435 spin_unlock(&new_wb->list_lock);
436 spin_unlock(&old_wb->list_lock);
437
438 if (switched) {
439 wb_wakeup(new_wb);
440 wb_put(old_wb);
441 }
442 wb_put(new_wb);
443
444 iput(inode);
445 kfree(isw);
446
447 atomic_dec(&isw_nr_in_flight);
448 }
449
inode_switch_wbs_rcu_fn(struct rcu_head * rcu_head)450 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
451 {
452 struct inode_switch_wbs_context *isw = container_of(rcu_head,
453 struct inode_switch_wbs_context, rcu_head);
454
455 /* needs to grab bh-unsafe locks, bounce to work item */
456 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
457 queue_work(isw_wq, &isw->work);
458 }
459
460 /**
461 * inode_switch_wbs - change the wb association of an inode
462 * @inode: target inode
463 * @new_wb_id: ID of the new wb
464 *
465 * Switch @inode's wb association to the wb identified by @new_wb_id. The
466 * switching is performed asynchronously and may fail silently.
467 */
inode_switch_wbs(struct inode * inode,int new_wb_id)468 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
469 {
470 struct backing_dev_info *bdi = inode_to_bdi(inode);
471 struct cgroup_subsys_state *memcg_css;
472 struct inode_switch_wbs_context *isw;
473
474 /* noop if seems to be already in progress */
475 if (inode->i_state & I_WB_SWITCH)
476 return;
477
478 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
479 if (!isw)
480 return;
481
482 /* find and pin the new wb */
483 rcu_read_lock();
484 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
485 if (memcg_css)
486 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
487 rcu_read_unlock();
488 if (!isw->new_wb)
489 goto out_free;
490
491 /* while holding I_WB_SWITCH, no one else can update the association */
492 spin_lock(&inode->i_lock);
493 if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
494 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
495 inode_to_wb(inode) == isw->new_wb) {
496 spin_unlock(&inode->i_lock);
497 goto out_free;
498 }
499 inode->i_state |= I_WB_SWITCH;
500 __iget(inode);
501 spin_unlock(&inode->i_lock);
502
503 isw->inode = inode;
504
505 atomic_inc(&isw_nr_in_flight);
506
507 /*
508 * In addition to synchronizing among switchers, I_WB_SWITCH tells
509 * the RCU protected stat update paths to grab the mapping's
510 * tree_lock so that stat transfer can synchronize against them.
511 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
512 */
513 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
514 return;
515
516 out_free:
517 if (isw->new_wb)
518 wb_put(isw->new_wb);
519 kfree(isw);
520 }
521
522 /**
523 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
524 * @wbc: writeback_control of interest
525 * @inode: target inode
526 *
527 * @inode is locked and about to be written back under the control of @wbc.
528 * Record @inode's writeback context into @wbc and unlock the i_lock. On
529 * writeback completion, wbc_detach_inode() should be called. This is used
530 * to track the cgroup writeback context.
531 */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)532 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
533 struct inode *inode)
534 {
535 if (!inode_cgwb_enabled(inode)) {
536 spin_unlock(&inode->i_lock);
537 return;
538 }
539
540 wbc->wb = inode_to_wb(inode);
541 wbc->inode = inode;
542
543 wbc->wb_id = wbc->wb->memcg_css->id;
544 wbc->wb_lcand_id = inode->i_wb_frn_winner;
545 wbc->wb_tcand_id = 0;
546 wbc->wb_bytes = 0;
547 wbc->wb_lcand_bytes = 0;
548 wbc->wb_tcand_bytes = 0;
549
550 wb_get(wbc->wb);
551 spin_unlock(&inode->i_lock);
552
553 /*
554 * A dying wb indicates that the memcg-blkcg mapping has changed
555 * and a new wb is already serving the memcg. Switch immediately.
556 */
557 if (unlikely(wb_dying(wbc->wb)))
558 inode_switch_wbs(inode, wbc->wb_id);
559 }
560
561 /**
562 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
563 * @wbc: writeback_control of the just finished writeback
564 *
565 * To be called after a writeback attempt of an inode finishes and undoes
566 * wbc_attach_and_unlock_inode(). Can be called under any context.
567 *
568 * As concurrent write sharing of an inode is expected to be very rare and
569 * memcg only tracks page ownership on first-use basis severely confining
570 * the usefulness of such sharing, cgroup writeback tracks ownership
571 * per-inode. While the support for concurrent write sharing of an inode
572 * is deemed unnecessary, an inode being written to by different cgroups at
573 * different points in time is a lot more common, and, more importantly,
574 * charging only by first-use can too readily lead to grossly incorrect
575 * behaviors (single foreign page can lead to gigabytes of writeback to be
576 * incorrectly attributed).
577 *
578 * To resolve this issue, cgroup writeback detects the majority dirtier of
579 * an inode and transfers the ownership to it. To avoid unnnecessary
580 * oscillation, the detection mechanism keeps track of history and gives
581 * out the switch verdict only if the foreign usage pattern is stable over
582 * a certain amount of time and/or writeback attempts.
583 *
584 * On each writeback attempt, @wbc tries to detect the majority writer
585 * using Boyer-Moore majority vote algorithm. In addition to the byte
586 * count from the majority voting, it also counts the bytes written for the
587 * current wb and the last round's winner wb (max of last round's current
588 * wb, the winner from two rounds ago, and the last round's majority
589 * candidate). Keeping track of the historical winner helps the algorithm
590 * to semi-reliably detect the most active writer even when it's not the
591 * absolute majority.
592 *
593 * Once the winner of the round is determined, whether the winner is
594 * foreign or not and how much IO time the round consumed is recorded in
595 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
596 * over a certain threshold, the switch verdict is given.
597 */
wbc_detach_inode(struct writeback_control * wbc)598 void wbc_detach_inode(struct writeback_control *wbc)
599 {
600 struct bdi_writeback *wb = wbc->wb;
601 struct inode *inode = wbc->inode;
602 unsigned long avg_time, max_bytes, max_time;
603 u16 history;
604 int max_id;
605
606 if (!wb)
607 return;
608
609 history = inode->i_wb_frn_history;
610 avg_time = inode->i_wb_frn_avg_time;
611
612 /* pick the winner of this round */
613 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
614 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
615 max_id = wbc->wb_id;
616 max_bytes = wbc->wb_bytes;
617 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
618 max_id = wbc->wb_lcand_id;
619 max_bytes = wbc->wb_lcand_bytes;
620 } else {
621 max_id = wbc->wb_tcand_id;
622 max_bytes = wbc->wb_tcand_bytes;
623 }
624
625 /*
626 * Calculate the amount of IO time the winner consumed and fold it
627 * into the running average kept per inode. If the consumed IO
628 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
629 * deciding whether to switch or not. This is to prevent one-off
630 * small dirtiers from skewing the verdict.
631 */
632 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
633 wb->avg_write_bandwidth);
634 if (avg_time)
635 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
636 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
637 else
638 avg_time = max_time; /* immediate catch up on first run */
639
640 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
641 int slots;
642
643 /*
644 * The switch verdict is reached if foreign wb's consume
645 * more than a certain proportion of IO time in a
646 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
647 * history mask where each bit represents one sixteenth of
648 * the period. Determine the number of slots to shift into
649 * history from @max_time.
650 */
651 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
652 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
653 history <<= slots;
654 if (wbc->wb_id != max_id)
655 history |= (1U << slots) - 1;
656
657 /*
658 * Switch if the current wb isn't the consistent winner.
659 * If there are multiple closely competing dirtiers, the
660 * inode may switch across them repeatedly over time, which
661 * is okay. The main goal is avoiding keeping an inode on
662 * the wrong wb for an extended period of time.
663 */
664 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
665 inode_switch_wbs(inode, max_id);
666 }
667
668 /*
669 * Multiple instances of this function may race to update the
670 * following fields but we don't mind occassional inaccuracies.
671 */
672 inode->i_wb_frn_winner = max_id;
673 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
674 inode->i_wb_frn_history = history;
675
676 wb_put(wbc->wb);
677 wbc->wb = NULL;
678 }
679
680 /**
681 * wbc_account_io - account IO issued during writeback
682 * @wbc: writeback_control of the writeback in progress
683 * @page: page being written out
684 * @bytes: number of bytes being written out
685 *
686 * @bytes from @page are about to written out during the writeback
687 * controlled by @wbc. Keep the book for foreign inode detection. See
688 * wbc_detach_inode().
689 */
wbc_account_io(struct writeback_control * wbc,struct page * page,size_t bytes)690 void wbc_account_io(struct writeback_control *wbc, struct page *page,
691 size_t bytes)
692 {
693 int id;
694
695 /*
696 * pageout() path doesn't attach @wbc to the inode being written
697 * out. This is intentional as we don't want the function to block
698 * behind a slow cgroup. Ultimately, we want pageout() to kick off
699 * regular writeback instead of writing things out itself.
700 */
701 if (!wbc->wb)
702 return;
703
704 id = mem_cgroup_css_from_page(page)->id;
705
706 if (id == wbc->wb_id) {
707 wbc->wb_bytes += bytes;
708 return;
709 }
710
711 if (id == wbc->wb_lcand_id)
712 wbc->wb_lcand_bytes += bytes;
713
714 /* Boyer-Moore majority vote algorithm */
715 if (!wbc->wb_tcand_bytes)
716 wbc->wb_tcand_id = id;
717 if (id == wbc->wb_tcand_id)
718 wbc->wb_tcand_bytes += bytes;
719 else
720 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
721 }
722 EXPORT_SYMBOL_GPL(wbc_account_io);
723
724 /**
725 * inode_congested - test whether an inode is congested
726 * @inode: inode to test for congestion (may be NULL)
727 * @cong_bits: mask of WB_[a]sync_congested bits to test
728 *
729 * Tests whether @inode is congested. @cong_bits is the mask of congestion
730 * bits to test and the return value is the mask of set bits.
731 *
732 * If cgroup writeback is enabled for @inode, the congestion state is
733 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
734 * associated with @inode is congested; otherwise, the root wb's congestion
735 * state is used.
736 *
737 * @inode is allowed to be NULL as this function is often called on
738 * mapping->host which is NULL for the swapper space.
739 */
inode_congested(struct inode * inode,int cong_bits)740 int inode_congested(struct inode *inode, int cong_bits)
741 {
742 /*
743 * Once set, ->i_wb never becomes NULL while the inode is alive.
744 * Start transaction iff ->i_wb is visible.
745 */
746 if (inode && inode_to_wb_is_valid(inode)) {
747 struct bdi_writeback *wb;
748 struct wb_lock_cookie lock_cookie = {};
749 bool congested;
750
751 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
752 congested = wb_congested(wb, cong_bits);
753 unlocked_inode_to_wb_end(inode, &lock_cookie);
754 return congested;
755 }
756
757 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
758 }
759 EXPORT_SYMBOL_GPL(inode_congested);
760
761 /**
762 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
763 * @wb: target bdi_writeback to split @nr_pages to
764 * @nr_pages: number of pages to write for the whole bdi
765 *
766 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
767 * relation to the total write bandwidth of all wb's w/ dirty inodes on
768 * @wb->bdi.
769 */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)770 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
771 {
772 unsigned long this_bw = wb->avg_write_bandwidth;
773 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
774
775 if (nr_pages == LONG_MAX)
776 return LONG_MAX;
777
778 /*
779 * This may be called on clean wb's and proportional distribution
780 * may not make sense, just use the original @nr_pages in those
781 * cases. In general, we wanna err on the side of writing more.
782 */
783 if (!tot_bw || this_bw >= tot_bw)
784 return nr_pages;
785 else
786 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
787 }
788
789 /**
790 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
791 * @bdi: target backing_dev_info
792 * @base_work: wb_writeback_work to issue
793 * @skip_if_busy: skip wb's which already have writeback in progress
794 *
795 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
796 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
797 * distributed to the busy wbs according to each wb's proportion in the
798 * total active write bandwidth of @bdi.
799 */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)800 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
801 struct wb_writeback_work *base_work,
802 bool skip_if_busy)
803 {
804 struct bdi_writeback *last_wb = NULL;
805 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
806 struct bdi_writeback, bdi_node);
807
808 might_sleep();
809 restart:
810 rcu_read_lock();
811 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
812 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
813 struct wb_writeback_work fallback_work;
814 struct wb_writeback_work *work;
815 long nr_pages;
816
817 if (last_wb) {
818 wb_put(last_wb);
819 last_wb = NULL;
820 }
821
822 /* SYNC_ALL writes out I_DIRTY_TIME too */
823 if (!wb_has_dirty_io(wb) &&
824 (base_work->sync_mode == WB_SYNC_NONE ||
825 list_empty(&wb->b_dirty_time)))
826 continue;
827 if (skip_if_busy && writeback_in_progress(wb))
828 continue;
829
830 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
831
832 work = kmalloc(sizeof(*work), GFP_ATOMIC);
833 if (work) {
834 *work = *base_work;
835 work->nr_pages = nr_pages;
836 work->auto_free = 1;
837 wb_queue_work(wb, work);
838 continue;
839 }
840
841 /* alloc failed, execute synchronously using on-stack fallback */
842 work = &fallback_work;
843 *work = *base_work;
844 work->nr_pages = nr_pages;
845 work->auto_free = 0;
846 work->done = &fallback_work_done;
847
848 wb_queue_work(wb, work);
849
850 /*
851 * Pin @wb so that it stays on @bdi->wb_list. This allows
852 * continuing iteration from @wb after dropping and
853 * regrabbing rcu read lock.
854 */
855 wb_get(wb);
856 last_wb = wb;
857
858 rcu_read_unlock();
859 wb_wait_for_completion(bdi, &fallback_work_done);
860 goto restart;
861 }
862 rcu_read_unlock();
863
864 if (last_wb)
865 wb_put(last_wb);
866 }
867
868 /**
869 * cgroup_writeback_umount - flush inode wb switches for umount
870 *
871 * This function is called when a super_block is about to be destroyed and
872 * flushes in-flight inode wb switches. An inode wb switch goes through
873 * RCU and then workqueue, so the two need to be flushed in order to ensure
874 * that all previously scheduled switches are finished. As wb switches are
875 * rare occurrences and synchronize_rcu() can take a while, perform
876 * flushing iff wb switches are in flight.
877 */
cgroup_writeback_umount(void)878 void cgroup_writeback_umount(void)
879 {
880 if (atomic_read(&isw_nr_in_flight)) {
881 synchronize_rcu();
882 flush_workqueue(isw_wq);
883 }
884 }
885
cgroup_writeback_init(void)886 static int __init cgroup_writeback_init(void)
887 {
888 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
889 if (!isw_wq)
890 return -ENOMEM;
891 return 0;
892 }
893 fs_initcall(cgroup_writeback_init);
894
895 #else /* CONFIG_CGROUP_WRITEBACK */
896
897 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)898 locked_inode_to_wb_and_lock_list(struct inode *inode)
899 __releases(&inode->i_lock)
900 __acquires(&wb->list_lock)
901 {
902 struct bdi_writeback *wb = inode_to_wb(inode);
903
904 spin_unlock(&inode->i_lock);
905 spin_lock(&wb->list_lock);
906 return wb;
907 }
908
inode_to_wb_and_lock_list(struct inode * inode)909 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
910 __acquires(&wb->list_lock)
911 {
912 struct bdi_writeback *wb = inode_to_wb(inode);
913
914 spin_lock(&wb->list_lock);
915 return wb;
916 }
917
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)918 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
919 {
920 return nr_pages;
921 }
922
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)923 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
924 struct wb_writeback_work *base_work,
925 bool skip_if_busy)
926 {
927 might_sleep();
928
929 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
930 base_work->auto_free = 0;
931 wb_queue_work(&bdi->wb, base_work);
932 }
933 }
934
935 #endif /* CONFIG_CGROUP_WRITEBACK */
936
wb_start_writeback(struct bdi_writeback * wb,long nr_pages,bool range_cyclic,enum wb_reason reason)937 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
938 bool range_cyclic, enum wb_reason reason)
939 {
940 struct wb_writeback_work *work;
941
942 if (!wb_has_dirty_io(wb))
943 return;
944
945 /*
946 * This is WB_SYNC_NONE writeback, so if allocation fails just
947 * wakeup the thread for old dirty data writeback
948 */
949 work = kzalloc(sizeof(*work),
950 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
951 if (!work) {
952 trace_writeback_nowork(wb);
953 wb_wakeup(wb);
954 return;
955 }
956
957 work->sync_mode = WB_SYNC_NONE;
958 work->nr_pages = nr_pages;
959 work->range_cyclic = range_cyclic;
960 work->reason = reason;
961 work->auto_free = 1;
962
963 wb_queue_work(wb, work);
964 }
965
966 /**
967 * wb_start_background_writeback - start background writeback
968 * @wb: bdi_writback to write from
969 *
970 * Description:
971 * This makes sure WB_SYNC_NONE background writeback happens. When
972 * this function returns, it is only guaranteed that for given wb
973 * some IO is happening if we are over background dirty threshold.
974 * Caller need not hold sb s_umount semaphore.
975 */
wb_start_background_writeback(struct bdi_writeback * wb)976 void wb_start_background_writeback(struct bdi_writeback *wb)
977 {
978 /*
979 * We just wake up the flusher thread. It will perform background
980 * writeback as soon as there is no other work to do.
981 */
982 trace_writeback_wake_background(wb);
983 wb_wakeup(wb);
984 }
985
986 /*
987 * Remove the inode from the writeback list it is on.
988 */
inode_io_list_del(struct inode * inode)989 void inode_io_list_del(struct inode *inode)
990 {
991 struct bdi_writeback *wb;
992
993 wb = inode_to_wb_and_lock_list(inode);
994 inode_io_list_del_locked(inode, wb);
995 spin_unlock(&wb->list_lock);
996 }
997
998 /*
999 * mark an inode as under writeback on the sb
1000 */
sb_mark_inode_writeback(struct inode * inode)1001 void sb_mark_inode_writeback(struct inode *inode)
1002 {
1003 struct super_block *sb = inode->i_sb;
1004 unsigned long flags;
1005
1006 if (list_empty(&inode->i_wb_list)) {
1007 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1008 if (list_empty(&inode->i_wb_list)) {
1009 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1010 trace_sb_mark_inode_writeback(inode);
1011 }
1012 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1013 }
1014 }
1015
1016 /*
1017 * clear an inode as under writeback on the sb
1018 */
sb_clear_inode_writeback(struct inode * inode)1019 void sb_clear_inode_writeback(struct inode *inode)
1020 {
1021 struct super_block *sb = inode->i_sb;
1022 unsigned long flags;
1023
1024 if (!list_empty(&inode->i_wb_list)) {
1025 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1026 if (!list_empty(&inode->i_wb_list)) {
1027 list_del_init(&inode->i_wb_list);
1028 trace_sb_clear_inode_writeback(inode);
1029 }
1030 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1031 }
1032 }
1033
1034 /*
1035 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1036 * furthest end of its superblock's dirty-inode list.
1037 *
1038 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1039 * already the most-recently-dirtied inode on the b_dirty list. If that is
1040 * the case then the inode must have been redirtied while it was being written
1041 * out and we don't reset its dirtied_when.
1042 */
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1043 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1044 {
1045 if (!list_empty(&wb->b_dirty)) {
1046 struct inode *tail;
1047
1048 tail = wb_inode(wb->b_dirty.next);
1049 if (time_before(inode->dirtied_when, tail->dirtied_when))
1050 inode->dirtied_when = jiffies;
1051 }
1052 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1053 }
1054
1055 /*
1056 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1057 */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1058 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1059 {
1060 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1061 }
1062
inode_sync_complete(struct inode * inode)1063 static void inode_sync_complete(struct inode *inode)
1064 {
1065 inode->i_state &= ~I_SYNC;
1066 /* If inode is clean an unused, put it into LRU now... */
1067 inode_add_lru(inode);
1068 /* Waiters must see I_SYNC cleared before being woken up */
1069 smp_mb();
1070 wake_up_bit(&inode->i_state, __I_SYNC);
1071 }
1072
inode_dirtied_after(struct inode * inode,unsigned long t)1073 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1074 {
1075 bool ret = time_after(inode->dirtied_when, t);
1076 #ifndef CONFIG_64BIT
1077 /*
1078 * For inodes being constantly redirtied, dirtied_when can get stuck.
1079 * It _appears_ to be in the future, but is actually in distant past.
1080 * This test is necessary to prevent such wrapped-around relative times
1081 * from permanently stopping the whole bdi writeback.
1082 */
1083 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1084 #endif
1085 return ret;
1086 }
1087
1088 #define EXPIRE_DIRTY_ATIME 0x0001
1089
1090 /*
1091 * Move expired (dirtied before work->older_than_this) dirty inodes from
1092 * @delaying_queue to @dispatch_queue.
1093 */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,int flags,struct wb_writeback_work * work)1094 static int move_expired_inodes(struct list_head *delaying_queue,
1095 struct list_head *dispatch_queue,
1096 int flags,
1097 struct wb_writeback_work *work)
1098 {
1099 unsigned long *older_than_this = NULL;
1100 unsigned long expire_time;
1101 LIST_HEAD(tmp);
1102 struct list_head *pos, *node;
1103 struct super_block *sb = NULL;
1104 struct inode *inode;
1105 int do_sb_sort = 0;
1106 int moved = 0;
1107
1108 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1109 older_than_this = work->older_than_this;
1110 else if (!work->for_sync) {
1111 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1112 older_than_this = &expire_time;
1113 }
1114 while (!list_empty(delaying_queue)) {
1115 inode = wb_inode(delaying_queue->prev);
1116 if (older_than_this &&
1117 inode_dirtied_after(inode, *older_than_this))
1118 break;
1119 list_move(&inode->i_io_list, &tmp);
1120 moved++;
1121 if (flags & EXPIRE_DIRTY_ATIME)
1122 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1123 if (sb_is_blkdev_sb(inode->i_sb))
1124 continue;
1125 if (sb && sb != inode->i_sb)
1126 do_sb_sort = 1;
1127 sb = inode->i_sb;
1128 }
1129
1130 /* just one sb in list, splice to dispatch_queue and we're done */
1131 if (!do_sb_sort) {
1132 list_splice(&tmp, dispatch_queue);
1133 goto out;
1134 }
1135
1136 /* Move inodes from one superblock together */
1137 while (!list_empty(&tmp)) {
1138 sb = wb_inode(tmp.prev)->i_sb;
1139 list_for_each_prev_safe(pos, node, &tmp) {
1140 inode = wb_inode(pos);
1141 if (inode->i_sb == sb)
1142 list_move(&inode->i_io_list, dispatch_queue);
1143 }
1144 }
1145 out:
1146 return moved;
1147 }
1148
1149 /*
1150 * Queue all expired dirty inodes for io, eldest first.
1151 * Before
1152 * newly dirtied b_dirty b_io b_more_io
1153 * =============> gf edc BA
1154 * After
1155 * newly dirtied b_dirty b_io b_more_io
1156 * =============> g fBAedc
1157 * |
1158 * +--> dequeue for IO
1159 */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work)1160 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1161 {
1162 int moved;
1163
1164 assert_spin_locked(&wb->list_lock);
1165 list_splice_init(&wb->b_more_io, &wb->b_io);
1166 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1167 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1168 EXPIRE_DIRTY_ATIME, work);
1169 if (moved)
1170 wb_io_lists_populated(wb);
1171 trace_writeback_queue_io(wb, work, moved);
1172 }
1173
write_inode(struct inode * inode,struct writeback_control * wbc)1174 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1175 {
1176 int ret;
1177
1178 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1179 trace_writeback_write_inode_start(inode, wbc);
1180 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1181 trace_writeback_write_inode(inode, wbc);
1182 return ret;
1183 }
1184 return 0;
1185 }
1186
1187 /*
1188 * Wait for writeback on an inode to complete. Called with i_lock held.
1189 * Caller must make sure inode cannot go away when we drop i_lock.
1190 */
__inode_wait_for_writeback(struct inode * inode)1191 static void __inode_wait_for_writeback(struct inode *inode)
1192 __releases(inode->i_lock)
1193 __acquires(inode->i_lock)
1194 {
1195 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1196 wait_queue_head_t *wqh;
1197
1198 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1199 while (inode->i_state & I_SYNC) {
1200 spin_unlock(&inode->i_lock);
1201 __wait_on_bit(wqh, &wq, bit_wait,
1202 TASK_UNINTERRUPTIBLE);
1203 spin_lock(&inode->i_lock);
1204 }
1205 }
1206
1207 /*
1208 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1209 */
inode_wait_for_writeback(struct inode * inode)1210 void inode_wait_for_writeback(struct inode *inode)
1211 {
1212 spin_lock(&inode->i_lock);
1213 __inode_wait_for_writeback(inode);
1214 spin_unlock(&inode->i_lock);
1215 }
1216
1217 /*
1218 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1219 * held and drops it. It is aimed for callers not holding any inode reference
1220 * so once i_lock is dropped, inode can go away.
1221 */
inode_sleep_on_writeback(struct inode * inode)1222 static void inode_sleep_on_writeback(struct inode *inode)
1223 __releases(inode->i_lock)
1224 {
1225 DEFINE_WAIT(wait);
1226 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1227 int sleep;
1228
1229 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1230 sleep = inode->i_state & I_SYNC;
1231 spin_unlock(&inode->i_lock);
1232 if (sleep)
1233 schedule();
1234 finish_wait(wqh, &wait);
1235 }
1236
1237 /*
1238 * Find proper writeback list for the inode depending on its current state and
1239 * possibly also change of its state while we were doing writeback. Here we
1240 * handle things such as livelock prevention or fairness of writeback among
1241 * inodes. This function can be called only by flusher thread - noone else
1242 * processes all inodes in writeback lists and requeueing inodes behind flusher
1243 * thread's back can have unexpected consequences.
1244 */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)1245 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1246 struct writeback_control *wbc)
1247 {
1248 if (inode->i_state & I_FREEING)
1249 return;
1250
1251 /*
1252 * Sync livelock prevention. Each inode is tagged and synced in one
1253 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1254 * the dirty time to prevent enqueue and sync it again.
1255 */
1256 if ((inode->i_state & I_DIRTY) &&
1257 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1258 inode->dirtied_when = jiffies;
1259
1260 if (wbc->pages_skipped) {
1261 /*
1262 * writeback is not making progress due to locked
1263 * buffers. Skip this inode for now.
1264 */
1265 redirty_tail(inode, wb);
1266 return;
1267 }
1268
1269 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1270 /*
1271 * We didn't write back all the pages. nfs_writepages()
1272 * sometimes bales out without doing anything.
1273 */
1274 if (wbc->nr_to_write <= 0) {
1275 /* Slice used up. Queue for next turn. */
1276 requeue_io(inode, wb);
1277 } else {
1278 /*
1279 * Writeback blocked by something other than
1280 * congestion. Delay the inode for some time to
1281 * avoid spinning on the CPU (100% iowait)
1282 * retrying writeback of the dirty page/inode
1283 * that cannot be performed immediately.
1284 */
1285 redirty_tail(inode, wb);
1286 }
1287 } else if (inode->i_state & I_DIRTY) {
1288 /*
1289 * Filesystems can dirty the inode during writeback operations,
1290 * such as delayed allocation during submission or metadata
1291 * updates after data IO completion.
1292 */
1293 redirty_tail(inode, wb);
1294 } else if (inode->i_state & I_DIRTY_TIME) {
1295 inode->dirtied_when = jiffies;
1296 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1297 } else {
1298 /* The inode is clean. Remove from writeback lists. */
1299 inode_io_list_del_locked(inode, wb);
1300 }
1301 }
1302
1303 /*
1304 * Write out an inode and its dirty pages. Do not update the writeback list
1305 * linkage. That is left to the caller. The caller is also responsible for
1306 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1307 */
1308 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1309 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1310 {
1311 struct address_space *mapping = inode->i_mapping;
1312 long nr_to_write = wbc->nr_to_write;
1313 unsigned dirty;
1314 int ret;
1315
1316 WARN_ON(!(inode->i_state & I_SYNC));
1317
1318 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1319
1320 ret = do_writepages(mapping, wbc);
1321
1322 /*
1323 * Make sure to wait on the data before writing out the metadata.
1324 * This is important for filesystems that modify metadata on data
1325 * I/O completion. We don't do it for sync(2) writeback because it has a
1326 * separate, external IO completion path and ->sync_fs for guaranteeing
1327 * inode metadata is written back correctly.
1328 */
1329 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1330 int err = filemap_fdatawait(mapping);
1331 if (ret == 0)
1332 ret = err;
1333 }
1334
1335 /*
1336 * Some filesystems may redirty the inode during the writeback
1337 * due to delalloc, clear dirty metadata flags right before
1338 * write_inode()
1339 */
1340 spin_lock(&inode->i_lock);
1341
1342 dirty = inode->i_state & I_DIRTY;
1343 if (inode->i_state & I_DIRTY_TIME) {
1344 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1345 wbc->sync_mode == WB_SYNC_ALL ||
1346 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1347 unlikely(time_after(jiffies,
1348 (inode->dirtied_time_when +
1349 dirtytime_expire_interval * HZ)))) {
1350 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1351 trace_writeback_lazytime(inode);
1352 }
1353 } else
1354 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1355 inode->i_state &= ~dirty;
1356
1357 /*
1358 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1359 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1360 * either they see the I_DIRTY bits cleared or we see the dirtied
1361 * inode.
1362 *
1363 * I_DIRTY_PAGES is always cleared together above even if @mapping
1364 * still has dirty pages. The flag is reinstated after smp_mb() if
1365 * necessary. This guarantees that either __mark_inode_dirty()
1366 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1367 */
1368 smp_mb();
1369
1370 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1371 inode->i_state |= I_DIRTY_PAGES;
1372
1373 spin_unlock(&inode->i_lock);
1374
1375 if (dirty & I_DIRTY_TIME)
1376 mark_inode_dirty_sync(inode);
1377 /* Don't write the inode if only I_DIRTY_PAGES was set */
1378 if (dirty & ~I_DIRTY_PAGES) {
1379 int err = write_inode(inode, wbc);
1380 if (ret == 0)
1381 ret = err;
1382 }
1383 trace_writeback_single_inode(inode, wbc, nr_to_write);
1384 return ret;
1385 }
1386
1387 /*
1388 * Write out an inode's dirty pages. Either the caller has an active reference
1389 * on the inode or the inode has I_WILL_FREE set.
1390 *
1391 * This function is designed to be called for writing back one inode which
1392 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1393 * and does more profound writeback list handling in writeback_sb_inodes().
1394 */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1395 static int writeback_single_inode(struct inode *inode,
1396 struct writeback_control *wbc)
1397 {
1398 struct bdi_writeback *wb;
1399 int ret = 0;
1400
1401 spin_lock(&inode->i_lock);
1402 if (!atomic_read(&inode->i_count))
1403 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1404 else
1405 WARN_ON(inode->i_state & I_WILL_FREE);
1406
1407 if (inode->i_state & I_SYNC) {
1408 if (wbc->sync_mode != WB_SYNC_ALL)
1409 goto out;
1410 /*
1411 * It's a data-integrity sync. We must wait. Since callers hold
1412 * inode reference or inode has I_WILL_FREE set, it cannot go
1413 * away under us.
1414 */
1415 __inode_wait_for_writeback(inode);
1416 }
1417 WARN_ON(inode->i_state & I_SYNC);
1418 /*
1419 * Skip inode if it is clean and we have no outstanding writeback in
1420 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1421 * function since flusher thread may be doing for example sync in
1422 * parallel and if we move the inode, it could get skipped. So here we
1423 * make sure inode is on some writeback list and leave it there unless
1424 * we have completely cleaned the inode.
1425 */
1426 if (!(inode->i_state & I_DIRTY_ALL) &&
1427 (wbc->sync_mode != WB_SYNC_ALL ||
1428 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1429 goto out;
1430 inode->i_state |= I_SYNC;
1431 wbc_attach_and_unlock_inode(wbc, inode);
1432
1433 ret = __writeback_single_inode(inode, wbc);
1434
1435 wbc_detach_inode(wbc);
1436
1437 wb = inode_to_wb_and_lock_list(inode);
1438 spin_lock(&inode->i_lock);
1439 /*
1440 * If inode is clean, remove it from writeback lists. Otherwise don't
1441 * touch it. See comment above for explanation.
1442 */
1443 if (!(inode->i_state & I_DIRTY_ALL))
1444 inode_io_list_del_locked(inode, wb);
1445 spin_unlock(&wb->list_lock);
1446 inode_sync_complete(inode);
1447 out:
1448 spin_unlock(&inode->i_lock);
1449 return ret;
1450 }
1451
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1452 static long writeback_chunk_size(struct bdi_writeback *wb,
1453 struct wb_writeback_work *work)
1454 {
1455 long pages;
1456
1457 /*
1458 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1459 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1460 * here avoids calling into writeback_inodes_wb() more than once.
1461 *
1462 * The intended call sequence for WB_SYNC_ALL writeback is:
1463 *
1464 * wb_writeback()
1465 * writeback_sb_inodes() <== called only once
1466 * write_cache_pages() <== called once for each inode
1467 * (quickly) tag currently dirty pages
1468 * (maybe slowly) sync all tagged pages
1469 */
1470 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1471 pages = LONG_MAX;
1472 else {
1473 pages = min(wb->avg_write_bandwidth / 2,
1474 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1475 pages = min(pages, work->nr_pages);
1476 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1477 MIN_WRITEBACK_PAGES);
1478 }
1479
1480 return pages;
1481 }
1482
1483 /*
1484 * Write a portion of b_io inodes which belong to @sb.
1485 *
1486 * Return the number of pages and/or inodes written.
1487 *
1488 * NOTE! This is called with wb->list_lock held, and will
1489 * unlock and relock that for each inode it ends up doing
1490 * IO for.
1491 */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1492 static long writeback_sb_inodes(struct super_block *sb,
1493 struct bdi_writeback *wb,
1494 struct wb_writeback_work *work)
1495 {
1496 struct writeback_control wbc = {
1497 .sync_mode = work->sync_mode,
1498 .tagged_writepages = work->tagged_writepages,
1499 .for_kupdate = work->for_kupdate,
1500 .for_background = work->for_background,
1501 .for_sync = work->for_sync,
1502 .range_cyclic = work->range_cyclic,
1503 .range_start = 0,
1504 .range_end = LLONG_MAX,
1505 };
1506 unsigned long start_time = jiffies;
1507 long write_chunk;
1508 long wrote = 0; /* count both pages and inodes */
1509
1510 while (!list_empty(&wb->b_io)) {
1511 struct inode *inode = wb_inode(wb->b_io.prev);
1512 struct bdi_writeback *tmp_wb;
1513
1514 if (inode->i_sb != sb) {
1515 if (work->sb) {
1516 /*
1517 * We only want to write back data for this
1518 * superblock, move all inodes not belonging
1519 * to it back onto the dirty list.
1520 */
1521 redirty_tail(inode, wb);
1522 continue;
1523 }
1524
1525 /*
1526 * The inode belongs to a different superblock.
1527 * Bounce back to the caller to unpin this and
1528 * pin the next superblock.
1529 */
1530 break;
1531 }
1532
1533 /*
1534 * Don't bother with new inodes or inodes being freed, first
1535 * kind does not need periodic writeout yet, and for the latter
1536 * kind writeout is handled by the freer.
1537 */
1538 spin_lock(&inode->i_lock);
1539 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1540 spin_unlock(&inode->i_lock);
1541 redirty_tail(inode, wb);
1542 continue;
1543 }
1544 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1545 /*
1546 * If this inode is locked for writeback and we are not
1547 * doing writeback-for-data-integrity, move it to
1548 * b_more_io so that writeback can proceed with the
1549 * other inodes on s_io.
1550 *
1551 * We'll have another go at writing back this inode
1552 * when we completed a full scan of b_io.
1553 */
1554 spin_unlock(&inode->i_lock);
1555 requeue_io(inode, wb);
1556 trace_writeback_sb_inodes_requeue(inode);
1557 continue;
1558 }
1559 spin_unlock(&wb->list_lock);
1560
1561 /*
1562 * We already requeued the inode if it had I_SYNC set and we
1563 * are doing WB_SYNC_NONE writeback. So this catches only the
1564 * WB_SYNC_ALL case.
1565 */
1566 if (inode->i_state & I_SYNC) {
1567 /* Wait for I_SYNC. This function drops i_lock... */
1568 inode_sleep_on_writeback(inode);
1569 /* Inode may be gone, start again */
1570 spin_lock(&wb->list_lock);
1571 continue;
1572 }
1573 inode->i_state |= I_SYNC;
1574 wbc_attach_and_unlock_inode(&wbc, inode);
1575
1576 write_chunk = writeback_chunk_size(wb, work);
1577 wbc.nr_to_write = write_chunk;
1578 wbc.pages_skipped = 0;
1579
1580 /*
1581 * We use I_SYNC to pin the inode in memory. While it is set
1582 * evict_inode() will wait so the inode cannot be freed.
1583 */
1584 __writeback_single_inode(inode, &wbc);
1585
1586 wbc_detach_inode(&wbc);
1587 work->nr_pages -= write_chunk - wbc.nr_to_write;
1588 wrote += write_chunk - wbc.nr_to_write;
1589
1590 if (need_resched()) {
1591 /*
1592 * We're trying to balance between building up a nice
1593 * long list of IOs to improve our merge rate, and
1594 * getting those IOs out quickly for anyone throttling
1595 * in balance_dirty_pages(). cond_resched() doesn't
1596 * unplug, so get our IOs out the door before we
1597 * give up the CPU.
1598 */
1599 blk_flush_plug(current);
1600 cond_resched();
1601 }
1602
1603 /*
1604 * Requeue @inode if still dirty. Be careful as @inode may
1605 * have been switched to another wb in the meantime.
1606 */
1607 tmp_wb = inode_to_wb_and_lock_list(inode);
1608 spin_lock(&inode->i_lock);
1609 if (!(inode->i_state & I_DIRTY_ALL))
1610 wrote++;
1611 requeue_inode(inode, tmp_wb, &wbc);
1612 inode_sync_complete(inode);
1613 spin_unlock(&inode->i_lock);
1614
1615 if (unlikely(tmp_wb != wb)) {
1616 spin_unlock(&tmp_wb->list_lock);
1617 spin_lock(&wb->list_lock);
1618 }
1619
1620 /*
1621 * bail out to wb_writeback() often enough to check
1622 * background threshold and other termination conditions.
1623 */
1624 if (wrote) {
1625 if (time_is_before_jiffies(start_time + HZ / 10UL))
1626 break;
1627 if (work->nr_pages <= 0)
1628 break;
1629 }
1630 }
1631 return wrote;
1632 }
1633
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)1634 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1635 struct wb_writeback_work *work)
1636 {
1637 unsigned long start_time = jiffies;
1638 long wrote = 0;
1639
1640 while (!list_empty(&wb->b_io)) {
1641 struct inode *inode = wb_inode(wb->b_io.prev);
1642 struct super_block *sb = inode->i_sb;
1643
1644 if (!trylock_super(sb)) {
1645 /*
1646 * trylock_super() may fail consistently due to
1647 * s_umount being grabbed by someone else. Don't use
1648 * requeue_io() to avoid busy retrying the inode/sb.
1649 */
1650 redirty_tail(inode, wb);
1651 continue;
1652 }
1653 wrote += writeback_sb_inodes(sb, wb, work);
1654 up_read(&sb->s_umount);
1655
1656 /* refer to the same tests at the end of writeback_sb_inodes */
1657 if (wrote) {
1658 if (time_is_before_jiffies(start_time + HZ / 10UL))
1659 break;
1660 if (work->nr_pages <= 0)
1661 break;
1662 }
1663 }
1664 /* Leave any unwritten inodes on b_io */
1665 return wrote;
1666 }
1667
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)1668 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1669 enum wb_reason reason)
1670 {
1671 struct wb_writeback_work work = {
1672 .nr_pages = nr_pages,
1673 .sync_mode = WB_SYNC_NONE,
1674 .range_cyclic = 1,
1675 .reason = reason,
1676 };
1677 struct blk_plug plug;
1678
1679 blk_start_plug(&plug);
1680 spin_lock(&wb->list_lock);
1681 if (list_empty(&wb->b_io))
1682 queue_io(wb, &work);
1683 __writeback_inodes_wb(wb, &work);
1684 spin_unlock(&wb->list_lock);
1685 blk_finish_plug(&plug);
1686
1687 return nr_pages - work.nr_pages;
1688 }
1689
1690 /*
1691 * Explicit flushing or periodic writeback of "old" data.
1692 *
1693 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1694 * dirtying-time in the inode's address_space. So this periodic writeback code
1695 * just walks the superblock inode list, writing back any inodes which are
1696 * older than a specific point in time.
1697 *
1698 * Try to run once per dirty_writeback_interval. But if a writeback event
1699 * takes longer than a dirty_writeback_interval interval, then leave a
1700 * one-second gap.
1701 *
1702 * older_than_this takes precedence over nr_to_write. So we'll only write back
1703 * all dirty pages if they are all attached to "old" mappings.
1704 */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)1705 static long wb_writeback(struct bdi_writeback *wb,
1706 struct wb_writeback_work *work)
1707 {
1708 unsigned long wb_start = jiffies;
1709 long nr_pages = work->nr_pages;
1710 unsigned long oldest_jif;
1711 struct inode *inode;
1712 long progress;
1713 struct blk_plug plug;
1714
1715 oldest_jif = jiffies;
1716 work->older_than_this = &oldest_jif;
1717
1718 blk_start_plug(&plug);
1719 spin_lock(&wb->list_lock);
1720 for (;;) {
1721 /*
1722 * Stop writeback when nr_pages has been consumed
1723 */
1724 if (work->nr_pages <= 0)
1725 break;
1726
1727 /*
1728 * Background writeout and kupdate-style writeback may
1729 * run forever. Stop them if there is other work to do
1730 * so that e.g. sync can proceed. They'll be restarted
1731 * after the other works are all done.
1732 */
1733 if ((work->for_background || work->for_kupdate) &&
1734 !list_empty(&wb->work_list))
1735 break;
1736
1737 /*
1738 * For background writeout, stop when we are below the
1739 * background dirty threshold
1740 */
1741 if (work->for_background && !wb_over_bg_thresh(wb))
1742 break;
1743
1744 /*
1745 * Kupdate and background works are special and we want to
1746 * include all inodes that need writing. Livelock avoidance is
1747 * handled by these works yielding to any other work so we are
1748 * safe.
1749 */
1750 if (work->for_kupdate) {
1751 oldest_jif = jiffies -
1752 msecs_to_jiffies(dirty_expire_interval * 10);
1753 } else if (work->for_background)
1754 oldest_jif = jiffies;
1755
1756 trace_writeback_start(wb, work);
1757 if (list_empty(&wb->b_io))
1758 queue_io(wb, work);
1759 if (work->sb)
1760 progress = writeback_sb_inodes(work->sb, wb, work);
1761 else
1762 progress = __writeback_inodes_wb(wb, work);
1763 trace_writeback_written(wb, work);
1764
1765 wb_update_bandwidth(wb, wb_start);
1766
1767 /*
1768 * Did we write something? Try for more
1769 *
1770 * Dirty inodes are moved to b_io for writeback in batches.
1771 * The completion of the current batch does not necessarily
1772 * mean the overall work is done. So we keep looping as long
1773 * as made some progress on cleaning pages or inodes.
1774 */
1775 if (progress)
1776 continue;
1777 /*
1778 * No more inodes for IO, bail
1779 */
1780 if (list_empty(&wb->b_more_io))
1781 break;
1782 /*
1783 * Nothing written. Wait for some inode to
1784 * become available for writeback. Otherwise
1785 * we'll just busyloop.
1786 */
1787 if (!list_empty(&wb->b_more_io)) {
1788 trace_writeback_wait(wb, work);
1789 inode = wb_inode(wb->b_more_io.prev);
1790 spin_lock(&inode->i_lock);
1791 spin_unlock(&wb->list_lock);
1792 /* This function drops i_lock... */
1793 inode_sleep_on_writeback(inode);
1794 spin_lock(&wb->list_lock);
1795 }
1796 }
1797 spin_unlock(&wb->list_lock);
1798 blk_finish_plug(&plug);
1799
1800 return nr_pages - work->nr_pages;
1801 }
1802
1803 /*
1804 * Return the next wb_writeback_work struct that hasn't been processed yet.
1805 */
get_next_work_item(struct bdi_writeback * wb)1806 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1807 {
1808 struct wb_writeback_work *work = NULL;
1809
1810 spin_lock_bh(&wb->work_lock);
1811 if (!list_empty(&wb->work_list)) {
1812 work = list_entry(wb->work_list.next,
1813 struct wb_writeback_work, list);
1814 list_del_init(&work->list);
1815 }
1816 spin_unlock_bh(&wb->work_lock);
1817 return work;
1818 }
1819
1820 /*
1821 * Add in the number of potentially dirty inodes, because each inode
1822 * write can dirty pagecache in the underlying blockdev.
1823 */
get_nr_dirty_pages(void)1824 static unsigned long get_nr_dirty_pages(void)
1825 {
1826 return global_node_page_state(NR_FILE_DIRTY) +
1827 global_node_page_state(NR_UNSTABLE_NFS) +
1828 get_nr_dirty_inodes();
1829 }
1830
wb_check_background_flush(struct bdi_writeback * wb)1831 static long wb_check_background_flush(struct bdi_writeback *wb)
1832 {
1833 if (wb_over_bg_thresh(wb)) {
1834
1835 struct wb_writeback_work work = {
1836 .nr_pages = LONG_MAX,
1837 .sync_mode = WB_SYNC_NONE,
1838 .for_background = 1,
1839 .range_cyclic = 1,
1840 .reason = WB_REASON_BACKGROUND,
1841 };
1842
1843 return wb_writeback(wb, &work);
1844 }
1845
1846 return 0;
1847 }
1848
wb_check_old_data_flush(struct bdi_writeback * wb)1849 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1850 {
1851 unsigned long expired;
1852 long nr_pages;
1853
1854 /*
1855 * When set to zero, disable periodic writeback
1856 */
1857 if (!dirty_writeback_interval)
1858 return 0;
1859
1860 expired = wb->last_old_flush +
1861 msecs_to_jiffies(dirty_writeback_interval * 10);
1862 if (time_before(jiffies, expired))
1863 return 0;
1864
1865 wb->last_old_flush = jiffies;
1866 nr_pages = get_nr_dirty_pages();
1867
1868 if (nr_pages) {
1869 struct wb_writeback_work work = {
1870 .nr_pages = nr_pages,
1871 .sync_mode = WB_SYNC_NONE,
1872 .for_kupdate = 1,
1873 .range_cyclic = 1,
1874 .reason = WB_REASON_PERIODIC,
1875 };
1876
1877 return wb_writeback(wb, &work);
1878 }
1879
1880 return 0;
1881 }
1882
1883 /*
1884 * Retrieve work items and do the writeback they describe
1885 */
wb_do_writeback(struct bdi_writeback * wb)1886 static long wb_do_writeback(struct bdi_writeback *wb)
1887 {
1888 struct wb_writeback_work *work;
1889 long wrote = 0;
1890
1891 set_bit(WB_writeback_running, &wb->state);
1892 while ((work = get_next_work_item(wb)) != NULL) {
1893 trace_writeback_exec(wb, work);
1894 wrote += wb_writeback(wb, work);
1895 finish_writeback_work(wb, work);
1896 }
1897
1898 /*
1899 * Check for periodic writeback, kupdated() style
1900 */
1901 wrote += wb_check_old_data_flush(wb);
1902 wrote += wb_check_background_flush(wb);
1903 clear_bit(WB_writeback_running, &wb->state);
1904
1905 return wrote;
1906 }
1907
1908 /*
1909 * Handle writeback of dirty data for the device backed by this bdi. Also
1910 * reschedules periodically and does kupdated style flushing.
1911 */
wb_workfn(struct work_struct * work)1912 void wb_workfn(struct work_struct *work)
1913 {
1914 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1915 struct bdi_writeback, dwork);
1916 long pages_written;
1917
1918 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1919 current->flags |= PF_SWAPWRITE;
1920
1921 if (likely(!current_is_workqueue_rescuer() ||
1922 !test_bit(WB_registered, &wb->state))) {
1923 /*
1924 * The normal path. Keep writing back @wb until its
1925 * work_list is empty. Note that this path is also taken
1926 * if @wb is shutting down even when we're running off the
1927 * rescuer as work_list needs to be drained.
1928 */
1929 do {
1930 pages_written = wb_do_writeback(wb);
1931 trace_writeback_pages_written(pages_written);
1932 } while (!list_empty(&wb->work_list));
1933 } else {
1934 /*
1935 * bdi_wq can't get enough workers and we're running off
1936 * the emergency worker. Don't hog it. Hopefully, 1024 is
1937 * enough for efficient IO.
1938 */
1939 pages_written = writeback_inodes_wb(wb, 1024,
1940 WB_REASON_FORKER_THREAD);
1941 trace_writeback_pages_written(pages_written);
1942 }
1943
1944 if (!list_empty(&wb->work_list))
1945 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1946 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1947 wb_wakeup_delayed(wb);
1948
1949 current->flags &= ~PF_SWAPWRITE;
1950 }
1951
1952 /*
1953 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1954 * the whole world.
1955 */
wakeup_flusher_threads(long nr_pages,enum wb_reason reason)1956 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1957 {
1958 struct backing_dev_info *bdi;
1959
1960 /*
1961 * If we are expecting writeback progress we must submit plugged IO.
1962 */
1963 if (blk_needs_flush_plug(current))
1964 blk_schedule_flush_plug(current);
1965
1966 if (!nr_pages)
1967 nr_pages = get_nr_dirty_pages();
1968
1969 rcu_read_lock();
1970 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1971 struct bdi_writeback *wb;
1972
1973 if (!bdi_has_dirty_io(bdi))
1974 continue;
1975
1976 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1977 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1978 false, reason);
1979 }
1980 rcu_read_unlock();
1981 }
1982
1983 /*
1984 * Wake up bdi's periodically to make sure dirtytime inodes gets
1985 * written back periodically. We deliberately do *not* check the
1986 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1987 * kernel to be constantly waking up once there are any dirtytime
1988 * inodes on the system. So instead we define a separate delayed work
1989 * function which gets called much more rarely. (By default, only
1990 * once every 12 hours.)
1991 *
1992 * If there is any other write activity going on in the file system,
1993 * this function won't be necessary. But if the only thing that has
1994 * happened on the file system is a dirtytime inode caused by an atime
1995 * update, we need this infrastructure below to make sure that inode
1996 * eventually gets pushed out to disk.
1997 */
1998 static void wakeup_dirtytime_writeback(struct work_struct *w);
1999 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2000
wakeup_dirtytime_writeback(struct work_struct * w)2001 static void wakeup_dirtytime_writeback(struct work_struct *w)
2002 {
2003 struct backing_dev_info *bdi;
2004
2005 rcu_read_lock();
2006 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2007 struct bdi_writeback *wb;
2008
2009 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2010 if (!list_empty(&wb->b_dirty_time))
2011 wb_wakeup(wb);
2012 }
2013 rcu_read_unlock();
2014 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2015 }
2016
start_dirtytime_writeback(void)2017 static int __init start_dirtytime_writeback(void)
2018 {
2019 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2020 return 0;
2021 }
2022 __initcall(start_dirtytime_writeback);
2023
dirtytime_interval_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2024 int dirtytime_interval_handler(struct ctl_table *table, int write,
2025 void __user *buffer, size_t *lenp, loff_t *ppos)
2026 {
2027 int ret;
2028
2029 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2030 if (ret == 0 && write)
2031 mod_delayed_work(system_wq, &dirtytime_work, 0);
2032 return ret;
2033 }
2034
block_dump___mark_inode_dirty(struct inode * inode)2035 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2036 {
2037 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2038 struct dentry *dentry;
2039 const char *name = "?";
2040
2041 dentry = d_find_alias(inode);
2042 if (dentry) {
2043 spin_lock(&dentry->d_lock);
2044 name = (const char *) dentry->d_name.name;
2045 }
2046 printk(KERN_DEBUG
2047 "%s(%d): dirtied inode %lu (%s) on %s\n",
2048 current->comm, task_pid_nr(current), inode->i_ino,
2049 name, inode->i_sb->s_id);
2050 if (dentry) {
2051 spin_unlock(&dentry->d_lock);
2052 dput(dentry);
2053 }
2054 }
2055 }
2056
2057 /**
2058 * __mark_inode_dirty - internal function
2059 * @inode: inode to mark
2060 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2061 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2062 * mark_inode_dirty_sync.
2063 *
2064 * Put the inode on the super block's dirty list.
2065 *
2066 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2067 * dirty list only if it is hashed or if it refers to a blockdev.
2068 * If it was not hashed, it will never be added to the dirty list
2069 * even if it is later hashed, as it will have been marked dirty already.
2070 *
2071 * In short, make sure you hash any inodes _before_ you start marking
2072 * them dirty.
2073 *
2074 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2075 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2076 * the kernel-internal blockdev inode represents the dirtying time of the
2077 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2078 * page->mapping->host, so the page-dirtying time is recorded in the internal
2079 * blockdev inode.
2080 */
__mark_inode_dirty(struct inode * inode,int flags)2081 void __mark_inode_dirty(struct inode *inode, int flags)
2082 {
2083 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2084 struct super_block *sb = inode->i_sb;
2085 int dirtytime;
2086
2087 trace_writeback_mark_inode_dirty(inode, flags);
2088
2089 /*
2090 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2091 * dirty the inode itself
2092 */
2093 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2094 trace_writeback_dirty_inode_start(inode, flags);
2095
2096 if (sb->s_op->dirty_inode)
2097 sb->s_op->dirty_inode(inode, flags);
2098
2099 trace_writeback_dirty_inode(inode, flags);
2100 }
2101 if (flags & I_DIRTY_INODE)
2102 flags &= ~I_DIRTY_TIME;
2103 dirtytime = flags & I_DIRTY_TIME;
2104
2105 /*
2106 * Paired with smp_mb() in __writeback_single_inode() for the
2107 * following lockless i_state test. See there for details.
2108 */
2109 smp_mb();
2110
2111 if (((inode->i_state & flags) == flags) ||
2112 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2113 return;
2114
2115 if (unlikely(block_dump > 1))
2116 block_dump___mark_inode_dirty(inode);
2117
2118 spin_lock(&inode->i_lock);
2119 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2120 goto out_unlock_inode;
2121 if ((inode->i_state & flags) != flags) {
2122 const int was_dirty = inode->i_state & I_DIRTY;
2123
2124 inode_attach_wb(inode, NULL);
2125
2126 if (flags & I_DIRTY_INODE)
2127 inode->i_state &= ~I_DIRTY_TIME;
2128 inode->i_state |= flags;
2129
2130 /*
2131 * If the inode is being synced, just update its dirty state.
2132 * The unlocker will place the inode on the appropriate
2133 * superblock list, based upon its state.
2134 */
2135 if (inode->i_state & I_SYNC)
2136 goto out_unlock_inode;
2137
2138 /*
2139 * Only add valid (hashed) inodes to the superblock's
2140 * dirty list. Add blockdev inodes as well.
2141 */
2142 if (!S_ISBLK(inode->i_mode)) {
2143 if (inode_unhashed(inode))
2144 goto out_unlock_inode;
2145 }
2146 if (inode->i_state & I_FREEING)
2147 goto out_unlock_inode;
2148
2149 /*
2150 * If the inode was already on b_dirty/b_io/b_more_io, don't
2151 * reposition it (that would break b_dirty time-ordering).
2152 */
2153 if (!was_dirty) {
2154 struct bdi_writeback *wb;
2155 struct list_head *dirty_list;
2156 bool wakeup_bdi = false;
2157
2158 wb = locked_inode_to_wb_and_lock_list(inode);
2159
2160 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2161 !test_bit(WB_registered, &wb->state),
2162 "bdi-%s not registered\n", wb->bdi->name);
2163
2164 inode->dirtied_when = jiffies;
2165 if (dirtytime)
2166 inode->dirtied_time_when = jiffies;
2167
2168 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2169 dirty_list = &wb->b_dirty;
2170 else
2171 dirty_list = &wb->b_dirty_time;
2172
2173 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2174 dirty_list);
2175
2176 spin_unlock(&wb->list_lock);
2177 trace_writeback_dirty_inode_enqueue(inode);
2178
2179 /*
2180 * If this is the first dirty inode for this bdi,
2181 * we have to wake-up the corresponding bdi thread
2182 * to make sure background write-back happens
2183 * later.
2184 */
2185 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2186 wb_wakeup_delayed(wb);
2187 return;
2188 }
2189 }
2190 out_unlock_inode:
2191 spin_unlock(&inode->i_lock);
2192
2193 #undef I_DIRTY_INODE
2194 }
2195 EXPORT_SYMBOL(__mark_inode_dirty);
2196
2197 /*
2198 * The @s_sync_lock is used to serialise concurrent sync operations
2199 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2200 * Concurrent callers will block on the s_sync_lock rather than doing contending
2201 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2202 * has been issued up to the time this function is enter is guaranteed to be
2203 * completed by the time we have gained the lock and waited for all IO that is
2204 * in progress regardless of the order callers are granted the lock.
2205 */
wait_sb_inodes(struct super_block * sb)2206 static void wait_sb_inodes(struct super_block *sb)
2207 {
2208 LIST_HEAD(sync_list);
2209
2210 /*
2211 * We need to be protected against the filesystem going from
2212 * r/o to r/w or vice versa.
2213 */
2214 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2215
2216 mutex_lock(&sb->s_sync_lock);
2217
2218 /*
2219 * Splice the writeback list onto a temporary list to avoid waiting on
2220 * inodes that have started writeback after this point.
2221 *
2222 * Use rcu_read_lock() to keep the inodes around until we have a
2223 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2224 * the local list because inodes can be dropped from either by writeback
2225 * completion.
2226 */
2227 rcu_read_lock();
2228 spin_lock_irq(&sb->s_inode_wblist_lock);
2229 list_splice_init(&sb->s_inodes_wb, &sync_list);
2230
2231 /*
2232 * Data integrity sync. Must wait for all pages under writeback, because
2233 * there may have been pages dirtied before our sync call, but which had
2234 * writeout started before we write it out. In which case, the inode
2235 * may not be on the dirty list, but we still have to wait for that
2236 * writeout.
2237 */
2238 while (!list_empty(&sync_list)) {
2239 struct inode *inode = list_first_entry(&sync_list, struct inode,
2240 i_wb_list);
2241 struct address_space *mapping = inode->i_mapping;
2242
2243 /*
2244 * Move each inode back to the wb list before we drop the lock
2245 * to preserve consistency between i_wb_list and the mapping
2246 * writeback tag. Writeback completion is responsible to remove
2247 * the inode from either list once the writeback tag is cleared.
2248 */
2249 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2250
2251 /*
2252 * The mapping can appear untagged while still on-list since we
2253 * do not have the mapping lock. Skip it here, wb completion
2254 * will remove it.
2255 */
2256 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2257 continue;
2258
2259 spin_unlock_irq(&sb->s_inode_wblist_lock);
2260
2261 spin_lock(&inode->i_lock);
2262 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2263 spin_unlock(&inode->i_lock);
2264
2265 spin_lock_irq(&sb->s_inode_wblist_lock);
2266 continue;
2267 }
2268 __iget(inode);
2269 spin_unlock(&inode->i_lock);
2270 rcu_read_unlock();
2271
2272 /*
2273 * We keep the error status of individual mapping so that
2274 * applications can catch the writeback error using fsync(2).
2275 * See filemap_fdatawait_keep_errors() for details.
2276 */
2277 filemap_fdatawait_keep_errors(mapping);
2278
2279 cond_resched();
2280
2281 iput(inode);
2282
2283 rcu_read_lock();
2284 spin_lock_irq(&sb->s_inode_wblist_lock);
2285 }
2286 spin_unlock_irq(&sb->s_inode_wblist_lock);
2287 rcu_read_unlock();
2288 mutex_unlock(&sb->s_sync_lock);
2289 }
2290
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2291 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2292 enum wb_reason reason, bool skip_if_busy)
2293 {
2294 DEFINE_WB_COMPLETION_ONSTACK(done);
2295 struct wb_writeback_work work = {
2296 .sb = sb,
2297 .sync_mode = WB_SYNC_NONE,
2298 .tagged_writepages = 1,
2299 .done = &done,
2300 .nr_pages = nr,
2301 .reason = reason,
2302 };
2303 struct backing_dev_info *bdi = sb->s_bdi;
2304
2305 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2306 return;
2307 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2308
2309 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2310 wb_wait_for_completion(bdi, &done);
2311 }
2312
2313 /**
2314 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2315 * @sb: the superblock
2316 * @nr: the number of pages to write
2317 * @reason: reason why some writeback work initiated
2318 *
2319 * Start writeback on some inodes on this super_block. No guarantees are made
2320 * on how many (if any) will be written, and this function does not wait
2321 * for IO completion of submitted IO.
2322 */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2323 void writeback_inodes_sb_nr(struct super_block *sb,
2324 unsigned long nr,
2325 enum wb_reason reason)
2326 {
2327 __writeback_inodes_sb_nr(sb, nr, reason, false);
2328 }
2329 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2330
2331 /**
2332 * writeback_inodes_sb - writeback dirty inodes from given super_block
2333 * @sb: the superblock
2334 * @reason: reason why some writeback work was initiated
2335 *
2336 * Start writeback on some inodes on this super_block. No guarantees are made
2337 * on how many (if any) will be written, and this function does not wait
2338 * for IO completion of submitted IO.
2339 */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2340 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2341 {
2342 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2343 }
2344 EXPORT_SYMBOL(writeback_inodes_sb);
2345
2346 /**
2347 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2348 * @sb: the superblock
2349 * @nr: the number of pages to write
2350 * @reason: the reason of writeback
2351 *
2352 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2353 * Returns 1 if writeback was started, 0 if not.
2354 */
try_to_writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2355 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2356 enum wb_reason reason)
2357 {
2358 if (!down_read_trylock(&sb->s_umount))
2359 return false;
2360
2361 __writeback_inodes_sb_nr(sb, nr, reason, true);
2362 up_read(&sb->s_umount);
2363 return true;
2364 }
2365 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2366
2367 /**
2368 * try_to_writeback_inodes_sb - try to start writeback if none underway
2369 * @sb: the superblock
2370 * @reason: reason why some writeback work was initiated
2371 *
2372 * Implement by try_to_writeback_inodes_sb_nr()
2373 * Returns 1 if writeback was started, 0 if not.
2374 */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2375 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2376 {
2377 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2378 }
2379 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2380
2381 /**
2382 * sync_inodes_sb - sync sb inode pages
2383 * @sb: the superblock
2384 *
2385 * This function writes and waits on any dirty inode belonging to this
2386 * super_block.
2387 */
sync_inodes_sb(struct super_block * sb)2388 void sync_inodes_sb(struct super_block *sb)
2389 {
2390 DEFINE_WB_COMPLETION_ONSTACK(done);
2391 struct wb_writeback_work work = {
2392 .sb = sb,
2393 .sync_mode = WB_SYNC_ALL,
2394 .nr_pages = LONG_MAX,
2395 .range_cyclic = 0,
2396 .done = &done,
2397 .reason = WB_REASON_SYNC,
2398 .for_sync = 1,
2399 };
2400 struct backing_dev_info *bdi = sb->s_bdi;
2401
2402 /*
2403 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2404 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2405 * bdi_has_dirty() need to be written out too.
2406 */
2407 if (bdi == &noop_backing_dev_info)
2408 return;
2409 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2410
2411 bdi_split_work_to_wbs(bdi, &work, false);
2412 wb_wait_for_completion(bdi, &done);
2413
2414 wait_sb_inodes(sb);
2415 }
2416 EXPORT_SYMBOL(sync_inodes_sb);
2417
2418 /**
2419 * write_inode_now - write an inode to disk
2420 * @inode: inode to write to disk
2421 * @sync: whether the write should be synchronous or not
2422 *
2423 * This function commits an inode to disk immediately if it is dirty. This is
2424 * primarily needed by knfsd.
2425 *
2426 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2427 */
write_inode_now(struct inode * inode,int sync)2428 int write_inode_now(struct inode *inode, int sync)
2429 {
2430 struct writeback_control wbc = {
2431 .nr_to_write = LONG_MAX,
2432 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2433 .range_start = 0,
2434 .range_end = LLONG_MAX,
2435 };
2436
2437 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2438 wbc.nr_to_write = 0;
2439
2440 might_sleep();
2441 return writeback_single_inode(inode, &wbc);
2442 }
2443 EXPORT_SYMBOL(write_inode_now);
2444
2445 /**
2446 * sync_inode - write an inode and its pages to disk.
2447 * @inode: the inode to sync
2448 * @wbc: controls the writeback mode
2449 *
2450 * sync_inode() will write an inode and its pages to disk. It will also
2451 * correctly update the inode on its superblock's dirty inode lists and will
2452 * update inode->i_state.
2453 *
2454 * The caller must have a ref on the inode.
2455 */
sync_inode(struct inode * inode,struct writeback_control * wbc)2456 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2457 {
2458 return writeback_single_inode(inode, wbc);
2459 }
2460 EXPORT_SYMBOL(sync_inode);
2461
2462 /**
2463 * sync_inode_metadata - write an inode to disk
2464 * @inode: the inode to sync
2465 * @wait: wait for I/O to complete.
2466 *
2467 * Write an inode to disk and adjust its dirty state after completion.
2468 *
2469 * Note: only writes the actual inode, no associated data or other metadata.
2470 */
sync_inode_metadata(struct inode * inode,int wait)2471 int sync_inode_metadata(struct inode *inode, int wait)
2472 {
2473 struct writeback_control wbc = {
2474 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2475 .nr_to_write = 0, /* metadata-only */
2476 };
2477
2478 return sync_inode(inode, &wbc);
2479 }
2480 EXPORT_SYMBOL(sync_inode_metadata);
2481