1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 *
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
207 *
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
212 *
213 * Description of States:
214 *
215 * TCP_SYN_SENT sent a connection request, waiting for ack
216 *
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
219 *
220 * TCP_ESTABLISHED connection established
221 *
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
224 *
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
227 *
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
230 *
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
236 *
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
240 *
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
244 *
245 * TCP_CLOSE socket is finished
246 */
247
248 #define pr_fmt(fmt) "TCP: " fmt
249
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <asm/unaligned.h>
283 #include <net/busy_poll.h>
284
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
286
287 int sysctl_tcp_autocorking __read_mostly = 1;
288
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
291
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
295
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
299
300 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
302
303 /*
304 * Current number of TCP sockets.
305 */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308
309 /*
310 * TCP splice context
311 */
312 struct tcp_splice_state {
313 struct pipe_inode_info *pipe;
314 size_t len;
315 unsigned int flags;
316 };
317
318 /*
319 * Pressure flag: try to collapse.
320 * Technical note: it is used by multiple contexts non atomically.
321 * All the __sk_mem_schedule() is of this nature: accounting
322 * is strict, actions are advisory and have some latency.
323 */
324 int tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL(tcp_memory_pressure);
326
tcp_enter_memory_pressure(struct sock * sk)327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 if (!tcp_memory_pressure) {
330 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 tcp_memory_pressure = 1;
332 }
333 }
334 EXPORT_SYMBOL(tcp_enter_memory_pressure);
335
336 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
338 {
339 u8 res = 0;
340
341 if (seconds > 0) {
342 int period = timeout;
343
344 res = 1;
345 while (seconds > period && res < 255) {
346 res++;
347 timeout <<= 1;
348 if (timeout > rto_max)
349 timeout = rto_max;
350 period += timeout;
351 }
352 }
353 return res;
354 }
355
356 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
358 {
359 int period = 0;
360
361 if (retrans > 0) {
362 period = timeout;
363 while (--retrans) {
364 timeout <<= 1;
365 if (timeout > rto_max)
366 timeout = rto_max;
367 period += timeout;
368 }
369 }
370 return period;
371 }
372
373 /* Address-family independent initialization for a tcp_sock.
374 *
375 * NOTE: A lot of things set to zero explicitly by call to
376 * sk_alloc() so need not be done here.
377 */
tcp_init_sock(struct sock * sk)378 void tcp_init_sock(struct sock *sk)
379 {
380 struct inet_connection_sock *icsk = inet_csk(sk);
381 struct tcp_sock *tp = tcp_sk(sk);
382
383 tp->out_of_order_queue = RB_ROOT;
384 tcp_init_xmit_timers(sk);
385 tcp_prequeue_init(tp);
386 INIT_LIST_HEAD(&tp->tsq_node);
387
388 icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
390 minmax_reset(&tp->rtt_min, tcp_time_stamp, ~0U);
391
392 /* So many TCP implementations out there (incorrectly) count the
393 * initial SYN frame in their delayed-ACK and congestion control
394 * algorithms that we must have the following bandaid to talk
395 * efficiently to them. -DaveM
396 */
397 tp->snd_cwnd = TCP_INIT_CWND;
398
399 /* There's a bubble in the pipe until at least the first ACK. */
400 tp->app_limited = ~0U;
401
402 /* See draft-stevens-tcpca-spec-01 for discussion of the
403 * initialization of these values.
404 */
405 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
406 tp->snd_cwnd_clamp = ~0;
407 tp->mss_cache = TCP_MSS_DEFAULT;
408 u64_stats_init(&tp->syncp);
409
410 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
411 tcp_enable_early_retrans(tp);
412 tcp_assign_congestion_control(sk);
413
414 tp->tsoffset = 0;
415
416 sk->sk_state = TCP_CLOSE;
417
418 sk->sk_write_space = sk_stream_write_space;
419 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
420
421 icsk->icsk_sync_mss = tcp_sync_mss;
422
423 sk->sk_sndbuf = sysctl_tcp_wmem[1];
424 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
425
426 local_bh_disable();
427 sk_sockets_allocated_inc(sk);
428 local_bh_enable();
429 }
430 EXPORT_SYMBOL(tcp_init_sock);
431
tcp_tx_timestamp(struct sock * sk,u16 tsflags,struct sk_buff * skb)432 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
433 {
434 if (tsflags && skb) {
435 struct skb_shared_info *shinfo = skb_shinfo(skb);
436 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
437
438 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
439 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
440 tcb->txstamp_ack = 1;
441 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
442 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
443 }
444 }
445
446 /*
447 * Wait for a TCP event.
448 *
449 * Note that we don't need to lock the socket, as the upper poll layers
450 * take care of normal races (between the test and the event) and we don't
451 * go look at any of the socket buffers directly.
452 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)453 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
454 {
455 unsigned int mask;
456 struct sock *sk = sock->sk;
457 const struct tcp_sock *tp = tcp_sk(sk);
458 int state;
459
460 sock_rps_record_flow(sk);
461
462 sock_poll_wait(file, sk_sleep(sk), wait);
463
464 state = sk_state_load(sk);
465 if (state == TCP_LISTEN)
466 return inet_csk_listen_poll(sk);
467
468 /* Socket is not locked. We are protected from async events
469 * by poll logic and correct handling of state changes
470 * made by other threads is impossible in any case.
471 */
472
473 mask = 0;
474
475 /*
476 * POLLHUP is certainly not done right. But poll() doesn't
477 * have a notion of HUP in just one direction, and for a
478 * socket the read side is more interesting.
479 *
480 * Some poll() documentation says that POLLHUP is incompatible
481 * with the POLLOUT/POLLWR flags, so somebody should check this
482 * all. But careful, it tends to be safer to return too many
483 * bits than too few, and you can easily break real applications
484 * if you don't tell them that something has hung up!
485 *
486 * Check-me.
487 *
488 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
489 * our fs/select.c). It means that after we received EOF,
490 * poll always returns immediately, making impossible poll() on write()
491 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
492 * if and only if shutdown has been made in both directions.
493 * Actually, it is interesting to look how Solaris and DUX
494 * solve this dilemma. I would prefer, if POLLHUP were maskable,
495 * then we could set it on SND_SHUTDOWN. BTW examples given
496 * in Stevens' books assume exactly this behaviour, it explains
497 * why POLLHUP is incompatible with POLLOUT. --ANK
498 *
499 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
500 * blocking on fresh not-connected or disconnected socket. --ANK
501 */
502 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
503 mask |= POLLHUP;
504 if (sk->sk_shutdown & RCV_SHUTDOWN)
505 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
506
507 /* Connected or passive Fast Open socket? */
508 if (state != TCP_SYN_SENT &&
509 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
510 int target = sock_rcvlowat(sk, 0, INT_MAX);
511
512 if (tp->urg_seq == tp->copied_seq &&
513 !sock_flag(sk, SOCK_URGINLINE) &&
514 tp->urg_data)
515 target++;
516
517 if (tp->rcv_nxt - tp->copied_seq >= target)
518 mask |= POLLIN | POLLRDNORM;
519
520 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
521 if (sk_stream_is_writeable(sk)) {
522 mask |= POLLOUT | POLLWRNORM;
523 } else { /* send SIGIO later */
524 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
525 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
526
527 /* Race breaker. If space is freed after
528 * wspace test but before the flags are set,
529 * IO signal will be lost. Memory barrier
530 * pairs with the input side.
531 */
532 smp_mb__after_atomic();
533 if (sk_stream_is_writeable(sk))
534 mask |= POLLOUT | POLLWRNORM;
535 }
536 } else
537 mask |= POLLOUT | POLLWRNORM;
538
539 if (tp->urg_data & TCP_URG_VALID)
540 mask |= POLLPRI;
541 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
542 /* Active TCP fastopen socket with defer_connect
543 * Return POLLOUT so application can call write()
544 * in order for kernel to generate SYN+data
545 */
546 mask |= POLLOUT | POLLWRNORM;
547 }
548 /* This barrier is coupled with smp_wmb() in tcp_reset() */
549 smp_rmb();
550 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
551 mask |= POLLERR;
552
553 return mask;
554 }
555 EXPORT_SYMBOL(tcp_poll);
556
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)557 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
558 {
559 struct tcp_sock *tp = tcp_sk(sk);
560 int answ;
561 bool slow;
562
563 switch (cmd) {
564 case SIOCINQ:
565 if (sk->sk_state == TCP_LISTEN)
566 return -EINVAL;
567
568 slow = lock_sock_fast(sk);
569 answ = tcp_inq(sk);
570 unlock_sock_fast(sk, slow);
571 break;
572 case SIOCATMARK:
573 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
574 break;
575 case SIOCOUTQ:
576 if (sk->sk_state == TCP_LISTEN)
577 return -EINVAL;
578
579 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
580 answ = 0;
581 else
582 answ = tp->write_seq - tp->snd_una;
583 break;
584 case SIOCOUTQNSD:
585 if (sk->sk_state == TCP_LISTEN)
586 return -EINVAL;
587
588 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
589 answ = 0;
590 else
591 answ = tp->write_seq - tp->snd_nxt;
592 break;
593 default:
594 return -ENOIOCTLCMD;
595 }
596
597 return put_user(answ, (int __user *)arg);
598 }
599 EXPORT_SYMBOL(tcp_ioctl);
600
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)601 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
602 {
603 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
604 tp->pushed_seq = tp->write_seq;
605 }
606
forced_push(const struct tcp_sock * tp)607 static inline bool forced_push(const struct tcp_sock *tp)
608 {
609 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
610 }
611
skb_entail(struct sock * sk,struct sk_buff * skb)612 static void skb_entail(struct sock *sk, struct sk_buff *skb)
613 {
614 struct tcp_sock *tp = tcp_sk(sk);
615 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
616
617 skb->csum = 0;
618 tcb->seq = tcb->end_seq = tp->write_seq;
619 tcb->tcp_flags = TCPHDR_ACK;
620 tcb->sacked = 0;
621 __skb_header_release(skb);
622 tcp_add_write_queue_tail(sk, skb);
623 sk->sk_wmem_queued += skb->truesize;
624 sk_mem_charge(sk, skb->truesize);
625 if (tp->nonagle & TCP_NAGLE_PUSH)
626 tp->nonagle &= ~TCP_NAGLE_PUSH;
627
628 tcp_slow_start_after_idle_check(sk);
629 }
630
tcp_mark_urg(struct tcp_sock * tp,int flags)631 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
632 {
633 if (flags & MSG_OOB)
634 tp->snd_up = tp->write_seq;
635 }
636
637 /* If a not yet filled skb is pushed, do not send it if
638 * we have data packets in Qdisc or NIC queues :
639 * Because TX completion will happen shortly, it gives a chance
640 * to coalesce future sendmsg() payload into this skb, without
641 * need for a timer, and with no latency trade off.
642 * As packets containing data payload have a bigger truesize
643 * than pure acks (dataless) packets, the last checks prevent
644 * autocorking if we only have an ACK in Qdisc/NIC queues,
645 * or if TX completion was delayed after we processed ACK packet.
646 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)647 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
648 int size_goal)
649 {
650 return skb->len < size_goal &&
651 sysctl_tcp_autocorking &&
652 skb != tcp_write_queue_head(sk) &&
653 atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
654 }
655
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)656 static void tcp_push(struct sock *sk, int flags, int mss_now,
657 int nonagle, int size_goal)
658 {
659 struct tcp_sock *tp = tcp_sk(sk);
660 struct sk_buff *skb;
661
662 if (!tcp_send_head(sk))
663 return;
664
665 skb = tcp_write_queue_tail(sk);
666 if (!(flags & MSG_MORE) || forced_push(tp))
667 tcp_mark_push(tp, skb);
668
669 tcp_mark_urg(tp, flags);
670
671 if (tcp_should_autocork(sk, skb, size_goal)) {
672
673 /* avoid atomic op if TSQ_THROTTLED bit is already set */
674 if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
675 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
676 set_bit(TSQ_THROTTLED, &tp->tsq_flags);
677 }
678 /* It is possible TX completion already happened
679 * before we set TSQ_THROTTLED.
680 */
681 if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
682 return;
683 }
684
685 if (flags & MSG_MORE)
686 nonagle = TCP_NAGLE_CORK;
687
688 __tcp_push_pending_frames(sk, mss_now, nonagle);
689 }
690
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)691 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
692 unsigned int offset, size_t len)
693 {
694 struct tcp_splice_state *tss = rd_desc->arg.data;
695 int ret;
696
697 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
698 min(rd_desc->count, len), tss->flags);
699 if (ret > 0)
700 rd_desc->count -= ret;
701 return ret;
702 }
703
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)704 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
705 {
706 /* Store TCP splice context information in read_descriptor_t. */
707 read_descriptor_t rd_desc = {
708 .arg.data = tss,
709 .count = tss->len,
710 };
711
712 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
713 }
714
715 /**
716 * tcp_splice_read - splice data from TCP socket to a pipe
717 * @sock: socket to splice from
718 * @ppos: position (not valid)
719 * @pipe: pipe to splice to
720 * @len: number of bytes to splice
721 * @flags: splice modifier flags
722 *
723 * Description:
724 * Will read pages from given socket and fill them into a pipe.
725 *
726 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)727 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
728 struct pipe_inode_info *pipe, size_t len,
729 unsigned int flags)
730 {
731 struct sock *sk = sock->sk;
732 struct tcp_splice_state tss = {
733 .pipe = pipe,
734 .len = len,
735 .flags = flags,
736 };
737 long timeo;
738 ssize_t spliced;
739 int ret;
740
741 sock_rps_record_flow(sk);
742 /*
743 * We can't seek on a socket input
744 */
745 if (unlikely(*ppos))
746 return -ESPIPE;
747
748 ret = spliced = 0;
749
750 lock_sock(sk);
751
752 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
753 while (tss.len) {
754 ret = __tcp_splice_read(sk, &tss);
755 if (ret < 0)
756 break;
757 else if (!ret) {
758 if (spliced)
759 break;
760 if (sock_flag(sk, SOCK_DONE))
761 break;
762 if (sk->sk_err) {
763 ret = sock_error(sk);
764 break;
765 }
766 if (sk->sk_shutdown & RCV_SHUTDOWN)
767 break;
768 if (sk->sk_state == TCP_CLOSE) {
769 /*
770 * This occurs when user tries to read
771 * from never connected socket.
772 */
773 if (!sock_flag(sk, SOCK_DONE))
774 ret = -ENOTCONN;
775 break;
776 }
777 if (!timeo) {
778 ret = -EAGAIN;
779 break;
780 }
781 /* if __tcp_splice_read() got nothing while we have
782 * an skb in receive queue, we do not want to loop.
783 * This might happen with URG data.
784 */
785 if (!skb_queue_empty(&sk->sk_receive_queue))
786 break;
787 sk_wait_data(sk, &timeo, NULL);
788 if (signal_pending(current)) {
789 ret = sock_intr_errno(timeo);
790 break;
791 }
792 continue;
793 }
794 tss.len -= ret;
795 spliced += ret;
796
797 if (!timeo)
798 break;
799 release_sock(sk);
800 lock_sock(sk);
801
802 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
803 (sk->sk_shutdown & RCV_SHUTDOWN) ||
804 signal_pending(current))
805 break;
806 }
807
808 release_sock(sk);
809
810 if (spliced)
811 return spliced;
812
813 return ret;
814 }
815 EXPORT_SYMBOL(tcp_splice_read);
816
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)817 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
818 bool force_schedule)
819 {
820 struct sk_buff *skb;
821
822 /* The TCP header must be at least 32-bit aligned. */
823 size = ALIGN(size, 4);
824
825 if (unlikely(tcp_under_memory_pressure(sk)))
826 sk_mem_reclaim_partial(sk);
827
828 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
829 if (likely(skb)) {
830 bool mem_scheduled;
831
832 if (force_schedule) {
833 mem_scheduled = true;
834 sk_forced_mem_schedule(sk, skb->truesize);
835 } else {
836 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
837 }
838 if (likely(mem_scheduled)) {
839 skb_reserve(skb, sk->sk_prot->max_header);
840 /*
841 * Make sure that we have exactly size bytes
842 * available to the caller, no more, no less.
843 */
844 skb->reserved_tailroom = skb->end - skb->tail - size;
845 return skb;
846 }
847 __kfree_skb(skb);
848 } else {
849 sk->sk_prot->enter_memory_pressure(sk);
850 sk_stream_moderate_sndbuf(sk);
851 }
852 return NULL;
853 }
854
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)855 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
856 int large_allowed)
857 {
858 struct tcp_sock *tp = tcp_sk(sk);
859 u32 new_size_goal, size_goal;
860
861 if (!large_allowed || !sk_can_gso(sk))
862 return mss_now;
863
864 /* Note : tcp_tso_autosize() will eventually split this later */
865 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
866 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
867
868 /* We try hard to avoid divides here */
869 size_goal = tp->gso_segs * mss_now;
870 if (unlikely(new_size_goal < size_goal ||
871 new_size_goal >= size_goal + mss_now)) {
872 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
873 sk->sk_gso_max_segs);
874 size_goal = tp->gso_segs * mss_now;
875 }
876
877 return max(size_goal, mss_now);
878 }
879
tcp_send_mss(struct sock * sk,int * size_goal,int flags)880 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
881 {
882 int mss_now;
883
884 mss_now = tcp_current_mss(sk);
885 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
886
887 return mss_now;
888 }
889
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)890 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
891 size_t size, int flags)
892 {
893 struct tcp_sock *tp = tcp_sk(sk);
894 int mss_now, size_goal;
895 int err;
896 ssize_t copied;
897 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
898
899 /* Wait for a connection to finish. One exception is TCP Fast Open
900 * (passive side) where data is allowed to be sent before a connection
901 * is fully established.
902 */
903 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
904 !tcp_passive_fastopen(sk)) {
905 err = sk_stream_wait_connect(sk, &timeo);
906 if (err != 0)
907 goto out_err;
908 }
909
910 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
911
912 mss_now = tcp_send_mss(sk, &size_goal, flags);
913 copied = 0;
914
915 err = -EPIPE;
916 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
917 goto out_err;
918
919 while (size > 0) {
920 struct sk_buff *skb = tcp_write_queue_tail(sk);
921 int copy, i;
922 bool can_coalesce;
923
924 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
925 !tcp_skb_can_collapse_to(skb)) {
926 new_segment:
927 if (!sk_stream_memory_free(sk))
928 goto wait_for_sndbuf;
929
930 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
931 skb_queue_empty(&sk->sk_write_queue));
932 if (!skb)
933 goto wait_for_memory;
934
935 skb_entail(sk, skb);
936 copy = size_goal;
937 }
938
939 if (copy > size)
940 copy = size;
941
942 i = skb_shinfo(skb)->nr_frags;
943 can_coalesce = skb_can_coalesce(skb, i, page, offset);
944 if (!can_coalesce && i >= sysctl_max_skb_frags) {
945 tcp_mark_push(tp, skb);
946 goto new_segment;
947 }
948 if (!sk_wmem_schedule(sk, copy))
949 goto wait_for_memory;
950
951 if (can_coalesce) {
952 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
953 } else {
954 get_page(page);
955 skb_fill_page_desc(skb, i, page, offset, copy);
956 }
957 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
958
959 skb->len += copy;
960 skb->data_len += copy;
961 skb->truesize += copy;
962 sk->sk_wmem_queued += copy;
963 sk_mem_charge(sk, copy);
964 skb->ip_summed = CHECKSUM_PARTIAL;
965 tp->write_seq += copy;
966 TCP_SKB_CB(skb)->end_seq += copy;
967 tcp_skb_pcount_set(skb, 0);
968
969 if (!copied)
970 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
971
972 copied += copy;
973 offset += copy;
974 size -= copy;
975 if (!size)
976 goto out;
977
978 if (skb->len < size_goal || (flags & MSG_OOB))
979 continue;
980
981 if (forced_push(tp)) {
982 tcp_mark_push(tp, skb);
983 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
984 } else if (skb == tcp_send_head(sk))
985 tcp_push_one(sk, mss_now);
986 continue;
987
988 wait_for_sndbuf:
989 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
990 wait_for_memory:
991 tcp_push(sk, flags & ~MSG_MORE, mss_now,
992 TCP_NAGLE_PUSH, size_goal);
993
994 err = sk_stream_wait_memory(sk, &timeo);
995 if (err != 0)
996 goto do_error;
997
998 mss_now = tcp_send_mss(sk, &size_goal, flags);
999 }
1000
1001 out:
1002 if (copied) {
1003 tcp_tx_timestamp(sk, sk->sk_tsflags, tcp_write_queue_tail(sk));
1004 if (!(flags & MSG_SENDPAGE_NOTLAST))
1005 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1006 }
1007 return copied;
1008
1009 do_error:
1010 if (copied)
1011 goto out;
1012 out_err:
1013 /* make sure we wake any epoll edge trigger waiter */
1014 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1015 sk->sk_write_space(sk);
1016 return sk_stream_error(sk, flags, err);
1017 }
1018
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1019 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1020 size_t size, int flags)
1021 {
1022 ssize_t res;
1023
1024 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1025 !sk_check_csum_caps(sk))
1026 return sock_no_sendpage(sk->sk_socket, page, offset, size,
1027 flags);
1028
1029 lock_sock(sk);
1030
1031 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1032
1033 res = do_tcp_sendpages(sk, page, offset, size, flags);
1034 release_sock(sk);
1035 return res;
1036 }
1037 EXPORT_SYMBOL(tcp_sendpage);
1038
1039 /* Do not bother using a page frag for very small frames.
1040 * But use this heuristic only for the first skb in write queue.
1041 *
1042 * Having no payload in skb->head allows better SACK shifting
1043 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1044 * write queue has less skbs.
1045 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1046 * This also speeds up tso_fragment(), since it wont fallback
1047 * to tcp_fragment().
1048 */
linear_payload_sz(bool first_skb)1049 static int linear_payload_sz(bool first_skb)
1050 {
1051 if (first_skb)
1052 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1053 return 0;
1054 }
1055
select_size(const struct sock * sk,bool sg,bool first_skb)1056 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1057 {
1058 const struct tcp_sock *tp = tcp_sk(sk);
1059 int tmp = tp->mss_cache;
1060
1061 if (sg) {
1062 if (sk_can_gso(sk)) {
1063 tmp = linear_payload_sz(first_skb);
1064 } else {
1065 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1066
1067 if (tmp >= pgbreak &&
1068 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1069 tmp = pgbreak;
1070 }
1071 }
1072
1073 return tmp;
1074 }
1075
tcp_free_fastopen_req(struct tcp_sock * tp)1076 void tcp_free_fastopen_req(struct tcp_sock *tp)
1077 {
1078 if (tp->fastopen_req) {
1079 kfree(tp->fastopen_req);
1080 tp->fastopen_req = NULL;
1081 }
1082 }
1083
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size)1084 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1085 int *copied, size_t size)
1086 {
1087 struct tcp_sock *tp = tcp_sk(sk);
1088 struct inet_sock *inet = inet_sk(sk);
1089 struct sockaddr *uaddr = msg->msg_name;
1090 int err, flags;
1091
1092 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1093 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1094 uaddr->sa_family == AF_UNSPEC))
1095 return -EOPNOTSUPP;
1096 if (tp->fastopen_req)
1097 return -EALREADY; /* Another Fast Open is in progress */
1098
1099 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1100 sk->sk_allocation);
1101 if (unlikely(!tp->fastopen_req))
1102 return -ENOBUFS;
1103 tp->fastopen_req->data = msg;
1104 tp->fastopen_req->size = size;
1105
1106 if (inet->defer_connect) {
1107 err = tcp_connect(sk);
1108 /* Same failure procedure as in tcp_v4/6_connect */
1109 if (err) {
1110 tcp_set_state(sk, TCP_CLOSE);
1111 inet->inet_dport = 0;
1112 sk->sk_route_caps = 0;
1113 }
1114 }
1115 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1116 err = __inet_stream_connect(sk->sk_socket, uaddr,
1117 msg->msg_namelen, flags);
1118 /* fastopen_req could already be freed in __inet_stream_connect
1119 * if the connection times out or gets rst
1120 */
1121 if (tp->fastopen_req) {
1122 *copied = tp->fastopen_req->copied;
1123 tcp_free_fastopen_req(tp);
1124 inet->defer_connect = 0;
1125 }
1126 return err;
1127 }
1128
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1129 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1130 {
1131 struct tcp_sock *tp = tcp_sk(sk);
1132 struct sk_buff *skb;
1133 struct sockcm_cookie sockc;
1134 int flags, err, copied = 0;
1135 int mss_now = 0, size_goal, copied_syn = 0;
1136 bool process_backlog = false;
1137 bool sg;
1138 long timeo;
1139
1140 lock_sock(sk);
1141
1142 flags = msg->msg_flags;
1143 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) {
1144 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1145 if (err == -EINPROGRESS && copied_syn > 0)
1146 goto out;
1147 else if (err)
1148 goto out_err;
1149 }
1150
1151 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1152
1153 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1154
1155 /* Wait for a connection to finish. One exception is TCP Fast Open
1156 * (passive side) where data is allowed to be sent before a connection
1157 * is fully established.
1158 */
1159 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1160 !tcp_passive_fastopen(sk)) {
1161 err = sk_stream_wait_connect(sk, &timeo);
1162 if (err != 0)
1163 goto do_error;
1164 }
1165
1166 if (unlikely(tp->repair)) {
1167 if (tp->repair_queue == TCP_RECV_QUEUE) {
1168 copied = tcp_send_rcvq(sk, msg, size);
1169 goto out_nopush;
1170 }
1171
1172 err = -EINVAL;
1173 if (tp->repair_queue == TCP_NO_QUEUE)
1174 goto out_err;
1175
1176 /* 'common' sending to sendq */
1177 }
1178
1179 sockc.tsflags = sk->sk_tsflags;
1180 if (msg->msg_controllen) {
1181 err = sock_cmsg_send(sk, msg, &sockc);
1182 if (unlikely(err)) {
1183 err = -EINVAL;
1184 goto out_err;
1185 }
1186 }
1187
1188 /* This should be in poll */
1189 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1190
1191 /* Ok commence sending. */
1192 copied = 0;
1193
1194 restart:
1195 mss_now = tcp_send_mss(sk, &size_goal, flags);
1196
1197 err = -EPIPE;
1198 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1199 goto do_error;
1200
1201 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1202
1203 while (msg_data_left(msg)) {
1204 int copy = 0;
1205 int max = size_goal;
1206
1207 skb = tcp_write_queue_tail(sk);
1208 if (tcp_send_head(sk)) {
1209 if (skb->ip_summed == CHECKSUM_NONE)
1210 max = mss_now;
1211 copy = max - skb->len;
1212 }
1213
1214 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1215 bool first_skb;
1216
1217 new_segment:
1218 /* Allocate new segment. If the interface is SG,
1219 * allocate skb fitting to single page.
1220 */
1221 if (!sk_stream_memory_free(sk))
1222 goto wait_for_sndbuf;
1223
1224 if (process_backlog && sk_flush_backlog(sk)) {
1225 process_backlog = false;
1226 goto restart;
1227 }
1228 first_skb = skb_queue_empty(&sk->sk_write_queue);
1229 skb = sk_stream_alloc_skb(sk,
1230 select_size(sk, sg, first_skb),
1231 sk->sk_allocation,
1232 first_skb);
1233 if (!skb)
1234 goto wait_for_memory;
1235
1236 process_backlog = true;
1237 /*
1238 * Check whether we can use HW checksum.
1239 */
1240 if (sk_check_csum_caps(sk))
1241 skb->ip_summed = CHECKSUM_PARTIAL;
1242
1243 skb_entail(sk, skb);
1244 copy = size_goal;
1245 max = size_goal;
1246
1247 /* All packets are restored as if they have
1248 * already been sent. skb_mstamp isn't set to
1249 * avoid wrong rtt estimation.
1250 */
1251 if (tp->repair)
1252 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1253 }
1254
1255 /* Try to append data to the end of skb. */
1256 if (copy > msg_data_left(msg))
1257 copy = msg_data_left(msg);
1258
1259 /* Where to copy to? */
1260 if (skb_availroom(skb) > 0) {
1261 /* We have some space in skb head. Superb! */
1262 copy = min_t(int, copy, skb_availroom(skb));
1263 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1264 if (err)
1265 goto do_fault;
1266 } else {
1267 bool merge = true;
1268 int i = skb_shinfo(skb)->nr_frags;
1269 struct page_frag *pfrag = sk_page_frag(sk);
1270
1271 if (!sk_page_frag_refill(sk, pfrag))
1272 goto wait_for_memory;
1273
1274 if (!skb_can_coalesce(skb, i, pfrag->page,
1275 pfrag->offset)) {
1276 if (i >= sysctl_max_skb_frags || !sg) {
1277 tcp_mark_push(tp, skb);
1278 goto new_segment;
1279 }
1280 merge = false;
1281 }
1282
1283 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1284
1285 if (!sk_wmem_schedule(sk, copy))
1286 goto wait_for_memory;
1287
1288 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1289 pfrag->page,
1290 pfrag->offset,
1291 copy);
1292 if (err)
1293 goto do_error;
1294
1295 /* Update the skb. */
1296 if (merge) {
1297 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1298 } else {
1299 skb_fill_page_desc(skb, i, pfrag->page,
1300 pfrag->offset, copy);
1301 get_page(pfrag->page);
1302 }
1303 pfrag->offset += copy;
1304 }
1305
1306 if (!copied)
1307 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1308
1309 tp->write_seq += copy;
1310 TCP_SKB_CB(skb)->end_seq += copy;
1311 tcp_skb_pcount_set(skb, 0);
1312
1313 copied += copy;
1314 if (!msg_data_left(msg)) {
1315 if (unlikely(flags & MSG_EOR))
1316 TCP_SKB_CB(skb)->eor = 1;
1317 goto out;
1318 }
1319
1320 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1321 continue;
1322
1323 if (forced_push(tp)) {
1324 tcp_mark_push(tp, skb);
1325 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1326 } else if (skb == tcp_send_head(sk))
1327 tcp_push_one(sk, mss_now);
1328 continue;
1329
1330 wait_for_sndbuf:
1331 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1332 wait_for_memory:
1333 if (copied)
1334 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1335 TCP_NAGLE_PUSH, size_goal);
1336
1337 err = sk_stream_wait_memory(sk, &timeo);
1338 if (err != 0)
1339 goto do_error;
1340
1341 mss_now = tcp_send_mss(sk, &size_goal, flags);
1342 }
1343
1344 out:
1345 if (copied) {
1346 tcp_tx_timestamp(sk, sockc.tsflags, tcp_write_queue_tail(sk));
1347 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1348 }
1349 out_nopush:
1350 release_sock(sk);
1351 return copied + copied_syn;
1352
1353 do_fault:
1354 if (!skb->len) {
1355 tcp_unlink_write_queue(skb, sk);
1356 /* It is the one place in all of TCP, except connection
1357 * reset, where we can be unlinking the send_head.
1358 */
1359 tcp_check_send_head(sk, skb);
1360 sk_wmem_free_skb(sk, skb);
1361 }
1362
1363 do_error:
1364 if (copied + copied_syn)
1365 goto out;
1366 out_err:
1367 err = sk_stream_error(sk, flags, err);
1368 /* make sure we wake any epoll edge trigger waiter */
1369 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1370 sk->sk_write_space(sk);
1371 release_sock(sk);
1372 return err;
1373 }
1374 EXPORT_SYMBOL(tcp_sendmsg);
1375
1376 /*
1377 * Handle reading urgent data. BSD has very simple semantics for
1378 * this, no blocking and very strange errors 8)
1379 */
1380
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1381 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1382 {
1383 struct tcp_sock *tp = tcp_sk(sk);
1384
1385 /* No URG data to read. */
1386 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1387 tp->urg_data == TCP_URG_READ)
1388 return -EINVAL; /* Yes this is right ! */
1389
1390 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1391 return -ENOTCONN;
1392
1393 if (tp->urg_data & TCP_URG_VALID) {
1394 int err = 0;
1395 char c = tp->urg_data;
1396
1397 if (!(flags & MSG_PEEK))
1398 tp->urg_data = TCP_URG_READ;
1399
1400 /* Read urgent data. */
1401 msg->msg_flags |= MSG_OOB;
1402
1403 if (len > 0) {
1404 if (!(flags & MSG_TRUNC))
1405 err = memcpy_to_msg(msg, &c, 1);
1406 len = 1;
1407 } else
1408 msg->msg_flags |= MSG_TRUNC;
1409
1410 return err ? -EFAULT : len;
1411 }
1412
1413 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1414 return 0;
1415
1416 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1417 * the available implementations agree in this case:
1418 * this call should never block, independent of the
1419 * blocking state of the socket.
1420 * Mike <pall@rz.uni-karlsruhe.de>
1421 */
1422 return -EAGAIN;
1423 }
1424
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1425 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1426 {
1427 struct sk_buff *skb;
1428 int copied = 0, err = 0;
1429
1430 /* XXX -- need to support SO_PEEK_OFF */
1431
1432 skb_queue_walk(&sk->sk_write_queue, skb) {
1433 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1434 if (err)
1435 break;
1436
1437 copied += skb->len;
1438 }
1439
1440 return err ?: copied;
1441 }
1442
1443 /* Clean up the receive buffer for full frames taken by the user,
1444 * then send an ACK if necessary. COPIED is the number of bytes
1445 * tcp_recvmsg has given to the user so far, it speeds up the
1446 * calculation of whether or not we must ACK for the sake of
1447 * a window update.
1448 */
tcp_cleanup_rbuf(struct sock * sk,int copied)1449 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1450 {
1451 struct tcp_sock *tp = tcp_sk(sk);
1452 bool time_to_ack = false;
1453
1454 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1455
1456 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1457 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1458 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1459
1460 if (inet_csk_ack_scheduled(sk)) {
1461 const struct inet_connection_sock *icsk = inet_csk(sk);
1462 /* Delayed ACKs frequently hit locked sockets during bulk
1463 * receive. */
1464 if (icsk->icsk_ack.blocked ||
1465 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1466 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1467 /*
1468 * If this read emptied read buffer, we send ACK, if
1469 * connection is not bidirectional, user drained
1470 * receive buffer and there was a small segment
1471 * in queue.
1472 */
1473 (copied > 0 &&
1474 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1475 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1476 !icsk->icsk_ack.pingpong)) &&
1477 !atomic_read(&sk->sk_rmem_alloc)))
1478 time_to_ack = true;
1479 }
1480
1481 /* We send an ACK if we can now advertise a non-zero window
1482 * which has been raised "significantly".
1483 *
1484 * Even if window raised up to infinity, do not send window open ACK
1485 * in states, where we will not receive more. It is useless.
1486 */
1487 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1488 __u32 rcv_window_now = tcp_receive_window(tp);
1489
1490 /* Optimize, __tcp_select_window() is not cheap. */
1491 if (2*rcv_window_now <= tp->window_clamp) {
1492 __u32 new_window = __tcp_select_window(sk);
1493
1494 /* Send ACK now, if this read freed lots of space
1495 * in our buffer. Certainly, new_window is new window.
1496 * We can advertise it now, if it is not less than current one.
1497 * "Lots" means "at least twice" here.
1498 */
1499 if (new_window && new_window >= 2 * rcv_window_now)
1500 time_to_ack = true;
1501 }
1502 }
1503 if (time_to_ack)
1504 tcp_send_ack(sk);
1505 }
1506
tcp_prequeue_process(struct sock * sk)1507 static void tcp_prequeue_process(struct sock *sk)
1508 {
1509 struct sk_buff *skb;
1510 struct tcp_sock *tp = tcp_sk(sk);
1511
1512 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1513
1514 while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1515 sk_backlog_rcv(sk, skb);
1516
1517 /* Clear memory counter. */
1518 tp->ucopy.memory = 0;
1519 }
1520
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1521 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1522 {
1523 struct sk_buff *skb;
1524 u32 offset;
1525
1526 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1527 offset = seq - TCP_SKB_CB(skb)->seq;
1528 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1529 pr_err_once("%s: found a SYN, please report !\n", __func__);
1530 offset--;
1531 }
1532 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1533 *off = offset;
1534 return skb;
1535 }
1536 /* This looks weird, but this can happen if TCP collapsing
1537 * splitted a fat GRO packet, while we released socket lock
1538 * in skb_splice_bits()
1539 */
1540 sk_eat_skb(sk, skb);
1541 }
1542 return NULL;
1543 }
1544
1545 /*
1546 * This routine provides an alternative to tcp_recvmsg() for routines
1547 * that would like to handle copying from skbuffs directly in 'sendfile'
1548 * fashion.
1549 * Note:
1550 * - It is assumed that the socket was locked by the caller.
1551 * - The routine does not block.
1552 * - At present, there is no support for reading OOB data
1553 * or for 'peeking' the socket using this routine
1554 * (although both would be easy to implement).
1555 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1556 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1557 sk_read_actor_t recv_actor)
1558 {
1559 struct sk_buff *skb;
1560 struct tcp_sock *tp = tcp_sk(sk);
1561 u32 seq = tp->copied_seq;
1562 u32 offset;
1563 int copied = 0;
1564
1565 if (sk->sk_state == TCP_LISTEN)
1566 return -ENOTCONN;
1567 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1568 if (offset < skb->len) {
1569 int used;
1570 size_t len;
1571
1572 len = skb->len - offset;
1573 /* Stop reading if we hit a patch of urgent data */
1574 if (tp->urg_data) {
1575 u32 urg_offset = tp->urg_seq - seq;
1576 if (urg_offset < len)
1577 len = urg_offset;
1578 if (!len)
1579 break;
1580 }
1581 used = recv_actor(desc, skb, offset, len);
1582 if (used <= 0) {
1583 if (!copied)
1584 copied = used;
1585 break;
1586 } else if (used <= len) {
1587 seq += used;
1588 copied += used;
1589 offset += used;
1590 }
1591 /* If recv_actor drops the lock (e.g. TCP splice
1592 * receive) the skb pointer might be invalid when
1593 * getting here: tcp_collapse might have deleted it
1594 * while aggregating skbs from the socket queue.
1595 */
1596 skb = tcp_recv_skb(sk, seq - 1, &offset);
1597 if (!skb)
1598 break;
1599 /* TCP coalescing might have appended data to the skb.
1600 * Try to splice more frags
1601 */
1602 if (offset + 1 != skb->len)
1603 continue;
1604 }
1605 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1606 sk_eat_skb(sk, skb);
1607 ++seq;
1608 break;
1609 }
1610 sk_eat_skb(sk, skb);
1611 if (!desc->count)
1612 break;
1613 tp->copied_seq = seq;
1614 }
1615 tp->copied_seq = seq;
1616
1617 tcp_rcv_space_adjust(sk);
1618
1619 /* Clean up data we have read: This will do ACK frames. */
1620 if (copied > 0) {
1621 tcp_recv_skb(sk, seq, &offset);
1622 tcp_cleanup_rbuf(sk, copied);
1623 }
1624 return copied;
1625 }
1626 EXPORT_SYMBOL(tcp_read_sock);
1627
tcp_peek_len(struct socket * sock)1628 int tcp_peek_len(struct socket *sock)
1629 {
1630 return tcp_inq(sock->sk);
1631 }
1632 EXPORT_SYMBOL(tcp_peek_len);
1633
1634 /*
1635 * This routine copies from a sock struct into the user buffer.
1636 *
1637 * Technical note: in 2.3 we work on _locked_ socket, so that
1638 * tricks with *seq access order and skb->users are not required.
1639 * Probably, code can be easily improved even more.
1640 */
1641
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1642 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1643 int flags, int *addr_len)
1644 {
1645 struct tcp_sock *tp = tcp_sk(sk);
1646 int copied = 0;
1647 u32 peek_seq;
1648 u32 *seq;
1649 unsigned long used;
1650 int err;
1651 int target; /* Read at least this many bytes */
1652 long timeo;
1653 struct task_struct *user_recv = NULL;
1654 struct sk_buff *skb, *last;
1655 u32 urg_hole = 0;
1656
1657 if (unlikely(flags & MSG_ERRQUEUE))
1658 return inet_recv_error(sk, msg, len, addr_len);
1659
1660 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1661 (sk->sk_state == TCP_ESTABLISHED))
1662 sk_busy_loop(sk, nonblock);
1663
1664 lock_sock(sk);
1665
1666 err = -ENOTCONN;
1667 if (sk->sk_state == TCP_LISTEN)
1668 goto out;
1669
1670 timeo = sock_rcvtimeo(sk, nonblock);
1671
1672 /* Urgent data needs to be handled specially. */
1673 if (flags & MSG_OOB)
1674 goto recv_urg;
1675
1676 if (unlikely(tp->repair)) {
1677 err = -EPERM;
1678 if (!(flags & MSG_PEEK))
1679 goto out;
1680
1681 if (tp->repair_queue == TCP_SEND_QUEUE)
1682 goto recv_sndq;
1683
1684 err = -EINVAL;
1685 if (tp->repair_queue == TCP_NO_QUEUE)
1686 goto out;
1687
1688 /* 'common' recv queue MSG_PEEK-ing */
1689 }
1690
1691 seq = &tp->copied_seq;
1692 if (flags & MSG_PEEK) {
1693 peek_seq = tp->copied_seq;
1694 seq = &peek_seq;
1695 }
1696
1697 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1698
1699 do {
1700 u32 offset;
1701
1702 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1703 if (tp->urg_data && tp->urg_seq == *seq) {
1704 if (copied)
1705 break;
1706 if (signal_pending(current)) {
1707 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1708 break;
1709 }
1710 }
1711
1712 /* Next get a buffer. */
1713
1714 last = skb_peek_tail(&sk->sk_receive_queue);
1715 skb_queue_walk(&sk->sk_receive_queue, skb) {
1716 last = skb;
1717 /* Now that we have two receive queues this
1718 * shouldn't happen.
1719 */
1720 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1721 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1722 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1723 flags))
1724 break;
1725
1726 offset = *seq - TCP_SKB_CB(skb)->seq;
1727 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1728 pr_err_once("%s: found a SYN, please report !\n", __func__);
1729 offset--;
1730 }
1731 if (offset < skb->len)
1732 goto found_ok_skb;
1733 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1734 goto found_fin_ok;
1735 WARN(!(flags & MSG_PEEK),
1736 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1737 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1738 }
1739
1740 /* Well, if we have backlog, try to process it now yet. */
1741
1742 if (copied >= target && !sk->sk_backlog.tail)
1743 break;
1744
1745 if (copied) {
1746 if (sk->sk_err ||
1747 sk->sk_state == TCP_CLOSE ||
1748 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1749 !timeo ||
1750 signal_pending(current))
1751 break;
1752 } else {
1753 if (sock_flag(sk, SOCK_DONE))
1754 break;
1755
1756 if (sk->sk_err) {
1757 copied = sock_error(sk);
1758 break;
1759 }
1760
1761 if (sk->sk_shutdown & RCV_SHUTDOWN)
1762 break;
1763
1764 if (sk->sk_state == TCP_CLOSE) {
1765 if (!sock_flag(sk, SOCK_DONE)) {
1766 /* This occurs when user tries to read
1767 * from never connected socket.
1768 */
1769 copied = -ENOTCONN;
1770 break;
1771 }
1772 break;
1773 }
1774
1775 if (!timeo) {
1776 copied = -EAGAIN;
1777 break;
1778 }
1779
1780 if (signal_pending(current)) {
1781 copied = sock_intr_errno(timeo);
1782 break;
1783 }
1784 }
1785
1786 tcp_cleanup_rbuf(sk, copied);
1787
1788 if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1789 /* Install new reader */
1790 if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1791 user_recv = current;
1792 tp->ucopy.task = user_recv;
1793 tp->ucopy.msg = msg;
1794 }
1795
1796 tp->ucopy.len = len;
1797
1798 WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1799 !(flags & (MSG_PEEK | MSG_TRUNC)));
1800
1801 /* Ugly... If prequeue is not empty, we have to
1802 * process it before releasing socket, otherwise
1803 * order will be broken at second iteration.
1804 * More elegant solution is required!!!
1805 *
1806 * Look: we have the following (pseudo)queues:
1807 *
1808 * 1. packets in flight
1809 * 2. backlog
1810 * 3. prequeue
1811 * 4. receive_queue
1812 *
1813 * Each queue can be processed only if the next ones
1814 * are empty. At this point we have empty receive_queue.
1815 * But prequeue _can_ be not empty after 2nd iteration,
1816 * when we jumped to start of loop because backlog
1817 * processing added something to receive_queue.
1818 * We cannot release_sock(), because backlog contains
1819 * packets arrived _after_ prequeued ones.
1820 *
1821 * Shortly, algorithm is clear --- to process all
1822 * the queues in order. We could make it more directly,
1823 * requeueing packets from backlog to prequeue, if
1824 * is not empty. It is more elegant, but eats cycles,
1825 * unfortunately.
1826 */
1827 if (!skb_queue_empty(&tp->ucopy.prequeue))
1828 goto do_prequeue;
1829
1830 /* __ Set realtime policy in scheduler __ */
1831 }
1832
1833 if (copied >= target) {
1834 /* Do not sleep, just process backlog. */
1835 release_sock(sk);
1836 lock_sock(sk);
1837 } else {
1838 sk_wait_data(sk, &timeo, last);
1839 }
1840
1841 if (user_recv) {
1842 int chunk;
1843
1844 /* __ Restore normal policy in scheduler __ */
1845
1846 chunk = len - tp->ucopy.len;
1847 if (chunk != 0) {
1848 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1849 len -= chunk;
1850 copied += chunk;
1851 }
1852
1853 if (tp->rcv_nxt == tp->copied_seq &&
1854 !skb_queue_empty(&tp->ucopy.prequeue)) {
1855 do_prequeue:
1856 tcp_prequeue_process(sk);
1857
1858 chunk = len - tp->ucopy.len;
1859 if (chunk != 0) {
1860 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1861 len -= chunk;
1862 copied += chunk;
1863 }
1864 }
1865 }
1866 if ((flags & MSG_PEEK) &&
1867 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1868 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1869 current->comm,
1870 task_pid_nr(current));
1871 peek_seq = tp->copied_seq;
1872 }
1873 continue;
1874
1875 found_ok_skb:
1876 /* Ok so how much can we use? */
1877 used = skb->len - offset;
1878 if (len < used)
1879 used = len;
1880
1881 /* Do we have urgent data here? */
1882 if (tp->urg_data) {
1883 u32 urg_offset = tp->urg_seq - *seq;
1884 if (urg_offset < used) {
1885 if (!urg_offset) {
1886 if (!sock_flag(sk, SOCK_URGINLINE)) {
1887 ++*seq;
1888 urg_hole++;
1889 offset++;
1890 used--;
1891 if (!used)
1892 goto skip_copy;
1893 }
1894 } else
1895 used = urg_offset;
1896 }
1897 }
1898
1899 if (!(flags & MSG_TRUNC)) {
1900 err = skb_copy_datagram_msg(skb, offset, msg, used);
1901 if (err) {
1902 /* Exception. Bailout! */
1903 if (!copied)
1904 copied = -EFAULT;
1905 break;
1906 }
1907 }
1908
1909 *seq += used;
1910 copied += used;
1911 len -= used;
1912
1913 tcp_rcv_space_adjust(sk);
1914
1915 skip_copy:
1916 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1917 tp->urg_data = 0;
1918 tcp_fast_path_check(sk);
1919 }
1920 if (used + offset < skb->len)
1921 continue;
1922
1923 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1924 goto found_fin_ok;
1925 if (!(flags & MSG_PEEK))
1926 sk_eat_skb(sk, skb);
1927 continue;
1928
1929 found_fin_ok:
1930 /* Process the FIN. */
1931 ++*seq;
1932 if (!(flags & MSG_PEEK))
1933 sk_eat_skb(sk, skb);
1934 break;
1935 } while (len > 0);
1936
1937 if (user_recv) {
1938 if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1939 int chunk;
1940
1941 tp->ucopy.len = copied > 0 ? len : 0;
1942
1943 tcp_prequeue_process(sk);
1944
1945 if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1946 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1947 len -= chunk;
1948 copied += chunk;
1949 }
1950 }
1951
1952 tp->ucopy.task = NULL;
1953 tp->ucopy.len = 0;
1954 }
1955
1956 /* According to UNIX98, msg_name/msg_namelen are ignored
1957 * on connected socket. I was just happy when found this 8) --ANK
1958 */
1959
1960 /* Clean up data we have read: This will do ACK frames. */
1961 tcp_cleanup_rbuf(sk, copied);
1962
1963 release_sock(sk);
1964 return copied;
1965
1966 out:
1967 release_sock(sk);
1968 return err;
1969
1970 recv_urg:
1971 err = tcp_recv_urg(sk, msg, len, flags);
1972 goto out;
1973
1974 recv_sndq:
1975 err = tcp_peek_sndq(sk, msg, len);
1976 goto out;
1977 }
1978 EXPORT_SYMBOL(tcp_recvmsg);
1979
tcp_set_state(struct sock * sk,int state)1980 void tcp_set_state(struct sock *sk, int state)
1981 {
1982 int oldstate = sk->sk_state;
1983
1984 switch (state) {
1985 case TCP_ESTABLISHED:
1986 if (oldstate != TCP_ESTABLISHED)
1987 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1988 break;
1989
1990 case TCP_CLOSE:
1991 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1992 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1993
1994 sk->sk_prot->unhash(sk);
1995 if (inet_csk(sk)->icsk_bind_hash &&
1996 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1997 inet_put_port(sk);
1998 /* fall through */
1999 default:
2000 if (oldstate == TCP_ESTABLISHED)
2001 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2002 }
2003
2004 /* Change state AFTER socket is unhashed to avoid closed
2005 * socket sitting in hash tables.
2006 */
2007 sk_state_store(sk, state);
2008
2009 #ifdef STATE_TRACE
2010 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2011 #endif
2012 }
2013 EXPORT_SYMBOL_GPL(tcp_set_state);
2014
2015 /*
2016 * State processing on a close. This implements the state shift for
2017 * sending our FIN frame. Note that we only send a FIN for some
2018 * states. A shutdown() may have already sent the FIN, or we may be
2019 * closed.
2020 */
2021
2022 static const unsigned char new_state[16] = {
2023 /* current state: new state: action: */
2024 [0 /* (Invalid) */] = TCP_CLOSE,
2025 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2026 [TCP_SYN_SENT] = TCP_CLOSE,
2027 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2028 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2029 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2030 [TCP_TIME_WAIT] = TCP_CLOSE,
2031 [TCP_CLOSE] = TCP_CLOSE,
2032 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2033 [TCP_LAST_ACK] = TCP_LAST_ACK,
2034 [TCP_LISTEN] = TCP_CLOSE,
2035 [TCP_CLOSING] = TCP_CLOSING,
2036 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2037 };
2038
tcp_close_state(struct sock * sk)2039 static int tcp_close_state(struct sock *sk)
2040 {
2041 int next = (int)new_state[sk->sk_state];
2042 int ns = next & TCP_STATE_MASK;
2043
2044 tcp_set_state(sk, ns);
2045
2046 return next & TCP_ACTION_FIN;
2047 }
2048
2049 /*
2050 * Shutdown the sending side of a connection. Much like close except
2051 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2052 */
2053
tcp_shutdown(struct sock * sk,int how)2054 void tcp_shutdown(struct sock *sk, int how)
2055 {
2056 /* We need to grab some memory, and put together a FIN,
2057 * and then put it into the queue to be sent.
2058 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2059 */
2060 if (!(how & SEND_SHUTDOWN))
2061 return;
2062
2063 /* If we've already sent a FIN, or it's a closed state, skip this. */
2064 if ((1 << sk->sk_state) &
2065 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2066 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2067 /* Clear out any half completed packets. FIN if needed. */
2068 if (tcp_close_state(sk))
2069 tcp_send_fin(sk);
2070 }
2071 }
2072 EXPORT_SYMBOL(tcp_shutdown);
2073
tcp_check_oom(struct sock * sk,int shift)2074 bool tcp_check_oom(struct sock *sk, int shift)
2075 {
2076 bool too_many_orphans, out_of_socket_memory;
2077
2078 too_many_orphans = tcp_too_many_orphans(sk, shift);
2079 out_of_socket_memory = tcp_out_of_memory(sk);
2080
2081 if (too_many_orphans)
2082 net_info_ratelimited("too many orphaned sockets\n");
2083 if (out_of_socket_memory)
2084 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2085 return too_many_orphans || out_of_socket_memory;
2086 }
2087
tcp_close(struct sock * sk,long timeout)2088 void tcp_close(struct sock *sk, long timeout)
2089 {
2090 struct sk_buff *skb;
2091 int data_was_unread = 0;
2092 int state;
2093
2094 lock_sock(sk);
2095 sk->sk_shutdown = SHUTDOWN_MASK;
2096
2097 if (sk->sk_state == TCP_LISTEN) {
2098 tcp_set_state(sk, TCP_CLOSE);
2099
2100 /* Special case. */
2101 inet_csk_listen_stop(sk);
2102
2103 goto adjudge_to_death;
2104 }
2105
2106 /* We need to flush the recv. buffs. We do this only on the
2107 * descriptor close, not protocol-sourced closes, because the
2108 * reader process may not have drained the data yet!
2109 */
2110 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2111 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2112
2113 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2114 len--;
2115 data_was_unread += len;
2116 __kfree_skb(skb);
2117 }
2118
2119 sk_mem_reclaim(sk);
2120
2121 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2122 if (sk->sk_state == TCP_CLOSE)
2123 goto adjudge_to_death;
2124
2125 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2126 * data was lost. To witness the awful effects of the old behavior of
2127 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2128 * GET in an FTP client, suspend the process, wait for the client to
2129 * advertise a zero window, then kill -9 the FTP client, wheee...
2130 * Note: timeout is always zero in such a case.
2131 */
2132 if (unlikely(tcp_sk(sk)->repair)) {
2133 sk->sk_prot->disconnect(sk, 0);
2134 } else if (data_was_unread) {
2135 /* Unread data was tossed, zap the connection. */
2136 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2137 tcp_set_state(sk, TCP_CLOSE);
2138 tcp_send_active_reset(sk, sk->sk_allocation);
2139 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2140 /* Check zero linger _after_ checking for unread data. */
2141 sk->sk_prot->disconnect(sk, 0);
2142 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2143 } else if (tcp_close_state(sk)) {
2144 /* We FIN if the application ate all the data before
2145 * zapping the connection.
2146 */
2147
2148 /* RED-PEN. Formally speaking, we have broken TCP state
2149 * machine. State transitions:
2150 *
2151 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2152 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2153 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2154 *
2155 * are legal only when FIN has been sent (i.e. in window),
2156 * rather than queued out of window. Purists blame.
2157 *
2158 * F.e. "RFC state" is ESTABLISHED,
2159 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2160 *
2161 * The visible declinations are that sometimes
2162 * we enter time-wait state, when it is not required really
2163 * (harmless), do not send active resets, when they are
2164 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2165 * they look as CLOSING or LAST_ACK for Linux)
2166 * Probably, I missed some more holelets.
2167 * --ANK
2168 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2169 * in a single packet! (May consider it later but will
2170 * probably need API support or TCP_CORK SYN-ACK until
2171 * data is written and socket is closed.)
2172 */
2173 tcp_send_fin(sk);
2174 }
2175
2176 sk_stream_wait_close(sk, timeout);
2177
2178 adjudge_to_death:
2179 state = sk->sk_state;
2180 sock_hold(sk);
2181 sock_orphan(sk);
2182
2183 /* It is the last release_sock in its life. It will remove backlog. */
2184 release_sock(sk);
2185
2186
2187 /* Now socket is owned by kernel and we acquire BH lock
2188 to finish close. No need to check for user refs.
2189 */
2190 local_bh_disable();
2191 bh_lock_sock(sk);
2192 WARN_ON(sock_owned_by_user(sk));
2193
2194 percpu_counter_inc(sk->sk_prot->orphan_count);
2195
2196 /* Have we already been destroyed by a softirq or backlog? */
2197 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2198 goto out;
2199
2200 /* This is a (useful) BSD violating of the RFC. There is a
2201 * problem with TCP as specified in that the other end could
2202 * keep a socket open forever with no application left this end.
2203 * We use a 1 minute timeout (about the same as BSD) then kill
2204 * our end. If they send after that then tough - BUT: long enough
2205 * that we won't make the old 4*rto = almost no time - whoops
2206 * reset mistake.
2207 *
2208 * Nope, it was not mistake. It is really desired behaviour
2209 * f.e. on http servers, when such sockets are useless, but
2210 * consume significant resources. Let's do it with special
2211 * linger2 option. --ANK
2212 */
2213
2214 if (sk->sk_state == TCP_FIN_WAIT2) {
2215 struct tcp_sock *tp = tcp_sk(sk);
2216 if (tp->linger2 < 0) {
2217 tcp_set_state(sk, TCP_CLOSE);
2218 tcp_send_active_reset(sk, GFP_ATOMIC);
2219 __NET_INC_STATS(sock_net(sk),
2220 LINUX_MIB_TCPABORTONLINGER);
2221 } else {
2222 const int tmo = tcp_fin_time(sk);
2223
2224 if (tmo > TCP_TIMEWAIT_LEN) {
2225 inet_csk_reset_keepalive_timer(sk,
2226 tmo - TCP_TIMEWAIT_LEN);
2227 } else {
2228 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2229 goto out;
2230 }
2231 }
2232 }
2233 if (sk->sk_state != TCP_CLOSE) {
2234 sk_mem_reclaim(sk);
2235 if (tcp_check_oom(sk, 0)) {
2236 tcp_set_state(sk, TCP_CLOSE);
2237 tcp_send_active_reset(sk, GFP_ATOMIC);
2238 __NET_INC_STATS(sock_net(sk),
2239 LINUX_MIB_TCPABORTONMEMORY);
2240 } else if (!check_net(sock_net(sk))) {
2241 /* Not possible to send reset; just close */
2242 tcp_set_state(sk, TCP_CLOSE);
2243 }
2244 }
2245
2246 if (sk->sk_state == TCP_CLOSE) {
2247 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2248 /* We could get here with a non-NULL req if the socket is
2249 * aborted (e.g., closed with unread data) before 3WHS
2250 * finishes.
2251 */
2252 if (req)
2253 reqsk_fastopen_remove(sk, req, false);
2254 inet_csk_destroy_sock(sk);
2255 }
2256 /* Otherwise, socket is reprieved until protocol close. */
2257
2258 out:
2259 bh_unlock_sock(sk);
2260 local_bh_enable();
2261 sock_put(sk);
2262 }
2263 EXPORT_SYMBOL(tcp_close);
2264
2265 /* These states need RST on ABORT according to RFC793 */
2266
tcp_need_reset(int state)2267 static inline bool tcp_need_reset(int state)
2268 {
2269 return (1 << state) &
2270 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2271 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2272 }
2273
tcp_disconnect(struct sock * sk,int flags)2274 int tcp_disconnect(struct sock *sk, int flags)
2275 {
2276 struct inet_sock *inet = inet_sk(sk);
2277 struct inet_connection_sock *icsk = inet_csk(sk);
2278 struct tcp_sock *tp = tcp_sk(sk);
2279 int err = 0;
2280 int old_state = sk->sk_state;
2281
2282 if (old_state != TCP_CLOSE)
2283 tcp_set_state(sk, TCP_CLOSE);
2284
2285 /* ABORT function of RFC793 */
2286 if (old_state == TCP_LISTEN) {
2287 inet_csk_listen_stop(sk);
2288 } else if (unlikely(tp->repair)) {
2289 sk->sk_err = ECONNABORTED;
2290 } else if (tcp_need_reset(old_state) ||
2291 (tp->snd_nxt != tp->write_seq &&
2292 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2293 /* The last check adjusts for discrepancy of Linux wrt. RFC
2294 * states
2295 */
2296 tcp_send_active_reset(sk, gfp_any());
2297 sk->sk_err = ECONNRESET;
2298 } else if (old_state == TCP_SYN_SENT)
2299 sk->sk_err = ECONNRESET;
2300
2301 tcp_clear_xmit_timers(sk);
2302 __skb_queue_purge(&sk->sk_receive_queue);
2303 tcp_write_queue_purge(sk);
2304 skb_rbtree_purge(&tp->out_of_order_queue);
2305
2306 inet->inet_dport = 0;
2307
2308 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2309 inet_reset_saddr(sk);
2310
2311 sk->sk_shutdown = 0;
2312 sock_reset_flag(sk, SOCK_DONE);
2313 tp->srtt_us = 0;
2314 tp->write_seq += tp->max_window + 2;
2315 if (tp->write_seq == 0)
2316 tp->write_seq = 1;
2317 icsk->icsk_backoff = 0;
2318 tp->snd_cwnd = 2;
2319 icsk->icsk_probes_out = 0;
2320 tp->packets_out = 0;
2321 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2322 tp->snd_cwnd_cnt = 0;
2323 tp->window_clamp = 0;
2324 tcp_set_ca_state(sk, TCP_CA_Open);
2325 tp->is_sack_reneg = 0;
2326 tcp_clear_retrans(tp);
2327 inet_csk_delack_init(sk);
2328 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2329 * issue in __tcp_select_window()
2330 */
2331 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2332 tcp_init_send_head(sk);
2333 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2334 __sk_dst_reset(sk);
2335 dst_release(sk->sk_rx_dst);
2336 sk->sk_rx_dst = NULL;
2337 tcp_saved_syn_free(tp);
2338
2339 /* Clean up fastopen related fields */
2340 tcp_free_fastopen_req(tp);
2341 inet->defer_connect = 0;
2342
2343 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2344
2345 if (sk->sk_frag.page) {
2346 put_page(sk->sk_frag.page);
2347 sk->sk_frag.page = NULL;
2348 sk->sk_frag.offset = 0;
2349 }
2350
2351 sk->sk_error_report(sk);
2352 return err;
2353 }
2354 EXPORT_SYMBOL(tcp_disconnect);
2355
tcp_can_repair_sock(const struct sock * sk)2356 static inline bool tcp_can_repair_sock(const struct sock *sk)
2357 {
2358 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2359 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2360 }
2361
tcp_repair_set_window(struct tcp_sock * tp,char __user * optbuf,int len)2362 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2363 {
2364 struct tcp_repair_window opt;
2365
2366 if (!tp->repair)
2367 return -EPERM;
2368
2369 if (len != sizeof(opt))
2370 return -EINVAL;
2371
2372 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2373 return -EFAULT;
2374
2375 if (opt.max_window < opt.snd_wnd)
2376 return -EINVAL;
2377
2378 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2379 return -EINVAL;
2380
2381 if (after(opt.rcv_wup, tp->rcv_nxt))
2382 return -EINVAL;
2383
2384 tp->snd_wl1 = opt.snd_wl1;
2385 tp->snd_wnd = opt.snd_wnd;
2386 tp->max_window = opt.max_window;
2387
2388 tp->rcv_wnd = opt.rcv_wnd;
2389 tp->rcv_wup = opt.rcv_wup;
2390
2391 return 0;
2392 }
2393
tcp_repair_options_est(struct tcp_sock * tp,struct tcp_repair_opt __user * optbuf,unsigned int len)2394 static int tcp_repair_options_est(struct tcp_sock *tp,
2395 struct tcp_repair_opt __user *optbuf, unsigned int len)
2396 {
2397 struct tcp_repair_opt opt;
2398
2399 while (len >= sizeof(opt)) {
2400 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2401 return -EFAULT;
2402
2403 optbuf++;
2404 len -= sizeof(opt);
2405
2406 switch (opt.opt_code) {
2407 case TCPOPT_MSS:
2408 tp->rx_opt.mss_clamp = opt.opt_val;
2409 break;
2410 case TCPOPT_WINDOW:
2411 {
2412 u16 snd_wscale = opt.opt_val & 0xFFFF;
2413 u16 rcv_wscale = opt.opt_val >> 16;
2414
2415 if (snd_wscale > 14 || rcv_wscale > 14)
2416 return -EFBIG;
2417
2418 tp->rx_opt.snd_wscale = snd_wscale;
2419 tp->rx_opt.rcv_wscale = rcv_wscale;
2420 tp->rx_opt.wscale_ok = 1;
2421 }
2422 break;
2423 case TCPOPT_SACK_PERM:
2424 if (opt.opt_val != 0)
2425 return -EINVAL;
2426
2427 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2428 if (sysctl_tcp_fack)
2429 tcp_enable_fack(tp);
2430 break;
2431 case TCPOPT_TIMESTAMP:
2432 if (opt.opt_val != 0)
2433 return -EINVAL;
2434
2435 tp->rx_opt.tstamp_ok = 1;
2436 break;
2437 }
2438 }
2439
2440 return 0;
2441 }
2442
2443 /*
2444 * Socket option code for TCP.
2445 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2446 static int do_tcp_setsockopt(struct sock *sk, int level,
2447 int optname, char __user *optval, unsigned int optlen)
2448 {
2449 struct tcp_sock *tp = tcp_sk(sk);
2450 struct inet_connection_sock *icsk = inet_csk(sk);
2451 struct net *net = sock_net(sk);
2452 int val;
2453 int err = 0;
2454
2455 /* These are data/string values, all the others are ints */
2456 switch (optname) {
2457 case TCP_CONGESTION: {
2458 char name[TCP_CA_NAME_MAX];
2459
2460 if (optlen < 1)
2461 return -EINVAL;
2462
2463 val = strncpy_from_user(name, optval,
2464 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2465 if (val < 0)
2466 return -EFAULT;
2467 name[val] = 0;
2468
2469 lock_sock(sk);
2470 err = tcp_set_congestion_control(sk, name);
2471 release_sock(sk);
2472 return err;
2473 }
2474 default:
2475 /* fallthru */
2476 break;
2477 }
2478
2479 if (optlen < sizeof(int))
2480 return -EINVAL;
2481
2482 if (get_user(val, (int __user *)optval))
2483 return -EFAULT;
2484
2485 lock_sock(sk);
2486
2487 switch (optname) {
2488 case TCP_MAXSEG:
2489 /* Values greater than interface MTU won't take effect. However
2490 * at the point when this call is done we typically don't yet
2491 * know which interface is going to be used */
2492 if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2493 err = -EINVAL;
2494 break;
2495 }
2496 tp->rx_opt.user_mss = val;
2497 break;
2498
2499 case TCP_NODELAY:
2500 if (val) {
2501 /* TCP_NODELAY is weaker than TCP_CORK, so that
2502 * this option on corked socket is remembered, but
2503 * it is not activated until cork is cleared.
2504 *
2505 * However, when TCP_NODELAY is set we make
2506 * an explicit push, which overrides even TCP_CORK
2507 * for currently queued segments.
2508 */
2509 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2510 tcp_push_pending_frames(sk);
2511 } else {
2512 tp->nonagle &= ~TCP_NAGLE_OFF;
2513 }
2514 break;
2515
2516 case TCP_THIN_LINEAR_TIMEOUTS:
2517 if (val < 0 || val > 1)
2518 err = -EINVAL;
2519 else
2520 tp->thin_lto = val;
2521 break;
2522
2523 case TCP_THIN_DUPACK:
2524 if (val < 0 || val > 1)
2525 err = -EINVAL;
2526 else {
2527 tp->thin_dupack = val;
2528 if (tp->thin_dupack)
2529 tcp_disable_early_retrans(tp);
2530 }
2531 break;
2532
2533 case TCP_REPAIR:
2534 if (!tcp_can_repair_sock(sk))
2535 err = -EPERM;
2536 else if (val == 1) {
2537 tp->repair = 1;
2538 sk->sk_reuse = SK_FORCE_REUSE;
2539 tp->repair_queue = TCP_NO_QUEUE;
2540 } else if (val == 0) {
2541 tp->repair = 0;
2542 sk->sk_reuse = SK_NO_REUSE;
2543 tcp_send_window_probe(sk);
2544 } else
2545 err = -EINVAL;
2546
2547 break;
2548
2549 case TCP_REPAIR_QUEUE:
2550 if (!tp->repair)
2551 err = -EPERM;
2552 else if (val < TCP_QUEUES_NR)
2553 tp->repair_queue = val;
2554 else
2555 err = -EINVAL;
2556 break;
2557
2558 case TCP_QUEUE_SEQ:
2559 if (sk->sk_state != TCP_CLOSE)
2560 err = -EPERM;
2561 else if (tp->repair_queue == TCP_SEND_QUEUE)
2562 tp->write_seq = val;
2563 else if (tp->repair_queue == TCP_RECV_QUEUE)
2564 tp->rcv_nxt = val;
2565 else
2566 err = -EINVAL;
2567 break;
2568
2569 case TCP_REPAIR_OPTIONS:
2570 if (!tp->repair)
2571 err = -EINVAL;
2572 else if (sk->sk_state == TCP_ESTABLISHED)
2573 err = tcp_repair_options_est(tp,
2574 (struct tcp_repair_opt __user *)optval,
2575 optlen);
2576 else
2577 err = -EPERM;
2578 break;
2579
2580 case TCP_CORK:
2581 /* When set indicates to always queue non-full frames.
2582 * Later the user clears this option and we transmit
2583 * any pending partial frames in the queue. This is
2584 * meant to be used alongside sendfile() to get properly
2585 * filled frames when the user (for example) must write
2586 * out headers with a write() call first and then use
2587 * sendfile to send out the data parts.
2588 *
2589 * TCP_CORK can be set together with TCP_NODELAY and it is
2590 * stronger than TCP_NODELAY.
2591 */
2592 if (val) {
2593 tp->nonagle |= TCP_NAGLE_CORK;
2594 } else {
2595 tp->nonagle &= ~TCP_NAGLE_CORK;
2596 if (tp->nonagle&TCP_NAGLE_OFF)
2597 tp->nonagle |= TCP_NAGLE_PUSH;
2598 tcp_push_pending_frames(sk);
2599 }
2600 break;
2601
2602 case TCP_KEEPIDLE:
2603 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2604 err = -EINVAL;
2605 else {
2606 tp->keepalive_time = val * HZ;
2607 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2608 !((1 << sk->sk_state) &
2609 (TCPF_CLOSE | TCPF_LISTEN))) {
2610 u32 elapsed = keepalive_time_elapsed(tp);
2611 if (tp->keepalive_time > elapsed)
2612 elapsed = tp->keepalive_time - elapsed;
2613 else
2614 elapsed = 0;
2615 inet_csk_reset_keepalive_timer(sk, elapsed);
2616 }
2617 }
2618 break;
2619 case TCP_KEEPINTVL:
2620 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2621 err = -EINVAL;
2622 else
2623 tp->keepalive_intvl = val * HZ;
2624 break;
2625 case TCP_KEEPCNT:
2626 if (val < 1 || val > MAX_TCP_KEEPCNT)
2627 err = -EINVAL;
2628 else
2629 tp->keepalive_probes = val;
2630 break;
2631 case TCP_SYNCNT:
2632 if (val < 1 || val > MAX_TCP_SYNCNT)
2633 err = -EINVAL;
2634 else
2635 icsk->icsk_syn_retries = val;
2636 break;
2637
2638 case TCP_SAVE_SYN:
2639 if (val < 0 || val > 1)
2640 err = -EINVAL;
2641 else
2642 tp->save_syn = val;
2643 break;
2644
2645 case TCP_LINGER2:
2646 if (val < 0)
2647 tp->linger2 = -1;
2648 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2649 tp->linger2 = 0;
2650 else
2651 tp->linger2 = val * HZ;
2652 break;
2653
2654 case TCP_DEFER_ACCEPT:
2655 /* Translate value in seconds to number of retransmits */
2656 icsk->icsk_accept_queue.rskq_defer_accept =
2657 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2658 TCP_RTO_MAX / HZ);
2659 break;
2660
2661 case TCP_WINDOW_CLAMP:
2662 if (!val) {
2663 if (sk->sk_state != TCP_CLOSE) {
2664 err = -EINVAL;
2665 break;
2666 }
2667 tp->window_clamp = 0;
2668 } else
2669 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2670 SOCK_MIN_RCVBUF / 2 : val;
2671 break;
2672
2673 case TCP_QUICKACK:
2674 if (!val) {
2675 icsk->icsk_ack.pingpong = 1;
2676 } else {
2677 icsk->icsk_ack.pingpong = 0;
2678 if ((1 << sk->sk_state) &
2679 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2680 inet_csk_ack_scheduled(sk)) {
2681 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2682 tcp_cleanup_rbuf(sk, 1);
2683 if (!(val & 1))
2684 icsk->icsk_ack.pingpong = 1;
2685 }
2686 }
2687 break;
2688
2689 #ifdef CONFIG_TCP_MD5SIG
2690 case TCP_MD5SIG:
2691 if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
2692 err = tp->af_specific->md5_parse(sk, optval, optlen);
2693 else
2694 err = -EINVAL;
2695 break;
2696 #endif
2697 case TCP_USER_TIMEOUT:
2698 /* Cap the max time in ms TCP will retry or probe the window
2699 * before giving up and aborting (ETIMEDOUT) a connection.
2700 */
2701 if (val < 0)
2702 err = -EINVAL;
2703 else
2704 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2705 break;
2706
2707 case TCP_FASTOPEN:
2708 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2709 TCPF_LISTEN))) {
2710 tcp_fastopen_init_key_once(true);
2711
2712 fastopen_queue_tune(sk, val);
2713 } else {
2714 err = -EINVAL;
2715 }
2716 break;
2717 case TCP_FASTOPEN_CONNECT:
2718 if (val > 1 || val < 0) {
2719 err = -EINVAL;
2720 } else if (sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2721 if (sk->sk_state == TCP_CLOSE)
2722 tp->fastopen_connect = val;
2723 else
2724 err = -EINVAL;
2725 } else {
2726 err = -EOPNOTSUPP;
2727 }
2728 break;
2729 case TCP_TIMESTAMP:
2730 if (!tp->repair)
2731 err = -EPERM;
2732 else
2733 tp->tsoffset = val - tcp_time_stamp;
2734 break;
2735 case TCP_REPAIR_WINDOW:
2736 err = tcp_repair_set_window(tp, optval, optlen);
2737 break;
2738 case TCP_NOTSENT_LOWAT:
2739 tp->notsent_lowat = val;
2740 sk->sk_write_space(sk);
2741 break;
2742 default:
2743 err = -ENOPROTOOPT;
2744 break;
2745 }
2746
2747 release_sock(sk);
2748 return err;
2749 }
2750
tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2751 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2752 unsigned int optlen)
2753 {
2754 const struct inet_connection_sock *icsk = inet_csk(sk);
2755
2756 if (level != SOL_TCP)
2757 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2758 optval, optlen);
2759 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2760 }
2761 EXPORT_SYMBOL(tcp_setsockopt);
2762
2763 #ifdef CONFIG_COMPAT
compat_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2764 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2765 char __user *optval, unsigned int optlen)
2766 {
2767 if (level != SOL_TCP)
2768 return inet_csk_compat_setsockopt(sk, level, optname,
2769 optval, optlen);
2770 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2771 }
2772 EXPORT_SYMBOL(compat_tcp_setsockopt);
2773 #endif
2774
2775 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)2776 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2777 {
2778 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2779 const struct inet_connection_sock *icsk = inet_csk(sk);
2780 u32 now = tcp_time_stamp, intv;
2781 unsigned int start;
2782 int notsent_bytes;
2783 u64 rate64;
2784 u32 rate;
2785
2786 memset(info, 0, sizeof(*info));
2787 if (sk->sk_type != SOCK_STREAM)
2788 return;
2789
2790 info->tcpi_state = sk_state_load(sk);
2791
2792 info->tcpi_ca_state = icsk->icsk_ca_state;
2793 info->tcpi_retransmits = icsk->icsk_retransmits;
2794 info->tcpi_probes = icsk->icsk_probes_out;
2795 info->tcpi_backoff = icsk->icsk_backoff;
2796
2797 if (tp->rx_opt.tstamp_ok)
2798 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2799 if (tcp_is_sack(tp))
2800 info->tcpi_options |= TCPI_OPT_SACK;
2801 if (tp->rx_opt.wscale_ok) {
2802 info->tcpi_options |= TCPI_OPT_WSCALE;
2803 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2804 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2805 }
2806
2807 if (tp->ecn_flags & TCP_ECN_OK)
2808 info->tcpi_options |= TCPI_OPT_ECN;
2809 if (tp->ecn_flags & TCP_ECN_SEEN)
2810 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2811 if (tp->syn_data_acked)
2812 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2813
2814 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2815 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2816 info->tcpi_snd_mss = tp->mss_cache;
2817 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2818
2819 if (info->tcpi_state == TCP_LISTEN) {
2820 info->tcpi_unacked = sk->sk_ack_backlog;
2821 info->tcpi_sacked = sk->sk_max_ack_backlog;
2822 } else {
2823 info->tcpi_unacked = tp->packets_out;
2824 info->tcpi_sacked = tp->sacked_out;
2825 }
2826 info->tcpi_lost = tp->lost_out;
2827 info->tcpi_retrans = tp->retrans_out;
2828 info->tcpi_fackets = tp->fackets_out;
2829
2830 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2831 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2832 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2833
2834 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2835 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2836 info->tcpi_rtt = tp->srtt_us >> 3;
2837 info->tcpi_rttvar = tp->mdev_us >> 2;
2838 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2839 info->tcpi_snd_cwnd = tp->snd_cwnd;
2840 info->tcpi_advmss = tp->advmss;
2841 info->tcpi_reordering = tp->reordering;
2842
2843 info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2844 info->tcpi_rcv_space = tp->rcvq_space.space;
2845
2846 info->tcpi_total_retrans = tp->total_retrans;
2847
2848 rate = READ_ONCE(sk->sk_pacing_rate);
2849 rate64 = rate != ~0U ? rate : ~0ULL;
2850 put_unaligned(rate64, &info->tcpi_pacing_rate);
2851
2852 rate = READ_ONCE(sk->sk_max_pacing_rate);
2853 rate64 = rate != ~0U ? rate : ~0ULL;
2854 put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2855
2856 do {
2857 start = u64_stats_fetch_begin_irq(&tp->syncp);
2858 put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2859 put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2860 } while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2861 info->tcpi_segs_out = tp->segs_out;
2862 info->tcpi_segs_in = tp->segs_in;
2863
2864 notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt);
2865 info->tcpi_notsent_bytes = max(0, notsent_bytes);
2866
2867 info->tcpi_min_rtt = tcp_min_rtt(tp);
2868 info->tcpi_data_segs_in = tp->data_segs_in;
2869 info->tcpi_data_segs_out = tp->data_segs_out;
2870
2871 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
2872 rate = READ_ONCE(tp->rate_delivered);
2873 intv = READ_ONCE(tp->rate_interval_us);
2874 if (rate && intv) {
2875 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
2876 do_div(rate64, intv);
2877 put_unaligned(rate64, &info->tcpi_delivery_rate);
2878 }
2879 }
2880 EXPORT_SYMBOL_GPL(tcp_get_info);
2881
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2882 static int do_tcp_getsockopt(struct sock *sk, int level,
2883 int optname, char __user *optval, int __user *optlen)
2884 {
2885 struct inet_connection_sock *icsk = inet_csk(sk);
2886 struct tcp_sock *tp = tcp_sk(sk);
2887 struct net *net = sock_net(sk);
2888 int val, len;
2889
2890 if (get_user(len, optlen))
2891 return -EFAULT;
2892
2893 len = min_t(unsigned int, len, sizeof(int));
2894
2895 if (len < 0)
2896 return -EINVAL;
2897
2898 switch (optname) {
2899 case TCP_MAXSEG:
2900 val = tp->mss_cache;
2901 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2902 val = tp->rx_opt.user_mss;
2903 if (tp->repair)
2904 val = tp->rx_opt.mss_clamp;
2905 break;
2906 case TCP_NODELAY:
2907 val = !!(tp->nonagle&TCP_NAGLE_OFF);
2908 break;
2909 case TCP_CORK:
2910 val = !!(tp->nonagle&TCP_NAGLE_CORK);
2911 break;
2912 case TCP_KEEPIDLE:
2913 val = keepalive_time_when(tp) / HZ;
2914 break;
2915 case TCP_KEEPINTVL:
2916 val = keepalive_intvl_when(tp) / HZ;
2917 break;
2918 case TCP_KEEPCNT:
2919 val = keepalive_probes(tp);
2920 break;
2921 case TCP_SYNCNT:
2922 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2923 break;
2924 case TCP_LINGER2:
2925 val = tp->linger2;
2926 if (val >= 0)
2927 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2928 break;
2929 case TCP_DEFER_ACCEPT:
2930 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2931 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2932 break;
2933 case TCP_WINDOW_CLAMP:
2934 val = tp->window_clamp;
2935 break;
2936 case TCP_INFO: {
2937 struct tcp_info info;
2938
2939 if (get_user(len, optlen))
2940 return -EFAULT;
2941
2942 tcp_get_info(sk, &info);
2943
2944 len = min_t(unsigned int, len, sizeof(info));
2945 if (put_user(len, optlen))
2946 return -EFAULT;
2947 if (copy_to_user(optval, &info, len))
2948 return -EFAULT;
2949 return 0;
2950 }
2951 case TCP_CC_INFO: {
2952 const struct tcp_congestion_ops *ca_ops;
2953 union tcp_cc_info info;
2954 size_t sz = 0;
2955 int attr;
2956
2957 if (get_user(len, optlen))
2958 return -EFAULT;
2959
2960 ca_ops = icsk->icsk_ca_ops;
2961 if (ca_ops && ca_ops->get_info)
2962 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2963
2964 len = min_t(unsigned int, len, sz);
2965 if (put_user(len, optlen))
2966 return -EFAULT;
2967 if (copy_to_user(optval, &info, len))
2968 return -EFAULT;
2969 return 0;
2970 }
2971 case TCP_QUICKACK:
2972 val = !icsk->icsk_ack.pingpong;
2973 break;
2974
2975 case TCP_CONGESTION:
2976 if (get_user(len, optlen))
2977 return -EFAULT;
2978 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2979 if (put_user(len, optlen))
2980 return -EFAULT;
2981 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2982 return -EFAULT;
2983 return 0;
2984
2985 case TCP_THIN_LINEAR_TIMEOUTS:
2986 val = tp->thin_lto;
2987 break;
2988 case TCP_THIN_DUPACK:
2989 val = tp->thin_dupack;
2990 break;
2991
2992 case TCP_REPAIR:
2993 val = tp->repair;
2994 break;
2995
2996 case TCP_REPAIR_QUEUE:
2997 if (tp->repair)
2998 val = tp->repair_queue;
2999 else
3000 return -EINVAL;
3001 break;
3002
3003 case TCP_REPAIR_WINDOW: {
3004 struct tcp_repair_window opt;
3005
3006 if (get_user(len, optlen))
3007 return -EFAULT;
3008
3009 if (len != sizeof(opt))
3010 return -EINVAL;
3011
3012 if (!tp->repair)
3013 return -EPERM;
3014
3015 opt.snd_wl1 = tp->snd_wl1;
3016 opt.snd_wnd = tp->snd_wnd;
3017 opt.max_window = tp->max_window;
3018 opt.rcv_wnd = tp->rcv_wnd;
3019 opt.rcv_wup = tp->rcv_wup;
3020
3021 if (copy_to_user(optval, &opt, len))
3022 return -EFAULT;
3023 return 0;
3024 }
3025 case TCP_QUEUE_SEQ:
3026 if (tp->repair_queue == TCP_SEND_QUEUE)
3027 val = tp->write_seq;
3028 else if (tp->repair_queue == TCP_RECV_QUEUE)
3029 val = tp->rcv_nxt;
3030 else
3031 return -EINVAL;
3032 break;
3033
3034 case TCP_USER_TIMEOUT:
3035 val = jiffies_to_msecs(icsk->icsk_user_timeout);
3036 break;
3037
3038 case TCP_FASTOPEN:
3039 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3040 break;
3041
3042 case TCP_FASTOPEN_CONNECT:
3043 val = tp->fastopen_connect;
3044 break;
3045
3046 case TCP_TIMESTAMP:
3047 val = tcp_time_stamp + tp->tsoffset;
3048 break;
3049 case TCP_NOTSENT_LOWAT:
3050 val = tp->notsent_lowat;
3051 break;
3052 case TCP_SAVE_SYN:
3053 val = tp->save_syn;
3054 break;
3055 case TCP_SAVED_SYN: {
3056 if (get_user(len, optlen))
3057 return -EFAULT;
3058
3059 lock_sock(sk);
3060 if (tp->saved_syn) {
3061 if (len < tp->saved_syn[0]) {
3062 if (put_user(tp->saved_syn[0], optlen)) {
3063 release_sock(sk);
3064 return -EFAULT;
3065 }
3066 release_sock(sk);
3067 return -EINVAL;
3068 }
3069 len = tp->saved_syn[0];
3070 if (put_user(len, optlen)) {
3071 release_sock(sk);
3072 return -EFAULT;
3073 }
3074 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3075 release_sock(sk);
3076 return -EFAULT;
3077 }
3078 tcp_saved_syn_free(tp);
3079 release_sock(sk);
3080 } else {
3081 release_sock(sk);
3082 len = 0;
3083 if (put_user(len, optlen))
3084 return -EFAULT;
3085 }
3086 return 0;
3087 }
3088 default:
3089 return -ENOPROTOOPT;
3090 }
3091
3092 if (put_user(len, optlen))
3093 return -EFAULT;
3094 if (copy_to_user(optval, &val, len))
3095 return -EFAULT;
3096 return 0;
3097 }
3098
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3099 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3100 int __user *optlen)
3101 {
3102 struct inet_connection_sock *icsk = inet_csk(sk);
3103
3104 if (level != SOL_TCP)
3105 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3106 optval, optlen);
3107 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3108 }
3109 EXPORT_SYMBOL(tcp_getsockopt);
3110
3111 #ifdef CONFIG_COMPAT
compat_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3112 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3113 char __user *optval, int __user *optlen)
3114 {
3115 if (level != SOL_TCP)
3116 return inet_csk_compat_getsockopt(sk, level, optname,
3117 optval, optlen);
3118 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3119 }
3120 EXPORT_SYMBOL(compat_tcp_getsockopt);
3121 #endif
3122
3123 #ifdef CONFIG_TCP_MD5SIG
3124 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3125 static DEFINE_MUTEX(tcp_md5sig_mutex);
3126 static bool tcp_md5sig_pool_populated = false;
3127
__tcp_alloc_md5sig_pool(void)3128 static void __tcp_alloc_md5sig_pool(void)
3129 {
3130 struct crypto_ahash *hash;
3131 int cpu;
3132
3133 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3134 if (IS_ERR(hash))
3135 return;
3136
3137 for_each_possible_cpu(cpu) {
3138 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3139 struct ahash_request *req;
3140
3141 if (!scratch) {
3142 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3143 sizeof(struct tcphdr),
3144 GFP_KERNEL,
3145 cpu_to_node(cpu));
3146 if (!scratch)
3147 return;
3148 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3149 }
3150 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3151 continue;
3152
3153 req = ahash_request_alloc(hash, GFP_KERNEL);
3154 if (!req)
3155 return;
3156
3157 ahash_request_set_callback(req, 0, NULL, NULL);
3158
3159 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3160 }
3161 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3162 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3163 */
3164 smp_wmb();
3165 tcp_md5sig_pool_populated = true;
3166 }
3167
tcp_alloc_md5sig_pool(void)3168 bool tcp_alloc_md5sig_pool(void)
3169 {
3170 if (unlikely(!tcp_md5sig_pool_populated)) {
3171 mutex_lock(&tcp_md5sig_mutex);
3172
3173 if (!tcp_md5sig_pool_populated)
3174 __tcp_alloc_md5sig_pool();
3175
3176 mutex_unlock(&tcp_md5sig_mutex);
3177 }
3178 return tcp_md5sig_pool_populated;
3179 }
3180 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3181
3182
3183 /**
3184 * tcp_get_md5sig_pool - get md5sig_pool for this user
3185 *
3186 * We use percpu structure, so if we succeed, we exit with preemption
3187 * and BH disabled, to make sure another thread or softirq handling
3188 * wont try to get same context.
3189 */
tcp_get_md5sig_pool(void)3190 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3191 {
3192 local_bh_disable();
3193
3194 if (tcp_md5sig_pool_populated) {
3195 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3196 smp_rmb();
3197 return this_cpu_ptr(&tcp_md5sig_pool);
3198 }
3199 local_bh_enable();
3200 return NULL;
3201 }
3202 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3203
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)3204 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3205 const struct sk_buff *skb, unsigned int header_len)
3206 {
3207 struct scatterlist sg;
3208 const struct tcphdr *tp = tcp_hdr(skb);
3209 struct ahash_request *req = hp->md5_req;
3210 unsigned int i;
3211 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3212 skb_headlen(skb) - header_len : 0;
3213 const struct skb_shared_info *shi = skb_shinfo(skb);
3214 struct sk_buff *frag_iter;
3215
3216 sg_init_table(&sg, 1);
3217
3218 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3219 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3220 if (crypto_ahash_update(req))
3221 return 1;
3222
3223 for (i = 0; i < shi->nr_frags; ++i) {
3224 const struct skb_frag_struct *f = &shi->frags[i];
3225 unsigned int offset = f->page_offset;
3226 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3227
3228 sg_set_page(&sg, page, skb_frag_size(f),
3229 offset_in_page(offset));
3230 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3231 if (crypto_ahash_update(req))
3232 return 1;
3233 }
3234
3235 skb_walk_frags(skb, frag_iter)
3236 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3237 return 1;
3238
3239 return 0;
3240 }
3241 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3242
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)3243 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3244 {
3245 struct scatterlist sg;
3246
3247 sg_init_one(&sg, key->key, key->keylen);
3248 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3249 return crypto_ahash_update(hp->md5_req);
3250 }
3251 EXPORT_SYMBOL(tcp_md5_hash_key);
3252
3253 #endif
3254
tcp_done(struct sock * sk)3255 void tcp_done(struct sock *sk)
3256 {
3257 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3258
3259 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3260 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3261
3262 tcp_set_state(sk, TCP_CLOSE);
3263 tcp_clear_xmit_timers(sk);
3264 if (req)
3265 reqsk_fastopen_remove(sk, req, false);
3266
3267 sk->sk_shutdown = SHUTDOWN_MASK;
3268
3269 if (!sock_flag(sk, SOCK_DEAD))
3270 sk->sk_state_change(sk);
3271 else
3272 inet_csk_destroy_sock(sk);
3273 }
3274 EXPORT_SYMBOL_GPL(tcp_done);
3275
tcp_abort(struct sock * sk,int err)3276 int tcp_abort(struct sock *sk, int err)
3277 {
3278 if (!sk_fullsock(sk)) {
3279 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3280 struct request_sock *req = inet_reqsk(sk);
3281
3282 local_bh_disable();
3283 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3284 req);
3285 local_bh_enable();
3286 return 0;
3287 }
3288 return -EOPNOTSUPP;
3289 }
3290
3291 /* Don't race with userspace socket closes such as tcp_close. */
3292 lock_sock(sk);
3293
3294 if (sk->sk_state == TCP_LISTEN) {
3295 tcp_set_state(sk, TCP_CLOSE);
3296 inet_csk_listen_stop(sk);
3297 }
3298
3299 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3300 local_bh_disable();
3301 bh_lock_sock(sk);
3302
3303 if (!sock_flag(sk, SOCK_DEAD)) {
3304 sk->sk_err = err;
3305 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3306 smp_wmb();
3307 sk->sk_error_report(sk);
3308 if (tcp_need_reset(sk->sk_state))
3309 tcp_send_active_reset(sk, GFP_ATOMIC);
3310 tcp_done(sk);
3311 }
3312
3313 bh_unlock_sock(sk);
3314 local_bh_enable();
3315 release_sock(sk);
3316 return 0;
3317 }
3318 EXPORT_SYMBOL_GPL(tcp_abort);
3319
3320 extern struct tcp_congestion_ops tcp_reno;
3321
3322 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)3323 static int __init set_thash_entries(char *str)
3324 {
3325 ssize_t ret;
3326
3327 if (!str)
3328 return 0;
3329
3330 ret = kstrtoul(str, 0, &thash_entries);
3331 if (ret)
3332 return 0;
3333
3334 return 1;
3335 }
3336 __setup("thash_entries=", set_thash_entries);
3337
tcp_init_mem(void)3338 static void __init tcp_init_mem(void)
3339 {
3340 unsigned long limit = nr_free_buffer_pages() / 16;
3341
3342 limit = max(limit, 128UL);
3343 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3344 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3345 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3346 }
3347
tcp_init(void)3348 void __init tcp_init(void)
3349 {
3350 int max_rshare, max_wshare, cnt;
3351 unsigned long limit;
3352 unsigned int i;
3353
3354 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3355 FIELD_SIZEOF(struct sk_buff, cb));
3356
3357 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3358 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3359 tcp_hashinfo.bind_bucket_cachep =
3360 kmem_cache_create("tcp_bind_bucket",
3361 sizeof(struct inet_bind_bucket), 0,
3362 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3363
3364 /* Size and allocate the main established and bind bucket
3365 * hash tables.
3366 *
3367 * The methodology is similar to that of the buffer cache.
3368 */
3369 tcp_hashinfo.ehash =
3370 alloc_large_system_hash("TCP established",
3371 sizeof(struct inet_ehash_bucket),
3372 thash_entries,
3373 17, /* one slot per 128 KB of memory */
3374 0,
3375 NULL,
3376 &tcp_hashinfo.ehash_mask,
3377 0,
3378 thash_entries ? 0 : 512 * 1024);
3379 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3380 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3381
3382 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3383 panic("TCP: failed to alloc ehash_locks");
3384 tcp_hashinfo.bhash =
3385 alloc_large_system_hash("TCP bind",
3386 sizeof(struct inet_bind_hashbucket),
3387 tcp_hashinfo.ehash_mask + 1,
3388 17, /* one slot per 128 KB of memory */
3389 0,
3390 &tcp_hashinfo.bhash_size,
3391 NULL,
3392 0,
3393 64 * 1024);
3394 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3395 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3396 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3397 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3398 }
3399
3400
3401 cnt = tcp_hashinfo.ehash_mask + 1;
3402
3403 tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3404 sysctl_tcp_max_orphans = cnt / 2;
3405 sysctl_max_syn_backlog = max(128, cnt / 256);
3406
3407 tcp_init_mem();
3408 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3409 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3410 max_wshare = min(4UL*1024*1024, limit);
3411 max_rshare = min(6UL*1024*1024, limit);
3412
3413 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3414 sysctl_tcp_wmem[1] = 16*1024;
3415 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3416
3417 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3418 sysctl_tcp_rmem[1] = 87380;
3419 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3420
3421 pr_info("Hash tables configured (established %u bind %u)\n",
3422 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3423
3424 tcp_metrics_init();
3425 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3426 tcp_tasklet_init();
3427 }
3428