• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors:	Ross Biro
9  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
11  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
12  *		Florian La Roche, <flla@stud.uni-sb.de>
13  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
15  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
16  *		Matthew Dillon, <dillon@apollo.west.oic.com>
17  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18  *		Jorge Cwik, <jorge@laser.satlink.net>
19  *
20  * Fixes:
21  *		Alan Cox	:	Numerous verify_area() calls
22  *		Alan Cox	:	Set the ACK bit on a reset
23  *		Alan Cox	:	Stopped it crashing if it closed while
24  *					sk->inuse=1 and was trying to connect
25  *					(tcp_err()).
26  *		Alan Cox	:	All icmp error handling was broken
27  *					pointers passed where wrong and the
28  *					socket was looked up backwards. Nobody
29  *					tested any icmp error code obviously.
30  *		Alan Cox	:	tcp_err() now handled properly. It
31  *					wakes people on errors. poll
32  *					behaves and the icmp error race
33  *					has gone by moving it into sock.c
34  *		Alan Cox	:	tcp_send_reset() fixed to work for
35  *					everything not just packets for
36  *					unknown sockets.
37  *		Alan Cox	:	tcp option processing.
38  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
39  *					syn rule wrong]
40  *		Herp Rosmanith  :	More reset fixes
41  *		Alan Cox	:	No longer acks invalid rst frames.
42  *					Acking any kind of RST is right out.
43  *		Alan Cox	:	Sets an ignore me flag on an rst
44  *					receive otherwise odd bits of prattle
45  *					escape still
46  *		Alan Cox	:	Fixed another acking RST frame bug.
47  *					Should stop LAN workplace lockups.
48  *		Alan Cox	: 	Some tidyups using the new skb list
49  *					facilities
50  *		Alan Cox	:	sk->keepopen now seems to work
51  *		Alan Cox	:	Pulls options out correctly on accepts
52  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
53  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
54  *					bit to skb ops.
55  *		Alan Cox	:	Tidied tcp_data to avoid a potential
56  *					nasty.
57  *		Alan Cox	:	Added some better commenting, as the
58  *					tcp is hard to follow
59  *		Alan Cox	:	Removed incorrect check for 20 * psh
60  *	Michael O'Reilly	:	ack < copied bug fix.
61  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
62  *		Alan Cox	:	FIN with no memory -> CRASH
63  *		Alan Cox	:	Added socket option proto entries.
64  *					Also added awareness of them to accept.
65  *		Alan Cox	:	Added TCP options (SOL_TCP)
66  *		Alan Cox	:	Switched wakeup calls to callbacks,
67  *					so the kernel can layer network
68  *					sockets.
69  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
70  *		Alan Cox	:	Handle FIN (more) properly (we hope).
71  *		Alan Cox	:	RST frames sent on unsynchronised
72  *					state ack error.
73  *		Alan Cox	:	Put in missing check for SYN bit.
74  *		Alan Cox	:	Added tcp_select_window() aka NET2E
75  *					window non shrink trick.
76  *		Alan Cox	:	Added a couple of small NET2E timer
77  *					fixes
78  *		Charles Hedrick :	TCP fixes
79  *		Toomas Tamm	:	TCP window fixes
80  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
81  *		Charles Hedrick	:	Rewrote most of it to actually work
82  *		Linus		:	Rewrote tcp_read() and URG handling
83  *					completely
84  *		Gerhard Koerting:	Fixed some missing timer handling
85  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
86  *		Gerhard Koerting:	PC/TCP workarounds
87  *		Adam Caldwell	:	Assorted timer/timing errors
88  *		Matthew Dillon	:	Fixed another RST bug
89  *		Alan Cox	:	Move to kernel side addressing changes.
90  *		Alan Cox	:	Beginning work on TCP fastpathing
91  *					(not yet usable)
92  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
93  *		Alan Cox	:	TCP fast path debugging
94  *		Alan Cox	:	Window clamping
95  *		Michael Riepe	:	Bug in tcp_check()
96  *		Matt Dillon	:	More TCP improvements and RST bug fixes
97  *		Matt Dillon	:	Yet more small nasties remove from the
98  *					TCP code (Be very nice to this man if
99  *					tcp finally works 100%) 8)
100  *		Alan Cox	:	BSD accept semantics.
101  *		Alan Cox	:	Reset on closedown bug.
102  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
103  *		Michael Pall	:	Handle poll() after URG properly in
104  *					all cases.
105  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
106  *					(multi URG PUSH broke rlogin).
107  *		Michael Pall	:	Fix the multi URG PUSH problem in
108  *					tcp_readable(), poll() after URG
109  *					works now.
110  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
111  *					BSD api.
112  *		Alan Cox	:	Changed the semantics of sk->socket to
113  *					fix a race and a signal problem with
114  *					accept() and async I/O.
115  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
116  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
117  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
118  *					clients/servers which listen in on
119  *					fixed ports.
120  *		Alan Cox	:	Cleaned the above up and shrank it to
121  *					a sensible code size.
122  *		Alan Cox	:	Self connect lockup fix.
123  *		Alan Cox	:	No connect to multicast.
124  *		Ross Biro	:	Close unaccepted children on master
125  *					socket close.
126  *		Alan Cox	:	Reset tracing code.
127  *		Alan Cox	:	Spurious resets on shutdown.
128  *		Alan Cox	:	Giant 15 minute/60 second timer error
129  *		Alan Cox	:	Small whoops in polling before an
130  *					accept.
131  *		Alan Cox	:	Kept the state trace facility since
132  *					it's handy for debugging.
133  *		Alan Cox	:	More reset handler fixes.
134  *		Alan Cox	:	Started rewriting the code based on
135  *					the RFC's for other useful protocol
136  *					references see: Comer, KA9Q NOS, and
137  *					for a reference on the difference
138  *					between specifications and how BSD
139  *					works see the 4.4lite source.
140  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
141  *					close.
142  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
143  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
144  *		Alan Cox	:	Reimplemented timers as per the RFC
145  *					and using multiple timers for sanity.
146  *		Alan Cox	:	Small bug fixes, and a lot of new
147  *					comments.
148  *		Alan Cox	:	Fixed dual reader crash by locking
149  *					the buffers (much like datagram.c)
150  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
151  *					now gets fed up of retrying without
152  *					(even a no space) answer.
153  *		Alan Cox	:	Extracted closing code better
154  *		Alan Cox	:	Fixed the closing state machine to
155  *					resemble the RFC.
156  *		Alan Cox	:	More 'per spec' fixes.
157  *		Jorge Cwik	:	Even faster checksumming.
158  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
159  *					only frames. At least one pc tcp stack
160  *					generates them.
161  *		Alan Cox	:	Cache last socket.
162  *		Alan Cox	:	Per route irtt.
163  *		Matt Day	:	poll()->select() match BSD precisely on error
164  *		Alan Cox	:	New buffers
165  *		Marc Tamsky	:	Various sk->prot->retransmits and
166  *					sk->retransmits misupdating fixed.
167  *					Fixed tcp_write_timeout: stuck close,
168  *					and TCP syn retries gets used now.
169  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
170  *					ack if state is TCP_CLOSED.
171  *		Alan Cox	:	Look up device on a retransmit - routes may
172  *					change. Doesn't yet cope with MSS shrink right
173  *					but it's a start!
174  *		Marc Tamsky	:	Closing in closing fixes.
175  *		Mike Shaver	:	RFC1122 verifications.
176  *		Alan Cox	:	rcv_saddr errors.
177  *		Alan Cox	:	Block double connect().
178  *		Alan Cox	:	Small hooks for enSKIP.
179  *		Alexey Kuznetsov:	Path MTU discovery.
180  *		Alan Cox	:	Support soft errors.
181  *		Alan Cox	:	Fix MTU discovery pathological case
182  *					when the remote claims no mtu!
183  *		Marc Tamsky	:	TCP_CLOSE fix.
184  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
185  *					window but wrong (fixes NT lpd problems)
186  *		Pedro Roque	:	Better TCP window handling, delayed ack.
187  *		Joerg Reuter	:	No modification of locked buffers in
188  *					tcp_do_retransmit()
189  *		Eric Schenk	:	Changed receiver side silly window
190  *					avoidance algorithm to BSD style
191  *					algorithm. This doubles throughput
192  *					against machines running Solaris,
193  *					and seems to result in general
194  *					improvement.
195  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
196  *	Willy Konynenberg	:	Transparent proxying support.
197  *	Mike McLagan		:	Routing by source
198  *		Keith Owens	:	Do proper merging with partial SKB's in
199  *					tcp_do_sendmsg to avoid burstiness.
200  *		Eric Schenk	:	Fix fast close down bug with
201  *					shutdown() followed by close().
202  *		Andi Kleen 	:	Make poll agree with SIGIO
203  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
204  *					lingertime == 0 (RFC 793 ABORT Call)
205  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
206  *					csum_and_copy_from_user() if possible.
207  *
208  *		This program is free software; you can redistribute it and/or
209  *		modify it under the terms of the GNU General Public License
210  *		as published by the Free Software Foundation; either version
211  *		2 of the License, or(at your option) any later version.
212  *
213  * Description of States:
214  *
215  *	TCP_SYN_SENT		sent a connection request, waiting for ack
216  *
217  *	TCP_SYN_RECV		received a connection request, sent ack,
218  *				waiting for final ack in three-way handshake.
219  *
220  *	TCP_ESTABLISHED		connection established
221  *
222  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
223  *				transmission of remaining buffered data
224  *
225  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
226  *				to shutdown
227  *
228  *	TCP_CLOSING		both sides have shutdown but we still have
229  *				data we have to finish sending
230  *
231  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
232  *				closed, can only be entered from FIN_WAIT2
233  *				or CLOSING.  Required because the other end
234  *				may not have gotten our last ACK causing it
235  *				to retransmit the data packet (which we ignore)
236  *
237  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
238  *				us to finish writing our data and to shutdown
239  *				(we have to close() to move on to LAST_ACK)
240  *
241  *	TCP_LAST_ACK		out side has shutdown after remote has
242  *				shutdown.  There may still be data in our
243  *				buffer that we have to finish sending
244  *
245  *	TCP_CLOSE		socket is finished
246  */
247 
248 #define pr_fmt(fmt) "TCP: " fmt
249 
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 
273 #include <net/icmp.h>
274 #include <net/inet_common.h>
275 #include <net/tcp.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 
280 #include <asm/uaccess.h>
281 #include <asm/ioctls.h>
282 #include <asm/unaligned.h>
283 #include <net/busy_poll.h>
284 
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
286 
287 int sysctl_tcp_autocorking __read_mostly = 1;
288 
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
291 
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
295 
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
299 
300 atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
302 
303 /*
304  * Current number of TCP sockets.
305  */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308 
309 /*
310  * TCP splice context
311  */
312 struct tcp_splice_state {
313 	struct pipe_inode_info *pipe;
314 	size_t len;
315 	unsigned int flags;
316 };
317 
318 /*
319  * Pressure flag: try to collapse.
320  * Technical note: it is used by multiple contexts non atomically.
321  * All the __sk_mem_schedule() is of this nature: accounting
322  * is strict, actions are advisory and have some latency.
323  */
324 int tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL(tcp_memory_pressure);
326 
tcp_enter_memory_pressure(struct sock * sk)327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 	if (!tcp_memory_pressure) {
330 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
331 		tcp_memory_pressure = 1;
332 	}
333 }
334 EXPORT_SYMBOL(tcp_enter_memory_pressure);
335 
336 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)337 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
338 {
339 	u8 res = 0;
340 
341 	if (seconds > 0) {
342 		int period = timeout;
343 
344 		res = 1;
345 		while (seconds > period && res < 255) {
346 			res++;
347 			timeout <<= 1;
348 			if (timeout > rto_max)
349 				timeout = rto_max;
350 			period += timeout;
351 		}
352 	}
353 	return res;
354 }
355 
356 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)357 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
358 {
359 	int period = 0;
360 
361 	if (retrans > 0) {
362 		period = timeout;
363 		while (--retrans) {
364 			timeout <<= 1;
365 			if (timeout > rto_max)
366 				timeout = rto_max;
367 			period += timeout;
368 		}
369 	}
370 	return period;
371 }
372 
373 /* Address-family independent initialization for a tcp_sock.
374  *
375  * NOTE: A lot of things set to zero explicitly by call to
376  *       sk_alloc() so need not be done here.
377  */
tcp_init_sock(struct sock * sk)378 void tcp_init_sock(struct sock *sk)
379 {
380 	struct inet_connection_sock *icsk = inet_csk(sk);
381 	struct tcp_sock *tp = tcp_sk(sk);
382 
383 	tp->out_of_order_queue = RB_ROOT;
384 	tcp_init_xmit_timers(sk);
385 	tcp_prequeue_init(tp);
386 	INIT_LIST_HEAD(&tp->tsq_node);
387 
388 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
389 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
390 	minmax_reset(&tp->rtt_min, tcp_time_stamp, ~0U);
391 
392 	/* So many TCP implementations out there (incorrectly) count the
393 	 * initial SYN frame in their delayed-ACK and congestion control
394 	 * algorithms that we must have the following bandaid to talk
395 	 * efficiently to them.  -DaveM
396 	 */
397 	tp->snd_cwnd = TCP_INIT_CWND;
398 
399 	/* There's a bubble in the pipe until at least the first ACK. */
400 	tp->app_limited = ~0U;
401 
402 	/* See draft-stevens-tcpca-spec-01 for discussion of the
403 	 * initialization of these values.
404 	 */
405 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
406 	tp->snd_cwnd_clamp = ~0;
407 	tp->mss_cache = TCP_MSS_DEFAULT;
408 	u64_stats_init(&tp->syncp);
409 
410 	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
411 	tcp_enable_early_retrans(tp);
412 	tcp_assign_congestion_control(sk);
413 
414 	tp->tsoffset = 0;
415 
416 	sk->sk_state = TCP_CLOSE;
417 
418 	sk->sk_write_space = sk_stream_write_space;
419 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
420 
421 	icsk->icsk_sync_mss = tcp_sync_mss;
422 
423 	sk->sk_sndbuf = sysctl_tcp_wmem[1];
424 	sk->sk_rcvbuf = sysctl_tcp_rmem[1];
425 
426 	local_bh_disable();
427 	sk_sockets_allocated_inc(sk);
428 	local_bh_enable();
429 }
430 EXPORT_SYMBOL(tcp_init_sock);
431 
tcp_tx_timestamp(struct sock * sk,u16 tsflags,struct sk_buff * skb)432 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
433 {
434 	if (tsflags && skb) {
435 		struct skb_shared_info *shinfo = skb_shinfo(skb);
436 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
437 
438 		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
439 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
440 			tcb->txstamp_ack = 1;
441 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
442 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
443 	}
444 }
445 
446 /*
447  *	Wait for a TCP event.
448  *
449  *	Note that we don't need to lock the socket, as the upper poll layers
450  *	take care of normal races (between the test and the event) and we don't
451  *	go look at any of the socket buffers directly.
452  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)453 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
454 {
455 	unsigned int mask;
456 	struct sock *sk = sock->sk;
457 	const struct tcp_sock *tp = tcp_sk(sk);
458 	int state;
459 
460 	sock_rps_record_flow(sk);
461 
462 	sock_poll_wait(file, sk_sleep(sk), wait);
463 
464 	state = sk_state_load(sk);
465 	if (state == TCP_LISTEN)
466 		return inet_csk_listen_poll(sk);
467 
468 	/* Socket is not locked. We are protected from async events
469 	 * by poll logic and correct handling of state changes
470 	 * made by other threads is impossible in any case.
471 	 */
472 
473 	mask = 0;
474 
475 	/*
476 	 * POLLHUP is certainly not done right. But poll() doesn't
477 	 * have a notion of HUP in just one direction, and for a
478 	 * socket the read side is more interesting.
479 	 *
480 	 * Some poll() documentation says that POLLHUP is incompatible
481 	 * with the POLLOUT/POLLWR flags, so somebody should check this
482 	 * all. But careful, it tends to be safer to return too many
483 	 * bits than too few, and you can easily break real applications
484 	 * if you don't tell them that something has hung up!
485 	 *
486 	 * Check-me.
487 	 *
488 	 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
489 	 * our fs/select.c). It means that after we received EOF,
490 	 * poll always returns immediately, making impossible poll() on write()
491 	 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
492 	 * if and only if shutdown has been made in both directions.
493 	 * Actually, it is interesting to look how Solaris and DUX
494 	 * solve this dilemma. I would prefer, if POLLHUP were maskable,
495 	 * then we could set it on SND_SHUTDOWN. BTW examples given
496 	 * in Stevens' books assume exactly this behaviour, it explains
497 	 * why POLLHUP is incompatible with POLLOUT.	--ANK
498 	 *
499 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
500 	 * blocking on fresh not-connected or disconnected socket. --ANK
501 	 */
502 	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
503 		mask |= POLLHUP;
504 	if (sk->sk_shutdown & RCV_SHUTDOWN)
505 		mask |= POLLIN | POLLRDNORM | POLLRDHUP;
506 
507 	/* Connected or passive Fast Open socket? */
508 	if (state != TCP_SYN_SENT &&
509 	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
510 		int target = sock_rcvlowat(sk, 0, INT_MAX);
511 
512 		if (tp->urg_seq == tp->copied_seq &&
513 		    !sock_flag(sk, SOCK_URGINLINE) &&
514 		    tp->urg_data)
515 			target++;
516 
517 		if (tp->rcv_nxt - tp->copied_seq >= target)
518 			mask |= POLLIN | POLLRDNORM;
519 
520 		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
521 			if (sk_stream_is_writeable(sk)) {
522 				mask |= POLLOUT | POLLWRNORM;
523 			} else {  /* send SIGIO later */
524 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
525 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
526 
527 				/* Race breaker. If space is freed after
528 				 * wspace test but before the flags are set,
529 				 * IO signal will be lost. Memory barrier
530 				 * pairs with the input side.
531 				 */
532 				smp_mb__after_atomic();
533 				if (sk_stream_is_writeable(sk))
534 					mask |= POLLOUT | POLLWRNORM;
535 			}
536 		} else
537 			mask |= POLLOUT | POLLWRNORM;
538 
539 		if (tp->urg_data & TCP_URG_VALID)
540 			mask |= POLLPRI;
541 	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
542 		/* Active TCP fastopen socket with defer_connect
543 		 * Return POLLOUT so application can call write()
544 		 * in order for kernel to generate SYN+data
545 		 */
546 		mask |= POLLOUT | POLLWRNORM;
547 	}
548 	/* This barrier is coupled with smp_wmb() in tcp_reset() */
549 	smp_rmb();
550 	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
551 		mask |= POLLERR;
552 
553 	return mask;
554 }
555 EXPORT_SYMBOL(tcp_poll);
556 
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)557 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
558 {
559 	struct tcp_sock *tp = tcp_sk(sk);
560 	int answ;
561 	bool slow;
562 
563 	switch (cmd) {
564 	case SIOCINQ:
565 		if (sk->sk_state == TCP_LISTEN)
566 			return -EINVAL;
567 
568 		slow = lock_sock_fast(sk);
569 		answ = tcp_inq(sk);
570 		unlock_sock_fast(sk, slow);
571 		break;
572 	case SIOCATMARK:
573 		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
574 		break;
575 	case SIOCOUTQ:
576 		if (sk->sk_state == TCP_LISTEN)
577 			return -EINVAL;
578 
579 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
580 			answ = 0;
581 		else
582 			answ = tp->write_seq - tp->snd_una;
583 		break;
584 	case SIOCOUTQNSD:
585 		if (sk->sk_state == TCP_LISTEN)
586 			return -EINVAL;
587 
588 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
589 			answ = 0;
590 		else
591 			answ = tp->write_seq - tp->snd_nxt;
592 		break;
593 	default:
594 		return -ENOIOCTLCMD;
595 	}
596 
597 	return put_user(answ, (int __user *)arg);
598 }
599 EXPORT_SYMBOL(tcp_ioctl);
600 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)601 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
602 {
603 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
604 	tp->pushed_seq = tp->write_seq;
605 }
606 
forced_push(const struct tcp_sock * tp)607 static inline bool forced_push(const struct tcp_sock *tp)
608 {
609 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
610 }
611 
skb_entail(struct sock * sk,struct sk_buff * skb)612 static void skb_entail(struct sock *sk, struct sk_buff *skb)
613 {
614 	struct tcp_sock *tp = tcp_sk(sk);
615 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
616 
617 	skb->csum    = 0;
618 	tcb->seq     = tcb->end_seq = tp->write_seq;
619 	tcb->tcp_flags = TCPHDR_ACK;
620 	tcb->sacked  = 0;
621 	__skb_header_release(skb);
622 	tcp_add_write_queue_tail(sk, skb);
623 	sk->sk_wmem_queued += skb->truesize;
624 	sk_mem_charge(sk, skb->truesize);
625 	if (tp->nonagle & TCP_NAGLE_PUSH)
626 		tp->nonagle &= ~TCP_NAGLE_PUSH;
627 
628 	tcp_slow_start_after_idle_check(sk);
629 }
630 
tcp_mark_urg(struct tcp_sock * tp,int flags)631 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
632 {
633 	if (flags & MSG_OOB)
634 		tp->snd_up = tp->write_seq;
635 }
636 
637 /* If a not yet filled skb is pushed, do not send it if
638  * we have data packets in Qdisc or NIC queues :
639  * Because TX completion will happen shortly, it gives a chance
640  * to coalesce future sendmsg() payload into this skb, without
641  * need for a timer, and with no latency trade off.
642  * As packets containing data payload have a bigger truesize
643  * than pure acks (dataless) packets, the last checks prevent
644  * autocorking if we only have an ACK in Qdisc/NIC queues,
645  * or if TX completion was delayed after we processed ACK packet.
646  */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)647 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
648 				int size_goal)
649 {
650 	return skb->len < size_goal &&
651 	       sysctl_tcp_autocorking &&
652 	       skb != tcp_write_queue_head(sk) &&
653 	       atomic_read(&sk->sk_wmem_alloc) > skb->truesize;
654 }
655 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)656 static void tcp_push(struct sock *sk, int flags, int mss_now,
657 		     int nonagle, int size_goal)
658 {
659 	struct tcp_sock *tp = tcp_sk(sk);
660 	struct sk_buff *skb;
661 
662 	if (!tcp_send_head(sk))
663 		return;
664 
665 	skb = tcp_write_queue_tail(sk);
666 	if (!(flags & MSG_MORE) || forced_push(tp))
667 		tcp_mark_push(tp, skb);
668 
669 	tcp_mark_urg(tp, flags);
670 
671 	if (tcp_should_autocork(sk, skb, size_goal)) {
672 
673 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
674 		if (!test_bit(TSQ_THROTTLED, &tp->tsq_flags)) {
675 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
676 			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
677 		}
678 		/* It is possible TX completion already happened
679 		 * before we set TSQ_THROTTLED.
680 		 */
681 		if (atomic_read(&sk->sk_wmem_alloc) > skb->truesize)
682 			return;
683 	}
684 
685 	if (flags & MSG_MORE)
686 		nonagle = TCP_NAGLE_CORK;
687 
688 	__tcp_push_pending_frames(sk, mss_now, nonagle);
689 }
690 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)691 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
692 				unsigned int offset, size_t len)
693 {
694 	struct tcp_splice_state *tss = rd_desc->arg.data;
695 	int ret;
696 
697 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
698 			      min(rd_desc->count, len), tss->flags);
699 	if (ret > 0)
700 		rd_desc->count -= ret;
701 	return ret;
702 }
703 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)704 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
705 {
706 	/* Store TCP splice context information in read_descriptor_t. */
707 	read_descriptor_t rd_desc = {
708 		.arg.data = tss,
709 		.count	  = tss->len,
710 	};
711 
712 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
713 }
714 
715 /**
716  *  tcp_splice_read - splice data from TCP socket to a pipe
717  * @sock:	socket to splice from
718  * @ppos:	position (not valid)
719  * @pipe:	pipe to splice to
720  * @len:	number of bytes to splice
721  * @flags:	splice modifier flags
722  *
723  * Description:
724  *    Will read pages from given socket and fill them into a pipe.
725  *
726  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)727 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
728 			struct pipe_inode_info *pipe, size_t len,
729 			unsigned int flags)
730 {
731 	struct sock *sk = sock->sk;
732 	struct tcp_splice_state tss = {
733 		.pipe = pipe,
734 		.len = len,
735 		.flags = flags,
736 	};
737 	long timeo;
738 	ssize_t spliced;
739 	int ret;
740 
741 	sock_rps_record_flow(sk);
742 	/*
743 	 * We can't seek on a socket input
744 	 */
745 	if (unlikely(*ppos))
746 		return -ESPIPE;
747 
748 	ret = spliced = 0;
749 
750 	lock_sock(sk);
751 
752 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
753 	while (tss.len) {
754 		ret = __tcp_splice_read(sk, &tss);
755 		if (ret < 0)
756 			break;
757 		else if (!ret) {
758 			if (spliced)
759 				break;
760 			if (sock_flag(sk, SOCK_DONE))
761 				break;
762 			if (sk->sk_err) {
763 				ret = sock_error(sk);
764 				break;
765 			}
766 			if (sk->sk_shutdown & RCV_SHUTDOWN)
767 				break;
768 			if (sk->sk_state == TCP_CLOSE) {
769 				/*
770 				 * This occurs when user tries to read
771 				 * from never connected socket.
772 				 */
773 				if (!sock_flag(sk, SOCK_DONE))
774 					ret = -ENOTCONN;
775 				break;
776 			}
777 			if (!timeo) {
778 				ret = -EAGAIN;
779 				break;
780 			}
781 			/* if __tcp_splice_read() got nothing while we have
782 			 * an skb in receive queue, we do not want to loop.
783 			 * This might happen with URG data.
784 			 */
785 			if (!skb_queue_empty(&sk->sk_receive_queue))
786 				break;
787 			sk_wait_data(sk, &timeo, NULL);
788 			if (signal_pending(current)) {
789 				ret = sock_intr_errno(timeo);
790 				break;
791 			}
792 			continue;
793 		}
794 		tss.len -= ret;
795 		spliced += ret;
796 
797 		if (!timeo)
798 			break;
799 		release_sock(sk);
800 		lock_sock(sk);
801 
802 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
803 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
804 		    signal_pending(current))
805 			break;
806 	}
807 
808 	release_sock(sk);
809 
810 	if (spliced)
811 		return spliced;
812 
813 	return ret;
814 }
815 EXPORT_SYMBOL(tcp_splice_read);
816 
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)817 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
818 				    bool force_schedule)
819 {
820 	struct sk_buff *skb;
821 
822 	/* The TCP header must be at least 32-bit aligned.  */
823 	size = ALIGN(size, 4);
824 
825 	if (unlikely(tcp_under_memory_pressure(sk)))
826 		sk_mem_reclaim_partial(sk);
827 
828 	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
829 	if (likely(skb)) {
830 		bool mem_scheduled;
831 
832 		if (force_schedule) {
833 			mem_scheduled = true;
834 			sk_forced_mem_schedule(sk, skb->truesize);
835 		} else {
836 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
837 		}
838 		if (likely(mem_scheduled)) {
839 			skb_reserve(skb, sk->sk_prot->max_header);
840 			/*
841 			 * Make sure that we have exactly size bytes
842 			 * available to the caller, no more, no less.
843 			 */
844 			skb->reserved_tailroom = skb->end - skb->tail - size;
845 			return skb;
846 		}
847 		__kfree_skb(skb);
848 	} else {
849 		sk->sk_prot->enter_memory_pressure(sk);
850 		sk_stream_moderate_sndbuf(sk);
851 	}
852 	return NULL;
853 }
854 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)855 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
856 				       int large_allowed)
857 {
858 	struct tcp_sock *tp = tcp_sk(sk);
859 	u32 new_size_goal, size_goal;
860 
861 	if (!large_allowed || !sk_can_gso(sk))
862 		return mss_now;
863 
864 	/* Note : tcp_tso_autosize() will eventually split this later */
865 	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
866 	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
867 
868 	/* We try hard to avoid divides here */
869 	size_goal = tp->gso_segs * mss_now;
870 	if (unlikely(new_size_goal < size_goal ||
871 		     new_size_goal >= size_goal + mss_now)) {
872 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
873 				     sk->sk_gso_max_segs);
874 		size_goal = tp->gso_segs * mss_now;
875 	}
876 
877 	return max(size_goal, mss_now);
878 }
879 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)880 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
881 {
882 	int mss_now;
883 
884 	mss_now = tcp_current_mss(sk);
885 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
886 
887 	return mss_now;
888 }
889 
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)890 static ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
891 				size_t size, int flags)
892 {
893 	struct tcp_sock *tp = tcp_sk(sk);
894 	int mss_now, size_goal;
895 	int err;
896 	ssize_t copied;
897 	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
898 
899 	/* Wait for a connection to finish. One exception is TCP Fast Open
900 	 * (passive side) where data is allowed to be sent before a connection
901 	 * is fully established.
902 	 */
903 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
904 	    !tcp_passive_fastopen(sk)) {
905 		err = sk_stream_wait_connect(sk, &timeo);
906 		if (err != 0)
907 			goto out_err;
908 	}
909 
910 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
911 
912 	mss_now = tcp_send_mss(sk, &size_goal, flags);
913 	copied = 0;
914 
915 	err = -EPIPE;
916 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
917 		goto out_err;
918 
919 	while (size > 0) {
920 		struct sk_buff *skb = tcp_write_queue_tail(sk);
921 		int copy, i;
922 		bool can_coalesce;
923 
924 		if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
925 		    !tcp_skb_can_collapse_to(skb)) {
926 new_segment:
927 			if (!sk_stream_memory_free(sk))
928 				goto wait_for_sndbuf;
929 
930 			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
931 						  skb_queue_empty(&sk->sk_write_queue));
932 			if (!skb)
933 				goto wait_for_memory;
934 
935 			skb_entail(sk, skb);
936 			copy = size_goal;
937 		}
938 
939 		if (copy > size)
940 			copy = size;
941 
942 		i = skb_shinfo(skb)->nr_frags;
943 		can_coalesce = skb_can_coalesce(skb, i, page, offset);
944 		if (!can_coalesce && i >= sysctl_max_skb_frags) {
945 			tcp_mark_push(tp, skb);
946 			goto new_segment;
947 		}
948 		if (!sk_wmem_schedule(sk, copy))
949 			goto wait_for_memory;
950 
951 		if (can_coalesce) {
952 			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
953 		} else {
954 			get_page(page);
955 			skb_fill_page_desc(skb, i, page, offset, copy);
956 		}
957 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
958 
959 		skb->len += copy;
960 		skb->data_len += copy;
961 		skb->truesize += copy;
962 		sk->sk_wmem_queued += copy;
963 		sk_mem_charge(sk, copy);
964 		skb->ip_summed = CHECKSUM_PARTIAL;
965 		tp->write_seq += copy;
966 		TCP_SKB_CB(skb)->end_seq += copy;
967 		tcp_skb_pcount_set(skb, 0);
968 
969 		if (!copied)
970 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
971 
972 		copied += copy;
973 		offset += copy;
974 		size -= copy;
975 		if (!size)
976 			goto out;
977 
978 		if (skb->len < size_goal || (flags & MSG_OOB))
979 			continue;
980 
981 		if (forced_push(tp)) {
982 			tcp_mark_push(tp, skb);
983 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
984 		} else if (skb == tcp_send_head(sk))
985 			tcp_push_one(sk, mss_now);
986 		continue;
987 
988 wait_for_sndbuf:
989 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
990 wait_for_memory:
991 		tcp_push(sk, flags & ~MSG_MORE, mss_now,
992 			 TCP_NAGLE_PUSH, size_goal);
993 
994 		err = sk_stream_wait_memory(sk, &timeo);
995 		if (err != 0)
996 			goto do_error;
997 
998 		mss_now = tcp_send_mss(sk, &size_goal, flags);
999 	}
1000 
1001 out:
1002 	if (copied) {
1003 		tcp_tx_timestamp(sk, sk->sk_tsflags, tcp_write_queue_tail(sk));
1004 		if (!(flags & MSG_SENDPAGE_NOTLAST))
1005 			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1006 	}
1007 	return copied;
1008 
1009 do_error:
1010 	if (copied)
1011 		goto out;
1012 out_err:
1013 	/* make sure we wake any epoll edge trigger waiter */
1014 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1015 		sk->sk_write_space(sk);
1016 	return sk_stream_error(sk, flags, err);
1017 }
1018 
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1019 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1020 		 size_t size, int flags)
1021 {
1022 	ssize_t res;
1023 
1024 	if (!(sk->sk_route_caps & NETIF_F_SG) ||
1025 	    !sk_check_csum_caps(sk))
1026 		return sock_no_sendpage(sk->sk_socket, page, offset, size,
1027 					flags);
1028 
1029 	lock_sock(sk);
1030 
1031 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1032 
1033 	res = do_tcp_sendpages(sk, page, offset, size, flags);
1034 	release_sock(sk);
1035 	return res;
1036 }
1037 EXPORT_SYMBOL(tcp_sendpage);
1038 
1039 /* Do not bother using a page frag for very small frames.
1040  * But use this heuristic only for the first skb in write queue.
1041  *
1042  * Having no payload in skb->head allows better SACK shifting
1043  * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1044  * write queue has less skbs.
1045  * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1046  * This also speeds up tso_fragment(), since it wont fallback
1047  * to tcp_fragment().
1048  */
linear_payload_sz(bool first_skb)1049 static int linear_payload_sz(bool first_skb)
1050 {
1051 	if (first_skb)
1052 		return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1053 	return 0;
1054 }
1055 
select_size(const struct sock * sk,bool sg,bool first_skb)1056 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1057 {
1058 	const struct tcp_sock *tp = tcp_sk(sk);
1059 	int tmp = tp->mss_cache;
1060 
1061 	if (sg) {
1062 		if (sk_can_gso(sk)) {
1063 			tmp = linear_payload_sz(first_skb);
1064 		} else {
1065 			int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1066 
1067 			if (tmp >= pgbreak &&
1068 			    tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1069 				tmp = pgbreak;
1070 		}
1071 	}
1072 
1073 	return tmp;
1074 }
1075 
tcp_free_fastopen_req(struct tcp_sock * tp)1076 void tcp_free_fastopen_req(struct tcp_sock *tp)
1077 {
1078 	if (tp->fastopen_req) {
1079 		kfree(tp->fastopen_req);
1080 		tp->fastopen_req = NULL;
1081 	}
1082 }
1083 
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size)1084 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1085 				int *copied, size_t size)
1086 {
1087 	struct tcp_sock *tp = tcp_sk(sk);
1088 	struct inet_sock *inet = inet_sk(sk);
1089 	struct sockaddr *uaddr = msg->msg_name;
1090 	int err, flags;
1091 
1092 	if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1093 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1094 	     uaddr->sa_family == AF_UNSPEC))
1095 		return -EOPNOTSUPP;
1096 	if (tp->fastopen_req)
1097 		return -EALREADY; /* Another Fast Open is in progress */
1098 
1099 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1100 				   sk->sk_allocation);
1101 	if (unlikely(!tp->fastopen_req))
1102 		return -ENOBUFS;
1103 	tp->fastopen_req->data = msg;
1104 	tp->fastopen_req->size = size;
1105 
1106 	if (inet->defer_connect) {
1107 		err = tcp_connect(sk);
1108 		/* Same failure procedure as in tcp_v4/6_connect */
1109 		if (err) {
1110 			tcp_set_state(sk, TCP_CLOSE);
1111 			inet->inet_dport = 0;
1112 			sk->sk_route_caps = 0;
1113 		}
1114 	}
1115 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1116 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1117 				    msg->msg_namelen, flags);
1118 	/* fastopen_req could already be freed in __inet_stream_connect
1119 	 * if the connection times out or gets rst
1120 	 */
1121 	if (tp->fastopen_req) {
1122 		*copied = tp->fastopen_req->copied;
1123 		tcp_free_fastopen_req(tp);
1124 		inet->defer_connect = 0;
1125 	}
1126 	return err;
1127 }
1128 
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1129 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1130 {
1131 	struct tcp_sock *tp = tcp_sk(sk);
1132 	struct sk_buff *skb;
1133 	struct sockcm_cookie sockc;
1134 	int flags, err, copied = 0;
1135 	int mss_now = 0, size_goal, copied_syn = 0;
1136 	bool process_backlog = false;
1137 	bool sg;
1138 	long timeo;
1139 
1140 	lock_sock(sk);
1141 
1142 	flags = msg->msg_flags;
1143 	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) {
1144 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1145 		if (err == -EINPROGRESS && copied_syn > 0)
1146 			goto out;
1147 		else if (err)
1148 			goto out_err;
1149 	}
1150 
1151 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1152 
1153 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1154 
1155 	/* Wait for a connection to finish. One exception is TCP Fast Open
1156 	 * (passive side) where data is allowed to be sent before a connection
1157 	 * is fully established.
1158 	 */
1159 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1160 	    !tcp_passive_fastopen(sk)) {
1161 		err = sk_stream_wait_connect(sk, &timeo);
1162 		if (err != 0)
1163 			goto do_error;
1164 	}
1165 
1166 	if (unlikely(tp->repair)) {
1167 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1168 			copied = tcp_send_rcvq(sk, msg, size);
1169 			goto out_nopush;
1170 		}
1171 
1172 		err = -EINVAL;
1173 		if (tp->repair_queue == TCP_NO_QUEUE)
1174 			goto out_err;
1175 
1176 		/* 'common' sending to sendq */
1177 	}
1178 
1179 	sockc.tsflags = sk->sk_tsflags;
1180 	if (msg->msg_controllen) {
1181 		err = sock_cmsg_send(sk, msg, &sockc);
1182 		if (unlikely(err)) {
1183 			err = -EINVAL;
1184 			goto out_err;
1185 		}
1186 	}
1187 
1188 	/* This should be in poll */
1189 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1190 
1191 	/* Ok commence sending. */
1192 	copied = 0;
1193 
1194 restart:
1195 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1196 
1197 	err = -EPIPE;
1198 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1199 		goto do_error;
1200 
1201 	sg = !!(sk->sk_route_caps & NETIF_F_SG);
1202 
1203 	while (msg_data_left(msg)) {
1204 		int copy = 0;
1205 		int max = size_goal;
1206 
1207 		skb = tcp_write_queue_tail(sk);
1208 		if (tcp_send_head(sk)) {
1209 			if (skb->ip_summed == CHECKSUM_NONE)
1210 				max = mss_now;
1211 			copy = max - skb->len;
1212 		}
1213 
1214 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1215 			bool first_skb;
1216 
1217 new_segment:
1218 			/* Allocate new segment. If the interface is SG,
1219 			 * allocate skb fitting to single page.
1220 			 */
1221 			if (!sk_stream_memory_free(sk))
1222 				goto wait_for_sndbuf;
1223 
1224 			if (process_backlog && sk_flush_backlog(sk)) {
1225 				process_backlog = false;
1226 				goto restart;
1227 			}
1228 			first_skb = skb_queue_empty(&sk->sk_write_queue);
1229 			skb = sk_stream_alloc_skb(sk,
1230 						  select_size(sk, sg, first_skb),
1231 						  sk->sk_allocation,
1232 						  first_skb);
1233 			if (!skb)
1234 				goto wait_for_memory;
1235 
1236 			process_backlog = true;
1237 			/*
1238 			 * Check whether we can use HW checksum.
1239 			 */
1240 			if (sk_check_csum_caps(sk))
1241 				skb->ip_summed = CHECKSUM_PARTIAL;
1242 
1243 			skb_entail(sk, skb);
1244 			copy = size_goal;
1245 			max = size_goal;
1246 
1247 			/* All packets are restored as if they have
1248 			 * already been sent. skb_mstamp isn't set to
1249 			 * avoid wrong rtt estimation.
1250 			 */
1251 			if (tp->repair)
1252 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1253 		}
1254 
1255 		/* Try to append data to the end of skb. */
1256 		if (copy > msg_data_left(msg))
1257 			copy = msg_data_left(msg);
1258 
1259 		/* Where to copy to? */
1260 		if (skb_availroom(skb) > 0) {
1261 			/* We have some space in skb head. Superb! */
1262 			copy = min_t(int, copy, skb_availroom(skb));
1263 			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1264 			if (err)
1265 				goto do_fault;
1266 		} else {
1267 			bool merge = true;
1268 			int i = skb_shinfo(skb)->nr_frags;
1269 			struct page_frag *pfrag = sk_page_frag(sk);
1270 
1271 			if (!sk_page_frag_refill(sk, pfrag))
1272 				goto wait_for_memory;
1273 
1274 			if (!skb_can_coalesce(skb, i, pfrag->page,
1275 					      pfrag->offset)) {
1276 				if (i >= sysctl_max_skb_frags || !sg) {
1277 					tcp_mark_push(tp, skb);
1278 					goto new_segment;
1279 				}
1280 				merge = false;
1281 			}
1282 
1283 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1284 
1285 			if (!sk_wmem_schedule(sk, copy))
1286 				goto wait_for_memory;
1287 
1288 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1289 						       pfrag->page,
1290 						       pfrag->offset,
1291 						       copy);
1292 			if (err)
1293 				goto do_error;
1294 
1295 			/* Update the skb. */
1296 			if (merge) {
1297 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1298 			} else {
1299 				skb_fill_page_desc(skb, i, pfrag->page,
1300 						   pfrag->offset, copy);
1301 				get_page(pfrag->page);
1302 			}
1303 			pfrag->offset += copy;
1304 		}
1305 
1306 		if (!copied)
1307 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1308 
1309 		tp->write_seq += copy;
1310 		TCP_SKB_CB(skb)->end_seq += copy;
1311 		tcp_skb_pcount_set(skb, 0);
1312 
1313 		copied += copy;
1314 		if (!msg_data_left(msg)) {
1315 			if (unlikely(flags & MSG_EOR))
1316 				TCP_SKB_CB(skb)->eor = 1;
1317 			goto out;
1318 		}
1319 
1320 		if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1321 			continue;
1322 
1323 		if (forced_push(tp)) {
1324 			tcp_mark_push(tp, skb);
1325 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1326 		} else if (skb == tcp_send_head(sk))
1327 			tcp_push_one(sk, mss_now);
1328 		continue;
1329 
1330 wait_for_sndbuf:
1331 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1332 wait_for_memory:
1333 		if (copied)
1334 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1335 				 TCP_NAGLE_PUSH, size_goal);
1336 
1337 		err = sk_stream_wait_memory(sk, &timeo);
1338 		if (err != 0)
1339 			goto do_error;
1340 
1341 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1342 	}
1343 
1344 out:
1345 	if (copied) {
1346 		tcp_tx_timestamp(sk, sockc.tsflags, tcp_write_queue_tail(sk));
1347 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1348 	}
1349 out_nopush:
1350 	release_sock(sk);
1351 	return copied + copied_syn;
1352 
1353 do_fault:
1354 	if (!skb->len) {
1355 		tcp_unlink_write_queue(skb, sk);
1356 		/* It is the one place in all of TCP, except connection
1357 		 * reset, where we can be unlinking the send_head.
1358 		 */
1359 		tcp_check_send_head(sk, skb);
1360 		sk_wmem_free_skb(sk, skb);
1361 	}
1362 
1363 do_error:
1364 	if (copied + copied_syn)
1365 		goto out;
1366 out_err:
1367 	err = sk_stream_error(sk, flags, err);
1368 	/* make sure we wake any epoll edge trigger waiter */
1369 	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 && err == -EAGAIN))
1370 		sk->sk_write_space(sk);
1371 	release_sock(sk);
1372 	return err;
1373 }
1374 EXPORT_SYMBOL(tcp_sendmsg);
1375 
1376 /*
1377  *	Handle reading urgent data. BSD has very simple semantics for
1378  *	this, no blocking and very strange errors 8)
1379  */
1380 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1381 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1382 {
1383 	struct tcp_sock *tp = tcp_sk(sk);
1384 
1385 	/* No URG data to read. */
1386 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1387 	    tp->urg_data == TCP_URG_READ)
1388 		return -EINVAL;	/* Yes this is right ! */
1389 
1390 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1391 		return -ENOTCONN;
1392 
1393 	if (tp->urg_data & TCP_URG_VALID) {
1394 		int err = 0;
1395 		char c = tp->urg_data;
1396 
1397 		if (!(flags & MSG_PEEK))
1398 			tp->urg_data = TCP_URG_READ;
1399 
1400 		/* Read urgent data. */
1401 		msg->msg_flags |= MSG_OOB;
1402 
1403 		if (len > 0) {
1404 			if (!(flags & MSG_TRUNC))
1405 				err = memcpy_to_msg(msg, &c, 1);
1406 			len = 1;
1407 		} else
1408 			msg->msg_flags |= MSG_TRUNC;
1409 
1410 		return err ? -EFAULT : len;
1411 	}
1412 
1413 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1414 		return 0;
1415 
1416 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1417 	 * the available implementations agree in this case:
1418 	 * this call should never block, independent of the
1419 	 * blocking state of the socket.
1420 	 * Mike <pall@rz.uni-karlsruhe.de>
1421 	 */
1422 	return -EAGAIN;
1423 }
1424 
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1425 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1426 {
1427 	struct sk_buff *skb;
1428 	int copied = 0, err = 0;
1429 
1430 	/* XXX -- need to support SO_PEEK_OFF */
1431 
1432 	skb_queue_walk(&sk->sk_write_queue, skb) {
1433 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1434 		if (err)
1435 			break;
1436 
1437 		copied += skb->len;
1438 	}
1439 
1440 	return err ?: copied;
1441 }
1442 
1443 /* Clean up the receive buffer for full frames taken by the user,
1444  * then send an ACK if necessary.  COPIED is the number of bytes
1445  * tcp_recvmsg has given to the user so far, it speeds up the
1446  * calculation of whether or not we must ACK for the sake of
1447  * a window update.
1448  */
tcp_cleanup_rbuf(struct sock * sk,int copied)1449 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1450 {
1451 	struct tcp_sock *tp = tcp_sk(sk);
1452 	bool time_to_ack = false;
1453 
1454 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1455 
1456 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1457 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1458 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1459 
1460 	if (inet_csk_ack_scheduled(sk)) {
1461 		const struct inet_connection_sock *icsk = inet_csk(sk);
1462 		   /* Delayed ACKs frequently hit locked sockets during bulk
1463 		    * receive. */
1464 		if (icsk->icsk_ack.blocked ||
1465 		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1466 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1467 		    /*
1468 		     * If this read emptied read buffer, we send ACK, if
1469 		     * connection is not bidirectional, user drained
1470 		     * receive buffer and there was a small segment
1471 		     * in queue.
1472 		     */
1473 		    (copied > 0 &&
1474 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1475 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1476 		       !icsk->icsk_ack.pingpong)) &&
1477 		      !atomic_read(&sk->sk_rmem_alloc)))
1478 			time_to_ack = true;
1479 	}
1480 
1481 	/* We send an ACK if we can now advertise a non-zero window
1482 	 * which has been raised "significantly".
1483 	 *
1484 	 * Even if window raised up to infinity, do not send window open ACK
1485 	 * in states, where we will not receive more. It is useless.
1486 	 */
1487 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1488 		__u32 rcv_window_now = tcp_receive_window(tp);
1489 
1490 		/* Optimize, __tcp_select_window() is not cheap. */
1491 		if (2*rcv_window_now <= tp->window_clamp) {
1492 			__u32 new_window = __tcp_select_window(sk);
1493 
1494 			/* Send ACK now, if this read freed lots of space
1495 			 * in our buffer. Certainly, new_window is new window.
1496 			 * We can advertise it now, if it is not less than current one.
1497 			 * "Lots" means "at least twice" here.
1498 			 */
1499 			if (new_window && new_window >= 2 * rcv_window_now)
1500 				time_to_ack = true;
1501 		}
1502 	}
1503 	if (time_to_ack)
1504 		tcp_send_ack(sk);
1505 }
1506 
tcp_prequeue_process(struct sock * sk)1507 static void tcp_prequeue_process(struct sock *sk)
1508 {
1509 	struct sk_buff *skb;
1510 	struct tcp_sock *tp = tcp_sk(sk);
1511 
1512 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPREQUEUED);
1513 
1514 	while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
1515 		sk_backlog_rcv(sk, skb);
1516 
1517 	/* Clear memory counter. */
1518 	tp->ucopy.memory = 0;
1519 }
1520 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1521 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1522 {
1523 	struct sk_buff *skb;
1524 	u32 offset;
1525 
1526 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1527 		offset = seq - TCP_SKB_CB(skb)->seq;
1528 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1529 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1530 			offset--;
1531 		}
1532 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1533 			*off = offset;
1534 			return skb;
1535 		}
1536 		/* This looks weird, but this can happen if TCP collapsing
1537 		 * splitted a fat GRO packet, while we released socket lock
1538 		 * in skb_splice_bits()
1539 		 */
1540 		sk_eat_skb(sk, skb);
1541 	}
1542 	return NULL;
1543 }
1544 
1545 /*
1546  * This routine provides an alternative to tcp_recvmsg() for routines
1547  * that would like to handle copying from skbuffs directly in 'sendfile'
1548  * fashion.
1549  * Note:
1550  *	- It is assumed that the socket was locked by the caller.
1551  *	- The routine does not block.
1552  *	- At present, there is no support for reading OOB data
1553  *	  or for 'peeking' the socket using this routine
1554  *	  (although both would be easy to implement).
1555  */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1556 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1557 		  sk_read_actor_t recv_actor)
1558 {
1559 	struct sk_buff *skb;
1560 	struct tcp_sock *tp = tcp_sk(sk);
1561 	u32 seq = tp->copied_seq;
1562 	u32 offset;
1563 	int copied = 0;
1564 
1565 	if (sk->sk_state == TCP_LISTEN)
1566 		return -ENOTCONN;
1567 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1568 		if (offset < skb->len) {
1569 			int used;
1570 			size_t len;
1571 
1572 			len = skb->len - offset;
1573 			/* Stop reading if we hit a patch of urgent data */
1574 			if (tp->urg_data) {
1575 				u32 urg_offset = tp->urg_seq - seq;
1576 				if (urg_offset < len)
1577 					len = urg_offset;
1578 				if (!len)
1579 					break;
1580 			}
1581 			used = recv_actor(desc, skb, offset, len);
1582 			if (used <= 0) {
1583 				if (!copied)
1584 					copied = used;
1585 				break;
1586 			} else if (used <= len) {
1587 				seq += used;
1588 				copied += used;
1589 				offset += used;
1590 			}
1591 			/* If recv_actor drops the lock (e.g. TCP splice
1592 			 * receive) the skb pointer might be invalid when
1593 			 * getting here: tcp_collapse might have deleted it
1594 			 * while aggregating skbs from the socket queue.
1595 			 */
1596 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1597 			if (!skb)
1598 				break;
1599 			/* TCP coalescing might have appended data to the skb.
1600 			 * Try to splice more frags
1601 			 */
1602 			if (offset + 1 != skb->len)
1603 				continue;
1604 		}
1605 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1606 			sk_eat_skb(sk, skb);
1607 			++seq;
1608 			break;
1609 		}
1610 		sk_eat_skb(sk, skb);
1611 		if (!desc->count)
1612 			break;
1613 		tp->copied_seq = seq;
1614 	}
1615 	tp->copied_seq = seq;
1616 
1617 	tcp_rcv_space_adjust(sk);
1618 
1619 	/* Clean up data we have read: This will do ACK frames. */
1620 	if (copied > 0) {
1621 		tcp_recv_skb(sk, seq, &offset);
1622 		tcp_cleanup_rbuf(sk, copied);
1623 	}
1624 	return copied;
1625 }
1626 EXPORT_SYMBOL(tcp_read_sock);
1627 
tcp_peek_len(struct socket * sock)1628 int tcp_peek_len(struct socket *sock)
1629 {
1630 	return tcp_inq(sock->sk);
1631 }
1632 EXPORT_SYMBOL(tcp_peek_len);
1633 
1634 /*
1635  *	This routine copies from a sock struct into the user buffer.
1636  *
1637  *	Technical note: in 2.3 we work on _locked_ socket, so that
1638  *	tricks with *seq access order and skb->users are not required.
1639  *	Probably, code can be easily improved even more.
1640  */
1641 
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)1642 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1643 		int flags, int *addr_len)
1644 {
1645 	struct tcp_sock *tp = tcp_sk(sk);
1646 	int copied = 0;
1647 	u32 peek_seq;
1648 	u32 *seq;
1649 	unsigned long used;
1650 	int err;
1651 	int target;		/* Read at least this many bytes */
1652 	long timeo;
1653 	struct task_struct *user_recv = NULL;
1654 	struct sk_buff *skb, *last;
1655 	u32 urg_hole = 0;
1656 
1657 	if (unlikely(flags & MSG_ERRQUEUE))
1658 		return inet_recv_error(sk, msg, len, addr_len);
1659 
1660 	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1661 	    (sk->sk_state == TCP_ESTABLISHED))
1662 		sk_busy_loop(sk, nonblock);
1663 
1664 	lock_sock(sk);
1665 
1666 	err = -ENOTCONN;
1667 	if (sk->sk_state == TCP_LISTEN)
1668 		goto out;
1669 
1670 	timeo = sock_rcvtimeo(sk, nonblock);
1671 
1672 	/* Urgent data needs to be handled specially. */
1673 	if (flags & MSG_OOB)
1674 		goto recv_urg;
1675 
1676 	if (unlikely(tp->repair)) {
1677 		err = -EPERM;
1678 		if (!(flags & MSG_PEEK))
1679 			goto out;
1680 
1681 		if (tp->repair_queue == TCP_SEND_QUEUE)
1682 			goto recv_sndq;
1683 
1684 		err = -EINVAL;
1685 		if (tp->repair_queue == TCP_NO_QUEUE)
1686 			goto out;
1687 
1688 		/* 'common' recv queue MSG_PEEK-ing */
1689 	}
1690 
1691 	seq = &tp->copied_seq;
1692 	if (flags & MSG_PEEK) {
1693 		peek_seq = tp->copied_seq;
1694 		seq = &peek_seq;
1695 	}
1696 
1697 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1698 
1699 	do {
1700 		u32 offset;
1701 
1702 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1703 		if (tp->urg_data && tp->urg_seq == *seq) {
1704 			if (copied)
1705 				break;
1706 			if (signal_pending(current)) {
1707 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1708 				break;
1709 			}
1710 		}
1711 
1712 		/* Next get a buffer. */
1713 
1714 		last = skb_peek_tail(&sk->sk_receive_queue);
1715 		skb_queue_walk(&sk->sk_receive_queue, skb) {
1716 			last = skb;
1717 			/* Now that we have two receive queues this
1718 			 * shouldn't happen.
1719 			 */
1720 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1721 				 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1722 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1723 				 flags))
1724 				break;
1725 
1726 			offset = *seq - TCP_SKB_CB(skb)->seq;
1727 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1728 				pr_err_once("%s: found a SYN, please report !\n", __func__);
1729 				offset--;
1730 			}
1731 			if (offset < skb->len)
1732 				goto found_ok_skb;
1733 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1734 				goto found_fin_ok;
1735 			WARN(!(flags & MSG_PEEK),
1736 			     "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1737 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1738 		}
1739 
1740 		/* Well, if we have backlog, try to process it now yet. */
1741 
1742 		if (copied >= target && !sk->sk_backlog.tail)
1743 			break;
1744 
1745 		if (copied) {
1746 			if (sk->sk_err ||
1747 			    sk->sk_state == TCP_CLOSE ||
1748 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1749 			    !timeo ||
1750 			    signal_pending(current))
1751 				break;
1752 		} else {
1753 			if (sock_flag(sk, SOCK_DONE))
1754 				break;
1755 
1756 			if (sk->sk_err) {
1757 				copied = sock_error(sk);
1758 				break;
1759 			}
1760 
1761 			if (sk->sk_shutdown & RCV_SHUTDOWN)
1762 				break;
1763 
1764 			if (sk->sk_state == TCP_CLOSE) {
1765 				if (!sock_flag(sk, SOCK_DONE)) {
1766 					/* This occurs when user tries to read
1767 					 * from never connected socket.
1768 					 */
1769 					copied = -ENOTCONN;
1770 					break;
1771 				}
1772 				break;
1773 			}
1774 
1775 			if (!timeo) {
1776 				copied = -EAGAIN;
1777 				break;
1778 			}
1779 
1780 			if (signal_pending(current)) {
1781 				copied = sock_intr_errno(timeo);
1782 				break;
1783 			}
1784 		}
1785 
1786 		tcp_cleanup_rbuf(sk, copied);
1787 
1788 		if (!sysctl_tcp_low_latency && tp->ucopy.task == user_recv) {
1789 			/* Install new reader */
1790 			if (!user_recv && !(flags & (MSG_TRUNC | MSG_PEEK))) {
1791 				user_recv = current;
1792 				tp->ucopy.task = user_recv;
1793 				tp->ucopy.msg = msg;
1794 			}
1795 
1796 			tp->ucopy.len = len;
1797 
1798 			WARN_ON(tp->copied_seq != tp->rcv_nxt &&
1799 				!(flags & (MSG_PEEK | MSG_TRUNC)));
1800 
1801 			/* Ugly... If prequeue is not empty, we have to
1802 			 * process it before releasing socket, otherwise
1803 			 * order will be broken at second iteration.
1804 			 * More elegant solution is required!!!
1805 			 *
1806 			 * Look: we have the following (pseudo)queues:
1807 			 *
1808 			 * 1. packets in flight
1809 			 * 2. backlog
1810 			 * 3. prequeue
1811 			 * 4. receive_queue
1812 			 *
1813 			 * Each queue can be processed only if the next ones
1814 			 * are empty. At this point we have empty receive_queue.
1815 			 * But prequeue _can_ be not empty after 2nd iteration,
1816 			 * when we jumped to start of loop because backlog
1817 			 * processing added something to receive_queue.
1818 			 * We cannot release_sock(), because backlog contains
1819 			 * packets arrived _after_ prequeued ones.
1820 			 *
1821 			 * Shortly, algorithm is clear --- to process all
1822 			 * the queues in order. We could make it more directly,
1823 			 * requeueing packets from backlog to prequeue, if
1824 			 * is not empty. It is more elegant, but eats cycles,
1825 			 * unfortunately.
1826 			 */
1827 			if (!skb_queue_empty(&tp->ucopy.prequeue))
1828 				goto do_prequeue;
1829 
1830 			/* __ Set realtime policy in scheduler __ */
1831 		}
1832 
1833 		if (copied >= target) {
1834 			/* Do not sleep, just process backlog. */
1835 			release_sock(sk);
1836 			lock_sock(sk);
1837 		} else {
1838 			sk_wait_data(sk, &timeo, last);
1839 		}
1840 
1841 		if (user_recv) {
1842 			int chunk;
1843 
1844 			/* __ Restore normal policy in scheduler __ */
1845 
1846 			chunk = len - tp->ucopy.len;
1847 			if (chunk != 0) {
1848 				NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMBACKLOG, chunk);
1849 				len -= chunk;
1850 				copied += chunk;
1851 			}
1852 
1853 			if (tp->rcv_nxt == tp->copied_seq &&
1854 			    !skb_queue_empty(&tp->ucopy.prequeue)) {
1855 do_prequeue:
1856 				tcp_prequeue_process(sk);
1857 
1858 				chunk = len - tp->ucopy.len;
1859 				if (chunk != 0) {
1860 					NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1861 					len -= chunk;
1862 					copied += chunk;
1863 				}
1864 			}
1865 		}
1866 		if ((flags & MSG_PEEK) &&
1867 		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
1868 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1869 					    current->comm,
1870 					    task_pid_nr(current));
1871 			peek_seq = tp->copied_seq;
1872 		}
1873 		continue;
1874 
1875 	found_ok_skb:
1876 		/* Ok so how much can we use? */
1877 		used = skb->len - offset;
1878 		if (len < used)
1879 			used = len;
1880 
1881 		/* Do we have urgent data here? */
1882 		if (tp->urg_data) {
1883 			u32 urg_offset = tp->urg_seq - *seq;
1884 			if (urg_offset < used) {
1885 				if (!urg_offset) {
1886 					if (!sock_flag(sk, SOCK_URGINLINE)) {
1887 						++*seq;
1888 						urg_hole++;
1889 						offset++;
1890 						used--;
1891 						if (!used)
1892 							goto skip_copy;
1893 					}
1894 				} else
1895 					used = urg_offset;
1896 			}
1897 		}
1898 
1899 		if (!(flags & MSG_TRUNC)) {
1900 			err = skb_copy_datagram_msg(skb, offset, msg, used);
1901 			if (err) {
1902 				/* Exception. Bailout! */
1903 				if (!copied)
1904 					copied = -EFAULT;
1905 				break;
1906 			}
1907 		}
1908 
1909 		*seq += used;
1910 		copied += used;
1911 		len -= used;
1912 
1913 		tcp_rcv_space_adjust(sk);
1914 
1915 skip_copy:
1916 		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1917 			tp->urg_data = 0;
1918 			tcp_fast_path_check(sk);
1919 		}
1920 		if (used + offset < skb->len)
1921 			continue;
1922 
1923 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1924 			goto found_fin_ok;
1925 		if (!(flags & MSG_PEEK))
1926 			sk_eat_skb(sk, skb);
1927 		continue;
1928 
1929 	found_fin_ok:
1930 		/* Process the FIN. */
1931 		++*seq;
1932 		if (!(flags & MSG_PEEK))
1933 			sk_eat_skb(sk, skb);
1934 		break;
1935 	} while (len > 0);
1936 
1937 	if (user_recv) {
1938 		if (!skb_queue_empty(&tp->ucopy.prequeue)) {
1939 			int chunk;
1940 
1941 			tp->ucopy.len = copied > 0 ? len : 0;
1942 
1943 			tcp_prequeue_process(sk);
1944 
1945 			if (copied > 0 && (chunk = len - tp->ucopy.len) != 0) {
1946 				NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDIRECTCOPYFROMPREQUEUE, chunk);
1947 				len -= chunk;
1948 				copied += chunk;
1949 			}
1950 		}
1951 
1952 		tp->ucopy.task = NULL;
1953 		tp->ucopy.len = 0;
1954 	}
1955 
1956 	/* According to UNIX98, msg_name/msg_namelen are ignored
1957 	 * on connected socket. I was just happy when found this 8) --ANK
1958 	 */
1959 
1960 	/* Clean up data we have read: This will do ACK frames. */
1961 	tcp_cleanup_rbuf(sk, copied);
1962 
1963 	release_sock(sk);
1964 	return copied;
1965 
1966 out:
1967 	release_sock(sk);
1968 	return err;
1969 
1970 recv_urg:
1971 	err = tcp_recv_urg(sk, msg, len, flags);
1972 	goto out;
1973 
1974 recv_sndq:
1975 	err = tcp_peek_sndq(sk, msg, len);
1976 	goto out;
1977 }
1978 EXPORT_SYMBOL(tcp_recvmsg);
1979 
tcp_set_state(struct sock * sk,int state)1980 void tcp_set_state(struct sock *sk, int state)
1981 {
1982 	int oldstate = sk->sk_state;
1983 
1984 	switch (state) {
1985 	case TCP_ESTABLISHED:
1986 		if (oldstate != TCP_ESTABLISHED)
1987 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
1988 		break;
1989 
1990 	case TCP_CLOSE:
1991 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
1992 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
1993 
1994 		sk->sk_prot->unhash(sk);
1995 		if (inet_csk(sk)->icsk_bind_hash &&
1996 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1997 			inet_put_port(sk);
1998 		/* fall through */
1999 	default:
2000 		if (oldstate == TCP_ESTABLISHED)
2001 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2002 	}
2003 
2004 	/* Change state AFTER socket is unhashed to avoid closed
2005 	 * socket sitting in hash tables.
2006 	 */
2007 	sk_state_store(sk, state);
2008 
2009 #ifdef STATE_TRACE
2010 	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2011 #endif
2012 }
2013 EXPORT_SYMBOL_GPL(tcp_set_state);
2014 
2015 /*
2016  *	State processing on a close. This implements the state shift for
2017  *	sending our FIN frame. Note that we only send a FIN for some
2018  *	states. A shutdown() may have already sent the FIN, or we may be
2019  *	closed.
2020  */
2021 
2022 static const unsigned char new_state[16] = {
2023   /* current state:        new state:      action:	*/
2024   [0 /* (Invalid) */]	= TCP_CLOSE,
2025   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2026   [TCP_SYN_SENT]	= TCP_CLOSE,
2027   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2028   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2029   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2030   [TCP_TIME_WAIT]	= TCP_CLOSE,
2031   [TCP_CLOSE]		= TCP_CLOSE,
2032   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2033   [TCP_LAST_ACK]	= TCP_LAST_ACK,
2034   [TCP_LISTEN]		= TCP_CLOSE,
2035   [TCP_CLOSING]		= TCP_CLOSING,
2036   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2037 };
2038 
tcp_close_state(struct sock * sk)2039 static int tcp_close_state(struct sock *sk)
2040 {
2041 	int next = (int)new_state[sk->sk_state];
2042 	int ns = next & TCP_STATE_MASK;
2043 
2044 	tcp_set_state(sk, ns);
2045 
2046 	return next & TCP_ACTION_FIN;
2047 }
2048 
2049 /*
2050  *	Shutdown the sending side of a connection. Much like close except
2051  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2052  */
2053 
tcp_shutdown(struct sock * sk,int how)2054 void tcp_shutdown(struct sock *sk, int how)
2055 {
2056 	/*	We need to grab some memory, and put together a FIN,
2057 	 *	and then put it into the queue to be sent.
2058 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2059 	 */
2060 	if (!(how & SEND_SHUTDOWN))
2061 		return;
2062 
2063 	/* If we've already sent a FIN, or it's a closed state, skip this. */
2064 	if ((1 << sk->sk_state) &
2065 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2066 	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2067 		/* Clear out any half completed packets.  FIN if needed. */
2068 		if (tcp_close_state(sk))
2069 			tcp_send_fin(sk);
2070 	}
2071 }
2072 EXPORT_SYMBOL(tcp_shutdown);
2073 
tcp_check_oom(struct sock * sk,int shift)2074 bool tcp_check_oom(struct sock *sk, int shift)
2075 {
2076 	bool too_many_orphans, out_of_socket_memory;
2077 
2078 	too_many_orphans = tcp_too_many_orphans(sk, shift);
2079 	out_of_socket_memory = tcp_out_of_memory(sk);
2080 
2081 	if (too_many_orphans)
2082 		net_info_ratelimited("too many orphaned sockets\n");
2083 	if (out_of_socket_memory)
2084 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2085 	return too_many_orphans || out_of_socket_memory;
2086 }
2087 
tcp_close(struct sock * sk,long timeout)2088 void tcp_close(struct sock *sk, long timeout)
2089 {
2090 	struct sk_buff *skb;
2091 	int data_was_unread = 0;
2092 	int state;
2093 
2094 	lock_sock(sk);
2095 	sk->sk_shutdown = SHUTDOWN_MASK;
2096 
2097 	if (sk->sk_state == TCP_LISTEN) {
2098 		tcp_set_state(sk, TCP_CLOSE);
2099 
2100 		/* Special case. */
2101 		inet_csk_listen_stop(sk);
2102 
2103 		goto adjudge_to_death;
2104 	}
2105 
2106 	/*  We need to flush the recv. buffs.  We do this only on the
2107 	 *  descriptor close, not protocol-sourced closes, because the
2108 	 *  reader process may not have drained the data yet!
2109 	 */
2110 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2111 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2112 
2113 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2114 			len--;
2115 		data_was_unread += len;
2116 		__kfree_skb(skb);
2117 	}
2118 
2119 	sk_mem_reclaim(sk);
2120 
2121 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2122 	if (sk->sk_state == TCP_CLOSE)
2123 		goto adjudge_to_death;
2124 
2125 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2126 	 * data was lost. To witness the awful effects of the old behavior of
2127 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2128 	 * GET in an FTP client, suspend the process, wait for the client to
2129 	 * advertise a zero window, then kill -9 the FTP client, wheee...
2130 	 * Note: timeout is always zero in such a case.
2131 	 */
2132 	if (unlikely(tcp_sk(sk)->repair)) {
2133 		sk->sk_prot->disconnect(sk, 0);
2134 	} else if (data_was_unread) {
2135 		/* Unread data was tossed, zap the connection. */
2136 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2137 		tcp_set_state(sk, TCP_CLOSE);
2138 		tcp_send_active_reset(sk, sk->sk_allocation);
2139 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2140 		/* Check zero linger _after_ checking for unread data. */
2141 		sk->sk_prot->disconnect(sk, 0);
2142 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2143 	} else if (tcp_close_state(sk)) {
2144 		/* We FIN if the application ate all the data before
2145 		 * zapping the connection.
2146 		 */
2147 
2148 		/* RED-PEN. Formally speaking, we have broken TCP state
2149 		 * machine. State transitions:
2150 		 *
2151 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2152 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2153 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2154 		 *
2155 		 * are legal only when FIN has been sent (i.e. in window),
2156 		 * rather than queued out of window. Purists blame.
2157 		 *
2158 		 * F.e. "RFC state" is ESTABLISHED,
2159 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2160 		 *
2161 		 * The visible declinations are that sometimes
2162 		 * we enter time-wait state, when it is not required really
2163 		 * (harmless), do not send active resets, when they are
2164 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2165 		 * they look as CLOSING or LAST_ACK for Linux)
2166 		 * Probably, I missed some more holelets.
2167 		 * 						--ANK
2168 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2169 		 * in a single packet! (May consider it later but will
2170 		 * probably need API support or TCP_CORK SYN-ACK until
2171 		 * data is written and socket is closed.)
2172 		 */
2173 		tcp_send_fin(sk);
2174 	}
2175 
2176 	sk_stream_wait_close(sk, timeout);
2177 
2178 adjudge_to_death:
2179 	state = sk->sk_state;
2180 	sock_hold(sk);
2181 	sock_orphan(sk);
2182 
2183 	/* It is the last release_sock in its life. It will remove backlog. */
2184 	release_sock(sk);
2185 
2186 
2187 	/* Now socket is owned by kernel and we acquire BH lock
2188 	   to finish close. No need to check for user refs.
2189 	 */
2190 	local_bh_disable();
2191 	bh_lock_sock(sk);
2192 	WARN_ON(sock_owned_by_user(sk));
2193 
2194 	percpu_counter_inc(sk->sk_prot->orphan_count);
2195 
2196 	/* Have we already been destroyed by a softirq or backlog? */
2197 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2198 		goto out;
2199 
2200 	/*	This is a (useful) BSD violating of the RFC. There is a
2201 	 *	problem with TCP as specified in that the other end could
2202 	 *	keep a socket open forever with no application left this end.
2203 	 *	We use a 1 minute timeout (about the same as BSD) then kill
2204 	 *	our end. If they send after that then tough - BUT: long enough
2205 	 *	that we won't make the old 4*rto = almost no time - whoops
2206 	 *	reset mistake.
2207 	 *
2208 	 *	Nope, it was not mistake. It is really desired behaviour
2209 	 *	f.e. on http servers, when such sockets are useless, but
2210 	 *	consume significant resources. Let's do it with special
2211 	 *	linger2	option.					--ANK
2212 	 */
2213 
2214 	if (sk->sk_state == TCP_FIN_WAIT2) {
2215 		struct tcp_sock *tp = tcp_sk(sk);
2216 		if (tp->linger2 < 0) {
2217 			tcp_set_state(sk, TCP_CLOSE);
2218 			tcp_send_active_reset(sk, GFP_ATOMIC);
2219 			__NET_INC_STATS(sock_net(sk),
2220 					LINUX_MIB_TCPABORTONLINGER);
2221 		} else {
2222 			const int tmo = tcp_fin_time(sk);
2223 
2224 			if (tmo > TCP_TIMEWAIT_LEN) {
2225 				inet_csk_reset_keepalive_timer(sk,
2226 						tmo - TCP_TIMEWAIT_LEN);
2227 			} else {
2228 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2229 				goto out;
2230 			}
2231 		}
2232 	}
2233 	if (sk->sk_state != TCP_CLOSE) {
2234 		sk_mem_reclaim(sk);
2235 		if (tcp_check_oom(sk, 0)) {
2236 			tcp_set_state(sk, TCP_CLOSE);
2237 			tcp_send_active_reset(sk, GFP_ATOMIC);
2238 			__NET_INC_STATS(sock_net(sk),
2239 					LINUX_MIB_TCPABORTONMEMORY);
2240 		} else if (!check_net(sock_net(sk))) {
2241 			/* Not possible to send reset; just close */
2242 			tcp_set_state(sk, TCP_CLOSE);
2243 		}
2244 	}
2245 
2246 	if (sk->sk_state == TCP_CLOSE) {
2247 		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2248 		/* We could get here with a non-NULL req if the socket is
2249 		 * aborted (e.g., closed with unread data) before 3WHS
2250 		 * finishes.
2251 		 */
2252 		if (req)
2253 			reqsk_fastopen_remove(sk, req, false);
2254 		inet_csk_destroy_sock(sk);
2255 	}
2256 	/* Otherwise, socket is reprieved until protocol close. */
2257 
2258 out:
2259 	bh_unlock_sock(sk);
2260 	local_bh_enable();
2261 	sock_put(sk);
2262 }
2263 EXPORT_SYMBOL(tcp_close);
2264 
2265 /* These states need RST on ABORT according to RFC793 */
2266 
tcp_need_reset(int state)2267 static inline bool tcp_need_reset(int state)
2268 {
2269 	return (1 << state) &
2270 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2271 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2272 }
2273 
tcp_disconnect(struct sock * sk,int flags)2274 int tcp_disconnect(struct sock *sk, int flags)
2275 {
2276 	struct inet_sock *inet = inet_sk(sk);
2277 	struct inet_connection_sock *icsk = inet_csk(sk);
2278 	struct tcp_sock *tp = tcp_sk(sk);
2279 	int err = 0;
2280 	int old_state = sk->sk_state;
2281 
2282 	if (old_state != TCP_CLOSE)
2283 		tcp_set_state(sk, TCP_CLOSE);
2284 
2285 	/* ABORT function of RFC793 */
2286 	if (old_state == TCP_LISTEN) {
2287 		inet_csk_listen_stop(sk);
2288 	} else if (unlikely(tp->repair)) {
2289 		sk->sk_err = ECONNABORTED;
2290 	} else if (tcp_need_reset(old_state) ||
2291 		   (tp->snd_nxt != tp->write_seq &&
2292 		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2293 		/* The last check adjusts for discrepancy of Linux wrt. RFC
2294 		 * states
2295 		 */
2296 		tcp_send_active_reset(sk, gfp_any());
2297 		sk->sk_err = ECONNRESET;
2298 	} else if (old_state == TCP_SYN_SENT)
2299 		sk->sk_err = ECONNRESET;
2300 
2301 	tcp_clear_xmit_timers(sk);
2302 	__skb_queue_purge(&sk->sk_receive_queue);
2303 	tcp_write_queue_purge(sk);
2304 	skb_rbtree_purge(&tp->out_of_order_queue);
2305 
2306 	inet->inet_dport = 0;
2307 
2308 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2309 		inet_reset_saddr(sk);
2310 
2311 	sk->sk_shutdown = 0;
2312 	sock_reset_flag(sk, SOCK_DONE);
2313 	tp->srtt_us = 0;
2314 	tp->write_seq += tp->max_window + 2;
2315 	if (tp->write_seq == 0)
2316 		tp->write_seq = 1;
2317 	icsk->icsk_backoff = 0;
2318 	tp->snd_cwnd = 2;
2319 	icsk->icsk_probes_out = 0;
2320 	tp->packets_out = 0;
2321 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2322 	tp->snd_cwnd_cnt = 0;
2323 	tp->window_clamp = 0;
2324 	tcp_set_ca_state(sk, TCP_CA_Open);
2325 	tp->is_sack_reneg = 0;
2326 	tcp_clear_retrans(tp);
2327 	inet_csk_delack_init(sk);
2328 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2329 	 * issue in __tcp_select_window()
2330 	 */
2331 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2332 	tcp_init_send_head(sk);
2333 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2334 	__sk_dst_reset(sk);
2335 	dst_release(sk->sk_rx_dst);
2336 	sk->sk_rx_dst = NULL;
2337 	tcp_saved_syn_free(tp);
2338 
2339 	/* Clean up fastopen related fields */
2340 	tcp_free_fastopen_req(tp);
2341 	inet->defer_connect = 0;
2342 
2343 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2344 
2345 	if (sk->sk_frag.page) {
2346 		put_page(sk->sk_frag.page);
2347 		sk->sk_frag.page = NULL;
2348 		sk->sk_frag.offset = 0;
2349 	}
2350 
2351 	sk->sk_error_report(sk);
2352 	return err;
2353 }
2354 EXPORT_SYMBOL(tcp_disconnect);
2355 
tcp_can_repair_sock(const struct sock * sk)2356 static inline bool tcp_can_repair_sock(const struct sock *sk)
2357 {
2358 	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2359 		((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_ESTABLISHED));
2360 }
2361 
tcp_repair_set_window(struct tcp_sock * tp,char __user * optbuf,int len)2362 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2363 {
2364 	struct tcp_repair_window opt;
2365 
2366 	if (!tp->repair)
2367 		return -EPERM;
2368 
2369 	if (len != sizeof(opt))
2370 		return -EINVAL;
2371 
2372 	if (copy_from_user(&opt, optbuf, sizeof(opt)))
2373 		return -EFAULT;
2374 
2375 	if (opt.max_window < opt.snd_wnd)
2376 		return -EINVAL;
2377 
2378 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2379 		return -EINVAL;
2380 
2381 	if (after(opt.rcv_wup, tp->rcv_nxt))
2382 		return -EINVAL;
2383 
2384 	tp->snd_wl1	= opt.snd_wl1;
2385 	tp->snd_wnd	= opt.snd_wnd;
2386 	tp->max_window	= opt.max_window;
2387 
2388 	tp->rcv_wnd	= opt.rcv_wnd;
2389 	tp->rcv_wup	= opt.rcv_wup;
2390 
2391 	return 0;
2392 }
2393 
tcp_repair_options_est(struct tcp_sock * tp,struct tcp_repair_opt __user * optbuf,unsigned int len)2394 static int tcp_repair_options_est(struct tcp_sock *tp,
2395 		struct tcp_repair_opt __user *optbuf, unsigned int len)
2396 {
2397 	struct tcp_repair_opt opt;
2398 
2399 	while (len >= sizeof(opt)) {
2400 		if (copy_from_user(&opt, optbuf, sizeof(opt)))
2401 			return -EFAULT;
2402 
2403 		optbuf++;
2404 		len -= sizeof(opt);
2405 
2406 		switch (opt.opt_code) {
2407 		case TCPOPT_MSS:
2408 			tp->rx_opt.mss_clamp = opt.opt_val;
2409 			break;
2410 		case TCPOPT_WINDOW:
2411 			{
2412 				u16 snd_wscale = opt.opt_val & 0xFFFF;
2413 				u16 rcv_wscale = opt.opt_val >> 16;
2414 
2415 				if (snd_wscale > 14 || rcv_wscale > 14)
2416 					return -EFBIG;
2417 
2418 				tp->rx_opt.snd_wscale = snd_wscale;
2419 				tp->rx_opt.rcv_wscale = rcv_wscale;
2420 				tp->rx_opt.wscale_ok = 1;
2421 			}
2422 			break;
2423 		case TCPOPT_SACK_PERM:
2424 			if (opt.opt_val != 0)
2425 				return -EINVAL;
2426 
2427 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2428 			if (sysctl_tcp_fack)
2429 				tcp_enable_fack(tp);
2430 			break;
2431 		case TCPOPT_TIMESTAMP:
2432 			if (opt.opt_val != 0)
2433 				return -EINVAL;
2434 
2435 			tp->rx_opt.tstamp_ok = 1;
2436 			break;
2437 		}
2438 	}
2439 
2440 	return 0;
2441 }
2442 
2443 /*
2444  *	Socket option code for TCP.
2445  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2446 static int do_tcp_setsockopt(struct sock *sk, int level,
2447 		int optname, char __user *optval, unsigned int optlen)
2448 {
2449 	struct tcp_sock *tp = tcp_sk(sk);
2450 	struct inet_connection_sock *icsk = inet_csk(sk);
2451 	struct net *net = sock_net(sk);
2452 	int val;
2453 	int err = 0;
2454 
2455 	/* These are data/string values, all the others are ints */
2456 	switch (optname) {
2457 	case TCP_CONGESTION: {
2458 		char name[TCP_CA_NAME_MAX];
2459 
2460 		if (optlen < 1)
2461 			return -EINVAL;
2462 
2463 		val = strncpy_from_user(name, optval,
2464 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
2465 		if (val < 0)
2466 			return -EFAULT;
2467 		name[val] = 0;
2468 
2469 		lock_sock(sk);
2470 		err = tcp_set_congestion_control(sk, name);
2471 		release_sock(sk);
2472 		return err;
2473 	}
2474 	default:
2475 		/* fallthru */
2476 		break;
2477 	}
2478 
2479 	if (optlen < sizeof(int))
2480 		return -EINVAL;
2481 
2482 	if (get_user(val, (int __user *)optval))
2483 		return -EFAULT;
2484 
2485 	lock_sock(sk);
2486 
2487 	switch (optname) {
2488 	case TCP_MAXSEG:
2489 		/* Values greater than interface MTU won't take effect. However
2490 		 * at the point when this call is done we typically don't yet
2491 		 * know which interface is going to be used */
2492 		if (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW) {
2493 			err = -EINVAL;
2494 			break;
2495 		}
2496 		tp->rx_opt.user_mss = val;
2497 		break;
2498 
2499 	case TCP_NODELAY:
2500 		if (val) {
2501 			/* TCP_NODELAY is weaker than TCP_CORK, so that
2502 			 * this option on corked socket is remembered, but
2503 			 * it is not activated until cork is cleared.
2504 			 *
2505 			 * However, when TCP_NODELAY is set we make
2506 			 * an explicit push, which overrides even TCP_CORK
2507 			 * for currently queued segments.
2508 			 */
2509 			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2510 			tcp_push_pending_frames(sk);
2511 		} else {
2512 			tp->nonagle &= ~TCP_NAGLE_OFF;
2513 		}
2514 		break;
2515 
2516 	case TCP_THIN_LINEAR_TIMEOUTS:
2517 		if (val < 0 || val > 1)
2518 			err = -EINVAL;
2519 		else
2520 			tp->thin_lto = val;
2521 		break;
2522 
2523 	case TCP_THIN_DUPACK:
2524 		if (val < 0 || val > 1)
2525 			err = -EINVAL;
2526 		else {
2527 			tp->thin_dupack = val;
2528 			if (tp->thin_dupack)
2529 				tcp_disable_early_retrans(tp);
2530 		}
2531 		break;
2532 
2533 	case TCP_REPAIR:
2534 		if (!tcp_can_repair_sock(sk))
2535 			err = -EPERM;
2536 		else if (val == 1) {
2537 			tp->repair = 1;
2538 			sk->sk_reuse = SK_FORCE_REUSE;
2539 			tp->repair_queue = TCP_NO_QUEUE;
2540 		} else if (val == 0) {
2541 			tp->repair = 0;
2542 			sk->sk_reuse = SK_NO_REUSE;
2543 			tcp_send_window_probe(sk);
2544 		} else
2545 			err = -EINVAL;
2546 
2547 		break;
2548 
2549 	case TCP_REPAIR_QUEUE:
2550 		if (!tp->repair)
2551 			err = -EPERM;
2552 		else if (val < TCP_QUEUES_NR)
2553 			tp->repair_queue = val;
2554 		else
2555 			err = -EINVAL;
2556 		break;
2557 
2558 	case TCP_QUEUE_SEQ:
2559 		if (sk->sk_state != TCP_CLOSE)
2560 			err = -EPERM;
2561 		else if (tp->repair_queue == TCP_SEND_QUEUE)
2562 			tp->write_seq = val;
2563 		else if (tp->repair_queue == TCP_RECV_QUEUE)
2564 			tp->rcv_nxt = val;
2565 		else
2566 			err = -EINVAL;
2567 		break;
2568 
2569 	case TCP_REPAIR_OPTIONS:
2570 		if (!tp->repair)
2571 			err = -EINVAL;
2572 		else if (sk->sk_state == TCP_ESTABLISHED)
2573 			err = tcp_repair_options_est(tp,
2574 					(struct tcp_repair_opt __user *)optval,
2575 					optlen);
2576 		else
2577 			err = -EPERM;
2578 		break;
2579 
2580 	case TCP_CORK:
2581 		/* When set indicates to always queue non-full frames.
2582 		 * Later the user clears this option and we transmit
2583 		 * any pending partial frames in the queue.  This is
2584 		 * meant to be used alongside sendfile() to get properly
2585 		 * filled frames when the user (for example) must write
2586 		 * out headers with a write() call first and then use
2587 		 * sendfile to send out the data parts.
2588 		 *
2589 		 * TCP_CORK can be set together with TCP_NODELAY and it is
2590 		 * stronger than TCP_NODELAY.
2591 		 */
2592 		if (val) {
2593 			tp->nonagle |= TCP_NAGLE_CORK;
2594 		} else {
2595 			tp->nonagle &= ~TCP_NAGLE_CORK;
2596 			if (tp->nonagle&TCP_NAGLE_OFF)
2597 				tp->nonagle |= TCP_NAGLE_PUSH;
2598 			tcp_push_pending_frames(sk);
2599 		}
2600 		break;
2601 
2602 	case TCP_KEEPIDLE:
2603 		if (val < 1 || val > MAX_TCP_KEEPIDLE)
2604 			err = -EINVAL;
2605 		else {
2606 			tp->keepalive_time = val * HZ;
2607 			if (sock_flag(sk, SOCK_KEEPOPEN) &&
2608 			    !((1 << sk->sk_state) &
2609 			      (TCPF_CLOSE | TCPF_LISTEN))) {
2610 				u32 elapsed = keepalive_time_elapsed(tp);
2611 				if (tp->keepalive_time > elapsed)
2612 					elapsed = tp->keepalive_time - elapsed;
2613 				else
2614 					elapsed = 0;
2615 				inet_csk_reset_keepalive_timer(sk, elapsed);
2616 			}
2617 		}
2618 		break;
2619 	case TCP_KEEPINTVL:
2620 		if (val < 1 || val > MAX_TCP_KEEPINTVL)
2621 			err = -EINVAL;
2622 		else
2623 			tp->keepalive_intvl = val * HZ;
2624 		break;
2625 	case TCP_KEEPCNT:
2626 		if (val < 1 || val > MAX_TCP_KEEPCNT)
2627 			err = -EINVAL;
2628 		else
2629 			tp->keepalive_probes = val;
2630 		break;
2631 	case TCP_SYNCNT:
2632 		if (val < 1 || val > MAX_TCP_SYNCNT)
2633 			err = -EINVAL;
2634 		else
2635 			icsk->icsk_syn_retries = val;
2636 		break;
2637 
2638 	case TCP_SAVE_SYN:
2639 		if (val < 0 || val > 1)
2640 			err = -EINVAL;
2641 		else
2642 			tp->save_syn = val;
2643 		break;
2644 
2645 	case TCP_LINGER2:
2646 		if (val < 0)
2647 			tp->linger2 = -1;
2648 		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2649 			tp->linger2 = 0;
2650 		else
2651 			tp->linger2 = val * HZ;
2652 		break;
2653 
2654 	case TCP_DEFER_ACCEPT:
2655 		/* Translate value in seconds to number of retransmits */
2656 		icsk->icsk_accept_queue.rskq_defer_accept =
2657 			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2658 					TCP_RTO_MAX / HZ);
2659 		break;
2660 
2661 	case TCP_WINDOW_CLAMP:
2662 		if (!val) {
2663 			if (sk->sk_state != TCP_CLOSE) {
2664 				err = -EINVAL;
2665 				break;
2666 			}
2667 			tp->window_clamp = 0;
2668 		} else
2669 			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2670 						SOCK_MIN_RCVBUF / 2 : val;
2671 		break;
2672 
2673 	case TCP_QUICKACK:
2674 		if (!val) {
2675 			icsk->icsk_ack.pingpong = 1;
2676 		} else {
2677 			icsk->icsk_ack.pingpong = 0;
2678 			if ((1 << sk->sk_state) &
2679 			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2680 			    inet_csk_ack_scheduled(sk)) {
2681 				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2682 				tcp_cleanup_rbuf(sk, 1);
2683 				if (!(val & 1))
2684 					icsk->icsk_ack.pingpong = 1;
2685 			}
2686 		}
2687 		break;
2688 
2689 #ifdef CONFIG_TCP_MD5SIG
2690 	case TCP_MD5SIG:
2691 		if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
2692 			err = tp->af_specific->md5_parse(sk, optval, optlen);
2693 		else
2694 			err = -EINVAL;
2695 		break;
2696 #endif
2697 	case TCP_USER_TIMEOUT:
2698 		/* Cap the max time in ms TCP will retry or probe the window
2699 		 * before giving up and aborting (ETIMEDOUT) a connection.
2700 		 */
2701 		if (val < 0)
2702 			err = -EINVAL;
2703 		else
2704 			icsk->icsk_user_timeout = msecs_to_jiffies(val);
2705 		break;
2706 
2707 	case TCP_FASTOPEN:
2708 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2709 		    TCPF_LISTEN))) {
2710 			tcp_fastopen_init_key_once(true);
2711 
2712 			fastopen_queue_tune(sk, val);
2713 		} else {
2714 			err = -EINVAL;
2715 		}
2716 		break;
2717 	case TCP_FASTOPEN_CONNECT:
2718 		if (val > 1 || val < 0) {
2719 			err = -EINVAL;
2720 		} else if (sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2721 			if (sk->sk_state == TCP_CLOSE)
2722 				tp->fastopen_connect = val;
2723 			else
2724 				err = -EINVAL;
2725 		} else {
2726 			err = -EOPNOTSUPP;
2727 		}
2728 		break;
2729 	case TCP_TIMESTAMP:
2730 		if (!tp->repair)
2731 			err = -EPERM;
2732 		else
2733 			tp->tsoffset = val - tcp_time_stamp;
2734 		break;
2735 	case TCP_REPAIR_WINDOW:
2736 		err = tcp_repair_set_window(tp, optval, optlen);
2737 		break;
2738 	case TCP_NOTSENT_LOWAT:
2739 		tp->notsent_lowat = val;
2740 		sk->sk_write_space(sk);
2741 		break;
2742 	default:
2743 		err = -ENOPROTOOPT;
2744 		break;
2745 	}
2746 
2747 	release_sock(sk);
2748 	return err;
2749 }
2750 
tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2751 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2752 		   unsigned int optlen)
2753 {
2754 	const struct inet_connection_sock *icsk = inet_csk(sk);
2755 
2756 	if (level != SOL_TCP)
2757 		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2758 						     optval, optlen);
2759 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2760 }
2761 EXPORT_SYMBOL(tcp_setsockopt);
2762 
2763 #ifdef CONFIG_COMPAT
compat_tcp_setsockopt(struct sock * sk,int level,int optname,char __user * optval,unsigned int optlen)2764 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2765 			  char __user *optval, unsigned int optlen)
2766 {
2767 	if (level != SOL_TCP)
2768 		return inet_csk_compat_setsockopt(sk, level, optname,
2769 						  optval, optlen);
2770 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2771 }
2772 EXPORT_SYMBOL(compat_tcp_setsockopt);
2773 #endif
2774 
2775 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)2776 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2777 {
2778 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2779 	const struct inet_connection_sock *icsk = inet_csk(sk);
2780 	u32 now = tcp_time_stamp, intv;
2781 	unsigned int start;
2782 	int notsent_bytes;
2783 	u64 rate64;
2784 	u32 rate;
2785 
2786 	memset(info, 0, sizeof(*info));
2787 	if (sk->sk_type != SOCK_STREAM)
2788 		return;
2789 
2790 	info->tcpi_state = sk_state_load(sk);
2791 
2792 	info->tcpi_ca_state = icsk->icsk_ca_state;
2793 	info->tcpi_retransmits = icsk->icsk_retransmits;
2794 	info->tcpi_probes = icsk->icsk_probes_out;
2795 	info->tcpi_backoff = icsk->icsk_backoff;
2796 
2797 	if (tp->rx_opt.tstamp_ok)
2798 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2799 	if (tcp_is_sack(tp))
2800 		info->tcpi_options |= TCPI_OPT_SACK;
2801 	if (tp->rx_opt.wscale_ok) {
2802 		info->tcpi_options |= TCPI_OPT_WSCALE;
2803 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2804 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2805 	}
2806 
2807 	if (tp->ecn_flags & TCP_ECN_OK)
2808 		info->tcpi_options |= TCPI_OPT_ECN;
2809 	if (tp->ecn_flags & TCP_ECN_SEEN)
2810 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2811 	if (tp->syn_data_acked)
2812 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
2813 
2814 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2815 	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2816 	info->tcpi_snd_mss = tp->mss_cache;
2817 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2818 
2819 	if (info->tcpi_state == TCP_LISTEN) {
2820 		info->tcpi_unacked = sk->sk_ack_backlog;
2821 		info->tcpi_sacked = sk->sk_max_ack_backlog;
2822 	} else {
2823 		info->tcpi_unacked = tp->packets_out;
2824 		info->tcpi_sacked = tp->sacked_out;
2825 	}
2826 	info->tcpi_lost = tp->lost_out;
2827 	info->tcpi_retrans = tp->retrans_out;
2828 	info->tcpi_fackets = tp->fackets_out;
2829 
2830 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2831 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2832 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2833 
2834 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2835 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2836 	info->tcpi_rtt = tp->srtt_us >> 3;
2837 	info->tcpi_rttvar = tp->mdev_us >> 2;
2838 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2839 	info->tcpi_snd_cwnd = tp->snd_cwnd;
2840 	info->tcpi_advmss = tp->advmss;
2841 	info->tcpi_reordering = tp->reordering;
2842 
2843 	info->tcpi_rcv_rtt = jiffies_to_usecs(tp->rcv_rtt_est.rtt)>>3;
2844 	info->tcpi_rcv_space = tp->rcvq_space.space;
2845 
2846 	info->tcpi_total_retrans = tp->total_retrans;
2847 
2848 	rate = READ_ONCE(sk->sk_pacing_rate);
2849 	rate64 = rate != ~0U ? rate : ~0ULL;
2850 	put_unaligned(rate64, &info->tcpi_pacing_rate);
2851 
2852 	rate = READ_ONCE(sk->sk_max_pacing_rate);
2853 	rate64 = rate != ~0U ? rate : ~0ULL;
2854 	put_unaligned(rate64, &info->tcpi_max_pacing_rate);
2855 
2856 	do {
2857 		start = u64_stats_fetch_begin_irq(&tp->syncp);
2858 		put_unaligned(tp->bytes_acked, &info->tcpi_bytes_acked);
2859 		put_unaligned(tp->bytes_received, &info->tcpi_bytes_received);
2860 	} while (u64_stats_fetch_retry_irq(&tp->syncp, start));
2861 	info->tcpi_segs_out = tp->segs_out;
2862 	info->tcpi_segs_in = tp->segs_in;
2863 
2864 	notsent_bytes = READ_ONCE(tp->write_seq) - READ_ONCE(tp->snd_nxt);
2865 	info->tcpi_notsent_bytes = max(0, notsent_bytes);
2866 
2867 	info->tcpi_min_rtt = tcp_min_rtt(tp);
2868 	info->tcpi_data_segs_in = tp->data_segs_in;
2869 	info->tcpi_data_segs_out = tp->data_segs_out;
2870 
2871 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
2872 	rate = READ_ONCE(tp->rate_delivered);
2873 	intv = READ_ONCE(tp->rate_interval_us);
2874 	if (rate && intv) {
2875 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
2876 		do_div(rate64, intv);
2877 		put_unaligned(rate64, &info->tcpi_delivery_rate);
2878 	}
2879 }
2880 EXPORT_SYMBOL_GPL(tcp_get_info);
2881 
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2882 static int do_tcp_getsockopt(struct sock *sk, int level,
2883 		int optname, char __user *optval, int __user *optlen)
2884 {
2885 	struct inet_connection_sock *icsk = inet_csk(sk);
2886 	struct tcp_sock *tp = tcp_sk(sk);
2887 	struct net *net = sock_net(sk);
2888 	int val, len;
2889 
2890 	if (get_user(len, optlen))
2891 		return -EFAULT;
2892 
2893 	len = min_t(unsigned int, len, sizeof(int));
2894 
2895 	if (len < 0)
2896 		return -EINVAL;
2897 
2898 	switch (optname) {
2899 	case TCP_MAXSEG:
2900 		val = tp->mss_cache;
2901 		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
2902 			val = tp->rx_opt.user_mss;
2903 		if (tp->repair)
2904 			val = tp->rx_opt.mss_clamp;
2905 		break;
2906 	case TCP_NODELAY:
2907 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
2908 		break;
2909 	case TCP_CORK:
2910 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
2911 		break;
2912 	case TCP_KEEPIDLE:
2913 		val = keepalive_time_when(tp) / HZ;
2914 		break;
2915 	case TCP_KEEPINTVL:
2916 		val = keepalive_intvl_when(tp) / HZ;
2917 		break;
2918 	case TCP_KEEPCNT:
2919 		val = keepalive_probes(tp);
2920 		break;
2921 	case TCP_SYNCNT:
2922 		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
2923 		break;
2924 	case TCP_LINGER2:
2925 		val = tp->linger2;
2926 		if (val >= 0)
2927 			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
2928 		break;
2929 	case TCP_DEFER_ACCEPT:
2930 		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
2931 				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
2932 		break;
2933 	case TCP_WINDOW_CLAMP:
2934 		val = tp->window_clamp;
2935 		break;
2936 	case TCP_INFO: {
2937 		struct tcp_info info;
2938 
2939 		if (get_user(len, optlen))
2940 			return -EFAULT;
2941 
2942 		tcp_get_info(sk, &info);
2943 
2944 		len = min_t(unsigned int, len, sizeof(info));
2945 		if (put_user(len, optlen))
2946 			return -EFAULT;
2947 		if (copy_to_user(optval, &info, len))
2948 			return -EFAULT;
2949 		return 0;
2950 	}
2951 	case TCP_CC_INFO: {
2952 		const struct tcp_congestion_ops *ca_ops;
2953 		union tcp_cc_info info;
2954 		size_t sz = 0;
2955 		int attr;
2956 
2957 		if (get_user(len, optlen))
2958 			return -EFAULT;
2959 
2960 		ca_ops = icsk->icsk_ca_ops;
2961 		if (ca_ops && ca_ops->get_info)
2962 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
2963 
2964 		len = min_t(unsigned int, len, sz);
2965 		if (put_user(len, optlen))
2966 			return -EFAULT;
2967 		if (copy_to_user(optval, &info, len))
2968 			return -EFAULT;
2969 		return 0;
2970 	}
2971 	case TCP_QUICKACK:
2972 		val = !icsk->icsk_ack.pingpong;
2973 		break;
2974 
2975 	case TCP_CONGESTION:
2976 		if (get_user(len, optlen))
2977 			return -EFAULT;
2978 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
2979 		if (put_user(len, optlen))
2980 			return -EFAULT;
2981 		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
2982 			return -EFAULT;
2983 		return 0;
2984 
2985 	case TCP_THIN_LINEAR_TIMEOUTS:
2986 		val = tp->thin_lto;
2987 		break;
2988 	case TCP_THIN_DUPACK:
2989 		val = tp->thin_dupack;
2990 		break;
2991 
2992 	case TCP_REPAIR:
2993 		val = tp->repair;
2994 		break;
2995 
2996 	case TCP_REPAIR_QUEUE:
2997 		if (tp->repair)
2998 			val = tp->repair_queue;
2999 		else
3000 			return -EINVAL;
3001 		break;
3002 
3003 	case TCP_REPAIR_WINDOW: {
3004 		struct tcp_repair_window opt;
3005 
3006 		if (get_user(len, optlen))
3007 			return -EFAULT;
3008 
3009 		if (len != sizeof(opt))
3010 			return -EINVAL;
3011 
3012 		if (!tp->repair)
3013 			return -EPERM;
3014 
3015 		opt.snd_wl1	= tp->snd_wl1;
3016 		opt.snd_wnd	= tp->snd_wnd;
3017 		opt.max_window	= tp->max_window;
3018 		opt.rcv_wnd	= tp->rcv_wnd;
3019 		opt.rcv_wup	= tp->rcv_wup;
3020 
3021 		if (copy_to_user(optval, &opt, len))
3022 			return -EFAULT;
3023 		return 0;
3024 	}
3025 	case TCP_QUEUE_SEQ:
3026 		if (tp->repair_queue == TCP_SEND_QUEUE)
3027 			val = tp->write_seq;
3028 		else if (tp->repair_queue == TCP_RECV_QUEUE)
3029 			val = tp->rcv_nxt;
3030 		else
3031 			return -EINVAL;
3032 		break;
3033 
3034 	case TCP_USER_TIMEOUT:
3035 		val = jiffies_to_msecs(icsk->icsk_user_timeout);
3036 		break;
3037 
3038 	case TCP_FASTOPEN:
3039 		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3040 		break;
3041 
3042 	case TCP_FASTOPEN_CONNECT:
3043 		val = tp->fastopen_connect;
3044 		break;
3045 
3046 	case TCP_TIMESTAMP:
3047 		val = tcp_time_stamp + tp->tsoffset;
3048 		break;
3049 	case TCP_NOTSENT_LOWAT:
3050 		val = tp->notsent_lowat;
3051 		break;
3052 	case TCP_SAVE_SYN:
3053 		val = tp->save_syn;
3054 		break;
3055 	case TCP_SAVED_SYN: {
3056 		if (get_user(len, optlen))
3057 			return -EFAULT;
3058 
3059 		lock_sock(sk);
3060 		if (tp->saved_syn) {
3061 			if (len < tp->saved_syn[0]) {
3062 				if (put_user(tp->saved_syn[0], optlen)) {
3063 					release_sock(sk);
3064 					return -EFAULT;
3065 				}
3066 				release_sock(sk);
3067 				return -EINVAL;
3068 			}
3069 			len = tp->saved_syn[0];
3070 			if (put_user(len, optlen)) {
3071 				release_sock(sk);
3072 				return -EFAULT;
3073 			}
3074 			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3075 				release_sock(sk);
3076 				return -EFAULT;
3077 			}
3078 			tcp_saved_syn_free(tp);
3079 			release_sock(sk);
3080 		} else {
3081 			release_sock(sk);
3082 			len = 0;
3083 			if (put_user(len, optlen))
3084 				return -EFAULT;
3085 		}
3086 		return 0;
3087 	}
3088 	default:
3089 		return -ENOPROTOOPT;
3090 	}
3091 
3092 	if (put_user(len, optlen))
3093 		return -EFAULT;
3094 	if (copy_to_user(optval, &val, len))
3095 		return -EFAULT;
3096 	return 0;
3097 }
3098 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3099 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3100 		   int __user *optlen)
3101 {
3102 	struct inet_connection_sock *icsk = inet_csk(sk);
3103 
3104 	if (level != SOL_TCP)
3105 		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3106 						     optval, optlen);
3107 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3108 }
3109 EXPORT_SYMBOL(tcp_getsockopt);
3110 
3111 #ifdef CONFIG_COMPAT
compat_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3112 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3113 			  char __user *optval, int __user *optlen)
3114 {
3115 	if (level != SOL_TCP)
3116 		return inet_csk_compat_getsockopt(sk, level, optname,
3117 						  optval, optlen);
3118 	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3119 }
3120 EXPORT_SYMBOL(compat_tcp_getsockopt);
3121 #endif
3122 
3123 #ifdef CONFIG_TCP_MD5SIG
3124 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3125 static DEFINE_MUTEX(tcp_md5sig_mutex);
3126 static bool tcp_md5sig_pool_populated = false;
3127 
__tcp_alloc_md5sig_pool(void)3128 static void __tcp_alloc_md5sig_pool(void)
3129 {
3130 	struct crypto_ahash *hash;
3131 	int cpu;
3132 
3133 	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3134 	if (IS_ERR(hash))
3135 		return;
3136 
3137 	for_each_possible_cpu(cpu) {
3138 		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3139 		struct ahash_request *req;
3140 
3141 		if (!scratch) {
3142 			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3143 					       sizeof(struct tcphdr),
3144 					       GFP_KERNEL,
3145 					       cpu_to_node(cpu));
3146 			if (!scratch)
3147 				return;
3148 			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3149 		}
3150 		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3151 			continue;
3152 
3153 		req = ahash_request_alloc(hash, GFP_KERNEL);
3154 		if (!req)
3155 			return;
3156 
3157 		ahash_request_set_callback(req, 0, NULL, NULL);
3158 
3159 		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3160 	}
3161 	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3162 	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3163 	 */
3164 	smp_wmb();
3165 	tcp_md5sig_pool_populated = true;
3166 }
3167 
tcp_alloc_md5sig_pool(void)3168 bool tcp_alloc_md5sig_pool(void)
3169 {
3170 	if (unlikely(!tcp_md5sig_pool_populated)) {
3171 		mutex_lock(&tcp_md5sig_mutex);
3172 
3173 		if (!tcp_md5sig_pool_populated)
3174 			__tcp_alloc_md5sig_pool();
3175 
3176 		mutex_unlock(&tcp_md5sig_mutex);
3177 	}
3178 	return tcp_md5sig_pool_populated;
3179 }
3180 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3181 
3182 
3183 /**
3184  *	tcp_get_md5sig_pool - get md5sig_pool for this user
3185  *
3186  *	We use percpu structure, so if we succeed, we exit with preemption
3187  *	and BH disabled, to make sure another thread or softirq handling
3188  *	wont try to get same context.
3189  */
tcp_get_md5sig_pool(void)3190 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3191 {
3192 	local_bh_disable();
3193 
3194 	if (tcp_md5sig_pool_populated) {
3195 		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3196 		smp_rmb();
3197 		return this_cpu_ptr(&tcp_md5sig_pool);
3198 	}
3199 	local_bh_enable();
3200 	return NULL;
3201 }
3202 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3203 
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)3204 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3205 			  const struct sk_buff *skb, unsigned int header_len)
3206 {
3207 	struct scatterlist sg;
3208 	const struct tcphdr *tp = tcp_hdr(skb);
3209 	struct ahash_request *req = hp->md5_req;
3210 	unsigned int i;
3211 	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3212 					   skb_headlen(skb) - header_len : 0;
3213 	const struct skb_shared_info *shi = skb_shinfo(skb);
3214 	struct sk_buff *frag_iter;
3215 
3216 	sg_init_table(&sg, 1);
3217 
3218 	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3219 	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3220 	if (crypto_ahash_update(req))
3221 		return 1;
3222 
3223 	for (i = 0; i < shi->nr_frags; ++i) {
3224 		const struct skb_frag_struct *f = &shi->frags[i];
3225 		unsigned int offset = f->page_offset;
3226 		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3227 
3228 		sg_set_page(&sg, page, skb_frag_size(f),
3229 			    offset_in_page(offset));
3230 		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3231 		if (crypto_ahash_update(req))
3232 			return 1;
3233 	}
3234 
3235 	skb_walk_frags(skb, frag_iter)
3236 		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3237 			return 1;
3238 
3239 	return 0;
3240 }
3241 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3242 
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)3243 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3244 {
3245 	struct scatterlist sg;
3246 
3247 	sg_init_one(&sg, key->key, key->keylen);
3248 	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3249 	return crypto_ahash_update(hp->md5_req);
3250 }
3251 EXPORT_SYMBOL(tcp_md5_hash_key);
3252 
3253 #endif
3254 
tcp_done(struct sock * sk)3255 void tcp_done(struct sock *sk)
3256 {
3257 	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3258 
3259 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3260 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3261 
3262 	tcp_set_state(sk, TCP_CLOSE);
3263 	tcp_clear_xmit_timers(sk);
3264 	if (req)
3265 		reqsk_fastopen_remove(sk, req, false);
3266 
3267 	sk->sk_shutdown = SHUTDOWN_MASK;
3268 
3269 	if (!sock_flag(sk, SOCK_DEAD))
3270 		sk->sk_state_change(sk);
3271 	else
3272 		inet_csk_destroy_sock(sk);
3273 }
3274 EXPORT_SYMBOL_GPL(tcp_done);
3275 
tcp_abort(struct sock * sk,int err)3276 int tcp_abort(struct sock *sk, int err)
3277 {
3278 	if (!sk_fullsock(sk)) {
3279 		if (sk->sk_state == TCP_NEW_SYN_RECV) {
3280 			struct request_sock *req = inet_reqsk(sk);
3281 
3282 			local_bh_disable();
3283 			inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3284 							  req);
3285 			local_bh_enable();
3286 			return 0;
3287 		}
3288 		return -EOPNOTSUPP;
3289 	}
3290 
3291 	/* Don't race with userspace socket closes such as tcp_close. */
3292 	lock_sock(sk);
3293 
3294 	if (sk->sk_state == TCP_LISTEN) {
3295 		tcp_set_state(sk, TCP_CLOSE);
3296 		inet_csk_listen_stop(sk);
3297 	}
3298 
3299 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
3300 	local_bh_disable();
3301 	bh_lock_sock(sk);
3302 
3303 	if (!sock_flag(sk, SOCK_DEAD)) {
3304 		sk->sk_err = err;
3305 		/* This barrier is coupled with smp_rmb() in tcp_poll() */
3306 		smp_wmb();
3307 		sk->sk_error_report(sk);
3308 		if (tcp_need_reset(sk->sk_state))
3309 			tcp_send_active_reset(sk, GFP_ATOMIC);
3310 		tcp_done(sk);
3311 	}
3312 
3313 	bh_unlock_sock(sk);
3314 	local_bh_enable();
3315 	release_sock(sk);
3316 	return 0;
3317 }
3318 EXPORT_SYMBOL_GPL(tcp_abort);
3319 
3320 extern struct tcp_congestion_ops tcp_reno;
3321 
3322 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)3323 static int __init set_thash_entries(char *str)
3324 {
3325 	ssize_t ret;
3326 
3327 	if (!str)
3328 		return 0;
3329 
3330 	ret = kstrtoul(str, 0, &thash_entries);
3331 	if (ret)
3332 		return 0;
3333 
3334 	return 1;
3335 }
3336 __setup("thash_entries=", set_thash_entries);
3337 
tcp_init_mem(void)3338 static void __init tcp_init_mem(void)
3339 {
3340 	unsigned long limit = nr_free_buffer_pages() / 16;
3341 
3342 	limit = max(limit, 128UL);
3343 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
3344 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
3345 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
3346 }
3347 
tcp_init(void)3348 void __init tcp_init(void)
3349 {
3350 	int max_rshare, max_wshare, cnt;
3351 	unsigned long limit;
3352 	unsigned int i;
3353 
3354 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3355 		     FIELD_SIZEOF(struct sk_buff, cb));
3356 
3357 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3358 	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3359 	tcp_hashinfo.bind_bucket_cachep =
3360 		kmem_cache_create("tcp_bind_bucket",
3361 				  sizeof(struct inet_bind_bucket), 0,
3362 				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3363 
3364 	/* Size and allocate the main established and bind bucket
3365 	 * hash tables.
3366 	 *
3367 	 * The methodology is similar to that of the buffer cache.
3368 	 */
3369 	tcp_hashinfo.ehash =
3370 		alloc_large_system_hash("TCP established",
3371 					sizeof(struct inet_ehash_bucket),
3372 					thash_entries,
3373 					17, /* one slot per 128 KB of memory */
3374 					0,
3375 					NULL,
3376 					&tcp_hashinfo.ehash_mask,
3377 					0,
3378 					thash_entries ? 0 : 512 * 1024);
3379 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3380 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3381 
3382 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
3383 		panic("TCP: failed to alloc ehash_locks");
3384 	tcp_hashinfo.bhash =
3385 		alloc_large_system_hash("TCP bind",
3386 					sizeof(struct inet_bind_hashbucket),
3387 					tcp_hashinfo.ehash_mask + 1,
3388 					17, /* one slot per 128 KB of memory */
3389 					0,
3390 					&tcp_hashinfo.bhash_size,
3391 					NULL,
3392 					0,
3393 					64 * 1024);
3394 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3395 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3396 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3397 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3398 	}
3399 
3400 
3401 	cnt = tcp_hashinfo.ehash_mask + 1;
3402 
3403 	tcp_death_row.sysctl_max_tw_buckets = cnt / 2;
3404 	sysctl_tcp_max_orphans = cnt / 2;
3405 	sysctl_max_syn_backlog = max(128, cnt / 256);
3406 
3407 	tcp_init_mem();
3408 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
3409 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3410 	max_wshare = min(4UL*1024*1024, limit);
3411 	max_rshare = min(6UL*1024*1024, limit);
3412 
3413 	sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3414 	sysctl_tcp_wmem[1] = 16*1024;
3415 	sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3416 
3417 	sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3418 	sysctl_tcp_rmem[1] = 87380;
3419 	sysctl_tcp_rmem[2] = max(87380, max_rshare);
3420 
3421 	pr_info("Hash tables configured (established %u bind %u)\n",
3422 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3423 
3424 	tcp_metrics_init();
3425 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3426 	tcp_tasklet_init();
3427 }
3428