1 #include <linux/perf_event.h>
2 #include <linux/types.h>
3
4 #include <asm/perf_event.h>
5 #include <asm/msr.h>
6 #include <asm/insn.h>
7
8 #include "../perf_event.h"
9
10 enum {
11 LBR_FORMAT_32 = 0x00,
12 LBR_FORMAT_LIP = 0x01,
13 LBR_FORMAT_EIP = 0x02,
14 LBR_FORMAT_EIP_FLAGS = 0x03,
15 LBR_FORMAT_EIP_FLAGS2 = 0x04,
16 LBR_FORMAT_INFO = 0x05,
17 LBR_FORMAT_TIME = 0x06,
18 LBR_FORMAT_MAX_KNOWN = LBR_FORMAT_TIME,
19 };
20
21 static enum {
22 LBR_EIP_FLAGS = 1,
23 LBR_TSX = 2,
24 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
25 [LBR_FORMAT_EIP_FLAGS] = LBR_EIP_FLAGS,
26 [LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
27 };
28
29 /*
30 * Intel LBR_SELECT bits
31 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
32 *
33 * Hardware branch filter (not available on all CPUs)
34 */
35 #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
36 #define LBR_USER_BIT 1 /* do not capture at ring > 0 */
37 #define LBR_JCC_BIT 2 /* do not capture conditional branches */
38 #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
39 #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
40 #define LBR_RETURN_BIT 5 /* do not capture near returns */
41 #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
42 #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
43 #define LBR_FAR_BIT 8 /* do not capture far branches */
44 #define LBR_CALL_STACK_BIT 9 /* enable call stack */
45
46 /*
47 * Following bit only exists in Linux; we mask it out before writing it to
48 * the actual MSR. But it helps the constraint perf code to understand
49 * that this is a separate configuration.
50 */
51 #define LBR_NO_INFO_BIT 63 /* don't read LBR_INFO. */
52
53 #define LBR_KERNEL (1 << LBR_KERNEL_BIT)
54 #define LBR_USER (1 << LBR_USER_BIT)
55 #define LBR_JCC (1 << LBR_JCC_BIT)
56 #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
57 #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
58 #define LBR_RETURN (1 << LBR_RETURN_BIT)
59 #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
60 #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
61 #define LBR_FAR (1 << LBR_FAR_BIT)
62 #define LBR_CALL_STACK (1 << LBR_CALL_STACK_BIT)
63 #define LBR_NO_INFO (1ULL << LBR_NO_INFO_BIT)
64
65 #define LBR_PLM (LBR_KERNEL | LBR_USER)
66
67 #define LBR_SEL_MASK 0x3ff /* valid bits in LBR_SELECT */
68 #define LBR_NOT_SUPP -1 /* LBR filter not supported */
69 #define LBR_IGN 0 /* ignored */
70
71 #define LBR_ANY \
72 (LBR_JCC |\
73 LBR_REL_CALL |\
74 LBR_IND_CALL |\
75 LBR_RETURN |\
76 LBR_REL_JMP |\
77 LBR_IND_JMP |\
78 LBR_FAR)
79
80 #define LBR_FROM_FLAG_MISPRED BIT_ULL(63)
81 #define LBR_FROM_FLAG_IN_TX BIT_ULL(62)
82 #define LBR_FROM_FLAG_ABORT BIT_ULL(61)
83
84 #define LBR_FROM_SIGNEXT_2MSB (BIT_ULL(60) | BIT_ULL(59))
85
86 /*
87 * x86control flow change classification
88 * x86control flow changes include branches, interrupts, traps, faults
89 */
90 enum {
91 X86_BR_NONE = 0, /* unknown */
92
93 X86_BR_USER = 1 << 0, /* branch target is user */
94 X86_BR_KERNEL = 1 << 1, /* branch target is kernel */
95
96 X86_BR_CALL = 1 << 2, /* call */
97 X86_BR_RET = 1 << 3, /* return */
98 X86_BR_SYSCALL = 1 << 4, /* syscall */
99 X86_BR_SYSRET = 1 << 5, /* syscall return */
100 X86_BR_INT = 1 << 6, /* sw interrupt */
101 X86_BR_IRET = 1 << 7, /* return from interrupt */
102 X86_BR_JCC = 1 << 8, /* conditional */
103 X86_BR_JMP = 1 << 9, /* jump */
104 X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */
105 X86_BR_IND_CALL = 1 << 11,/* indirect calls */
106 X86_BR_ABORT = 1 << 12,/* transaction abort */
107 X86_BR_IN_TX = 1 << 13,/* in transaction */
108 X86_BR_NO_TX = 1 << 14,/* not in transaction */
109 X86_BR_ZERO_CALL = 1 << 15,/* zero length call */
110 X86_BR_CALL_STACK = 1 << 16,/* call stack */
111 X86_BR_IND_JMP = 1 << 17,/* indirect jump */
112 };
113
114 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
115 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
116
117 #define X86_BR_ANY \
118 (X86_BR_CALL |\
119 X86_BR_RET |\
120 X86_BR_SYSCALL |\
121 X86_BR_SYSRET |\
122 X86_BR_INT |\
123 X86_BR_IRET |\
124 X86_BR_JCC |\
125 X86_BR_JMP |\
126 X86_BR_IRQ |\
127 X86_BR_ABORT |\
128 X86_BR_IND_CALL |\
129 X86_BR_IND_JMP |\
130 X86_BR_ZERO_CALL)
131
132 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
133
134 #define X86_BR_ANY_CALL \
135 (X86_BR_CALL |\
136 X86_BR_IND_CALL |\
137 X86_BR_ZERO_CALL |\
138 X86_BR_SYSCALL |\
139 X86_BR_IRQ |\
140 X86_BR_INT)
141
142 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
143
144 /*
145 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
146 * otherwise it becomes near impossible to get a reliable stack.
147 */
148
__intel_pmu_lbr_enable(bool pmi)149 static void __intel_pmu_lbr_enable(bool pmi)
150 {
151 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
152 u64 debugctl, lbr_select = 0, orig_debugctl;
153
154 /*
155 * No need to unfreeze manually, as v4 can do that as part
156 * of the GLOBAL_STATUS ack.
157 */
158 if (pmi && x86_pmu.version >= 4)
159 return;
160
161 /*
162 * No need to reprogram LBR_SELECT in a PMI, as it
163 * did not change.
164 */
165 if (cpuc->lbr_sel)
166 lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
167 if (!pmi && cpuc->lbr_sel)
168 wrmsrl(MSR_LBR_SELECT, lbr_select);
169
170 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
171 orig_debugctl = debugctl;
172 debugctl |= DEBUGCTLMSR_LBR;
173 /*
174 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
175 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
176 * may cause superfluous increase/decrease of LBR_TOS.
177 */
178 if (!(lbr_select & LBR_CALL_STACK))
179 debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
180 if (orig_debugctl != debugctl)
181 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
182 }
183
__intel_pmu_lbr_disable(void)184 static void __intel_pmu_lbr_disable(void)
185 {
186 u64 debugctl;
187
188 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
189 debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
190 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
191 }
192
intel_pmu_lbr_reset_32(void)193 static void intel_pmu_lbr_reset_32(void)
194 {
195 int i;
196
197 for (i = 0; i < x86_pmu.lbr_nr; i++)
198 wrmsrl(x86_pmu.lbr_from + i, 0);
199 }
200
intel_pmu_lbr_reset_64(void)201 static void intel_pmu_lbr_reset_64(void)
202 {
203 int i;
204
205 for (i = 0; i < x86_pmu.lbr_nr; i++) {
206 wrmsrl(x86_pmu.lbr_from + i, 0);
207 wrmsrl(x86_pmu.lbr_to + i, 0);
208 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
209 wrmsrl(MSR_LBR_INFO_0 + i, 0);
210 }
211 }
212
intel_pmu_lbr_reset(void)213 void intel_pmu_lbr_reset(void)
214 {
215 if (!x86_pmu.lbr_nr)
216 return;
217
218 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
219 intel_pmu_lbr_reset_32();
220 else
221 intel_pmu_lbr_reset_64();
222 }
223
224 /*
225 * TOS = most recently recorded branch
226 */
intel_pmu_lbr_tos(void)227 static inline u64 intel_pmu_lbr_tos(void)
228 {
229 u64 tos;
230
231 rdmsrl(x86_pmu.lbr_tos, tos);
232 return tos;
233 }
234
235 enum {
236 LBR_NONE,
237 LBR_VALID,
238 };
239
240 /*
241 * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
242 * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
243 * TSX is not supported they have no consistent behavior:
244 *
245 * - For wrmsr(), bits 61:62 are considered part of the sign extension.
246 * - For HW updates (branch captures) bits 61:62 are always OFF and are not
247 * part of the sign extension.
248 *
249 * Therefore, if:
250 *
251 * 1) LBR has TSX format
252 * 2) CPU has no TSX support enabled
253 *
254 * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
255 * value from rdmsr() must be converted to have a 61 bits sign extension,
256 * ignoring the TSX flags.
257 */
lbr_from_signext_quirk_needed(void)258 static inline bool lbr_from_signext_quirk_needed(void)
259 {
260 int lbr_format = x86_pmu.intel_cap.lbr_format;
261 bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
262 boot_cpu_has(X86_FEATURE_RTM);
263
264 return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX);
265 }
266
267 DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
268
269 /* If quirk is enabled, ensure sign extension is 63 bits: */
lbr_from_signext_quirk_wr(u64 val)270 inline u64 lbr_from_signext_quirk_wr(u64 val)
271 {
272 if (static_branch_unlikely(&lbr_from_quirk_key)) {
273 /*
274 * Sign extend into bits 61:62 while preserving bit 63.
275 *
276 * Quirk is enabled when TSX is disabled. Therefore TSX bits
277 * in val are always OFF and must be changed to be sign
278 * extension bits. Since bits 59:60 are guaranteed to be
279 * part of the sign extension bits, we can just copy them
280 * to 61:62.
281 */
282 val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
283 }
284 return val;
285 }
286
287 /*
288 * If quirk is needed, ensure sign extension is 61 bits:
289 */
lbr_from_signext_quirk_rd(u64 val)290 u64 lbr_from_signext_quirk_rd(u64 val)
291 {
292 if (static_branch_unlikely(&lbr_from_quirk_key)) {
293 /*
294 * Quirk is on when TSX is not enabled. Therefore TSX
295 * flags must be read as OFF.
296 */
297 val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
298 }
299 return val;
300 }
301
wrlbr_from(unsigned int idx,u64 val)302 static inline void wrlbr_from(unsigned int idx, u64 val)
303 {
304 val = lbr_from_signext_quirk_wr(val);
305 wrmsrl(x86_pmu.lbr_from + idx, val);
306 }
307
wrlbr_to(unsigned int idx,u64 val)308 static inline void wrlbr_to(unsigned int idx, u64 val)
309 {
310 wrmsrl(x86_pmu.lbr_to + idx, val);
311 }
312
rdlbr_from(unsigned int idx)313 static inline u64 rdlbr_from(unsigned int idx)
314 {
315 u64 val;
316
317 rdmsrl(x86_pmu.lbr_from + idx, val);
318
319 return lbr_from_signext_quirk_rd(val);
320 }
321
rdlbr_to(unsigned int idx)322 static inline u64 rdlbr_to(unsigned int idx)
323 {
324 u64 val;
325
326 rdmsrl(x86_pmu.lbr_to + idx, val);
327
328 return val;
329 }
330
__intel_pmu_lbr_restore(struct x86_perf_task_context * task_ctx)331 static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
332 {
333 int i;
334 unsigned lbr_idx, mask;
335 u64 tos;
336
337 if (task_ctx->lbr_callstack_users == 0 ||
338 task_ctx->lbr_stack_state == LBR_NONE) {
339 intel_pmu_lbr_reset();
340 return;
341 }
342
343 mask = x86_pmu.lbr_nr - 1;
344 tos = task_ctx->tos;
345 for (i = 0; i < tos; i++) {
346 lbr_idx = (tos - i) & mask;
347 wrlbr_from(lbr_idx, task_ctx->lbr_from[i]);
348 wrlbr_to (lbr_idx, task_ctx->lbr_to[i]);
349
350 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
351 wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
352 }
353 wrmsrl(x86_pmu.lbr_tos, tos);
354 task_ctx->lbr_stack_state = LBR_NONE;
355 }
356
__intel_pmu_lbr_save(struct x86_perf_task_context * task_ctx)357 static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
358 {
359 unsigned lbr_idx, mask;
360 u64 tos;
361 int i;
362
363 if (task_ctx->lbr_callstack_users == 0) {
364 task_ctx->lbr_stack_state = LBR_NONE;
365 return;
366 }
367
368 mask = x86_pmu.lbr_nr - 1;
369 tos = intel_pmu_lbr_tos();
370 for (i = 0; i < tos; i++) {
371 lbr_idx = (tos - i) & mask;
372 task_ctx->lbr_from[i] = rdlbr_from(lbr_idx);
373 task_ctx->lbr_to[i] = rdlbr_to(lbr_idx);
374 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
375 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
376 }
377 task_ctx->tos = tos;
378 task_ctx->lbr_stack_state = LBR_VALID;
379 }
380
intel_pmu_lbr_sched_task(struct perf_event_context * ctx,bool sched_in)381 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
382 {
383 struct x86_perf_task_context *task_ctx;
384
385 /*
386 * If LBR callstack feature is enabled and the stack was saved when
387 * the task was scheduled out, restore the stack. Otherwise flush
388 * the LBR stack.
389 */
390 task_ctx = ctx ? ctx->task_ctx_data : NULL;
391 if (task_ctx) {
392 if (sched_in)
393 __intel_pmu_lbr_restore(task_ctx);
394 else
395 __intel_pmu_lbr_save(task_ctx);
396 return;
397 }
398
399 /*
400 * Since a context switch can flip the address space and LBR entries
401 * are not tagged with an identifier, we need to wipe the LBR, even for
402 * per-cpu events. You simply cannot resolve the branches from the old
403 * address space.
404 */
405 if (sched_in)
406 intel_pmu_lbr_reset();
407 }
408
branch_user_callstack(unsigned br_sel)409 static inline bool branch_user_callstack(unsigned br_sel)
410 {
411 return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
412 }
413
intel_pmu_lbr_add(struct perf_event * event)414 void intel_pmu_lbr_add(struct perf_event *event)
415 {
416 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
417 struct x86_perf_task_context *task_ctx;
418
419 if (!x86_pmu.lbr_nr)
420 return;
421
422 cpuc->br_sel = event->hw.branch_reg.reg;
423
424 if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) {
425 task_ctx = event->ctx->task_ctx_data;
426 task_ctx->lbr_callstack_users++;
427 }
428
429 /*
430 * Request pmu::sched_task() callback, which will fire inside the
431 * regular perf event scheduling, so that call will:
432 *
433 * - restore or wipe; when LBR-callstack,
434 * - wipe; otherwise,
435 *
436 * when this is from __perf_event_task_sched_in().
437 *
438 * However, if this is from perf_install_in_context(), no such callback
439 * will follow and we'll need to reset the LBR here if this is the
440 * first LBR event.
441 *
442 * The problem is, we cannot tell these cases apart... but we can
443 * exclude the biggest chunk of cases by looking at
444 * event->total_time_running. An event that has accrued runtime cannot
445 * be 'new'. Conversely, a new event can get installed through the
446 * context switch path for the first time.
447 */
448 perf_sched_cb_inc(event->ctx->pmu);
449 if (!cpuc->lbr_users++ && !event->total_time_running)
450 intel_pmu_lbr_reset();
451 }
452
intel_pmu_lbr_del(struct perf_event * event)453 void intel_pmu_lbr_del(struct perf_event *event)
454 {
455 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
456 struct x86_perf_task_context *task_ctx;
457
458 if (!x86_pmu.lbr_nr)
459 return;
460
461 if (branch_user_callstack(cpuc->br_sel) &&
462 event->ctx->task_ctx_data) {
463 task_ctx = event->ctx->task_ctx_data;
464 task_ctx->lbr_callstack_users--;
465 }
466
467 cpuc->lbr_users--;
468 WARN_ON_ONCE(cpuc->lbr_users < 0);
469 perf_sched_cb_dec(event->ctx->pmu);
470 }
471
intel_pmu_lbr_enable_all(bool pmi)472 void intel_pmu_lbr_enable_all(bool pmi)
473 {
474 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
475
476 if (cpuc->lbr_users)
477 __intel_pmu_lbr_enable(pmi);
478 }
479
intel_pmu_lbr_disable_all(void)480 void intel_pmu_lbr_disable_all(void)
481 {
482 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
483
484 if (cpuc->lbr_users)
485 __intel_pmu_lbr_disable();
486 }
487
intel_pmu_lbr_read_32(struct cpu_hw_events * cpuc)488 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
489 {
490 unsigned long mask = x86_pmu.lbr_nr - 1;
491 u64 tos = intel_pmu_lbr_tos();
492 int i;
493
494 for (i = 0; i < x86_pmu.lbr_nr; i++) {
495 unsigned long lbr_idx = (tos - i) & mask;
496 union {
497 struct {
498 u32 from;
499 u32 to;
500 };
501 u64 lbr;
502 } msr_lastbranch;
503
504 rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
505
506 cpuc->lbr_entries[i].from = msr_lastbranch.from;
507 cpuc->lbr_entries[i].to = msr_lastbranch.to;
508 cpuc->lbr_entries[i].mispred = 0;
509 cpuc->lbr_entries[i].predicted = 0;
510 cpuc->lbr_entries[i].in_tx = 0;
511 cpuc->lbr_entries[i].abort = 0;
512 cpuc->lbr_entries[i].cycles = 0;
513 cpuc->lbr_entries[i].reserved = 0;
514 }
515 cpuc->lbr_stack.nr = i;
516 }
517
518 /*
519 * Due to lack of segmentation in Linux the effective address (offset)
520 * is the same as the linear address, allowing us to merge the LIP and EIP
521 * LBR formats.
522 */
intel_pmu_lbr_read_64(struct cpu_hw_events * cpuc)523 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
524 {
525 bool need_info = false;
526 unsigned long mask = x86_pmu.lbr_nr - 1;
527 int lbr_format = x86_pmu.intel_cap.lbr_format;
528 u64 tos = intel_pmu_lbr_tos();
529 int i;
530 int out = 0;
531 int num = x86_pmu.lbr_nr;
532
533 if (cpuc->lbr_sel) {
534 need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
535 if (cpuc->lbr_sel->config & LBR_CALL_STACK)
536 num = tos;
537 }
538
539 for (i = 0; i < num; i++) {
540 unsigned long lbr_idx = (tos - i) & mask;
541 u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
542 int skip = 0;
543 u16 cycles = 0;
544 int lbr_flags = lbr_desc[lbr_format];
545
546 from = rdlbr_from(lbr_idx);
547 to = rdlbr_to(lbr_idx);
548
549 if (lbr_format == LBR_FORMAT_INFO && need_info) {
550 u64 info;
551
552 rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
553 mis = !!(info & LBR_INFO_MISPRED);
554 pred = !mis;
555 in_tx = !!(info & LBR_INFO_IN_TX);
556 abort = !!(info & LBR_INFO_ABORT);
557 cycles = (info & LBR_INFO_CYCLES);
558 }
559
560 if (lbr_format == LBR_FORMAT_TIME) {
561 mis = !!(from & LBR_FROM_FLAG_MISPRED);
562 pred = !mis;
563 skip = 1;
564 cycles = ((to >> 48) & LBR_INFO_CYCLES);
565
566 to = (u64)((((s64)to) << 16) >> 16);
567 }
568
569 if (lbr_flags & LBR_EIP_FLAGS) {
570 mis = !!(from & LBR_FROM_FLAG_MISPRED);
571 pred = !mis;
572 skip = 1;
573 }
574 if (lbr_flags & LBR_TSX) {
575 in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
576 abort = !!(from & LBR_FROM_FLAG_ABORT);
577 skip = 3;
578 }
579 from = (u64)((((s64)from) << skip) >> skip);
580
581 /*
582 * Some CPUs report duplicated abort records,
583 * with the second entry not having an abort bit set.
584 * Skip them here. This loop runs backwards,
585 * so we need to undo the previous record.
586 * If the abort just happened outside the window
587 * the extra entry cannot be removed.
588 */
589 if (abort && x86_pmu.lbr_double_abort && out > 0)
590 out--;
591
592 cpuc->lbr_entries[out].from = from;
593 cpuc->lbr_entries[out].to = to;
594 cpuc->lbr_entries[out].mispred = mis;
595 cpuc->lbr_entries[out].predicted = pred;
596 cpuc->lbr_entries[out].in_tx = in_tx;
597 cpuc->lbr_entries[out].abort = abort;
598 cpuc->lbr_entries[out].cycles = cycles;
599 cpuc->lbr_entries[out].reserved = 0;
600 out++;
601 }
602 cpuc->lbr_stack.nr = out;
603 }
604
intel_pmu_lbr_read(void)605 void intel_pmu_lbr_read(void)
606 {
607 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
608
609 if (!cpuc->lbr_users)
610 return;
611
612 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
613 intel_pmu_lbr_read_32(cpuc);
614 else
615 intel_pmu_lbr_read_64(cpuc);
616
617 intel_pmu_lbr_filter(cpuc);
618 }
619
620 /*
621 * SW filter is used:
622 * - in case there is no HW filter
623 * - in case the HW filter has errata or limitations
624 */
intel_pmu_setup_sw_lbr_filter(struct perf_event * event)625 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
626 {
627 u64 br_type = event->attr.branch_sample_type;
628 int mask = 0;
629
630 if (br_type & PERF_SAMPLE_BRANCH_USER)
631 mask |= X86_BR_USER;
632
633 if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
634 mask |= X86_BR_KERNEL;
635
636 /* we ignore BRANCH_HV here */
637
638 if (br_type & PERF_SAMPLE_BRANCH_ANY)
639 mask |= X86_BR_ANY;
640
641 if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
642 mask |= X86_BR_ANY_CALL;
643
644 if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
645 mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
646
647 if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
648 mask |= X86_BR_IND_CALL;
649
650 if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
651 mask |= X86_BR_ABORT;
652
653 if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
654 mask |= X86_BR_IN_TX;
655
656 if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
657 mask |= X86_BR_NO_TX;
658
659 if (br_type & PERF_SAMPLE_BRANCH_COND)
660 mask |= X86_BR_JCC;
661
662 if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
663 if (!x86_pmu_has_lbr_callstack())
664 return -EOPNOTSUPP;
665 if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
666 return -EINVAL;
667 mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
668 X86_BR_CALL_STACK;
669 }
670
671 if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
672 mask |= X86_BR_IND_JMP;
673
674 if (br_type & PERF_SAMPLE_BRANCH_CALL)
675 mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
676 /*
677 * stash actual user request into reg, it may
678 * be used by fixup code for some CPU
679 */
680 event->hw.branch_reg.reg = mask;
681 return 0;
682 }
683
684 /*
685 * setup the HW LBR filter
686 * Used only when available, may not be enough to disambiguate
687 * all branches, may need the help of the SW filter
688 */
intel_pmu_setup_hw_lbr_filter(struct perf_event * event)689 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
690 {
691 struct hw_perf_event_extra *reg;
692 u64 br_type = event->attr.branch_sample_type;
693 u64 mask = 0, v;
694 int i;
695
696 for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
697 if (!(br_type & (1ULL << i)))
698 continue;
699
700 v = x86_pmu.lbr_sel_map[i];
701 if (v == LBR_NOT_SUPP)
702 return -EOPNOTSUPP;
703
704 if (v != LBR_IGN)
705 mask |= v;
706 }
707
708 reg = &event->hw.branch_reg;
709 reg->idx = EXTRA_REG_LBR;
710
711 /*
712 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
713 * in suppress mode. So LBR_SELECT should be set to
714 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
715 * But the 10th bit LBR_CALL_STACK does not operate
716 * in suppress mode.
717 */
718 reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
719
720 if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
721 (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
722 (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
723 reg->config |= LBR_NO_INFO;
724
725 return 0;
726 }
727
intel_pmu_setup_lbr_filter(struct perf_event * event)728 int intel_pmu_setup_lbr_filter(struct perf_event *event)
729 {
730 int ret = 0;
731
732 /*
733 * no LBR on this PMU
734 */
735 if (!x86_pmu.lbr_nr)
736 return -EOPNOTSUPP;
737
738 /*
739 * setup SW LBR filter
740 */
741 ret = intel_pmu_setup_sw_lbr_filter(event);
742 if (ret)
743 return ret;
744
745 /*
746 * setup HW LBR filter, if any
747 */
748 if (x86_pmu.lbr_sel_map)
749 ret = intel_pmu_setup_hw_lbr_filter(event);
750
751 return ret;
752 }
753
754 /*
755 * return the type of control flow change at address "from"
756 * instruction is not necessarily a branch (in case of interrupt).
757 *
758 * The branch type returned also includes the priv level of the
759 * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
760 *
761 * If a branch type is unknown OR the instruction cannot be
762 * decoded (e.g., text page not present), then X86_BR_NONE is
763 * returned.
764 */
branch_type(unsigned long from,unsigned long to,int abort)765 static int branch_type(unsigned long from, unsigned long to, int abort)
766 {
767 struct insn insn;
768 void *addr;
769 int bytes_read, bytes_left;
770 int ret = X86_BR_NONE;
771 int ext, to_plm, from_plm;
772 u8 buf[MAX_INSN_SIZE];
773 int is64 = 0;
774
775 to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
776 from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
777
778 /*
779 * maybe zero if lbr did not fill up after a reset by the time
780 * we get a PMU interrupt
781 */
782 if (from == 0 || to == 0)
783 return X86_BR_NONE;
784
785 if (abort)
786 return X86_BR_ABORT | to_plm;
787
788 if (from_plm == X86_BR_USER) {
789 /*
790 * can happen if measuring at the user level only
791 * and we interrupt in a kernel thread, e.g., idle.
792 */
793 if (!current->mm)
794 return X86_BR_NONE;
795
796 /* may fail if text not present */
797 bytes_left = copy_from_user_nmi(buf, (void __user *)from,
798 MAX_INSN_SIZE);
799 bytes_read = MAX_INSN_SIZE - bytes_left;
800 if (!bytes_read)
801 return X86_BR_NONE;
802
803 addr = buf;
804 } else {
805 /*
806 * The LBR logs any address in the IP, even if the IP just
807 * faulted. This means userspace can control the from address.
808 * Ensure we don't blindy read any address by validating it is
809 * a known text address.
810 */
811 if (kernel_text_address(from)) {
812 addr = (void *)from;
813 /*
814 * Assume we can get the maximum possible size
815 * when grabbing kernel data. This is not
816 * _strictly_ true since we could possibly be
817 * executing up next to a memory hole, but
818 * it is very unlikely to be a problem.
819 */
820 bytes_read = MAX_INSN_SIZE;
821 } else {
822 return X86_BR_NONE;
823 }
824 }
825
826 /*
827 * decoder needs to know the ABI especially
828 * on 64-bit systems running 32-bit apps
829 */
830 #ifdef CONFIG_X86_64
831 is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
832 #endif
833 insn_init(&insn, addr, bytes_read, is64);
834 insn_get_opcode(&insn);
835 if (!insn.opcode.got)
836 return X86_BR_ABORT;
837
838 switch (insn.opcode.bytes[0]) {
839 case 0xf:
840 switch (insn.opcode.bytes[1]) {
841 case 0x05: /* syscall */
842 case 0x34: /* sysenter */
843 ret = X86_BR_SYSCALL;
844 break;
845 case 0x07: /* sysret */
846 case 0x35: /* sysexit */
847 ret = X86_BR_SYSRET;
848 break;
849 case 0x80 ... 0x8f: /* conditional */
850 ret = X86_BR_JCC;
851 break;
852 default:
853 ret = X86_BR_NONE;
854 }
855 break;
856 case 0x70 ... 0x7f: /* conditional */
857 ret = X86_BR_JCC;
858 break;
859 case 0xc2: /* near ret */
860 case 0xc3: /* near ret */
861 case 0xca: /* far ret */
862 case 0xcb: /* far ret */
863 ret = X86_BR_RET;
864 break;
865 case 0xcf: /* iret */
866 ret = X86_BR_IRET;
867 break;
868 case 0xcc ... 0xce: /* int */
869 ret = X86_BR_INT;
870 break;
871 case 0xe8: /* call near rel */
872 insn_get_immediate(&insn);
873 if (insn.immediate1.value == 0) {
874 /* zero length call */
875 ret = X86_BR_ZERO_CALL;
876 break;
877 }
878 case 0x9a: /* call far absolute */
879 ret = X86_BR_CALL;
880 break;
881 case 0xe0 ... 0xe3: /* loop jmp */
882 ret = X86_BR_JCC;
883 break;
884 case 0xe9 ... 0xeb: /* jmp */
885 ret = X86_BR_JMP;
886 break;
887 case 0xff: /* call near absolute, call far absolute ind */
888 insn_get_modrm(&insn);
889 ext = (insn.modrm.bytes[0] >> 3) & 0x7;
890 switch (ext) {
891 case 2: /* near ind call */
892 case 3: /* far ind call */
893 ret = X86_BR_IND_CALL;
894 break;
895 case 4:
896 case 5:
897 ret = X86_BR_IND_JMP;
898 break;
899 }
900 break;
901 default:
902 ret = X86_BR_NONE;
903 }
904 /*
905 * interrupts, traps, faults (and thus ring transition) may
906 * occur on any instructions. Thus, to classify them correctly,
907 * we need to first look at the from and to priv levels. If they
908 * are different and to is in the kernel, then it indicates
909 * a ring transition. If the from instruction is not a ring
910 * transition instr (syscall, systenter, int), then it means
911 * it was a irq, trap or fault.
912 *
913 * we have no way of detecting kernel to kernel faults.
914 */
915 if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
916 && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
917 ret = X86_BR_IRQ;
918
919 /*
920 * branch priv level determined by target as
921 * is done by HW when LBR_SELECT is implemented
922 */
923 if (ret != X86_BR_NONE)
924 ret |= to_plm;
925
926 return ret;
927 }
928
929 /*
930 * implement actual branch filter based on user demand.
931 * Hardware may not exactly satisfy that request, thus
932 * we need to inspect opcodes. Mismatched branches are
933 * discarded. Therefore, the number of branches returned
934 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
935 */
936 static void
intel_pmu_lbr_filter(struct cpu_hw_events * cpuc)937 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
938 {
939 u64 from, to;
940 int br_sel = cpuc->br_sel;
941 int i, j, type;
942 bool compress = false;
943
944 /* if sampling all branches, then nothing to filter */
945 if ((br_sel & X86_BR_ALL) == X86_BR_ALL)
946 return;
947
948 for (i = 0; i < cpuc->lbr_stack.nr; i++) {
949
950 from = cpuc->lbr_entries[i].from;
951 to = cpuc->lbr_entries[i].to;
952
953 type = branch_type(from, to, cpuc->lbr_entries[i].abort);
954 if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
955 if (cpuc->lbr_entries[i].in_tx)
956 type |= X86_BR_IN_TX;
957 else
958 type |= X86_BR_NO_TX;
959 }
960
961 /* if type does not correspond, then discard */
962 if (type == X86_BR_NONE || (br_sel & type) != type) {
963 cpuc->lbr_entries[i].from = 0;
964 compress = true;
965 }
966 }
967
968 if (!compress)
969 return;
970
971 /* remove all entries with from=0 */
972 for (i = 0; i < cpuc->lbr_stack.nr; ) {
973 if (!cpuc->lbr_entries[i].from) {
974 j = i;
975 while (++j < cpuc->lbr_stack.nr)
976 cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
977 cpuc->lbr_stack.nr--;
978 if (!cpuc->lbr_entries[i].from)
979 continue;
980 }
981 i++;
982 }
983 }
984
985 /*
986 * Map interface branch filters onto LBR filters
987 */
988 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
989 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
990 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
991 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
992 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
993 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_REL_JMP
994 | LBR_IND_JMP | LBR_FAR,
995 /*
996 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
997 */
998 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
999 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1000 /*
1001 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1002 */
1003 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1004 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1005 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1006 };
1007
1008 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1009 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1010 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1011 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1012 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1013 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
1014 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1015 | LBR_FAR,
1016 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
1017 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1018 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1019 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
1020 };
1021
1022 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1023 [PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_ANY,
1024 [PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_USER,
1025 [PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_KERNEL,
1026 [PERF_SAMPLE_BRANCH_HV_SHIFT] = LBR_IGN,
1027 [PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_RETURN | LBR_FAR,
1028 [PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1029 | LBR_FAR,
1030 [PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL,
1031 [PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_JCC,
1032 [PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_REL_CALL | LBR_IND_CALL
1033 | LBR_RETURN | LBR_CALL_STACK,
1034 [PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1035 [PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_REL_CALL,
1036 };
1037
1038 /* core */
intel_pmu_lbr_init_core(void)1039 void __init intel_pmu_lbr_init_core(void)
1040 {
1041 x86_pmu.lbr_nr = 4;
1042 x86_pmu.lbr_tos = MSR_LBR_TOS;
1043 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1044 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1045
1046 /*
1047 * SW branch filter usage:
1048 * - compensate for lack of HW filter
1049 */
1050 }
1051
1052 /* nehalem/westmere */
intel_pmu_lbr_init_nhm(void)1053 void __init intel_pmu_lbr_init_nhm(void)
1054 {
1055 x86_pmu.lbr_nr = 16;
1056 x86_pmu.lbr_tos = MSR_LBR_TOS;
1057 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1058 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1059
1060 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1061 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
1062
1063 /*
1064 * SW branch filter usage:
1065 * - workaround LBR_SEL errata (see above)
1066 * - support syscall, sysret capture.
1067 * That requires LBR_FAR but that means far
1068 * jmp need to be filtered out
1069 */
1070 }
1071
1072 /* sandy bridge */
intel_pmu_lbr_init_snb(void)1073 void __init intel_pmu_lbr_init_snb(void)
1074 {
1075 x86_pmu.lbr_nr = 16;
1076 x86_pmu.lbr_tos = MSR_LBR_TOS;
1077 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1078 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1079
1080 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1081 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
1082
1083 /*
1084 * SW branch filter usage:
1085 * - support syscall, sysret capture.
1086 * That requires LBR_FAR but that means far
1087 * jmp need to be filtered out
1088 */
1089 }
1090
1091 /* haswell */
intel_pmu_lbr_init_hsw(void)1092 void intel_pmu_lbr_init_hsw(void)
1093 {
1094 x86_pmu.lbr_nr = 16;
1095 x86_pmu.lbr_tos = MSR_LBR_TOS;
1096 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1097 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1098
1099 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1100 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1101
1102 if (lbr_from_signext_quirk_needed())
1103 static_branch_enable(&lbr_from_quirk_key);
1104 }
1105
1106 /* skylake */
intel_pmu_lbr_init_skl(void)1107 __init void intel_pmu_lbr_init_skl(void)
1108 {
1109 x86_pmu.lbr_nr = 32;
1110 x86_pmu.lbr_tos = MSR_LBR_TOS;
1111 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1112 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1113
1114 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1115 x86_pmu.lbr_sel_map = hsw_lbr_sel_map;
1116
1117 /*
1118 * SW branch filter usage:
1119 * - support syscall, sysret capture.
1120 * That requires LBR_FAR but that means far
1121 * jmp need to be filtered out
1122 */
1123 }
1124
1125 /* atom */
intel_pmu_lbr_init_atom(void)1126 void __init intel_pmu_lbr_init_atom(void)
1127 {
1128 /*
1129 * only models starting at stepping 10 seems
1130 * to have an operational LBR which can freeze
1131 * on PMU interrupt
1132 */
1133 if (boot_cpu_data.x86_model == 28
1134 && boot_cpu_data.x86_stepping < 10) {
1135 pr_cont("LBR disabled due to erratum");
1136 return;
1137 }
1138
1139 x86_pmu.lbr_nr = 8;
1140 x86_pmu.lbr_tos = MSR_LBR_TOS;
1141 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1142 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1143
1144 /*
1145 * SW branch filter usage:
1146 * - compensate for lack of HW filter
1147 */
1148 }
1149
1150 /* slm */
intel_pmu_lbr_init_slm(void)1151 void __init intel_pmu_lbr_init_slm(void)
1152 {
1153 x86_pmu.lbr_nr = 8;
1154 x86_pmu.lbr_tos = MSR_LBR_TOS;
1155 x86_pmu.lbr_from = MSR_LBR_CORE_FROM;
1156 x86_pmu.lbr_to = MSR_LBR_CORE_TO;
1157
1158 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1159 x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
1160
1161 /*
1162 * SW branch filter usage:
1163 * - compensate for lack of HW filter
1164 */
1165 pr_cont("8-deep LBR, ");
1166 }
1167
1168 /* Knights Landing */
intel_pmu_lbr_init_knl(void)1169 void intel_pmu_lbr_init_knl(void)
1170 {
1171 x86_pmu.lbr_nr = 8;
1172 x86_pmu.lbr_tos = MSR_LBR_TOS;
1173 x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1174 x86_pmu.lbr_to = MSR_LBR_NHM_TO;
1175
1176 x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1177 x86_pmu.lbr_sel_map = snb_lbr_sel_map;
1178 }
1179