• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/perf_event.h>
2 #include <linux/types.h>
3 
4 #include <asm/perf_event.h>
5 #include <asm/msr.h>
6 #include <asm/insn.h>
7 
8 #include "../perf_event.h"
9 
10 enum {
11 	LBR_FORMAT_32		= 0x00,
12 	LBR_FORMAT_LIP		= 0x01,
13 	LBR_FORMAT_EIP		= 0x02,
14 	LBR_FORMAT_EIP_FLAGS	= 0x03,
15 	LBR_FORMAT_EIP_FLAGS2	= 0x04,
16 	LBR_FORMAT_INFO		= 0x05,
17 	LBR_FORMAT_TIME		= 0x06,
18 	LBR_FORMAT_MAX_KNOWN    = LBR_FORMAT_TIME,
19 };
20 
21 static enum {
22 	LBR_EIP_FLAGS		= 1,
23 	LBR_TSX			= 2,
24 } lbr_desc[LBR_FORMAT_MAX_KNOWN + 1] = {
25 	[LBR_FORMAT_EIP_FLAGS]  = LBR_EIP_FLAGS,
26 	[LBR_FORMAT_EIP_FLAGS2] = LBR_EIP_FLAGS | LBR_TSX,
27 };
28 
29 /*
30  * Intel LBR_SELECT bits
31  * Intel Vol3a, April 2011, Section 16.7 Table 16-10
32  *
33  * Hardware branch filter (not available on all CPUs)
34  */
35 #define LBR_KERNEL_BIT		0 /* do not capture at ring0 */
36 #define LBR_USER_BIT		1 /* do not capture at ring > 0 */
37 #define LBR_JCC_BIT		2 /* do not capture conditional branches */
38 #define LBR_REL_CALL_BIT	3 /* do not capture relative calls */
39 #define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */
40 #define LBR_RETURN_BIT		5 /* do not capture near returns */
41 #define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */
42 #define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */
43 #define LBR_FAR_BIT		8 /* do not capture far branches */
44 #define LBR_CALL_STACK_BIT	9 /* enable call stack */
45 
46 /*
47  * Following bit only exists in Linux; we mask it out before writing it to
48  * the actual MSR. But it helps the constraint perf code to understand
49  * that this is a separate configuration.
50  */
51 #define LBR_NO_INFO_BIT	       63 /* don't read LBR_INFO. */
52 
53 #define LBR_KERNEL	(1 << LBR_KERNEL_BIT)
54 #define LBR_USER	(1 << LBR_USER_BIT)
55 #define LBR_JCC		(1 << LBR_JCC_BIT)
56 #define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT)
57 #define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT)
58 #define LBR_RETURN	(1 << LBR_RETURN_BIT)
59 #define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT)
60 #define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT)
61 #define LBR_FAR		(1 << LBR_FAR_BIT)
62 #define LBR_CALL_STACK	(1 << LBR_CALL_STACK_BIT)
63 #define LBR_NO_INFO	(1ULL << LBR_NO_INFO_BIT)
64 
65 #define LBR_PLM (LBR_KERNEL | LBR_USER)
66 
67 #define LBR_SEL_MASK	0x3ff	/* valid bits in LBR_SELECT */
68 #define LBR_NOT_SUPP	-1	/* LBR filter not supported */
69 #define LBR_IGN		0	/* ignored */
70 
71 #define LBR_ANY		 \
72 	(LBR_JCC	|\
73 	 LBR_REL_CALL	|\
74 	 LBR_IND_CALL	|\
75 	 LBR_RETURN	|\
76 	 LBR_REL_JMP	|\
77 	 LBR_IND_JMP	|\
78 	 LBR_FAR)
79 
80 #define LBR_FROM_FLAG_MISPRED	BIT_ULL(63)
81 #define LBR_FROM_FLAG_IN_TX	BIT_ULL(62)
82 #define LBR_FROM_FLAG_ABORT	BIT_ULL(61)
83 
84 #define LBR_FROM_SIGNEXT_2MSB	(BIT_ULL(60) | BIT_ULL(59))
85 
86 /*
87  * x86control flow change classification
88  * x86control flow changes include branches, interrupts, traps, faults
89  */
90 enum {
91 	X86_BR_NONE		= 0,      /* unknown */
92 
93 	X86_BR_USER		= 1 << 0, /* branch target is user */
94 	X86_BR_KERNEL		= 1 << 1, /* branch target is kernel */
95 
96 	X86_BR_CALL		= 1 << 2, /* call */
97 	X86_BR_RET		= 1 << 3, /* return */
98 	X86_BR_SYSCALL		= 1 << 4, /* syscall */
99 	X86_BR_SYSRET		= 1 << 5, /* syscall return */
100 	X86_BR_INT		= 1 << 6, /* sw interrupt */
101 	X86_BR_IRET		= 1 << 7, /* return from interrupt */
102 	X86_BR_JCC		= 1 << 8, /* conditional */
103 	X86_BR_JMP		= 1 << 9, /* jump */
104 	X86_BR_IRQ		= 1 << 10,/* hw interrupt or trap or fault */
105 	X86_BR_IND_CALL		= 1 << 11,/* indirect calls */
106 	X86_BR_ABORT		= 1 << 12,/* transaction abort */
107 	X86_BR_IN_TX		= 1 << 13,/* in transaction */
108 	X86_BR_NO_TX		= 1 << 14,/* not in transaction */
109 	X86_BR_ZERO_CALL	= 1 << 15,/* zero length call */
110 	X86_BR_CALL_STACK	= 1 << 16,/* call stack */
111 	X86_BR_IND_JMP		= 1 << 17,/* indirect jump */
112 };
113 
114 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
115 #define X86_BR_ANYTX (X86_BR_NO_TX | X86_BR_IN_TX)
116 
117 #define X86_BR_ANY       \
118 	(X86_BR_CALL    |\
119 	 X86_BR_RET     |\
120 	 X86_BR_SYSCALL |\
121 	 X86_BR_SYSRET  |\
122 	 X86_BR_INT     |\
123 	 X86_BR_IRET    |\
124 	 X86_BR_JCC     |\
125 	 X86_BR_JMP	 |\
126 	 X86_BR_IRQ	 |\
127 	 X86_BR_ABORT	 |\
128 	 X86_BR_IND_CALL |\
129 	 X86_BR_IND_JMP  |\
130 	 X86_BR_ZERO_CALL)
131 
132 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
133 
134 #define X86_BR_ANY_CALL		 \
135 	(X86_BR_CALL		|\
136 	 X86_BR_IND_CALL	|\
137 	 X86_BR_ZERO_CALL	|\
138 	 X86_BR_SYSCALL		|\
139 	 X86_BR_IRQ		|\
140 	 X86_BR_INT)
141 
142 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
143 
144 /*
145  * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
146  * otherwise it becomes near impossible to get a reliable stack.
147  */
148 
__intel_pmu_lbr_enable(bool pmi)149 static void __intel_pmu_lbr_enable(bool pmi)
150 {
151 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
152 	u64 debugctl, lbr_select = 0, orig_debugctl;
153 
154 	/*
155 	 * No need to unfreeze manually, as v4 can do that as part
156 	 * of the GLOBAL_STATUS ack.
157 	 */
158 	if (pmi && x86_pmu.version >= 4)
159 		return;
160 
161 	/*
162 	 * No need to reprogram LBR_SELECT in a PMI, as it
163 	 * did not change.
164 	 */
165 	if (cpuc->lbr_sel)
166 		lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
167 	if (!pmi && cpuc->lbr_sel)
168 		wrmsrl(MSR_LBR_SELECT, lbr_select);
169 
170 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
171 	orig_debugctl = debugctl;
172 	debugctl |= DEBUGCTLMSR_LBR;
173 	/*
174 	 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
175 	 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
176 	 * may cause superfluous increase/decrease of LBR_TOS.
177 	 */
178 	if (!(lbr_select & LBR_CALL_STACK))
179 		debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
180 	if (orig_debugctl != debugctl)
181 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
182 }
183 
__intel_pmu_lbr_disable(void)184 static void __intel_pmu_lbr_disable(void)
185 {
186 	u64 debugctl;
187 
188 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
189 	debugctl &= ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI);
190 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
191 }
192 
intel_pmu_lbr_reset_32(void)193 static void intel_pmu_lbr_reset_32(void)
194 {
195 	int i;
196 
197 	for (i = 0; i < x86_pmu.lbr_nr; i++)
198 		wrmsrl(x86_pmu.lbr_from + i, 0);
199 }
200 
intel_pmu_lbr_reset_64(void)201 static void intel_pmu_lbr_reset_64(void)
202 {
203 	int i;
204 
205 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
206 		wrmsrl(x86_pmu.lbr_from + i, 0);
207 		wrmsrl(x86_pmu.lbr_to   + i, 0);
208 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
209 			wrmsrl(MSR_LBR_INFO_0 + i, 0);
210 	}
211 }
212 
intel_pmu_lbr_reset(void)213 void intel_pmu_lbr_reset(void)
214 {
215 	if (!x86_pmu.lbr_nr)
216 		return;
217 
218 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
219 		intel_pmu_lbr_reset_32();
220 	else
221 		intel_pmu_lbr_reset_64();
222 }
223 
224 /*
225  * TOS = most recently recorded branch
226  */
intel_pmu_lbr_tos(void)227 static inline u64 intel_pmu_lbr_tos(void)
228 {
229 	u64 tos;
230 
231 	rdmsrl(x86_pmu.lbr_tos, tos);
232 	return tos;
233 }
234 
235 enum {
236 	LBR_NONE,
237 	LBR_VALID,
238 };
239 
240 /*
241  * For formats with LBR_TSX flags (e.g. LBR_FORMAT_EIP_FLAGS2), bits 61:62 in
242  * MSR_LAST_BRANCH_FROM_x are the TSX flags when TSX is supported, but when
243  * TSX is not supported they have no consistent behavior:
244  *
245  *   - For wrmsr(), bits 61:62 are considered part of the sign extension.
246  *   - For HW updates (branch captures) bits 61:62 are always OFF and are not
247  *     part of the sign extension.
248  *
249  * Therefore, if:
250  *
251  *   1) LBR has TSX format
252  *   2) CPU has no TSX support enabled
253  *
254  * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
255  * value from rdmsr() must be converted to have a 61 bits sign extension,
256  * ignoring the TSX flags.
257  */
lbr_from_signext_quirk_needed(void)258 static inline bool lbr_from_signext_quirk_needed(void)
259 {
260 	int lbr_format = x86_pmu.intel_cap.lbr_format;
261 	bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
262 			   boot_cpu_has(X86_FEATURE_RTM);
263 
264 	return !tsx_support && (lbr_desc[lbr_format] & LBR_TSX);
265 }
266 
267 DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
268 
269 /* If quirk is enabled, ensure sign extension is 63 bits: */
lbr_from_signext_quirk_wr(u64 val)270 inline u64 lbr_from_signext_quirk_wr(u64 val)
271 {
272 	if (static_branch_unlikely(&lbr_from_quirk_key)) {
273 		/*
274 		 * Sign extend into bits 61:62 while preserving bit 63.
275 		 *
276 		 * Quirk is enabled when TSX is disabled. Therefore TSX bits
277 		 * in val are always OFF and must be changed to be sign
278 		 * extension bits. Since bits 59:60 are guaranteed to be
279 		 * part of the sign extension bits, we can just copy them
280 		 * to 61:62.
281 		 */
282 		val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
283 	}
284 	return val;
285 }
286 
287 /*
288  * If quirk is needed, ensure sign extension is 61 bits:
289  */
lbr_from_signext_quirk_rd(u64 val)290 u64 lbr_from_signext_quirk_rd(u64 val)
291 {
292 	if (static_branch_unlikely(&lbr_from_quirk_key)) {
293 		/*
294 		 * Quirk is on when TSX is not enabled. Therefore TSX
295 		 * flags must be read as OFF.
296 		 */
297 		val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
298 	}
299 	return val;
300 }
301 
wrlbr_from(unsigned int idx,u64 val)302 static inline void wrlbr_from(unsigned int idx, u64 val)
303 {
304 	val = lbr_from_signext_quirk_wr(val);
305 	wrmsrl(x86_pmu.lbr_from + idx, val);
306 }
307 
wrlbr_to(unsigned int idx,u64 val)308 static inline void wrlbr_to(unsigned int idx, u64 val)
309 {
310 	wrmsrl(x86_pmu.lbr_to + idx, val);
311 }
312 
rdlbr_from(unsigned int idx)313 static inline u64 rdlbr_from(unsigned int idx)
314 {
315 	u64 val;
316 
317 	rdmsrl(x86_pmu.lbr_from + idx, val);
318 
319 	return lbr_from_signext_quirk_rd(val);
320 }
321 
rdlbr_to(unsigned int idx)322 static inline u64 rdlbr_to(unsigned int idx)
323 {
324 	u64 val;
325 
326 	rdmsrl(x86_pmu.lbr_to + idx, val);
327 
328 	return val;
329 }
330 
__intel_pmu_lbr_restore(struct x86_perf_task_context * task_ctx)331 static void __intel_pmu_lbr_restore(struct x86_perf_task_context *task_ctx)
332 {
333 	int i;
334 	unsigned lbr_idx, mask;
335 	u64 tos;
336 
337 	if (task_ctx->lbr_callstack_users == 0 ||
338 	    task_ctx->lbr_stack_state == LBR_NONE) {
339 		intel_pmu_lbr_reset();
340 		return;
341 	}
342 
343 	mask = x86_pmu.lbr_nr - 1;
344 	tos = task_ctx->tos;
345 	for (i = 0; i < tos; i++) {
346 		lbr_idx = (tos - i) & mask;
347 		wrlbr_from(lbr_idx, task_ctx->lbr_from[i]);
348 		wrlbr_to  (lbr_idx, task_ctx->lbr_to[i]);
349 
350 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
351 			wrmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
352 	}
353 	wrmsrl(x86_pmu.lbr_tos, tos);
354 	task_ctx->lbr_stack_state = LBR_NONE;
355 }
356 
__intel_pmu_lbr_save(struct x86_perf_task_context * task_ctx)357 static void __intel_pmu_lbr_save(struct x86_perf_task_context *task_ctx)
358 {
359 	unsigned lbr_idx, mask;
360 	u64 tos;
361 	int i;
362 
363 	if (task_ctx->lbr_callstack_users == 0) {
364 		task_ctx->lbr_stack_state = LBR_NONE;
365 		return;
366 	}
367 
368 	mask = x86_pmu.lbr_nr - 1;
369 	tos = intel_pmu_lbr_tos();
370 	for (i = 0; i < tos; i++) {
371 		lbr_idx = (tos - i) & mask;
372 		task_ctx->lbr_from[i] = rdlbr_from(lbr_idx);
373 		task_ctx->lbr_to[i]   = rdlbr_to(lbr_idx);
374 		if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO)
375 			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, task_ctx->lbr_info[i]);
376 	}
377 	task_ctx->tos = tos;
378 	task_ctx->lbr_stack_state = LBR_VALID;
379 }
380 
intel_pmu_lbr_sched_task(struct perf_event_context * ctx,bool sched_in)381 void intel_pmu_lbr_sched_task(struct perf_event_context *ctx, bool sched_in)
382 {
383 	struct x86_perf_task_context *task_ctx;
384 
385 	/*
386 	 * If LBR callstack feature is enabled and the stack was saved when
387 	 * the task was scheduled out, restore the stack. Otherwise flush
388 	 * the LBR stack.
389 	 */
390 	task_ctx = ctx ? ctx->task_ctx_data : NULL;
391 	if (task_ctx) {
392 		if (sched_in)
393 			__intel_pmu_lbr_restore(task_ctx);
394 		else
395 			__intel_pmu_lbr_save(task_ctx);
396 		return;
397 	}
398 
399 	/*
400 	 * Since a context switch can flip the address space and LBR entries
401 	 * are not tagged with an identifier, we need to wipe the LBR, even for
402 	 * per-cpu events. You simply cannot resolve the branches from the old
403 	 * address space.
404 	 */
405 	if (sched_in)
406 		intel_pmu_lbr_reset();
407 }
408 
branch_user_callstack(unsigned br_sel)409 static inline bool branch_user_callstack(unsigned br_sel)
410 {
411 	return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
412 }
413 
intel_pmu_lbr_add(struct perf_event * event)414 void intel_pmu_lbr_add(struct perf_event *event)
415 {
416 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
417 	struct x86_perf_task_context *task_ctx;
418 
419 	if (!x86_pmu.lbr_nr)
420 		return;
421 
422 	cpuc->br_sel = event->hw.branch_reg.reg;
423 
424 	if (branch_user_callstack(cpuc->br_sel) && event->ctx->task_ctx_data) {
425 		task_ctx = event->ctx->task_ctx_data;
426 		task_ctx->lbr_callstack_users++;
427 	}
428 
429 	/*
430 	 * Request pmu::sched_task() callback, which will fire inside the
431 	 * regular perf event scheduling, so that call will:
432 	 *
433 	 *  - restore or wipe; when LBR-callstack,
434 	 *  - wipe; otherwise,
435 	 *
436 	 * when this is from __perf_event_task_sched_in().
437 	 *
438 	 * However, if this is from perf_install_in_context(), no such callback
439 	 * will follow and we'll need to reset the LBR here if this is the
440 	 * first LBR event.
441 	 *
442 	 * The problem is, we cannot tell these cases apart... but we can
443 	 * exclude the biggest chunk of cases by looking at
444 	 * event->total_time_running. An event that has accrued runtime cannot
445 	 * be 'new'. Conversely, a new event can get installed through the
446 	 * context switch path for the first time.
447 	 */
448 	perf_sched_cb_inc(event->ctx->pmu);
449 	if (!cpuc->lbr_users++ && !event->total_time_running)
450 		intel_pmu_lbr_reset();
451 }
452 
intel_pmu_lbr_del(struct perf_event * event)453 void intel_pmu_lbr_del(struct perf_event *event)
454 {
455 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
456 	struct x86_perf_task_context *task_ctx;
457 
458 	if (!x86_pmu.lbr_nr)
459 		return;
460 
461 	if (branch_user_callstack(cpuc->br_sel) &&
462 	    event->ctx->task_ctx_data) {
463 		task_ctx = event->ctx->task_ctx_data;
464 		task_ctx->lbr_callstack_users--;
465 	}
466 
467 	cpuc->lbr_users--;
468 	WARN_ON_ONCE(cpuc->lbr_users < 0);
469 	perf_sched_cb_dec(event->ctx->pmu);
470 }
471 
intel_pmu_lbr_enable_all(bool pmi)472 void intel_pmu_lbr_enable_all(bool pmi)
473 {
474 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
475 
476 	if (cpuc->lbr_users)
477 		__intel_pmu_lbr_enable(pmi);
478 }
479 
intel_pmu_lbr_disable_all(void)480 void intel_pmu_lbr_disable_all(void)
481 {
482 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
483 
484 	if (cpuc->lbr_users)
485 		__intel_pmu_lbr_disable();
486 }
487 
intel_pmu_lbr_read_32(struct cpu_hw_events * cpuc)488 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
489 {
490 	unsigned long mask = x86_pmu.lbr_nr - 1;
491 	u64 tos = intel_pmu_lbr_tos();
492 	int i;
493 
494 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
495 		unsigned long lbr_idx = (tos - i) & mask;
496 		union {
497 			struct {
498 				u32 from;
499 				u32 to;
500 			};
501 			u64     lbr;
502 		} msr_lastbranch;
503 
504 		rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
505 
506 		cpuc->lbr_entries[i].from	= msr_lastbranch.from;
507 		cpuc->lbr_entries[i].to		= msr_lastbranch.to;
508 		cpuc->lbr_entries[i].mispred	= 0;
509 		cpuc->lbr_entries[i].predicted	= 0;
510 		cpuc->lbr_entries[i].in_tx	= 0;
511 		cpuc->lbr_entries[i].abort	= 0;
512 		cpuc->lbr_entries[i].cycles	= 0;
513 		cpuc->lbr_entries[i].reserved	= 0;
514 	}
515 	cpuc->lbr_stack.nr = i;
516 }
517 
518 /*
519  * Due to lack of segmentation in Linux the effective address (offset)
520  * is the same as the linear address, allowing us to merge the LIP and EIP
521  * LBR formats.
522  */
intel_pmu_lbr_read_64(struct cpu_hw_events * cpuc)523 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
524 {
525 	bool need_info = false;
526 	unsigned long mask = x86_pmu.lbr_nr - 1;
527 	int lbr_format = x86_pmu.intel_cap.lbr_format;
528 	u64 tos = intel_pmu_lbr_tos();
529 	int i;
530 	int out = 0;
531 	int num = x86_pmu.lbr_nr;
532 
533 	if (cpuc->lbr_sel) {
534 		need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
535 		if (cpuc->lbr_sel->config & LBR_CALL_STACK)
536 			num = tos;
537 	}
538 
539 	for (i = 0; i < num; i++) {
540 		unsigned long lbr_idx = (tos - i) & mask;
541 		u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
542 		int skip = 0;
543 		u16 cycles = 0;
544 		int lbr_flags = lbr_desc[lbr_format];
545 
546 		from = rdlbr_from(lbr_idx);
547 		to   = rdlbr_to(lbr_idx);
548 
549 		if (lbr_format == LBR_FORMAT_INFO && need_info) {
550 			u64 info;
551 
552 			rdmsrl(MSR_LBR_INFO_0 + lbr_idx, info);
553 			mis = !!(info & LBR_INFO_MISPRED);
554 			pred = !mis;
555 			in_tx = !!(info & LBR_INFO_IN_TX);
556 			abort = !!(info & LBR_INFO_ABORT);
557 			cycles = (info & LBR_INFO_CYCLES);
558 		}
559 
560 		if (lbr_format == LBR_FORMAT_TIME) {
561 			mis = !!(from & LBR_FROM_FLAG_MISPRED);
562 			pred = !mis;
563 			skip = 1;
564 			cycles = ((to >> 48) & LBR_INFO_CYCLES);
565 
566 			to = (u64)((((s64)to) << 16) >> 16);
567 		}
568 
569 		if (lbr_flags & LBR_EIP_FLAGS) {
570 			mis = !!(from & LBR_FROM_FLAG_MISPRED);
571 			pred = !mis;
572 			skip = 1;
573 		}
574 		if (lbr_flags & LBR_TSX) {
575 			in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
576 			abort = !!(from & LBR_FROM_FLAG_ABORT);
577 			skip = 3;
578 		}
579 		from = (u64)((((s64)from) << skip) >> skip);
580 
581 		/*
582 		 * Some CPUs report duplicated abort records,
583 		 * with the second entry not having an abort bit set.
584 		 * Skip them here. This loop runs backwards,
585 		 * so we need to undo the previous record.
586 		 * If the abort just happened outside the window
587 		 * the extra entry cannot be removed.
588 		 */
589 		if (abort && x86_pmu.lbr_double_abort && out > 0)
590 			out--;
591 
592 		cpuc->lbr_entries[out].from	 = from;
593 		cpuc->lbr_entries[out].to	 = to;
594 		cpuc->lbr_entries[out].mispred	 = mis;
595 		cpuc->lbr_entries[out].predicted = pred;
596 		cpuc->lbr_entries[out].in_tx	 = in_tx;
597 		cpuc->lbr_entries[out].abort	 = abort;
598 		cpuc->lbr_entries[out].cycles	 = cycles;
599 		cpuc->lbr_entries[out].reserved	 = 0;
600 		out++;
601 	}
602 	cpuc->lbr_stack.nr = out;
603 }
604 
intel_pmu_lbr_read(void)605 void intel_pmu_lbr_read(void)
606 {
607 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
608 
609 	if (!cpuc->lbr_users)
610 		return;
611 
612 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32)
613 		intel_pmu_lbr_read_32(cpuc);
614 	else
615 		intel_pmu_lbr_read_64(cpuc);
616 
617 	intel_pmu_lbr_filter(cpuc);
618 }
619 
620 /*
621  * SW filter is used:
622  * - in case there is no HW filter
623  * - in case the HW filter has errata or limitations
624  */
intel_pmu_setup_sw_lbr_filter(struct perf_event * event)625 static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
626 {
627 	u64 br_type = event->attr.branch_sample_type;
628 	int mask = 0;
629 
630 	if (br_type & PERF_SAMPLE_BRANCH_USER)
631 		mask |= X86_BR_USER;
632 
633 	if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
634 		mask |= X86_BR_KERNEL;
635 
636 	/* we ignore BRANCH_HV here */
637 
638 	if (br_type & PERF_SAMPLE_BRANCH_ANY)
639 		mask |= X86_BR_ANY;
640 
641 	if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
642 		mask |= X86_BR_ANY_CALL;
643 
644 	if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
645 		mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
646 
647 	if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
648 		mask |= X86_BR_IND_CALL;
649 
650 	if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
651 		mask |= X86_BR_ABORT;
652 
653 	if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
654 		mask |= X86_BR_IN_TX;
655 
656 	if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
657 		mask |= X86_BR_NO_TX;
658 
659 	if (br_type & PERF_SAMPLE_BRANCH_COND)
660 		mask |= X86_BR_JCC;
661 
662 	if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
663 		if (!x86_pmu_has_lbr_callstack())
664 			return -EOPNOTSUPP;
665 		if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
666 			return -EINVAL;
667 		mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
668 			X86_BR_CALL_STACK;
669 	}
670 
671 	if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
672 		mask |= X86_BR_IND_JMP;
673 
674 	if (br_type & PERF_SAMPLE_BRANCH_CALL)
675 		mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
676 	/*
677 	 * stash actual user request into reg, it may
678 	 * be used by fixup code for some CPU
679 	 */
680 	event->hw.branch_reg.reg = mask;
681 	return 0;
682 }
683 
684 /*
685  * setup the HW LBR filter
686  * Used only when available, may not be enough to disambiguate
687  * all branches, may need the help of the SW filter
688  */
intel_pmu_setup_hw_lbr_filter(struct perf_event * event)689 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
690 {
691 	struct hw_perf_event_extra *reg;
692 	u64 br_type = event->attr.branch_sample_type;
693 	u64 mask = 0, v;
694 	int i;
695 
696 	for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
697 		if (!(br_type & (1ULL << i)))
698 			continue;
699 
700 		v = x86_pmu.lbr_sel_map[i];
701 		if (v == LBR_NOT_SUPP)
702 			return -EOPNOTSUPP;
703 
704 		if (v != LBR_IGN)
705 			mask |= v;
706 	}
707 
708 	reg = &event->hw.branch_reg;
709 	reg->idx = EXTRA_REG_LBR;
710 
711 	/*
712 	 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
713 	 * in suppress mode. So LBR_SELECT should be set to
714 	 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
715 	 * But the 10th bit LBR_CALL_STACK does not operate
716 	 * in suppress mode.
717 	 */
718 	reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
719 
720 	if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
721 	    (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
722 	    (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_INFO))
723 		reg->config |= LBR_NO_INFO;
724 
725 	return 0;
726 }
727 
intel_pmu_setup_lbr_filter(struct perf_event * event)728 int intel_pmu_setup_lbr_filter(struct perf_event *event)
729 {
730 	int ret = 0;
731 
732 	/*
733 	 * no LBR on this PMU
734 	 */
735 	if (!x86_pmu.lbr_nr)
736 		return -EOPNOTSUPP;
737 
738 	/*
739 	 * setup SW LBR filter
740 	 */
741 	ret = intel_pmu_setup_sw_lbr_filter(event);
742 	if (ret)
743 		return ret;
744 
745 	/*
746 	 * setup HW LBR filter, if any
747 	 */
748 	if (x86_pmu.lbr_sel_map)
749 		ret = intel_pmu_setup_hw_lbr_filter(event);
750 
751 	return ret;
752 }
753 
754 /*
755  * return the type of control flow change at address "from"
756  * instruction is not necessarily a branch (in case of interrupt).
757  *
758  * The branch type returned also includes the priv level of the
759  * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
760  *
761  * If a branch type is unknown OR the instruction cannot be
762  * decoded (e.g., text page not present), then X86_BR_NONE is
763  * returned.
764  */
branch_type(unsigned long from,unsigned long to,int abort)765 static int branch_type(unsigned long from, unsigned long to, int abort)
766 {
767 	struct insn insn;
768 	void *addr;
769 	int bytes_read, bytes_left;
770 	int ret = X86_BR_NONE;
771 	int ext, to_plm, from_plm;
772 	u8 buf[MAX_INSN_SIZE];
773 	int is64 = 0;
774 
775 	to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
776 	from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
777 
778 	/*
779 	 * maybe zero if lbr did not fill up after a reset by the time
780 	 * we get a PMU interrupt
781 	 */
782 	if (from == 0 || to == 0)
783 		return X86_BR_NONE;
784 
785 	if (abort)
786 		return X86_BR_ABORT | to_plm;
787 
788 	if (from_plm == X86_BR_USER) {
789 		/*
790 		 * can happen if measuring at the user level only
791 		 * and we interrupt in a kernel thread, e.g., idle.
792 		 */
793 		if (!current->mm)
794 			return X86_BR_NONE;
795 
796 		/* may fail if text not present */
797 		bytes_left = copy_from_user_nmi(buf, (void __user *)from,
798 						MAX_INSN_SIZE);
799 		bytes_read = MAX_INSN_SIZE - bytes_left;
800 		if (!bytes_read)
801 			return X86_BR_NONE;
802 
803 		addr = buf;
804 	} else {
805 		/*
806 		 * The LBR logs any address in the IP, even if the IP just
807 		 * faulted. This means userspace can control the from address.
808 		 * Ensure we don't blindy read any address by validating it is
809 		 * a known text address.
810 		 */
811 		if (kernel_text_address(from)) {
812 			addr = (void *)from;
813 			/*
814 			 * Assume we can get the maximum possible size
815 			 * when grabbing kernel data.  This is not
816 			 * _strictly_ true since we could possibly be
817 			 * executing up next to a memory hole, but
818 			 * it is very unlikely to be a problem.
819 			 */
820 			bytes_read = MAX_INSN_SIZE;
821 		} else {
822 			return X86_BR_NONE;
823 		}
824 	}
825 
826 	/*
827 	 * decoder needs to know the ABI especially
828 	 * on 64-bit systems running 32-bit apps
829 	 */
830 #ifdef CONFIG_X86_64
831 	is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
832 #endif
833 	insn_init(&insn, addr, bytes_read, is64);
834 	insn_get_opcode(&insn);
835 	if (!insn.opcode.got)
836 		return X86_BR_ABORT;
837 
838 	switch (insn.opcode.bytes[0]) {
839 	case 0xf:
840 		switch (insn.opcode.bytes[1]) {
841 		case 0x05: /* syscall */
842 		case 0x34: /* sysenter */
843 			ret = X86_BR_SYSCALL;
844 			break;
845 		case 0x07: /* sysret */
846 		case 0x35: /* sysexit */
847 			ret = X86_BR_SYSRET;
848 			break;
849 		case 0x80 ... 0x8f: /* conditional */
850 			ret = X86_BR_JCC;
851 			break;
852 		default:
853 			ret = X86_BR_NONE;
854 		}
855 		break;
856 	case 0x70 ... 0x7f: /* conditional */
857 		ret = X86_BR_JCC;
858 		break;
859 	case 0xc2: /* near ret */
860 	case 0xc3: /* near ret */
861 	case 0xca: /* far ret */
862 	case 0xcb: /* far ret */
863 		ret = X86_BR_RET;
864 		break;
865 	case 0xcf: /* iret */
866 		ret = X86_BR_IRET;
867 		break;
868 	case 0xcc ... 0xce: /* int */
869 		ret = X86_BR_INT;
870 		break;
871 	case 0xe8: /* call near rel */
872 		insn_get_immediate(&insn);
873 		if (insn.immediate1.value == 0) {
874 			/* zero length call */
875 			ret = X86_BR_ZERO_CALL;
876 			break;
877 		}
878 	case 0x9a: /* call far absolute */
879 		ret = X86_BR_CALL;
880 		break;
881 	case 0xe0 ... 0xe3: /* loop jmp */
882 		ret = X86_BR_JCC;
883 		break;
884 	case 0xe9 ... 0xeb: /* jmp */
885 		ret = X86_BR_JMP;
886 		break;
887 	case 0xff: /* call near absolute, call far absolute ind */
888 		insn_get_modrm(&insn);
889 		ext = (insn.modrm.bytes[0] >> 3) & 0x7;
890 		switch (ext) {
891 		case 2: /* near ind call */
892 		case 3: /* far ind call */
893 			ret = X86_BR_IND_CALL;
894 			break;
895 		case 4:
896 		case 5:
897 			ret = X86_BR_IND_JMP;
898 			break;
899 		}
900 		break;
901 	default:
902 		ret = X86_BR_NONE;
903 	}
904 	/*
905 	 * interrupts, traps, faults (and thus ring transition) may
906 	 * occur on any instructions. Thus, to classify them correctly,
907 	 * we need to first look at the from and to priv levels. If they
908 	 * are different and to is in the kernel, then it indicates
909 	 * a ring transition. If the from instruction is not a ring
910 	 * transition instr (syscall, systenter, int), then it means
911 	 * it was a irq, trap or fault.
912 	 *
913 	 * we have no way of detecting kernel to kernel faults.
914 	 */
915 	if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
916 	    && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
917 		ret = X86_BR_IRQ;
918 
919 	/*
920 	 * branch priv level determined by target as
921 	 * is done by HW when LBR_SELECT is implemented
922 	 */
923 	if (ret != X86_BR_NONE)
924 		ret |= to_plm;
925 
926 	return ret;
927 }
928 
929 /*
930  * implement actual branch filter based on user demand.
931  * Hardware may not exactly satisfy that request, thus
932  * we need to inspect opcodes. Mismatched branches are
933  * discarded. Therefore, the number of branches returned
934  * in PERF_SAMPLE_BRANCH_STACK sample may vary.
935  */
936 static void
intel_pmu_lbr_filter(struct cpu_hw_events * cpuc)937 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
938 {
939 	u64 from, to;
940 	int br_sel = cpuc->br_sel;
941 	int i, j, type;
942 	bool compress = false;
943 
944 	/* if sampling all branches, then nothing to filter */
945 	if ((br_sel & X86_BR_ALL) == X86_BR_ALL)
946 		return;
947 
948 	for (i = 0; i < cpuc->lbr_stack.nr; i++) {
949 
950 		from = cpuc->lbr_entries[i].from;
951 		to = cpuc->lbr_entries[i].to;
952 
953 		type = branch_type(from, to, cpuc->lbr_entries[i].abort);
954 		if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
955 			if (cpuc->lbr_entries[i].in_tx)
956 				type |= X86_BR_IN_TX;
957 			else
958 				type |= X86_BR_NO_TX;
959 		}
960 
961 		/* if type does not correspond, then discard */
962 		if (type == X86_BR_NONE || (br_sel & type) != type) {
963 			cpuc->lbr_entries[i].from = 0;
964 			compress = true;
965 		}
966 	}
967 
968 	if (!compress)
969 		return;
970 
971 	/* remove all entries with from=0 */
972 	for (i = 0; i < cpuc->lbr_stack.nr; ) {
973 		if (!cpuc->lbr_entries[i].from) {
974 			j = i;
975 			while (++j < cpuc->lbr_stack.nr)
976 				cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
977 			cpuc->lbr_stack.nr--;
978 			if (!cpuc->lbr_entries[i].from)
979 				continue;
980 		}
981 		i++;
982 	}
983 }
984 
985 /*
986  * Map interface branch filters onto LBR filters
987  */
988 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
989 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
990 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
991 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
992 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
993 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_REL_JMP
994 						| LBR_IND_JMP | LBR_FAR,
995 	/*
996 	 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
997 	 */
998 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
999 	 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1000 	/*
1001 	 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1002 	 */
1003 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1004 	[PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
1005 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1006 };
1007 
1008 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1009 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1010 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1011 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1012 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1013 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
1014 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1015 						| LBR_FAR,
1016 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
1017 	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
1018 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1019 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1020 };
1021 
1022 static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1023 	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1024 	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1025 	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1026 	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1027 	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
1028 	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1029 						| LBR_FAR,
1030 	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
1031 	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
1032 	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1033 						| LBR_RETURN | LBR_CALL_STACK,
1034 	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1035 	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1036 };
1037 
1038 /* core */
intel_pmu_lbr_init_core(void)1039 void __init intel_pmu_lbr_init_core(void)
1040 {
1041 	x86_pmu.lbr_nr     = 4;
1042 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1043 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1044 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1045 
1046 	/*
1047 	 * SW branch filter usage:
1048 	 * - compensate for lack of HW filter
1049 	 */
1050 }
1051 
1052 /* nehalem/westmere */
intel_pmu_lbr_init_nhm(void)1053 void __init intel_pmu_lbr_init_nhm(void)
1054 {
1055 	x86_pmu.lbr_nr     = 16;
1056 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1057 	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1058 	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1059 
1060 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1061 	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1062 
1063 	/*
1064 	 * SW branch filter usage:
1065 	 * - workaround LBR_SEL errata (see above)
1066 	 * - support syscall, sysret capture.
1067 	 *   That requires LBR_FAR but that means far
1068 	 *   jmp need to be filtered out
1069 	 */
1070 }
1071 
1072 /* sandy bridge */
intel_pmu_lbr_init_snb(void)1073 void __init intel_pmu_lbr_init_snb(void)
1074 {
1075 	x86_pmu.lbr_nr	 = 16;
1076 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1077 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1078 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1079 
1080 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1081 	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1082 
1083 	/*
1084 	 * SW branch filter usage:
1085 	 * - support syscall, sysret capture.
1086 	 *   That requires LBR_FAR but that means far
1087 	 *   jmp need to be filtered out
1088 	 */
1089 }
1090 
1091 /* haswell */
intel_pmu_lbr_init_hsw(void)1092 void intel_pmu_lbr_init_hsw(void)
1093 {
1094 	x86_pmu.lbr_nr	 = 16;
1095 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1096 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1097 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1098 
1099 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1100 	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1101 
1102 	if (lbr_from_signext_quirk_needed())
1103 		static_branch_enable(&lbr_from_quirk_key);
1104 }
1105 
1106 /* skylake */
intel_pmu_lbr_init_skl(void)1107 __init void intel_pmu_lbr_init_skl(void)
1108 {
1109 	x86_pmu.lbr_nr	 = 32;
1110 	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1111 	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1112 	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1113 
1114 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1115 	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1116 
1117 	/*
1118 	 * SW branch filter usage:
1119 	 * - support syscall, sysret capture.
1120 	 *   That requires LBR_FAR but that means far
1121 	 *   jmp need to be filtered out
1122 	 */
1123 }
1124 
1125 /* atom */
intel_pmu_lbr_init_atom(void)1126 void __init intel_pmu_lbr_init_atom(void)
1127 {
1128 	/*
1129 	 * only models starting at stepping 10 seems
1130 	 * to have an operational LBR which can freeze
1131 	 * on PMU interrupt
1132 	 */
1133 	if (boot_cpu_data.x86_model == 28
1134 	    && boot_cpu_data.x86_stepping < 10) {
1135 		pr_cont("LBR disabled due to erratum");
1136 		return;
1137 	}
1138 
1139 	x86_pmu.lbr_nr	   = 8;
1140 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1141 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1142 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1143 
1144 	/*
1145 	 * SW branch filter usage:
1146 	 * - compensate for lack of HW filter
1147 	 */
1148 }
1149 
1150 /* slm */
intel_pmu_lbr_init_slm(void)1151 void __init intel_pmu_lbr_init_slm(void)
1152 {
1153 	x86_pmu.lbr_nr	   = 8;
1154 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1155 	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1156 	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1157 
1158 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1159 	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1160 
1161 	/*
1162 	 * SW branch filter usage:
1163 	 * - compensate for lack of HW filter
1164 	 */
1165 	pr_cont("8-deep LBR, ");
1166 }
1167 
1168 /* Knights Landing */
intel_pmu_lbr_init_knl(void)1169 void intel_pmu_lbr_init_knl(void)
1170 {
1171 	x86_pmu.lbr_nr	   = 8;
1172 	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1173 	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1174 	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1175 
1176 	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1177 	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1178 }
1179