• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Intel IXP4xx NPE-C crypto driver
3  *
4  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  */
11 
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
21 #include <linux/module.h>
22 
23 #include <crypto/ctr.h>
24 #include <crypto/des.h>
25 #include <crypto/aes.h>
26 #include <crypto/sha.h>
27 #include <crypto/algapi.h>
28 #include <crypto/internal/aead.h>
29 #include <crypto/authenc.h>
30 #include <crypto/scatterwalk.h>
31 
32 #include <mach/npe.h>
33 #include <mach/qmgr.h>
34 
35 #define MAX_KEYLEN 32
36 
37 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
38 #define NPE_CTX_LEN 80
39 #define AES_BLOCK128 16
40 
41 #define NPE_OP_HASH_VERIFY   0x01
42 #define NPE_OP_CCM_ENABLE    0x04
43 #define NPE_OP_CRYPT_ENABLE  0x08
44 #define NPE_OP_HASH_ENABLE   0x10
45 #define NPE_OP_NOT_IN_PLACE  0x20
46 #define NPE_OP_HMAC_DISABLE  0x40
47 #define NPE_OP_CRYPT_ENCRYPT 0x80
48 
49 #define NPE_OP_CCM_GEN_MIC   0xcc
50 #define NPE_OP_HASH_GEN_ICV  0x50
51 #define NPE_OP_ENC_GEN_KEY   0xc9
52 
53 #define MOD_ECB     0x0000
54 #define MOD_CTR     0x1000
55 #define MOD_CBC_ENC 0x2000
56 #define MOD_CBC_DEC 0x3000
57 #define MOD_CCM_ENC 0x4000
58 #define MOD_CCM_DEC 0x5000
59 
60 #define KEYLEN_128  4
61 #define KEYLEN_192  6
62 #define KEYLEN_256  8
63 
64 #define CIPH_DECR   0x0000
65 #define CIPH_ENCR   0x0400
66 
67 #define MOD_DES     0x0000
68 #define MOD_TDEA2   0x0100
69 #define MOD_3DES   0x0200
70 #define MOD_AES     0x0800
71 #define MOD_AES128  (0x0800 | KEYLEN_128)
72 #define MOD_AES192  (0x0900 | KEYLEN_192)
73 #define MOD_AES256  (0x0a00 | KEYLEN_256)
74 
75 #define MAX_IVLEN   16
76 #define NPE_ID      2  /* NPE C */
77 #define NPE_QLEN    16
78 /* Space for registering when the first
79  * NPE_QLEN crypt_ctl are busy */
80 #define NPE_QLEN_TOTAL 64
81 
82 #define SEND_QID    29
83 #define RECV_QID    30
84 
85 #define CTL_FLAG_UNUSED		0x0000
86 #define CTL_FLAG_USED		0x1000
87 #define CTL_FLAG_PERFORM_ABLK	0x0001
88 #define CTL_FLAG_GEN_ICV	0x0002
89 #define CTL_FLAG_GEN_REVAES	0x0004
90 #define CTL_FLAG_PERFORM_AEAD	0x0008
91 #define CTL_FLAG_MASK		0x000f
92 
93 #define HMAC_IPAD_VALUE   0x36
94 #define HMAC_OPAD_VALUE   0x5C
95 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
96 
97 #define MD5_DIGEST_SIZE   16
98 
99 struct buffer_desc {
100 	u32 phys_next;
101 #ifdef __ARMEB__
102 	u16 buf_len;
103 	u16 pkt_len;
104 #else
105 	u16 pkt_len;
106 	u16 buf_len;
107 #endif
108 	u32 phys_addr;
109 	u32 __reserved[4];
110 	struct buffer_desc *next;
111 	enum dma_data_direction dir;
112 };
113 
114 struct crypt_ctl {
115 #ifdef __ARMEB__
116 	u8 mode;		/* NPE_OP_*  operation mode */
117 	u8 init_len;
118 	u16 reserved;
119 #else
120 	u16 reserved;
121 	u8 init_len;
122 	u8 mode;		/* NPE_OP_*  operation mode */
123 #endif
124 	u8 iv[MAX_IVLEN];	/* IV for CBC mode or CTR IV for CTR mode */
125 	u32 icv_rev_aes;	/* icv or rev aes */
126 	u32 src_buf;
127 	u32 dst_buf;
128 #ifdef __ARMEB__
129 	u16 auth_offs;		/* Authentication start offset */
130 	u16 auth_len;		/* Authentication data length */
131 	u16 crypt_offs;		/* Cryption start offset */
132 	u16 crypt_len;		/* Cryption data length */
133 #else
134 	u16 auth_len;		/* Authentication data length */
135 	u16 auth_offs;		/* Authentication start offset */
136 	u16 crypt_len;		/* Cryption data length */
137 	u16 crypt_offs;		/* Cryption start offset */
138 #endif
139 	u32 aadAddr;		/* Additional Auth Data Addr for CCM mode */
140 	u32 crypto_ctx;		/* NPE Crypto Param structure address */
141 
142 	/* Used by Host: 4*4 bytes*/
143 	unsigned ctl_flags;
144 	union {
145 		struct ablkcipher_request *ablk_req;
146 		struct aead_request *aead_req;
147 		struct crypto_tfm *tfm;
148 	} data;
149 	struct buffer_desc *regist_buf;
150 	u8 *regist_ptr;
151 };
152 
153 struct ablk_ctx {
154 	struct buffer_desc *src;
155 	struct buffer_desc *dst;
156 };
157 
158 struct aead_ctx {
159 	struct buffer_desc *src;
160 	struct buffer_desc *dst;
161 	struct scatterlist ivlist;
162 	/* used when the hmac is not on one sg entry */
163 	u8 *hmac_virt;
164 	int encrypt;
165 };
166 
167 struct ix_hash_algo {
168 	u32 cfgword;
169 	unsigned char *icv;
170 };
171 
172 struct ix_sa_dir {
173 	unsigned char *npe_ctx;
174 	dma_addr_t npe_ctx_phys;
175 	int npe_ctx_idx;
176 	u8 npe_mode;
177 };
178 
179 struct ixp_ctx {
180 	struct ix_sa_dir encrypt;
181 	struct ix_sa_dir decrypt;
182 	int authkey_len;
183 	u8 authkey[MAX_KEYLEN];
184 	int enckey_len;
185 	u8 enckey[MAX_KEYLEN];
186 	u8 salt[MAX_IVLEN];
187 	u8 nonce[CTR_RFC3686_NONCE_SIZE];
188 	unsigned salted;
189 	atomic_t configuring;
190 	struct completion completion;
191 };
192 
193 struct ixp_alg {
194 	struct crypto_alg crypto;
195 	const struct ix_hash_algo *hash;
196 	u32 cfg_enc;
197 	u32 cfg_dec;
198 
199 	int registered;
200 };
201 
202 struct ixp_aead_alg {
203 	struct aead_alg crypto;
204 	const struct ix_hash_algo *hash;
205 	u32 cfg_enc;
206 	u32 cfg_dec;
207 
208 	int registered;
209 };
210 
211 static const struct ix_hash_algo hash_alg_md5 = {
212 	.cfgword	= 0xAA010004,
213 	.icv		= "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
214 			  "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
215 };
216 static const struct ix_hash_algo hash_alg_sha1 = {
217 	.cfgword	= 0x00000005,
218 	.icv		= "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
219 			  "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
220 };
221 
222 static struct npe *npe_c;
223 static struct dma_pool *buffer_pool = NULL;
224 static struct dma_pool *ctx_pool = NULL;
225 
226 static struct crypt_ctl *crypt_virt = NULL;
227 static dma_addr_t crypt_phys;
228 
229 static int support_aes = 1;
230 
231 #define DRIVER_NAME "ixp4xx_crypto"
232 
233 static struct platform_device *pdev;
234 
crypt_virt2phys(struct crypt_ctl * virt)235 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
236 {
237 	return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
238 }
239 
crypt_phys2virt(dma_addr_t phys)240 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
241 {
242 	return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
243 }
244 
cipher_cfg_enc(struct crypto_tfm * tfm)245 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
246 {
247 	return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
248 }
249 
cipher_cfg_dec(struct crypto_tfm * tfm)250 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
251 {
252 	return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
253 }
254 
ix_hash(struct crypto_tfm * tfm)255 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
256 {
257 	return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
258 }
259 
setup_crypt_desc(void)260 static int setup_crypt_desc(void)
261 {
262 	struct device *dev = &pdev->dev;
263 	BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
264 	crypt_virt = dma_alloc_coherent(dev,
265 			NPE_QLEN * sizeof(struct crypt_ctl),
266 			&crypt_phys, GFP_ATOMIC);
267 	if (!crypt_virt)
268 		return -ENOMEM;
269 	memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
270 	return 0;
271 }
272 
273 static spinlock_t desc_lock;
get_crypt_desc(void)274 static struct crypt_ctl *get_crypt_desc(void)
275 {
276 	int i;
277 	static int idx = 0;
278 	unsigned long flags;
279 
280 	spin_lock_irqsave(&desc_lock, flags);
281 
282 	if (unlikely(!crypt_virt))
283 		setup_crypt_desc();
284 	if (unlikely(!crypt_virt)) {
285 		spin_unlock_irqrestore(&desc_lock, flags);
286 		return NULL;
287 	}
288 	i = idx;
289 	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
290 		if (++idx >= NPE_QLEN)
291 			idx = 0;
292 		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
293 		spin_unlock_irqrestore(&desc_lock, flags);
294 		return crypt_virt +i;
295 	} else {
296 		spin_unlock_irqrestore(&desc_lock, flags);
297 		return NULL;
298 	}
299 }
300 
301 static spinlock_t emerg_lock;
get_crypt_desc_emerg(void)302 static struct crypt_ctl *get_crypt_desc_emerg(void)
303 {
304 	int i;
305 	static int idx = NPE_QLEN;
306 	struct crypt_ctl *desc;
307 	unsigned long flags;
308 
309 	desc = get_crypt_desc();
310 	if (desc)
311 		return desc;
312 	if (unlikely(!crypt_virt))
313 		return NULL;
314 
315 	spin_lock_irqsave(&emerg_lock, flags);
316 	i = idx;
317 	if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
318 		if (++idx >= NPE_QLEN_TOTAL)
319 			idx = NPE_QLEN;
320 		crypt_virt[i].ctl_flags = CTL_FLAG_USED;
321 		spin_unlock_irqrestore(&emerg_lock, flags);
322 		return crypt_virt +i;
323 	} else {
324 		spin_unlock_irqrestore(&emerg_lock, flags);
325 		return NULL;
326 	}
327 }
328 
free_buf_chain(struct device * dev,struct buffer_desc * buf,u32 phys)329 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
330 {
331 	while (buf) {
332 		struct buffer_desc *buf1;
333 		u32 phys1;
334 
335 		buf1 = buf->next;
336 		phys1 = buf->phys_next;
337 		dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
338 		dma_pool_free(buffer_pool, buf, phys);
339 		buf = buf1;
340 		phys = phys1;
341 	}
342 }
343 
344 static struct tasklet_struct crypto_done_tasklet;
345 
finish_scattered_hmac(struct crypt_ctl * crypt)346 static void finish_scattered_hmac(struct crypt_ctl *crypt)
347 {
348 	struct aead_request *req = crypt->data.aead_req;
349 	struct aead_ctx *req_ctx = aead_request_ctx(req);
350 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
351 	int authsize = crypto_aead_authsize(tfm);
352 	int decryptlen = req->assoclen + req->cryptlen - authsize;
353 
354 	if (req_ctx->encrypt) {
355 		scatterwalk_map_and_copy(req_ctx->hmac_virt,
356 			req->dst, decryptlen, authsize, 1);
357 	}
358 	dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
359 }
360 
one_packet(dma_addr_t phys)361 static void one_packet(dma_addr_t phys)
362 {
363 	struct device *dev = &pdev->dev;
364 	struct crypt_ctl *crypt;
365 	struct ixp_ctx *ctx;
366 	int failed;
367 
368 	failed = phys & 0x1 ? -EBADMSG : 0;
369 	phys &= ~0x3;
370 	crypt = crypt_phys2virt(phys);
371 
372 	switch (crypt->ctl_flags & CTL_FLAG_MASK) {
373 	case CTL_FLAG_PERFORM_AEAD: {
374 		struct aead_request *req = crypt->data.aead_req;
375 		struct aead_ctx *req_ctx = aead_request_ctx(req);
376 
377 		free_buf_chain(dev, req_ctx->src, crypt->src_buf);
378 		free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
379 		if (req_ctx->hmac_virt) {
380 			finish_scattered_hmac(crypt);
381 		}
382 		req->base.complete(&req->base, failed);
383 		break;
384 	}
385 	case CTL_FLAG_PERFORM_ABLK: {
386 		struct ablkcipher_request *req = crypt->data.ablk_req;
387 		struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
388 
389 		if (req_ctx->dst) {
390 			free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
391 		}
392 		free_buf_chain(dev, req_ctx->src, crypt->src_buf);
393 		req->base.complete(&req->base, failed);
394 		break;
395 	}
396 	case CTL_FLAG_GEN_ICV:
397 		ctx = crypto_tfm_ctx(crypt->data.tfm);
398 		dma_pool_free(ctx_pool, crypt->regist_ptr,
399 				crypt->regist_buf->phys_addr);
400 		dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
401 		if (atomic_dec_and_test(&ctx->configuring))
402 			complete(&ctx->completion);
403 		break;
404 	case CTL_FLAG_GEN_REVAES:
405 		ctx = crypto_tfm_ctx(crypt->data.tfm);
406 		*(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
407 		if (atomic_dec_and_test(&ctx->configuring))
408 			complete(&ctx->completion);
409 		break;
410 	default:
411 		BUG();
412 	}
413 	crypt->ctl_flags = CTL_FLAG_UNUSED;
414 }
415 
irqhandler(void * _unused)416 static void irqhandler(void *_unused)
417 {
418 	tasklet_schedule(&crypto_done_tasklet);
419 }
420 
crypto_done_action(unsigned long arg)421 static void crypto_done_action(unsigned long arg)
422 {
423 	int i;
424 
425 	for(i=0; i<4; i++) {
426 		dma_addr_t phys = qmgr_get_entry(RECV_QID);
427 		if (!phys)
428 			return;
429 		one_packet(phys);
430 	}
431 	tasklet_schedule(&crypto_done_tasklet);
432 }
433 
init_ixp_crypto(struct device * dev)434 static int init_ixp_crypto(struct device *dev)
435 {
436 	int ret = -ENODEV;
437 	u32 msg[2] = { 0, 0 };
438 
439 	if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
440 				IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
441 		printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
442 		return ret;
443 	}
444 	npe_c = npe_request(NPE_ID);
445 	if (!npe_c)
446 		return ret;
447 
448 	if (!npe_running(npe_c)) {
449 		ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
450 		if (ret)
451 			goto npe_release;
452 		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
453 			goto npe_error;
454 	} else {
455 		if (npe_send_message(npe_c, msg, "STATUS_MSG"))
456 			goto npe_error;
457 
458 		if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
459 			goto npe_error;
460 	}
461 
462 	switch ((msg[1]>>16) & 0xff) {
463 	case 3:
464 		printk(KERN_WARNING "Firmware of %s lacks AES support\n",
465 				npe_name(npe_c));
466 		support_aes = 0;
467 		break;
468 	case 4:
469 	case 5:
470 		support_aes = 1;
471 		break;
472 	default:
473 		printk(KERN_ERR "Firmware of %s lacks crypto support\n",
474 			npe_name(npe_c));
475 		ret = -ENODEV;
476 		goto npe_release;
477 	}
478 	/* buffer_pool will also be used to sometimes store the hmac,
479 	 * so assure it is large enough
480 	 */
481 	BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
482 	buffer_pool = dma_pool_create("buffer", dev,
483 			sizeof(struct buffer_desc), 32, 0);
484 	ret = -ENOMEM;
485 	if (!buffer_pool) {
486 		goto err;
487 	}
488 	ctx_pool = dma_pool_create("context", dev,
489 			NPE_CTX_LEN, 16, 0);
490 	if (!ctx_pool) {
491 		goto err;
492 	}
493 	ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
494 				 "ixp_crypto:out", NULL);
495 	if (ret)
496 		goto err;
497 	ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
498 				 "ixp_crypto:in", NULL);
499 	if (ret) {
500 		qmgr_release_queue(SEND_QID);
501 		goto err;
502 	}
503 	qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
504 	tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
505 
506 	qmgr_enable_irq(RECV_QID);
507 	return 0;
508 
509 npe_error:
510 	printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
511 	ret = -EIO;
512 err:
513 	dma_pool_destroy(ctx_pool);
514 	dma_pool_destroy(buffer_pool);
515 npe_release:
516 	npe_release(npe_c);
517 	return ret;
518 }
519 
release_ixp_crypto(struct device * dev)520 static void release_ixp_crypto(struct device *dev)
521 {
522 	qmgr_disable_irq(RECV_QID);
523 	tasklet_kill(&crypto_done_tasklet);
524 
525 	qmgr_release_queue(SEND_QID);
526 	qmgr_release_queue(RECV_QID);
527 
528 	dma_pool_destroy(ctx_pool);
529 	dma_pool_destroy(buffer_pool);
530 
531 	npe_release(npe_c);
532 
533 	if (crypt_virt) {
534 		dma_free_coherent(dev,
535 			NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
536 			crypt_virt, crypt_phys);
537 	}
538 	return;
539 }
540 
reset_sa_dir(struct ix_sa_dir * dir)541 static void reset_sa_dir(struct ix_sa_dir *dir)
542 {
543 	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
544 	dir->npe_ctx_idx = 0;
545 	dir->npe_mode = 0;
546 }
547 
init_sa_dir(struct ix_sa_dir * dir)548 static int init_sa_dir(struct ix_sa_dir *dir)
549 {
550 	dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
551 	if (!dir->npe_ctx) {
552 		return -ENOMEM;
553 	}
554 	reset_sa_dir(dir);
555 	return 0;
556 }
557 
free_sa_dir(struct ix_sa_dir * dir)558 static void free_sa_dir(struct ix_sa_dir *dir)
559 {
560 	memset(dir->npe_ctx, 0, NPE_CTX_LEN);
561 	dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
562 }
563 
init_tfm(struct crypto_tfm * tfm)564 static int init_tfm(struct crypto_tfm *tfm)
565 {
566 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
567 	int ret;
568 
569 	atomic_set(&ctx->configuring, 0);
570 	ret = init_sa_dir(&ctx->encrypt);
571 	if (ret)
572 		return ret;
573 	ret = init_sa_dir(&ctx->decrypt);
574 	if (ret) {
575 		free_sa_dir(&ctx->encrypt);
576 	}
577 	return ret;
578 }
579 
init_tfm_ablk(struct crypto_tfm * tfm)580 static int init_tfm_ablk(struct crypto_tfm *tfm)
581 {
582 	tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
583 	return init_tfm(tfm);
584 }
585 
init_tfm_aead(struct crypto_aead * tfm)586 static int init_tfm_aead(struct crypto_aead *tfm)
587 {
588 	crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
589 	return init_tfm(crypto_aead_tfm(tfm));
590 }
591 
exit_tfm(struct crypto_tfm * tfm)592 static void exit_tfm(struct crypto_tfm *tfm)
593 {
594 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
595 	free_sa_dir(&ctx->encrypt);
596 	free_sa_dir(&ctx->decrypt);
597 }
598 
exit_tfm_aead(struct crypto_aead * tfm)599 static void exit_tfm_aead(struct crypto_aead *tfm)
600 {
601 	exit_tfm(crypto_aead_tfm(tfm));
602 }
603 
register_chain_var(struct crypto_tfm * tfm,u8 xpad,u32 target,int init_len,u32 ctx_addr,const u8 * key,int key_len)604 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
605 		int init_len, u32 ctx_addr, const u8 *key, int key_len)
606 {
607 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
608 	struct crypt_ctl *crypt;
609 	struct buffer_desc *buf;
610 	int i;
611 	u8 *pad;
612 	u32 pad_phys, buf_phys;
613 
614 	BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
615 	pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
616 	if (!pad)
617 		return -ENOMEM;
618 	buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
619 	if (!buf) {
620 		dma_pool_free(ctx_pool, pad, pad_phys);
621 		return -ENOMEM;
622 	}
623 	crypt = get_crypt_desc_emerg();
624 	if (!crypt) {
625 		dma_pool_free(ctx_pool, pad, pad_phys);
626 		dma_pool_free(buffer_pool, buf, buf_phys);
627 		return -EAGAIN;
628 	}
629 
630 	memcpy(pad, key, key_len);
631 	memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
632 	for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
633 		pad[i] ^= xpad;
634 	}
635 
636 	crypt->data.tfm = tfm;
637 	crypt->regist_ptr = pad;
638 	crypt->regist_buf = buf;
639 
640 	crypt->auth_offs = 0;
641 	crypt->auth_len = HMAC_PAD_BLOCKLEN;
642 	crypt->crypto_ctx = ctx_addr;
643 	crypt->src_buf = buf_phys;
644 	crypt->icv_rev_aes = target;
645 	crypt->mode = NPE_OP_HASH_GEN_ICV;
646 	crypt->init_len = init_len;
647 	crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
648 
649 	buf->next = 0;
650 	buf->buf_len = HMAC_PAD_BLOCKLEN;
651 	buf->pkt_len = 0;
652 	buf->phys_addr = pad_phys;
653 
654 	atomic_inc(&ctx->configuring);
655 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
656 	BUG_ON(qmgr_stat_overflow(SEND_QID));
657 	return 0;
658 }
659 
setup_auth(struct crypto_tfm * tfm,int encrypt,unsigned authsize,const u8 * key,int key_len,unsigned digest_len)660 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
661 		const u8 *key, int key_len, unsigned digest_len)
662 {
663 	u32 itarget, otarget, npe_ctx_addr;
664 	unsigned char *cinfo;
665 	int init_len, ret = 0;
666 	u32 cfgword;
667 	struct ix_sa_dir *dir;
668 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
669 	const struct ix_hash_algo *algo;
670 
671 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
672 	cinfo = dir->npe_ctx + dir->npe_ctx_idx;
673 	algo = ix_hash(tfm);
674 
675 	/* write cfg word to cryptinfo */
676 	cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
677 #ifndef __ARMEB__
678 	cfgword ^= 0xAA000000; /* change the "byte swap" flags */
679 #endif
680 	*(u32*)cinfo = cpu_to_be32(cfgword);
681 	cinfo += sizeof(cfgword);
682 
683 	/* write ICV to cryptinfo */
684 	memcpy(cinfo, algo->icv, digest_len);
685 	cinfo += digest_len;
686 
687 	itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
688 				+ sizeof(algo->cfgword);
689 	otarget = itarget + digest_len;
690 	init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
691 	npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
692 
693 	dir->npe_ctx_idx += init_len;
694 	dir->npe_mode |= NPE_OP_HASH_ENABLE;
695 
696 	if (!encrypt)
697 		dir->npe_mode |= NPE_OP_HASH_VERIFY;
698 
699 	ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
700 			init_len, npe_ctx_addr, key, key_len);
701 	if (ret)
702 		return ret;
703 	return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
704 			init_len, npe_ctx_addr, key, key_len);
705 }
706 
gen_rev_aes_key(struct crypto_tfm * tfm)707 static int gen_rev_aes_key(struct crypto_tfm *tfm)
708 {
709 	struct crypt_ctl *crypt;
710 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
711 	struct ix_sa_dir *dir = &ctx->decrypt;
712 
713 	crypt = get_crypt_desc_emerg();
714 	if (!crypt) {
715 		return -EAGAIN;
716 	}
717 	*(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
718 
719 	crypt->data.tfm = tfm;
720 	crypt->crypt_offs = 0;
721 	crypt->crypt_len = AES_BLOCK128;
722 	crypt->src_buf = 0;
723 	crypt->crypto_ctx = dir->npe_ctx_phys;
724 	crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
725 	crypt->mode = NPE_OP_ENC_GEN_KEY;
726 	crypt->init_len = dir->npe_ctx_idx;
727 	crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
728 
729 	atomic_inc(&ctx->configuring);
730 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
731 	BUG_ON(qmgr_stat_overflow(SEND_QID));
732 	return 0;
733 }
734 
setup_cipher(struct crypto_tfm * tfm,int encrypt,const u8 * key,int key_len)735 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
736 		const u8 *key, int key_len)
737 {
738 	u8 *cinfo;
739 	u32 cipher_cfg;
740 	u32 keylen_cfg = 0;
741 	struct ix_sa_dir *dir;
742 	struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
743 	u32 *flags = &tfm->crt_flags;
744 
745 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
746 	cinfo = dir->npe_ctx;
747 
748 	if (encrypt) {
749 		cipher_cfg = cipher_cfg_enc(tfm);
750 		dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
751 	} else {
752 		cipher_cfg = cipher_cfg_dec(tfm);
753 	}
754 	if (cipher_cfg & MOD_AES) {
755 		switch (key_len) {
756 		case 16: keylen_cfg = MOD_AES128; break;
757 		case 24: keylen_cfg = MOD_AES192; break;
758 		case 32: keylen_cfg = MOD_AES256; break;
759 		default:
760 			*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
761 			return -EINVAL;
762 		}
763 		cipher_cfg |= keylen_cfg;
764 	} else if (cipher_cfg & MOD_3DES) {
765 		const u32 *K = (const u32 *)key;
766 		if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
767 			     !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
768 		{
769 			*flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
770 			return -EINVAL;
771 		}
772 	} else {
773 		u32 tmp[DES_EXPKEY_WORDS];
774 		if (des_ekey(tmp, key) == 0) {
775 			*flags |= CRYPTO_TFM_RES_WEAK_KEY;
776 		}
777 	}
778 	/* write cfg word to cryptinfo */
779 	*(u32*)cinfo = cpu_to_be32(cipher_cfg);
780 	cinfo += sizeof(cipher_cfg);
781 
782 	/* write cipher key to cryptinfo */
783 	memcpy(cinfo, key, key_len);
784 	/* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
785 	if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
786 		memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
787 		key_len = DES3_EDE_KEY_SIZE;
788 	}
789 	dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
790 	dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
791 	if ((cipher_cfg & MOD_AES) && !encrypt) {
792 		return gen_rev_aes_key(tfm);
793 	}
794 	return 0;
795 }
796 
chainup_buffers(struct device * dev,struct scatterlist * sg,unsigned nbytes,struct buffer_desc * buf,gfp_t flags,enum dma_data_direction dir)797 static struct buffer_desc *chainup_buffers(struct device *dev,
798 		struct scatterlist *sg,	unsigned nbytes,
799 		struct buffer_desc *buf, gfp_t flags,
800 		enum dma_data_direction dir)
801 {
802 	for (; nbytes > 0; sg = sg_next(sg)) {
803 		unsigned len = min(nbytes, sg->length);
804 		struct buffer_desc *next_buf;
805 		u32 next_buf_phys;
806 		void *ptr;
807 
808 		nbytes -= len;
809 		ptr = page_address(sg_page(sg)) + sg->offset;
810 		next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
811 		if (!next_buf) {
812 			buf = NULL;
813 			break;
814 		}
815 		sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
816 		buf->next = next_buf;
817 		buf->phys_next = next_buf_phys;
818 		buf = next_buf;
819 
820 		buf->phys_addr = sg_dma_address(sg);
821 		buf->buf_len = len;
822 		buf->dir = dir;
823 	}
824 	buf->next = NULL;
825 	buf->phys_next = 0;
826 	return buf;
827 }
828 
ablk_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int key_len)829 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
830 			unsigned int key_len)
831 {
832 	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
833 	u32 *flags = &tfm->base.crt_flags;
834 	int ret;
835 
836 	init_completion(&ctx->completion);
837 	atomic_inc(&ctx->configuring);
838 
839 	reset_sa_dir(&ctx->encrypt);
840 	reset_sa_dir(&ctx->decrypt);
841 
842 	ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
843 	ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
844 
845 	ret = setup_cipher(&tfm->base, 0, key, key_len);
846 	if (ret)
847 		goto out;
848 	ret = setup_cipher(&tfm->base, 1, key, key_len);
849 	if (ret)
850 		goto out;
851 
852 	if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
853 		if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
854 			ret = -EINVAL;
855 		} else {
856 			*flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
857 		}
858 	}
859 out:
860 	if (!atomic_dec_and_test(&ctx->configuring))
861 		wait_for_completion(&ctx->completion);
862 	return ret;
863 }
864 
ablk_rfc3686_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int key_len)865 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
866 		unsigned int key_len)
867 {
868 	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
869 
870 	/* the nonce is stored in bytes at end of key */
871 	if (key_len < CTR_RFC3686_NONCE_SIZE)
872 		return -EINVAL;
873 
874 	memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
875 			CTR_RFC3686_NONCE_SIZE);
876 
877 	key_len -= CTR_RFC3686_NONCE_SIZE;
878 	return ablk_setkey(tfm, key, key_len);
879 }
880 
ablk_perform(struct ablkcipher_request * req,int encrypt)881 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
882 {
883 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
884 	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
885 	unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
886 	struct ix_sa_dir *dir;
887 	struct crypt_ctl *crypt;
888 	unsigned int nbytes = req->nbytes;
889 	enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
890 	struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
891 	struct buffer_desc src_hook;
892 	struct device *dev = &pdev->dev;
893 	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
894 				GFP_KERNEL : GFP_ATOMIC;
895 
896 	if (qmgr_stat_full(SEND_QID))
897 		return -EAGAIN;
898 	if (atomic_read(&ctx->configuring))
899 		return -EAGAIN;
900 
901 	dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
902 
903 	crypt = get_crypt_desc();
904 	if (!crypt)
905 		return -ENOMEM;
906 
907 	crypt->data.ablk_req = req;
908 	crypt->crypto_ctx = dir->npe_ctx_phys;
909 	crypt->mode = dir->npe_mode;
910 	crypt->init_len = dir->npe_ctx_idx;
911 
912 	crypt->crypt_offs = 0;
913 	crypt->crypt_len = nbytes;
914 
915 	BUG_ON(ivsize && !req->info);
916 	memcpy(crypt->iv, req->info, ivsize);
917 	if (req->src != req->dst) {
918 		struct buffer_desc dst_hook;
919 		crypt->mode |= NPE_OP_NOT_IN_PLACE;
920 		/* This was never tested by Intel
921 		 * for more than one dst buffer, I think. */
922 		req_ctx->dst = NULL;
923 		if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
924 					flags, DMA_FROM_DEVICE))
925 			goto free_buf_dest;
926 		src_direction = DMA_TO_DEVICE;
927 		req_ctx->dst = dst_hook.next;
928 		crypt->dst_buf = dst_hook.phys_next;
929 	} else {
930 		req_ctx->dst = NULL;
931 	}
932 	req_ctx->src = NULL;
933 	if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
934 				flags, src_direction))
935 		goto free_buf_src;
936 
937 	req_ctx->src = src_hook.next;
938 	crypt->src_buf = src_hook.phys_next;
939 	crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
940 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
941 	BUG_ON(qmgr_stat_overflow(SEND_QID));
942 	return -EINPROGRESS;
943 
944 free_buf_src:
945 	free_buf_chain(dev, req_ctx->src, crypt->src_buf);
946 free_buf_dest:
947 	if (req->src != req->dst) {
948 		free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
949 	}
950 	crypt->ctl_flags = CTL_FLAG_UNUSED;
951 	return -ENOMEM;
952 }
953 
ablk_encrypt(struct ablkcipher_request * req)954 static int ablk_encrypt(struct ablkcipher_request *req)
955 {
956 	return ablk_perform(req, 1);
957 }
958 
ablk_decrypt(struct ablkcipher_request * req)959 static int ablk_decrypt(struct ablkcipher_request *req)
960 {
961 	return ablk_perform(req, 0);
962 }
963 
ablk_rfc3686_crypt(struct ablkcipher_request * req)964 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
965 {
966 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
967 	struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
968 	u8 iv[CTR_RFC3686_BLOCK_SIZE];
969 	u8 *info = req->info;
970 	int ret;
971 
972 	/* set up counter block */
973         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
974 	memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
975 
976 	/* initialize counter portion of counter block */
977 	*(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
978 		cpu_to_be32(1);
979 
980 	req->info = iv;
981 	ret = ablk_perform(req, 1);
982 	req->info = info;
983 	return ret;
984 }
985 
aead_perform(struct aead_request * req,int encrypt,int cryptoffset,int eff_cryptlen,u8 * iv)986 static int aead_perform(struct aead_request *req, int encrypt,
987 		int cryptoffset, int eff_cryptlen, u8 *iv)
988 {
989 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
990 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
991 	unsigned ivsize = crypto_aead_ivsize(tfm);
992 	unsigned authsize = crypto_aead_authsize(tfm);
993 	struct ix_sa_dir *dir;
994 	struct crypt_ctl *crypt;
995 	unsigned int cryptlen;
996 	struct buffer_desc *buf, src_hook;
997 	struct aead_ctx *req_ctx = aead_request_ctx(req);
998 	struct device *dev = &pdev->dev;
999 	gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1000 				GFP_KERNEL : GFP_ATOMIC;
1001 	enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
1002 	unsigned int lastlen;
1003 
1004 	if (qmgr_stat_full(SEND_QID))
1005 		return -EAGAIN;
1006 	if (atomic_read(&ctx->configuring))
1007 		return -EAGAIN;
1008 
1009 	if (encrypt) {
1010 		dir = &ctx->encrypt;
1011 		cryptlen = req->cryptlen;
1012 	} else {
1013 		dir = &ctx->decrypt;
1014 		/* req->cryptlen includes the authsize when decrypting */
1015 		cryptlen = req->cryptlen -authsize;
1016 		eff_cryptlen -= authsize;
1017 	}
1018 	crypt = get_crypt_desc();
1019 	if (!crypt)
1020 		return -ENOMEM;
1021 
1022 	crypt->data.aead_req = req;
1023 	crypt->crypto_ctx = dir->npe_ctx_phys;
1024 	crypt->mode = dir->npe_mode;
1025 	crypt->init_len = dir->npe_ctx_idx;
1026 
1027 	crypt->crypt_offs = cryptoffset;
1028 	crypt->crypt_len = eff_cryptlen;
1029 
1030 	crypt->auth_offs = 0;
1031 	crypt->auth_len = req->assoclen + cryptlen;
1032 	BUG_ON(ivsize && !req->iv);
1033 	memcpy(crypt->iv, req->iv, ivsize);
1034 
1035 	buf = chainup_buffers(dev, req->src, crypt->auth_len,
1036 			      &src_hook, flags, src_direction);
1037 	req_ctx->src = src_hook.next;
1038 	crypt->src_buf = src_hook.phys_next;
1039 	if (!buf)
1040 		goto free_buf_src;
1041 
1042 	lastlen = buf->buf_len;
1043 	if (lastlen >= authsize)
1044 		crypt->icv_rev_aes = buf->phys_addr +
1045 				     buf->buf_len - authsize;
1046 
1047 	req_ctx->dst = NULL;
1048 
1049 	if (req->src != req->dst) {
1050 		struct buffer_desc dst_hook;
1051 
1052 		crypt->mode |= NPE_OP_NOT_IN_PLACE;
1053 		src_direction = DMA_TO_DEVICE;
1054 
1055 		buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1056 				      &dst_hook, flags, DMA_FROM_DEVICE);
1057 		req_ctx->dst = dst_hook.next;
1058 		crypt->dst_buf = dst_hook.phys_next;
1059 
1060 		if (!buf)
1061 			goto free_buf_dst;
1062 
1063 		if (encrypt) {
1064 			lastlen = buf->buf_len;
1065 			if (lastlen >= authsize)
1066 				crypt->icv_rev_aes = buf->phys_addr +
1067 						     buf->buf_len - authsize;
1068 		}
1069 	}
1070 
1071 	if (unlikely(lastlen < authsize)) {
1072 		/* The 12 hmac bytes are scattered,
1073 		 * we need to copy them into a safe buffer */
1074 		req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1075 				&crypt->icv_rev_aes);
1076 		if (unlikely(!req_ctx->hmac_virt))
1077 			goto free_buf_dst;
1078 		if (!encrypt) {
1079 			scatterwalk_map_and_copy(req_ctx->hmac_virt,
1080 				req->src, cryptlen, authsize, 0);
1081 		}
1082 		req_ctx->encrypt = encrypt;
1083 	} else {
1084 		req_ctx->hmac_virt = NULL;
1085 	}
1086 
1087 	crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1088 	qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1089 	BUG_ON(qmgr_stat_overflow(SEND_QID));
1090 	return -EINPROGRESS;
1091 
1092 free_buf_dst:
1093 	free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1094 free_buf_src:
1095 	free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1096 	crypt->ctl_flags = CTL_FLAG_UNUSED;
1097 	return -ENOMEM;
1098 }
1099 
aead_setup(struct crypto_aead * tfm,unsigned int authsize)1100 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1101 {
1102 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1103 	u32 *flags = &tfm->base.crt_flags;
1104 	unsigned digest_len = crypto_aead_maxauthsize(tfm);
1105 	int ret;
1106 
1107 	if (!ctx->enckey_len && !ctx->authkey_len)
1108 		return 0;
1109 	init_completion(&ctx->completion);
1110 	atomic_inc(&ctx->configuring);
1111 
1112 	reset_sa_dir(&ctx->encrypt);
1113 	reset_sa_dir(&ctx->decrypt);
1114 
1115 	ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1116 	if (ret)
1117 		goto out;
1118 	ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1119 	if (ret)
1120 		goto out;
1121 	ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1122 			ctx->authkey_len, digest_len);
1123 	if (ret)
1124 		goto out;
1125 	ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1126 			ctx->authkey_len, digest_len);
1127 	if (ret)
1128 		goto out;
1129 
1130 	if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1131 		if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1132 			ret = -EINVAL;
1133 			goto out;
1134 		} else {
1135 			*flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1136 		}
1137 	}
1138 out:
1139 	if (!atomic_dec_and_test(&ctx->configuring))
1140 		wait_for_completion(&ctx->completion);
1141 	return ret;
1142 }
1143 
aead_setauthsize(struct crypto_aead * tfm,unsigned int authsize)1144 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1145 {
1146 	int max = crypto_aead_maxauthsize(tfm) >> 2;
1147 
1148 	if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1149 		return -EINVAL;
1150 	return aead_setup(tfm, authsize);
1151 }
1152 
aead_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1153 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1154 			unsigned int keylen)
1155 {
1156 	struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1157 	struct crypto_authenc_keys keys;
1158 
1159 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1160 		goto badkey;
1161 
1162 	if (keys.authkeylen > sizeof(ctx->authkey))
1163 		goto badkey;
1164 
1165 	if (keys.enckeylen > sizeof(ctx->enckey))
1166 		goto badkey;
1167 
1168 	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1169 	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1170 	ctx->authkey_len = keys.authkeylen;
1171 	ctx->enckey_len = keys.enckeylen;
1172 
1173 	return aead_setup(tfm, crypto_aead_authsize(tfm));
1174 badkey:
1175 	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1176 	return -EINVAL;
1177 }
1178 
aead_encrypt(struct aead_request * req)1179 static int aead_encrypt(struct aead_request *req)
1180 {
1181 	return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1182 }
1183 
aead_decrypt(struct aead_request * req)1184 static int aead_decrypt(struct aead_request *req)
1185 {
1186 	return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1187 }
1188 
1189 static struct ixp_alg ixp4xx_algos[] = {
1190 {
1191 	.crypto	= {
1192 		.cra_name	= "cbc(des)",
1193 		.cra_blocksize	= DES_BLOCK_SIZE,
1194 		.cra_u		= { .ablkcipher = {
1195 			.min_keysize	= DES_KEY_SIZE,
1196 			.max_keysize	= DES_KEY_SIZE,
1197 			.ivsize		= DES_BLOCK_SIZE,
1198 			.geniv		= "eseqiv",
1199 			}
1200 		}
1201 	},
1202 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1203 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1204 
1205 }, {
1206 	.crypto	= {
1207 		.cra_name	= "ecb(des)",
1208 		.cra_blocksize	= DES_BLOCK_SIZE,
1209 		.cra_u		= { .ablkcipher = {
1210 			.min_keysize	= DES_KEY_SIZE,
1211 			.max_keysize	= DES_KEY_SIZE,
1212 			}
1213 		}
1214 	},
1215 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1216 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1217 }, {
1218 	.crypto	= {
1219 		.cra_name	= "cbc(des3_ede)",
1220 		.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1221 		.cra_u		= { .ablkcipher = {
1222 			.min_keysize	= DES3_EDE_KEY_SIZE,
1223 			.max_keysize	= DES3_EDE_KEY_SIZE,
1224 			.ivsize		= DES3_EDE_BLOCK_SIZE,
1225 			.geniv		= "eseqiv",
1226 			}
1227 		}
1228 	},
1229 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1230 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1231 }, {
1232 	.crypto	= {
1233 		.cra_name	= "ecb(des3_ede)",
1234 		.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1235 		.cra_u		= { .ablkcipher = {
1236 			.min_keysize	= DES3_EDE_KEY_SIZE,
1237 			.max_keysize	= DES3_EDE_KEY_SIZE,
1238 			}
1239 		}
1240 	},
1241 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1242 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1243 }, {
1244 	.crypto	= {
1245 		.cra_name	= "cbc(aes)",
1246 		.cra_blocksize	= AES_BLOCK_SIZE,
1247 		.cra_u		= { .ablkcipher = {
1248 			.min_keysize	= AES_MIN_KEY_SIZE,
1249 			.max_keysize	= AES_MAX_KEY_SIZE,
1250 			.ivsize		= AES_BLOCK_SIZE,
1251 			.geniv		= "eseqiv",
1252 			}
1253 		}
1254 	},
1255 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1256 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1257 }, {
1258 	.crypto	= {
1259 		.cra_name	= "ecb(aes)",
1260 		.cra_blocksize	= AES_BLOCK_SIZE,
1261 		.cra_u		= { .ablkcipher = {
1262 			.min_keysize	= AES_MIN_KEY_SIZE,
1263 			.max_keysize	= AES_MAX_KEY_SIZE,
1264 			}
1265 		}
1266 	},
1267 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1268 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1269 }, {
1270 	.crypto	= {
1271 		.cra_name	= "ctr(aes)",
1272 		.cra_blocksize	= AES_BLOCK_SIZE,
1273 		.cra_u		= { .ablkcipher = {
1274 			.min_keysize	= AES_MIN_KEY_SIZE,
1275 			.max_keysize	= AES_MAX_KEY_SIZE,
1276 			.ivsize		= AES_BLOCK_SIZE,
1277 			.geniv		= "eseqiv",
1278 			}
1279 		}
1280 	},
1281 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1282 	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1283 }, {
1284 	.crypto	= {
1285 		.cra_name	= "rfc3686(ctr(aes))",
1286 		.cra_blocksize	= AES_BLOCK_SIZE,
1287 		.cra_u		= { .ablkcipher = {
1288 			.min_keysize	= AES_MIN_KEY_SIZE,
1289 			.max_keysize	= AES_MAX_KEY_SIZE,
1290 			.ivsize		= AES_BLOCK_SIZE,
1291 			.geniv		= "eseqiv",
1292 			.setkey		= ablk_rfc3686_setkey,
1293 			.encrypt	= ablk_rfc3686_crypt,
1294 			.decrypt	= ablk_rfc3686_crypt }
1295 		}
1296 	},
1297 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1298 	.cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1299 } };
1300 
1301 static struct ixp_aead_alg ixp4xx_aeads[] = {
1302 {
1303 	.crypto	= {
1304 		.base = {
1305 			.cra_name	= "authenc(hmac(md5),cbc(des))",
1306 			.cra_blocksize	= DES_BLOCK_SIZE,
1307 		},
1308 		.ivsize		= DES_BLOCK_SIZE,
1309 		.maxauthsize	= MD5_DIGEST_SIZE,
1310 	},
1311 	.hash = &hash_alg_md5,
1312 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1313 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1314 }, {
1315 	.crypto	= {
1316 		.base = {
1317 			.cra_name	= "authenc(hmac(md5),cbc(des3_ede))",
1318 			.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1319 		},
1320 		.ivsize		= DES3_EDE_BLOCK_SIZE,
1321 		.maxauthsize	= MD5_DIGEST_SIZE,
1322 	},
1323 	.hash = &hash_alg_md5,
1324 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1325 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1326 }, {
1327 	.crypto	= {
1328 		.base = {
1329 			.cra_name	= "authenc(hmac(sha1),cbc(des))",
1330 			.cra_blocksize	= DES_BLOCK_SIZE,
1331 		},
1332 			.ivsize		= DES_BLOCK_SIZE,
1333 			.maxauthsize	= SHA1_DIGEST_SIZE,
1334 	},
1335 	.hash = &hash_alg_sha1,
1336 	.cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1337 	.cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1338 }, {
1339 	.crypto	= {
1340 		.base = {
1341 			.cra_name	= "authenc(hmac(sha1),cbc(des3_ede))",
1342 			.cra_blocksize	= DES3_EDE_BLOCK_SIZE,
1343 		},
1344 		.ivsize		= DES3_EDE_BLOCK_SIZE,
1345 		.maxauthsize	= SHA1_DIGEST_SIZE,
1346 	},
1347 	.hash = &hash_alg_sha1,
1348 	.cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1349 	.cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1350 }, {
1351 	.crypto	= {
1352 		.base = {
1353 			.cra_name	= "authenc(hmac(md5),cbc(aes))",
1354 			.cra_blocksize	= AES_BLOCK_SIZE,
1355 		},
1356 		.ivsize		= AES_BLOCK_SIZE,
1357 		.maxauthsize	= MD5_DIGEST_SIZE,
1358 	},
1359 	.hash = &hash_alg_md5,
1360 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1361 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1362 }, {
1363 	.crypto	= {
1364 		.base = {
1365 			.cra_name	= "authenc(hmac(sha1),cbc(aes))",
1366 			.cra_blocksize	= AES_BLOCK_SIZE,
1367 		},
1368 		.ivsize		= AES_BLOCK_SIZE,
1369 		.maxauthsize	= SHA1_DIGEST_SIZE,
1370 	},
1371 	.hash = &hash_alg_sha1,
1372 	.cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1373 	.cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1374 } };
1375 
1376 #define IXP_POSTFIX "-ixp4xx"
1377 
1378 static const struct platform_device_info ixp_dev_info __initdata = {
1379 	.name		= DRIVER_NAME,
1380 	.id		= 0,
1381 	.dma_mask	= DMA_BIT_MASK(32),
1382 };
1383 
ixp_module_init(void)1384 static int __init ixp_module_init(void)
1385 {
1386 	int num = ARRAY_SIZE(ixp4xx_algos);
1387 	int i, err;
1388 
1389 	pdev = platform_device_register_full(&ixp_dev_info);
1390 	if (IS_ERR(pdev))
1391 		return PTR_ERR(pdev);
1392 
1393 	spin_lock_init(&desc_lock);
1394 	spin_lock_init(&emerg_lock);
1395 
1396 	err = init_ixp_crypto(&pdev->dev);
1397 	if (err) {
1398 		platform_device_unregister(pdev);
1399 		return err;
1400 	}
1401 	for (i=0; i< num; i++) {
1402 		struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1403 
1404 		if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1405 			"%s"IXP_POSTFIX, cra->cra_name) >=
1406 			CRYPTO_MAX_ALG_NAME)
1407 		{
1408 			continue;
1409 		}
1410 		if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1411 			continue;
1412 		}
1413 
1414 		/* block ciphers */
1415 		cra->cra_type = &crypto_ablkcipher_type;
1416 		cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1417 				 CRYPTO_ALG_KERN_DRIVER_ONLY |
1418 				 CRYPTO_ALG_ASYNC;
1419 		if (!cra->cra_ablkcipher.setkey)
1420 			cra->cra_ablkcipher.setkey = ablk_setkey;
1421 		if (!cra->cra_ablkcipher.encrypt)
1422 			cra->cra_ablkcipher.encrypt = ablk_encrypt;
1423 		if (!cra->cra_ablkcipher.decrypt)
1424 			cra->cra_ablkcipher.decrypt = ablk_decrypt;
1425 		cra->cra_init = init_tfm_ablk;
1426 
1427 		cra->cra_ctxsize = sizeof(struct ixp_ctx);
1428 		cra->cra_module = THIS_MODULE;
1429 		cra->cra_alignmask = 3;
1430 		cra->cra_priority = 300;
1431 		cra->cra_exit = exit_tfm;
1432 		if (crypto_register_alg(cra))
1433 			printk(KERN_ERR "Failed to register '%s'\n",
1434 				cra->cra_name);
1435 		else
1436 			ixp4xx_algos[i].registered = 1;
1437 	}
1438 
1439 	for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1440 		struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1441 
1442 		if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1443 			     "%s"IXP_POSTFIX, cra->base.cra_name) >=
1444 		    CRYPTO_MAX_ALG_NAME)
1445 			continue;
1446 		if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1447 			continue;
1448 
1449 		/* authenc */
1450 		cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1451 				      CRYPTO_ALG_ASYNC;
1452 		cra->setkey = aead_setkey;
1453 		cra->setauthsize = aead_setauthsize;
1454 		cra->encrypt = aead_encrypt;
1455 		cra->decrypt = aead_decrypt;
1456 		cra->init = init_tfm_aead;
1457 		cra->exit = exit_tfm_aead;
1458 
1459 		cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1460 		cra->base.cra_module = THIS_MODULE;
1461 		cra->base.cra_alignmask = 3;
1462 		cra->base.cra_priority = 300;
1463 
1464 		if (crypto_register_aead(cra))
1465 			printk(KERN_ERR "Failed to register '%s'\n",
1466 				cra->base.cra_driver_name);
1467 		else
1468 			ixp4xx_aeads[i].registered = 1;
1469 	}
1470 	return 0;
1471 }
1472 
ixp_module_exit(void)1473 static void __exit ixp_module_exit(void)
1474 {
1475 	int num = ARRAY_SIZE(ixp4xx_algos);
1476 	int i;
1477 
1478 	for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1479 		if (ixp4xx_aeads[i].registered)
1480 			crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1481 	}
1482 
1483 	for (i=0; i< num; i++) {
1484 		if (ixp4xx_algos[i].registered)
1485 			crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1486 	}
1487 	release_ixp_crypto(&pdev->dev);
1488 	platform_device_unregister(pdev);
1489 }
1490 
1491 module_init(ixp_module_init);
1492 module_exit(ixp_module_exit);
1493 
1494 MODULE_LICENSE("GPL");
1495 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1496 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1497 
1498