1 /*
2 * linux/kernel/printk.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * Modified to make sys_syslog() more flexible: added commands to
7 * return the last 4k of kernel messages, regardless of whether
8 * they've been read or not. Added option to suppress kernel printk's
9 * to the console. Added hook for sending the console messages
10 * elsewhere, in preparation for a serial line console (someday).
11 * Ted Ts'o, 2/11/93.
12 * Modified for sysctl support, 1/8/97, Chris Horn.
13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14 * manfred@colorfullife.com
15 * Rewrote bits to get rid of console_lock
16 * 01Mar01 Andrew Morton
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/kexec.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48
49 #include <asm/uaccess.h>
50 #include <asm/sections.h>
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54
55 #include "console_cmdline.h"
56 #include "braille.h"
57 #include "internal.h"
58
59 #ifdef CONFIG_EARLY_PRINTK_DIRECT
60 extern void printascii(char *);
61 #endif
62
63 int console_printk[4] = {
64 CONSOLE_LOGLEVEL_DEFAULT, /* console_loglevel */
65 MESSAGE_LOGLEVEL_DEFAULT, /* default_message_loglevel */
66 CONSOLE_LOGLEVEL_MIN, /* minimum_console_loglevel */
67 CONSOLE_LOGLEVEL_DEFAULT, /* default_console_loglevel */
68 };
69
70 /*
71 * Low level drivers may need that to know if they can schedule in
72 * their unblank() callback or not. So let's export it.
73 */
74 int oops_in_progress;
75 EXPORT_SYMBOL(oops_in_progress);
76
77 /*
78 * console_sem protects the console_drivers list, and also
79 * provides serialisation for access to the entire console
80 * driver system.
81 */
82 static DEFINE_SEMAPHORE(console_sem);
83 struct console *console_drivers;
84 EXPORT_SYMBOL_GPL(console_drivers);
85
86 #ifdef CONFIG_LOCKDEP
87 static struct lockdep_map console_lock_dep_map = {
88 .name = "console_lock"
89 };
90 #endif
91
92 enum devkmsg_log_bits {
93 __DEVKMSG_LOG_BIT_ON = 0,
94 __DEVKMSG_LOG_BIT_OFF,
95 __DEVKMSG_LOG_BIT_LOCK,
96 };
97
98 enum devkmsg_log_masks {
99 DEVKMSG_LOG_MASK_ON = BIT(__DEVKMSG_LOG_BIT_ON),
100 DEVKMSG_LOG_MASK_OFF = BIT(__DEVKMSG_LOG_BIT_OFF),
101 DEVKMSG_LOG_MASK_LOCK = BIT(__DEVKMSG_LOG_BIT_LOCK),
102 };
103
104 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
105 #define DEVKMSG_LOG_MASK_DEFAULT 0
106
107 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
108
__control_devkmsg(char * str)109 static int __control_devkmsg(char *str)
110 {
111 if (!str)
112 return -EINVAL;
113
114 if (!strncmp(str, "on", 2)) {
115 devkmsg_log = DEVKMSG_LOG_MASK_ON;
116 return 2;
117 } else if (!strncmp(str, "off", 3)) {
118 devkmsg_log = DEVKMSG_LOG_MASK_OFF;
119 return 3;
120 } else if (!strncmp(str, "ratelimit", 9)) {
121 devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
122 return 9;
123 }
124 return -EINVAL;
125 }
126
control_devkmsg(char * str)127 static int __init control_devkmsg(char *str)
128 {
129 if (__control_devkmsg(str) < 0)
130 return 1;
131
132 /*
133 * Set sysctl string accordingly:
134 */
135 if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
136 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
137 strncpy(devkmsg_log_str, "on", 2);
138 } else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
139 memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
140 strncpy(devkmsg_log_str, "off", 3);
141 }
142 /* else "ratelimit" which is set by default. */
143
144 /*
145 * Sysctl cannot change it anymore. The kernel command line setting of
146 * this parameter is to force the setting to be permanent throughout the
147 * runtime of the system. This is a precation measure against userspace
148 * trying to be a smarta** and attempting to change it up on us.
149 */
150 devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
151
152 return 0;
153 }
154 __setup("printk.devkmsg=", control_devkmsg);
155
156 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
157
devkmsg_sysctl_set_loglvl(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)158 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
159 void __user *buffer, size_t *lenp, loff_t *ppos)
160 {
161 char old_str[DEVKMSG_STR_MAX_SIZE];
162 unsigned int old;
163 int err;
164
165 if (write) {
166 if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
167 return -EINVAL;
168
169 old = devkmsg_log;
170 strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
171 }
172
173 err = proc_dostring(table, write, buffer, lenp, ppos);
174 if (err)
175 return err;
176
177 if (write) {
178 err = __control_devkmsg(devkmsg_log_str);
179
180 /*
181 * Do not accept an unknown string OR a known string with
182 * trailing crap...
183 */
184 if (err < 0 || (err + 1 != *lenp)) {
185
186 /* ... and restore old setting. */
187 devkmsg_log = old;
188 strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
189
190 return -EINVAL;
191 }
192 }
193
194 return 0;
195 }
196
197 /*
198 * Number of registered extended console drivers.
199 *
200 * If extended consoles are present, in-kernel cont reassembly is disabled
201 * and each fragment is stored as a separate log entry with proper
202 * continuation flag so that every emitted message has full metadata. This
203 * doesn't change the result for regular consoles or /proc/kmsg. For
204 * /dev/kmsg, as long as the reader concatenates messages according to
205 * consecutive continuation flags, the end result should be the same too.
206 */
207 static int nr_ext_console_drivers;
208
209 /*
210 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
211 * macros instead of functions so that _RET_IP_ contains useful information.
212 */
213 #define down_console_sem() do { \
214 down(&console_sem);\
215 mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
216 } while (0)
217
__down_trylock_console_sem(unsigned long ip)218 static int __down_trylock_console_sem(unsigned long ip)
219 {
220 if (down_trylock(&console_sem))
221 return 1;
222 mutex_acquire(&console_lock_dep_map, 0, 1, ip);
223 return 0;
224 }
225 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
226
227 #define up_console_sem() do { \
228 mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
229 up(&console_sem);\
230 } while (0)
231
232 /*
233 * This is used for debugging the mess that is the VT code by
234 * keeping track if we have the console semaphore held. It's
235 * definitely not the perfect debug tool (we don't know if _WE_
236 * hold it and are racing, but it helps tracking those weird code
237 * paths in the console code where we end up in places I want
238 * locked without the console sempahore held).
239 */
240 static int console_locked, console_suspended;
241
242 /*
243 * If exclusive_console is non-NULL then only this console is to be printed to.
244 */
245 static struct console *exclusive_console;
246
247 /*
248 * Array of consoles built from command line options (console=)
249 */
250
251 #define MAX_CMDLINECONSOLES 8
252
253 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
254
255 static int selected_console = -1;
256 static int preferred_console = -1;
257 int console_set_on_cmdline;
258 EXPORT_SYMBOL(console_set_on_cmdline);
259
260 /* Flag: console code may call schedule() */
261 static int console_may_schedule;
262
263 /*
264 * The printk log buffer consists of a chain of concatenated variable
265 * length records. Every record starts with a record header, containing
266 * the overall length of the record.
267 *
268 * The heads to the first and last entry in the buffer, as well as the
269 * sequence numbers of these entries are maintained when messages are
270 * stored.
271 *
272 * If the heads indicate available messages, the length in the header
273 * tells the start next message. A length == 0 for the next message
274 * indicates a wrap-around to the beginning of the buffer.
275 *
276 * Every record carries the monotonic timestamp in microseconds, as well as
277 * the standard userspace syslog level and syslog facility. The usual
278 * kernel messages use LOG_KERN; userspace-injected messages always carry
279 * a matching syslog facility, by default LOG_USER. The origin of every
280 * message can be reliably determined that way.
281 *
282 * The human readable log message directly follows the message header. The
283 * length of the message text is stored in the header, the stored message
284 * is not terminated.
285 *
286 * Optionally, a message can carry a dictionary of properties (key/value pairs),
287 * to provide userspace with a machine-readable message context.
288 *
289 * Examples for well-defined, commonly used property names are:
290 * DEVICE=b12:8 device identifier
291 * b12:8 block dev_t
292 * c127:3 char dev_t
293 * n8 netdev ifindex
294 * +sound:card0 subsystem:devname
295 * SUBSYSTEM=pci driver-core subsystem name
296 *
297 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
298 * follows directly after a '=' character. Every property is terminated by
299 * a '\0' character. The last property is not terminated.
300 *
301 * Example of a message structure:
302 * 0000 ff 8f 00 00 00 00 00 00 monotonic time in nsec
303 * 0008 34 00 record is 52 bytes long
304 * 000a 0b 00 text is 11 bytes long
305 * 000c 1f 00 dictionary is 23 bytes long
306 * 000e 03 00 LOG_KERN (facility) LOG_ERR (level)
307 * 0010 69 74 27 73 20 61 20 6c "it's a l"
308 * 69 6e 65 "ine"
309 * 001b 44 45 56 49 43 "DEVIC"
310 * 45 3d 62 38 3a 32 00 44 "E=b8:2\0D"
311 * 52 49 56 45 52 3d 62 75 "RIVER=bu"
312 * 67 "g"
313 * 0032 00 00 00 padding to next message header
314 *
315 * The 'struct printk_log' buffer header must never be directly exported to
316 * userspace, it is a kernel-private implementation detail that might
317 * need to be changed in the future, when the requirements change.
318 *
319 * /dev/kmsg exports the structured data in the following line format:
320 * "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
321 *
322 * Users of the export format should ignore possible additional values
323 * separated by ',', and find the message after the ';' character.
324 *
325 * The optional key/value pairs are attached as continuation lines starting
326 * with a space character and terminated by a newline. All possible
327 * non-prinatable characters are escaped in the "\xff" notation.
328 */
329
330 enum log_flags {
331 LOG_NOCONS = 1, /* already flushed, do not print to console */
332 LOG_NEWLINE = 2, /* text ended with a newline */
333 LOG_PREFIX = 4, /* text started with a prefix */
334 LOG_CONT = 8, /* text is a fragment of a continuation line */
335 };
336
337 struct printk_log {
338 u64 ts_nsec; /* timestamp in nanoseconds */
339 u16 len; /* length of entire record */
340 u16 text_len; /* length of text buffer */
341 u16 dict_len; /* length of dictionary buffer */
342 u8 facility; /* syslog facility */
343 u8 flags:5; /* internal record flags */
344 u8 level:3; /* syslog level */
345 }
346 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
347 __packed __aligned(4)
348 #endif
349 ;
350
351 /*
352 * The logbuf_lock protects kmsg buffer, indices, counters. This can be taken
353 * within the scheduler's rq lock. It must be released before calling
354 * console_unlock() or anything else that might wake up a process.
355 */
356 DEFINE_RAW_SPINLOCK(logbuf_lock);
357
358 #ifdef CONFIG_PRINTK
359 DECLARE_WAIT_QUEUE_HEAD(log_wait);
360 /* the next printk record to read by syslog(READ) or /proc/kmsg */
361 static u64 syslog_seq;
362 static u32 syslog_idx;
363 static enum log_flags syslog_prev;
364 static size_t syslog_partial;
365
366 /* index and sequence number of the first record stored in the buffer */
367 static u64 log_first_seq;
368 static u32 log_first_idx;
369
370 /* index and sequence number of the next record to store in the buffer */
371 static u64 log_next_seq;
372 static u32 log_next_idx;
373
374 /* the next printk record to write to the console */
375 static u64 console_seq;
376 static u32 console_idx;
377 static enum log_flags console_prev;
378
379 /* the next printk record to read after the last 'clear' command */
380 static u64 clear_seq;
381 static u32 clear_idx;
382
383 #define PREFIX_MAX 32
384 #define LOG_LINE_MAX (1024 - PREFIX_MAX)
385
386 #define LOG_LEVEL(v) ((v) & 0x07)
387 #define LOG_FACILITY(v) ((v) >> 3 & 0xff)
388
389 /* record buffer */
390 #define LOG_ALIGN __alignof__(struct printk_log)
391 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
392 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
393 static char *log_buf = __log_buf;
394 static u32 log_buf_len = __LOG_BUF_LEN;
395
396 /* Return log buffer address */
log_buf_addr_get(void)397 char *log_buf_addr_get(void)
398 {
399 return log_buf;
400 }
401
402 /* Return log buffer size */
log_buf_len_get(void)403 u32 log_buf_len_get(void)
404 {
405 return log_buf_len;
406 }
407
408 /* human readable text of the record */
log_text(const struct printk_log * msg)409 static char *log_text(const struct printk_log *msg)
410 {
411 return (char *)msg + sizeof(struct printk_log);
412 }
413
414 /* optional key/value pair dictionary attached to the record */
log_dict(const struct printk_log * msg)415 static char *log_dict(const struct printk_log *msg)
416 {
417 return (char *)msg + sizeof(struct printk_log) + msg->text_len;
418 }
419
420 /* get record by index; idx must point to valid msg */
log_from_idx(u32 idx)421 static struct printk_log *log_from_idx(u32 idx)
422 {
423 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
424
425 /*
426 * A length == 0 record is the end of buffer marker. Wrap around and
427 * read the message at the start of the buffer.
428 */
429 if (!msg->len)
430 return (struct printk_log *)log_buf;
431 return msg;
432 }
433
434 /* get next record; idx must point to valid msg */
log_next(u32 idx)435 static u32 log_next(u32 idx)
436 {
437 struct printk_log *msg = (struct printk_log *)(log_buf + idx);
438
439 /* length == 0 indicates the end of the buffer; wrap */
440 /*
441 * A length == 0 record is the end of buffer marker. Wrap around and
442 * read the message at the start of the buffer as *this* one, and
443 * return the one after that.
444 */
445 if (!msg->len) {
446 msg = (struct printk_log *)log_buf;
447 return msg->len;
448 }
449 return idx + msg->len;
450 }
451
452 /*
453 * Check whether there is enough free space for the given message.
454 *
455 * The same values of first_idx and next_idx mean that the buffer
456 * is either empty or full.
457 *
458 * If the buffer is empty, we must respect the position of the indexes.
459 * They cannot be reset to the beginning of the buffer.
460 */
logbuf_has_space(u32 msg_size,bool empty)461 static int logbuf_has_space(u32 msg_size, bool empty)
462 {
463 u32 free;
464
465 if (log_next_idx > log_first_idx || empty)
466 free = max(log_buf_len - log_next_idx, log_first_idx);
467 else
468 free = log_first_idx - log_next_idx;
469
470 /*
471 * We need space also for an empty header that signalizes wrapping
472 * of the buffer.
473 */
474 return free >= msg_size + sizeof(struct printk_log);
475 }
476
log_make_free_space(u32 msg_size)477 static int log_make_free_space(u32 msg_size)
478 {
479 while (log_first_seq < log_next_seq &&
480 !logbuf_has_space(msg_size, false)) {
481 /* drop old messages until we have enough contiguous space */
482 log_first_idx = log_next(log_first_idx);
483 log_first_seq++;
484 }
485
486 if (clear_seq < log_first_seq) {
487 clear_seq = log_first_seq;
488 clear_idx = log_first_idx;
489 }
490
491 /* sequence numbers are equal, so the log buffer is empty */
492 if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
493 return 0;
494
495 return -ENOMEM;
496 }
497
498 /* compute the message size including the padding bytes */
msg_used_size(u16 text_len,u16 dict_len,u32 * pad_len)499 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
500 {
501 u32 size;
502
503 size = sizeof(struct printk_log) + text_len + dict_len;
504 *pad_len = (-size) & (LOG_ALIGN - 1);
505 size += *pad_len;
506
507 return size;
508 }
509
510 /*
511 * Define how much of the log buffer we could take at maximum. The value
512 * must be greater than two. Note that only half of the buffer is available
513 * when the index points to the middle.
514 */
515 #define MAX_LOG_TAKE_PART 4
516 static const char trunc_msg[] = "<truncated>";
517
truncate_msg(u16 * text_len,u16 * trunc_msg_len,u16 * dict_len,u32 * pad_len)518 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
519 u16 *dict_len, u32 *pad_len)
520 {
521 /*
522 * The message should not take the whole buffer. Otherwise, it might
523 * get removed too soon.
524 */
525 u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
526 if (*text_len > max_text_len)
527 *text_len = max_text_len;
528 /* enable the warning message */
529 *trunc_msg_len = strlen(trunc_msg);
530 /* disable the "dict" completely */
531 *dict_len = 0;
532 /* compute the size again, count also the warning message */
533 return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
534 }
535
536 /* insert record into the buffer, discard old ones, update heads */
log_store(int facility,int level,enum log_flags flags,u64 ts_nsec,const char * dict,u16 dict_len,const char * text,u16 text_len)537 static int log_store(int facility, int level,
538 enum log_flags flags, u64 ts_nsec,
539 const char *dict, u16 dict_len,
540 const char *text, u16 text_len)
541 {
542 struct printk_log *msg;
543 u32 size, pad_len;
544 u16 trunc_msg_len = 0;
545
546 /* number of '\0' padding bytes to next message */
547 size = msg_used_size(text_len, dict_len, &pad_len);
548
549 if (log_make_free_space(size)) {
550 /* truncate the message if it is too long for empty buffer */
551 size = truncate_msg(&text_len, &trunc_msg_len,
552 &dict_len, &pad_len);
553 /* survive when the log buffer is too small for trunc_msg */
554 if (log_make_free_space(size))
555 return 0;
556 }
557
558 if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
559 /*
560 * This message + an additional empty header does not fit
561 * at the end of the buffer. Add an empty header with len == 0
562 * to signify a wrap around.
563 */
564 memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
565 log_next_idx = 0;
566 }
567
568 /* fill message */
569 msg = (struct printk_log *)(log_buf + log_next_idx);
570 memcpy(log_text(msg), text, text_len);
571 msg->text_len = text_len;
572 if (trunc_msg_len) {
573 memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
574 msg->text_len += trunc_msg_len;
575 }
576 memcpy(log_dict(msg), dict, dict_len);
577 msg->dict_len = dict_len;
578 msg->facility = facility;
579 msg->level = level & 7;
580 msg->flags = flags & 0x1f;
581 if (ts_nsec > 0)
582 msg->ts_nsec = ts_nsec;
583 else
584 msg->ts_nsec = local_clock();
585 memset(log_dict(msg) + dict_len, 0, pad_len);
586 msg->len = size;
587
588 /* insert message */
589 log_next_idx += msg->len;
590 log_next_seq++;
591
592 return msg->text_len;
593 }
594
595 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
596
syslog_action_restricted(int type)597 static int syslog_action_restricted(int type)
598 {
599 if (dmesg_restrict)
600 return 1;
601 /*
602 * Unless restricted, we allow "read all" and "get buffer size"
603 * for everybody.
604 */
605 return type != SYSLOG_ACTION_READ_ALL &&
606 type != SYSLOG_ACTION_SIZE_BUFFER;
607 }
608
check_syslog_permissions(int type,int source)609 int check_syslog_permissions(int type, int source)
610 {
611 /*
612 * If this is from /proc/kmsg and we've already opened it, then we've
613 * already done the capabilities checks at open time.
614 */
615 if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
616 goto ok;
617
618 if (syslog_action_restricted(type)) {
619 if (capable(CAP_SYSLOG))
620 goto ok;
621 /*
622 * For historical reasons, accept CAP_SYS_ADMIN too, with
623 * a warning.
624 */
625 if (capable(CAP_SYS_ADMIN)) {
626 pr_warn_once("%s (%d): Attempt to access syslog with "
627 "CAP_SYS_ADMIN but no CAP_SYSLOG "
628 "(deprecated).\n",
629 current->comm, task_pid_nr(current));
630 goto ok;
631 }
632 return -EPERM;
633 }
634 ok:
635 return security_syslog(type);
636 }
637 EXPORT_SYMBOL_GPL(check_syslog_permissions);
638
append_char(char ** pp,char * e,char c)639 static void append_char(char **pp, char *e, char c)
640 {
641 if (*pp < e)
642 *(*pp)++ = c;
643 }
644
msg_print_ext_header(char * buf,size_t size,struct printk_log * msg,u64 seq,enum log_flags prev_flags)645 static ssize_t msg_print_ext_header(char *buf, size_t size,
646 struct printk_log *msg, u64 seq,
647 enum log_flags prev_flags)
648 {
649 u64 ts_usec = msg->ts_nsec;
650 char cont = '-';
651
652 do_div(ts_usec, 1000);
653
654 /*
655 * If we couldn't merge continuation line fragments during the print,
656 * export the stored flags to allow an optional external merge of the
657 * records. Merging the records isn't always neccessarily correct, like
658 * when we hit a race during printing. In most cases though, it produces
659 * better readable output. 'c' in the record flags mark the first
660 * fragment of a line, '+' the following.
661 */
662 if (msg->flags & LOG_CONT)
663 cont = (prev_flags & LOG_CONT) ? '+' : 'c';
664
665 return scnprintf(buf, size, "%u,%llu,%llu,%c;",
666 (msg->facility << 3) | msg->level, seq, ts_usec, cont);
667 }
668
msg_print_ext_body(char * buf,size_t size,char * dict,size_t dict_len,char * text,size_t text_len)669 static ssize_t msg_print_ext_body(char *buf, size_t size,
670 char *dict, size_t dict_len,
671 char *text, size_t text_len)
672 {
673 char *p = buf, *e = buf + size;
674 size_t i;
675
676 /* escape non-printable characters */
677 for (i = 0; i < text_len; i++) {
678 unsigned char c = text[i];
679
680 if (c < ' ' || c >= 127 || c == '\\')
681 p += scnprintf(p, e - p, "\\x%02x", c);
682 else
683 append_char(&p, e, c);
684 }
685 append_char(&p, e, '\n');
686
687 if (dict_len) {
688 bool line = true;
689
690 for (i = 0; i < dict_len; i++) {
691 unsigned char c = dict[i];
692
693 if (line) {
694 append_char(&p, e, ' ');
695 line = false;
696 }
697
698 if (c == '\0') {
699 append_char(&p, e, '\n');
700 line = true;
701 continue;
702 }
703
704 if (c < ' ' || c >= 127 || c == '\\') {
705 p += scnprintf(p, e - p, "\\x%02x", c);
706 continue;
707 }
708
709 append_char(&p, e, c);
710 }
711 append_char(&p, e, '\n');
712 }
713
714 return p - buf;
715 }
716
717 /* /dev/kmsg - userspace message inject/listen interface */
718 struct devkmsg_user {
719 u64 seq;
720 u32 idx;
721 enum log_flags prev;
722 struct ratelimit_state rs;
723 struct mutex lock;
724 char buf[CONSOLE_EXT_LOG_MAX];
725 };
726
devkmsg_write(struct kiocb * iocb,struct iov_iter * from)727 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
728 {
729 char *buf, *line;
730 int level = default_message_loglevel;
731 int facility = 1; /* LOG_USER */
732 struct file *file = iocb->ki_filp;
733 struct devkmsg_user *user = file->private_data;
734 size_t len = iov_iter_count(from);
735 ssize_t ret = len;
736
737 if (!user || len > LOG_LINE_MAX)
738 return -EINVAL;
739
740 /* Ignore when user logging is disabled. */
741 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
742 return len;
743
744 /* Ratelimit when not explicitly enabled. */
745 if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
746 if (!___ratelimit(&user->rs, current->comm))
747 return ret;
748 }
749
750 buf = kmalloc(len+1, GFP_KERNEL);
751 if (buf == NULL)
752 return -ENOMEM;
753
754 buf[len] = '\0';
755 if (copy_from_iter(buf, len, from) != len) {
756 kfree(buf);
757 return -EFAULT;
758 }
759
760 /*
761 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
762 * the decimal value represents 32bit, the lower 3 bit are the log
763 * level, the rest are the log facility.
764 *
765 * If no prefix or no userspace facility is specified, we
766 * enforce LOG_USER, to be able to reliably distinguish
767 * kernel-generated messages from userspace-injected ones.
768 */
769 line = buf;
770 if (line[0] == '<') {
771 char *endp = NULL;
772 unsigned int u;
773
774 u = simple_strtoul(line + 1, &endp, 10);
775 if (endp && endp[0] == '>') {
776 level = LOG_LEVEL(u);
777 if (LOG_FACILITY(u) != 0)
778 facility = LOG_FACILITY(u);
779 endp++;
780 len -= endp - line;
781 line = endp;
782 }
783 }
784
785 printk_emit(facility, level, NULL, 0, "%s", line);
786 kfree(buf);
787 return ret;
788 }
789
devkmsg_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)790 static ssize_t devkmsg_read(struct file *file, char __user *buf,
791 size_t count, loff_t *ppos)
792 {
793 struct devkmsg_user *user = file->private_data;
794 struct printk_log *msg;
795 size_t len;
796 ssize_t ret;
797
798 if (!user)
799 return -EBADF;
800
801 ret = mutex_lock_interruptible(&user->lock);
802 if (ret)
803 return ret;
804 raw_spin_lock_irq(&logbuf_lock);
805 while (user->seq == log_next_seq) {
806 if (file->f_flags & O_NONBLOCK) {
807 ret = -EAGAIN;
808 raw_spin_unlock_irq(&logbuf_lock);
809 goto out;
810 }
811
812 raw_spin_unlock_irq(&logbuf_lock);
813 ret = wait_event_interruptible(log_wait,
814 user->seq != log_next_seq);
815 if (ret)
816 goto out;
817 raw_spin_lock_irq(&logbuf_lock);
818 }
819
820 if (user->seq < log_first_seq) {
821 /* our last seen message is gone, return error and reset */
822 user->idx = log_first_idx;
823 user->seq = log_first_seq;
824 ret = -EPIPE;
825 raw_spin_unlock_irq(&logbuf_lock);
826 goto out;
827 }
828
829 msg = log_from_idx(user->idx);
830 len = msg_print_ext_header(user->buf, sizeof(user->buf),
831 msg, user->seq, user->prev);
832 len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
833 log_dict(msg), msg->dict_len,
834 log_text(msg), msg->text_len);
835
836 user->prev = msg->flags;
837 user->idx = log_next(user->idx);
838 user->seq++;
839 raw_spin_unlock_irq(&logbuf_lock);
840
841 if (len > count) {
842 ret = -EINVAL;
843 goto out;
844 }
845
846 if (copy_to_user(buf, user->buf, len)) {
847 ret = -EFAULT;
848 goto out;
849 }
850 ret = len;
851 out:
852 mutex_unlock(&user->lock);
853 return ret;
854 }
855
devkmsg_llseek(struct file * file,loff_t offset,int whence)856 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
857 {
858 struct devkmsg_user *user = file->private_data;
859 loff_t ret = 0;
860
861 if (!user)
862 return -EBADF;
863 if (offset)
864 return -ESPIPE;
865
866 raw_spin_lock_irq(&logbuf_lock);
867 switch (whence) {
868 case SEEK_SET:
869 /* the first record */
870 user->idx = log_first_idx;
871 user->seq = log_first_seq;
872 break;
873 case SEEK_DATA:
874 /*
875 * The first record after the last SYSLOG_ACTION_CLEAR,
876 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
877 * changes no global state, and does not clear anything.
878 */
879 user->idx = clear_idx;
880 user->seq = clear_seq;
881 break;
882 case SEEK_END:
883 /* after the last record */
884 user->idx = log_next_idx;
885 user->seq = log_next_seq;
886 break;
887 default:
888 ret = -EINVAL;
889 }
890 raw_spin_unlock_irq(&logbuf_lock);
891 return ret;
892 }
893
devkmsg_poll(struct file * file,poll_table * wait)894 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
895 {
896 struct devkmsg_user *user = file->private_data;
897 int ret = 0;
898
899 if (!user)
900 return POLLERR|POLLNVAL;
901
902 poll_wait(file, &log_wait, wait);
903
904 raw_spin_lock_irq(&logbuf_lock);
905 if (user->seq < log_next_seq) {
906 /* return error when data has vanished underneath us */
907 if (user->seq < log_first_seq)
908 ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
909 else
910 ret = POLLIN|POLLRDNORM;
911 }
912 raw_spin_unlock_irq(&logbuf_lock);
913
914 return ret;
915 }
916
devkmsg_open(struct inode * inode,struct file * file)917 static int devkmsg_open(struct inode *inode, struct file *file)
918 {
919 struct devkmsg_user *user;
920 int err;
921
922 if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
923 return -EPERM;
924
925 /* write-only does not need any file context */
926 if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
927 err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
928 SYSLOG_FROM_READER);
929 if (err)
930 return err;
931 }
932
933 user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
934 if (!user)
935 return -ENOMEM;
936
937 ratelimit_default_init(&user->rs);
938 ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
939
940 mutex_init(&user->lock);
941
942 raw_spin_lock_irq(&logbuf_lock);
943 user->idx = log_first_idx;
944 user->seq = log_first_seq;
945 raw_spin_unlock_irq(&logbuf_lock);
946
947 file->private_data = user;
948 return 0;
949 }
950
devkmsg_release(struct inode * inode,struct file * file)951 static int devkmsg_release(struct inode *inode, struct file *file)
952 {
953 struct devkmsg_user *user = file->private_data;
954
955 if (!user)
956 return 0;
957
958 ratelimit_state_exit(&user->rs);
959
960 mutex_destroy(&user->lock);
961 kfree(user);
962 return 0;
963 }
964
965 const struct file_operations kmsg_fops = {
966 .open = devkmsg_open,
967 .read = devkmsg_read,
968 .write_iter = devkmsg_write,
969 .llseek = devkmsg_llseek,
970 .poll = devkmsg_poll,
971 .release = devkmsg_release,
972 };
973
974 #ifdef CONFIG_KEXEC_CORE
975 /*
976 * This appends the listed symbols to /proc/vmcore
977 *
978 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
979 * obtain access to symbols that are otherwise very difficult to locate. These
980 * symbols are specifically used so that utilities can access and extract the
981 * dmesg log from a vmcore file after a crash.
982 */
log_buf_kexec_setup(void)983 void log_buf_kexec_setup(void)
984 {
985 VMCOREINFO_SYMBOL(log_buf);
986 VMCOREINFO_SYMBOL(log_buf_len);
987 VMCOREINFO_SYMBOL(log_first_idx);
988 VMCOREINFO_SYMBOL(clear_idx);
989 VMCOREINFO_SYMBOL(log_next_idx);
990 /*
991 * Export struct printk_log size and field offsets. User space tools can
992 * parse it and detect any changes to structure down the line.
993 */
994 VMCOREINFO_STRUCT_SIZE(printk_log);
995 VMCOREINFO_OFFSET(printk_log, ts_nsec);
996 VMCOREINFO_OFFSET(printk_log, len);
997 VMCOREINFO_OFFSET(printk_log, text_len);
998 VMCOREINFO_OFFSET(printk_log, dict_len);
999 }
1000 #endif
1001
1002 /* requested log_buf_len from kernel cmdline */
1003 static unsigned long __initdata new_log_buf_len;
1004
1005 /* we practice scaling the ring buffer by powers of 2 */
log_buf_len_update(unsigned size)1006 static void __init log_buf_len_update(unsigned size)
1007 {
1008 if (size)
1009 size = roundup_pow_of_two(size);
1010 if (size > log_buf_len)
1011 new_log_buf_len = size;
1012 }
1013
1014 /* save requested log_buf_len since it's too early to process it */
log_buf_len_setup(char * str)1015 static int __init log_buf_len_setup(char *str)
1016 {
1017 unsigned size = memparse(str, &str);
1018
1019 log_buf_len_update(size);
1020
1021 return 0;
1022 }
1023 early_param("log_buf_len", log_buf_len_setup);
1024
1025 #ifdef CONFIG_SMP
1026 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1027
log_buf_add_cpu(void)1028 static void __init log_buf_add_cpu(void)
1029 {
1030 unsigned int cpu_extra;
1031
1032 /*
1033 * archs should set up cpu_possible_bits properly with
1034 * set_cpu_possible() after setup_arch() but just in
1035 * case lets ensure this is valid.
1036 */
1037 if (num_possible_cpus() == 1)
1038 return;
1039
1040 cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1041
1042 /* by default this will only continue through for large > 64 CPUs */
1043 if (cpu_extra <= __LOG_BUF_LEN / 2)
1044 return;
1045
1046 pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1047 __LOG_CPU_MAX_BUF_LEN);
1048 pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1049 cpu_extra);
1050 pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1051
1052 log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1053 }
1054 #else /* !CONFIG_SMP */
log_buf_add_cpu(void)1055 static inline void log_buf_add_cpu(void) {}
1056 #endif /* CONFIG_SMP */
1057
setup_log_buf(int early)1058 void __init setup_log_buf(int early)
1059 {
1060 unsigned long flags;
1061 char *new_log_buf;
1062 int free;
1063
1064 if (log_buf != __log_buf)
1065 return;
1066
1067 if (!early && !new_log_buf_len)
1068 log_buf_add_cpu();
1069
1070 if (!new_log_buf_len)
1071 return;
1072
1073 if (early) {
1074 new_log_buf =
1075 memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1076 } else {
1077 new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1078 LOG_ALIGN);
1079 }
1080
1081 if (unlikely(!new_log_buf)) {
1082 pr_err("log_buf_len: %ld bytes not available\n",
1083 new_log_buf_len);
1084 return;
1085 }
1086
1087 raw_spin_lock_irqsave(&logbuf_lock, flags);
1088 log_buf_len = new_log_buf_len;
1089 log_buf = new_log_buf;
1090 new_log_buf_len = 0;
1091 free = __LOG_BUF_LEN - log_next_idx;
1092 memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1093 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1094
1095 pr_info("log_buf_len: %d bytes\n", log_buf_len);
1096 pr_info("early log buf free: %d(%d%%)\n",
1097 free, (free * 100) / __LOG_BUF_LEN);
1098 }
1099
1100 static bool __read_mostly ignore_loglevel;
1101
ignore_loglevel_setup(char * str)1102 static int __init ignore_loglevel_setup(char *str)
1103 {
1104 ignore_loglevel = true;
1105 pr_info("debug: ignoring loglevel setting.\n");
1106
1107 return 0;
1108 }
1109
1110 early_param("ignore_loglevel", ignore_loglevel_setup);
1111 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1112 MODULE_PARM_DESC(ignore_loglevel,
1113 "ignore loglevel setting (prints all kernel messages to the console)");
1114
suppress_message_printing(int level)1115 static bool suppress_message_printing(int level)
1116 {
1117 return (level >= console_loglevel && !ignore_loglevel);
1118 }
1119
1120 #ifdef CONFIG_BOOT_PRINTK_DELAY
1121
1122 static int boot_delay; /* msecs delay after each printk during bootup */
1123 static unsigned long long loops_per_msec; /* based on boot_delay */
1124
boot_delay_setup(char * str)1125 static int __init boot_delay_setup(char *str)
1126 {
1127 unsigned long lpj;
1128
1129 lpj = preset_lpj ? preset_lpj : 1000000; /* some guess */
1130 loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1131
1132 get_option(&str, &boot_delay);
1133 if (boot_delay > 10 * 1000)
1134 boot_delay = 0;
1135
1136 pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1137 "HZ: %d, loops_per_msec: %llu\n",
1138 boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1139 return 0;
1140 }
1141 early_param("boot_delay", boot_delay_setup);
1142
boot_delay_msec(int level)1143 static void boot_delay_msec(int level)
1144 {
1145 unsigned long long k;
1146 unsigned long timeout;
1147
1148 if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1149 || suppress_message_printing(level)) {
1150 return;
1151 }
1152
1153 k = (unsigned long long)loops_per_msec * boot_delay;
1154
1155 timeout = jiffies + msecs_to_jiffies(boot_delay);
1156 while (k) {
1157 k--;
1158 cpu_relax();
1159 /*
1160 * use (volatile) jiffies to prevent
1161 * compiler reduction; loop termination via jiffies
1162 * is secondary and may or may not happen.
1163 */
1164 if (time_after(jiffies, timeout))
1165 break;
1166 touch_nmi_watchdog();
1167 }
1168 }
1169 #else
boot_delay_msec(int level)1170 static inline void boot_delay_msec(int level)
1171 {
1172 }
1173 #endif
1174
1175 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1176 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1177
print_time(u64 ts,char * buf)1178 static size_t print_time(u64 ts, char *buf)
1179 {
1180 unsigned long rem_nsec;
1181
1182 if (!printk_time)
1183 return 0;
1184
1185 rem_nsec = do_div(ts, 1000000000);
1186
1187 if (!buf)
1188 return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1189
1190 return sprintf(buf, "[%5lu.%06lu] ",
1191 (unsigned long)ts, rem_nsec / 1000);
1192 }
1193
print_prefix(const struct printk_log * msg,bool syslog,char * buf)1194 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1195 {
1196 size_t len = 0;
1197 unsigned int prefix = (msg->facility << 3) | msg->level;
1198
1199 if (syslog) {
1200 if (buf) {
1201 len += sprintf(buf, "<%u>", prefix);
1202 } else {
1203 len += 3;
1204 if (prefix > 999)
1205 len += 3;
1206 else if (prefix > 99)
1207 len += 2;
1208 else if (prefix > 9)
1209 len++;
1210 }
1211 }
1212
1213 len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1214 return len;
1215 }
1216
msg_print_text(const struct printk_log * msg,enum log_flags prev,bool syslog,char * buf,size_t size)1217 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1218 bool syslog, char *buf, size_t size)
1219 {
1220 const char *text = log_text(msg);
1221 size_t text_size = msg->text_len;
1222 bool prefix = true;
1223 bool newline = true;
1224 size_t len = 0;
1225
1226 if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1227 prefix = false;
1228
1229 if (msg->flags & LOG_CONT) {
1230 if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1231 prefix = false;
1232
1233 if (!(msg->flags & LOG_NEWLINE))
1234 newline = false;
1235 }
1236
1237 do {
1238 const char *next = memchr(text, '\n', text_size);
1239 size_t text_len;
1240
1241 if (next) {
1242 text_len = next - text;
1243 next++;
1244 text_size -= next - text;
1245 } else {
1246 text_len = text_size;
1247 }
1248
1249 if (buf) {
1250 if (print_prefix(msg, syslog, NULL) +
1251 text_len + 1 >= size - len)
1252 break;
1253
1254 if (prefix)
1255 len += print_prefix(msg, syslog, buf + len);
1256 memcpy(buf + len, text, text_len);
1257 len += text_len;
1258 if (next || newline)
1259 buf[len++] = '\n';
1260 } else {
1261 /* SYSLOG_ACTION_* buffer size only calculation */
1262 if (prefix)
1263 len += print_prefix(msg, syslog, NULL);
1264 len += text_len;
1265 if (next || newline)
1266 len++;
1267 }
1268
1269 prefix = true;
1270 text = next;
1271 } while (text);
1272
1273 return len;
1274 }
1275
syslog_print(char __user * buf,int size)1276 static int syslog_print(char __user *buf, int size)
1277 {
1278 char *text;
1279 struct printk_log *msg;
1280 int len = 0;
1281
1282 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1283 if (!text)
1284 return -ENOMEM;
1285
1286 while (size > 0) {
1287 size_t n;
1288 size_t skip;
1289
1290 raw_spin_lock_irq(&logbuf_lock);
1291 if (syslog_seq < log_first_seq) {
1292 /* messages are gone, move to first one */
1293 syslog_seq = log_first_seq;
1294 syslog_idx = log_first_idx;
1295 syslog_prev = 0;
1296 syslog_partial = 0;
1297 }
1298 if (syslog_seq == log_next_seq) {
1299 raw_spin_unlock_irq(&logbuf_lock);
1300 break;
1301 }
1302
1303 skip = syslog_partial;
1304 msg = log_from_idx(syslog_idx);
1305 n = msg_print_text(msg, syslog_prev, true, text,
1306 LOG_LINE_MAX + PREFIX_MAX);
1307 if (n - syslog_partial <= size) {
1308 /* message fits into buffer, move forward */
1309 syslog_idx = log_next(syslog_idx);
1310 syslog_seq++;
1311 syslog_prev = msg->flags;
1312 n -= syslog_partial;
1313 syslog_partial = 0;
1314 } else if (!len){
1315 /* partial read(), remember position */
1316 n = size;
1317 syslog_partial += n;
1318 } else
1319 n = 0;
1320 raw_spin_unlock_irq(&logbuf_lock);
1321
1322 if (!n)
1323 break;
1324
1325 if (copy_to_user(buf, text + skip, n)) {
1326 if (!len)
1327 len = -EFAULT;
1328 break;
1329 }
1330
1331 len += n;
1332 size -= n;
1333 buf += n;
1334 }
1335
1336 kfree(text);
1337 return len;
1338 }
1339
syslog_print_all(char __user * buf,int size,bool clear)1340 static int syslog_print_all(char __user *buf, int size, bool clear)
1341 {
1342 char *text;
1343 int len = 0;
1344
1345 text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1346 if (!text)
1347 return -ENOMEM;
1348
1349 raw_spin_lock_irq(&logbuf_lock);
1350 if (buf) {
1351 u64 next_seq;
1352 u64 seq;
1353 u32 idx;
1354 enum log_flags prev;
1355
1356 /*
1357 * Find first record that fits, including all following records,
1358 * into the user-provided buffer for this dump.
1359 */
1360 seq = clear_seq;
1361 idx = clear_idx;
1362 prev = 0;
1363 while (seq < log_next_seq) {
1364 struct printk_log *msg = log_from_idx(idx);
1365
1366 len += msg_print_text(msg, prev, true, NULL, 0);
1367 prev = msg->flags;
1368 idx = log_next(idx);
1369 seq++;
1370 }
1371
1372 /* move first record forward until length fits into the buffer */
1373 seq = clear_seq;
1374 idx = clear_idx;
1375 prev = 0;
1376 while (len > size && seq < log_next_seq) {
1377 struct printk_log *msg = log_from_idx(idx);
1378
1379 len -= msg_print_text(msg, prev, true, NULL, 0);
1380 prev = msg->flags;
1381 idx = log_next(idx);
1382 seq++;
1383 }
1384
1385 /* last message fitting into this dump */
1386 next_seq = log_next_seq;
1387
1388 len = 0;
1389 while (len >= 0 && seq < next_seq) {
1390 struct printk_log *msg = log_from_idx(idx);
1391 int textlen;
1392
1393 textlen = msg_print_text(msg, prev, true, text,
1394 LOG_LINE_MAX + PREFIX_MAX);
1395 if (textlen < 0) {
1396 len = textlen;
1397 break;
1398 }
1399 idx = log_next(idx);
1400 seq++;
1401 prev = msg->flags;
1402
1403 raw_spin_unlock_irq(&logbuf_lock);
1404 if (copy_to_user(buf + len, text, textlen))
1405 len = -EFAULT;
1406 else
1407 len += textlen;
1408 raw_spin_lock_irq(&logbuf_lock);
1409
1410 if (seq < log_first_seq) {
1411 /* messages are gone, move to next one */
1412 seq = log_first_seq;
1413 idx = log_first_idx;
1414 prev = 0;
1415 }
1416 }
1417 }
1418
1419 if (clear) {
1420 clear_seq = log_next_seq;
1421 clear_idx = log_next_idx;
1422 }
1423 raw_spin_unlock_irq(&logbuf_lock);
1424
1425 kfree(text);
1426 return len;
1427 }
1428
do_syslog(int type,char __user * buf,int len,int source)1429 int do_syslog(int type, char __user *buf, int len, int source)
1430 {
1431 bool clear = false;
1432 static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1433 int error;
1434
1435 error = check_syslog_permissions(type, source);
1436 if (error)
1437 goto out;
1438
1439 switch (type) {
1440 case SYSLOG_ACTION_CLOSE: /* Close log */
1441 break;
1442 case SYSLOG_ACTION_OPEN: /* Open log */
1443 break;
1444 case SYSLOG_ACTION_READ: /* Read from log */
1445 error = -EINVAL;
1446 if (!buf || len < 0)
1447 goto out;
1448 error = 0;
1449 if (!len)
1450 goto out;
1451 if (!access_ok(VERIFY_WRITE, buf, len)) {
1452 error = -EFAULT;
1453 goto out;
1454 }
1455 error = wait_event_interruptible(log_wait,
1456 syslog_seq != log_next_seq);
1457 if (error)
1458 goto out;
1459 error = syslog_print(buf, len);
1460 break;
1461 /* Read/clear last kernel messages */
1462 case SYSLOG_ACTION_READ_CLEAR:
1463 clear = true;
1464 /* FALL THRU */
1465 /* Read last kernel messages */
1466 case SYSLOG_ACTION_READ_ALL:
1467 error = -EINVAL;
1468 if (!buf || len < 0)
1469 goto out;
1470 error = 0;
1471 if (!len)
1472 goto out;
1473 if (!access_ok(VERIFY_WRITE, buf, len)) {
1474 error = -EFAULT;
1475 goto out;
1476 }
1477 error = syslog_print_all(buf, len, clear);
1478 break;
1479 /* Clear ring buffer */
1480 case SYSLOG_ACTION_CLEAR:
1481 syslog_print_all(NULL, 0, true);
1482 break;
1483 /* Disable logging to console */
1484 case SYSLOG_ACTION_CONSOLE_OFF:
1485 if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1486 saved_console_loglevel = console_loglevel;
1487 console_loglevel = minimum_console_loglevel;
1488 break;
1489 /* Enable logging to console */
1490 case SYSLOG_ACTION_CONSOLE_ON:
1491 if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1492 console_loglevel = saved_console_loglevel;
1493 saved_console_loglevel = LOGLEVEL_DEFAULT;
1494 }
1495 break;
1496 /* Set level of messages printed to console */
1497 case SYSLOG_ACTION_CONSOLE_LEVEL:
1498 error = -EINVAL;
1499 if (len < 1 || len > 8)
1500 goto out;
1501 if (len < minimum_console_loglevel)
1502 len = minimum_console_loglevel;
1503 console_loglevel = len;
1504 /* Implicitly re-enable logging to console */
1505 saved_console_loglevel = LOGLEVEL_DEFAULT;
1506 error = 0;
1507 break;
1508 /* Number of chars in the log buffer */
1509 case SYSLOG_ACTION_SIZE_UNREAD:
1510 raw_spin_lock_irq(&logbuf_lock);
1511 if (syslog_seq < log_first_seq) {
1512 /* messages are gone, move to first one */
1513 syslog_seq = log_first_seq;
1514 syslog_idx = log_first_idx;
1515 syslog_prev = 0;
1516 syslog_partial = 0;
1517 }
1518 if (source == SYSLOG_FROM_PROC) {
1519 /*
1520 * Short-cut for poll(/"proc/kmsg") which simply checks
1521 * for pending data, not the size; return the count of
1522 * records, not the length.
1523 */
1524 error = log_next_seq - syslog_seq;
1525 } else {
1526 u64 seq = syslog_seq;
1527 u32 idx = syslog_idx;
1528 enum log_flags prev = syslog_prev;
1529
1530 error = 0;
1531 while (seq < log_next_seq) {
1532 struct printk_log *msg = log_from_idx(idx);
1533
1534 error += msg_print_text(msg, prev, true, NULL, 0);
1535 idx = log_next(idx);
1536 seq++;
1537 prev = msg->flags;
1538 }
1539 error -= syslog_partial;
1540 }
1541 raw_spin_unlock_irq(&logbuf_lock);
1542 break;
1543 /* Size of the log buffer */
1544 case SYSLOG_ACTION_SIZE_BUFFER:
1545 error = log_buf_len;
1546 break;
1547 default:
1548 error = -EINVAL;
1549 break;
1550 }
1551 out:
1552 return error;
1553 }
1554
SYSCALL_DEFINE3(syslog,int,type,char __user *,buf,int,len)1555 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1556 {
1557 return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1558 }
1559
1560 /*
1561 * Call the console drivers, asking them to write out
1562 * log_buf[start] to log_buf[end - 1].
1563 * The console_lock must be held.
1564 */
call_console_drivers(int level,const char * ext_text,size_t ext_len,const char * text,size_t len)1565 static void call_console_drivers(int level,
1566 const char *ext_text, size_t ext_len,
1567 const char *text, size_t len)
1568 {
1569 struct console *con;
1570
1571 trace_console_rcuidle(text, len);
1572
1573 if (!console_drivers)
1574 return;
1575
1576 for_each_console(con) {
1577 if (exclusive_console && con != exclusive_console)
1578 continue;
1579 if (!(con->flags & CON_ENABLED))
1580 continue;
1581 if (!con->write)
1582 continue;
1583 if (!cpu_online(smp_processor_id()) &&
1584 !(con->flags & CON_ANYTIME))
1585 continue;
1586 if (con->flags & CON_EXTENDED)
1587 con->write(con, ext_text, ext_len);
1588 else
1589 con->write(con, text, len);
1590 }
1591 }
1592
1593 /*
1594 * Zap console related locks when oopsing.
1595 * To leave time for slow consoles to print a full oops,
1596 * only zap at most once every 30 seconds.
1597 */
zap_locks(void)1598 static void zap_locks(void)
1599 {
1600 static unsigned long oops_timestamp;
1601
1602 if (time_after_eq(jiffies, oops_timestamp) &&
1603 !time_after(jiffies, oops_timestamp + 30 * HZ))
1604 return;
1605
1606 oops_timestamp = jiffies;
1607
1608 debug_locks_off();
1609 /* If a crash is occurring, make sure we can't deadlock */
1610 raw_spin_lock_init(&logbuf_lock);
1611 /* And make sure that we print immediately */
1612 sema_init(&console_sem, 1);
1613 }
1614
1615 int printk_delay_msec __read_mostly;
1616
printk_delay(void)1617 static inline void printk_delay(void)
1618 {
1619 if (unlikely(printk_delay_msec)) {
1620 int m = printk_delay_msec;
1621
1622 while (m--) {
1623 mdelay(1);
1624 touch_nmi_watchdog();
1625 }
1626 }
1627 }
1628
1629 /*
1630 * Continuation lines are buffered, and not committed to the record buffer
1631 * until the line is complete, or a race forces it. The line fragments
1632 * though, are printed immediately to the consoles to ensure everything has
1633 * reached the console in case of a kernel crash.
1634 */
1635 static struct cont {
1636 char buf[LOG_LINE_MAX];
1637 size_t len; /* length == 0 means unused buffer */
1638 size_t cons; /* bytes written to console */
1639 struct task_struct *owner; /* task of first print*/
1640 u64 ts_nsec; /* time of first print */
1641 u8 level; /* log level of first message */
1642 u8 facility; /* log facility of first message */
1643 enum log_flags flags; /* prefix, newline flags */
1644 bool flushed:1; /* buffer sealed and committed */
1645 } cont;
1646
cont_flush(void)1647 static void cont_flush(void)
1648 {
1649 if (cont.flushed)
1650 return;
1651 if (cont.len == 0)
1652 return;
1653 if (cont.cons) {
1654 /*
1655 * If a fragment of this line was directly flushed to the
1656 * console; wait for the console to pick up the rest of the
1657 * line. LOG_NOCONS suppresses a duplicated output.
1658 */
1659 log_store(cont.facility, cont.level, cont.flags | LOG_NOCONS,
1660 cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1661 cont.flushed = true;
1662 } else {
1663 /*
1664 * If no fragment of this line ever reached the console,
1665 * just submit it to the store and free the buffer.
1666 */
1667 log_store(cont.facility, cont.level, cont.flags, 0,
1668 NULL, 0, cont.buf, cont.len);
1669 cont.len = 0;
1670 }
1671 }
1672
cont_add(int facility,int level,enum log_flags flags,const char * text,size_t len)1673 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1674 {
1675 if (cont.len && cont.flushed)
1676 return false;
1677
1678 /*
1679 * If ext consoles are present, flush and skip in-kernel
1680 * continuation. See nr_ext_console_drivers definition. Also, if
1681 * the line gets too long, split it up in separate records.
1682 */
1683 if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1684 cont_flush();
1685 return false;
1686 }
1687
1688 if (!cont.len) {
1689 cont.facility = facility;
1690 cont.level = level;
1691 cont.owner = current;
1692 cont.ts_nsec = local_clock();
1693 cont.flags = flags;
1694 cont.cons = 0;
1695 cont.flushed = false;
1696 }
1697
1698 memcpy(cont.buf + cont.len, text, len);
1699 cont.len += len;
1700
1701 // The original flags come from the first line,
1702 // but later continuations can add a newline.
1703 if (flags & LOG_NEWLINE) {
1704 cont.flags |= LOG_NEWLINE;
1705 cont_flush();
1706 }
1707
1708 if (cont.len > (sizeof(cont.buf) * 80) / 100)
1709 cont_flush();
1710
1711 return true;
1712 }
1713
cont_print_text(char * text,size_t size)1714 static size_t cont_print_text(char *text, size_t size)
1715 {
1716 size_t textlen = 0;
1717 size_t len;
1718
1719 if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1720 textlen += print_time(cont.ts_nsec, text);
1721 size -= textlen;
1722 }
1723
1724 len = cont.len - cont.cons;
1725 if (len > 0) {
1726 if (len+1 > size)
1727 len = size-1;
1728 memcpy(text + textlen, cont.buf + cont.cons, len);
1729 textlen += len;
1730 cont.cons = cont.len;
1731 }
1732
1733 if (cont.flushed) {
1734 if (cont.flags & LOG_NEWLINE)
1735 text[textlen++] = '\n';
1736 /* got everything, release buffer */
1737 cont.len = 0;
1738 }
1739 return textlen;
1740 }
1741
log_output(int facility,int level,enum log_flags lflags,const char * dict,size_t dictlen,char * text,size_t text_len)1742 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1743 {
1744 /*
1745 * If an earlier line was buffered, and we're a continuation
1746 * write from the same process, try to add it to the buffer.
1747 */
1748 if (cont.len) {
1749 if (cont.owner == current && (lflags & LOG_CONT)) {
1750 if (cont_add(facility, level, lflags, text, text_len))
1751 return text_len;
1752 }
1753 /* Otherwise, make sure it's flushed */
1754 cont_flush();
1755 }
1756
1757 /* Skip empty continuation lines that couldn't be added - they just flush */
1758 if (!text_len && (lflags & LOG_CONT))
1759 return 0;
1760
1761 /* If it doesn't end in a newline, try to buffer the current line */
1762 if (!(lflags & LOG_NEWLINE)) {
1763 if (cont_add(facility, level, lflags, text, text_len))
1764 return text_len;
1765 }
1766
1767 /* Store it in the record log */
1768 return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1769 }
1770
vprintk_emit(int facility,int level,const char * dict,size_t dictlen,const char * fmt,va_list args)1771 asmlinkage int vprintk_emit(int facility, int level,
1772 const char *dict, size_t dictlen,
1773 const char *fmt, va_list args)
1774 {
1775 static bool recursion_bug;
1776 static char textbuf[LOG_LINE_MAX];
1777 char *text = textbuf;
1778 size_t text_len = 0;
1779 enum log_flags lflags = 0;
1780 unsigned long flags;
1781 int this_cpu;
1782 int printed_len = 0;
1783 int nmi_message_lost;
1784 bool in_sched = false;
1785 /* cpu currently holding logbuf_lock in this function */
1786 static unsigned int logbuf_cpu = UINT_MAX;
1787
1788 if (level == LOGLEVEL_SCHED) {
1789 level = LOGLEVEL_DEFAULT;
1790 in_sched = true;
1791 }
1792
1793 boot_delay_msec(level);
1794 printk_delay();
1795
1796 local_irq_save(flags);
1797 this_cpu = smp_processor_id();
1798
1799 /*
1800 * Ouch, printk recursed into itself!
1801 */
1802 if (unlikely(logbuf_cpu == this_cpu)) {
1803 /*
1804 * If a crash is occurring during printk() on this CPU,
1805 * then try to get the crash message out but make sure
1806 * we can't deadlock. Otherwise just return to avoid the
1807 * recursion and return - but flag the recursion so that
1808 * it can be printed at the next appropriate moment:
1809 */
1810 if (!oops_in_progress && !lockdep_recursing(current)) {
1811 recursion_bug = true;
1812 local_irq_restore(flags);
1813 return 0;
1814 }
1815 zap_locks();
1816 }
1817
1818 lockdep_off();
1819 /* This stops the holder of console_sem just where we want him */
1820 raw_spin_lock(&logbuf_lock);
1821 logbuf_cpu = this_cpu;
1822
1823 if (unlikely(recursion_bug)) {
1824 static const char recursion_msg[] =
1825 "BUG: recent printk recursion!";
1826
1827 recursion_bug = false;
1828 /* emit KERN_CRIT message */
1829 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1830 NULL, 0, recursion_msg,
1831 strlen(recursion_msg));
1832 }
1833
1834 nmi_message_lost = get_nmi_message_lost();
1835 if (unlikely(nmi_message_lost)) {
1836 text_len = scnprintf(textbuf, sizeof(textbuf),
1837 "BAD LUCK: lost %d message(s) from NMI context!",
1838 nmi_message_lost);
1839 printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1840 NULL, 0, textbuf, text_len);
1841 }
1842
1843 /*
1844 * The printf needs to come first; we need the syslog
1845 * prefix which might be passed-in as a parameter.
1846 */
1847 text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1848
1849 /* mark and strip a trailing newline */
1850 if (text_len && text[text_len-1] == '\n') {
1851 text_len--;
1852 lflags |= LOG_NEWLINE;
1853 }
1854
1855 /* strip kernel syslog prefix and extract log level or control flags */
1856 if (facility == 0) {
1857 int kern_level;
1858
1859 while ((kern_level = printk_get_level(text)) != 0) {
1860 switch (kern_level) {
1861 case '0' ... '7':
1862 if (level == LOGLEVEL_DEFAULT)
1863 level = kern_level - '0';
1864 /* fallthrough */
1865 case 'd': /* KERN_DEFAULT */
1866 lflags |= LOG_PREFIX;
1867 break;
1868 case 'c': /* KERN_CONT */
1869 lflags |= LOG_CONT;
1870 }
1871
1872 text_len -= 2;
1873 text += 2;
1874 }
1875 }
1876
1877 #ifdef CONFIG_EARLY_PRINTK_DIRECT
1878 printascii(text);
1879 #endif
1880
1881 if (level == LOGLEVEL_DEFAULT)
1882 level = default_message_loglevel;
1883
1884 if (dict)
1885 lflags |= LOG_PREFIX|LOG_NEWLINE;
1886
1887 printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len);
1888
1889 logbuf_cpu = UINT_MAX;
1890 raw_spin_unlock(&logbuf_lock);
1891 lockdep_on();
1892 local_irq_restore(flags);
1893
1894 /* If called from the scheduler, we can not call up(). */
1895 if (!in_sched) {
1896 lockdep_off();
1897 /*
1898 * Try to acquire and then immediately release the console
1899 * semaphore. The release will print out buffers and wake up
1900 * /dev/kmsg and syslog() users.
1901 */
1902 if (console_trylock())
1903 console_unlock();
1904 lockdep_on();
1905 }
1906
1907 return printed_len;
1908 }
1909 EXPORT_SYMBOL(vprintk_emit);
1910
vprintk(const char * fmt,va_list args)1911 asmlinkage int vprintk(const char *fmt, va_list args)
1912 {
1913 return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1914 }
1915 EXPORT_SYMBOL(vprintk);
1916
printk_emit(int facility,int level,const char * dict,size_t dictlen,const char * fmt,...)1917 asmlinkage int printk_emit(int facility, int level,
1918 const char *dict, size_t dictlen,
1919 const char *fmt, ...)
1920 {
1921 va_list args;
1922 int r;
1923
1924 va_start(args, fmt);
1925 r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1926 va_end(args);
1927
1928 return r;
1929 }
1930 EXPORT_SYMBOL(printk_emit);
1931
vprintk_default(const char * fmt,va_list args)1932 int vprintk_default(const char *fmt, va_list args)
1933 {
1934 int r;
1935
1936 #ifdef CONFIG_KGDB_KDB
1937 if (unlikely(kdb_trap_printk)) {
1938 r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1939 return r;
1940 }
1941 #endif
1942 r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1943
1944 return r;
1945 }
1946 EXPORT_SYMBOL_GPL(vprintk_default);
1947
1948 /**
1949 * printk - print a kernel message
1950 * @fmt: format string
1951 *
1952 * This is printk(). It can be called from any context. We want it to work.
1953 *
1954 * We try to grab the console_lock. If we succeed, it's easy - we log the
1955 * output and call the console drivers. If we fail to get the semaphore, we
1956 * place the output into the log buffer and return. The current holder of
1957 * the console_sem will notice the new output in console_unlock(); and will
1958 * send it to the consoles before releasing the lock.
1959 *
1960 * One effect of this deferred printing is that code which calls printk() and
1961 * then changes console_loglevel may break. This is because console_loglevel
1962 * is inspected when the actual printing occurs.
1963 *
1964 * See also:
1965 * printf(3)
1966 *
1967 * See the vsnprintf() documentation for format string extensions over C99.
1968 */
printk(const char * fmt,...)1969 asmlinkage __visible int printk(const char *fmt, ...)
1970 {
1971 va_list args;
1972 int r;
1973
1974 va_start(args, fmt);
1975 r = vprintk_func(fmt, args);
1976 va_end(args);
1977
1978 return r;
1979 }
1980 EXPORT_SYMBOL(printk);
1981
1982 #else /* CONFIG_PRINTK */
1983
1984 #define LOG_LINE_MAX 0
1985 #define PREFIX_MAX 0
1986
1987 static u64 syslog_seq;
1988 static u32 syslog_idx;
1989 static u64 console_seq;
1990 static u32 console_idx;
1991 static enum log_flags syslog_prev;
1992 static u64 log_first_seq;
1993 static u32 log_first_idx;
1994 static u64 log_next_seq;
1995 static enum log_flags console_prev;
1996 static struct cont {
1997 size_t len;
1998 size_t cons;
1999 u8 level;
2000 bool flushed:1;
2001 } cont;
log_text(const struct printk_log * msg)2002 static char *log_text(const struct printk_log *msg) { return NULL; }
log_dict(const struct printk_log * msg)2003 static char *log_dict(const struct printk_log *msg) { return NULL; }
log_from_idx(u32 idx)2004 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
log_next(u32 idx)2005 static u32 log_next(u32 idx) { return 0; }
msg_print_ext_header(char * buf,size_t size,struct printk_log * msg,u64 seq,enum log_flags prev_flags)2006 static ssize_t msg_print_ext_header(char *buf, size_t size,
2007 struct printk_log *msg, u64 seq,
2008 enum log_flags prev_flags) { return 0; }
msg_print_ext_body(char * buf,size_t size,char * dict,size_t dict_len,char * text,size_t text_len)2009 static ssize_t msg_print_ext_body(char *buf, size_t size,
2010 char *dict, size_t dict_len,
2011 char *text, size_t text_len) { return 0; }
call_console_drivers(int level,const char * ext_text,size_t ext_len,const char * text,size_t len)2012 static void call_console_drivers(int level,
2013 const char *ext_text, size_t ext_len,
2014 const char *text, size_t len) {}
msg_print_text(const struct printk_log * msg,enum log_flags prev,bool syslog,char * buf,size_t size)2015 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
2016 bool syslog, char *buf, size_t size) { return 0; }
cont_print_text(char * text,size_t size)2017 static size_t cont_print_text(char *text, size_t size) { return 0; }
suppress_message_printing(int level)2018 static bool suppress_message_printing(int level) { return false; }
2019
2020 /* Still needs to be defined for users */
2021 DEFINE_PER_CPU(printk_func_t, printk_func);
2022
2023 #endif /* CONFIG_PRINTK */
2024
2025 #ifdef CONFIG_EARLY_PRINTK
2026 struct console *early_console;
2027
early_printk(const char * fmt,...)2028 asmlinkage __visible void early_printk(const char *fmt, ...)
2029 {
2030 va_list ap;
2031 char buf[512];
2032 int n;
2033
2034 if (!early_console)
2035 return;
2036
2037 va_start(ap, fmt);
2038 n = vscnprintf(buf, sizeof(buf), fmt, ap);
2039 va_end(ap);
2040
2041 early_console->write(early_console, buf, n);
2042 }
2043 #endif
2044
__add_preferred_console(char * name,int idx,char * options,char * brl_options)2045 static int __add_preferred_console(char *name, int idx, char *options,
2046 char *brl_options)
2047 {
2048 struct console_cmdline *c;
2049 int i;
2050
2051 /*
2052 * See if this tty is not yet registered, and
2053 * if we have a slot free.
2054 */
2055 for (i = 0, c = console_cmdline;
2056 i < MAX_CMDLINECONSOLES && c->name[0];
2057 i++, c++) {
2058 if (strcmp(c->name, name) == 0 && c->index == idx) {
2059 if (!brl_options)
2060 selected_console = i;
2061 return 0;
2062 }
2063 }
2064 if (i == MAX_CMDLINECONSOLES)
2065 return -E2BIG;
2066 if (!brl_options)
2067 selected_console = i;
2068 strlcpy(c->name, name, sizeof(c->name));
2069 c->options = options;
2070 braille_set_options(c, brl_options);
2071
2072 c->index = idx;
2073 return 0;
2074 }
2075 /*
2076 * Set up a console. Called via do_early_param() in init/main.c
2077 * for each "console=" parameter in the boot command line.
2078 */
console_setup(char * str)2079 static int __init console_setup(char *str)
2080 {
2081 char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2082 char *s, *options, *brl_options = NULL;
2083 int idx;
2084
2085 if (_braille_console_setup(&str, &brl_options))
2086 return 1;
2087
2088 /*
2089 * Decode str into name, index, options.
2090 */
2091 if (str[0] >= '0' && str[0] <= '9') {
2092 strcpy(buf, "ttyS");
2093 strncpy(buf + 4, str, sizeof(buf) - 5);
2094 } else {
2095 strncpy(buf, str, sizeof(buf) - 1);
2096 }
2097 buf[sizeof(buf) - 1] = 0;
2098 options = strchr(str, ',');
2099 if (options)
2100 *(options++) = 0;
2101 #ifdef __sparc__
2102 if (!strcmp(str, "ttya"))
2103 strcpy(buf, "ttyS0");
2104 if (!strcmp(str, "ttyb"))
2105 strcpy(buf, "ttyS1");
2106 #endif
2107 for (s = buf; *s; s++)
2108 if (isdigit(*s) || *s == ',')
2109 break;
2110 idx = simple_strtoul(s, NULL, 10);
2111 *s = 0;
2112
2113 __add_preferred_console(buf, idx, options, brl_options);
2114 console_set_on_cmdline = 1;
2115 return 1;
2116 }
2117 __setup("console=", console_setup);
2118
2119 /**
2120 * add_preferred_console - add a device to the list of preferred consoles.
2121 * @name: device name
2122 * @idx: device index
2123 * @options: options for this console
2124 *
2125 * The last preferred console added will be used for kernel messages
2126 * and stdin/out/err for init. Normally this is used by console_setup
2127 * above to handle user-supplied console arguments; however it can also
2128 * be used by arch-specific code either to override the user or more
2129 * commonly to provide a default console (ie from PROM variables) when
2130 * the user has not supplied one.
2131 */
add_preferred_console(char * name,int idx,char * options)2132 int add_preferred_console(char *name, int idx, char *options)
2133 {
2134 return __add_preferred_console(name, idx, options, NULL);
2135 }
2136
2137 bool console_suspend_enabled = true;
2138 EXPORT_SYMBOL(console_suspend_enabled);
2139
console_suspend_disable(char * str)2140 static int __init console_suspend_disable(char *str)
2141 {
2142 console_suspend_enabled = false;
2143 return 1;
2144 }
2145 __setup("no_console_suspend", console_suspend_disable);
2146 module_param_named(console_suspend, console_suspend_enabled,
2147 bool, S_IRUGO | S_IWUSR);
2148 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2149 " and hibernate operations");
2150
2151 /**
2152 * suspend_console - suspend the console subsystem
2153 *
2154 * This disables printk() while we go into suspend states
2155 */
suspend_console(void)2156 void suspend_console(void)
2157 {
2158 if (!console_suspend_enabled)
2159 return;
2160 printk("Suspending console(s) (use no_console_suspend to debug)\n");
2161 console_lock();
2162 console_suspended = 1;
2163 up_console_sem();
2164 }
2165
resume_console(void)2166 void resume_console(void)
2167 {
2168 if (!console_suspend_enabled)
2169 return;
2170 down_console_sem();
2171 console_suspended = 0;
2172 console_unlock();
2173 }
2174
2175 /**
2176 * console_cpu_notify - print deferred console messages after CPU hotplug
2177 * @self: notifier struct
2178 * @action: CPU hotplug event
2179 * @hcpu: unused
2180 *
2181 * If printk() is called from a CPU that is not online yet, the messages
2182 * will be spooled but will not show up on the console. This function is
2183 * called when a new CPU comes online (or fails to come up), and ensures
2184 * that any such output gets printed.
2185 */
console_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)2186 static int console_cpu_notify(struct notifier_block *self,
2187 unsigned long action, void *hcpu)
2188 {
2189 switch (action) {
2190 case CPU_ONLINE:
2191 case CPU_DEAD:
2192 case CPU_DOWN_FAILED:
2193 case CPU_UP_CANCELED:
2194 console_lock();
2195 console_unlock();
2196 }
2197 return NOTIFY_OK;
2198 }
2199
2200 /**
2201 * console_lock - lock the console system for exclusive use.
2202 *
2203 * Acquires a lock which guarantees that the caller has
2204 * exclusive access to the console system and the console_drivers list.
2205 *
2206 * Can sleep, returns nothing.
2207 */
console_lock(void)2208 void console_lock(void)
2209 {
2210 might_sleep();
2211
2212 down_console_sem();
2213 if (console_suspended)
2214 return;
2215 console_locked = 1;
2216 console_may_schedule = 1;
2217 }
2218 EXPORT_SYMBOL(console_lock);
2219
2220 /**
2221 * console_trylock - try to lock the console system for exclusive use.
2222 *
2223 * Try to acquire a lock which guarantees that the caller has exclusive
2224 * access to the console system and the console_drivers list.
2225 *
2226 * returns 1 on success, and 0 on failure to acquire the lock.
2227 */
console_trylock(void)2228 int console_trylock(void)
2229 {
2230 if (down_trylock_console_sem())
2231 return 0;
2232 if (console_suspended) {
2233 up_console_sem();
2234 return 0;
2235 }
2236 console_locked = 1;
2237 /*
2238 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2239 * safe to schedule (e.g. calling printk while holding a spin_lock),
2240 * because preempt_disable()/preempt_enable() are just barriers there
2241 * and preempt_count() is always 0.
2242 *
2243 * RCU read sections have a separate preemption counter when
2244 * PREEMPT_RCU enabled thus we must take extra care and check
2245 * rcu_preempt_depth(), otherwise RCU read sections modify
2246 * preempt_count().
2247 */
2248 console_may_schedule = !oops_in_progress &&
2249 preemptible() &&
2250 !rcu_preempt_depth();
2251 return 1;
2252 }
2253 EXPORT_SYMBOL(console_trylock);
2254
is_console_locked(void)2255 int is_console_locked(void)
2256 {
2257 return console_locked;
2258 }
2259
2260 /*
2261 * Check if we have any console that is capable of printing while cpu is
2262 * booting or shutting down. Requires console_sem.
2263 */
have_callable_console(void)2264 static int have_callable_console(void)
2265 {
2266 struct console *con;
2267
2268 for_each_console(con)
2269 if ((con->flags & CON_ENABLED) &&
2270 (con->flags & CON_ANYTIME))
2271 return 1;
2272
2273 return 0;
2274 }
2275
2276 /*
2277 * Can we actually use the console at this time on this cpu?
2278 *
2279 * Console drivers may assume that per-cpu resources have been allocated. So
2280 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2281 * call them until this CPU is officially up.
2282 */
can_use_console(void)2283 static inline int can_use_console(void)
2284 {
2285 return cpu_online(raw_smp_processor_id()) || have_callable_console();
2286 }
2287
console_cont_flush(char * text,size_t size)2288 static void console_cont_flush(char *text, size_t size)
2289 {
2290 unsigned long flags;
2291 size_t len;
2292
2293 raw_spin_lock_irqsave(&logbuf_lock, flags);
2294
2295 if (!cont.len)
2296 goto out;
2297
2298 if (suppress_message_printing(cont.level)) {
2299 cont.cons = cont.len;
2300 if (cont.flushed)
2301 cont.len = 0;
2302 goto out;
2303 }
2304
2305 /*
2306 * We still queue earlier records, likely because the console was
2307 * busy. The earlier ones need to be printed before this one, we
2308 * did not flush any fragment so far, so just let it queue up.
2309 */
2310 if (console_seq < log_next_seq && !cont.cons)
2311 goto out;
2312
2313 len = cont_print_text(text, size);
2314 raw_spin_unlock(&logbuf_lock);
2315 stop_critical_timings();
2316 call_console_drivers(cont.level, NULL, 0, text, len);
2317 start_critical_timings();
2318 local_irq_restore(flags);
2319 return;
2320 out:
2321 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2322 }
2323
2324 /**
2325 * console_unlock - unlock the console system
2326 *
2327 * Releases the console_lock which the caller holds on the console system
2328 * and the console driver list.
2329 *
2330 * While the console_lock was held, console output may have been buffered
2331 * by printk(). If this is the case, console_unlock(); emits
2332 * the output prior to releasing the lock.
2333 *
2334 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2335 *
2336 * console_unlock(); may be called from any context.
2337 */
console_unlock(void)2338 void console_unlock(void)
2339 {
2340 static char ext_text[CONSOLE_EXT_LOG_MAX];
2341 static char text[LOG_LINE_MAX + PREFIX_MAX];
2342 static u64 seen_seq;
2343 unsigned long flags;
2344 bool wake_klogd = false;
2345 bool do_cond_resched, retry;
2346
2347 if (console_suspended) {
2348 up_console_sem();
2349 return;
2350 }
2351
2352 /*
2353 * Console drivers are called with interrupts disabled, so
2354 * @console_may_schedule should be cleared before; however, we may
2355 * end up dumping a lot of lines, for example, if called from
2356 * console registration path, and should invoke cond_resched()
2357 * between lines if allowable. Not doing so can cause a very long
2358 * scheduling stall on a slow console leading to RCU stall and
2359 * softlockup warnings which exacerbate the issue with more
2360 * messages practically incapacitating the system.
2361 *
2362 * console_trylock() is not able to detect the preemptive
2363 * context reliably. Therefore the value must be stored before
2364 * and cleared after the the "again" goto label.
2365 */
2366 do_cond_resched = console_may_schedule;
2367 again:
2368 console_may_schedule = 0;
2369
2370 /*
2371 * We released the console_sem lock, so we need to recheck if
2372 * cpu is online and (if not) is there at least one CON_ANYTIME
2373 * console.
2374 */
2375 if (!can_use_console()) {
2376 console_locked = 0;
2377 up_console_sem();
2378 return;
2379 }
2380
2381 /* flush buffered message fragment immediately to console */
2382 console_cont_flush(text, sizeof(text));
2383
2384 for (;;) {
2385 struct printk_log *msg;
2386 size_t ext_len = 0;
2387 size_t len;
2388 int level;
2389
2390 raw_spin_lock_irqsave(&logbuf_lock, flags);
2391 if (seen_seq != log_next_seq) {
2392 wake_klogd = true;
2393 seen_seq = log_next_seq;
2394 }
2395
2396 if (console_seq < log_first_seq) {
2397 len = sprintf(text, "** %u printk messages dropped ** ",
2398 (unsigned)(log_first_seq - console_seq));
2399
2400 /* messages are gone, move to first one */
2401 console_seq = log_first_seq;
2402 console_idx = log_first_idx;
2403 console_prev = 0;
2404 } else {
2405 len = 0;
2406 }
2407 skip:
2408 if (console_seq == log_next_seq)
2409 break;
2410
2411 msg = log_from_idx(console_idx);
2412 level = msg->level;
2413 if ((msg->flags & LOG_NOCONS) ||
2414 suppress_message_printing(level)) {
2415 /*
2416 * Skip record we have buffered and already printed
2417 * directly to the console when we received it, and
2418 * record that has level above the console loglevel.
2419 */
2420 console_idx = log_next(console_idx);
2421 console_seq++;
2422 /*
2423 * We will get here again when we register a new
2424 * CON_PRINTBUFFER console. Clear the flag so we
2425 * will properly dump everything later.
2426 */
2427 msg->flags &= ~LOG_NOCONS;
2428 console_prev = msg->flags;
2429 goto skip;
2430 }
2431
2432 len += msg_print_text(msg, console_prev, false,
2433 text + len, sizeof(text) - len);
2434 if (nr_ext_console_drivers) {
2435 ext_len = msg_print_ext_header(ext_text,
2436 sizeof(ext_text),
2437 msg, console_seq, console_prev);
2438 ext_len += msg_print_ext_body(ext_text + ext_len,
2439 sizeof(ext_text) - ext_len,
2440 log_dict(msg), msg->dict_len,
2441 log_text(msg), msg->text_len);
2442 }
2443 console_idx = log_next(console_idx);
2444 console_seq++;
2445 console_prev = msg->flags;
2446 raw_spin_unlock(&logbuf_lock);
2447
2448 stop_critical_timings(); /* don't trace print latency */
2449 call_console_drivers(level, ext_text, ext_len, text, len);
2450 start_critical_timings();
2451 local_irq_restore(flags);
2452
2453 if (do_cond_resched)
2454 cond_resched();
2455 }
2456 console_locked = 0;
2457
2458 /* Release the exclusive_console once it is used */
2459 if (unlikely(exclusive_console))
2460 exclusive_console = NULL;
2461
2462 raw_spin_unlock(&logbuf_lock);
2463
2464 up_console_sem();
2465
2466 /*
2467 * Someone could have filled up the buffer again, so re-check if there's
2468 * something to flush. In case we cannot trylock the console_sem again,
2469 * there's a new owner and the console_unlock() from them will do the
2470 * flush, no worries.
2471 */
2472 raw_spin_lock(&logbuf_lock);
2473 retry = console_seq != log_next_seq;
2474 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2475
2476 if (retry && console_trylock())
2477 goto again;
2478
2479 if (wake_klogd)
2480 wake_up_klogd();
2481 }
2482 EXPORT_SYMBOL(console_unlock);
2483
2484 /**
2485 * console_conditional_schedule - yield the CPU if required
2486 *
2487 * If the console code is currently allowed to sleep, and
2488 * if this CPU should yield the CPU to another task, do
2489 * so here.
2490 *
2491 * Must be called within console_lock();.
2492 */
console_conditional_schedule(void)2493 void __sched console_conditional_schedule(void)
2494 {
2495 if (console_may_schedule)
2496 cond_resched();
2497 }
2498 EXPORT_SYMBOL(console_conditional_schedule);
2499
console_unblank(void)2500 void console_unblank(void)
2501 {
2502 struct console *c;
2503
2504 /*
2505 * console_unblank can no longer be called in interrupt context unless
2506 * oops_in_progress is set to 1..
2507 */
2508 if (oops_in_progress) {
2509 if (down_trylock_console_sem() != 0)
2510 return;
2511 } else
2512 console_lock();
2513
2514 console_locked = 1;
2515 console_may_schedule = 0;
2516 for_each_console(c)
2517 if ((c->flags & CON_ENABLED) && c->unblank)
2518 c->unblank();
2519 console_unlock();
2520 }
2521
2522 /**
2523 * console_flush_on_panic - flush console content on panic
2524 *
2525 * Immediately output all pending messages no matter what.
2526 */
console_flush_on_panic(void)2527 void console_flush_on_panic(void)
2528 {
2529 /*
2530 * If someone else is holding the console lock, trylock will fail
2531 * and may_schedule may be set. Ignore and proceed to unlock so
2532 * that messages are flushed out. As this can be called from any
2533 * context and we don't want to get preempted while flushing,
2534 * ensure may_schedule is cleared.
2535 */
2536 console_trylock();
2537 console_may_schedule = 0;
2538 console_unlock();
2539 }
2540
2541 /*
2542 * Return the console tty driver structure and its associated index
2543 */
console_device(int * index)2544 struct tty_driver *console_device(int *index)
2545 {
2546 struct console *c;
2547 struct tty_driver *driver = NULL;
2548
2549 console_lock();
2550 for_each_console(c) {
2551 if (!c->device)
2552 continue;
2553 driver = c->device(c, index);
2554 if (driver)
2555 break;
2556 }
2557 console_unlock();
2558 return driver;
2559 }
2560
2561 /*
2562 * Prevent further output on the passed console device so that (for example)
2563 * serial drivers can disable console output before suspending a port, and can
2564 * re-enable output afterwards.
2565 */
console_stop(struct console * console)2566 void console_stop(struct console *console)
2567 {
2568 console_lock();
2569 console->flags &= ~CON_ENABLED;
2570 console_unlock();
2571 }
2572 EXPORT_SYMBOL(console_stop);
2573
console_start(struct console * console)2574 void console_start(struct console *console)
2575 {
2576 console_lock();
2577 console->flags |= CON_ENABLED;
2578 console_unlock();
2579 }
2580 EXPORT_SYMBOL(console_start);
2581
2582 static int __read_mostly keep_bootcon;
2583
keep_bootcon_setup(char * str)2584 static int __init keep_bootcon_setup(char *str)
2585 {
2586 keep_bootcon = 1;
2587 pr_info("debug: skip boot console de-registration.\n");
2588
2589 return 0;
2590 }
2591
2592 early_param("keep_bootcon", keep_bootcon_setup);
2593
2594 /*
2595 * The console driver calls this routine during kernel initialization
2596 * to register the console printing procedure with printk() and to
2597 * print any messages that were printed by the kernel before the
2598 * console driver was initialized.
2599 *
2600 * This can happen pretty early during the boot process (because of
2601 * early_printk) - sometimes before setup_arch() completes - be careful
2602 * of what kernel features are used - they may not be initialised yet.
2603 *
2604 * There are two types of consoles - bootconsoles (early_printk) and
2605 * "real" consoles (everything which is not a bootconsole) which are
2606 * handled differently.
2607 * - Any number of bootconsoles can be registered at any time.
2608 * - As soon as a "real" console is registered, all bootconsoles
2609 * will be unregistered automatically.
2610 * - Once a "real" console is registered, any attempt to register a
2611 * bootconsoles will be rejected
2612 */
register_console(struct console * newcon)2613 void register_console(struct console *newcon)
2614 {
2615 int i;
2616 unsigned long flags;
2617 struct console *bcon = NULL;
2618 struct console_cmdline *c;
2619
2620 if (console_drivers)
2621 for_each_console(bcon)
2622 if (WARN(bcon == newcon,
2623 "console '%s%d' already registered\n",
2624 bcon->name, bcon->index))
2625 return;
2626
2627 /*
2628 * before we register a new CON_BOOT console, make sure we don't
2629 * already have a valid console
2630 */
2631 if (console_drivers && newcon->flags & CON_BOOT) {
2632 /* find the last or real console */
2633 for_each_console(bcon) {
2634 if (!(bcon->flags & CON_BOOT)) {
2635 pr_info("Too late to register bootconsole %s%d\n",
2636 newcon->name, newcon->index);
2637 return;
2638 }
2639 }
2640 }
2641
2642 if (console_drivers && console_drivers->flags & CON_BOOT)
2643 bcon = console_drivers;
2644
2645 if (preferred_console < 0 || bcon || !console_drivers)
2646 preferred_console = selected_console;
2647
2648 /*
2649 * See if we want to use this console driver. If we
2650 * didn't select a console we take the first one
2651 * that registers here.
2652 */
2653 if (preferred_console < 0) {
2654 if (newcon->index < 0)
2655 newcon->index = 0;
2656 if (newcon->setup == NULL ||
2657 newcon->setup(newcon, NULL) == 0) {
2658 newcon->flags |= CON_ENABLED;
2659 if (newcon->device) {
2660 newcon->flags |= CON_CONSDEV;
2661 preferred_console = 0;
2662 }
2663 }
2664 }
2665
2666 /*
2667 * See if this console matches one we selected on
2668 * the command line.
2669 */
2670 for (i = 0, c = console_cmdline;
2671 i < MAX_CMDLINECONSOLES && c->name[0];
2672 i++, c++) {
2673 if (!newcon->match ||
2674 newcon->match(newcon, c->name, c->index, c->options) != 0) {
2675 /* default matching */
2676 BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2677 if (strcmp(c->name, newcon->name) != 0)
2678 continue;
2679 if (newcon->index >= 0 &&
2680 newcon->index != c->index)
2681 continue;
2682 if (newcon->index < 0)
2683 newcon->index = c->index;
2684
2685 if (_braille_register_console(newcon, c))
2686 return;
2687
2688 if (newcon->setup &&
2689 newcon->setup(newcon, c->options) != 0)
2690 break;
2691 }
2692
2693 newcon->flags |= CON_ENABLED;
2694 if (i == selected_console) {
2695 newcon->flags |= CON_CONSDEV;
2696 preferred_console = selected_console;
2697 }
2698 break;
2699 }
2700
2701 if (!(newcon->flags & CON_ENABLED))
2702 return;
2703
2704 /*
2705 * If we have a bootconsole, and are switching to a real console,
2706 * don't print everything out again, since when the boot console, and
2707 * the real console are the same physical device, it's annoying to
2708 * see the beginning boot messages twice
2709 */
2710 if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2711 newcon->flags &= ~CON_PRINTBUFFER;
2712
2713 /*
2714 * Put this console in the list - keep the
2715 * preferred driver at the head of the list.
2716 */
2717 console_lock();
2718 if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2719 newcon->next = console_drivers;
2720 console_drivers = newcon;
2721 if (newcon->next)
2722 newcon->next->flags &= ~CON_CONSDEV;
2723 } else {
2724 newcon->next = console_drivers->next;
2725 console_drivers->next = newcon;
2726 }
2727
2728 if (newcon->flags & CON_EXTENDED)
2729 if (!nr_ext_console_drivers++)
2730 pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2731
2732 if (newcon->flags & CON_PRINTBUFFER) {
2733 /*
2734 * console_unlock(); will print out the buffered messages
2735 * for us.
2736 */
2737 raw_spin_lock_irqsave(&logbuf_lock, flags);
2738 console_seq = syslog_seq;
2739 console_idx = syslog_idx;
2740 console_prev = syslog_prev;
2741 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2742 /*
2743 * We're about to replay the log buffer. Only do this to the
2744 * just-registered console to avoid excessive message spam to
2745 * the already-registered consoles.
2746 */
2747 exclusive_console = newcon;
2748 }
2749 console_unlock();
2750 console_sysfs_notify();
2751
2752 /*
2753 * By unregistering the bootconsoles after we enable the real console
2754 * we get the "console xxx enabled" message on all the consoles -
2755 * boot consoles, real consoles, etc - this is to ensure that end
2756 * users know there might be something in the kernel's log buffer that
2757 * went to the bootconsole (that they do not see on the real console)
2758 */
2759 pr_info("%sconsole [%s%d] enabled\n",
2760 (newcon->flags & CON_BOOT) ? "boot" : "" ,
2761 newcon->name, newcon->index);
2762 if (bcon &&
2763 ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2764 !keep_bootcon) {
2765 /* We need to iterate through all boot consoles, to make
2766 * sure we print everything out, before we unregister them.
2767 */
2768 for_each_console(bcon)
2769 if (bcon->flags & CON_BOOT)
2770 unregister_console(bcon);
2771 }
2772 }
2773 EXPORT_SYMBOL(register_console);
2774
unregister_console(struct console * console)2775 int unregister_console(struct console *console)
2776 {
2777 struct console *a, *b;
2778 int res;
2779
2780 pr_info("%sconsole [%s%d] disabled\n",
2781 (console->flags & CON_BOOT) ? "boot" : "" ,
2782 console->name, console->index);
2783
2784 res = _braille_unregister_console(console);
2785 if (res)
2786 return res;
2787
2788 res = 1;
2789 console_lock();
2790 if (console_drivers == console) {
2791 console_drivers=console->next;
2792 res = 0;
2793 } else if (console_drivers) {
2794 for (a=console_drivers->next, b=console_drivers ;
2795 a; b=a, a=b->next) {
2796 if (a == console) {
2797 b->next = a->next;
2798 res = 0;
2799 break;
2800 }
2801 }
2802 }
2803
2804 if (!res && (console->flags & CON_EXTENDED))
2805 nr_ext_console_drivers--;
2806
2807 /*
2808 * If this isn't the last console and it has CON_CONSDEV set, we
2809 * need to set it on the next preferred console.
2810 */
2811 if (console_drivers != NULL && console->flags & CON_CONSDEV)
2812 console_drivers->flags |= CON_CONSDEV;
2813
2814 console->flags &= ~CON_ENABLED;
2815 console_unlock();
2816 console_sysfs_notify();
2817 return res;
2818 }
2819 EXPORT_SYMBOL(unregister_console);
2820
2821 /*
2822 * Some boot consoles access data that is in the init section and which will
2823 * be discarded after the initcalls have been run. To make sure that no code
2824 * will access this data, unregister the boot consoles in a late initcall.
2825 *
2826 * If for some reason, such as deferred probe or the driver being a loadable
2827 * module, the real console hasn't registered yet at this point, there will
2828 * be a brief interval in which no messages are logged to the console, which
2829 * makes it difficult to diagnose problems that occur during this time.
2830 *
2831 * To mitigate this problem somewhat, only unregister consoles whose memory
2832 * intersects with the init section. Note that code exists elsewhere to get
2833 * rid of the boot console as soon as the proper console shows up, so there
2834 * won't be side-effects from postponing the removal.
2835 */
printk_late_init(void)2836 static int __init printk_late_init(void)
2837 {
2838 struct console *con;
2839
2840 for_each_console(con) {
2841 if (!keep_bootcon && con->flags & CON_BOOT) {
2842 /*
2843 * Make sure to unregister boot consoles whose data
2844 * resides in the init section before the init section
2845 * is discarded. Boot consoles whose data will stick
2846 * around will automatically be unregistered when the
2847 * proper console replaces them.
2848 */
2849 if (init_section_intersects(con, sizeof(*con)))
2850 unregister_console(con);
2851 }
2852 }
2853 hotcpu_notifier(console_cpu_notify, 0);
2854 return 0;
2855 }
2856 late_initcall(printk_late_init);
2857
2858 #if defined CONFIG_PRINTK
2859 /*
2860 * Delayed printk version, for scheduler-internal messages:
2861 */
2862 #define PRINTK_PENDING_WAKEUP 0x01
2863 #define PRINTK_PENDING_OUTPUT 0x02
2864
2865 static DEFINE_PER_CPU(int, printk_pending);
2866
wake_up_klogd_work_func(struct irq_work * irq_work)2867 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2868 {
2869 int pending = __this_cpu_xchg(printk_pending, 0);
2870
2871 if (pending & PRINTK_PENDING_OUTPUT) {
2872 /* If trylock fails, someone else is doing the printing */
2873 if (console_trylock())
2874 console_unlock();
2875 }
2876
2877 if (pending & PRINTK_PENDING_WAKEUP)
2878 wake_up_interruptible(&log_wait);
2879 }
2880
2881 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2882 .func = wake_up_klogd_work_func,
2883 .flags = IRQ_WORK_LAZY,
2884 };
2885
wake_up_klogd(void)2886 void wake_up_klogd(void)
2887 {
2888 preempt_disable();
2889 if (waitqueue_active(&log_wait)) {
2890 this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2891 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2892 }
2893 preempt_enable();
2894 }
2895
printk_deferred(const char * fmt,...)2896 int printk_deferred(const char *fmt, ...)
2897 {
2898 va_list args;
2899 int r;
2900
2901 preempt_disable();
2902 va_start(args, fmt);
2903 r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2904 va_end(args);
2905
2906 __this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2907 irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2908 preempt_enable();
2909
2910 return r;
2911 }
2912
2913 /*
2914 * printk rate limiting, lifted from the networking subsystem.
2915 *
2916 * This enforces a rate limit: not more than 10 kernel messages
2917 * every 5s to make a denial-of-service attack impossible.
2918 */
2919 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2920
__printk_ratelimit(const char * func)2921 int __printk_ratelimit(const char *func)
2922 {
2923 return ___ratelimit(&printk_ratelimit_state, func);
2924 }
2925 EXPORT_SYMBOL(__printk_ratelimit);
2926
2927 /**
2928 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2929 * @caller_jiffies: pointer to caller's state
2930 * @interval_msecs: minimum interval between prints
2931 *
2932 * printk_timed_ratelimit() returns true if more than @interval_msecs
2933 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2934 * returned true.
2935 */
printk_timed_ratelimit(unsigned long * caller_jiffies,unsigned int interval_msecs)2936 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2937 unsigned int interval_msecs)
2938 {
2939 unsigned long elapsed = jiffies - *caller_jiffies;
2940
2941 if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2942 return false;
2943
2944 *caller_jiffies = jiffies;
2945 return true;
2946 }
2947 EXPORT_SYMBOL(printk_timed_ratelimit);
2948
2949 static DEFINE_SPINLOCK(dump_list_lock);
2950 static LIST_HEAD(dump_list);
2951
2952 /**
2953 * kmsg_dump_register - register a kernel log dumper.
2954 * @dumper: pointer to the kmsg_dumper structure
2955 *
2956 * Adds a kernel log dumper to the system. The dump callback in the
2957 * structure will be called when the kernel oopses or panics and must be
2958 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2959 */
kmsg_dump_register(struct kmsg_dumper * dumper)2960 int kmsg_dump_register(struct kmsg_dumper *dumper)
2961 {
2962 unsigned long flags;
2963 int err = -EBUSY;
2964
2965 /* The dump callback needs to be set */
2966 if (!dumper->dump)
2967 return -EINVAL;
2968
2969 spin_lock_irqsave(&dump_list_lock, flags);
2970 /* Don't allow registering multiple times */
2971 if (!dumper->registered) {
2972 dumper->registered = 1;
2973 list_add_tail_rcu(&dumper->list, &dump_list);
2974 err = 0;
2975 }
2976 spin_unlock_irqrestore(&dump_list_lock, flags);
2977
2978 return err;
2979 }
2980 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2981
2982 /**
2983 * kmsg_dump_unregister - unregister a kmsg dumper.
2984 * @dumper: pointer to the kmsg_dumper structure
2985 *
2986 * Removes a dump device from the system. Returns zero on success and
2987 * %-EINVAL otherwise.
2988 */
kmsg_dump_unregister(struct kmsg_dumper * dumper)2989 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2990 {
2991 unsigned long flags;
2992 int err = -EINVAL;
2993
2994 spin_lock_irqsave(&dump_list_lock, flags);
2995 if (dumper->registered) {
2996 dumper->registered = 0;
2997 list_del_rcu(&dumper->list);
2998 err = 0;
2999 }
3000 spin_unlock_irqrestore(&dump_list_lock, flags);
3001 synchronize_rcu();
3002
3003 return err;
3004 }
3005 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3006
3007 static bool always_kmsg_dump;
3008 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3009
3010 /**
3011 * kmsg_dump - dump kernel log to kernel message dumpers.
3012 * @reason: the reason (oops, panic etc) for dumping
3013 *
3014 * Call each of the registered dumper's dump() callback, which can
3015 * retrieve the kmsg records with kmsg_dump_get_line() or
3016 * kmsg_dump_get_buffer().
3017 */
kmsg_dump(enum kmsg_dump_reason reason)3018 void kmsg_dump(enum kmsg_dump_reason reason)
3019 {
3020 struct kmsg_dumper *dumper;
3021 unsigned long flags;
3022
3023 if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3024 return;
3025
3026 rcu_read_lock();
3027 list_for_each_entry_rcu(dumper, &dump_list, list) {
3028 if (dumper->max_reason && reason > dumper->max_reason)
3029 continue;
3030
3031 /* initialize iterator with data about the stored records */
3032 dumper->active = true;
3033
3034 raw_spin_lock_irqsave(&logbuf_lock, flags);
3035 dumper->cur_seq = clear_seq;
3036 dumper->cur_idx = clear_idx;
3037 dumper->next_seq = log_next_seq;
3038 dumper->next_idx = log_next_idx;
3039 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3040
3041 /* invoke dumper which will iterate over records */
3042 dumper->dump(dumper, reason);
3043
3044 /* reset iterator */
3045 dumper->active = false;
3046 }
3047 rcu_read_unlock();
3048 }
3049
3050 /**
3051 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3052 * @dumper: registered kmsg dumper
3053 * @syslog: include the "<4>" prefixes
3054 * @line: buffer to copy the line to
3055 * @size: maximum size of the buffer
3056 * @len: length of line placed into buffer
3057 *
3058 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3059 * record, and copy one record into the provided buffer.
3060 *
3061 * Consecutive calls will return the next available record moving
3062 * towards the end of the buffer with the youngest messages.
3063 *
3064 * A return value of FALSE indicates that there are no more records to
3065 * read.
3066 *
3067 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3068 */
kmsg_dump_get_line_nolock(struct kmsg_dumper * dumper,bool syslog,char * line,size_t size,size_t * len)3069 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3070 char *line, size_t size, size_t *len)
3071 {
3072 struct printk_log *msg;
3073 size_t l = 0;
3074 bool ret = false;
3075
3076 if (!dumper->active)
3077 goto out;
3078
3079 if (dumper->cur_seq < log_first_seq) {
3080 /* messages are gone, move to first available one */
3081 dumper->cur_seq = log_first_seq;
3082 dumper->cur_idx = log_first_idx;
3083 }
3084
3085 /* last entry */
3086 if (dumper->cur_seq >= log_next_seq)
3087 goto out;
3088
3089 msg = log_from_idx(dumper->cur_idx);
3090 l = msg_print_text(msg, 0, syslog, line, size);
3091
3092 dumper->cur_idx = log_next(dumper->cur_idx);
3093 dumper->cur_seq++;
3094 ret = true;
3095 out:
3096 if (len)
3097 *len = l;
3098 return ret;
3099 }
3100
3101 /**
3102 * kmsg_dump_get_line - retrieve one kmsg log line
3103 * @dumper: registered kmsg dumper
3104 * @syslog: include the "<4>" prefixes
3105 * @line: buffer to copy the line to
3106 * @size: maximum size of the buffer
3107 * @len: length of line placed into buffer
3108 *
3109 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3110 * record, and copy one record into the provided buffer.
3111 *
3112 * Consecutive calls will return the next available record moving
3113 * towards the end of the buffer with the youngest messages.
3114 *
3115 * A return value of FALSE indicates that there are no more records to
3116 * read.
3117 */
kmsg_dump_get_line(struct kmsg_dumper * dumper,bool syslog,char * line,size_t size,size_t * len)3118 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3119 char *line, size_t size, size_t *len)
3120 {
3121 unsigned long flags;
3122 bool ret;
3123
3124 raw_spin_lock_irqsave(&logbuf_lock, flags);
3125 ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3126 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3127
3128 return ret;
3129 }
3130 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3131
3132 /**
3133 * kmsg_dump_get_buffer - copy kmsg log lines
3134 * @dumper: registered kmsg dumper
3135 * @syslog: include the "<4>" prefixes
3136 * @buf: buffer to copy the line to
3137 * @size: maximum size of the buffer
3138 * @len: length of line placed into buffer
3139 *
3140 * Start at the end of the kmsg buffer and fill the provided buffer
3141 * with as many of the the *youngest* kmsg records that fit into it.
3142 * If the buffer is large enough, all available kmsg records will be
3143 * copied with a single call.
3144 *
3145 * Consecutive calls will fill the buffer with the next block of
3146 * available older records, not including the earlier retrieved ones.
3147 *
3148 * A return value of FALSE indicates that there are no more records to
3149 * read.
3150 */
kmsg_dump_get_buffer(struct kmsg_dumper * dumper,bool syslog,char * buf,size_t size,size_t * len)3151 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3152 char *buf, size_t size, size_t *len)
3153 {
3154 unsigned long flags;
3155 u64 seq;
3156 u32 idx;
3157 u64 next_seq;
3158 u32 next_idx;
3159 enum log_flags prev;
3160 size_t l = 0;
3161 bool ret = false;
3162
3163 if (!dumper->active)
3164 goto out;
3165
3166 raw_spin_lock_irqsave(&logbuf_lock, flags);
3167 if (dumper->cur_seq < log_first_seq) {
3168 /* messages are gone, move to first available one */
3169 dumper->cur_seq = log_first_seq;
3170 dumper->cur_idx = log_first_idx;
3171 }
3172
3173 /* last entry */
3174 if (dumper->cur_seq >= dumper->next_seq) {
3175 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3176 goto out;
3177 }
3178
3179 /* calculate length of entire buffer */
3180 seq = dumper->cur_seq;
3181 idx = dumper->cur_idx;
3182 prev = 0;
3183 while (seq < dumper->next_seq) {
3184 struct printk_log *msg = log_from_idx(idx);
3185
3186 l += msg_print_text(msg, prev, true, NULL, 0);
3187 idx = log_next(idx);
3188 seq++;
3189 prev = msg->flags;
3190 }
3191
3192 /* move first record forward until length fits into the buffer */
3193 seq = dumper->cur_seq;
3194 idx = dumper->cur_idx;
3195 prev = 0;
3196 while (l > size && seq < dumper->next_seq) {
3197 struct printk_log *msg = log_from_idx(idx);
3198
3199 l -= msg_print_text(msg, prev, true, NULL, 0);
3200 idx = log_next(idx);
3201 seq++;
3202 prev = msg->flags;
3203 }
3204
3205 /* last message in next interation */
3206 next_seq = seq;
3207 next_idx = idx;
3208
3209 l = 0;
3210 while (seq < dumper->next_seq) {
3211 struct printk_log *msg = log_from_idx(idx);
3212
3213 l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3214 idx = log_next(idx);
3215 seq++;
3216 prev = msg->flags;
3217 }
3218
3219 dumper->next_seq = next_seq;
3220 dumper->next_idx = next_idx;
3221 ret = true;
3222 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3223 out:
3224 if (len)
3225 *len = l;
3226 return ret;
3227 }
3228 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3229
3230 /**
3231 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3232 * @dumper: registered kmsg dumper
3233 *
3234 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3235 * kmsg_dump_get_buffer() can be called again and used multiple
3236 * times within the same dumper.dump() callback.
3237 *
3238 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3239 */
kmsg_dump_rewind_nolock(struct kmsg_dumper * dumper)3240 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3241 {
3242 dumper->cur_seq = clear_seq;
3243 dumper->cur_idx = clear_idx;
3244 dumper->next_seq = log_next_seq;
3245 dumper->next_idx = log_next_idx;
3246 }
3247
3248 /**
3249 * kmsg_dump_rewind - reset the interator
3250 * @dumper: registered kmsg dumper
3251 *
3252 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3253 * kmsg_dump_get_buffer() can be called again and used multiple
3254 * times within the same dumper.dump() callback.
3255 */
kmsg_dump_rewind(struct kmsg_dumper * dumper)3256 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3257 {
3258 unsigned long flags;
3259
3260 raw_spin_lock_irqsave(&logbuf_lock, flags);
3261 kmsg_dump_rewind_nolock(dumper);
3262 raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3263 }
3264 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3265
3266 static char dump_stack_arch_desc_str[128];
3267
3268 /**
3269 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3270 * @fmt: printf-style format string
3271 * @...: arguments for the format string
3272 *
3273 * The configured string will be printed right after utsname during task
3274 * dumps. Usually used to add arch-specific system identifiers. If an
3275 * arch wants to make use of such an ID string, it should initialize this
3276 * as soon as possible during boot.
3277 */
dump_stack_set_arch_desc(const char * fmt,...)3278 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3279 {
3280 va_list args;
3281
3282 va_start(args, fmt);
3283 vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3284 fmt, args);
3285 va_end(args);
3286 }
3287
3288 /**
3289 * dump_stack_print_info - print generic debug info for dump_stack()
3290 * @log_lvl: log level
3291 *
3292 * Arch-specific dump_stack() implementations can use this function to
3293 * print out the same debug information as the generic dump_stack().
3294 */
dump_stack_print_info(const char * log_lvl)3295 void dump_stack_print_info(const char *log_lvl)
3296 {
3297 printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3298 log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3299 print_tainted(), init_utsname()->release,
3300 (int)strcspn(init_utsname()->version, " "),
3301 init_utsname()->version);
3302
3303 if (dump_stack_arch_desc_str[0] != '\0')
3304 printk("%sHardware name: %s\n",
3305 log_lvl, dump_stack_arch_desc_str);
3306
3307 print_worker_info(log_lvl, current);
3308 }
3309
3310 /**
3311 * show_regs_print_info - print generic debug info for show_regs()
3312 * @log_lvl: log level
3313 *
3314 * show_regs() implementations can use this function to print out generic
3315 * debug information.
3316 */
show_regs_print_info(const char * log_lvl)3317 void show_regs_print_info(const char *log_lvl)
3318 {
3319 dump_stack_print_info(log_lvl);
3320
3321 printk("%stask: %p task.stack: %p\n",
3322 log_lvl, current, task_stack_page(current));
3323 }
3324
3325 #endif
3326