• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/kernel/printk.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  * Modified to make sys_syslog() more flexible: added commands to
7  * return the last 4k of kernel messages, regardless of whether
8  * they've been read or not.  Added option to suppress kernel printk's
9  * to the console.  Added hook for sending the console messages
10  * elsewhere, in preparation for a serial line console (someday).
11  * Ted Ts'o, 2/11/93.
12  * Modified for sysctl support, 1/8/97, Chris Horn.
13  * Fixed SMP synchronization, 08/08/99, Manfred Spraul
14  *     manfred@colorfullife.com
15  * Rewrote bits to get rid of console_lock
16  *	01Mar01 Andrew Morton
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/tty.h>
22 #include <linux/tty_driver.h>
23 #include <linux/console.h>
24 #include <linux/init.h>
25 #include <linux/jiffies.h>
26 #include <linux/nmi.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/delay.h>
30 #include <linux/smp.h>
31 #include <linux/security.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/syscalls.h>
35 #include <linux/kexec.h>
36 #include <linux/kdb.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kmsg_dump.h>
39 #include <linux/syslog.h>
40 #include <linux/cpu.h>
41 #include <linux/notifier.h>
42 #include <linux/rculist.h>
43 #include <linux/poll.h>
44 #include <linux/irq_work.h>
45 #include <linux/utsname.h>
46 #include <linux/ctype.h>
47 #include <linux/uio.h>
48 
49 #include <asm/uaccess.h>
50 #include <asm/sections.h>
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/printk.h>
54 
55 #include "console_cmdline.h"
56 #include "braille.h"
57 #include "internal.h"
58 
59 #ifdef CONFIG_EARLY_PRINTK_DIRECT
60 extern void printascii(char *);
61 #endif
62 
63 int console_printk[4] = {
64 	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
65 	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
66 	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
67 	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
68 };
69 
70 /*
71  * Low level drivers may need that to know if they can schedule in
72  * their unblank() callback or not. So let's export it.
73  */
74 int oops_in_progress;
75 EXPORT_SYMBOL(oops_in_progress);
76 
77 /*
78  * console_sem protects the console_drivers list, and also
79  * provides serialisation for access to the entire console
80  * driver system.
81  */
82 static DEFINE_SEMAPHORE(console_sem);
83 struct console *console_drivers;
84 EXPORT_SYMBOL_GPL(console_drivers);
85 
86 #ifdef CONFIG_LOCKDEP
87 static struct lockdep_map console_lock_dep_map = {
88 	.name = "console_lock"
89 };
90 #endif
91 
92 enum devkmsg_log_bits {
93 	__DEVKMSG_LOG_BIT_ON = 0,
94 	__DEVKMSG_LOG_BIT_OFF,
95 	__DEVKMSG_LOG_BIT_LOCK,
96 };
97 
98 enum devkmsg_log_masks {
99 	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
100 	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
101 	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
102 };
103 
104 /* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
105 #define DEVKMSG_LOG_MASK_DEFAULT	0
106 
107 static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
108 
__control_devkmsg(char * str)109 static int __control_devkmsg(char *str)
110 {
111 	if (!str)
112 		return -EINVAL;
113 
114 	if (!strncmp(str, "on", 2)) {
115 		devkmsg_log = DEVKMSG_LOG_MASK_ON;
116 		return 2;
117 	} else if (!strncmp(str, "off", 3)) {
118 		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
119 		return 3;
120 	} else if (!strncmp(str, "ratelimit", 9)) {
121 		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
122 		return 9;
123 	}
124 	return -EINVAL;
125 }
126 
control_devkmsg(char * str)127 static int __init control_devkmsg(char *str)
128 {
129 	if (__control_devkmsg(str) < 0)
130 		return 1;
131 
132 	/*
133 	 * Set sysctl string accordingly:
134 	 */
135 	if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
136 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
137 		strncpy(devkmsg_log_str, "on", 2);
138 	} else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
139 		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
140 		strncpy(devkmsg_log_str, "off", 3);
141 	}
142 	/* else "ratelimit" which is set by default. */
143 
144 	/*
145 	 * Sysctl cannot change it anymore. The kernel command line setting of
146 	 * this parameter is to force the setting to be permanent throughout the
147 	 * runtime of the system. This is a precation measure against userspace
148 	 * trying to be a smarta** and attempting to change it up on us.
149 	 */
150 	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
151 
152 	return 0;
153 }
154 __setup("printk.devkmsg=", control_devkmsg);
155 
156 char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
157 
devkmsg_sysctl_set_loglvl(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)158 int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
159 			      void __user *buffer, size_t *lenp, loff_t *ppos)
160 {
161 	char old_str[DEVKMSG_STR_MAX_SIZE];
162 	unsigned int old;
163 	int err;
164 
165 	if (write) {
166 		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
167 			return -EINVAL;
168 
169 		old = devkmsg_log;
170 		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
171 	}
172 
173 	err = proc_dostring(table, write, buffer, lenp, ppos);
174 	if (err)
175 		return err;
176 
177 	if (write) {
178 		err = __control_devkmsg(devkmsg_log_str);
179 
180 		/*
181 		 * Do not accept an unknown string OR a known string with
182 		 * trailing crap...
183 		 */
184 		if (err < 0 || (err + 1 != *lenp)) {
185 
186 			/* ... and restore old setting. */
187 			devkmsg_log = old;
188 			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
189 
190 			return -EINVAL;
191 		}
192 	}
193 
194 	return 0;
195 }
196 
197 /*
198  * Number of registered extended console drivers.
199  *
200  * If extended consoles are present, in-kernel cont reassembly is disabled
201  * and each fragment is stored as a separate log entry with proper
202  * continuation flag so that every emitted message has full metadata.  This
203  * doesn't change the result for regular consoles or /proc/kmsg.  For
204  * /dev/kmsg, as long as the reader concatenates messages according to
205  * consecutive continuation flags, the end result should be the same too.
206  */
207 static int nr_ext_console_drivers;
208 
209 /*
210  * Helper macros to handle lockdep when locking/unlocking console_sem. We use
211  * macros instead of functions so that _RET_IP_ contains useful information.
212  */
213 #define down_console_sem() do { \
214 	down(&console_sem);\
215 	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
216 } while (0)
217 
__down_trylock_console_sem(unsigned long ip)218 static int __down_trylock_console_sem(unsigned long ip)
219 {
220 	if (down_trylock(&console_sem))
221 		return 1;
222 	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
223 	return 0;
224 }
225 #define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
226 
227 #define up_console_sem() do { \
228 	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
229 	up(&console_sem);\
230 } while (0)
231 
232 /*
233  * This is used for debugging the mess that is the VT code by
234  * keeping track if we have the console semaphore held. It's
235  * definitely not the perfect debug tool (we don't know if _WE_
236  * hold it and are racing, but it helps tracking those weird code
237  * paths in the console code where we end up in places I want
238  * locked without the console sempahore held).
239  */
240 static int console_locked, console_suspended;
241 
242 /*
243  * If exclusive_console is non-NULL then only this console is to be printed to.
244  */
245 static struct console *exclusive_console;
246 
247 /*
248  *	Array of consoles built from command line options (console=)
249  */
250 
251 #define MAX_CMDLINECONSOLES 8
252 
253 static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
254 
255 static int selected_console = -1;
256 static int preferred_console = -1;
257 int console_set_on_cmdline;
258 EXPORT_SYMBOL(console_set_on_cmdline);
259 
260 /* Flag: console code may call schedule() */
261 static int console_may_schedule;
262 
263 /*
264  * The printk log buffer consists of a chain of concatenated variable
265  * length records. Every record starts with a record header, containing
266  * the overall length of the record.
267  *
268  * The heads to the first and last entry in the buffer, as well as the
269  * sequence numbers of these entries are maintained when messages are
270  * stored.
271  *
272  * If the heads indicate available messages, the length in the header
273  * tells the start next message. A length == 0 for the next message
274  * indicates a wrap-around to the beginning of the buffer.
275  *
276  * Every record carries the monotonic timestamp in microseconds, as well as
277  * the standard userspace syslog level and syslog facility. The usual
278  * kernel messages use LOG_KERN; userspace-injected messages always carry
279  * a matching syslog facility, by default LOG_USER. The origin of every
280  * message can be reliably determined that way.
281  *
282  * The human readable log message directly follows the message header. The
283  * length of the message text is stored in the header, the stored message
284  * is not terminated.
285  *
286  * Optionally, a message can carry a dictionary of properties (key/value pairs),
287  * to provide userspace with a machine-readable message context.
288  *
289  * Examples for well-defined, commonly used property names are:
290  *   DEVICE=b12:8               device identifier
291  *                                b12:8         block dev_t
292  *                                c127:3        char dev_t
293  *                                n8            netdev ifindex
294  *                                +sound:card0  subsystem:devname
295  *   SUBSYSTEM=pci              driver-core subsystem name
296  *
297  * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
298  * follows directly after a '=' character. Every property is terminated by
299  * a '\0' character. The last property is not terminated.
300  *
301  * Example of a message structure:
302  *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
303  *   0008  34 00                        record is 52 bytes long
304  *   000a        0b 00                  text is 11 bytes long
305  *   000c              1f 00            dictionary is 23 bytes long
306  *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
307  *   0010  69 74 27 73 20 61 20 6c      "it's a l"
308  *         69 6e 65                     "ine"
309  *   001b           44 45 56 49 43      "DEVIC"
310  *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
311  *         52 49 56 45 52 3d 62 75      "RIVER=bu"
312  *         67                           "g"
313  *   0032     00 00 00                  padding to next message header
314  *
315  * The 'struct printk_log' buffer header must never be directly exported to
316  * userspace, it is a kernel-private implementation detail that might
317  * need to be changed in the future, when the requirements change.
318  *
319  * /dev/kmsg exports the structured data in the following line format:
320  *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
321  *
322  * Users of the export format should ignore possible additional values
323  * separated by ',', and find the message after the ';' character.
324  *
325  * The optional key/value pairs are attached as continuation lines starting
326  * with a space character and terminated by a newline. All possible
327  * non-prinatable characters are escaped in the "\xff" notation.
328  */
329 
330 enum log_flags {
331 	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
332 	LOG_NEWLINE	= 2,	/* text ended with a newline */
333 	LOG_PREFIX	= 4,	/* text started with a prefix */
334 	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
335 };
336 
337 struct printk_log {
338 	u64 ts_nsec;		/* timestamp in nanoseconds */
339 	u16 len;		/* length of entire record */
340 	u16 text_len;		/* length of text buffer */
341 	u16 dict_len;		/* length of dictionary buffer */
342 	u8 facility;		/* syslog facility */
343 	u8 flags:5;		/* internal record flags */
344 	u8 level:3;		/* syslog level */
345 }
346 #ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
347 __packed __aligned(4)
348 #endif
349 ;
350 
351 /*
352  * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
353  * within the scheduler's rq lock. It must be released before calling
354  * console_unlock() or anything else that might wake up a process.
355  */
356 DEFINE_RAW_SPINLOCK(logbuf_lock);
357 
358 #ifdef CONFIG_PRINTK
359 DECLARE_WAIT_QUEUE_HEAD(log_wait);
360 /* the next printk record to read by syslog(READ) or /proc/kmsg */
361 static u64 syslog_seq;
362 static u32 syslog_idx;
363 static enum log_flags syslog_prev;
364 static size_t syslog_partial;
365 
366 /* index and sequence number of the first record stored in the buffer */
367 static u64 log_first_seq;
368 static u32 log_first_idx;
369 
370 /* index and sequence number of the next record to store in the buffer */
371 static u64 log_next_seq;
372 static u32 log_next_idx;
373 
374 /* the next printk record to write to the console */
375 static u64 console_seq;
376 static u32 console_idx;
377 static enum log_flags console_prev;
378 
379 /* the next printk record to read after the last 'clear' command */
380 static u64 clear_seq;
381 static u32 clear_idx;
382 
383 #define PREFIX_MAX		32
384 #define LOG_LINE_MAX		(1024 - PREFIX_MAX)
385 
386 #define LOG_LEVEL(v)		((v) & 0x07)
387 #define LOG_FACILITY(v)		((v) >> 3 & 0xff)
388 
389 /* record buffer */
390 #define LOG_ALIGN __alignof__(struct printk_log)
391 #define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
392 static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
393 static char *log_buf = __log_buf;
394 static u32 log_buf_len = __LOG_BUF_LEN;
395 
396 /* Return log buffer address */
log_buf_addr_get(void)397 char *log_buf_addr_get(void)
398 {
399 	return log_buf;
400 }
401 
402 /* Return log buffer size */
log_buf_len_get(void)403 u32 log_buf_len_get(void)
404 {
405 	return log_buf_len;
406 }
407 
408 /* human readable text of the record */
log_text(const struct printk_log * msg)409 static char *log_text(const struct printk_log *msg)
410 {
411 	return (char *)msg + sizeof(struct printk_log);
412 }
413 
414 /* optional key/value pair dictionary attached to the record */
log_dict(const struct printk_log * msg)415 static char *log_dict(const struct printk_log *msg)
416 {
417 	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
418 }
419 
420 /* get record by index; idx must point to valid msg */
log_from_idx(u32 idx)421 static struct printk_log *log_from_idx(u32 idx)
422 {
423 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
424 
425 	/*
426 	 * A length == 0 record is the end of buffer marker. Wrap around and
427 	 * read the message at the start of the buffer.
428 	 */
429 	if (!msg->len)
430 		return (struct printk_log *)log_buf;
431 	return msg;
432 }
433 
434 /* get next record; idx must point to valid msg */
log_next(u32 idx)435 static u32 log_next(u32 idx)
436 {
437 	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
438 
439 	/* length == 0 indicates the end of the buffer; wrap */
440 	/*
441 	 * A length == 0 record is the end of buffer marker. Wrap around and
442 	 * read the message at the start of the buffer as *this* one, and
443 	 * return the one after that.
444 	 */
445 	if (!msg->len) {
446 		msg = (struct printk_log *)log_buf;
447 		return msg->len;
448 	}
449 	return idx + msg->len;
450 }
451 
452 /*
453  * Check whether there is enough free space for the given message.
454  *
455  * The same values of first_idx and next_idx mean that the buffer
456  * is either empty or full.
457  *
458  * If the buffer is empty, we must respect the position of the indexes.
459  * They cannot be reset to the beginning of the buffer.
460  */
logbuf_has_space(u32 msg_size,bool empty)461 static int logbuf_has_space(u32 msg_size, bool empty)
462 {
463 	u32 free;
464 
465 	if (log_next_idx > log_first_idx || empty)
466 		free = max(log_buf_len - log_next_idx, log_first_idx);
467 	else
468 		free = log_first_idx - log_next_idx;
469 
470 	/*
471 	 * We need space also for an empty header that signalizes wrapping
472 	 * of the buffer.
473 	 */
474 	return free >= msg_size + sizeof(struct printk_log);
475 }
476 
log_make_free_space(u32 msg_size)477 static int log_make_free_space(u32 msg_size)
478 {
479 	while (log_first_seq < log_next_seq &&
480 	       !logbuf_has_space(msg_size, false)) {
481 		/* drop old messages until we have enough contiguous space */
482 		log_first_idx = log_next(log_first_idx);
483 		log_first_seq++;
484 	}
485 
486 	if (clear_seq < log_first_seq) {
487 		clear_seq = log_first_seq;
488 		clear_idx = log_first_idx;
489 	}
490 
491 	/* sequence numbers are equal, so the log buffer is empty */
492 	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
493 		return 0;
494 
495 	return -ENOMEM;
496 }
497 
498 /* compute the message size including the padding bytes */
msg_used_size(u16 text_len,u16 dict_len,u32 * pad_len)499 static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
500 {
501 	u32 size;
502 
503 	size = sizeof(struct printk_log) + text_len + dict_len;
504 	*pad_len = (-size) & (LOG_ALIGN - 1);
505 	size += *pad_len;
506 
507 	return size;
508 }
509 
510 /*
511  * Define how much of the log buffer we could take at maximum. The value
512  * must be greater than two. Note that only half of the buffer is available
513  * when the index points to the middle.
514  */
515 #define MAX_LOG_TAKE_PART 4
516 static const char trunc_msg[] = "<truncated>";
517 
truncate_msg(u16 * text_len,u16 * trunc_msg_len,u16 * dict_len,u32 * pad_len)518 static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
519 			u16 *dict_len, u32 *pad_len)
520 {
521 	/*
522 	 * The message should not take the whole buffer. Otherwise, it might
523 	 * get removed too soon.
524 	 */
525 	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
526 	if (*text_len > max_text_len)
527 		*text_len = max_text_len;
528 	/* enable the warning message */
529 	*trunc_msg_len = strlen(trunc_msg);
530 	/* disable the "dict" completely */
531 	*dict_len = 0;
532 	/* compute the size again, count also the warning message */
533 	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
534 }
535 
536 /* insert record into the buffer, discard old ones, update heads */
log_store(int facility,int level,enum log_flags flags,u64 ts_nsec,const char * dict,u16 dict_len,const char * text,u16 text_len)537 static int log_store(int facility, int level,
538 		     enum log_flags flags, u64 ts_nsec,
539 		     const char *dict, u16 dict_len,
540 		     const char *text, u16 text_len)
541 {
542 	struct printk_log *msg;
543 	u32 size, pad_len;
544 	u16 trunc_msg_len = 0;
545 
546 	/* number of '\0' padding bytes to next message */
547 	size = msg_used_size(text_len, dict_len, &pad_len);
548 
549 	if (log_make_free_space(size)) {
550 		/* truncate the message if it is too long for empty buffer */
551 		size = truncate_msg(&text_len, &trunc_msg_len,
552 				    &dict_len, &pad_len);
553 		/* survive when the log buffer is too small for trunc_msg */
554 		if (log_make_free_space(size))
555 			return 0;
556 	}
557 
558 	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
559 		/*
560 		 * This message + an additional empty header does not fit
561 		 * at the end of the buffer. Add an empty header with len == 0
562 		 * to signify a wrap around.
563 		 */
564 		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
565 		log_next_idx = 0;
566 	}
567 
568 	/* fill message */
569 	msg = (struct printk_log *)(log_buf + log_next_idx);
570 	memcpy(log_text(msg), text, text_len);
571 	msg->text_len = text_len;
572 	if (trunc_msg_len) {
573 		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
574 		msg->text_len += trunc_msg_len;
575 	}
576 	memcpy(log_dict(msg), dict, dict_len);
577 	msg->dict_len = dict_len;
578 	msg->facility = facility;
579 	msg->level = level & 7;
580 	msg->flags = flags & 0x1f;
581 	if (ts_nsec > 0)
582 		msg->ts_nsec = ts_nsec;
583 	else
584 		msg->ts_nsec = local_clock();
585 	memset(log_dict(msg) + dict_len, 0, pad_len);
586 	msg->len = size;
587 
588 	/* insert message */
589 	log_next_idx += msg->len;
590 	log_next_seq++;
591 
592 	return msg->text_len;
593 }
594 
595 int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
596 
syslog_action_restricted(int type)597 static int syslog_action_restricted(int type)
598 {
599 	if (dmesg_restrict)
600 		return 1;
601 	/*
602 	 * Unless restricted, we allow "read all" and "get buffer size"
603 	 * for everybody.
604 	 */
605 	return type != SYSLOG_ACTION_READ_ALL &&
606 	       type != SYSLOG_ACTION_SIZE_BUFFER;
607 }
608 
check_syslog_permissions(int type,int source)609 int check_syslog_permissions(int type, int source)
610 {
611 	/*
612 	 * If this is from /proc/kmsg and we've already opened it, then we've
613 	 * already done the capabilities checks at open time.
614 	 */
615 	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
616 		goto ok;
617 
618 	if (syslog_action_restricted(type)) {
619 		if (capable(CAP_SYSLOG))
620 			goto ok;
621 		/*
622 		 * For historical reasons, accept CAP_SYS_ADMIN too, with
623 		 * a warning.
624 		 */
625 		if (capable(CAP_SYS_ADMIN)) {
626 			pr_warn_once("%s (%d): Attempt to access syslog with "
627 				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
628 				     "(deprecated).\n",
629 				 current->comm, task_pid_nr(current));
630 			goto ok;
631 		}
632 		return -EPERM;
633 	}
634 ok:
635 	return security_syslog(type);
636 }
637 EXPORT_SYMBOL_GPL(check_syslog_permissions);
638 
append_char(char ** pp,char * e,char c)639 static void append_char(char **pp, char *e, char c)
640 {
641 	if (*pp < e)
642 		*(*pp)++ = c;
643 }
644 
msg_print_ext_header(char * buf,size_t size,struct printk_log * msg,u64 seq,enum log_flags prev_flags)645 static ssize_t msg_print_ext_header(char *buf, size_t size,
646 				    struct printk_log *msg, u64 seq,
647 				    enum log_flags prev_flags)
648 {
649 	u64 ts_usec = msg->ts_nsec;
650 	char cont = '-';
651 
652 	do_div(ts_usec, 1000);
653 
654 	/*
655 	 * If we couldn't merge continuation line fragments during the print,
656 	 * export the stored flags to allow an optional external merge of the
657 	 * records. Merging the records isn't always neccessarily correct, like
658 	 * when we hit a race during printing. In most cases though, it produces
659 	 * better readable output. 'c' in the record flags mark the first
660 	 * fragment of a line, '+' the following.
661 	 */
662 	if (msg->flags & LOG_CONT)
663 		cont = (prev_flags & LOG_CONT) ? '+' : 'c';
664 
665 	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
666 		       (msg->facility << 3) | msg->level, seq, ts_usec, cont);
667 }
668 
msg_print_ext_body(char * buf,size_t size,char * dict,size_t dict_len,char * text,size_t text_len)669 static ssize_t msg_print_ext_body(char *buf, size_t size,
670 				  char *dict, size_t dict_len,
671 				  char *text, size_t text_len)
672 {
673 	char *p = buf, *e = buf + size;
674 	size_t i;
675 
676 	/* escape non-printable characters */
677 	for (i = 0; i < text_len; i++) {
678 		unsigned char c = text[i];
679 
680 		if (c < ' ' || c >= 127 || c == '\\')
681 			p += scnprintf(p, e - p, "\\x%02x", c);
682 		else
683 			append_char(&p, e, c);
684 	}
685 	append_char(&p, e, '\n');
686 
687 	if (dict_len) {
688 		bool line = true;
689 
690 		for (i = 0; i < dict_len; i++) {
691 			unsigned char c = dict[i];
692 
693 			if (line) {
694 				append_char(&p, e, ' ');
695 				line = false;
696 			}
697 
698 			if (c == '\0') {
699 				append_char(&p, e, '\n');
700 				line = true;
701 				continue;
702 			}
703 
704 			if (c < ' ' || c >= 127 || c == '\\') {
705 				p += scnprintf(p, e - p, "\\x%02x", c);
706 				continue;
707 			}
708 
709 			append_char(&p, e, c);
710 		}
711 		append_char(&p, e, '\n');
712 	}
713 
714 	return p - buf;
715 }
716 
717 /* /dev/kmsg - userspace message inject/listen interface */
718 struct devkmsg_user {
719 	u64 seq;
720 	u32 idx;
721 	enum log_flags prev;
722 	struct ratelimit_state rs;
723 	struct mutex lock;
724 	char buf[CONSOLE_EXT_LOG_MAX];
725 };
726 
devkmsg_write(struct kiocb * iocb,struct iov_iter * from)727 static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
728 {
729 	char *buf, *line;
730 	int level = default_message_loglevel;
731 	int facility = 1;	/* LOG_USER */
732 	struct file *file = iocb->ki_filp;
733 	struct devkmsg_user *user = file->private_data;
734 	size_t len = iov_iter_count(from);
735 	ssize_t ret = len;
736 
737 	if (!user || len > LOG_LINE_MAX)
738 		return -EINVAL;
739 
740 	/* Ignore when user logging is disabled. */
741 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
742 		return len;
743 
744 	/* Ratelimit when not explicitly enabled. */
745 	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
746 		if (!___ratelimit(&user->rs, current->comm))
747 			return ret;
748 	}
749 
750 	buf = kmalloc(len+1, GFP_KERNEL);
751 	if (buf == NULL)
752 		return -ENOMEM;
753 
754 	buf[len] = '\0';
755 	if (copy_from_iter(buf, len, from) != len) {
756 		kfree(buf);
757 		return -EFAULT;
758 	}
759 
760 	/*
761 	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
762 	 * the decimal value represents 32bit, the lower 3 bit are the log
763 	 * level, the rest are the log facility.
764 	 *
765 	 * If no prefix or no userspace facility is specified, we
766 	 * enforce LOG_USER, to be able to reliably distinguish
767 	 * kernel-generated messages from userspace-injected ones.
768 	 */
769 	line = buf;
770 	if (line[0] == '<') {
771 		char *endp = NULL;
772 		unsigned int u;
773 
774 		u = simple_strtoul(line + 1, &endp, 10);
775 		if (endp && endp[0] == '>') {
776 			level = LOG_LEVEL(u);
777 			if (LOG_FACILITY(u) != 0)
778 				facility = LOG_FACILITY(u);
779 			endp++;
780 			len -= endp - line;
781 			line = endp;
782 		}
783 	}
784 
785 	printk_emit(facility, level, NULL, 0, "%s", line);
786 	kfree(buf);
787 	return ret;
788 }
789 
devkmsg_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)790 static ssize_t devkmsg_read(struct file *file, char __user *buf,
791 			    size_t count, loff_t *ppos)
792 {
793 	struct devkmsg_user *user = file->private_data;
794 	struct printk_log *msg;
795 	size_t len;
796 	ssize_t ret;
797 
798 	if (!user)
799 		return -EBADF;
800 
801 	ret = mutex_lock_interruptible(&user->lock);
802 	if (ret)
803 		return ret;
804 	raw_spin_lock_irq(&logbuf_lock);
805 	while (user->seq == log_next_seq) {
806 		if (file->f_flags & O_NONBLOCK) {
807 			ret = -EAGAIN;
808 			raw_spin_unlock_irq(&logbuf_lock);
809 			goto out;
810 		}
811 
812 		raw_spin_unlock_irq(&logbuf_lock);
813 		ret = wait_event_interruptible(log_wait,
814 					       user->seq != log_next_seq);
815 		if (ret)
816 			goto out;
817 		raw_spin_lock_irq(&logbuf_lock);
818 	}
819 
820 	if (user->seq < log_first_seq) {
821 		/* our last seen message is gone, return error and reset */
822 		user->idx = log_first_idx;
823 		user->seq = log_first_seq;
824 		ret = -EPIPE;
825 		raw_spin_unlock_irq(&logbuf_lock);
826 		goto out;
827 	}
828 
829 	msg = log_from_idx(user->idx);
830 	len = msg_print_ext_header(user->buf, sizeof(user->buf),
831 				   msg, user->seq, user->prev);
832 	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
833 				  log_dict(msg), msg->dict_len,
834 				  log_text(msg), msg->text_len);
835 
836 	user->prev = msg->flags;
837 	user->idx = log_next(user->idx);
838 	user->seq++;
839 	raw_spin_unlock_irq(&logbuf_lock);
840 
841 	if (len > count) {
842 		ret = -EINVAL;
843 		goto out;
844 	}
845 
846 	if (copy_to_user(buf, user->buf, len)) {
847 		ret = -EFAULT;
848 		goto out;
849 	}
850 	ret = len;
851 out:
852 	mutex_unlock(&user->lock);
853 	return ret;
854 }
855 
devkmsg_llseek(struct file * file,loff_t offset,int whence)856 static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
857 {
858 	struct devkmsg_user *user = file->private_data;
859 	loff_t ret = 0;
860 
861 	if (!user)
862 		return -EBADF;
863 	if (offset)
864 		return -ESPIPE;
865 
866 	raw_spin_lock_irq(&logbuf_lock);
867 	switch (whence) {
868 	case SEEK_SET:
869 		/* the first record */
870 		user->idx = log_first_idx;
871 		user->seq = log_first_seq;
872 		break;
873 	case SEEK_DATA:
874 		/*
875 		 * The first record after the last SYSLOG_ACTION_CLEAR,
876 		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
877 		 * changes no global state, and does not clear anything.
878 		 */
879 		user->idx = clear_idx;
880 		user->seq = clear_seq;
881 		break;
882 	case SEEK_END:
883 		/* after the last record */
884 		user->idx = log_next_idx;
885 		user->seq = log_next_seq;
886 		break;
887 	default:
888 		ret = -EINVAL;
889 	}
890 	raw_spin_unlock_irq(&logbuf_lock);
891 	return ret;
892 }
893 
devkmsg_poll(struct file * file,poll_table * wait)894 static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
895 {
896 	struct devkmsg_user *user = file->private_data;
897 	int ret = 0;
898 
899 	if (!user)
900 		return POLLERR|POLLNVAL;
901 
902 	poll_wait(file, &log_wait, wait);
903 
904 	raw_spin_lock_irq(&logbuf_lock);
905 	if (user->seq < log_next_seq) {
906 		/* return error when data has vanished underneath us */
907 		if (user->seq < log_first_seq)
908 			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
909 		else
910 			ret = POLLIN|POLLRDNORM;
911 	}
912 	raw_spin_unlock_irq(&logbuf_lock);
913 
914 	return ret;
915 }
916 
devkmsg_open(struct inode * inode,struct file * file)917 static int devkmsg_open(struct inode *inode, struct file *file)
918 {
919 	struct devkmsg_user *user;
920 	int err;
921 
922 	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
923 		return -EPERM;
924 
925 	/* write-only does not need any file context */
926 	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
927 		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
928 					       SYSLOG_FROM_READER);
929 		if (err)
930 			return err;
931 	}
932 
933 	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
934 	if (!user)
935 		return -ENOMEM;
936 
937 	ratelimit_default_init(&user->rs);
938 	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
939 
940 	mutex_init(&user->lock);
941 
942 	raw_spin_lock_irq(&logbuf_lock);
943 	user->idx = log_first_idx;
944 	user->seq = log_first_seq;
945 	raw_spin_unlock_irq(&logbuf_lock);
946 
947 	file->private_data = user;
948 	return 0;
949 }
950 
devkmsg_release(struct inode * inode,struct file * file)951 static int devkmsg_release(struct inode *inode, struct file *file)
952 {
953 	struct devkmsg_user *user = file->private_data;
954 
955 	if (!user)
956 		return 0;
957 
958 	ratelimit_state_exit(&user->rs);
959 
960 	mutex_destroy(&user->lock);
961 	kfree(user);
962 	return 0;
963 }
964 
965 const struct file_operations kmsg_fops = {
966 	.open = devkmsg_open,
967 	.read = devkmsg_read,
968 	.write_iter = devkmsg_write,
969 	.llseek = devkmsg_llseek,
970 	.poll = devkmsg_poll,
971 	.release = devkmsg_release,
972 };
973 
974 #ifdef CONFIG_KEXEC_CORE
975 /*
976  * This appends the listed symbols to /proc/vmcore
977  *
978  * /proc/vmcore is used by various utilities, like crash and makedumpfile to
979  * obtain access to symbols that are otherwise very difficult to locate.  These
980  * symbols are specifically used so that utilities can access and extract the
981  * dmesg log from a vmcore file after a crash.
982  */
log_buf_kexec_setup(void)983 void log_buf_kexec_setup(void)
984 {
985 	VMCOREINFO_SYMBOL(log_buf);
986 	VMCOREINFO_SYMBOL(log_buf_len);
987 	VMCOREINFO_SYMBOL(log_first_idx);
988 	VMCOREINFO_SYMBOL(clear_idx);
989 	VMCOREINFO_SYMBOL(log_next_idx);
990 	/*
991 	 * Export struct printk_log size and field offsets. User space tools can
992 	 * parse it and detect any changes to structure down the line.
993 	 */
994 	VMCOREINFO_STRUCT_SIZE(printk_log);
995 	VMCOREINFO_OFFSET(printk_log, ts_nsec);
996 	VMCOREINFO_OFFSET(printk_log, len);
997 	VMCOREINFO_OFFSET(printk_log, text_len);
998 	VMCOREINFO_OFFSET(printk_log, dict_len);
999 }
1000 #endif
1001 
1002 /* requested log_buf_len from kernel cmdline */
1003 static unsigned long __initdata new_log_buf_len;
1004 
1005 /* we practice scaling the ring buffer by powers of 2 */
log_buf_len_update(unsigned size)1006 static void __init log_buf_len_update(unsigned size)
1007 {
1008 	if (size)
1009 		size = roundup_pow_of_two(size);
1010 	if (size > log_buf_len)
1011 		new_log_buf_len = size;
1012 }
1013 
1014 /* save requested log_buf_len since it's too early to process it */
log_buf_len_setup(char * str)1015 static int __init log_buf_len_setup(char *str)
1016 {
1017 	unsigned size = memparse(str, &str);
1018 
1019 	log_buf_len_update(size);
1020 
1021 	return 0;
1022 }
1023 early_param("log_buf_len", log_buf_len_setup);
1024 
1025 #ifdef CONFIG_SMP
1026 #define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1027 
log_buf_add_cpu(void)1028 static void __init log_buf_add_cpu(void)
1029 {
1030 	unsigned int cpu_extra;
1031 
1032 	/*
1033 	 * archs should set up cpu_possible_bits properly with
1034 	 * set_cpu_possible() after setup_arch() but just in
1035 	 * case lets ensure this is valid.
1036 	 */
1037 	if (num_possible_cpus() == 1)
1038 		return;
1039 
1040 	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1041 
1042 	/* by default this will only continue through for large > 64 CPUs */
1043 	if (cpu_extra <= __LOG_BUF_LEN / 2)
1044 		return;
1045 
1046 	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1047 		__LOG_CPU_MAX_BUF_LEN);
1048 	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1049 		cpu_extra);
1050 	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1051 
1052 	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1053 }
1054 #else /* !CONFIG_SMP */
log_buf_add_cpu(void)1055 static inline void log_buf_add_cpu(void) {}
1056 #endif /* CONFIG_SMP */
1057 
setup_log_buf(int early)1058 void __init setup_log_buf(int early)
1059 {
1060 	unsigned long flags;
1061 	char *new_log_buf;
1062 	int free;
1063 
1064 	if (log_buf != __log_buf)
1065 		return;
1066 
1067 	if (!early && !new_log_buf_len)
1068 		log_buf_add_cpu();
1069 
1070 	if (!new_log_buf_len)
1071 		return;
1072 
1073 	if (early) {
1074 		new_log_buf =
1075 			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1076 	} else {
1077 		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1078 							  LOG_ALIGN);
1079 	}
1080 
1081 	if (unlikely(!new_log_buf)) {
1082 		pr_err("log_buf_len: %ld bytes not available\n",
1083 			new_log_buf_len);
1084 		return;
1085 	}
1086 
1087 	raw_spin_lock_irqsave(&logbuf_lock, flags);
1088 	log_buf_len = new_log_buf_len;
1089 	log_buf = new_log_buf;
1090 	new_log_buf_len = 0;
1091 	free = __LOG_BUF_LEN - log_next_idx;
1092 	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1093 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1094 
1095 	pr_info("log_buf_len: %d bytes\n", log_buf_len);
1096 	pr_info("early log buf free: %d(%d%%)\n",
1097 		free, (free * 100) / __LOG_BUF_LEN);
1098 }
1099 
1100 static bool __read_mostly ignore_loglevel;
1101 
ignore_loglevel_setup(char * str)1102 static int __init ignore_loglevel_setup(char *str)
1103 {
1104 	ignore_loglevel = true;
1105 	pr_info("debug: ignoring loglevel setting.\n");
1106 
1107 	return 0;
1108 }
1109 
1110 early_param("ignore_loglevel", ignore_loglevel_setup);
1111 module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1112 MODULE_PARM_DESC(ignore_loglevel,
1113 		 "ignore loglevel setting (prints all kernel messages to the console)");
1114 
suppress_message_printing(int level)1115 static bool suppress_message_printing(int level)
1116 {
1117 	return (level >= console_loglevel && !ignore_loglevel);
1118 }
1119 
1120 #ifdef CONFIG_BOOT_PRINTK_DELAY
1121 
1122 static int boot_delay; /* msecs delay after each printk during bootup */
1123 static unsigned long long loops_per_msec;	/* based on boot_delay */
1124 
boot_delay_setup(char * str)1125 static int __init boot_delay_setup(char *str)
1126 {
1127 	unsigned long lpj;
1128 
1129 	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1130 	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1131 
1132 	get_option(&str, &boot_delay);
1133 	if (boot_delay > 10 * 1000)
1134 		boot_delay = 0;
1135 
1136 	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1137 		"HZ: %d, loops_per_msec: %llu\n",
1138 		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1139 	return 0;
1140 }
1141 early_param("boot_delay", boot_delay_setup);
1142 
boot_delay_msec(int level)1143 static void boot_delay_msec(int level)
1144 {
1145 	unsigned long long k;
1146 	unsigned long timeout;
1147 
1148 	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1149 		|| suppress_message_printing(level)) {
1150 		return;
1151 	}
1152 
1153 	k = (unsigned long long)loops_per_msec * boot_delay;
1154 
1155 	timeout = jiffies + msecs_to_jiffies(boot_delay);
1156 	while (k) {
1157 		k--;
1158 		cpu_relax();
1159 		/*
1160 		 * use (volatile) jiffies to prevent
1161 		 * compiler reduction; loop termination via jiffies
1162 		 * is secondary and may or may not happen.
1163 		 */
1164 		if (time_after(jiffies, timeout))
1165 			break;
1166 		touch_nmi_watchdog();
1167 	}
1168 }
1169 #else
boot_delay_msec(int level)1170 static inline void boot_delay_msec(int level)
1171 {
1172 }
1173 #endif
1174 
1175 static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1176 module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1177 
print_time(u64 ts,char * buf)1178 static size_t print_time(u64 ts, char *buf)
1179 {
1180 	unsigned long rem_nsec;
1181 
1182 	if (!printk_time)
1183 		return 0;
1184 
1185 	rem_nsec = do_div(ts, 1000000000);
1186 
1187 	if (!buf)
1188 		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
1189 
1190 	return sprintf(buf, "[%5lu.%06lu] ",
1191 		       (unsigned long)ts, rem_nsec / 1000);
1192 }
1193 
print_prefix(const struct printk_log * msg,bool syslog,char * buf)1194 static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
1195 {
1196 	size_t len = 0;
1197 	unsigned int prefix = (msg->facility << 3) | msg->level;
1198 
1199 	if (syslog) {
1200 		if (buf) {
1201 			len += sprintf(buf, "<%u>", prefix);
1202 		} else {
1203 			len += 3;
1204 			if (prefix > 999)
1205 				len += 3;
1206 			else if (prefix > 99)
1207 				len += 2;
1208 			else if (prefix > 9)
1209 				len++;
1210 		}
1211 	}
1212 
1213 	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1214 	return len;
1215 }
1216 
msg_print_text(const struct printk_log * msg,enum log_flags prev,bool syslog,char * buf,size_t size)1217 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1218 			     bool syslog, char *buf, size_t size)
1219 {
1220 	const char *text = log_text(msg);
1221 	size_t text_size = msg->text_len;
1222 	bool prefix = true;
1223 	bool newline = true;
1224 	size_t len = 0;
1225 
1226 	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1227 		prefix = false;
1228 
1229 	if (msg->flags & LOG_CONT) {
1230 		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1231 			prefix = false;
1232 
1233 		if (!(msg->flags & LOG_NEWLINE))
1234 			newline = false;
1235 	}
1236 
1237 	do {
1238 		const char *next = memchr(text, '\n', text_size);
1239 		size_t text_len;
1240 
1241 		if (next) {
1242 			text_len = next - text;
1243 			next++;
1244 			text_size -= next - text;
1245 		} else {
1246 			text_len = text_size;
1247 		}
1248 
1249 		if (buf) {
1250 			if (print_prefix(msg, syslog, NULL) +
1251 			    text_len + 1 >= size - len)
1252 				break;
1253 
1254 			if (prefix)
1255 				len += print_prefix(msg, syslog, buf + len);
1256 			memcpy(buf + len, text, text_len);
1257 			len += text_len;
1258 			if (next || newline)
1259 				buf[len++] = '\n';
1260 		} else {
1261 			/* SYSLOG_ACTION_* buffer size only calculation */
1262 			if (prefix)
1263 				len += print_prefix(msg, syslog, NULL);
1264 			len += text_len;
1265 			if (next || newline)
1266 				len++;
1267 		}
1268 
1269 		prefix = true;
1270 		text = next;
1271 	} while (text);
1272 
1273 	return len;
1274 }
1275 
syslog_print(char __user * buf,int size)1276 static int syslog_print(char __user *buf, int size)
1277 {
1278 	char *text;
1279 	struct printk_log *msg;
1280 	int len = 0;
1281 
1282 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1283 	if (!text)
1284 		return -ENOMEM;
1285 
1286 	while (size > 0) {
1287 		size_t n;
1288 		size_t skip;
1289 
1290 		raw_spin_lock_irq(&logbuf_lock);
1291 		if (syslog_seq < log_first_seq) {
1292 			/* messages are gone, move to first one */
1293 			syslog_seq = log_first_seq;
1294 			syslog_idx = log_first_idx;
1295 			syslog_prev = 0;
1296 			syslog_partial = 0;
1297 		}
1298 		if (syslog_seq == log_next_seq) {
1299 			raw_spin_unlock_irq(&logbuf_lock);
1300 			break;
1301 		}
1302 
1303 		skip = syslog_partial;
1304 		msg = log_from_idx(syslog_idx);
1305 		n = msg_print_text(msg, syslog_prev, true, text,
1306 				   LOG_LINE_MAX + PREFIX_MAX);
1307 		if (n - syslog_partial <= size) {
1308 			/* message fits into buffer, move forward */
1309 			syslog_idx = log_next(syslog_idx);
1310 			syslog_seq++;
1311 			syslog_prev = msg->flags;
1312 			n -= syslog_partial;
1313 			syslog_partial = 0;
1314 		} else if (!len){
1315 			/* partial read(), remember position */
1316 			n = size;
1317 			syslog_partial += n;
1318 		} else
1319 			n = 0;
1320 		raw_spin_unlock_irq(&logbuf_lock);
1321 
1322 		if (!n)
1323 			break;
1324 
1325 		if (copy_to_user(buf, text + skip, n)) {
1326 			if (!len)
1327 				len = -EFAULT;
1328 			break;
1329 		}
1330 
1331 		len += n;
1332 		size -= n;
1333 		buf += n;
1334 	}
1335 
1336 	kfree(text);
1337 	return len;
1338 }
1339 
syslog_print_all(char __user * buf,int size,bool clear)1340 static int syslog_print_all(char __user *buf, int size, bool clear)
1341 {
1342 	char *text;
1343 	int len = 0;
1344 
1345 	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1346 	if (!text)
1347 		return -ENOMEM;
1348 
1349 	raw_spin_lock_irq(&logbuf_lock);
1350 	if (buf) {
1351 		u64 next_seq;
1352 		u64 seq;
1353 		u32 idx;
1354 		enum log_flags prev;
1355 
1356 		/*
1357 		 * Find first record that fits, including all following records,
1358 		 * into the user-provided buffer for this dump.
1359 		 */
1360 		seq = clear_seq;
1361 		idx = clear_idx;
1362 		prev = 0;
1363 		while (seq < log_next_seq) {
1364 			struct printk_log *msg = log_from_idx(idx);
1365 
1366 			len += msg_print_text(msg, prev, true, NULL, 0);
1367 			prev = msg->flags;
1368 			idx = log_next(idx);
1369 			seq++;
1370 		}
1371 
1372 		/* move first record forward until length fits into the buffer */
1373 		seq = clear_seq;
1374 		idx = clear_idx;
1375 		prev = 0;
1376 		while (len > size && seq < log_next_seq) {
1377 			struct printk_log *msg = log_from_idx(idx);
1378 
1379 			len -= msg_print_text(msg, prev, true, NULL, 0);
1380 			prev = msg->flags;
1381 			idx = log_next(idx);
1382 			seq++;
1383 		}
1384 
1385 		/* last message fitting into this dump */
1386 		next_seq = log_next_seq;
1387 
1388 		len = 0;
1389 		while (len >= 0 && seq < next_seq) {
1390 			struct printk_log *msg = log_from_idx(idx);
1391 			int textlen;
1392 
1393 			textlen = msg_print_text(msg, prev, true, text,
1394 						 LOG_LINE_MAX + PREFIX_MAX);
1395 			if (textlen < 0) {
1396 				len = textlen;
1397 				break;
1398 			}
1399 			idx = log_next(idx);
1400 			seq++;
1401 			prev = msg->flags;
1402 
1403 			raw_spin_unlock_irq(&logbuf_lock);
1404 			if (copy_to_user(buf + len, text, textlen))
1405 				len = -EFAULT;
1406 			else
1407 				len += textlen;
1408 			raw_spin_lock_irq(&logbuf_lock);
1409 
1410 			if (seq < log_first_seq) {
1411 				/* messages are gone, move to next one */
1412 				seq = log_first_seq;
1413 				idx = log_first_idx;
1414 				prev = 0;
1415 			}
1416 		}
1417 	}
1418 
1419 	if (clear) {
1420 		clear_seq = log_next_seq;
1421 		clear_idx = log_next_idx;
1422 	}
1423 	raw_spin_unlock_irq(&logbuf_lock);
1424 
1425 	kfree(text);
1426 	return len;
1427 }
1428 
do_syslog(int type,char __user * buf,int len,int source)1429 int do_syslog(int type, char __user *buf, int len, int source)
1430 {
1431 	bool clear = false;
1432 	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1433 	int error;
1434 
1435 	error = check_syslog_permissions(type, source);
1436 	if (error)
1437 		goto out;
1438 
1439 	switch (type) {
1440 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1441 		break;
1442 	case SYSLOG_ACTION_OPEN:	/* Open log */
1443 		break;
1444 	case SYSLOG_ACTION_READ:	/* Read from log */
1445 		error = -EINVAL;
1446 		if (!buf || len < 0)
1447 			goto out;
1448 		error = 0;
1449 		if (!len)
1450 			goto out;
1451 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1452 			error = -EFAULT;
1453 			goto out;
1454 		}
1455 		error = wait_event_interruptible(log_wait,
1456 						 syslog_seq != log_next_seq);
1457 		if (error)
1458 			goto out;
1459 		error = syslog_print(buf, len);
1460 		break;
1461 	/* Read/clear last kernel messages */
1462 	case SYSLOG_ACTION_READ_CLEAR:
1463 		clear = true;
1464 		/* FALL THRU */
1465 	/* Read last kernel messages */
1466 	case SYSLOG_ACTION_READ_ALL:
1467 		error = -EINVAL;
1468 		if (!buf || len < 0)
1469 			goto out;
1470 		error = 0;
1471 		if (!len)
1472 			goto out;
1473 		if (!access_ok(VERIFY_WRITE, buf, len)) {
1474 			error = -EFAULT;
1475 			goto out;
1476 		}
1477 		error = syslog_print_all(buf, len, clear);
1478 		break;
1479 	/* Clear ring buffer */
1480 	case SYSLOG_ACTION_CLEAR:
1481 		syslog_print_all(NULL, 0, true);
1482 		break;
1483 	/* Disable logging to console */
1484 	case SYSLOG_ACTION_CONSOLE_OFF:
1485 		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1486 			saved_console_loglevel = console_loglevel;
1487 		console_loglevel = minimum_console_loglevel;
1488 		break;
1489 	/* Enable logging to console */
1490 	case SYSLOG_ACTION_CONSOLE_ON:
1491 		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1492 			console_loglevel = saved_console_loglevel;
1493 			saved_console_loglevel = LOGLEVEL_DEFAULT;
1494 		}
1495 		break;
1496 	/* Set level of messages printed to console */
1497 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1498 		error = -EINVAL;
1499 		if (len < 1 || len > 8)
1500 			goto out;
1501 		if (len < minimum_console_loglevel)
1502 			len = minimum_console_loglevel;
1503 		console_loglevel = len;
1504 		/* Implicitly re-enable logging to console */
1505 		saved_console_loglevel = LOGLEVEL_DEFAULT;
1506 		error = 0;
1507 		break;
1508 	/* Number of chars in the log buffer */
1509 	case SYSLOG_ACTION_SIZE_UNREAD:
1510 		raw_spin_lock_irq(&logbuf_lock);
1511 		if (syslog_seq < log_first_seq) {
1512 			/* messages are gone, move to first one */
1513 			syslog_seq = log_first_seq;
1514 			syslog_idx = log_first_idx;
1515 			syslog_prev = 0;
1516 			syslog_partial = 0;
1517 		}
1518 		if (source == SYSLOG_FROM_PROC) {
1519 			/*
1520 			 * Short-cut for poll(/"proc/kmsg") which simply checks
1521 			 * for pending data, not the size; return the count of
1522 			 * records, not the length.
1523 			 */
1524 			error = log_next_seq - syslog_seq;
1525 		} else {
1526 			u64 seq = syslog_seq;
1527 			u32 idx = syslog_idx;
1528 			enum log_flags prev = syslog_prev;
1529 
1530 			error = 0;
1531 			while (seq < log_next_seq) {
1532 				struct printk_log *msg = log_from_idx(idx);
1533 
1534 				error += msg_print_text(msg, prev, true, NULL, 0);
1535 				idx = log_next(idx);
1536 				seq++;
1537 				prev = msg->flags;
1538 			}
1539 			error -= syslog_partial;
1540 		}
1541 		raw_spin_unlock_irq(&logbuf_lock);
1542 		break;
1543 	/* Size of the log buffer */
1544 	case SYSLOG_ACTION_SIZE_BUFFER:
1545 		error = log_buf_len;
1546 		break;
1547 	default:
1548 		error = -EINVAL;
1549 		break;
1550 	}
1551 out:
1552 	return error;
1553 }
1554 
SYSCALL_DEFINE3(syslog,int,type,char __user *,buf,int,len)1555 SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1556 {
1557 	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1558 }
1559 
1560 /*
1561  * Call the console drivers, asking them to write out
1562  * log_buf[start] to log_buf[end - 1].
1563  * The console_lock must be held.
1564  */
call_console_drivers(int level,const char * ext_text,size_t ext_len,const char * text,size_t len)1565 static void call_console_drivers(int level,
1566 				 const char *ext_text, size_t ext_len,
1567 				 const char *text, size_t len)
1568 {
1569 	struct console *con;
1570 
1571 	trace_console_rcuidle(text, len);
1572 
1573 	if (!console_drivers)
1574 		return;
1575 
1576 	for_each_console(con) {
1577 		if (exclusive_console && con != exclusive_console)
1578 			continue;
1579 		if (!(con->flags & CON_ENABLED))
1580 			continue;
1581 		if (!con->write)
1582 			continue;
1583 		if (!cpu_online(smp_processor_id()) &&
1584 		    !(con->flags & CON_ANYTIME))
1585 			continue;
1586 		if (con->flags & CON_EXTENDED)
1587 			con->write(con, ext_text, ext_len);
1588 		else
1589 			con->write(con, text, len);
1590 	}
1591 }
1592 
1593 /*
1594  * Zap console related locks when oopsing.
1595  * To leave time for slow consoles to print a full oops,
1596  * only zap at most once every 30 seconds.
1597  */
zap_locks(void)1598 static void zap_locks(void)
1599 {
1600 	static unsigned long oops_timestamp;
1601 
1602 	if (time_after_eq(jiffies, oops_timestamp) &&
1603 	    !time_after(jiffies, oops_timestamp + 30 * HZ))
1604 		return;
1605 
1606 	oops_timestamp = jiffies;
1607 
1608 	debug_locks_off();
1609 	/* If a crash is occurring, make sure we can't deadlock */
1610 	raw_spin_lock_init(&logbuf_lock);
1611 	/* And make sure that we print immediately */
1612 	sema_init(&console_sem, 1);
1613 }
1614 
1615 int printk_delay_msec __read_mostly;
1616 
printk_delay(void)1617 static inline void printk_delay(void)
1618 {
1619 	if (unlikely(printk_delay_msec)) {
1620 		int m = printk_delay_msec;
1621 
1622 		while (m--) {
1623 			mdelay(1);
1624 			touch_nmi_watchdog();
1625 		}
1626 	}
1627 }
1628 
1629 /*
1630  * Continuation lines are buffered, and not committed to the record buffer
1631  * until the line is complete, or a race forces it. The line fragments
1632  * though, are printed immediately to the consoles to ensure everything has
1633  * reached the console in case of a kernel crash.
1634  */
1635 static struct cont {
1636 	char buf[LOG_LINE_MAX];
1637 	size_t len;			/* length == 0 means unused buffer */
1638 	size_t cons;			/* bytes written to console */
1639 	struct task_struct *owner;	/* task of first print*/
1640 	u64 ts_nsec;			/* time of first print */
1641 	u8 level;			/* log level of first message */
1642 	u8 facility;			/* log facility of first message */
1643 	enum log_flags flags;		/* prefix, newline flags */
1644 	bool flushed:1;			/* buffer sealed and committed */
1645 } cont;
1646 
cont_flush(void)1647 static void cont_flush(void)
1648 {
1649 	if (cont.flushed)
1650 		return;
1651 	if (cont.len == 0)
1652 		return;
1653 	if (cont.cons) {
1654 		/*
1655 		 * If a fragment of this line was directly flushed to the
1656 		 * console; wait for the console to pick up the rest of the
1657 		 * line. LOG_NOCONS suppresses a duplicated output.
1658 		 */
1659 		log_store(cont.facility, cont.level, cont.flags | LOG_NOCONS,
1660 			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1661 		cont.flushed = true;
1662 	} else {
1663 		/*
1664 		 * If no fragment of this line ever reached the console,
1665 		 * just submit it to the store and free the buffer.
1666 		 */
1667 		log_store(cont.facility, cont.level, cont.flags, 0,
1668 			  NULL, 0, cont.buf, cont.len);
1669 		cont.len = 0;
1670 	}
1671 }
1672 
cont_add(int facility,int level,enum log_flags flags,const char * text,size_t len)1673 static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
1674 {
1675 	if (cont.len && cont.flushed)
1676 		return false;
1677 
1678 	/*
1679 	 * If ext consoles are present, flush and skip in-kernel
1680 	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1681 	 * the line gets too long, split it up in separate records.
1682 	 */
1683 	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1684 		cont_flush();
1685 		return false;
1686 	}
1687 
1688 	if (!cont.len) {
1689 		cont.facility = facility;
1690 		cont.level = level;
1691 		cont.owner = current;
1692 		cont.ts_nsec = local_clock();
1693 		cont.flags = flags;
1694 		cont.cons = 0;
1695 		cont.flushed = false;
1696 	}
1697 
1698 	memcpy(cont.buf + cont.len, text, len);
1699 	cont.len += len;
1700 
1701 	// The original flags come from the first line,
1702 	// but later continuations can add a newline.
1703 	if (flags & LOG_NEWLINE) {
1704 		cont.flags |= LOG_NEWLINE;
1705 		cont_flush();
1706 	}
1707 
1708 	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1709 		cont_flush();
1710 
1711 	return true;
1712 }
1713 
cont_print_text(char * text,size_t size)1714 static size_t cont_print_text(char *text, size_t size)
1715 {
1716 	size_t textlen = 0;
1717 	size_t len;
1718 
1719 	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1720 		textlen += print_time(cont.ts_nsec, text);
1721 		size -= textlen;
1722 	}
1723 
1724 	len = cont.len - cont.cons;
1725 	if (len > 0) {
1726 		if (len+1 > size)
1727 			len = size-1;
1728 		memcpy(text + textlen, cont.buf + cont.cons, len);
1729 		textlen += len;
1730 		cont.cons = cont.len;
1731 	}
1732 
1733 	if (cont.flushed) {
1734 		if (cont.flags & LOG_NEWLINE)
1735 			text[textlen++] = '\n';
1736 		/* got everything, release buffer */
1737 		cont.len = 0;
1738 	}
1739 	return textlen;
1740 }
1741 
log_output(int facility,int level,enum log_flags lflags,const char * dict,size_t dictlen,char * text,size_t text_len)1742 static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
1743 {
1744 	/*
1745 	 * If an earlier line was buffered, and we're a continuation
1746 	 * write from the same process, try to add it to the buffer.
1747 	 */
1748 	if (cont.len) {
1749 		if (cont.owner == current && (lflags & LOG_CONT)) {
1750 			if (cont_add(facility, level, lflags, text, text_len))
1751 				return text_len;
1752 		}
1753 		/* Otherwise, make sure it's flushed */
1754 		cont_flush();
1755 	}
1756 
1757 	/* Skip empty continuation lines that couldn't be added - they just flush */
1758 	if (!text_len && (lflags & LOG_CONT))
1759 		return 0;
1760 
1761 	/* If it doesn't end in a newline, try to buffer the current line */
1762 	if (!(lflags & LOG_NEWLINE)) {
1763 		if (cont_add(facility, level, lflags, text, text_len))
1764 			return text_len;
1765 	}
1766 
1767 	/* Store it in the record log */
1768 	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1769 }
1770 
vprintk_emit(int facility,int level,const char * dict,size_t dictlen,const char * fmt,va_list args)1771 asmlinkage int vprintk_emit(int facility, int level,
1772 			    const char *dict, size_t dictlen,
1773 			    const char *fmt, va_list args)
1774 {
1775 	static bool recursion_bug;
1776 	static char textbuf[LOG_LINE_MAX];
1777 	char *text = textbuf;
1778 	size_t text_len = 0;
1779 	enum log_flags lflags = 0;
1780 	unsigned long flags;
1781 	int this_cpu;
1782 	int printed_len = 0;
1783 	int nmi_message_lost;
1784 	bool in_sched = false;
1785 	/* cpu currently holding logbuf_lock in this function */
1786 	static unsigned int logbuf_cpu = UINT_MAX;
1787 
1788 	if (level == LOGLEVEL_SCHED) {
1789 		level = LOGLEVEL_DEFAULT;
1790 		in_sched = true;
1791 	}
1792 
1793 	boot_delay_msec(level);
1794 	printk_delay();
1795 
1796 	local_irq_save(flags);
1797 	this_cpu = smp_processor_id();
1798 
1799 	/*
1800 	 * Ouch, printk recursed into itself!
1801 	 */
1802 	if (unlikely(logbuf_cpu == this_cpu)) {
1803 		/*
1804 		 * If a crash is occurring during printk() on this CPU,
1805 		 * then try to get the crash message out but make sure
1806 		 * we can't deadlock. Otherwise just return to avoid the
1807 		 * recursion and return - but flag the recursion so that
1808 		 * it can be printed at the next appropriate moment:
1809 		 */
1810 		if (!oops_in_progress && !lockdep_recursing(current)) {
1811 			recursion_bug = true;
1812 			local_irq_restore(flags);
1813 			return 0;
1814 		}
1815 		zap_locks();
1816 	}
1817 
1818 	lockdep_off();
1819 	/* This stops the holder of console_sem just where we want him */
1820 	raw_spin_lock(&logbuf_lock);
1821 	logbuf_cpu = this_cpu;
1822 
1823 	if (unlikely(recursion_bug)) {
1824 		static const char recursion_msg[] =
1825 			"BUG: recent printk recursion!";
1826 
1827 		recursion_bug = false;
1828 		/* emit KERN_CRIT message */
1829 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1830 					 NULL, 0, recursion_msg,
1831 					 strlen(recursion_msg));
1832 	}
1833 
1834 	nmi_message_lost = get_nmi_message_lost();
1835 	if (unlikely(nmi_message_lost)) {
1836 		text_len = scnprintf(textbuf, sizeof(textbuf),
1837 				     "BAD LUCK: lost %d message(s) from NMI context!",
1838 				     nmi_message_lost);
1839 		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1840 					 NULL, 0, textbuf, text_len);
1841 	}
1842 
1843 	/*
1844 	 * The printf needs to come first; we need the syslog
1845 	 * prefix which might be passed-in as a parameter.
1846 	 */
1847 	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1848 
1849 	/* mark and strip a trailing newline */
1850 	if (text_len && text[text_len-1] == '\n') {
1851 		text_len--;
1852 		lflags |= LOG_NEWLINE;
1853 	}
1854 
1855 	/* strip kernel syslog prefix and extract log level or control flags */
1856 	if (facility == 0) {
1857 		int kern_level;
1858 
1859 		while ((kern_level = printk_get_level(text)) != 0) {
1860 			switch (kern_level) {
1861 			case '0' ... '7':
1862 				if (level == LOGLEVEL_DEFAULT)
1863 					level = kern_level - '0';
1864 				/* fallthrough */
1865 			case 'd':	/* KERN_DEFAULT */
1866 				lflags |= LOG_PREFIX;
1867 				break;
1868 			case 'c':	/* KERN_CONT */
1869 				lflags |= LOG_CONT;
1870 			}
1871 
1872 			text_len -= 2;
1873 			text += 2;
1874 		}
1875 	}
1876 
1877 #ifdef CONFIG_EARLY_PRINTK_DIRECT
1878 	printascii(text);
1879 #endif
1880 
1881 	if (level == LOGLEVEL_DEFAULT)
1882 		level = default_message_loglevel;
1883 
1884 	if (dict)
1885 		lflags |= LOG_PREFIX|LOG_NEWLINE;
1886 
1887 	printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len);
1888 
1889 	logbuf_cpu = UINT_MAX;
1890 	raw_spin_unlock(&logbuf_lock);
1891 	lockdep_on();
1892 	local_irq_restore(flags);
1893 
1894 	/* If called from the scheduler, we can not call up(). */
1895 	if (!in_sched) {
1896 		lockdep_off();
1897 		/*
1898 		 * Try to acquire and then immediately release the console
1899 		 * semaphore.  The release will print out buffers and wake up
1900 		 * /dev/kmsg and syslog() users.
1901 		 */
1902 		if (console_trylock())
1903 			console_unlock();
1904 		lockdep_on();
1905 	}
1906 
1907 	return printed_len;
1908 }
1909 EXPORT_SYMBOL(vprintk_emit);
1910 
vprintk(const char * fmt,va_list args)1911 asmlinkage int vprintk(const char *fmt, va_list args)
1912 {
1913 	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1914 }
1915 EXPORT_SYMBOL(vprintk);
1916 
printk_emit(int facility,int level,const char * dict,size_t dictlen,const char * fmt,...)1917 asmlinkage int printk_emit(int facility, int level,
1918 			   const char *dict, size_t dictlen,
1919 			   const char *fmt, ...)
1920 {
1921 	va_list args;
1922 	int r;
1923 
1924 	va_start(args, fmt);
1925 	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1926 	va_end(args);
1927 
1928 	return r;
1929 }
1930 EXPORT_SYMBOL(printk_emit);
1931 
vprintk_default(const char * fmt,va_list args)1932 int vprintk_default(const char *fmt, va_list args)
1933 {
1934 	int r;
1935 
1936 #ifdef CONFIG_KGDB_KDB
1937 	if (unlikely(kdb_trap_printk)) {
1938 		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1939 		return r;
1940 	}
1941 #endif
1942 	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1943 
1944 	return r;
1945 }
1946 EXPORT_SYMBOL_GPL(vprintk_default);
1947 
1948 /**
1949  * printk - print a kernel message
1950  * @fmt: format string
1951  *
1952  * This is printk(). It can be called from any context. We want it to work.
1953  *
1954  * We try to grab the console_lock. If we succeed, it's easy - we log the
1955  * output and call the console drivers.  If we fail to get the semaphore, we
1956  * place the output into the log buffer and return. The current holder of
1957  * the console_sem will notice the new output in console_unlock(); and will
1958  * send it to the consoles before releasing the lock.
1959  *
1960  * One effect of this deferred printing is that code which calls printk() and
1961  * then changes console_loglevel may break. This is because console_loglevel
1962  * is inspected when the actual printing occurs.
1963  *
1964  * See also:
1965  * printf(3)
1966  *
1967  * See the vsnprintf() documentation for format string extensions over C99.
1968  */
printk(const char * fmt,...)1969 asmlinkage __visible int printk(const char *fmt, ...)
1970 {
1971 	va_list args;
1972 	int r;
1973 
1974 	va_start(args, fmt);
1975 	r = vprintk_func(fmt, args);
1976 	va_end(args);
1977 
1978 	return r;
1979 }
1980 EXPORT_SYMBOL(printk);
1981 
1982 #else /* CONFIG_PRINTK */
1983 
1984 #define LOG_LINE_MAX		0
1985 #define PREFIX_MAX		0
1986 
1987 static u64 syslog_seq;
1988 static u32 syslog_idx;
1989 static u64 console_seq;
1990 static u32 console_idx;
1991 static enum log_flags syslog_prev;
1992 static u64 log_first_seq;
1993 static u32 log_first_idx;
1994 static u64 log_next_seq;
1995 static enum log_flags console_prev;
1996 static struct cont {
1997 	size_t len;
1998 	size_t cons;
1999 	u8 level;
2000 	bool flushed:1;
2001 } cont;
log_text(const struct printk_log * msg)2002 static char *log_text(const struct printk_log *msg) { return NULL; }
log_dict(const struct printk_log * msg)2003 static char *log_dict(const struct printk_log *msg) { return NULL; }
log_from_idx(u32 idx)2004 static struct printk_log *log_from_idx(u32 idx) { return NULL; }
log_next(u32 idx)2005 static u32 log_next(u32 idx) { return 0; }
msg_print_ext_header(char * buf,size_t size,struct printk_log * msg,u64 seq,enum log_flags prev_flags)2006 static ssize_t msg_print_ext_header(char *buf, size_t size,
2007 				    struct printk_log *msg, u64 seq,
2008 				    enum log_flags prev_flags) { return 0; }
msg_print_ext_body(char * buf,size_t size,char * dict,size_t dict_len,char * text,size_t text_len)2009 static ssize_t msg_print_ext_body(char *buf, size_t size,
2010 				  char *dict, size_t dict_len,
2011 				  char *text, size_t text_len) { return 0; }
call_console_drivers(int level,const char * ext_text,size_t ext_len,const char * text,size_t len)2012 static void call_console_drivers(int level,
2013 				 const char *ext_text, size_t ext_len,
2014 				 const char *text, size_t len) {}
msg_print_text(const struct printk_log * msg,enum log_flags prev,bool syslog,char * buf,size_t size)2015 static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
2016 			     bool syslog, char *buf, size_t size) { return 0; }
cont_print_text(char * text,size_t size)2017 static size_t cont_print_text(char *text, size_t size) { return 0; }
suppress_message_printing(int level)2018 static bool suppress_message_printing(int level) { return false; }
2019 
2020 /* Still needs to be defined for users */
2021 DEFINE_PER_CPU(printk_func_t, printk_func);
2022 
2023 #endif /* CONFIG_PRINTK */
2024 
2025 #ifdef CONFIG_EARLY_PRINTK
2026 struct console *early_console;
2027 
early_printk(const char * fmt,...)2028 asmlinkage __visible void early_printk(const char *fmt, ...)
2029 {
2030 	va_list ap;
2031 	char buf[512];
2032 	int n;
2033 
2034 	if (!early_console)
2035 		return;
2036 
2037 	va_start(ap, fmt);
2038 	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2039 	va_end(ap);
2040 
2041 	early_console->write(early_console, buf, n);
2042 }
2043 #endif
2044 
__add_preferred_console(char * name,int idx,char * options,char * brl_options)2045 static int __add_preferred_console(char *name, int idx, char *options,
2046 				   char *brl_options)
2047 {
2048 	struct console_cmdline *c;
2049 	int i;
2050 
2051 	/*
2052 	 *	See if this tty is not yet registered, and
2053 	 *	if we have a slot free.
2054 	 */
2055 	for (i = 0, c = console_cmdline;
2056 	     i < MAX_CMDLINECONSOLES && c->name[0];
2057 	     i++, c++) {
2058 		if (strcmp(c->name, name) == 0 && c->index == idx) {
2059 			if (!brl_options)
2060 				selected_console = i;
2061 			return 0;
2062 		}
2063 	}
2064 	if (i == MAX_CMDLINECONSOLES)
2065 		return -E2BIG;
2066 	if (!brl_options)
2067 		selected_console = i;
2068 	strlcpy(c->name, name, sizeof(c->name));
2069 	c->options = options;
2070 	braille_set_options(c, brl_options);
2071 
2072 	c->index = idx;
2073 	return 0;
2074 }
2075 /*
2076  * Set up a console.  Called via do_early_param() in init/main.c
2077  * for each "console=" parameter in the boot command line.
2078  */
console_setup(char * str)2079 static int __init console_setup(char *str)
2080 {
2081 	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2082 	char *s, *options, *brl_options = NULL;
2083 	int idx;
2084 
2085 	if (_braille_console_setup(&str, &brl_options))
2086 		return 1;
2087 
2088 	/*
2089 	 * Decode str into name, index, options.
2090 	 */
2091 	if (str[0] >= '0' && str[0] <= '9') {
2092 		strcpy(buf, "ttyS");
2093 		strncpy(buf + 4, str, sizeof(buf) - 5);
2094 	} else {
2095 		strncpy(buf, str, sizeof(buf) - 1);
2096 	}
2097 	buf[sizeof(buf) - 1] = 0;
2098 	options = strchr(str, ',');
2099 	if (options)
2100 		*(options++) = 0;
2101 #ifdef __sparc__
2102 	if (!strcmp(str, "ttya"))
2103 		strcpy(buf, "ttyS0");
2104 	if (!strcmp(str, "ttyb"))
2105 		strcpy(buf, "ttyS1");
2106 #endif
2107 	for (s = buf; *s; s++)
2108 		if (isdigit(*s) || *s == ',')
2109 			break;
2110 	idx = simple_strtoul(s, NULL, 10);
2111 	*s = 0;
2112 
2113 	__add_preferred_console(buf, idx, options, brl_options);
2114 	console_set_on_cmdline = 1;
2115 	return 1;
2116 }
2117 __setup("console=", console_setup);
2118 
2119 /**
2120  * add_preferred_console - add a device to the list of preferred consoles.
2121  * @name: device name
2122  * @idx: device index
2123  * @options: options for this console
2124  *
2125  * The last preferred console added will be used for kernel messages
2126  * and stdin/out/err for init.  Normally this is used by console_setup
2127  * above to handle user-supplied console arguments; however it can also
2128  * be used by arch-specific code either to override the user or more
2129  * commonly to provide a default console (ie from PROM variables) when
2130  * the user has not supplied one.
2131  */
add_preferred_console(char * name,int idx,char * options)2132 int add_preferred_console(char *name, int idx, char *options)
2133 {
2134 	return __add_preferred_console(name, idx, options, NULL);
2135 }
2136 
2137 bool console_suspend_enabled = true;
2138 EXPORT_SYMBOL(console_suspend_enabled);
2139 
console_suspend_disable(char * str)2140 static int __init console_suspend_disable(char *str)
2141 {
2142 	console_suspend_enabled = false;
2143 	return 1;
2144 }
2145 __setup("no_console_suspend", console_suspend_disable);
2146 module_param_named(console_suspend, console_suspend_enabled,
2147 		bool, S_IRUGO | S_IWUSR);
2148 MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2149 	" and hibernate operations");
2150 
2151 /**
2152  * suspend_console - suspend the console subsystem
2153  *
2154  * This disables printk() while we go into suspend states
2155  */
suspend_console(void)2156 void suspend_console(void)
2157 {
2158 	if (!console_suspend_enabled)
2159 		return;
2160 	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2161 	console_lock();
2162 	console_suspended = 1;
2163 	up_console_sem();
2164 }
2165 
resume_console(void)2166 void resume_console(void)
2167 {
2168 	if (!console_suspend_enabled)
2169 		return;
2170 	down_console_sem();
2171 	console_suspended = 0;
2172 	console_unlock();
2173 }
2174 
2175 /**
2176  * console_cpu_notify - print deferred console messages after CPU hotplug
2177  * @self: notifier struct
2178  * @action: CPU hotplug event
2179  * @hcpu: unused
2180  *
2181  * If printk() is called from a CPU that is not online yet, the messages
2182  * will be spooled but will not show up on the console.  This function is
2183  * called when a new CPU comes online (or fails to come up), and ensures
2184  * that any such output gets printed.
2185  */
console_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)2186 static int console_cpu_notify(struct notifier_block *self,
2187 	unsigned long action, void *hcpu)
2188 {
2189 	switch (action) {
2190 	case CPU_ONLINE:
2191 	case CPU_DEAD:
2192 	case CPU_DOWN_FAILED:
2193 	case CPU_UP_CANCELED:
2194 		console_lock();
2195 		console_unlock();
2196 	}
2197 	return NOTIFY_OK;
2198 }
2199 
2200 /**
2201  * console_lock - lock the console system for exclusive use.
2202  *
2203  * Acquires a lock which guarantees that the caller has
2204  * exclusive access to the console system and the console_drivers list.
2205  *
2206  * Can sleep, returns nothing.
2207  */
console_lock(void)2208 void console_lock(void)
2209 {
2210 	might_sleep();
2211 
2212 	down_console_sem();
2213 	if (console_suspended)
2214 		return;
2215 	console_locked = 1;
2216 	console_may_schedule = 1;
2217 }
2218 EXPORT_SYMBOL(console_lock);
2219 
2220 /**
2221  * console_trylock - try to lock the console system for exclusive use.
2222  *
2223  * Try to acquire a lock which guarantees that the caller has exclusive
2224  * access to the console system and the console_drivers list.
2225  *
2226  * returns 1 on success, and 0 on failure to acquire the lock.
2227  */
console_trylock(void)2228 int console_trylock(void)
2229 {
2230 	if (down_trylock_console_sem())
2231 		return 0;
2232 	if (console_suspended) {
2233 		up_console_sem();
2234 		return 0;
2235 	}
2236 	console_locked = 1;
2237 	/*
2238 	 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2239 	 * safe to schedule (e.g. calling printk while holding a spin_lock),
2240 	 * because preempt_disable()/preempt_enable() are just barriers there
2241 	 * and preempt_count() is always 0.
2242 	 *
2243 	 * RCU read sections have a separate preemption counter when
2244 	 * PREEMPT_RCU enabled thus we must take extra care and check
2245 	 * rcu_preempt_depth(), otherwise RCU read sections modify
2246 	 * preempt_count().
2247 	 */
2248 	console_may_schedule = !oops_in_progress &&
2249 			preemptible() &&
2250 			!rcu_preempt_depth();
2251 	return 1;
2252 }
2253 EXPORT_SYMBOL(console_trylock);
2254 
is_console_locked(void)2255 int is_console_locked(void)
2256 {
2257 	return console_locked;
2258 }
2259 
2260 /*
2261  * Check if we have any console that is capable of printing while cpu is
2262  * booting or shutting down. Requires console_sem.
2263  */
have_callable_console(void)2264 static int have_callable_console(void)
2265 {
2266 	struct console *con;
2267 
2268 	for_each_console(con)
2269 		if ((con->flags & CON_ENABLED) &&
2270 				(con->flags & CON_ANYTIME))
2271 			return 1;
2272 
2273 	return 0;
2274 }
2275 
2276 /*
2277  * Can we actually use the console at this time on this cpu?
2278  *
2279  * Console drivers may assume that per-cpu resources have been allocated. So
2280  * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2281  * call them until this CPU is officially up.
2282  */
can_use_console(void)2283 static inline int can_use_console(void)
2284 {
2285 	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2286 }
2287 
console_cont_flush(char * text,size_t size)2288 static void console_cont_flush(char *text, size_t size)
2289 {
2290 	unsigned long flags;
2291 	size_t len;
2292 
2293 	raw_spin_lock_irqsave(&logbuf_lock, flags);
2294 
2295 	if (!cont.len)
2296 		goto out;
2297 
2298 	if (suppress_message_printing(cont.level)) {
2299 		cont.cons = cont.len;
2300 		if (cont.flushed)
2301 			cont.len = 0;
2302 		goto out;
2303 	}
2304 
2305 	/*
2306 	 * We still queue earlier records, likely because the console was
2307 	 * busy. The earlier ones need to be printed before this one, we
2308 	 * did not flush any fragment so far, so just let it queue up.
2309 	 */
2310 	if (console_seq < log_next_seq && !cont.cons)
2311 		goto out;
2312 
2313 	len = cont_print_text(text, size);
2314 	raw_spin_unlock(&logbuf_lock);
2315 	stop_critical_timings();
2316 	call_console_drivers(cont.level, NULL, 0, text, len);
2317 	start_critical_timings();
2318 	local_irq_restore(flags);
2319 	return;
2320 out:
2321 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2322 }
2323 
2324 /**
2325  * console_unlock - unlock the console system
2326  *
2327  * Releases the console_lock which the caller holds on the console system
2328  * and the console driver list.
2329  *
2330  * While the console_lock was held, console output may have been buffered
2331  * by printk().  If this is the case, console_unlock(); emits
2332  * the output prior to releasing the lock.
2333  *
2334  * If there is output waiting, we wake /dev/kmsg and syslog() users.
2335  *
2336  * console_unlock(); may be called from any context.
2337  */
console_unlock(void)2338 void console_unlock(void)
2339 {
2340 	static char ext_text[CONSOLE_EXT_LOG_MAX];
2341 	static char text[LOG_LINE_MAX + PREFIX_MAX];
2342 	static u64 seen_seq;
2343 	unsigned long flags;
2344 	bool wake_klogd = false;
2345 	bool do_cond_resched, retry;
2346 
2347 	if (console_suspended) {
2348 		up_console_sem();
2349 		return;
2350 	}
2351 
2352 	/*
2353 	 * Console drivers are called with interrupts disabled, so
2354 	 * @console_may_schedule should be cleared before; however, we may
2355 	 * end up dumping a lot of lines, for example, if called from
2356 	 * console registration path, and should invoke cond_resched()
2357 	 * between lines if allowable.  Not doing so can cause a very long
2358 	 * scheduling stall on a slow console leading to RCU stall and
2359 	 * softlockup warnings which exacerbate the issue with more
2360 	 * messages practically incapacitating the system.
2361 	 *
2362 	 * console_trylock() is not able to detect the preemptive
2363 	 * context reliably. Therefore the value must be stored before
2364 	 * and cleared after the the "again" goto label.
2365 	 */
2366 	do_cond_resched = console_may_schedule;
2367 again:
2368 	console_may_schedule = 0;
2369 
2370 	/*
2371 	 * We released the console_sem lock, so we need to recheck if
2372 	 * cpu is online and (if not) is there at least one CON_ANYTIME
2373 	 * console.
2374 	 */
2375 	if (!can_use_console()) {
2376 		console_locked = 0;
2377 		up_console_sem();
2378 		return;
2379 	}
2380 
2381 	/* flush buffered message fragment immediately to console */
2382 	console_cont_flush(text, sizeof(text));
2383 
2384 	for (;;) {
2385 		struct printk_log *msg;
2386 		size_t ext_len = 0;
2387 		size_t len;
2388 		int level;
2389 
2390 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2391 		if (seen_seq != log_next_seq) {
2392 			wake_klogd = true;
2393 			seen_seq = log_next_seq;
2394 		}
2395 
2396 		if (console_seq < log_first_seq) {
2397 			len = sprintf(text, "** %u printk messages dropped ** ",
2398 				      (unsigned)(log_first_seq - console_seq));
2399 
2400 			/* messages are gone, move to first one */
2401 			console_seq = log_first_seq;
2402 			console_idx = log_first_idx;
2403 			console_prev = 0;
2404 		} else {
2405 			len = 0;
2406 		}
2407 skip:
2408 		if (console_seq == log_next_seq)
2409 			break;
2410 
2411 		msg = log_from_idx(console_idx);
2412 		level = msg->level;
2413 		if ((msg->flags & LOG_NOCONS) ||
2414 				suppress_message_printing(level)) {
2415 			/*
2416 			 * Skip record we have buffered and already printed
2417 			 * directly to the console when we received it, and
2418 			 * record that has level above the console loglevel.
2419 			 */
2420 			console_idx = log_next(console_idx);
2421 			console_seq++;
2422 			/*
2423 			 * We will get here again when we register a new
2424 			 * CON_PRINTBUFFER console. Clear the flag so we
2425 			 * will properly dump everything later.
2426 			 */
2427 			msg->flags &= ~LOG_NOCONS;
2428 			console_prev = msg->flags;
2429 			goto skip;
2430 		}
2431 
2432 		len += msg_print_text(msg, console_prev, false,
2433 				      text + len, sizeof(text) - len);
2434 		if (nr_ext_console_drivers) {
2435 			ext_len = msg_print_ext_header(ext_text,
2436 						sizeof(ext_text),
2437 						msg, console_seq, console_prev);
2438 			ext_len += msg_print_ext_body(ext_text + ext_len,
2439 						sizeof(ext_text) - ext_len,
2440 						log_dict(msg), msg->dict_len,
2441 						log_text(msg), msg->text_len);
2442 		}
2443 		console_idx = log_next(console_idx);
2444 		console_seq++;
2445 		console_prev = msg->flags;
2446 		raw_spin_unlock(&logbuf_lock);
2447 
2448 		stop_critical_timings();	/* don't trace print latency */
2449 		call_console_drivers(level, ext_text, ext_len, text, len);
2450 		start_critical_timings();
2451 		local_irq_restore(flags);
2452 
2453 		if (do_cond_resched)
2454 			cond_resched();
2455 	}
2456 	console_locked = 0;
2457 
2458 	/* Release the exclusive_console once it is used */
2459 	if (unlikely(exclusive_console))
2460 		exclusive_console = NULL;
2461 
2462 	raw_spin_unlock(&logbuf_lock);
2463 
2464 	up_console_sem();
2465 
2466 	/*
2467 	 * Someone could have filled up the buffer again, so re-check if there's
2468 	 * something to flush. In case we cannot trylock the console_sem again,
2469 	 * there's a new owner and the console_unlock() from them will do the
2470 	 * flush, no worries.
2471 	 */
2472 	raw_spin_lock(&logbuf_lock);
2473 	retry = console_seq != log_next_seq;
2474 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2475 
2476 	if (retry && console_trylock())
2477 		goto again;
2478 
2479 	if (wake_klogd)
2480 		wake_up_klogd();
2481 }
2482 EXPORT_SYMBOL(console_unlock);
2483 
2484 /**
2485  * console_conditional_schedule - yield the CPU if required
2486  *
2487  * If the console code is currently allowed to sleep, and
2488  * if this CPU should yield the CPU to another task, do
2489  * so here.
2490  *
2491  * Must be called within console_lock();.
2492  */
console_conditional_schedule(void)2493 void __sched console_conditional_schedule(void)
2494 {
2495 	if (console_may_schedule)
2496 		cond_resched();
2497 }
2498 EXPORT_SYMBOL(console_conditional_schedule);
2499 
console_unblank(void)2500 void console_unblank(void)
2501 {
2502 	struct console *c;
2503 
2504 	/*
2505 	 * console_unblank can no longer be called in interrupt context unless
2506 	 * oops_in_progress is set to 1..
2507 	 */
2508 	if (oops_in_progress) {
2509 		if (down_trylock_console_sem() != 0)
2510 			return;
2511 	} else
2512 		console_lock();
2513 
2514 	console_locked = 1;
2515 	console_may_schedule = 0;
2516 	for_each_console(c)
2517 		if ((c->flags & CON_ENABLED) && c->unblank)
2518 			c->unblank();
2519 	console_unlock();
2520 }
2521 
2522 /**
2523  * console_flush_on_panic - flush console content on panic
2524  *
2525  * Immediately output all pending messages no matter what.
2526  */
console_flush_on_panic(void)2527 void console_flush_on_panic(void)
2528 {
2529 	/*
2530 	 * If someone else is holding the console lock, trylock will fail
2531 	 * and may_schedule may be set.  Ignore and proceed to unlock so
2532 	 * that messages are flushed out.  As this can be called from any
2533 	 * context and we don't want to get preempted while flushing,
2534 	 * ensure may_schedule is cleared.
2535 	 */
2536 	console_trylock();
2537 	console_may_schedule = 0;
2538 	console_unlock();
2539 }
2540 
2541 /*
2542  * Return the console tty driver structure and its associated index
2543  */
console_device(int * index)2544 struct tty_driver *console_device(int *index)
2545 {
2546 	struct console *c;
2547 	struct tty_driver *driver = NULL;
2548 
2549 	console_lock();
2550 	for_each_console(c) {
2551 		if (!c->device)
2552 			continue;
2553 		driver = c->device(c, index);
2554 		if (driver)
2555 			break;
2556 	}
2557 	console_unlock();
2558 	return driver;
2559 }
2560 
2561 /*
2562  * Prevent further output on the passed console device so that (for example)
2563  * serial drivers can disable console output before suspending a port, and can
2564  * re-enable output afterwards.
2565  */
console_stop(struct console * console)2566 void console_stop(struct console *console)
2567 {
2568 	console_lock();
2569 	console->flags &= ~CON_ENABLED;
2570 	console_unlock();
2571 }
2572 EXPORT_SYMBOL(console_stop);
2573 
console_start(struct console * console)2574 void console_start(struct console *console)
2575 {
2576 	console_lock();
2577 	console->flags |= CON_ENABLED;
2578 	console_unlock();
2579 }
2580 EXPORT_SYMBOL(console_start);
2581 
2582 static int __read_mostly keep_bootcon;
2583 
keep_bootcon_setup(char * str)2584 static int __init keep_bootcon_setup(char *str)
2585 {
2586 	keep_bootcon = 1;
2587 	pr_info("debug: skip boot console de-registration.\n");
2588 
2589 	return 0;
2590 }
2591 
2592 early_param("keep_bootcon", keep_bootcon_setup);
2593 
2594 /*
2595  * The console driver calls this routine during kernel initialization
2596  * to register the console printing procedure with printk() and to
2597  * print any messages that were printed by the kernel before the
2598  * console driver was initialized.
2599  *
2600  * This can happen pretty early during the boot process (because of
2601  * early_printk) - sometimes before setup_arch() completes - be careful
2602  * of what kernel features are used - they may not be initialised yet.
2603  *
2604  * There are two types of consoles - bootconsoles (early_printk) and
2605  * "real" consoles (everything which is not a bootconsole) which are
2606  * handled differently.
2607  *  - Any number of bootconsoles can be registered at any time.
2608  *  - As soon as a "real" console is registered, all bootconsoles
2609  *    will be unregistered automatically.
2610  *  - Once a "real" console is registered, any attempt to register a
2611  *    bootconsoles will be rejected
2612  */
register_console(struct console * newcon)2613 void register_console(struct console *newcon)
2614 {
2615 	int i;
2616 	unsigned long flags;
2617 	struct console *bcon = NULL;
2618 	struct console_cmdline *c;
2619 
2620 	if (console_drivers)
2621 		for_each_console(bcon)
2622 			if (WARN(bcon == newcon,
2623 					"console '%s%d' already registered\n",
2624 					bcon->name, bcon->index))
2625 				return;
2626 
2627 	/*
2628 	 * before we register a new CON_BOOT console, make sure we don't
2629 	 * already have a valid console
2630 	 */
2631 	if (console_drivers && newcon->flags & CON_BOOT) {
2632 		/* find the last or real console */
2633 		for_each_console(bcon) {
2634 			if (!(bcon->flags & CON_BOOT)) {
2635 				pr_info("Too late to register bootconsole %s%d\n",
2636 					newcon->name, newcon->index);
2637 				return;
2638 			}
2639 		}
2640 	}
2641 
2642 	if (console_drivers && console_drivers->flags & CON_BOOT)
2643 		bcon = console_drivers;
2644 
2645 	if (preferred_console < 0 || bcon || !console_drivers)
2646 		preferred_console = selected_console;
2647 
2648 	/*
2649 	 *	See if we want to use this console driver. If we
2650 	 *	didn't select a console we take the first one
2651 	 *	that registers here.
2652 	 */
2653 	if (preferred_console < 0) {
2654 		if (newcon->index < 0)
2655 			newcon->index = 0;
2656 		if (newcon->setup == NULL ||
2657 		    newcon->setup(newcon, NULL) == 0) {
2658 			newcon->flags |= CON_ENABLED;
2659 			if (newcon->device) {
2660 				newcon->flags |= CON_CONSDEV;
2661 				preferred_console = 0;
2662 			}
2663 		}
2664 	}
2665 
2666 	/*
2667 	 *	See if this console matches one we selected on
2668 	 *	the command line.
2669 	 */
2670 	for (i = 0, c = console_cmdline;
2671 	     i < MAX_CMDLINECONSOLES && c->name[0];
2672 	     i++, c++) {
2673 		if (!newcon->match ||
2674 		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2675 			/* default matching */
2676 			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2677 			if (strcmp(c->name, newcon->name) != 0)
2678 				continue;
2679 			if (newcon->index >= 0 &&
2680 			    newcon->index != c->index)
2681 				continue;
2682 			if (newcon->index < 0)
2683 				newcon->index = c->index;
2684 
2685 			if (_braille_register_console(newcon, c))
2686 				return;
2687 
2688 			if (newcon->setup &&
2689 			    newcon->setup(newcon, c->options) != 0)
2690 				break;
2691 		}
2692 
2693 		newcon->flags |= CON_ENABLED;
2694 		if (i == selected_console) {
2695 			newcon->flags |= CON_CONSDEV;
2696 			preferred_console = selected_console;
2697 		}
2698 		break;
2699 	}
2700 
2701 	if (!(newcon->flags & CON_ENABLED))
2702 		return;
2703 
2704 	/*
2705 	 * If we have a bootconsole, and are switching to a real console,
2706 	 * don't print everything out again, since when the boot console, and
2707 	 * the real console are the same physical device, it's annoying to
2708 	 * see the beginning boot messages twice
2709 	 */
2710 	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2711 		newcon->flags &= ~CON_PRINTBUFFER;
2712 
2713 	/*
2714 	 *	Put this console in the list - keep the
2715 	 *	preferred driver at the head of the list.
2716 	 */
2717 	console_lock();
2718 	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2719 		newcon->next = console_drivers;
2720 		console_drivers = newcon;
2721 		if (newcon->next)
2722 			newcon->next->flags &= ~CON_CONSDEV;
2723 	} else {
2724 		newcon->next = console_drivers->next;
2725 		console_drivers->next = newcon;
2726 	}
2727 
2728 	if (newcon->flags & CON_EXTENDED)
2729 		if (!nr_ext_console_drivers++)
2730 			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2731 
2732 	if (newcon->flags & CON_PRINTBUFFER) {
2733 		/*
2734 		 * console_unlock(); will print out the buffered messages
2735 		 * for us.
2736 		 */
2737 		raw_spin_lock_irqsave(&logbuf_lock, flags);
2738 		console_seq = syslog_seq;
2739 		console_idx = syslog_idx;
2740 		console_prev = syslog_prev;
2741 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2742 		/*
2743 		 * We're about to replay the log buffer.  Only do this to the
2744 		 * just-registered console to avoid excessive message spam to
2745 		 * the already-registered consoles.
2746 		 */
2747 		exclusive_console = newcon;
2748 	}
2749 	console_unlock();
2750 	console_sysfs_notify();
2751 
2752 	/*
2753 	 * By unregistering the bootconsoles after we enable the real console
2754 	 * we get the "console xxx enabled" message on all the consoles -
2755 	 * boot consoles, real consoles, etc - this is to ensure that end
2756 	 * users know there might be something in the kernel's log buffer that
2757 	 * went to the bootconsole (that they do not see on the real console)
2758 	 */
2759 	pr_info("%sconsole [%s%d] enabled\n",
2760 		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2761 		newcon->name, newcon->index);
2762 	if (bcon &&
2763 	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2764 	    !keep_bootcon) {
2765 		/* We need to iterate through all boot consoles, to make
2766 		 * sure we print everything out, before we unregister them.
2767 		 */
2768 		for_each_console(bcon)
2769 			if (bcon->flags & CON_BOOT)
2770 				unregister_console(bcon);
2771 	}
2772 }
2773 EXPORT_SYMBOL(register_console);
2774 
unregister_console(struct console * console)2775 int unregister_console(struct console *console)
2776 {
2777         struct console *a, *b;
2778 	int res;
2779 
2780 	pr_info("%sconsole [%s%d] disabled\n",
2781 		(console->flags & CON_BOOT) ? "boot" : "" ,
2782 		console->name, console->index);
2783 
2784 	res = _braille_unregister_console(console);
2785 	if (res)
2786 		return res;
2787 
2788 	res = 1;
2789 	console_lock();
2790 	if (console_drivers == console) {
2791 		console_drivers=console->next;
2792 		res = 0;
2793 	} else if (console_drivers) {
2794 		for (a=console_drivers->next, b=console_drivers ;
2795 		     a; b=a, a=b->next) {
2796 			if (a == console) {
2797 				b->next = a->next;
2798 				res = 0;
2799 				break;
2800 			}
2801 		}
2802 	}
2803 
2804 	if (!res && (console->flags & CON_EXTENDED))
2805 		nr_ext_console_drivers--;
2806 
2807 	/*
2808 	 * If this isn't the last console and it has CON_CONSDEV set, we
2809 	 * need to set it on the next preferred console.
2810 	 */
2811 	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2812 		console_drivers->flags |= CON_CONSDEV;
2813 
2814 	console->flags &= ~CON_ENABLED;
2815 	console_unlock();
2816 	console_sysfs_notify();
2817 	return res;
2818 }
2819 EXPORT_SYMBOL(unregister_console);
2820 
2821 /*
2822  * Some boot consoles access data that is in the init section and which will
2823  * be discarded after the initcalls have been run. To make sure that no code
2824  * will access this data, unregister the boot consoles in a late initcall.
2825  *
2826  * If for some reason, such as deferred probe or the driver being a loadable
2827  * module, the real console hasn't registered yet at this point, there will
2828  * be a brief interval in which no messages are logged to the console, which
2829  * makes it difficult to diagnose problems that occur during this time.
2830  *
2831  * To mitigate this problem somewhat, only unregister consoles whose memory
2832  * intersects with the init section. Note that code exists elsewhere to get
2833  * rid of the boot console as soon as the proper console shows up, so there
2834  * won't be side-effects from postponing the removal.
2835  */
printk_late_init(void)2836 static int __init printk_late_init(void)
2837 {
2838 	struct console *con;
2839 
2840 	for_each_console(con) {
2841 		if (!keep_bootcon && con->flags & CON_BOOT) {
2842 			/*
2843 			 * Make sure to unregister boot consoles whose data
2844 			 * resides in the init section before the init section
2845 			 * is discarded. Boot consoles whose data will stick
2846 			 * around will automatically be unregistered when the
2847 			 * proper console replaces them.
2848 			 */
2849 			if (init_section_intersects(con, sizeof(*con)))
2850 				unregister_console(con);
2851 		}
2852 	}
2853 	hotcpu_notifier(console_cpu_notify, 0);
2854 	return 0;
2855 }
2856 late_initcall(printk_late_init);
2857 
2858 #if defined CONFIG_PRINTK
2859 /*
2860  * Delayed printk version, for scheduler-internal messages:
2861  */
2862 #define PRINTK_PENDING_WAKEUP	0x01
2863 #define PRINTK_PENDING_OUTPUT	0x02
2864 
2865 static DEFINE_PER_CPU(int, printk_pending);
2866 
wake_up_klogd_work_func(struct irq_work * irq_work)2867 static void wake_up_klogd_work_func(struct irq_work *irq_work)
2868 {
2869 	int pending = __this_cpu_xchg(printk_pending, 0);
2870 
2871 	if (pending & PRINTK_PENDING_OUTPUT) {
2872 		/* If trylock fails, someone else is doing the printing */
2873 		if (console_trylock())
2874 			console_unlock();
2875 	}
2876 
2877 	if (pending & PRINTK_PENDING_WAKEUP)
2878 		wake_up_interruptible(&log_wait);
2879 }
2880 
2881 static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2882 	.func = wake_up_klogd_work_func,
2883 	.flags = IRQ_WORK_LAZY,
2884 };
2885 
wake_up_klogd(void)2886 void wake_up_klogd(void)
2887 {
2888 	preempt_disable();
2889 	if (waitqueue_active(&log_wait)) {
2890 		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2891 		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2892 	}
2893 	preempt_enable();
2894 }
2895 
printk_deferred(const char * fmt,...)2896 int printk_deferred(const char *fmt, ...)
2897 {
2898 	va_list args;
2899 	int r;
2900 
2901 	preempt_disable();
2902 	va_start(args, fmt);
2903 	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2904 	va_end(args);
2905 
2906 	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2907 	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2908 	preempt_enable();
2909 
2910 	return r;
2911 }
2912 
2913 /*
2914  * printk rate limiting, lifted from the networking subsystem.
2915  *
2916  * This enforces a rate limit: not more than 10 kernel messages
2917  * every 5s to make a denial-of-service attack impossible.
2918  */
2919 DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2920 
__printk_ratelimit(const char * func)2921 int __printk_ratelimit(const char *func)
2922 {
2923 	return ___ratelimit(&printk_ratelimit_state, func);
2924 }
2925 EXPORT_SYMBOL(__printk_ratelimit);
2926 
2927 /**
2928  * printk_timed_ratelimit - caller-controlled printk ratelimiting
2929  * @caller_jiffies: pointer to caller's state
2930  * @interval_msecs: minimum interval between prints
2931  *
2932  * printk_timed_ratelimit() returns true if more than @interval_msecs
2933  * milliseconds have elapsed since the last time printk_timed_ratelimit()
2934  * returned true.
2935  */
printk_timed_ratelimit(unsigned long * caller_jiffies,unsigned int interval_msecs)2936 bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2937 			unsigned int interval_msecs)
2938 {
2939 	unsigned long elapsed = jiffies - *caller_jiffies;
2940 
2941 	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2942 		return false;
2943 
2944 	*caller_jiffies = jiffies;
2945 	return true;
2946 }
2947 EXPORT_SYMBOL(printk_timed_ratelimit);
2948 
2949 static DEFINE_SPINLOCK(dump_list_lock);
2950 static LIST_HEAD(dump_list);
2951 
2952 /**
2953  * kmsg_dump_register - register a kernel log dumper.
2954  * @dumper: pointer to the kmsg_dumper structure
2955  *
2956  * Adds a kernel log dumper to the system. The dump callback in the
2957  * structure will be called when the kernel oopses or panics and must be
2958  * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2959  */
kmsg_dump_register(struct kmsg_dumper * dumper)2960 int kmsg_dump_register(struct kmsg_dumper *dumper)
2961 {
2962 	unsigned long flags;
2963 	int err = -EBUSY;
2964 
2965 	/* The dump callback needs to be set */
2966 	if (!dumper->dump)
2967 		return -EINVAL;
2968 
2969 	spin_lock_irqsave(&dump_list_lock, flags);
2970 	/* Don't allow registering multiple times */
2971 	if (!dumper->registered) {
2972 		dumper->registered = 1;
2973 		list_add_tail_rcu(&dumper->list, &dump_list);
2974 		err = 0;
2975 	}
2976 	spin_unlock_irqrestore(&dump_list_lock, flags);
2977 
2978 	return err;
2979 }
2980 EXPORT_SYMBOL_GPL(kmsg_dump_register);
2981 
2982 /**
2983  * kmsg_dump_unregister - unregister a kmsg dumper.
2984  * @dumper: pointer to the kmsg_dumper structure
2985  *
2986  * Removes a dump device from the system. Returns zero on success and
2987  * %-EINVAL otherwise.
2988  */
kmsg_dump_unregister(struct kmsg_dumper * dumper)2989 int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2990 {
2991 	unsigned long flags;
2992 	int err = -EINVAL;
2993 
2994 	spin_lock_irqsave(&dump_list_lock, flags);
2995 	if (dumper->registered) {
2996 		dumper->registered = 0;
2997 		list_del_rcu(&dumper->list);
2998 		err = 0;
2999 	}
3000 	spin_unlock_irqrestore(&dump_list_lock, flags);
3001 	synchronize_rcu();
3002 
3003 	return err;
3004 }
3005 EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3006 
3007 static bool always_kmsg_dump;
3008 module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3009 
3010 /**
3011  * kmsg_dump - dump kernel log to kernel message dumpers.
3012  * @reason: the reason (oops, panic etc) for dumping
3013  *
3014  * Call each of the registered dumper's dump() callback, which can
3015  * retrieve the kmsg records with kmsg_dump_get_line() or
3016  * kmsg_dump_get_buffer().
3017  */
kmsg_dump(enum kmsg_dump_reason reason)3018 void kmsg_dump(enum kmsg_dump_reason reason)
3019 {
3020 	struct kmsg_dumper *dumper;
3021 	unsigned long flags;
3022 
3023 	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3024 		return;
3025 
3026 	rcu_read_lock();
3027 	list_for_each_entry_rcu(dumper, &dump_list, list) {
3028 		if (dumper->max_reason && reason > dumper->max_reason)
3029 			continue;
3030 
3031 		/* initialize iterator with data about the stored records */
3032 		dumper->active = true;
3033 
3034 		raw_spin_lock_irqsave(&logbuf_lock, flags);
3035 		dumper->cur_seq = clear_seq;
3036 		dumper->cur_idx = clear_idx;
3037 		dumper->next_seq = log_next_seq;
3038 		dumper->next_idx = log_next_idx;
3039 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3040 
3041 		/* invoke dumper which will iterate over records */
3042 		dumper->dump(dumper, reason);
3043 
3044 		/* reset iterator */
3045 		dumper->active = false;
3046 	}
3047 	rcu_read_unlock();
3048 }
3049 
3050 /**
3051  * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3052  * @dumper: registered kmsg dumper
3053  * @syslog: include the "<4>" prefixes
3054  * @line: buffer to copy the line to
3055  * @size: maximum size of the buffer
3056  * @len: length of line placed into buffer
3057  *
3058  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3059  * record, and copy one record into the provided buffer.
3060  *
3061  * Consecutive calls will return the next available record moving
3062  * towards the end of the buffer with the youngest messages.
3063  *
3064  * A return value of FALSE indicates that there are no more records to
3065  * read.
3066  *
3067  * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3068  */
kmsg_dump_get_line_nolock(struct kmsg_dumper * dumper,bool syslog,char * line,size_t size,size_t * len)3069 bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3070 			       char *line, size_t size, size_t *len)
3071 {
3072 	struct printk_log *msg;
3073 	size_t l = 0;
3074 	bool ret = false;
3075 
3076 	if (!dumper->active)
3077 		goto out;
3078 
3079 	if (dumper->cur_seq < log_first_seq) {
3080 		/* messages are gone, move to first available one */
3081 		dumper->cur_seq = log_first_seq;
3082 		dumper->cur_idx = log_first_idx;
3083 	}
3084 
3085 	/* last entry */
3086 	if (dumper->cur_seq >= log_next_seq)
3087 		goto out;
3088 
3089 	msg = log_from_idx(dumper->cur_idx);
3090 	l = msg_print_text(msg, 0, syslog, line, size);
3091 
3092 	dumper->cur_idx = log_next(dumper->cur_idx);
3093 	dumper->cur_seq++;
3094 	ret = true;
3095 out:
3096 	if (len)
3097 		*len = l;
3098 	return ret;
3099 }
3100 
3101 /**
3102  * kmsg_dump_get_line - retrieve one kmsg log line
3103  * @dumper: registered kmsg dumper
3104  * @syslog: include the "<4>" prefixes
3105  * @line: buffer to copy the line to
3106  * @size: maximum size of the buffer
3107  * @len: length of line placed into buffer
3108  *
3109  * Start at the beginning of the kmsg buffer, with the oldest kmsg
3110  * record, and copy one record into the provided buffer.
3111  *
3112  * Consecutive calls will return the next available record moving
3113  * towards the end of the buffer with the youngest messages.
3114  *
3115  * A return value of FALSE indicates that there are no more records to
3116  * read.
3117  */
kmsg_dump_get_line(struct kmsg_dumper * dumper,bool syslog,char * line,size_t size,size_t * len)3118 bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3119 			char *line, size_t size, size_t *len)
3120 {
3121 	unsigned long flags;
3122 	bool ret;
3123 
3124 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3125 	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3126 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3127 
3128 	return ret;
3129 }
3130 EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3131 
3132 /**
3133  * kmsg_dump_get_buffer - copy kmsg log lines
3134  * @dumper: registered kmsg dumper
3135  * @syslog: include the "<4>" prefixes
3136  * @buf: buffer to copy the line to
3137  * @size: maximum size of the buffer
3138  * @len: length of line placed into buffer
3139  *
3140  * Start at the end of the kmsg buffer and fill the provided buffer
3141  * with as many of the the *youngest* kmsg records that fit into it.
3142  * If the buffer is large enough, all available kmsg records will be
3143  * copied with a single call.
3144  *
3145  * Consecutive calls will fill the buffer with the next block of
3146  * available older records, not including the earlier retrieved ones.
3147  *
3148  * A return value of FALSE indicates that there are no more records to
3149  * read.
3150  */
kmsg_dump_get_buffer(struct kmsg_dumper * dumper,bool syslog,char * buf,size_t size,size_t * len)3151 bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3152 			  char *buf, size_t size, size_t *len)
3153 {
3154 	unsigned long flags;
3155 	u64 seq;
3156 	u32 idx;
3157 	u64 next_seq;
3158 	u32 next_idx;
3159 	enum log_flags prev;
3160 	size_t l = 0;
3161 	bool ret = false;
3162 
3163 	if (!dumper->active)
3164 		goto out;
3165 
3166 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3167 	if (dumper->cur_seq < log_first_seq) {
3168 		/* messages are gone, move to first available one */
3169 		dumper->cur_seq = log_first_seq;
3170 		dumper->cur_idx = log_first_idx;
3171 	}
3172 
3173 	/* last entry */
3174 	if (dumper->cur_seq >= dumper->next_seq) {
3175 		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3176 		goto out;
3177 	}
3178 
3179 	/* calculate length of entire buffer */
3180 	seq = dumper->cur_seq;
3181 	idx = dumper->cur_idx;
3182 	prev = 0;
3183 	while (seq < dumper->next_seq) {
3184 		struct printk_log *msg = log_from_idx(idx);
3185 
3186 		l += msg_print_text(msg, prev, true, NULL, 0);
3187 		idx = log_next(idx);
3188 		seq++;
3189 		prev = msg->flags;
3190 	}
3191 
3192 	/* move first record forward until length fits into the buffer */
3193 	seq = dumper->cur_seq;
3194 	idx = dumper->cur_idx;
3195 	prev = 0;
3196 	while (l > size && seq < dumper->next_seq) {
3197 		struct printk_log *msg = log_from_idx(idx);
3198 
3199 		l -= msg_print_text(msg, prev, true, NULL, 0);
3200 		idx = log_next(idx);
3201 		seq++;
3202 		prev = msg->flags;
3203 	}
3204 
3205 	/* last message in next interation */
3206 	next_seq = seq;
3207 	next_idx = idx;
3208 
3209 	l = 0;
3210 	while (seq < dumper->next_seq) {
3211 		struct printk_log *msg = log_from_idx(idx);
3212 
3213 		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3214 		idx = log_next(idx);
3215 		seq++;
3216 		prev = msg->flags;
3217 	}
3218 
3219 	dumper->next_seq = next_seq;
3220 	dumper->next_idx = next_idx;
3221 	ret = true;
3222 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3223 out:
3224 	if (len)
3225 		*len = l;
3226 	return ret;
3227 }
3228 EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3229 
3230 /**
3231  * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3232  * @dumper: registered kmsg dumper
3233  *
3234  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3235  * kmsg_dump_get_buffer() can be called again and used multiple
3236  * times within the same dumper.dump() callback.
3237  *
3238  * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3239  */
kmsg_dump_rewind_nolock(struct kmsg_dumper * dumper)3240 void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3241 {
3242 	dumper->cur_seq = clear_seq;
3243 	dumper->cur_idx = clear_idx;
3244 	dumper->next_seq = log_next_seq;
3245 	dumper->next_idx = log_next_idx;
3246 }
3247 
3248 /**
3249  * kmsg_dump_rewind - reset the interator
3250  * @dumper: registered kmsg dumper
3251  *
3252  * Reset the dumper's iterator so that kmsg_dump_get_line() and
3253  * kmsg_dump_get_buffer() can be called again and used multiple
3254  * times within the same dumper.dump() callback.
3255  */
kmsg_dump_rewind(struct kmsg_dumper * dumper)3256 void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3257 {
3258 	unsigned long flags;
3259 
3260 	raw_spin_lock_irqsave(&logbuf_lock, flags);
3261 	kmsg_dump_rewind_nolock(dumper);
3262 	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3263 }
3264 EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3265 
3266 static char dump_stack_arch_desc_str[128];
3267 
3268 /**
3269  * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3270  * @fmt: printf-style format string
3271  * @...: arguments for the format string
3272  *
3273  * The configured string will be printed right after utsname during task
3274  * dumps.  Usually used to add arch-specific system identifiers.  If an
3275  * arch wants to make use of such an ID string, it should initialize this
3276  * as soon as possible during boot.
3277  */
dump_stack_set_arch_desc(const char * fmt,...)3278 void __init dump_stack_set_arch_desc(const char *fmt, ...)
3279 {
3280 	va_list args;
3281 
3282 	va_start(args, fmt);
3283 	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3284 		  fmt, args);
3285 	va_end(args);
3286 }
3287 
3288 /**
3289  * dump_stack_print_info - print generic debug info for dump_stack()
3290  * @log_lvl: log level
3291  *
3292  * Arch-specific dump_stack() implementations can use this function to
3293  * print out the same debug information as the generic dump_stack().
3294  */
dump_stack_print_info(const char * log_lvl)3295 void dump_stack_print_info(const char *log_lvl)
3296 {
3297 	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3298 	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3299 	       print_tainted(), init_utsname()->release,
3300 	       (int)strcspn(init_utsname()->version, " "),
3301 	       init_utsname()->version);
3302 
3303 	if (dump_stack_arch_desc_str[0] != '\0')
3304 		printk("%sHardware name: %s\n",
3305 		       log_lvl, dump_stack_arch_desc_str);
3306 
3307 	print_worker_info(log_lvl, current);
3308 }
3309 
3310 /**
3311  * show_regs_print_info - print generic debug info for show_regs()
3312  * @log_lvl: log level
3313  *
3314  * show_regs() implementations can use this function to print out generic
3315  * debug information.
3316  */
show_regs_print_info(const char * log_lvl)3317 void show_regs_print_info(const char *log_lvl)
3318 {
3319 	dump_stack_print_info(log_lvl);
3320 
3321 	printk("%stask: %p task.stack: %p\n",
3322 	       log_lvl, current, task_stack_page(current));
3323 }
3324 
3325 #endif
3326