1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 #include "transaction.h"
24
25 static struct kmem_cache *extent_state_cache;
26 static struct kmem_cache *extent_buffer_cache;
27 static struct bio_set *btrfs_bioset;
28
extent_state_in_tree(const struct extent_state * state)29 static inline bool extent_state_in_tree(const struct extent_state *state)
30 {
31 return !RB_EMPTY_NODE(&state->rb_node);
32 }
33
34 #ifdef CONFIG_BTRFS_DEBUG
35 static LIST_HEAD(buffers);
36 static LIST_HEAD(states);
37
38 static DEFINE_SPINLOCK(leak_lock);
39
40 static inline
btrfs_leak_debug_add(struct list_head * new,struct list_head * head)41 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42 {
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48 }
49
50 static inline
btrfs_leak_debug_del(struct list_head * entry)51 void btrfs_leak_debug_del(struct list_head *entry)
52 {
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58 }
59
60 static inline
btrfs_leak_debug_check(void)61 void btrfs_leak_debug_check(void)
62 {
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
71 atomic_read(&state->refs));
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83 }
84
85 #define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
__btrfs_debug_check_extent_io_range(const char * caller,struct extent_io_tree * tree,u64 start,u64 end)87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 struct inode *inode;
91 u64 isize;
92
93 if (!tree->mapping)
94 return;
95
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
101 caller, btrfs_ino(inode), isize, start, end);
102 }
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head) do {} while (0)
106 #define btrfs_leak_debug_del(entry) do {} while (0)
107 #define btrfs_leak_debug_check() do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
109 #endif
110
111 #define BUFFER_LRU_MAX 64
112
113 struct tree_entry {
114 u64 start;
115 u64 end;
116 struct rb_node rb_node;
117 };
118
119 struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
123 unsigned long bio_flags;
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
132 };
133
add_extent_changeset(struct extent_state * state,unsigned bits,struct extent_changeset * changeset,int set)134 static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137 {
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
144 if (!set && (state->state & bits) == 0)
145 return;
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151 }
152
153 static noinline void flush_write_bio(void *data);
154 static inline struct btrfs_fs_info *
tree_fs_info(struct extent_io_tree * tree)155 tree_fs_info(struct extent_io_tree *tree)
156 {
157 if (!tree->mapping)
158 return NULL;
159 return btrfs_sb(tree->mapping->host->i_sb);
160 }
161
extent_io_init(void)162 int __init extent_io_init(void)
163 {
164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
165 sizeof(struct extent_state), 0,
166 SLAB_MEM_SPREAD, NULL);
167 if (!extent_state_cache)
168 return -ENOMEM;
169
170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
171 sizeof(struct extent_buffer), 0,
172 SLAB_MEM_SPREAD, NULL);
173 if (!extent_buffer_cache)
174 goto free_state_cache;
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
184 return 0;
185
186 free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
190 free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
194 free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
196 extent_state_cache = NULL;
197 return -ENOMEM;
198 }
199
extent_io_exit(void)200 void extent_io_exit(void)
201 {
202 btrfs_leak_debug_check();
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
213 }
214
extent_io_tree_init(struct extent_io_tree * tree,struct address_space * mapping)215 void extent_io_tree_init(struct extent_io_tree *tree,
216 struct address_space *mapping)
217 {
218 tree->state = RB_ROOT;
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
221 spin_lock_init(&tree->lock);
222 tree->mapping = mapping;
223 }
224
alloc_extent_state(gfp_t mask)225 static struct extent_state *alloc_extent_state(gfp_t mask)
226 {
227 struct extent_state *state;
228
229 state = kmem_cache_alloc(extent_state_cache, mask);
230 if (!state)
231 return state;
232 state->state = 0;
233 state->failrec = NULL;
234 RB_CLEAR_NODE(&state->rb_node);
235 btrfs_leak_debug_add(&state->leak_list, &states);
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
238 trace_alloc_extent_state(state, mask, _RET_IP_);
239 return state;
240 }
241
free_extent_state(struct extent_state * state)242 void free_extent_state(struct extent_state *state)
243 {
244 if (!state)
245 return;
246 if (atomic_dec_and_test(&state->refs)) {
247 WARN_ON(extent_state_in_tree(state));
248 btrfs_leak_debug_del(&state->leak_list);
249 trace_free_extent_state(state, _RET_IP_);
250 kmem_cache_free(extent_state_cache, state);
251 }
252 }
253
tree_insert(struct rb_root * root,struct rb_node * search_start,u64 offset,struct rb_node * node,struct rb_node *** p_in,struct rb_node ** parent_in)254 static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
256 u64 offset,
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
260 {
261 struct rb_node **p;
262 struct rb_node *parent = NULL;
263 struct tree_entry *entry;
264
265 if (p_in && parent_in) {
266 p = *p_in;
267 parent = *parent_in;
268 goto do_insert;
269 }
270
271 p = search_start ? &search_start : &root->rb_node;
272 while (*p) {
273 parent = *p;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276 if (offset < entry->start)
277 p = &(*p)->rb_left;
278 else if (offset > entry->end)
279 p = &(*p)->rb_right;
280 else
281 return parent;
282 }
283
284 do_insert:
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
287 return NULL;
288 }
289
__etree_search(struct extent_io_tree * tree,u64 offset,struct rb_node ** prev_ret,struct rb_node ** next_ret,struct rb_node *** p_ret,struct rb_node ** parent_ret)290 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
295 {
296 struct rb_root *root = &tree->state;
297 struct rb_node **n = &root->rb_node;
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
302
303 while (*n) {
304 prev = *n;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
306 prev_entry = entry;
307
308 if (offset < entry->start)
309 n = &(*n)->rb_left;
310 else if (offset > entry->end)
311 n = &(*n)->rb_right;
312 else
313 return *n;
314 }
315
316 if (p_ret)
317 *p_ret = n;
318 if (parent_ret)
319 *parent_ret = prev;
320
321 if (prev_ret) {
322 orig_prev = prev;
323 while (prev && offset > prev_entry->end) {
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 }
327 *prev_ret = prev;
328 prev = orig_prev;
329 }
330
331 if (next_ret) {
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
333 while (prev && offset < prev_entry->start) {
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 }
337 *next_ret = prev;
338 }
339 return NULL;
340 }
341
342 static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree * tree,u64 offset,struct rb_node *** p_ret,struct rb_node ** parent_ret)343 tree_search_for_insert(struct extent_io_tree *tree,
344 u64 offset,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
347 {
348 struct rb_node *prev = NULL;
349 struct rb_node *ret;
350
351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
352 if (!ret)
353 return prev;
354 return ret;
355 }
356
tree_search(struct extent_io_tree * tree,u64 offset)357 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 u64 offset)
359 {
360 return tree_search_for_insert(tree, offset, NULL, NULL);
361 }
362
merge_cb(struct extent_io_tree * tree,struct extent_state * new,struct extent_state * other)363 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
365 {
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
368 other);
369 }
370
371 /*
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
377 *
378 * This should be called with the tree lock held.
379 */
merge_state(struct extent_io_tree * tree,struct extent_state * state)380 static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
382 {
383 struct extent_state *other;
384 struct rb_node *other_node;
385
386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
387 return;
388
389 other_node = rb_prev(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
394 merge_cb(tree, state, other);
395 state->start = other->start;
396 rb_erase(&other->rb_node, &tree->state);
397 RB_CLEAR_NODE(&other->rb_node);
398 free_extent_state(other);
399 }
400 }
401 other_node = rb_next(&state->rb_node);
402 if (other_node) {
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
406 merge_cb(tree, state, other);
407 state->end = other->end;
408 rb_erase(&other->rb_node, &tree->state);
409 RB_CLEAR_NODE(&other->rb_node);
410 free_extent_state(other);
411 }
412 }
413 }
414
set_state_cb(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits)415 static void set_state_cb(struct extent_io_tree *tree,
416 struct extent_state *state, unsigned *bits)
417 {
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
420 }
421
clear_state_cb(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits)422 static void clear_state_cb(struct extent_io_tree *tree,
423 struct extent_state *state, unsigned *bits)
424 {
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
427 }
428
429 static void set_state_bits(struct extent_io_tree *tree,
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
432
433 /*
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
436 *
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
439 *
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
442 */
insert_state(struct extent_io_tree * tree,struct extent_state * state,u64 start,u64 end,struct rb_node *** p,struct rb_node ** parent,unsigned * bits,struct extent_changeset * changeset)443 static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
445 struct rb_node ***p,
446 struct rb_node **parent,
447 unsigned *bits, struct extent_changeset *changeset)
448 {
449 struct rb_node *node;
450
451 if (end < start)
452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
453 end, start);
454 state->start = start;
455 state->end = end;
456
457 set_state_bits(tree, state, bits, changeset);
458
459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
463 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
464 found->start, found->end, start, end);
465 return -EEXIST;
466 }
467 merge_state(tree, state);
468 return 0;
469 }
470
split_cb(struct extent_io_tree * tree,struct extent_state * orig,u64 split)471 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
472 u64 split)
473 {
474 if (tree->ops && tree->ops->split_extent_hook)
475 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
476 }
477
478 /*
479 * split a given extent state struct in two, inserting the preallocated
480 * struct 'prealloc' as the newly created second half. 'split' indicates an
481 * offset inside 'orig' where it should be split.
482 *
483 * Before calling,
484 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
485 * are two extent state structs in the tree:
486 * prealloc: [orig->start, split - 1]
487 * orig: [ split, orig->end ]
488 *
489 * The tree locks are not taken by this function. They need to be held
490 * by the caller.
491 */
split_state(struct extent_io_tree * tree,struct extent_state * orig,struct extent_state * prealloc,u64 split)492 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
493 struct extent_state *prealloc, u64 split)
494 {
495 struct rb_node *node;
496
497 split_cb(tree, orig, split);
498
499 prealloc->start = orig->start;
500 prealloc->end = split - 1;
501 prealloc->state = orig->state;
502 orig->start = split;
503
504 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
505 &prealloc->rb_node, NULL, NULL);
506 if (node) {
507 free_extent_state(prealloc);
508 return -EEXIST;
509 }
510 return 0;
511 }
512
next_state(struct extent_state * state)513 static struct extent_state *next_state(struct extent_state *state)
514 {
515 struct rb_node *next = rb_next(&state->rb_node);
516 if (next)
517 return rb_entry(next, struct extent_state, rb_node);
518 else
519 return NULL;
520 }
521
522 /*
523 * utility function to clear some bits in an extent state struct.
524 * it will optionally wake up any one waiting on this state (wake == 1).
525 *
526 * If no bits are set on the state struct after clearing things, the
527 * struct is freed and removed from the tree
528 */
clear_state_bit(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits,int wake,struct extent_changeset * changeset)529 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
530 struct extent_state *state,
531 unsigned *bits, int wake,
532 struct extent_changeset *changeset)
533 {
534 struct extent_state *next;
535 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
536
537 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
538 u64 range = state->end - state->start + 1;
539 WARN_ON(range > tree->dirty_bytes);
540 tree->dirty_bytes -= range;
541 }
542 clear_state_cb(tree, state, bits);
543 add_extent_changeset(state, bits_to_clear, changeset, 0);
544 state->state &= ~bits_to_clear;
545 if (wake)
546 wake_up(&state->wq);
547 if (state->state == 0) {
548 next = next_state(state);
549 if (extent_state_in_tree(state)) {
550 rb_erase(&state->rb_node, &tree->state);
551 RB_CLEAR_NODE(&state->rb_node);
552 free_extent_state(state);
553 } else {
554 WARN_ON(1);
555 }
556 } else {
557 merge_state(tree, state);
558 next = next_state(state);
559 }
560 return next;
561 }
562
563 static struct extent_state *
alloc_extent_state_atomic(struct extent_state * prealloc)564 alloc_extent_state_atomic(struct extent_state *prealloc)
565 {
566 if (!prealloc)
567 prealloc = alloc_extent_state(GFP_ATOMIC);
568
569 return prealloc;
570 }
571
extent_io_tree_panic(struct extent_io_tree * tree,int err)572 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
573 {
574 btrfs_panic(tree_fs_info(tree), err,
575 "Locking error: Extent tree was modified by another thread while locked.");
576 }
577
578 /*
579 * clear some bits on a range in the tree. This may require splitting
580 * or inserting elements in the tree, so the gfp mask is used to
581 * indicate which allocations or sleeping are allowed.
582 *
583 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
584 * the given range from the tree regardless of state (ie for truncate).
585 *
586 * the range [start, end] is inclusive.
587 *
588 * This takes the tree lock, and returns 0 on success and < 0 on error.
589 */
__clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int wake,int delete,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)590 static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
591 unsigned bits, int wake, int delete,
592 struct extent_state **cached_state,
593 gfp_t mask, struct extent_changeset *changeset)
594 {
595 struct extent_state *state;
596 struct extent_state *cached;
597 struct extent_state *prealloc = NULL;
598 struct rb_node *node;
599 u64 last_end;
600 int err;
601 int clear = 0;
602
603 btrfs_debug_check_extent_io_range(tree, start, end);
604
605 if (bits & EXTENT_DELALLOC)
606 bits |= EXTENT_NORESERVE;
607
608 if (delete)
609 bits |= ~EXTENT_CTLBITS;
610 bits |= EXTENT_FIRST_DELALLOC;
611
612 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
613 clear = 1;
614 again:
615 if (!prealloc && gfpflags_allow_blocking(mask)) {
616 /*
617 * Don't care for allocation failure here because we might end
618 * up not needing the pre-allocated extent state at all, which
619 * is the case if we only have in the tree extent states that
620 * cover our input range and don't cover too any other range.
621 * If we end up needing a new extent state we allocate it later.
622 */
623 prealloc = alloc_extent_state(mask);
624 }
625
626 spin_lock(&tree->lock);
627 if (cached_state) {
628 cached = *cached_state;
629
630 if (clear) {
631 *cached_state = NULL;
632 cached_state = NULL;
633 }
634
635 if (cached && extent_state_in_tree(cached) &&
636 cached->start <= start && cached->end > start) {
637 if (clear)
638 atomic_dec(&cached->refs);
639 state = cached;
640 goto hit_next;
641 }
642 if (clear)
643 free_extent_state(cached);
644 }
645 /*
646 * this search will find the extents that end after
647 * our range starts
648 */
649 node = tree_search(tree, start);
650 if (!node)
651 goto out;
652 state = rb_entry(node, struct extent_state, rb_node);
653 hit_next:
654 if (state->start > end)
655 goto out;
656 WARN_ON(state->end < start);
657 last_end = state->end;
658
659 /* the state doesn't have the wanted bits, go ahead */
660 if (!(state->state & bits)) {
661 state = next_state(state);
662 goto next;
663 }
664
665 /*
666 * | ---- desired range ---- |
667 * | state | or
668 * | ------------- state -------------- |
669 *
670 * We need to split the extent we found, and may flip
671 * bits on second half.
672 *
673 * If the extent we found extends past our range, we
674 * just split and search again. It'll get split again
675 * the next time though.
676 *
677 * If the extent we found is inside our range, we clear
678 * the desired bit on it.
679 */
680
681 if (state->start < start) {
682 prealloc = alloc_extent_state_atomic(prealloc);
683 BUG_ON(!prealloc);
684 err = split_state(tree, state, prealloc, start);
685 if (err)
686 extent_io_tree_panic(tree, err);
687
688 prealloc = NULL;
689 if (err)
690 goto out;
691 if (state->end <= end) {
692 state = clear_state_bit(tree, state, &bits, wake,
693 changeset);
694 goto next;
695 }
696 goto search_again;
697 }
698 /*
699 * | ---- desired range ---- |
700 * | state |
701 * We need to split the extent, and clear the bit
702 * on the first half
703 */
704 if (state->start <= end && state->end > end) {
705 prealloc = alloc_extent_state_atomic(prealloc);
706 BUG_ON(!prealloc);
707 err = split_state(tree, state, prealloc, end + 1);
708 if (err)
709 extent_io_tree_panic(tree, err);
710
711 if (wake)
712 wake_up(&state->wq);
713
714 clear_state_bit(tree, prealloc, &bits, wake, changeset);
715
716 prealloc = NULL;
717 goto out;
718 }
719
720 state = clear_state_bit(tree, state, &bits, wake, changeset);
721 next:
722 if (last_end == (u64)-1)
723 goto out;
724 start = last_end + 1;
725 if (start <= end && state && !need_resched())
726 goto hit_next;
727
728 search_again:
729 if (start > end)
730 goto out;
731 spin_unlock(&tree->lock);
732 if (gfpflags_allow_blocking(mask))
733 cond_resched();
734 goto again;
735
736 out:
737 spin_unlock(&tree->lock);
738 if (prealloc)
739 free_extent_state(prealloc);
740
741 return 0;
742
743 }
744
wait_on_state(struct extent_io_tree * tree,struct extent_state * state)745 static void wait_on_state(struct extent_io_tree *tree,
746 struct extent_state *state)
747 __releases(tree->lock)
748 __acquires(tree->lock)
749 {
750 DEFINE_WAIT(wait);
751 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
752 spin_unlock(&tree->lock);
753 schedule();
754 spin_lock(&tree->lock);
755 finish_wait(&state->wq, &wait);
756 }
757
758 /*
759 * waits for one or more bits to clear on a range in the state tree.
760 * The range [start, end] is inclusive.
761 * The tree lock is taken by this function
762 */
wait_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned long bits)763 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
764 unsigned long bits)
765 {
766 struct extent_state *state;
767 struct rb_node *node;
768
769 btrfs_debug_check_extent_io_range(tree, start, end);
770
771 spin_lock(&tree->lock);
772 again:
773 while (1) {
774 /*
775 * this search will find all the extents that end after
776 * our range starts
777 */
778 node = tree_search(tree, start);
779 process_node:
780 if (!node)
781 break;
782
783 state = rb_entry(node, struct extent_state, rb_node);
784
785 if (state->start > end)
786 goto out;
787
788 if (state->state & bits) {
789 start = state->start;
790 atomic_inc(&state->refs);
791 wait_on_state(tree, state);
792 free_extent_state(state);
793 goto again;
794 }
795 start = state->end + 1;
796
797 if (start > end)
798 break;
799
800 if (!cond_resched_lock(&tree->lock)) {
801 node = rb_next(node);
802 goto process_node;
803 }
804 }
805 out:
806 spin_unlock(&tree->lock);
807 }
808
set_state_bits(struct extent_io_tree * tree,struct extent_state * state,unsigned * bits,struct extent_changeset * changeset)809 static void set_state_bits(struct extent_io_tree *tree,
810 struct extent_state *state,
811 unsigned *bits, struct extent_changeset *changeset)
812 {
813 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
814
815 set_state_cb(tree, state, bits);
816 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
817 u64 range = state->end - state->start + 1;
818 tree->dirty_bytes += range;
819 }
820 add_extent_changeset(state, bits_to_set, changeset, 1);
821 state->state |= bits_to_set;
822 }
823
cache_state_if_flags(struct extent_state * state,struct extent_state ** cached_ptr,unsigned flags)824 static void cache_state_if_flags(struct extent_state *state,
825 struct extent_state **cached_ptr,
826 unsigned flags)
827 {
828 if (cached_ptr && !(*cached_ptr)) {
829 if (!flags || (state->state & flags)) {
830 *cached_ptr = state;
831 atomic_inc(&state->refs);
832 }
833 }
834 }
835
cache_state(struct extent_state * state,struct extent_state ** cached_ptr)836 static void cache_state(struct extent_state *state,
837 struct extent_state **cached_ptr)
838 {
839 return cache_state_if_flags(state, cached_ptr,
840 EXTENT_IOBITS | EXTENT_BOUNDARY);
841 }
842
843 /*
844 * set some bits on a range in the tree. This may require allocations or
845 * sleeping, so the gfp mask is used to indicate what is allowed.
846 *
847 * If any of the exclusive bits are set, this will fail with -EEXIST if some
848 * part of the range already has the desired bits set. The start of the
849 * existing range is returned in failed_start in this case.
850 *
851 * [start, end] is inclusive This takes the tree lock.
852 */
853
854 static int __must_check
__set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,unsigned exclusive_bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)855 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
856 unsigned bits, unsigned exclusive_bits,
857 u64 *failed_start, struct extent_state **cached_state,
858 gfp_t mask, struct extent_changeset *changeset)
859 {
860 struct extent_state *state;
861 struct extent_state *prealloc = NULL;
862 struct rb_node *node;
863 struct rb_node **p;
864 struct rb_node *parent;
865 int err = 0;
866 u64 last_start;
867 u64 last_end;
868
869 btrfs_debug_check_extent_io_range(tree, start, end);
870
871 bits |= EXTENT_FIRST_DELALLOC;
872 again:
873 if (!prealloc && gfpflags_allow_blocking(mask)) {
874 /*
875 * Don't care for allocation failure here because we might end
876 * up not needing the pre-allocated extent state at all, which
877 * is the case if we only have in the tree extent states that
878 * cover our input range and don't cover too any other range.
879 * If we end up needing a new extent state we allocate it later.
880 */
881 prealloc = alloc_extent_state(mask);
882 }
883
884 spin_lock(&tree->lock);
885 if (cached_state && *cached_state) {
886 state = *cached_state;
887 if (state->start <= start && state->end > start &&
888 extent_state_in_tree(state)) {
889 node = &state->rb_node;
890 goto hit_next;
891 }
892 }
893 /*
894 * this search will find all the extents that end after
895 * our range starts.
896 */
897 node = tree_search_for_insert(tree, start, &p, &parent);
898 if (!node) {
899 prealloc = alloc_extent_state_atomic(prealloc);
900 BUG_ON(!prealloc);
901 err = insert_state(tree, prealloc, start, end,
902 &p, &parent, &bits, changeset);
903 if (err)
904 extent_io_tree_panic(tree, err);
905
906 cache_state(prealloc, cached_state);
907 prealloc = NULL;
908 goto out;
909 }
910 state = rb_entry(node, struct extent_state, rb_node);
911 hit_next:
912 last_start = state->start;
913 last_end = state->end;
914
915 /*
916 * | ---- desired range ---- |
917 * | state |
918 *
919 * Just lock what we found and keep going
920 */
921 if (state->start == start && state->end <= end) {
922 if (state->state & exclusive_bits) {
923 *failed_start = state->start;
924 err = -EEXIST;
925 goto out;
926 }
927
928 set_state_bits(tree, state, &bits, changeset);
929 cache_state(state, cached_state);
930 merge_state(tree, state);
931 if (last_end == (u64)-1)
932 goto out;
933 start = last_end + 1;
934 state = next_state(state);
935 if (start < end && state && state->start == start &&
936 !need_resched())
937 goto hit_next;
938 goto search_again;
939 }
940
941 /*
942 * | ---- desired range ---- |
943 * | state |
944 * or
945 * | ------------- state -------------- |
946 *
947 * We need to split the extent we found, and may flip bits on
948 * second half.
949 *
950 * If the extent we found extends past our
951 * range, we just split and search again. It'll get split
952 * again the next time though.
953 *
954 * If the extent we found is inside our range, we set the
955 * desired bit on it.
956 */
957 if (state->start < start) {
958 if (state->state & exclusive_bits) {
959 *failed_start = start;
960 err = -EEXIST;
961 goto out;
962 }
963
964 prealloc = alloc_extent_state_atomic(prealloc);
965 BUG_ON(!prealloc);
966 err = split_state(tree, state, prealloc, start);
967 if (err)
968 extent_io_tree_panic(tree, err);
969
970 prealloc = NULL;
971 if (err)
972 goto out;
973 if (state->end <= end) {
974 set_state_bits(tree, state, &bits, changeset);
975 cache_state(state, cached_state);
976 merge_state(tree, state);
977 if (last_end == (u64)-1)
978 goto out;
979 start = last_end + 1;
980 state = next_state(state);
981 if (start < end && state && state->start == start &&
982 !need_resched())
983 goto hit_next;
984 }
985 goto search_again;
986 }
987 /*
988 * | ---- desired range ---- |
989 * | state | or | state |
990 *
991 * There's a hole, we need to insert something in it and
992 * ignore the extent we found.
993 */
994 if (state->start > start) {
995 u64 this_end;
996 if (end < last_start)
997 this_end = end;
998 else
999 this_end = last_start - 1;
1000
1001 prealloc = alloc_extent_state_atomic(prealloc);
1002 BUG_ON(!prealloc);
1003
1004 /*
1005 * Avoid to free 'prealloc' if it can be merged with
1006 * the later extent.
1007 */
1008 err = insert_state(tree, prealloc, start, this_end,
1009 NULL, NULL, &bits, changeset);
1010 if (err)
1011 extent_io_tree_panic(tree, err);
1012
1013 cache_state(prealloc, cached_state);
1014 prealloc = NULL;
1015 start = this_end + 1;
1016 goto search_again;
1017 }
1018 /*
1019 * | ---- desired range ---- |
1020 * | state |
1021 * We need to split the extent, and set the bit
1022 * on the first half
1023 */
1024 if (state->start <= end && state->end > end) {
1025 if (state->state & exclusive_bits) {
1026 *failed_start = start;
1027 err = -EEXIST;
1028 goto out;
1029 }
1030
1031 prealloc = alloc_extent_state_atomic(prealloc);
1032 BUG_ON(!prealloc);
1033 err = split_state(tree, state, prealloc, end + 1);
1034 if (err)
1035 extent_io_tree_panic(tree, err);
1036
1037 set_state_bits(tree, prealloc, &bits, changeset);
1038 cache_state(prealloc, cached_state);
1039 merge_state(tree, prealloc);
1040 prealloc = NULL;
1041 goto out;
1042 }
1043
1044 search_again:
1045 if (start > end)
1046 goto out;
1047 spin_unlock(&tree->lock);
1048 if (gfpflags_allow_blocking(mask))
1049 cond_resched();
1050 goto again;
1051
1052 out:
1053 spin_unlock(&tree->lock);
1054 if (prealloc)
1055 free_extent_state(prealloc);
1056
1057 return err;
1058
1059 }
1060
set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask)1061 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1062 unsigned bits, u64 * failed_start,
1063 struct extent_state **cached_state, gfp_t mask)
1064 {
1065 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1066 cached_state, mask, NULL);
1067 }
1068
1069
1070 /**
1071 * convert_extent_bit - convert all bits in a given range from one bit to
1072 * another
1073 * @tree: the io tree to search
1074 * @start: the start offset in bytes
1075 * @end: the end offset in bytes (inclusive)
1076 * @bits: the bits to set in this range
1077 * @clear_bits: the bits to clear in this range
1078 * @cached_state: state that we're going to cache
1079 *
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1085 *
1086 * All allocations are done with GFP_NOFS.
1087 */
convert_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,unsigned clear_bits,struct extent_state ** cached_state)1088 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1089 unsigned bits, unsigned clear_bits,
1090 struct extent_state **cached_state)
1091 {
1092 struct extent_state *state;
1093 struct extent_state *prealloc = NULL;
1094 struct rb_node *node;
1095 struct rb_node **p;
1096 struct rb_node *parent;
1097 int err = 0;
1098 u64 last_start;
1099 u64 last_end;
1100 bool first_iteration = true;
1101
1102 btrfs_debug_check_extent_io_range(tree, start, end);
1103
1104 again:
1105 if (!prealloc) {
1106 /*
1107 * Best effort, don't worry if extent state allocation fails
1108 * here for the first iteration. We might have a cached state
1109 * that matches exactly the target range, in which case no
1110 * extent state allocations are needed. We'll only know this
1111 * after locking the tree.
1112 */
1113 prealloc = alloc_extent_state(GFP_NOFS);
1114 if (!prealloc && !first_iteration)
1115 return -ENOMEM;
1116 }
1117
1118 spin_lock(&tree->lock);
1119 if (cached_state && *cached_state) {
1120 state = *cached_state;
1121 if (state->start <= start && state->end > start &&
1122 extent_state_in_tree(state)) {
1123 node = &state->rb_node;
1124 goto hit_next;
1125 }
1126 }
1127
1128 /*
1129 * this search will find all the extents that end after
1130 * our range starts.
1131 */
1132 node = tree_search_for_insert(tree, start, &p, &parent);
1133 if (!node) {
1134 prealloc = alloc_extent_state_atomic(prealloc);
1135 if (!prealloc) {
1136 err = -ENOMEM;
1137 goto out;
1138 }
1139 err = insert_state(tree, prealloc, start, end,
1140 &p, &parent, &bits, NULL);
1141 if (err)
1142 extent_io_tree_panic(tree, err);
1143 cache_state(prealloc, cached_state);
1144 prealloc = NULL;
1145 goto out;
1146 }
1147 state = rb_entry(node, struct extent_state, rb_node);
1148 hit_next:
1149 last_start = state->start;
1150 last_end = state->end;
1151
1152 /*
1153 * | ---- desired range ---- |
1154 * | state |
1155 *
1156 * Just lock what we found and keep going
1157 */
1158 if (state->start == start && state->end <= end) {
1159 set_state_bits(tree, state, &bits, NULL);
1160 cache_state(state, cached_state);
1161 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1162 if (last_end == (u64)-1)
1163 goto out;
1164 start = last_end + 1;
1165 if (start < end && state && state->start == start &&
1166 !need_resched())
1167 goto hit_next;
1168 goto search_again;
1169 }
1170
1171 /*
1172 * | ---- desired range ---- |
1173 * | state |
1174 * or
1175 * | ------------- state -------------- |
1176 *
1177 * We need to split the extent we found, and may flip bits on
1178 * second half.
1179 *
1180 * If the extent we found extends past our
1181 * range, we just split and search again. It'll get split
1182 * again the next time though.
1183 *
1184 * If the extent we found is inside our range, we set the
1185 * desired bit on it.
1186 */
1187 if (state->start < start) {
1188 prealloc = alloc_extent_state_atomic(prealloc);
1189 if (!prealloc) {
1190 err = -ENOMEM;
1191 goto out;
1192 }
1193 err = split_state(tree, state, prealloc, start);
1194 if (err)
1195 extent_io_tree_panic(tree, err);
1196 prealloc = NULL;
1197 if (err)
1198 goto out;
1199 if (state->end <= end) {
1200 set_state_bits(tree, state, &bits, NULL);
1201 cache_state(state, cached_state);
1202 state = clear_state_bit(tree, state, &clear_bits, 0,
1203 NULL);
1204 if (last_end == (u64)-1)
1205 goto out;
1206 start = last_end + 1;
1207 if (start < end && state && state->start == start &&
1208 !need_resched())
1209 goto hit_next;
1210 }
1211 goto search_again;
1212 }
1213 /*
1214 * | ---- desired range ---- |
1215 * | state | or | state |
1216 *
1217 * There's a hole, we need to insert something in it and
1218 * ignore the extent we found.
1219 */
1220 if (state->start > start) {
1221 u64 this_end;
1222 if (end < last_start)
1223 this_end = end;
1224 else
1225 this_end = last_start - 1;
1226
1227 prealloc = alloc_extent_state_atomic(prealloc);
1228 if (!prealloc) {
1229 err = -ENOMEM;
1230 goto out;
1231 }
1232
1233 /*
1234 * Avoid to free 'prealloc' if it can be merged with
1235 * the later extent.
1236 */
1237 err = insert_state(tree, prealloc, start, this_end,
1238 NULL, NULL, &bits, NULL);
1239 if (err)
1240 extent_io_tree_panic(tree, err);
1241 cache_state(prealloc, cached_state);
1242 prealloc = NULL;
1243 start = this_end + 1;
1244 goto search_again;
1245 }
1246 /*
1247 * | ---- desired range ---- |
1248 * | state |
1249 * We need to split the extent, and set the bit
1250 * on the first half
1251 */
1252 if (state->start <= end && state->end > end) {
1253 prealloc = alloc_extent_state_atomic(prealloc);
1254 if (!prealloc) {
1255 err = -ENOMEM;
1256 goto out;
1257 }
1258
1259 err = split_state(tree, state, prealloc, end + 1);
1260 if (err)
1261 extent_io_tree_panic(tree, err);
1262
1263 set_state_bits(tree, prealloc, &bits, NULL);
1264 cache_state(prealloc, cached_state);
1265 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1266 prealloc = NULL;
1267 goto out;
1268 }
1269
1270 search_again:
1271 if (start > end)
1272 goto out;
1273 spin_unlock(&tree->lock);
1274 cond_resched();
1275 first_iteration = false;
1276 goto again;
1277
1278 out:
1279 spin_unlock(&tree->lock);
1280 if (prealloc)
1281 free_extent_state(prealloc);
1282
1283 return err;
1284 }
1285
1286 /* wrappers around set/clear extent bit */
set_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,struct extent_changeset * changeset)1287 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1288 unsigned bits, struct extent_changeset *changeset)
1289 {
1290 /*
1291 * We don't support EXTENT_LOCKED yet, as current changeset will
1292 * record any bits changed, so for EXTENT_LOCKED case, it will
1293 * either fail with -EEXIST or changeset will record the whole
1294 * range.
1295 */
1296 BUG_ON(bits & EXTENT_LOCKED);
1297
1298 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1299 changeset);
1300 }
1301
clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int wake,int delete,struct extent_state ** cached,gfp_t mask)1302 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1303 unsigned bits, int wake, int delete,
1304 struct extent_state **cached, gfp_t mask)
1305 {
1306 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1307 cached, mask, NULL);
1308 }
1309
clear_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,struct extent_changeset * changeset)1310 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1311 unsigned bits, struct extent_changeset *changeset)
1312 {
1313 /*
1314 * Don't support EXTENT_LOCKED case, same reason as
1315 * set_record_extent_bits().
1316 */
1317 BUG_ON(bits & EXTENT_LOCKED);
1318
1319 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1320 changeset);
1321 }
1322
1323 /*
1324 * either insert or lock state struct between start and end use mask to tell
1325 * us if waiting is desired.
1326 */
lock_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached_state)1327 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1328 struct extent_state **cached_state)
1329 {
1330 int err;
1331 u64 failed_start;
1332
1333 while (1) {
1334 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1335 EXTENT_LOCKED, &failed_start,
1336 cached_state, GFP_NOFS, NULL);
1337 if (err == -EEXIST) {
1338 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1339 start = failed_start;
1340 } else
1341 break;
1342 WARN_ON(start > end);
1343 }
1344 return err;
1345 }
1346
try_lock_extent(struct extent_io_tree * tree,u64 start,u64 end)1347 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1348 {
1349 int err;
1350 u64 failed_start;
1351
1352 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1353 &failed_start, NULL, GFP_NOFS, NULL);
1354 if (err == -EEXIST) {
1355 if (failed_start > start)
1356 clear_extent_bit(tree, start, failed_start - 1,
1357 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1358 return 0;
1359 }
1360 return 1;
1361 }
1362
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)1363 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1364 {
1365 unsigned long index = start >> PAGE_SHIFT;
1366 unsigned long end_index = end >> PAGE_SHIFT;
1367 struct page *page;
1368
1369 while (index <= end_index) {
1370 page = find_get_page(inode->i_mapping, index);
1371 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1372 clear_page_dirty_for_io(page);
1373 put_page(page);
1374 index++;
1375 }
1376 }
1377
extent_range_redirty_for_io(struct inode * inode,u64 start,u64 end)1378 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1379 {
1380 unsigned long index = start >> PAGE_SHIFT;
1381 unsigned long end_index = end >> PAGE_SHIFT;
1382 struct page *page;
1383
1384 while (index <= end_index) {
1385 page = find_get_page(inode->i_mapping, index);
1386 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1387 __set_page_dirty_nobuffers(page);
1388 account_page_redirty(page);
1389 put_page(page);
1390 index++;
1391 }
1392 }
1393
1394 /*
1395 * helper function to set both pages and extents in the tree writeback
1396 */
set_range_writeback(struct extent_io_tree * tree,u64 start,u64 end)1397 static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1398 {
1399 unsigned long index = start >> PAGE_SHIFT;
1400 unsigned long end_index = end >> PAGE_SHIFT;
1401 struct page *page;
1402
1403 while (index <= end_index) {
1404 page = find_get_page(tree->mapping, index);
1405 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1406 set_page_writeback(page);
1407 put_page(page);
1408 index++;
1409 }
1410 }
1411
1412 /* find the first state struct with 'bits' set after 'start', and
1413 * return it. tree->lock must be held. NULL will returned if
1414 * nothing was found after 'start'
1415 */
1416 static struct extent_state *
find_first_extent_bit_state(struct extent_io_tree * tree,u64 start,unsigned bits)1417 find_first_extent_bit_state(struct extent_io_tree *tree,
1418 u64 start, unsigned bits)
1419 {
1420 struct rb_node *node;
1421 struct extent_state *state;
1422
1423 /*
1424 * this search will find all the extents that end after
1425 * our range starts.
1426 */
1427 node = tree_search(tree, start);
1428 if (!node)
1429 goto out;
1430
1431 while (1) {
1432 state = rb_entry(node, struct extent_state, rb_node);
1433 if (state->end >= start && (state->state & bits))
1434 return state;
1435
1436 node = rb_next(node);
1437 if (!node)
1438 break;
1439 }
1440 out:
1441 return NULL;
1442 }
1443
1444 /*
1445 * find the first offset in the io tree with 'bits' set. zero is
1446 * returned if we find something, and *start_ret and *end_ret are
1447 * set to reflect the state struct that was found.
1448 *
1449 * If nothing was found, 1 is returned. If found something, return 0.
1450 */
find_first_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,unsigned bits,struct extent_state ** cached_state)1451 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1452 u64 *start_ret, u64 *end_ret, unsigned bits,
1453 struct extent_state **cached_state)
1454 {
1455 struct extent_state *state;
1456 struct rb_node *n;
1457 int ret = 1;
1458
1459 spin_lock(&tree->lock);
1460 if (cached_state && *cached_state) {
1461 state = *cached_state;
1462 if (state->end == start - 1 && extent_state_in_tree(state)) {
1463 n = rb_next(&state->rb_node);
1464 while (n) {
1465 state = rb_entry(n, struct extent_state,
1466 rb_node);
1467 if (state->state & bits)
1468 goto got_it;
1469 n = rb_next(n);
1470 }
1471 free_extent_state(*cached_state);
1472 *cached_state = NULL;
1473 goto out;
1474 }
1475 free_extent_state(*cached_state);
1476 *cached_state = NULL;
1477 }
1478
1479 state = find_first_extent_bit_state(tree, start, bits);
1480 got_it:
1481 if (state) {
1482 cache_state_if_flags(state, cached_state, 0);
1483 *start_ret = state->start;
1484 *end_ret = state->end;
1485 ret = 0;
1486 }
1487 out:
1488 spin_unlock(&tree->lock);
1489 return ret;
1490 }
1491
1492 /*
1493 * find a contiguous range of bytes in the file marked as delalloc, not
1494 * more than 'max_bytes'. start and end are used to return the range,
1495 *
1496 * 1 is returned if we find something, 0 if nothing was in the tree
1497 */
find_delalloc_range(struct extent_io_tree * tree,u64 * start,u64 * end,u64 max_bytes,struct extent_state ** cached_state)1498 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1499 u64 *start, u64 *end, u64 max_bytes,
1500 struct extent_state **cached_state)
1501 {
1502 struct rb_node *node;
1503 struct extent_state *state;
1504 u64 cur_start = *start;
1505 u64 found = 0;
1506 u64 total_bytes = 0;
1507
1508 spin_lock(&tree->lock);
1509
1510 /*
1511 * this search will find all the extents that end after
1512 * our range starts.
1513 */
1514 node = tree_search(tree, cur_start);
1515 if (!node) {
1516 if (!found)
1517 *end = (u64)-1;
1518 goto out;
1519 }
1520
1521 while (1) {
1522 state = rb_entry(node, struct extent_state, rb_node);
1523 if (found && (state->start != cur_start ||
1524 (state->state & EXTENT_BOUNDARY))) {
1525 goto out;
1526 }
1527 if (!(state->state & EXTENT_DELALLOC)) {
1528 if (!found)
1529 *end = state->end;
1530 goto out;
1531 }
1532 if (!found) {
1533 *start = state->start;
1534 *cached_state = state;
1535 atomic_inc(&state->refs);
1536 }
1537 found++;
1538 *end = state->end;
1539 cur_start = state->end + 1;
1540 node = rb_next(node);
1541 total_bytes += state->end - state->start + 1;
1542 if (total_bytes >= max_bytes)
1543 break;
1544 if (!node)
1545 break;
1546 }
1547 out:
1548 spin_unlock(&tree->lock);
1549 return found;
1550 }
1551
__unlock_for_delalloc(struct inode * inode,struct page * locked_page,u64 start,u64 end)1552 static noinline void __unlock_for_delalloc(struct inode *inode,
1553 struct page *locked_page,
1554 u64 start, u64 end)
1555 {
1556 int ret;
1557 struct page *pages[16];
1558 unsigned long index = start >> PAGE_SHIFT;
1559 unsigned long end_index = end >> PAGE_SHIFT;
1560 unsigned long nr_pages = end_index - index + 1;
1561 int i;
1562
1563 if (index == locked_page->index && end_index == index)
1564 return;
1565
1566 while (nr_pages > 0) {
1567 ret = find_get_pages_contig(inode->i_mapping, index,
1568 min_t(unsigned long, nr_pages,
1569 ARRAY_SIZE(pages)), pages);
1570 for (i = 0; i < ret; i++) {
1571 if (pages[i] != locked_page)
1572 unlock_page(pages[i]);
1573 put_page(pages[i]);
1574 }
1575 nr_pages -= ret;
1576 index += ret;
1577 cond_resched();
1578 }
1579 }
1580
lock_delalloc_pages(struct inode * inode,struct page * locked_page,u64 delalloc_start,u64 delalloc_end)1581 static noinline int lock_delalloc_pages(struct inode *inode,
1582 struct page *locked_page,
1583 u64 delalloc_start,
1584 u64 delalloc_end)
1585 {
1586 unsigned long index = delalloc_start >> PAGE_SHIFT;
1587 unsigned long start_index = index;
1588 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1589 unsigned long pages_locked = 0;
1590 struct page *pages[16];
1591 unsigned long nrpages;
1592 int ret;
1593 int i;
1594
1595 /* the caller is responsible for locking the start index */
1596 if (index == locked_page->index && index == end_index)
1597 return 0;
1598
1599 /* skip the page at the start index */
1600 nrpages = end_index - index + 1;
1601 while (nrpages > 0) {
1602 ret = find_get_pages_contig(inode->i_mapping, index,
1603 min_t(unsigned long,
1604 nrpages, ARRAY_SIZE(pages)), pages);
1605 if (ret == 0) {
1606 ret = -EAGAIN;
1607 goto done;
1608 }
1609 /* now we have an array of pages, lock them all */
1610 for (i = 0; i < ret; i++) {
1611 /*
1612 * the caller is taking responsibility for
1613 * locked_page
1614 */
1615 if (pages[i] != locked_page) {
1616 lock_page(pages[i]);
1617 if (!PageDirty(pages[i]) ||
1618 pages[i]->mapping != inode->i_mapping) {
1619 ret = -EAGAIN;
1620 unlock_page(pages[i]);
1621 put_page(pages[i]);
1622 goto done;
1623 }
1624 }
1625 put_page(pages[i]);
1626 pages_locked++;
1627 }
1628 nrpages -= ret;
1629 index += ret;
1630 cond_resched();
1631 }
1632 ret = 0;
1633 done:
1634 if (ret && pages_locked) {
1635 __unlock_for_delalloc(inode, locked_page,
1636 delalloc_start,
1637 ((u64)(start_index + pages_locked - 1)) <<
1638 PAGE_SHIFT);
1639 }
1640 return ret;
1641 }
1642
1643 /*
1644 * find a contiguous range of bytes in the file marked as delalloc, not
1645 * more than 'max_bytes'. start and end are used to return the range,
1646 *
1647 * 1 is returned if we find something, 0 if nothing was in the tree
1648 */
find_lock_delalloc_range(struct inode * inode,struct extent_io_tree * tree,struct page * locked_page,u64 * start,u64 * end,u64 max_bytes)1649 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1650 struct extent_io_tree *tree,
1651 struct page *locked_page, u64 *start,
1652 u64 *end, u64 max_bytes)
1653 {
1654 u64 delalloc_start;
1655 u64 delalloc_end;
1656 u64 found;
1657 struct extent_state *cached_state = NULL;
1658 int ret;
1659 int loops = 0;
1660
1661 again:
1662 /* step one, find a bunch of delalloc bytes starting at start */
1663 delalloc_start = *start;
1664 delalloc_end = 0;
1665 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1666 max_bytes, &cached_state);
1667 if (!found || delalloc_end <= *start) {
1668 *start = delalloc_start;
1669 *end = delalloc_end;
1670 free_extent_state(cached_state);
1671 return 0;
1672 }
1673
1674 /*
1675 * start comes from the offset of locked_page. We have to lock
1676 * pages in order, so we can't process delalloc bytes before
1677 * locked_page
1678 */
1679 if (delalloc_start < *start)
1680 delalloc_start = *start;
1681
1682 /*
1683 * make sure to limit the number of pages we try to lock down
1684 */
1685 if (delalloc_end + 1 - delalloc_start > max_bytes)
1686 delalloc_end = delalloc_start + max_bytes - 1;
1687
1688 /* step two, lock all the pages after the page that has start */
1689 ret = lock_delalloc_pages(inode, locked_page,
1690 delalloc_start, delalloc_end);
1691 if (ret == -EAGAIN) {
1692 /* some of the pages are gone, lets avoid looping by
1693 * shortening the size of the delalloc range we're searching
1694 */
1695 free_extent_state(cached_state);
1696 cached_state = NULL;
1697 if (!loops) {
1698 max_bytes = PAGE_SIZE;
1699 loops = 1;
1700 goto again;
1701 } else {
1702 found = 0;
1703 goto out_failed;
1704 }
1705 }
1706 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1707
1708 /* step three, lock the state bits for the whole range */
1709 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1710
1711 /* then test to make sure it is all still delalloc */
1712 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1713 EXTENT_DELALLOC, 1, cached_state);
1714 if (!ret) {
1715 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1716 &cached_state, GFP_NOFS);
1717 __unlock_for_delalloc(inode, locked_page,
1718 delalloc_start, delalloc_end);
1719 cond_resched();
1720 goto again;
1721 }
1722 free_extent_state(cached_state);
1723 *start = delalloc_start;
1724 *end = delalloc_end;
1725 out_failed:
1726 return found;
1727 }
1728
extent_clear_unlock_delalloc(struct inode * inode,u64 start,u64 end,u64 delalloc_end,struct page * locked_page,unsigned clear_bits,unsigned long page_ops)1729 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1730 u64 delalloc_end, struct page *locked_page,
1731 unsigned clear_bits,
1732 unsigned long page_ops)
1733 {
1734 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1735 int ret;
1736 struct page *pages[16];
1737 unsigned long index = start >> PAGE_SHIFT;
1738 unsigned long end_index = end >> PAGE_SHIFT;
1739 unsigned long nr_pages = end_index - index + 1;
1740 int i;
1741
1742 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1743 if (page_ops == 0)
1744 return;
1745
1746 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1747 mapping_set_error(inode->i_mapping, -EIO);
1748
1749 while (nr_pages > 0) {
1750 ret = find_get_pages_contig(inode->i_mapping, index,
1751 min_t(unsigned long,
1752 nr_pages, ARRAY_SIZE(pages)), pages);
1753 for (i = 0; i < ret; i++) {
1754
1755 if (page_ops & PAGE_SET_PRIVATE2)
1756 SetPagePrivate2(pages[i]);
1757
1758 if (pages[i] == locked_page) {
1759 put_page(pages[i]);
1760 continue;
1761 }
1762 if (page_ops & PAGE_CLEAR_DIRTY)
1763 clear_page_dirty_for_io(pages[i]);
1764 if (page_ops & PAGE_SET_WRITEBACK)
1765 set_page_writeback(pages[i]);
1766 if (page_ops & PAGE_SET_ERROR)
1767 SetPageError(pages[i]);
1768 if (page_ops & PAGE_END_WRITEBACK)
1769 end_page_writeback(pages[i]);
1770 if (page_ops & PAGE_UNLOCK)
1771 unlock_page(pages[i]);
1772 put_page(pages[i]);
1773 }
1774 nr_pages -= ret;
1775 index += ret;
1776 cond_resched();
1777 }
1778 }
1779
1780 /*
1781 * count the number of bytes in the tree that have a given bit(s)
1782 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1783 * cached. The total number found is returned.
1784 */
count_range_bits(struct extent_io_tree * tree,u64 * start,u64 search_end,u64 max_bytes,unsigned bits,int contig)1785 u64 count_range_bits(struct extent_io_tree *tree,
1786 u64 *start, u64 search_end, u64 max_bytes,
1787 unsigned bits, int contig)
1788 {
1789 struct rb_node *node;
1790 struct extent_state *state;
1791 u64 cur_start = *start;
1792 u64 total_bytes = 0;
1793 u64 last = 0;
1794 int found = 0;
1795
1796 if (WARN_ON(search_end <= cur_start))
1797 return 0;
1798
1799 spin_lock(&tree->lock);
1800 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1801 total_bytes = tree->dirty_bytes;
1802 goto out;
1803 }
1804 /*
1805 * this search will find all the extents that end after
1806 * our range starts.
1807 */
1808 node = tree_search(tree, cur_start);
1809 if (!node)
1810 goto out;
1811
1812 while (1) {
1813 state = rb_entry(node, struct extent_state, rb_node);
1814 if (state->start > search_end)
1815 break;
1816 if (contig && found && state->start > last + 1)
1817 break;
1818 if (state->end >= cur_start && (state->state & bits) == bits) {
1819 total_bytes += min(search_end, state->end) + 1 -
1820 max(cur_start, state->start);
1821 if (total_bytes >= max_bytes)
1822 break;
1823 if (!found) {
1824 *start = max(cur_start, state->start);
1825 found = 1;
1826 }
1827 last = state->end;
1828 } else if (contig && found) {
1829 break;
1830 }
1831 node = rb_next(node);
1832 if (!node)
1833 break;
1834 }
1835 out:
1836 spin_unlock(&tree->lock);
1837 return total_bytes;
1838 }
1839
1840 /*
1841 * set the private field for a given byte offset in the tree. If there isn't
1842 * an extent_state there already, this does nothing.
1843 */
set_state_failrec(struct extent_io_tree * tree,u64 start,struct io_failure_record * failrec)1844 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1845 struct io_failure_record *failrec)
1846 {
1847 struct rb_node *node;
1848 struct extent_state *state;
1849 int ret = 0;
1850
1851 spin_lock(&tree->lock);
1852 /*
1853 * this search will find all the extents that end after
1854 * our range starts.
1855 */
1856 node = tree_search(tree, start);
1857 if (!node) {
1858 ret = -ENOENT;
1859 goto out;
1860 }
1861 state = rb_entry(node, struct extent_state, rb_node);
1862 if (state->start != start) {
1863 ret = -ENOENT;
1864 goto out;
1865 }
1866 state->failrec = failrec;
1867 out:
1868 spin_unlock(&tree->lock);
1869 return ret;
1870 }
1871
get_state_failrec(struct extent_io_tree * tree,u64 start,struct io_failure_record ** failrec)1872 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1873 struct io_failure_record **failrec)
1874 {
1875 struct rb_node *node;
1876 struct extent_state *state;
1877 int ret = 0;
1878
1879 spin_lock(&tree->lock);
1880 /*
1881 * this search will find all the extents that end after
1882 * our range starts.
1883 */
1884 node = tree_search(tree, start);
1885 if (!node) {
1886 ret = -ENOENT;
1887 goto out;
1888 }
1889 state = rb_entry(node, struct extent_state, rb_node);
1890 if (state->start != start) {
1891 ret = -ENOENT;
1892 goto out;
1893 }
1894 *failrec = state->failrec;
1895 out:
1896 spin_unlock(&tree->lock);
1897 return ret;
1898 }
1899
1900 /*
1901 * searches a range in the state tree for a given mask.
1902 * If 'filled' == 1, this returns 1 only if every extent in the tree
1903 * has the bits set. Otherwise, 1 is returned if any bit in the
1904 * range is found set.
1905 */
test_range_bit(struct extent_io_tree * tree,u64 start,u64 end,unsigned bits,int filled,struct extent_state * cached)1906 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1907 unsigned bits, int filled, struct extent_state *cached)
1908 {
1909 struct extent_state *state = NULL;
1910 struct rb_node *node;
1911 int bitset = 0;
1912
1913 spin_lock(&tree->lock);
1914 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1915 cached->end > start)
1916 node = &cached->rb_node;
1917 else
1918 node = tree_search(tree, start);
1919 while (node && start <= end) {
1920 state = rb_entry(node, struct extent_state, rb_node);
1921
1922 if (filled && state->start > start) {
1923 bitset = 0;
1924 break;
1925 }
1926
1927 if (state->start > end)
1928 break;
1929
1930 if (state->state & bits) {
1931 bitset = 1;
1932 if (!filled)
1933 break;
1934 } else if (filled) {
1935 bitset = 0;
1936 break;
1937 }
1938
1939 if (state->end == (u64)-1)
1940 break;
1941
1942 start = state->end + 1;
1943 if (start > end)
1944 break;
1945 node = rb_next(node);
1946 if (!node) {
1947 if (filled)
1948 bitset = 0;
1949 break;
1950 }
1951 }
1952 spin_unlock(&tree->lock);
1953 return bitset;
1954 }
1955
1956 /*
1957 * helper function to set a given page up to date if all the
1958 * extents in the tree for that page are up to date
1959 */
check_page_uptodate(struct extent_io_tree * tree,struct page * page)1960 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1961 {
1962 u64 start = page_offset(page);
1963 u64 end = start + PAGE_SIZE - 1;
1964 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1965 SetPageUptodate(page);
1966 }
1967
free_io_failure(struct inode * inode,struct io_failure_record * rec)1968 int free_io_failure(struct inode *inode, struct io_failure_record *rec)
1969 {
1970 int ret;
1971 int err = 0;
1972 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1973
1974 set_state_failrec(failure_tree, rec->start, NULL);
1975 ret = clear_extent_bits(failure_tree, rec->start,
1976 rec->start + rec->len - 1,
1977 EXTENT_LOCKED | EXTENT_DIRTY);
1978 if (ret)
1979 err = ret;
1980
1981 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1982 rec->start + rec->len - 1,
1983 EXTENT_DAMAGED);
1984 if (ret && !err)
1985 err = ret;
1986
1987 kfree(rec);
1988 return err;
1989 }
1990
1991 /*
1992 * this bypasses the standard btrfs submit functions deliberately, as
1993 * the standard behavior is to write all copies in a raid setup. here we only
1994 * want to write the one bad copy. so we do the mapping for ourselves and issue
1995 * submit_bio directly.
1996 * to avoid any synchronization issues, wait for the data after writing, which
1997 * actually prevents the read that triggered the error from finishing.
1998 * currently, there can be no more than two copies of every data bit. thus,
1999 * exactly one rewrite is required.
2000 */
repair_io_failure(struct inode * inode,u64 start,u64 length,u64 logical,struct page * page,unsigned int pg_offset,int mirror_num)2001 int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2002 struct page *page, unsigned int pg_offset, int mirror_num)
2003 {
2004 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2005 struct bio *bio;
2006 struct btrfs_device *dev;
2007 u64 map_length = 0;
2008 u64 sector;
2009 struct btrfs_bio *bbio = NULL;
2010 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2011 int ret;
2012
2013 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2014 BUG_ON(!mirror_num);
2015
2016 /* we can't repair anything in raid56 yet */
2017 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2018 return 0;
2019
2020 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2021 if (!bio)
2022 return -EIO;
2023 bio->bi_iter.bi_size = 0;
2024 map_length = length;
2025
2026 /*
2027 * Avoid races with device replace and make sure our bbio has devices
2028 * associated to its stripes that don't go away while we are doing the
2029 * read repair operation.
2030 */
2031 btrfs_bio_counter_inc_blocked(fs_info);
2032 ret = btrfs_map_block(fs_info, WRITE, logical,
2033 &map_length, &bbio, mirror_num);
2034 if (ret) {
2035 btrfs_bio_counter_dec(fs_info);
2036 bio_put(bio);
2037 return -EIO;
2038 }
2039 BUG_ON(mirror_num != bbio->mirror_num);
2040 sector = bbio->stripes[mirror_num-1].physical >> 9;
2041 bio->bi_iter.bi_sector = sector;
2042 dev = bbio->stripes[mirror_num-1].dev;
2043 btrfs_put_bbio(bbio);
2044 if (!dev || !dev->bdev || !dev->writeable) {
2045 btrfs_bio_counter_dec(fs_info);
2046 bio_put(bio);
2047 return -EIO;
2048 }
2049 bio->bi_bdev = dev->bdev;
2050 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_SYNC);
2051 bio_add_page(bio, page, length, pg_offset);
2052
2053 if (btrfsic_submit_bio_wait(bio)) {
2054 /* try to remap that extent elsewhere? */
2055 btrfs_bio_counter_dec(fs_info);
2056 bio_put(bio);
2057 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2058 return -EIO;
2059 }
2060
2061 btrfs_info_rl_in_rcu(fs_info,
2062 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2063 btrfs_ino(inode), start,
2064 rcu_str_deref(dev->name), sector);
2065 btrfs_bio_counter_dec(fs_info);
2066 bio_put(bio);
2067 return 0;
2068 }
2069
repair_eb_io_failure(struct btrfs_root * root,struct extent_buffer * eb,int mirror_num)2070 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2071 int mirror_num)
2072 {
2073 u64 start = eb->start;
2074 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2075 int ret = 0;
2076
2077 if (root->fs_info->sb->s_flags & MS_RDONLY)
2078 return -EROFS;
2079
2080 for (i = 0; i < num_pages; i++) {
2081 struct page *p = eb->pages[i];
2082
2083 ret = repair_io_failure(root->fs_info->btree_inode, start,
2084 PAGE_SIZE, start, p,
2085 start - page_offset(p), mirror_num);
2086 if (ret)
2087 break;
2088 start += PAGE_SIZE;
2089 }
2090
2091 return ret;
2092 }
2093
2094 /*
2095 * each time an IO finishes, we do a fast check in the IO failure tree
2096 * to see if we need to process or clean up an io_failure_record
2097 */
clean_io_failure(struct inode * inode,u64 start,struct page * page,unsigned int pg_offset)2098 int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2099 unsigned int pg_offset)
2100 {
2101 u64 private;
2102 struct io_failure_record *failrec;
2103 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2104 struct extent_state *state;
2105 int num_copies;
2106 int ret;
2107
2108 private = 0;
2109 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2110 (u64)-1, 1, EXTENT_DIRTY, 0);
2111 if (!ret)
2112 return 0;
2113
2114 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2115 &failrec);
2116 if (ret)
2117 return 0;
2118
2119 BUG_ON(!failrec->this_mirror);
2120
2121 if (failrec->in_validation) {
2122 /* there was no real error, just free the record */
2123 btrfs_debug(fs_info,
2124 "clean_io_failure: freeing dummy error at %llu",
2125 failrec->start);
2126 goto out;
2127 }
2128 if (fs_info->sb->s_flags & MS_RDONLY)
2129 goto out;
2130
2131 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2132 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2133 failrec->start,
2134 EXTENT_LOCKED);
2135 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2136
2137 if (state && state->start <= failrec->start &&
2138 state->end >= failrec->start + failrec->len - 1) {
2139 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2140 failrec->len);
2141 if (num_copies > 1) {
2142 repair_io_failure(inode, start, failrec->len,
2143 failrec->logical, page,
2144 pg_offset, failrec->failed_mirror);
2145 }
2146 }
2147
2148 out:
2149 free_io_failure(inode, failrec);
2150
2151 return 0;
2152 }
2153
2154 /*
2155 * Can be called when
2156 * - hold extent lock
2157 * - under ordered extent
2158 * - the inode is freeing
2159 */
btrfs_free_io_failure_record(struct inode * inode,u64 start,u64 end)2160 void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2161 {
2162 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2163 struct io_failure_record *failrec;
2164 struct extent_state *state, *next;
2165
2166 if (RB_EMPTY_ROOT(&failure_tree->state))
2167 return;
2168
2169 spin_lock(&failure_tree->lock);
2170 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2171 while (state) {
2172 if (state->start > end)
2173 break;
2174
2175 ASSERT(state->end <= end);
2176
2177 next = next_state(state);
2178
2179 failrec = state->failrec;
2180 free_extent_state(state);
2181 kfree(failrec);
2182
2183 state = next;
2184 }
2185 spin_unlock(&failure_tree->lock);
2186 }
2187
btrfs_get_io_failure_record(struct inode * inode,u64 start,u64 end,struct io_failure_record ** failrec_ret)2188 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2189 struct io_failure_record **failrec_ret)
2190 {
2191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2192 struct io_failure_record *failrec;
2193 struct extent_map *em;
2194 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2197 int ret;
2198 u64 logical;
2199
2200 ret = get_state_failrec(failure_tree, start, &failrec);
2201 if (ret) {
2202 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2203 if (!failrec)
2204 return -ENOMEM;
2205
2206 failrec->start = start;
2207 failrec->len = end - start + 1;
2208 failrec->this_mirror = 0;
2209 failrec->bio_flags = 0;
2210 failrec->in_validation = 0;
2211
2212 read_lock(&em_tree->lock);
2213 em = lookup_extent_mapping(em_tree, start, failrec->len);
2214 if (!em) {
2215 read_unlock(&em_tree->lock);
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219
2220 if (em->start > start || em->start + em->len <= start) {
2221 free_extent_map(em);
2222 em = NULL;
2223 }
2224 read_unlock(&em_tree->lock);
2225 if (!em) {
2226 kfree(failrec);
2227 return -EIO;
2228 }
2229
2230 logical = start - em->start;
2231 logical = em->block_start + logical;
2232 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233 logical = em->block_start;
2234 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235 extent_set_compress_type(&failrec->bio_flags,
2236 em->compress_type);
2237 }
2238
2239 btrfs_debug(fs_info,
2240 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2241 logical, start, failrec->len);
2242
2243 failrec->logical = logical;
2244 free_extent_map(em);
2245
2246 /* set the bits in the private failure tree */
2247 ret = set_extent_bits(failure_tree, start, end,
2248 EXTENT_LOCKED | EXTENT_DIRTY);
2249 if (ret >= 0)
2250 ret = set_state_failrec(failure_tree, start, failrec);
2251 /* set the bits in the inode's tree */
2252 if (ret >= 0)
2253 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2254 if (ret < 0) {
2255 kfree(failrec);
2256 return ret;
2257 }
2258 } else {
2259 btrfs_debug(fs_info,
2260 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2261 failrec->logical, failrec->start, failrec->len,
2262 failrec->in_validation);
2263 /*
2264 * when data can be on disk more than twice, add to failrec here
2265 * (e.g. with a list for failed_mirror) to make
2266 * clean_io_failure() clean all those errors at once.
2267 */
2268 }
2269
2270 *failrec_ret = failrec;
2271
2272 return 0;
2273 }
2274
btrfs_check_repairable(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,int failed_mirror)2275 int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2276 struct io_failure_record *failrec, int failed_mirror)
2277 {
2278 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2279 int num_copies;
2280
2281 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2282 if (num_copies == 1) {
2283 /*
2284 * we only have a single copy of the data, so don't bother with
2285 * all the retry and error correction code that follows. no
2286 * matter what the error is, it is very likely to persist.
2287 */
2288 btrfs_debug(fs_info,
2289 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2290 num_copies, failrec->this_mirror, failed_mirror);
2291 return 0;
2292 }
2293
2294 /*
2295 * there are two premises:
2296 * a) deliver good data to the caller
2297 * b) correct the bad sectors on disk
2298 */
2299 if (failed_bio->bi_vcnt > 1) {
2300 /*
2301 * to fulfill b), we need to know the exact failing sectors, as
2302 * we don't want to rewrite any more than the failed ones. thus,
2303 * we need separate read requests for the failed bio
2304 *
2305 * if the following BUG_ON triggers, our validation request got
2306 * merged. we need separate requests for our algorithm to work.
2307 */
2308 BUG_ON(failrec->in_validation);
2309 failrec->in_validation = 1;
2310 failrec->this_mirror = failed_mirror;
2311 } else {
2312 /*
2313 * we're ready to fulfill a) and b) alongside. get a good copy
2314 * of the failed sector and if we succeed, we have setup
2315 * everything for repair_io_failure to do the rest for us.
2316 */
2317 if (failrec->in_validation) {
2318 BUG_ON(failrec->this_mirror != failed_mirror);
2319 failrec->in_validation = 0;
2320 failrec->this_mirror = 0;
2321 }
2322 failrec->failed_mirror = failed_mirror;
2323 failrec->this_mirror++;
2324 if (failrec->this_mirror == failed_mirror)
2325 failrec->this_mirror++;
2326 }
2327
2328 if (failrec->this_mirror > num_copies) {
2329 btrfs_debug(fs_info,
2330 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2331 num_copies, failrec->this_mirror, failed_mirror);
2332 return 0;
2333 }
2334
2335 return 1;
2336 }
2337
2338
btrfs_create_repair_bio(struct inode * inode,struct bio * failed_bio,struct io_failure_record * failrec,struct page * page,int pg_offset,int icsum,bio_end_io_t * endio_func,void * data)2339 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2340 struct io_failure_record *failrec,
2341 struct page *page, int pg_offset, int icsum,
2342 bio_end_io_t *endio_func, void *data)
2343 {
2344 struct bio *bio;
2345 struct btrfs_io_bio *btrfs_failed_bio;
2346 struct btrfs_io_bio *btrfs_bio;
2347
2348 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2349 if (!bio)
2350 return NULL;
2351
2352 bio->bi_end_io = endio_func;
2353 bio->bi_iter.bi_sector = failrec->logical >> 9;
2354 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2355 bio->bi_iter.bi_size = 0;
2356 bio->bi_private = data;
2357
2358 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2359 if (btrfs_failed_bio->csum) {
2360 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2361 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2362
2363 btrfs_bio = btrfs_io_bio(bio);
2364 btrfs_bio->csum = btrfs_bio->csum_inline;
2365 icsum *= csum_size;
2366 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2367 csum_size);
2368 }
2369
2370 bio_add_page(bio, page, failrec->len, pg_offset);
2371
2372 return bio;
2373 }
2374
2375 /*
2376 * this is a generic handler for readpage errors (default
2377 * readpage_io_failed_hook). if other copies exist, read those and write back
2378 * good data to the failed position. does not investigate in remapping the
2379 * failed extent elsewhere, hoping the device will be smart enough to do this as
2380 * needed
2381 */
2382
bio_readpage_error(struct bio * failed_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int failed_mirror)2383 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2384 struct page *page, u64 start, u64 end,
2385 int failed_mirror)
2386 {
2387 struct io_failure_record *failrec;
2388 struct inode *inode = page->mapping->host;
2389 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2390 struct bio *bio;
2391 int read_mode;
2392 int ret;
2393
2394 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2395
2396 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2397 if (ret)
2398 return ret;
2399
2400 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2401 if (!ret) {
2402 free_io_failure(inode, failrec);
2403 return -EIO;
2404 }
2405
2406 if (failed_bio->bi_vcnt > 1)
2407 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2408 else
2409 read_mode = READ_SYNC;
2410
2411 phy_offset >>= inode->i_sb->s_blocksize_bits;
2412 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2413 start - page_offset(page),
2414 (int)phy_offset, failed_bio->bi_end_io,
2415 NULL);
2416 if (!bio) {
2417 free_io_failure(inode, failrec);
2418 return -EIO;
2419 }
2420 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2421
2422 btrfs_debug(btrfs_sb(inode->i_sb),
2423 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2424 read_mode, failrec->this_mirror, failrec->in_validation);
2425
2426 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
2427 failrec->bio_flags, 0);
2428 if (ret) {
2429 free_io_failure(inode, failrec);
2430 bio_put(bio);
2431 }
2432
2433 return ret;
2434 }
2435
2436 /* lots and lots of room for performance fixes in the end_bio funcs */
2437
end_extent_writepage(struct page * page,int err,u64 start,u64 end)2438 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2439 {
2440 int uptodate = (err == 0);
2441 struct extent_io_tree *tree;
2442 int ret = 0;
2443
2444 tree = &BTRFS_I(page->mapping->host)->io_tree;
2445
2446 if (tree->ops && tree->ops->writepage_end_io_hook) {
2447 ret = tree->ops->writepage_end_io_hook(page, start,
2448 end, NULL, uptodate);
2449 if (ret)
2450 uptodate = 0;
2451 }
2452
2453 if (!uptodate) {
2454 ClearPageUptodate(page);
2455 SetPageError(page);
2456 ret = err < 0 ? err : -EIO;
2457 mapping_set_error(page->mapping, ret);
2458 }
2459 }
2460
2461 /*
2462 * after a writepage IO is done, we need to:
2463 * clear the uptodate bits on error
2464 * clear the writeback bits in the extent tree for this IO
2465 * end_page_writeback if the page has no more pending IO
2466 *
2467 * Scheduling is not allowed, so the extent state tree is expected
2468 * to have one and only one object corresponding to this IO.
2469 */
end_bio_extent_writepage(struct bio * bio)2470 static void end_bio_extent_writepage(struct bio *bio)
2471 {
2472 struct bio_vec *bvec;
2473 u64 start;
2474 u64 end;
2475 int i;
2476
2477 bio_for_each_segment_all(bvec, bio, i) {
2478 struct page *page = bvec->bv_page;
2479
2480 /* We always issue full-page reads, but if some block
2481 * in a page fails to read, blk_update_request() will
2482 * advance bv_offset and adjust bv_len to compensate.
2483 * Print a warning for nonzero offsets, and an error
2484 * if they don't add up to a full page. */
2485 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2486 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2487 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2488 "partial page write in btrfs with offset %u and length %u",
2489 bvec->bv_offset, bvec->bv_len);
2490 else
2491 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2492 "incomplete page write in btrfs with offset %u and length %u",
2493 bvec->bv_offset, bvec->bv_len);
2494 }
2495
2496 start = page_offset(page);
2497 end = start + bvec->bv_offset + bvec->bv_len - 1;
2498
2499 end_extent_writepage(page, bio->bi_error, start, end);
2500 end_page_writeback(page);
2501 }
2502
2503 bio_put(bio);
2504 }
2505
2506 static void
endio_readpage_release_extent(struct extent_io_tree * tree,u64 start,u64 len,int uptodate)2507 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2508 int uptodate)
2509 {
2510 struct extent_state *cached = NULL;
2511 u64 end = start + len - 1;
2512
2513 if (uptodate && tree->track_uptodate)
2514 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2515 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2516 }
2517
2518 /*
2519 * after a readpage IO is done, we need to:
2520 * clear the uptodate bits on error
2521 * set the uptodate bits if things worked
2522 * set the page up to date if all extents in the tree are uptodate
2523 * clear the lock bit in the extent tree
2524 * unlock the page if there are no other extents locked for it
2525 *
2526 * Scheduling is not allowed, so the extent state tree is expected
2527 * to have one and only one object corresponding to this IO.
2528 */
end_bio_extent_readpage(struct bio * bio)2529 static void end_bio_extent_readpage(struct bio *bio)
2530 {
2531 struct bio_vec *bvec;
2532 int uptodate = !bio->bi_error;
2533 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2534 struct extent_io_tree *tree;
2535 u64 offset = 0;
2536 u64 start;
2537 u64 end;
2538 u64 len;
2539 u64 extent_start = 0;
2540 u64 extent_len = 0;
2541 int mirror;
2542 int ret;
2543 int i;
2544
2545 bio_for_each_segment_all(bvec, bio, i) {
2546 struct page *page = bvec->bv_page;
2547 struct inode *inode = page->mapping->host;
2548 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2549
2550 btrfs_debug(fs_info,
2551 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2552 (u64)bio->bi_iter.bi_sector, bio->bi_error,
2553 io_bio->mirror_num);
2554 tree = &BTRFS_I(inode)->io_tree;
2555
2556 /* We always issue full-page reads, but if some block
2557 * in a page fails to read, blk_update_request() will
2558 * advance bv_offset and adjust bv_len to compensate.
2559 * Print a warning for nonzero offsets, and an error
2560 * if they don't add up to a full page. */
2561 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2562 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2563 btrfs_err(fs_info,
2564 "partial page read in btrfs with offset %u and length %u",
2565 bvec->bv_offset, bvec->bv_len);
2566 else
2567 btrfs_info(fs_info,
2568 "incomplete page read in btrfs with offset %u and length %u",
2569 bvec->bv_offset, bvec->bv_len);
2570 }
2571
2572 start = page_offset(page);
2573 end = start + bvec->bv_offset + bvec->bv_len - 1;
2574 len = bvec->bv_len;
2575
2576 mirror = io_bio->mirror_num;
2577 if (likely(uptodate && tree->ops &&
2578 tree->ops->readpage_end_io_hook)) {
2579 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2580 page, start, end,
2581 mirror);
2582 if (ret)
2583 uptodate = 0;
2584 else
2585 clean_io_failure(inode, start, page, 0);
2586 }
2587
2588 if (likely(uptodate))
2589 goto readpage_ok;
2590
2591 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2592 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2593 if (!ret && !bio->bi_error)
2594 uptodate = 1;
2595 } else {
2596 /*
2597 * The generic bio_readpage_error handles errors the
2598 * following way: If possible, new read requests are
2599 * created and submitted and will end up in
2600 * end_bio_extent_readpage as well (if we're lucky, not
2601 * in the !uptodate case). In that case it returns 0 and
2602 * we just go on with the next page in our bio. If it
2603 * can't handle the error it will return -EIO and we
2604 * remain responsible for that page.
2605 */
2606 ret = bio_readpage_error(bio, offset, page, start, end,
2607 mirror);
2608 if (ret == 0) {
2609 uptodate = !bio->bi_error;
2610 offset += len;
2611 continue;
2612 }
2613 }
2614 readpage_ok:
2615 if (likely(uptodate)) {
2616 loff_t i_size = i_size_read(inode);
2617 pgoff_t end_index = i_size >> PAGE_SHIFT;
2618 unsigned off;
2619
2620 /* Zero out the end if this page straddles i_size */
2621 off = i_size & (PAGE_SIZE-1);
2622 if (page->index == end_index && off)
2623 zero_user_segment(page, off, PAGE_SIZE);
2624 SetPageUptodate(page);
2625 } else {
2626 ClearPageUptodate(page);
2627 SetPageError(page);
2628 }
2629 unlock_page(page);
2630 offset += len;
2631
2632 if (unlikely(!uptodate)) {
2633 if (extent_len) {
2634 endio_readpage_release_extent(tree,
2635 extent_start,
2636 extent_len, 1);
2637 extent_start = 0;
2638 extent_len = 0;
2639 }
2640 endio_readpage_release_extent(tree, start,
2641 end - start + 1, 0);
2642 } else if (!extent_len) {
2643 extent_start = start;
2644 extent_len = end + 1 - start;
2645 } else if (extent_start + extent_len == start) {
2646 extent_len += end + 1 - start;
2647 } else {
2648 endio_readpage_release_extent(tree, extent_start,
2649 extent_len, uptodate);
2650 extent_start = start;
2651 extent_len = end + 1 - start;
2652 }
2653 }
2654
2655 if (extent_len)
2656 endio_readpage_release_extent(tree, extent_start, extent_len,
2657 uptodate);
2658 if (io_bio->end_io)
2659 io_bio->end_io(io_bio, bio->bi_error);
2660 bio_put(bio);
2661 }
2662
2663 /*
2664 * this allocates from the btrfs_bioset. We're returning a bio right now
2665 * but you can call btrfs_io_bio for the appropriate container_of magic
2666 */
2667 struct bio *
btrfs_bio_alloc(struct block_device * bdev,u64 first_sector,int nr_vecs,gfp_t gfp_flags)2668 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2669 gfp_t gfp_flags)
2670 {
2671 struct btrfs_io_bio *btrfs_bio;
2672 struct bio *bio;
2673
2674 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2675
2676 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2677 while (!bio && (nr_vecs /= 2)) {
2678 bio = bio_alloc_bioset(gfp_flags,
2679 nr_vecs, btrfs_bioset);
2680 }
2681 }
2682
2683 if (bio) {
2684 bio->bi_bdev = bdev;
2685 bio->bi_iter.bi_sector = first_sector;
2686 btrfs_bio = btrfs_io_bio(bio);
2687 btrfs_bio->csum = NULL;
2688 btrfs_bio->csum_allocated = NULL;
2689 btrfs_bio->end_io = NULL;
2690 }
2691 return bio;
2692 }
2693
btrfs_bio_clone(struct bio * bio,gfp_t gfp_mask)2694 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2695 {
2696 struct btrfs_io_bio *btrfs_bio;
2697 struct bio *new;
2698
2699 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2700 if (new) {
2701 btrfs_bio = btrfs_io_bio(new);
2702 btrfs_bio->csum = NULL;
2703 btrfs_bio->csum_allocated = NULL;
2704 btrfs_bio->end_io = NULL;
2705 }
2706 return new;
2707 }
2708
2709 /* this also allocates from the btrfs_bioset */
btrfs_io_bio_alloc(gfp_t gfp_mask,unsigned int nr_iovecs)2710 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2711 {
2712 struct btrfs_io_bio *btrfs_bio;
2713 struct bio *bio;
2714
2715 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2716 if (bio) {
2717 btrfs_bio = btrfs_io_bio(bio);
2718 btrfs_bio->csum = NULL;
2719 btrfs_bio->csum_allocated = NULL;
2720 btrfs_bio->end_io = NULL;
2721 }
2722 return bio;
2723 }
2724
2725
submit_one_bio(struct bio * bio,int mirror_num,unsigned long bio_flags)2726 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2727 unsigned long bio_flags)
2728 {
2729 int ret = 0;
2730 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2731 struct page *page = bvec->bv_page;
2732 struct extent_io_tree *tree = bio->bi_private;
2733 u64 start;
2734
2735 start = page_offset(page) + bvec->bv_offset;
2736
2737 bio->bi_private = NULL;
2738 bio_get(bio);
2739
2740 if (tree->ops && tree->ops->submit_bio_hook)
2741 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2742 mirror_num, bio_flags, start);
2743 else
2744 btrfsic_submit_bio(bio);
2745
2746 bio_put(bio);
2747 return ret;
2748 }
2749
merge_bio(struct extent_io_tree * tree,struct page * page,unsigned long offset,size_t size,struct bio * bio,unsigned long bio_flags)2750 static int merge_bio(struct extent_io_tree *tree, struct page *page,
2751 unsigned long offset, size_t size, struct bio *bio,
2752 unsigned long bio_flags)
2753 {
2754 int ret = 0;
2755 if (tree->ops && tree->ops->merge_bio_hook)
2756 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2757 bio_flags);
2758 return ret;
2759
2760 }
2761
submit_extent_page(int op,int op_flags,struct extent_io_tree * tree,struct writeback_control * wbc,struct page * page,sector_t sector,size_t size,unsigned long offset,struct block_device * bdev,struct bio ** bio_ret,unsigned long max_pages,bio_end_io_t end_io_func,int mirror_num,unsigned long prev_bio_flags,unsigned long bio_flags,bool force_bio_submit)2762 static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
2763 struct writeback_control *wbc,
2764 struct page *page, sector_t sector,
2765 size_t size, unsigned long offset,
2766 struct block_device *bdev,
2767 struct bio **bio_ret,
2768 unsigned long max_pages,
2769 bio_end_io_t end_io_func,
2770 int mirror_num,
2771 unsigned long prev_bio_flags,
2772 unsigned long bio_flags,
2773 bool force_bio_submit)
2774 {
2775 int ret = 0;
2776 struct bio *bio;
2777 int contig = 0;
2778 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2779 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2780
2781 if (bio_ret && *bio_ret) {
2782 bio = *bio_ret;
2783 if (old_compressed)
2784 contig = bio->bi_iter.bi_sector == sector;
2785 else
2786 contig = bio_end_sector(bio) == sector;
2787
2788 if (prev_bio_flags != bio_flags || !contig ||
2789 force_bio_submit ||
2790 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
2791 bio_add_page(bio, page, page_size, offset) < page_size) {
2792 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2793 if (ret < 0) {
2794 *bio_ret = NULL;
2795 return ret;
2796 }
2797 bio = NULL;
2798 } else {
2799 if (wbc)
2800 wbc_account_io(wbc, page, page_size);
2801 return 0;
2802 }
2803 }
2804
2805 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2806 GFP_NOFS | __GFP_HIGH);
2807 if (!bio)
2808 return -ENOMEM;
2809
2810 bio_add_page(bio, page, page_size, offset);
2811 bio->bi_end_io = end_io_func;
2812 bio->bi_private = tree;
2813 bio_set_op_attrs(bio, op, op_flags);
2814 if (wbc) {
2815 wbc_init_bio(wbc, bio);
2816 wbc_account_io(wbc, page, page_size);
2817 }
2818
2819 if (bio_ret)
2820 *bio_ret = bio;
2821 else
2822 ret = submit_one_bio(bio, mirror_num, bio_flags);
2823
2824 return ret;
2825 }
2826
attach_extent_buffer_page(struct extent_buffer * eb,struct page * page)2827 static void attach_extent_buffer_page(struct extent_buffer *eb,
2828 struct page *page)
2829 {
2830 if (!PagePrivate(page)) {
2831 SetPagePrivate(page);
2832 get_page(page);
2833 set_page_private(page, (unsigned long)eb);
2834 } else {
2835 WARN_ON(page->private != (unsigned long)eb);
2836 }
2837 }
2838
set_page_extent_mapped(struct page * page)2839 void set_page_extent_mapped(struct page *page)
2840 {
2841 if (!PagePrivate(page)) {
2842 SetPagePrivate(page);
2843 get_page(page);
2844 set_page_private(page, EXTENT_PAGE_PRIVATE);
2845 }
2846 }
2847
2848 static struct extent_map *
__get_extent_map(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,get_extent_t * get_extent,struct extent_map ** em_cached)2849 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2850 u64 start, u64 len, get_extent_t *get_extent,
2851 struct extent_map **em_cached)
2852 {
2853 struct extent_map *em;
2854
2855 if (em_cached && *em_cached) {
2856 em = *em_cached;
2857 if (extent_map_in_tree(em) && start >= em->start &&
2858 start < extent_map_end(em)) {
2859 atomic_inc(&em->refs);
2860 return em;
2861 }
2862
2863 free_extent_map(em);
2864 *em_cached = NULL;
2865 }
2866
2867 em = get_extent(inode, page, pg_offset, start, len, 0);
2868 if (em_cached && !IS_ERR_OR_NULL(em)) {
2869 BUG_ON(*em_cached);
2870 atomic_inc(&em->refs);
2871 *em_cached = em;
2872 }
2873 return em;
2874 }
2875 /*
2876 * basic readpage implementation. Locked extent state structs are inserted
2877 * into the tree that are removed when the IO is done (by the end_io
2878 * handlers)
2879 * XXX JDM: This needs looking at to ensure proper page locking
2880 * return 0 on success, otherwise return error
2881 */
__do_readpage(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,struct extent_map ** em_cached,struct bio ** bio,int mirror_num,unsigned long * bio_flags,int read_flags,u64 * prev_em_start)2882 static int __do_readpage(struct extent_io_tree *tree,
2883 struct page *page,
2884 get_extent_t *get_extent,
2885 struct extent_map **em_cached,
2886 struct bio **bio, int mirror_num,
2887 unsigned long *bio_flags, int read_flags,
2888 u64 *prev_em_start)
2889 {
2890 struct inode *inode = page->mapping->host;
2891 u64 start = page_offset(page);
2892 u64 page_end = start + PAGE_SIZE - 1;
2893 u64 end;
2894 u64 cur = start;
2895 u64 extent_offset;
2896 u64 last_byte = i_size_read(inode);
2897 u64 block_start;
2898 u64 cur_end;
2899 sector_t sector;
2900 struct extent_map *em;
2901 struct block_device *bdev;
2902 int ret = 0;
2903 int nr = 0;
2904 size_t pg_offset = 0;
2905 size_t iosize;
2906 size_t disk_io_size;
2907 size_t blocksize = inode->i_sb->s_blocksize;
2908 unsigned long this_bio_flag = 0;
2909
2910 set_page_extent_mapped(page);
2911
2912 end = page_end;
2913 if (!PageUptodate(page)) {
2914 if (cleancache_get_page(page) == 0) {
2915 BUG_ON(blocksize != PAGE_SIZE);
2916 unlock_extent(tree, start, end);
2917 goto out;
2918 }
2919 }
2920
2921 if (page->index == last_byte >> PAGE_SHIFT) {
2922 char *userpage;
2923 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2924
2925 if (zero_offset) {
2926 iosize = PAGE_SIZE - zero_offset;
2927 userpage = kmap_atomic(page);
2928 memset(userpage + zero_offset, 0, iosize);
2929 flush_dcache_page(page);
2930 kunmap_atomic(userpage);
2931 }
2932 }
2933 while (cur <= end) {
2934 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
2935 bool force_bio_submit = false;
2936
2937 if (cur >= last_byte) {
2938 char *userpage;
2939 struct extent_state *cached = NULL;
2940
2941 iosize = PAGE_SIZE - pg_offset;
2942 userpage = kmap_atomic(page);
2943 memset(userpage + pg_offset, 0, iosize);
2944 flush_dcache_page(page);
2945 kunmap_atomic(userpage);
2946 set_extent_uptodate(tree, cur, cur + iosize - 1,
2947 &cached, GFP_NOFS);
2948 unlock_extent_cached(tree, cur,
2949 cur + iosize - 1,
2950 &cached, GFP_NOFS);
2951 break;
2952 }
2953 em = __get_extent_map(inode, page, pg_offset, cur,
2954 end - cur + 1, get_extent, em_cached);
2955 if (IS_ERR_OR_NULL(em)) {
2956 SetPageError(page);
2957 unlock_extent(tree, cur, end);
2958 break;
2959 }
2960 extent_offset = cur - em->start;
2961 BUG_ON(extent_map_end(em) <= cur);
2962 BUG_ON(end < cur);
2963
2964 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2965 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2966 extent_set_compress_type(&this_bio_flag,
2967 em->compress_type);
2968 }
2969
2970 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2971 cur_end = min(extent_map_end(em) - 1, end);
2972 iosize = ALIGN(iosize, blocksize);
2973 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2974 disk_io_size = em->block_len;
2975 sector = em->block_start >> 9;
2976 } else {
2977 sector = (em->block_start + extent_offset) >> 9;
2978 disk_io_size = iosize;
2979 }
2980 bdev = em->bdev;
2981 block_start = em->block_start;
2982 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2983 block_start = EXTENT_MAP_HOLE;
2984
2985 /*
2986 * If we have a file range that points to a compressed extent
2987 * and it's followed by a consecutive file range that points to
2988 * to the same compressed extent (possibly with a different
2989 * offset and/or length, so it either points to the whole extent
2990 * or only part of it), we must make sure we do not submit a
2991 * single bio to populate the pages for the 2 ranges because
2992 * this makes the compressed extent read zero out the pages
2993 * belonging to the 2nd range. Imagine the following scenario:
2994 *
2995 * File layout
2996 * [0 - 8K] [8K - 24K]
2997 * | |
2998 * | |
2999 * points to extent X, points to extent X,
3000 * offset 4K, length of 8K offset 0, length 16K
3001 *
3002 * [extent X, compressed length = 4K uncompressed length = 16K]
3003 *
3004 * If the bio to read the compressed extent covers both ranges,
3005 * it will decompress extent X into the pages belonging to the
3006 * first range and then it will stop, zeroing out the remaining
3007 * pages that belong to the other range that points to extent X.
3008 * So here we make sure we submit 2 bios, one for the first
3009 * range and another one for the third range. Both will target
3010 * the same physical extent from disk, but we can't currently
3011 * make the compressed bio endio callback populate the pages
3012 * for both ranges because each compressed bio is tightly
3013 * coupled with a single extent map, and each range can have
3014 * an extent map with a different offset value relative to the
3015 * uncompressed data of our extent and different lengths. This
3016 * is a corner case so we prioritize correctness over
3017 * non-optimal behavior (submitting 2 bios for the same extent).
3018 */
3019 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3020 prev_em_start && *prev_em_start != (u64)-1 &&
3021 *prev_em_start != em->orig_start)
3022 force_bio_submit = true;
3023
3024 if (prev_em_start)
3025 *prev_em_start = em->orig_start;
3026
3027 free_extent_map(em);
3028 em = NULL;
3029
3030 /* we've found a hole, just zero and go on */
3031 if (block_start == EXTENT_MAP_HOLE) {
3032 char *userpage;
3033 struct extent_state *cached = NULL;
3034
3035 userpage = kmap_atomic(page);
3036 memset(userpage + pg_offset, 0, iosize);
3037 flush_dcache_page(page);
3038 kunmap_atomic(userpage);
3039
3040 set_extent_uptodate(tree, cur, cur + iosize - 1,
3041 &cached, GFP_NOFS);
3042 unlock_extent_cached(tree, cur,
3043 cur + iosize - 1,
3044 &cached, GFP_NOFS);
3045 cur = cur + iosize;
3046 pg_offset += iosize;
3047 continue;
3048 }
3049 /* the get_extent function already copied into the page */
3050 if (test_range_bit(tree, cur, cur_end,
3051 EXTENT_UPTODATE, 1, NULL)) {
3052 check_page_uptodate(tree, page);
3053 unlock_extent(tree, cur, cur + iosize - 1);
3054 cur = cur + iosize;
3055 pg_offset += iosize;
3056 continue;
3057 }
3058 /* we have an inline extent but it didn't get marked up
3059 * to date. Error out
3060 */
3061 if (block_start == EXTENT_MAP_INLINE) {
3062 SetPageError(page);
3063 unlock_extent(tree, cur, cur + iosize - 1);
3064 cur = cur + iosize;
3065 pg_offset += iosize;
3066 continue;
3067 }
3068
3069 pnr -= page->index;
3070 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3071 page, sector, disk_io_size, pg_offset,
3072 bdev, bio, pnr,
3073 end_bio_extent_readpage, mirror_num,
3074 *bio_flags,
3075 this_bio_flag,
3076 force_bio_submit);
3077 if (!ret) {
3078 nr++;
3079 *bio_flags = this_bio_flag;
3080 } else {
3081 SetPageError(page);
3082 unlock_extent(tree, cur, cur + iosize - 1);
3083 goto out;
3084 }
3085 cur = cur + iosize;
3086 pg_offset += iosize;
3087 }
3088 out:
3089 if (!nr) {
3090 if (!PageError(page))
3091 SetPageUptodate(page);
3092 unlock_page(page);
3093 }
3094 return ret;
3095 }
3096
__do_contiguous_readpages(struct extent_io_tree * tree,struct page * pages[],int nr_pages,u64 start,u64 end,get_extent_t * get_extent,struct extent_map ** em_cached,struct bio ** bio,int mirror_num,unsigned long * bio_flags,u64 * prev_em_start)3097 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3098 struct page *pages[], int nr_pages,
3099 u64 start, u64 end,
3100 get_extent_t *get_extent,
3101 struct extent_map **em_cached,
3102 struct bio **bio, int mirror_num,
3103 unsigned long *bio_flags,
3104 u64 *prev_em_start)
3105 {
3106 struct inode *inode;
3107 struct btrfs_ordered_extent *ordered;
3108 int index;
3109
3110 inode = pages[0]->mapping->host;
3111 while (1) {
3112 lock_extent(tree, start, end);
3113 ordered = btrfs_lookup_ordered_range(inode, start,
3114 end - start + 1);
3115 if (!ordered)
3116 break;
3117 unlock_extent(tree, start, end);
3118 btrfs_start_ordered_extent(inode, ordered, 1);
3119 btrfs_put_ordered_extent(ordered);
3120 }
3121
3122 for (index = 0; index < nr_pages; index++) {
3123 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3124 mirror_num, bio_flags, 0, prev_em_start);
3125 put_page(pages[index]);
3126 }
3127 }
3128
__extent_readpages(struct extent_io_tree * tree,struct page * pages[],int nr_pages,get_extent_t * get_extent,struct extent_map ** em_cached,struct bio ** bio,int mirror_num,unsigned long * bio_flags,u64 * prev_em_start)3129 static void __extent_readpages(struct extent_io_tree *tree,
3130 struct page *pages[],
3131 int nr_pages, get_extent_t *get_extent,
3132 struct extent_map **em_cached,
3133 struct bio **bio, int mirror_num,
3134 unsigned long *bio_flags,
3135 u64 *prev_em_start)
3136 {
3137 u64 start = 0;
3138 u64 end = 0;
3139 u64 page_start;
3140 int index;
3141 int first_index = 0;
3142
3143 for (index = 0; index < nr_pages; index++) {
3144 page_start = page_offset(pages[index]);
3145 if (!end) {
3146 start = page_start;
3147 end = start + PAGE_SIZE - 1;
3148 first_index = index;
3149 } else if (end + 1 == page_start) {
3150 end += PAGE_SIZE;
3151 } else {
3152 __do_contiguous_readpages(tree, &pages[first_index],
3153 index - first_index, start,
3154 end, get_extent, em_cached,
3155 bio, mirror_num, bio_flags,
3156 prev_em_start);
3157 start = page_start;
3158 end = start + PAGE_SIZE - 1;
3159 first_index = index;
3160 }
3161 }
3162
3163 if (end)
3164 __do_contiguous_readpages(tree, &pages[first_index],
3165 index - first_index, start,
3166 end, get_extent, em_cached, bio,
3167 mirror_num, bio_flags,
3168 prev_em_start);
3169 }
3170
__extent_read_full_page(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,struct bio ** bio,int mirror_num,unsigned long * bio_flags,int read_flags)3171 static int __extent_read_full_page(struct extent_io_tree *tree,
3172 struct page *page,
3173 get_extent_t *get_extent,
3174 struct bio **bio, int mirror_num,
3175 unsigned long *bio_flags, int read_flags)
3176 {
3177 struct inode *inode = page->mapping->host;
3178 struct btrfs_ordered_extent *ordered;
3179 u64 start = page_offset(page);
3180 u64 end = start + PAGE_SIZE - 1;
3181 int ret;
3182
3183 while (1) {
3184 lock_extent(tree, start, end);
3185 ordered = btrfs_lookup_ordered_range(inode, start,
3186 PAGE_SIZE);
3187 if (!ordered)
3188 break;
3189 unlock_extent(tree, start, end);
3190 btrfs_start_ordered_extent(inode, ordered, 1);
3191 btrfs_put_ordered_extent(ordered);
3192 }
3193
3194 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3195 bio_flags, read_flags, NULL);
3196 return ret;
3197 }
3198
extent_read_full_page(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,int mirror_num)3199 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3200 get_extent_t *get_extent, int mirror_num)
3201 {
3202 struct bio *bio = NULL;
3203 unsigned long bio_flags = 0;
3204 int ret;
3205
3206 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3207 &bio_flags, 0);
3208 if (bio)
3209 ret = submit_one_bio(bio, mirror_num, bio_flags);
3210 return ret;
3211 }
3212
update_nr_written(struct page * page,struct writeback_control * wbc,unsigned long nr_written)3213 static void update_nr_written(struct page *page, struct writeback_control *wbc,
3214 unsigned long nr_written)
3215 {
3216 wbc->nr_to_write -= nr_written;
3217 }
3218
3219 /*
3220 * helper for __extent_writepage, doing all of the delayed allocation setup.
3221 *
3222 * This returns 1 if our fill_delalloc function did all the work required
3223 * to write the page (copy into inline extent). In this case the IO has
3224 * been started and the page is already unlocked.
3225 *
3226 * This returns 0 if all went well (page still locked)
3227 * This returns < 0 if there were errors (page still locked)
3228 */
writepage_delalloc(struct inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,u64 delalloc_start,unsigned long * nr_written)3229 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3230 struct page *page, struct writeback_control *wbc,
3231 struct extent_page_data *epd,
3232 u64 delalloc_start,
3233 unsigned long *nr_written)
3234 {
3235 struct extent_io_tree *tree = epd->tree;
3236 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3237 u64 nr_delalloc;
3238 u64 delalloc_to_write = 0;
3239 u64 delalloc_end = 0;
3240 int ret;
3241 int page_started = 0;
3242
3243 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3244 return 0;
3245
3246 while (delalloc_end < page_end) {
3247 nr_delalloc = find_lock_delalloc_range(inode, tree,
3248 page,
3249 &delalloc_start,
3250 &delalloc_end,
3251 BTRFS_MAX_EXTENT_SIZE);
3252 if (nr_delalloc == 0) {
3253 delalloc_start = delalloc_end + 1;
3254 continue;
3255 }
3256 ret = tree->ops->fill_delalloc(inode, page,
3257 delalloc_start,
3258 delalloc_end,
3259 &page_started,
3260 nr_written);
3261 /* File system has been set read-only */
3262 if (ret) {
3263 SetPageError(page);
3264 /* fill_delalloc should be return < 0 for error
3265 * but just in case, we use > 0 here meaning the
3266 * IO is started, so we don't want to return > 0
3267 * unless things are going well.
3268 */
3269 ret = ret < 0 ? ret : -EIO;
3270 goto done;
3271 }
3272 /*
3273 * delalloc_end is already one less than the total length, so
3274 * we don't subtract one from PAGE_SIZE
3275 */
3276 delalloc_to_write += (delalloc_end - delalloc_start +
3277 PAGE_SIZE) >> PAGE_SHIFT;
3278 delalloc_start = delalloc_end + 1;
3279 }
3280 if (wbc->nr_to_write < delalloc_to_write) {
3281 int thresh = 8192;
3282
3283 if (delalloc_to_write < thresh * 2)
3284 thresh = delalloc_to_write;
3285 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3286 thresh);
3287 }
3288
3289 /* did the fill delalloc function already unlock and start
3290 * the IO?
3291 */
3292 if (page_started) {
3293 /*
3294 * we've unlocked the page, so we can't update
3295 * the mapping's writeback index, just update
3296 * nr_to_write.
3297 */
3298 wbc->nr_to_write -= *nr_written;
3299 return 1;
3300 }
3301
3302 ret = 0;
3303
3304 done:
3305 return ret;
3306 }
3307
3308 /*
3309 * helper for __extent_writepage. This calls the writepage start hooks,
3310 * and does the loop to map the page into extents and bios.
3311 *
3312 * We return 1 if the IO is started and the page is unlocked,
3313 * 0 if all went well (page still locked)
3314 * < 0 if there were errors (page still locked)
3315 */
__extent_writepage_io(struct inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,loff_t i_size,unsigned long nr_written,int write_flags,int * nr_ret)3316 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3317 struct page *page,
3318 struct writeback_control *wbc,
3319 struct extent_page_data *epd,
3320 loff_t i_size,
3321 unsigned long nr_written,
3322 int write_flags, int *nr_ret)
3323 {
3324 struct extent_io_tree *tree = epd->tree;
3325 u64 start = page_offset(page);
3326 u64 page_end = start + PAGE_SIZE - 1;
3327 u64 end;
3328 u64 cur = start;
3329 u64 extent_offset;
3330 u64 block_start;
3331 u64 iosize;
3332 sector_t sector;
3333 struct extent_state *cached_state = NULL;
3334 struct extent_map *em;
3335 struct block_device *bdev;
3336 size_t pg_offset = 0;
3337 size_t blocksize;
3338 int ret = 0;
3339 int nr = 0;
3340 bool compressed;
3341
3342 if (tree->ops && tree->ops->writepage_start_hook) {
3343 ret = tree->ops->writepage_start_hook(page, start,
3344 page_end);
3345 if (ret) {
3346 /* Fixup worker will requeue */
3347 if (ret == -EBUSY)
3348 wbc->pages_skipped++;
3349 else
3350 redirty_page_for_writepage(wbc, page);
3351
3352 update_nr_written(page, wbc, nr_written);
3353 unlock_page(page);
3354 ret = 1;
3355 goto done_unlocked;
3356 }
3357 }
3358
3359 /*
3360 * we don't want to touch the inode after unlocking the page,
3361 * so we update the mapping writeback index now
3362 */
3363 update_nr_written(page, wbc, nr_written + 1);
3364
3365 end = page_end;
3366 if (i_size <= start) {
3367 if (tree->ops && tree->ops->writepage_end_io_hook)
3368 tree->ops->writepage_end_io_hook(page, start,
3369 page_end, NULL, 1);
3370 goto done;
3371 }
3372
3373 blocksize = inode->i_sb->s_blocksize;
3374
3375 while (cur <= end) {
3376 u64 em_end;
3377 unsigned long max_nr;
3378
3379 if (cur >= i_size) {
3380 if (tree->ops && tree->ops->writepage_end_io_hook)
3381 tree->ops->writepage_end_io_hook(page, cur,
3382 page_end, NULL, 1);
3383 break;
3384 }
3385 em = epd->get_extent(inode, page, pg_offset, cur,
3386 end - cur + 1, 1);
3387 if (IS_ERR_OR_NULL(em)) {
3388 SetPageError(page);
3389 ret = PTR_ERR_OR_ZERO(em);
3390 break;
3391 }
3392
3393 extent_offset = cur - em->start;
3394 em_end = extent_map_end(em);
3395 BUG_ON(em_end <= cur);
3396 BUG_ON(end < cur);
3397 iosize = min(em_end - cur, end - cur + 1);
3398 iosize = ALIGN(iosize, blocksize);
3399 sector = (em->block_start + extent_offset) >> 9;
3400 bdev = em->bdev;
3401 block_start = em->block_start;
3402 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3403 free_extent_map(em);
3404 em = NULL;
3405
3406 /*
3407 * compressed and inline extents are written through other
3408 * paths in the FS
3409 */
3410 if (compressed || block_start == EXTENT_MAP_HOLE ||
3411 block_start == EXTENT_MAP_INLINE) {
3412 /*
3413 * end_io notification does not happen here for
3414 * compressed extents
3415 */
3416 if (!compressed && tree->ops &&
3417 tree->ops->writepage_end_io_hook)
3418 tree->ops->writepage_end_io_hook(page, cur,
3419 cur + iosize - 1,
3420 NULL, 1);
3421 else if (compressed) {
3422 /* we don't want to end_page_writeback on
3423 * a compressed extent. this happens
3424 * elsewhere
3425 */
3426 nr++;
3427 }
3428
3429 cur += iosize;
3430 pg_offset += iosize;
3431 continue;
3432 }
3433
3434 max_nr = (i_size >> PAGE_SHIFT) + 1;
3435
3436 set_range_writeback(tree, cur, cur + iosize - 1);
3437 if (!PageWriteback(page)) {
3438 btrfs_err(BTRFS_I(inode)->root->fs_info,
3439 "page %lu not writeback, cur %llu end %llu",
3440 page->index, cur, end);
3441 }
3442
3443 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3444 page, sector, iosize, pg_offset,
3445 bdev, &epd->bio, max_nr,
3446 end_bio_extent_writepage,
3447 0, 0, 0, false);
3448 if (ret)
3449 SetPageError(page);
3450
3451 cur = cur + iosize;
3452 pg_offset += iosize;
3453 nr++;
3454 }
3455 done:
3456 *nr_ret = nr;
3457
3458 done_unlocked:
3459
3460 /* drop our reference on any cached states */
3461 free_extent_state(cached_state);
3462 return ret;
3463 }
3464
3465 /*
3466 * the writepage semantics are similar to regular writepage. extent
3467 * records are inserted to lock ranges in the tree, and as dirty areas
3468 * are found, they are marked writeback. Then the lock bits are removed
3469 * and the end_io handler clears the writeback ranges
3470 */
__extent_writepage(struct page * page,struct writeback_control * wbc,void * data)3471 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3472 void *data)
3473 {
3474 struct inode *inode = page->mapping->host;
3475 struct extent_page_data *epd = data;
3476 u64 start = page_offset(page);
3477 u64 page_end = start + PAGE_SIZE - 1;
3478 int ret;
3479 int nr = 0;
3480 size_t pg_offset = 0;
3481 loff_t i_size = i_size_read(inode);
3482 unsigned long end_index = i_size >> PAGE_SHIFT;
3483 int write_flags = 0;
3484 unsigned long nr_written = 0;
3485
3486 if (wbc->sync_mode == WB_SYNC_ALL)
3487 write_flags = WRITE_SYNC;
3488
3489 trace___extent_writepage(page, inode, wbc);
3490
3491 WARN_ON(!PageLocked(page));
3492
3493 ClearPageError(page);
3494
3495 pg_offset = i_size & (PAGE_SIZE - 1);
3496 if (page->index > end_index ||
3497 (page->index == end_index && !pg_offset)) {
3498 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3499 unlock_page(page);
3500 return 0;
3501 }
3502
3503 if (page->index == end_index) {
3504 char *userpage;
3505
3506 userpage = kmap_atomic(page);
3507 memset(userpage + pg_offset, 0,
3508 PAGE_SIZE - pg_offset);
3509 kunmap_atomic(userpage);
3510 flush_dcache_page(page);
3511 }
3512
3513 pg_offset = 0;
3514
3515 set_page_extent_mapped(page);
3516
3517 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3518 if (ret == 1)
3519 goto done_unlocked;
3520 if (ret)
3521 goto done;
3522
3523 ret = __extent_writepage_io(inode, page, wbc, epd,
3524 i_size, nr_written, write_flags, &nr);
3525 if (ret == 1)
3526 goto done_unlocked;
3527
3528 done:
3529 if (nr == 0) {
3530 /* make sure the mapping tag for page dirty gets cleared */
3531 set_page_writeback(page);
3532 end_page_writeback(page);
3533 }
3534 if (PageError(page)) {
3535 ret = ret < 0 ? ret : -EIO;
3536 end_extent_writepage(page, ret, start, page_end);
3537 }
3538 unlock_page(page);
3539 return ret;
3540
3541 done_unlocked:
3542 return 0;
3543 }
3544
wait_on_extent_buffer_writeback(struct extent_buffer * eb)3545 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3546 {
3547 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3548 TASK_UNINTERRUPTIBLE);
3549 }
3550
3551 static noinline_for_stack int
lock_extent_buffer_for_io(struct extent_buffer * eb,struct btrfs_fs_info * fs_info,struct extent_page_data * epd)3552 lock_extent_buffer_for_io(struct extent_buffer *eb,
3553 struct btrfs_fs_info *fs_info,
3554 struct extent_page_data *epd)
3555 {
3556 unsigned long i, num_pages;
3557 int flush = 0;
3558 int ret = 0;
3559
3560 if (!btrfs_try_tree_write_lock(eb)) {
3561 flush = 1;
3562 flush_write_bio(epd);
3563 btrfs_tree_lock(eb);
3564 }
3565
3566 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3567 btrfs_tree_unlock(eb);
3568 if (!epd->sync_io)
3569 return 0;
3570 if (!flush) {
3571 flush_write_bio(epd);
3572 flush = 1;
3573 }
3574 while (1) {
3575 wait_on_extent_buffer_writeback(eb);
3576 btrfs_tree_lock(eb);
3577 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3578 break;
3579 btrfs_tree_unlock(eb);
3580 }
3581 }
3582
3583 /*
3584 * We need to do this to prevent races in people who check if the eb is
3585 * under IO since we can end up having no IO bits set for a short period
3586 * of time.
3587 */
3588 spin_lock(&eb->refs_lock);
3589 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3590 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3591 spin_unlock(&eb->refs_lock);
3592 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3593 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3594 -eb->len,
3595 fs_info->dirty_metadata_batch);
3596 ret = 1;
3597 } else {
3598 spin_unlock(&eb->refs_lock);
3599 }
3600
3601 btrfs_tree_unlock(eb);
3602
3603 if (!ret)
3604 return ret;
3605
3606 num_pages = num_extent_pages(eb->start, eb->len);
3607 for (i = 0; i < num_pages; i++) {
3608 struct page *p = eb->pages[i];
3609
3610 if (!trylock_page(p)) {
3611 if (!flush) {
3612 flush_write_bio(epd);
3613 flush = 1;
3614 }
3615 lock_page(p);
3616 }
3617 }
3618
3619 return ret;
3620 }
3621
end_extent_buffer_writeback(struct extent_buffer * eb)3622 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3623 {
3624 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3625 smp_mb__after_atomic();
3626 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3627 }
3628
set_btree_ioerr(struct page * page)3629 static void set_btree_ioerr(struct page *page)
3630 {
3631 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3632
3633 SetPageError(page);
3634 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3635 return;
3636
3637 /*
3638 * If writeback for a btree extent that doesn't belong to a log tree
3639 * failed, increment the counter transaction->eb_write_errors.
3640 * We do this because while the transaction is running and before it's
3641 * committing (when we call filemap_fdata[write|wait]_range against
3642 * the btree inode), we might have
3643 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3644 * returns an error or an error happens during writeback, when we're
3645 * committing the transaction we wouldn't know about it, since the pages
3646 * can be no longer dirty nor marked anymore for writeback (if a
3647 * subsequent modification to the extent buffer didn't happen before the
3648 * transaction commit), which makes filemap_fdata[write|wait]_range not
3649 * able to find the pages tagged with SetPageError at transaction
3650 * commit time. So if this happens we must abort the transaction,
3651 * otherwise we commit a super block with btree roots that point to
3652 * btree nodes/leafs whose content on disk is invalid - either garbage
3653 * or the content of some node/leaf from a past generation that got
3654 * cowed or deleted and is no longer valid.
3655 *
3656 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3657 * not be enough - we need to distinguish between log tree extents vs
3658 * non-log tree extents, and the next filemap_fdatawait_range() call
3659 * will catch and clear such errors in the mapping - and that call might
3660 * be from a log sync and not from a transaction commit. Also, checking
3661 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3662 * not done and would not be reliable - the eb might have been released
3663 * from memory and reading it back again means that flag would not be
3664 * set (since it's a runtime flag, not persisted on disk).
3665 *
3666 * Using the flags below in the btree inode also makes us achieve the
3667 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3668 * writeback for all dirty pages and before filemap_fdatawait_range()
3669 * is called, the writeback for all dirty pages had already finished
3670 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3671 * filemap_fdatawait_range() would return success, as it could not know
3672 * that writeback errors happened (the pages were no longer tagged for
3673 * writeback).
3674 */
3675 switch (eb->log_index) {
3676 case -1:
3677 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3678 break;
3679 case 0:
3680 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3681 break;
3682 case 1:
3683 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3684 break;
3685 default:
3686 BUG(); /* unexpected, logic error */
3687 }
3688 }
3689
end_bio_extent_buffer_writepage(struct bio * bio)3690 static void end_bio_extent_buffer_writepage(struct bio *bio)
3691 {
3692 struct bio_vec *bvec;
3693 struct extent_buffer *eb;
3694 int i, done;
3695
3696 bio_for_each_segment_all(bvec, bio, i) {
3697 struct page *page = bvec->bv_page;
3698
3699 eb = (struct extent_buffer *)page->private;
3700 BUG_ON(!eb);
3701 done = atomic_dec_and_test(&eb->io_pages);
3702
3703 if (bio->bi_error ||
3704 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3705 ClearPageUptodate(page);
3706 set_btree_ioerr(page);
3707 }
3708
3709 end_page_writeback(page);
3710
3711 if (!done)
3712 continue;
3713
3714 end_extent_buffer_writeback(eb);
3715 }
3716
3717 bio_put(bio);
3718 }
3719
write_one_eb(struct extent_buffer * eb,struct btrfs_fs_info * fs_info,struct writeback_control * wbc,struct extent_page_data * epd)3720 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3721 struct btrfs_fs_info *fs_info,
3722 struct writeback_control *wbc,
3723 struct extent_page_data *epd)
3724 {
3725 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3726 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3727 u64 offset = eb->start;
3728 u32 nritems;
3729 unsigned long i, num_pages;
3730 unsigned long bio_flags = 0;
3731 unsigned long start, end;
3732 int write_flags = (epd->sync_io ? WRITE_SYNC : 0) | REQ_META;
3733 int ret = 0;
3734
3735 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3736 num_pages = num_extent_pages(eb->start, eb->len);
3737 atomic_set(&eb->io_pages, num_pages);
3738 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3739 bio_flags = EXTENT_BIO_TREE_LOG;
3740
3741 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3742 nritems = btrfs_header_nritems(eb);
3743 if (btrfs_header_level(eb) > 0) {
3744 end = btrfs_node_key_ptr_offset(nritems);
3745
3746 memset_extent_buffer(eb, 0, end, eb->len - end);
3747 } else {
3748 /*
3749 * leaf:
3750 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3751 */
3752 start = btrfs_item_nr_offset(nritems);
3753 end = btrfs_leaf_data(eb) +
3754 leaf_data_end(fs_info->tree_root, eb);
3755 memset_extent_buffer(eb, 0, start, end - start);
3756 }
3757
3758 for (i = 0; i < num_pages; i++) {
3759 struct page *p = eb->pages[i];
3760
3761 clear_page_dirty_for_io(p);
3762 set_page_writeback(p);
3763 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3764 p, offset >> 9, PAGE_SIZE, 0, bdev,
3765 &epd->bio, -1,
3766 end_bio_extent_buffer_writepage,
3767 0, epd->bio_flags, bio_flags, false);
3768 epd->bio_flags = bio_flags;
3769 if (ret) {
3770 set_btree_ioerr(p);
3771 end_page_writeback(p);
3772 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3773 end_extent_buffer_writeback(eb);
3774 ret = -EIO;
3775 break;
3776 }
3777 offset += PAGE_SIZE;
3778 update_nr_written(p, wbc, 1);
3779 unlock_page(p);
3780 }
3781
3782 if (unlikely(ret)) {
3783 for (; i < num_pages; i++) {
3784 struct page *p = eb->pages[i];
3785 clear_page_dirty_for_io(p);
3786 unlock_page(p);
3787 }
3788 }
3789
3790 return ret;
3791 }
3792
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)3793 int btree_write_cache_pages(struct address_space *mapping,
3794 struct writeback_control *wbc)
3795 {
3796 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3797 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3798 struct extent_buffer *eb, *prev_eb = NULL;
3799 struct extent_page_data epd = {
3800 .bio = NULL,
3801 .tree = tree,
3802 .extent_locked = 0,
3803 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3804 .bio_flags = 0,
3805 };
3806 int ret = 0;
3807 int done = 0;
3808 int nr_to_write_done = 0;
3809 struct pagevec pvec;
3810 int nr_pages;
3811 pgoff_t index;
3812 pgoff_t end; /* Inclusive */
3813 int scanned = 0;
3814 int tag;
3815
3816 pagevec_init(&pvec, 0);
3817 if (wbc->range_cyclic) {
3818 index = mapping->writeback_index; /* Start from prev offset */
3819 end = -1;
3820 } else {
3821 index = wbc->range_start >> PAGE_SHIFT;
3822 end = wbc->range_end >> PAGE_SHIFT;
3823 scanned = 1;
3824 }
3825 if (wbc->sync_mode == WB_SYNC_ALL)
3826 tag = PAGECACHE_TAG_TOWRITE;
3827 else
3828 tag = PAGECACHE_TAG_DIRTY;
3829 retry:
3830 if (wbc->sync_mode == WB_SYNC_ALL)
3831 tag_pages_for_writeback(mapping, index, end);
3832 while (!done && !nr_to_write_done && (index <= end) &&
3833 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3834 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3835 unsigned i;
3836
3837 scanned = 1;
3838 for (i = 0; i < nr_pages; i++) {
3839 struct page *page = pvec.pages[i];
3840
3841 if (!PagePrivate(page))
3842 continue;
3843
3844 if (!wbc->range_cyclic && page->index > end) {
3845 done = 1;
3846 break;
3847 }
3848
3849 spin_lock(&mapping->private_lock);
3850 if (!PagePrivate(page)) {
3851 spin_unlock(&mapping->private_lock);
3852 continue;
3853 }
3854
3855 eb = (struct extent_buffer *)page->private;
3856
3857 /*
3858 * Shouldn't happen and normally this would be a BUG_ON
3859 * but no sense in crashing the users box for something
3860 * we can survive anyway.
3861 */
3862 if (WARN_ON(!eb)) {
3863 spin_unlock(&mapping->private_lock);
3864 continue;
3865 }
3866
3867 if (eb == prev_eb) {
3868 spin_unlock(&mapping->private_lock);
3869 continue;
3870 }
3871
3872 ret = atomic_inc_not_zero(&eb->refs);
3873 spin_unlock(&mapping->private_lock);
3874 if (!ret)
3875 continue;
3876
3877 prev_eb = eb;
3878 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3879 if (!ret) {
3880 free_extent_buffer(eb);
3881 continue;
3882 }
3883
3884 ret = write_one_eb(eb, fs_info, wbc, &epd);
3885 if (ret) {
3886 done = 1;
3887 free_extent_buffer(eb);
3888 break;
3889 }
3890 free_extent_buffer(eb);
3891
3892 /*
3893 * the filesystem may choose to bump up nr_to_write.
3894 * We have to make sure to honor the new nr_to_write
3895 * at any time
3896 */
3897 nr_to_write_done = wbc->nr_to_write <= 0;
3898 }
3899 pagevec_release(&pvec);
3900 cond_resched();
3901 }
3902 if (!scanned && !done) {
3903 /*
3904 * We hit the last page and there is more work to be done: wrap
3905 * back to the start of the file
3906 */
3907 scanned = 1;
3908 index = 0;
3909 goto retry;
3910 }
3911 flush_write_bio(&epd);
3912 return ret;
3913 }
3914
3915 /**
3916 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3917 * @mapping: address space structure to write
3918 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3919 * @writepage: function called for each page
3920 * @data: data passed to writepage function
3921 *
3922 * If a page is already under I/O, write_cache_pages() skips it, even
3923 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3924 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3925 * and msync() need to guarantee that all the data which was dirty at the time
3926 * the call was made get new I/O started against them. If wbc->sync_mode is
3927 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3928 * existing IO to complete.
3929 */
extent_write_cache_pages(struct extent_io_tree * tree,struct address_space * mapping,struct writeback_control * wbc,writepage_t writepage,void * data,void (* flush_fn)(void *))3930 static int extent_write_cache_pages(struct extent_io_tree *tree,
3931 struct address_space *mapping,
3932 struct writeback_control *wbc,
3933 writepage_t writepage, void *data,
3934 void (*flush_fn)(void *))
3935 {
3936 struct inode *inode = mapping->host;
3937 int ret = 0;
3938 int done = 0;
3939 int nr_to_write_done = 0;
3940 struct pagevec pvec;
3941 int nr_pages;
3942 pgoff_t index;
3943 pgoff_t end; /* Inclusive */
3944 pgoff_t done_index;
3945 int range_whole = 0;
3946 int scanned = 0;
3947 int tag;
3948
3949 /*
3950 * We have to hold onto the inode so that ordered extents can do their
3951 * work when the IO finishes. The alternative to this is failing to add
3952 * an ordered extent if the igrab() fails there and that is a huge pain
3953 * to deal with, so instead just hold onto the inode throughout the
3954 * writepages operation. If it fails here we are freeing up the inode
3955 * anyway and we'd rather not waste our time writing out stuff that is
3956 * going to be truncated anyway.
3957 */
3958 if (!igrab(inode))
3959 return 0;
3960
3961 pagevec_init(&pvec, 0);
3962 if (wbc->range_cyclic) {
3963 index = mapping->writeback_index; /* Start from prev offset */
3964 end = -1;
3965 } else {
3966 index = wbc->range_start >> PAGE_SHIFT;
3967 end = wbc->range_end >> PAGE_SHIFT;
3968 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3969 range_whole = 1;
3970 scanned = 1;
3971 }
3972 if (wbc->sync_mode == WB_SYNC_ALL)
3973 tag = PAGECACHE_TAG_TOWRITE;
3974 else
3975 tag = PAGECACHE_TAG_DIRTY;
3976 retry:
3977 if (wbc->sync_mode == WB_SYNC_ALL)
3978 tag_pages_for_writeback(mapping, index, end);
3979 done_index = index;
3980 while (!done && !nr_to_write_done && (index <= end) &&
3981 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3982 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3983 unsigned i;
3984
3985 scanned = 1;
3986 for (i = 0; i < nr_pages; i++) {
3987 struct page *page = pvec.pages[i];
3988
3989 done_index = page->index;
3990 /*
3991 * At this point we hold neither mapping->tree_lock nor
3992 * lock on the page itself: the page may be truncated or
3993 * invalidated (changing page->mapping to NULL), or even
3994 * swizzled back from swapper_space to tmpfs file
3995 * mapping
3996 */
3997 if (!trylock_page(page)) {
3998 flush_fn(data);
3999 lock_page(page);
4000 }
4001
4002 if (unlikely(page->mapping != mapping)) {
4003 unlock_page(page);
4004 continue;
4005 }
4006
4007 if (!wbc->range_cyclic && page->index > end) {
4008 done = 1;
4009 unlock_page(page);
4010 continue;
4011 }
4012
4013 if (wbc->sync_mode != WB_SYNC_NONE) {
4014 if (PageWriteback(page))
4015 flush_fn(data);
4016 wait_on_page_writeback(page);
4017 }
4018
4019 if (PageWriteback(page) ||
4020 !clear_page_dirty_for_io(page)) {
4021 unlock_page(page);
4022 continue;
4023 }
4024
4025 ret = (*writepage)(page, wbc, data);
4026
4027 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4028 unlock_page(page);
4029 ret = 0;
4030 }
4031 if (ret < 0) {
4032 /*
4033 * done_index is set past this page,
4034 * so media errors will not choke
4035 * background writeout for the entire
4036 * file. This has consequences for
4037 * range_cyclic semantics (ie. it may
4038 * not be suitable for data integrity
4039 * writeout).
4040 */
4041 done_index = page->index + 1;
4042 done = 1;
4043 break;
4044 }
4045
4046 /*
4047 * the filesystem may choose to bump up nr_to_write.
4048 * We have to make sure to honor the new nr_to_write
4049 * at any time
4050 */
4051 nr_to_write_done = wbc->nr_to_write <= 0;
4052 }
4053 pagevec_release(&pvec);
4054 cond_resched();
4055 }
4056 if (!scanned && !done) {
4057 /*
4058 * We hit the last page and there is more work to be done: wrap
4059 * back to the start of the file
4060 */
4061 scanned = 1;
4062 index = 0;
4063 goto retry;
4064 }
4065
4066 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4067 mapping->writeback_index = done_index;
4068
4069 btrfs_add_delayed_iput(inode);
4070 return ret;
4071 }
4072
flush_epd_write_bio(struct extent_page_data * epd)4073 static void flush_epd_write_bio(struct extent_page_data *epd)
4074 {
4075 if (epd->bio) {
4076 int ret;
4077
4078 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4079 epd->sync_io ? WRITE_SYNC : 0);
4080
4081 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
4082 BUG_ON(ret < 0); /* -ENOMEM */
4083 epd->bio = NULL;
4084 }
4085 }
4086
flush_write_bio(void * data)4087 static noinline void flush_write_bio(void *data)
4088 {
4089 struct extent_page_data *epd = data;
4090 flush_epd_write_bio(epd);
4091 }
4092
extent_write_full_page(struct extent_io_tree * tree,struct page * page,get_extent_t * get_extent,struct writeback_control * wbc)4093 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4094 get_extent_t *get_extent,
4095 struct writeback_control *wbc)
4096 {
4097 int ret;
4098 struct extent_page_data epd = {
4099 .bio = NULL,
4100 .tree = tree,
4101 .get_extent = get_extent,
4102 .extent_locked = 0,
4103 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4104 .bio_flags = 0,
4105 };
4106
4107 ret = __extent_writepage(page, wbc, &epd);
4108
4109 flush_epd_write_bio(&epd);
4110 return ret;
4111 }
4112
extent_write_locked_range(struct extent_io_tree * tree,struct inode * inode,u64 start,u64 end,get_extent_t * get_extent,int mode)4113 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4114 u64 start, u64 end, get_extent_t *get_extent,
4115 int mode)
4116 {
4117 int ret = 0;
4118 struct address_space *mapping = inode->i_mapping;
4119 struct page *page;
4120 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4121 PAGE_SHIFT;
4122
4123 struct extent_page_data epd = {
4124 .bio = NULL,
4125 .tree = tree,
4126 .get_extent = get_extent,
4127 .extent_locked = 1,
4128 .sync_io = mode == WB_SYNC_ALL,
4129 .bio_flags = 0,
4130 };
4131 struct writeback_control wbc_writepages = {
4132 .sync_mode = mode,
4133 .nr_to_write = nr_pages * 2,
4134 .range_start = start,
4135 .range_end = end + 1,
4136 };
4137
4138 while (start <= end) {
4139 page = find_get_page(mapping, start >> PAGE_SHIFT);
4140 if (clear_page_dirty_for_io(page))
4141 ret = __extent_writepage(page, &wbc_writepages, &epd);
4142 else {
4143 if (tree->ops && tree->ops->writepage_end_io_hook)
4144 tree->ops->writepage_end_io_hook(page, start,
4145 start + PAGE_SIZE - 1,
4146 NULL, 1);
4147 unlock_page(page);
4148 }
4149 put_page(page);
4150 start += PAGE_SIZE;
4151 }
4152
4153 flush_epd_write_bio(&epd);
4154 return ret;
4155 }
4156
extent_writepages(struct extent_io_tree * tree,struct address_space * mapping,get_extent_t * get_extent,struct writeback_control * wbc)4157 int extent_writepages(struct extent_io_tree *tree,
4158 struct address_space *mapping,
4159 get_extent_t *get_extent,
4160 struct writeback_control *wbc)
4161 {
4162 int ret = 0;
4163 struct extent_page_data epd = {
4164 .bio = NULL,
4165 .tree = tree,
4166 .get_extent = get_extent,
4167 .extent_locked = 0,
4168 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4169 .bio_flags = 0,
4170 };
4171
4172 ret = extent_write_cache_pages(tree, mapping, wbc,
4173 __extent_writepage, &epd,
4174 flush_write_bio);
4175 flush_epd_write_bio(&epd);
4176 return ret;
4177 }
4178
extent_readpages(struct extent_io_tree * tree,struct address_space * mapping,struct list_head * pages,unsigned nr_pages,get_extent_t get_extent)4179 int extent_readpages(struct extent_io_tree *tree,
4180 struct address_space *mapping,
4181 struct list_head *pages, unsigned nr_pages,
4182 get_extent_t get_extent)
4183 {
4184 struct bio *bio = NULL;
4185 unsigned page_idx;
4186 unsigned long bio_flags = 0;
4187 struct page *pagepool[16];
4188 struct page *page;
4189 struct extent_map *em_cached = NULL;
4190 int nr = 0;
4191 u64 prev_em_start = (u64)-1;
4192
4193 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4194 page = list_entry(pages->prev, struct page, lru);
4195
4196 prefetchw(&page->flags);
4197 list_del(&page->lru);
4198 if (add_to_page_cache_lru(page, mapping,
4199 page->index,
4200 readahead_gfp_mask(mapping))) {
4201 put_page(page);
4202 continue;
4203 }
4204
4205 pagepool[nr++] = page;
4206 if (nr < ARRAY_SIZE(pagepool))
4207 continue;
4208 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4209 &bio, 0, &bio_flags, &prev_em_start);
4210 nr = 0;
4211 }
4212 if (nr)
4213 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4214 &bio, 0, &bio_flags, &prev_em_start);
4215
4216 if (em_cached)
4217 free_extent_map(em_cached);
4218
4219 BUG_ON(!list_empty(pages));
4220 if (bio)
4221 return submit_one_bio(bio, 0, bio_flags);
4222 return 0;
4223 }
4224
4225 /*
4226 * basic invalidatepage code, this waits on any locked or writeback
4227 * ranges corresponding to the page, and then deletes any extent state
4228 * records from the tree
4229 */
extent_invalidatepage(struct extent_io_tree * tree,struct page * page,unsigned long offset)4230 int extent_invalidatepage(struct extent_io_tree *tree,
4231 struct page *page, unsigned long offset)
4232 {
4233 struct extent_state *cached_state = NULL;
4234 u64 start = page_offset(page);
4235 u64 end = start + PAGE_SIZE - 1;
4236 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4237
4238 start += ALIGN(offset, blocksize);
4239 if (start > end)
4240 return 0;
4241
4242 lock_extent_bits(tree, start, end, &cached_state);
4243 wait_on_page_writeback(page);
4244 clear_extent_bit(tree, start, end,
4245 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4246 EXTENT_DO_ACCOUNTING,
4247 1, 1, &cached_state, GFP_NOFS);
4248 return 0;
4249 }
4250
4251 /*
4252 * a helper for releasepage, this tests for areas of the page that
4253 * are locked or under IO and drops the related state bits if it is safe
4254 * to drop the page.
4255 */
try_release_extent_state(struct extent_map_tree * map,struct extent_io_tree * tree,struct page * page,gfp_t mask)4256 static int try_release_extent_state(struct extent_map_tree *map,
4257 struct extent_io_tree *tree,
4258 struct page *page, gfp_t mask)
4259 {
4260 u64 start = page_offset(page);
4261 u64 end = start + PAGE_SIZE - 1;
4262 int ret = 1;
4263
4264 if (test_range_bit(tree, start, end,
4265 EXTENT_IOBITS, 0, NULL))
4266 ret = 0;
4267 else {
4268 if ((mask & GFP_NOFS) == GFP_NOFS)
4269 mask = GFP_NOFS;
4270 /*
4271 * at this point we can safely clear everything except the
4272 * locked bit and the nodatasum bit
4273 */
4274 ret = clear_extent_bit(tree, start, end,
4275 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4276 0, 0, NULL, mask);
4277
4278 /* if clear_extent_bit failed for enomem reasons,
4279 * we can't allow the release to continue.
4280 */
4281 if (ret < 0)
4282 ret = 0;
4283 else
4284 ret = 1;
4285 }
4286 return ret;
4287 }
4288
4289 /*
4290 * a helper for releasepage. As long as there are no locked extents
4291 * in the range corresponding to the page, both state records and extent
4292 * map records are removed
4293 */
try_release_extent_mapping(struct extent_map_tree * map,struct extent_io_tree * tree,struct page * page,gfp_t mask)4294 int try_release_extent_mapping(struct extent_map_tree *map,
4295 struct extent_io_tree *tree, struct page *page,
4296 gfp_t mask)
4297 {
4298 struct extent_map *em;
4299 u64 start = page_offset(page);
4300 u64 end = start + PAGE_SIZE - 1;
4301
4302 if (gfpflags_allow_blocking(mask) &&
4303 page->mapping->host->i_size > SZ_16M) {
4304 u64 len;
4305 while (start <= end) {
4306 len = end - start + 1;
4307 write_lock(&map->lock);
4308 em = lookup_extent_mapping(map, start, len);
4309 if (!em) {
4310 write_unlock(&map->lock);
4311 break;
4312 }
4313 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4314 em->start != start) {
4315 write_unlock(&map->lock);
4316 free_extent_map(em);
4317 break;
4318 }
4319 if (!test_range_bit(tree, em->start,
4320 extent_map_end(em) - 1,
4321 EXTENT_LOCKED | EXTENT_WRITEBACK,
4322 0, NULL)) {
4323 remove_extent_mapping(map, em);
4324 /* once for the rb tree */
4325 free_extent_map(em);
4326 }
4327 start = extent_map_end(em);
4328 write_unlock(&map->lock);
4329
4330 /* once for us */
4331 free_extent_map(em);
4332 }
4333 }
4334 return try_release_extent_state(map, tree, page, mask);
4335 }
4336
4337 /*
4338 * helper function for fiemap, which doesn't want to see any holes.
4339 * This maps until we find something past 'last'
4340 */
get_extent_skip_holes(struct inode * inode,u64 offset,u64 last,get_extent_t * get_extent)4341 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4342 u64 offset,
4343 u64 last,
4344 get_extent_t *get_extent)
4345 {
4346 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4347 struct extent_map *em;
4348 u64 len;
4349
4350 if (offset >= last)
4351 return NULL;
4352
4353 while (1) {
4354 len = last - offset;
4355 if (len == 0)
4356 break;
4357 len = ALIGN(len, sectorsize);
4358 em = get_extent(inode, NULL, 0, offset, len, 0);
4359 if (IS_ERR_OR_NULL(em))
4360 return em;
4361
4362 /* if this isn't a hole return it */
4363 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4364 em->block_start != EXTENT_MAP_HOLE) {
4365 return em;
4366 }
4367
4368 /* this is a hole, advance to the next extent */
4369 offset = extent_map_end(em);
4370 free_extent_map(em);
4371 if (offset >= last)
4372 break;
4373 }
4374 return NULL;
4375 }
4376
extent_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len,get_extent_t * get_extent)4377 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4378 __u64 start, __u64 len, get_extent_t *get_extent)
4379 {
4380 int ret = 0;
4381 u64 off = start;
4382 u64 max = start + len;
4383 u32 flags = 0;
4384 u32 found_type;
4385 u64 last;
4386 u64 last_for_get_extent = 0;
4387 u64 disko = 0;
4388 u64 isize = i_size_read(inode);
4389 struct btrfs_key found_key;
4390 struct extent_map *em = NULL;
4391 struct extent_state *cached_state = NULL;
4392 struct btrfs_path *path;
4393 struct btrfs_root *root = BTRFS_I(inode)->root;
4394 int end = 0;
4395 u64 em_start = 0;
4396 u64 em_len = 0;
4397 u64 em_end = 0;
4398
4399 if (len == 0)
4400 return -EINVAL;
4401
4402 path = btrfs_alloc_path();
4403 if (!path)
4404 return -ENOMEM;
4405 path->leave_spinning = 1;
4406
4407 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4408 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4409
4410 /*
4411 * lookup the last file extent. We're not using i_size here
4412 * because there might be preallocation past i_size
4413 */
4414 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4415 0);
4416 if (ret < 0) {
4417 btrfs_free_path(path);
4418 return ret;
4419 } else {
4420 WARN_ON(!ret);
4421 if (ret == 1)
4422 ret = 0;
4423 }
4424
4425 path->slots[0]--;
4426 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4427 found_type = found_key.type;
4428
4429 /* No extents, but there might be delalloc bits */
4430 if (found_key.objectid != btrfs_ino(inode) ||
4431 found_type != BTRFS_EXTENT_DATA_KEY) {
4432 /* have to trust i_size as the end */
4433 last = (u64)-1;
4434 last_for_get_extent = isize;
4435 } else {
4436 /*
4437 * remember the start of the last extent. There are a
4438 * bunch of different factors that go into the length of the
4439 * extent, so its much less complex to remember where it started
4440 */
4441 last = found_key.offset;
4442 last_for_get_extent = last + 1;
4443 }
4444 btrfs_release_path(path);
4445
4446 /*
4447 * we might have some extents allocated but more delalloc past those
4448 * extents. so, we trust isize unless the start of the last extent is
4449 * beyond isize
4450 */
4451 if (last < isize) {
4452 last = (u64)-1;
4453 last_for_get_extent = isize;
4454 }
4455
4456 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4457 &cached_state);
4458
4459 em = get_extent_skip_holes(inode, start, last_for_get_extent,
4460 get_extent);
4461 if (!em)
4462 goto out;
4463 if (IS_ERR(em)) {
4464 ret = PTR_ERR(em);
4465 goto out;
4466 }
4467
4468 while (!end) {
4469 u64 offset_in_extent = 0;
4470
4471 /* break if the extent we found is outside the range */
4472 if (em->start >= max || extent_map_end(em) < off)
4473 break;
4474
4475 /*
4476 * get_extent may return an extent that starts before our
4477 * requested range. We have to make sure the ranges
4478 * we return to fiemap always move forward and don't
4479 * overlap, so adjust the offsets here
4480 */
4481 em_start = max(em->start, off);
4482
4483 /*
4484 * record the offset from the start of the extent
4485 * for adjusting the disk offset below. Only do this if the
4486 * extent isn't compressed since our in ram offset may be past
4487 * what we have actually allocated on disk.
4488 */
4489 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4490 offset_in_extent = em_start - em->start;
4491 em_end = extent_map_end(em);
4492 em_len = em_end - em_start;
4493 disko = 0;
4494 flags = 0;
4495
4496 /*
4497 * bump off for our next call to get_extent
4498 */
4499 off = extent_map_end(em);
4500 if (off >= max)
4501 end = 1;
4502
4503 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4504 end = 1;
4505 flags |= FIEMAP_EXTENT_LAST;
4506 } else if (em->block_start == EXTENT_MAP_INLINE) {
4507 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4508 FIEMAP_EXTENT_NOT_ALIGNED);
4509 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4510 flags |= (FIEMAP_EXTENT_DELALLOC |
4511 FIEMAP_EXTENT_UNKNOWN);
4512 } else if (fieinfo->fi_extents_max) {
4513 struct btrfs_trans_handle *trans;
4514
4515 u64 bytenr = em->block_start -
4516 (em->start - em->orig_start);
4517
4518 disko = em->block_start + offset_in_extent;
4519
4520 /*
4521 * We need a trans handle to get delayed refs
4522 */
4523 trans = btrfs_join_transaction(root);
4524 /*
4525 * It's OK if we can't start a trans we can still check
4526 * from commit_root
4527 */
4528 if (IS_ERR(trans))
4529 trans = NULL;
4530
4531 /*
4532 * As btrfs supports shared space, this information
4533 * can be exported to userspace tools via
4534 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4535 * then we're just getting a count and we can skip the
4536 * lookup stuff.
4537 */
4538 ret = btrfs_check_shared(trans, root->fs_info,
4539 root->objectid,
4540 btrfs_ino(inode), bytenr);
4541 if (trans)
4542 btrfs_end_transaction(trans, root);
4543 if (ret < 0)
4544 goto out_free;
4545 if (ret)
4546 flags |= FIEMAP_EXTENT_SHARED;
4547 ret = 0;
4548 }
4549 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4550 flags |= FIEMAP_EXTENT_ENCODED;
4551 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4552 flags |= FIEMAP_EXTENT_UNWRITTEN;
4553
4554 free_extent_map(em);
4555 em = NULL;
4556 if ((em_start >= last) || em_len == (u64)-1 ||
4557 (last == (u64)-1 && isize <= em_end)) {
4558 flags |= FIEMAP_EXTENT_LAST;
4559 end = 1;
4560 }
4561
4562 /* now scan forward to see if this is really the last extent. */
4563 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4564 get_extent);
4565 if (IS_ERR(em)) {
4566 ret = PTR_ERR(em);
4567 goto out;
4568 }
4569 if (!em) {
4570 flags |= FIEMAP_EXTENT_LAST;
4571 end = 1;
4572 }
4573 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4574 em_len, flags);
4575 if (ret) {
4576 if (ret == 1)
4577 ret = 0;
4578 goto out_free;
4579 }
4580 }
4581 out_free:
4582 free_extent_map(em);
4583 out:
4584 btrfs_free_path(path);
4585 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4586 &cached_state, GFP_NOFS);
4587 return ret;
4588 }
4589
__free_extent_buffer(struct extent_buffer * eb)4590 static void __free_extent_buffer(struct extent_buffer *eb)
4591 {
4592 btrfs_leak_debug_del(&eb->leak_list);
4593 kmem_cache_free(extent_buffer_cache, eb);
4594 }
4595
extent_buffer_under_io(struct extent_buffer * eb)4596 int extent_buffer_under_io(struct extent_buffer *eb)
4597 {
4598 return (atomic_read(&eb->io_pages) ||
4599 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4600 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4601 }
4602
4603 /*
4604 * Helper for releasing extent buffer page.
4605 */
btrfs_release_extent_buffer_page(struct extent_buffer * eb)4606 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4607 {
4608 unsigned long index;
4609 struct page *page;
4610 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4611
4612 BUG_ON(extent_buffer_under_io(eb));
4613
4614 index = num_extent_pages(eb->start, eb->len);
4615 if (index == 0)
4616 return;
4617
4618 do {
4619 index--;
4620 page = eb->pages[index];
4621 if (!page)
4622 continue;
4623 if (mapped)
4624 spin_lock(&page->mapping->private_lock);
4625 /*
4626 * We do this since we'll remove the pages after we've
4627 * removed the eb from the radix tree, so we could race
4628 * and have this page now attached to the new eb. So
4629 * only clear page_private if it's still connected to
4630 * this eb.
4631 */
4632 if (PagePrivate(page) &&
4633 page->private == (unsigned long)eb) {
4634 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4635 BUG_ON(PageDirty(page));
4636 BUG_ON(PageWriteback(page));
4637 /*
4638 * We need to make sure we haven't be attached
4639 * to a new eb.
4640 */
4641 ClearPagePrivate(page);
4642 set_page_private(page, 0);
4643 /* One for the page private */
4644 put_page(page);
4645 }
4646
4647 if (mapped)
4648 spin_unlock(&page->mapping->private_lock);
4649
4650 /* One for when we allocated the page */
4651 put_page(page);
4652 } while (index != 0);
4653 }
4654
4655 /*
4656 * Helper for releasing the extent buffer.
4657 */
btrfs_release_extent_buffer(struct extent_buffer * eb)4658 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4659 {
4660 btrfs_release_extent_buffer_page(eb);
4661 __free_extent_buffer(eb);
4662 }
4663
4664 static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)4665 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4666 unsigned long len)
4667 {
4668 struct extent_buffer *eb = NULL;
4669
4670 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4671 eb->start = start;
4672 eb->len = len;
4673 eb->fs_info = fs_info;
4674 eb->bflags = 0;
4675 rwlock_init(&eb->lock);
4676 atomic_set(&eb->write_locks, 0);
4677 atomic_set(&eb->read_locks, 0);
4678 atomic_set(&eb->blocking_readers, 0);
4679 atomic_set(&eb->blocking_writers, 0);
4680 atomic_set(&eb->spinning_readers, 0);
4681 atomic_set(&eb->spinning_writers, 0);
4682 eb->lock_nested = 0;
4683 init_waitqueue_head(&eb->write_lock_wq);
4684 init_waitqueue_head(&eb->read_lock_wq);
4685
4686 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4687
4688 spin_lock_init(&eb->refs_lock);
4689 atomic_set(&eb->refs, 1);
4690 atomic_set(&eb->io_pages, 0);
4691
4692 /*
4693 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4694 */
4695 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4696 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4697 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4698
4699 return eb;
4700 }
4701
btrfs_clone_extent_buffer(struct extent_buffer * src)4702 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4703 {
4704 unsigned long i;
4705 struct page *p;
4706 struct extent_buffer *new;
4707 unsigned long num_pages = num_extent_pages(src->start, src->len);
4708
4709 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4710 if (new == NULL)
4711 return NULL;
4712
4713 for (i = 0; i < num_pages; i++) {
4714 p = alloc_page(GFP_NOFS);
4715 if (!p) {
4716 btrfs_release_extent_buffer(new);
4717 return NULL;
4718 }
4719 attach_extent_buffer_page(new, p);
4720 WARN_ON(PageDirty(p));
4721 SetPageUptodate(p);
4722 new->pages[i] = p;
4723 }
4724
4725 copy_extent_buffer(new, src, 0, 0, src->len);
4726 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4727 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4728
4729 return new;
4730 }
4731
__alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)4732 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4733 u64 start, unsigned long len)
4734 {
4735 struct extent_buffer *eb;
4736 unsigned long num_pages;
4737 unsigned long i;
4738
4739 num_pages = num_extent_pages(start, len);
4740
4741 eb = __alloc_extent_buffer(fs_info, start, len);
4742 if (!eb)
4743 return NULL;
4744
4745 for (i = 0; i < num_pages; i++) {
4746 eb->pages[i] = alloc_page(GFP_NOFS);
4747 if (!eb->pages[i])
4748 goto err;
4749 }
4750 set_extent_buffer_uptodate(eb);
4751 btrfs_set_header_nritems(eb, 0);
4752 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4753
4754 return eb;
4755 err:
4756 for (; i > 0; i--)
4757 __free_page(eb->pages[i - 1]);
4758 __free_extent_buffer(eb);
4759 return NULL;
4760 }
4761
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u32 nodesize)4762 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4763 u64 start, u32 nodesize)
4764 {
4765 unsigned long len;
4766
4767 if (!fs_info) {
4768 /*
4769 * Called only from tests that don't always have a fs_info
4770 * available
4771 */
4772 len = nodesize;
4773 } else {
4774 len = fs_info->tree_root->nodesize;
4775 }
4776
4777 return __alloc_dummy_extent_buffer(fs_info, start, len);
4778 }
4779
check_buffer_tree_ref(struct extent_buffer * eb)4780 static void check_buffer_tree_ref(struct extent_buffer *eb)
4781 {
4782 int refs;
4783 /* the ref bit is tricky. We have to make sure it is set
4784 * if we have the buffer dirty. Otherwise the
4785 * code to free a buffer can end up dropping a dirty
4786 * page
4787 *
4788 * Once the ref bit is set, it won't go away while the
4789 * buffer is dirty or in writeback, and it also won't
4790 * go away while we have the reference count on the
4791 * eb bumped.
4792 *
4793 * We can't just set the ref bit without bumping the
4794 * ref on the eb because free_extent_buffer might
4795 * see the ref bit and try to clear it. If this happens
4796 * free_extent_buffer might end up dropping our original
4797 * ref by mistake and freeing the page before we are able
4798 * to add one more ref.
4799 *
4800 * So bump the ref count first, then set the bit. If someone
4801 * beat us to it, drop the ref we added.
4802 */
4803 refs = atomic_read(&eb->refs);
4804 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4805 return;
4806
4807 spin_lock(&eb->refs_lock);
4808 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4809 atomic_inc(&eb->refs);
4810 spin_unlock(&eb->refs_lock);
4811 }
4812
mark_extent_buffer_accessed(struct extent_buffer * eb,struct page * accessed)4813 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4814 struct page *accessed)
4815 {
4816 unsigned long num_pages, i;
4817
4818 check_buffer_tree_ref(eb);
4819
4820 num_pages = num_extent_pages(eb->start, eb->len);
4821 for (i = 0; i < num_pages; i++) {
4822 struct page *p = eb->pages[i];
4823
4824 if (p != accessed)
4825 mark_page_accessed(p);
4826 }
4827 }
4828
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4829 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4830 u64 start)
4831 {
4832 struct extent_buffer *eb;
4833
4834 rcu_read_lock();
4835 eb = radix_tree_lookup(&fs_info->buffer_radix,
4836 start >> PAGE_SHIFT);
4837 if (eb && atomic_inc_not_zero(&eb->refs)) {
4838 rcu_read_unlock();
4839 /*
4840 * Lock our eb's refs_lock to avoid races with
4841 * free_extent_buffer. When we get our eb it might be flagged
4842 * with EXTENT_BUFFER_STALE and another task running
4843 * free_extent_buffer might have seen that flag set,
4844 * eb->refs == 2, that the buffer isn't under IO (dirty and
4845 * writeback flags not set) and it's still in the tree (flag
4846 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4847 * of decrementing the extent buffer's reference count twice.
4848 * So here we could race and increment the eb's reference count,
4849 * clear its stale flag, mark it as dirty and drop our reference
4850 * before the other task finishes executing free_extent_buffer,
4851 * which would later result in an attempt to free an extent
4852 * buffer that is dirty.
4853 */
4854 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4855 spin_lock(&eb->refs_lock);
4856 spin_unlock(&eb->refs_lock);
4857 }
4858 mark_extent_buffer_accessed(eb, NULL);
4859 return eb;
4860 }
4861 rcu_read_unlock();
4862
4863 return NULL;
4864 }
4865
4866 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u32 nodesize)4867 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4868 u64 start, u32 nodesize)
4869 {
4870 struct extent_buffer *eb, *exists = NULL;
4871 int ret;
4872
4873 eb = find_extent_buffer(fs_info, start);
4874 if (eb)
4875 return eb;
4876 eb = alloc_dummy_extent_buffer(fs_info, start, nodesize);
4877 if (!eb)
4878 return NULL;
4879 eb->fs_info = fs_info;
4880 again:
4881 ret = radix_tree_preload(GFP_NOFS);
4882 if (ret)
4883 goto free_eb;
4884 spin_lock(&fs_info->buffer_lock);
4885 ret = radix_tree_insert(&fs_info->buffer_radix,
4886 start >> PAGE_SHIFT, eb);
4887 spin_unlock(&fs_info->buffer_lock);
4888 radix_tree_preload_end();
4889 if (ret == -EEXIST) {
4890 exists = find_extent_buffer(fs_info, start);
4891 if (exists)
4892 goto free_eb;
4893 else
4894 goto again;
4895 }
4896 check_buffer_tree_ref(eb);
4897 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4898
4899 /*
4900 * We will free dummy extent buffer's if they come into
4901 * free_extent_buffer with a ref count of 2, but if we are using this we
4902 * want the buffers to stay in memory until we're done with them, so
4903 * bump the ref count again.
4904 */
4905 atomic_inc(&eb->refs);
4906 return eb;
4907 free_eb:
4908 btrfs_release_extent_buffer(eb);
4909 return exists;
4910 }
4911 #endif
4912
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)4913 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4914 u64 start)
4915 {
4916 unsigned long len = fs_info->tree_root->nodesize;
4917 unsigned long num_pages = num_extent_pages(start, len);
4918 unsigned long i;
4919 unsigned long index = start >> PAGE_SHIFT;
4920 struct extent_buffer *eb;
4921 struct extent_buffer *exists = NULL;
4922 struct page *p;
4923 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4924 int uptodate = 1;
4925 int ret;
4926
4927 if (!IS_ALIGNED(start, fs_info->tree_root->sectorsize)) {
4928 btrfs_err(fs_info, "bad tree block start %llu", start);
4929 return ERR_PTR(-EINVAL);
4930 }
4931
4932 eb = find_extent_buffer(fs_info, start);
4933 if (eb)
4934 return eb;
4935
4936 eb = __alloc_extent_buffer(fs_info, start, len);
4937 if (!eb)
4938 return ERR_PTR(-ENOMEM);
4939
4940 for (i = 0; i < num_pages; i++, index++) {
4941 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4942 if (!p) {
4943 exists = ERR_PTR(-ENOMEM);
4944 goto free_eb;
4945 }
4946
4947 spin_lock(&mapping->private_lock);
4948 if (PagePrivate(p)) {
4949 /*
4950 * We could have already allocated an eb for this page
4951 * and attached one so lets see if we can get a ref on
4952 * the existing eb, and if we can we know it's good and
4953 * we can just return that one, else we know we can just
4954 * overwrite page->private.
4955 */
4956 exists = (struct extent_buffer *)p->private;
4957 if (atomic_inc_not_zero(&exists->refs)) {
4958 spin_unlock(&mapping->private_lock);
4959 unlock_page(p);
4960 put_page(p);
4961 mark_extent_buffer_accessed(exists, p);
4962 goto free_eb;
4963 }
4964 exists = NULL;
4965
4966 /*
4967 * Do this so attach doesn't complain and we need to
4968 * drop the ref the old guy had.
4969 */
4970 ClearPagePrivate(p);
4971 WARN_ON(PageDirty(p));
4972 put_page(p);
4973 }
4974 attach_extent_buffer_page(eb, p);
4975 spin_unlock(&mapping->private_lock);
4976 WARN_ON(PageDirty(p));
4977 eb->pages[i] = p;
4978 if (!PageUptodate(p))
4979 uptodate = 0;
4980
4981 /*
4982 * see below about how we avoid a nasty race with release page
4983 * and why we unlock later
4984 */
4985 }
4986 if (uptodate)
4987 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4988 again:
4989 ret = radix_tree_preload(GFP_NOFS);
4990 if (ret) {
4991 exists = ERR_PTR(ret);
4992 goto free_eb;
4993 }
4994
4995 spin_lock(&fs_info->buffer_lock);
4996 ret = radix_tree_insert(&fs_info->buffer_radix,
4997 start >> PAGE_SHIFT, eb);
4998 spin_unlock(&fs_info->buffer_lock);
4999 radix_tree_preload_end();
5000 if (ret == -EEXIST) {
5001 exists = find_extent_buffer(fs_info, start);
5002 if (exists)
5003 goto free_eb;
5004 else
5005 goto again;
5006 }
5007 /* add one reference for the tree */
5008 check_buffer_tree_ref(eb);
5009 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5010
5011 /*
5012 * there is a race where release page may have
5013 * tried to find this extent buffer in the radix
5014 * but failed. It will tell the VM it is safe to
5015 * reclaim the, and it will clear the page private bit.
5016 * We must make sure to set the page private bit properly
5017 * after the extent buffer is in the radix tree so
5018 * it doesn't get lost
5019 */
5020 SetPageChecked(eb->pages[0]);
5021 for (i = 1; i < num_pages; i++) {
5022 p = eb->pages[i];
5023 ClearPageChecked(p);
5024 unlock_page(p);
5025 }
5026 unlock_page(eb->pages[0]);
5027 return eb;
5028
5029 free_eb:
5030 WARN_ON(!atomic_dec_and_test(&eb->refs));
5031 for (i = 0; i < num_pages; i++) {
5032 if (eb->pages[i])
5033 unlock_page(eb->pages[i]);
5034 }
5035
5036 btrfs_release_extent_buffer(eb);
5037 return exists;
5038 }
5039
btrfs_release_extent_buffer_rcu(struct rcu_head * head)5040 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5041 {
5042 struct extent_buffer *eb =
5043 container_of(head, struct extent_buffer, rcu_head);
5044
5045 __free_extent_buffer(eb);
5046 }
5047
5048 /* Expects to have eb->eb_lock already held */
release_extent_buffer(struct extent_buffer * eb)5049 static int release_extent_buffer(struct extent_buffer *eb)
5050 {
5051 WARN_ON(atomic_read(&eb->refs) == 0);
5052 if (atomic_dec_and_test(&eb->refs)) {
5053 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5054 struct btrfs_fs_info *fs_info = eb->fs_info;
5055
5056 spin_unlock(&eb->refs_lock);
5057
5058 spin_lock(&fs_info->buffer_lock);
5059 radix_tree_delete(&fs_info->buffer_radix,
5060 eb->start >> PAGE_SHIFT);
5061 spin_unlock(&fs_info->buffer_lock);
5062 } else {
5063 spin_unlock(&eb->refs_lock);
5064 }
5065
5066 /* Should be safe to release our pages at this point */
5067 btrfs_release_extent_buffer_page(eb);
5068 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5069 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5070 __free_extent_buffer(eb);
5071 return 1;
5072 }
5073 #endif
5074 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5075 return 1;
5076 }
5077 spin_unlock(&eb->refs_lock);
5078
5079 return 0;
5080 }
5081
free_extent_buffer(struct extent_buffer * eb)5082 void free_extent_buffer(struct extent_buffer *eb)
5083 {
5084 int refs;
5085 int old;
5086 if (!eb)
5087 return;
5088
5089 while (1) {
5090 refs = atomic_read(&eb->refs);
5091 if (refs <= 3)
5092 break;
5093 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5094 if (old == refs)
5095 return;
5096 }
5097
5098 spin_lock(&eb->refs_lock);
5099 if (atomic_read(&eb->refs) == 2 &&
5100 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5101 atomic_dec(&eb->refs);
5102
5103 if (atomic_read(&eb->refs) == 2 &&
5104 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5105 !extent_buffer_under_io(eb) &&
5106 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5107 atomic_dec(&eb->refs);
5108
5109 /*
5110 * I know this is terrible, but it's temporary until we stop tracking
5111 * the uptodate bits and such for the extent buffers.
5112 */
5113 release_extent_buffer(eb);
5114 }
5115
free_extent_buffer_stale(struct extent_buffer * eb)5116 void free_extent_buffer_stale(struct extent_buffer *eb)
5117 {
5118 if (!eb)
5119 return;
5120
5121 spin_lock(&eb->refs_lock);
5122 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5123
5124 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5125 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5126 atomic_dec(&eb->refs);
5127 release_extent_buffer(eb);
5128 }
5129
clear_extent_buffer_dirty(struct extent_buffer * eb)5130 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5131 {
5132 unsigned long i;
5133 unsigned long num_pages;
5134 struct page *page;
5135
5136 num_pages = num_extent_pages(eb->start, eb->len);
5137
5138 for (i = 0; i < num_pages; i++) {
5139 page = eb->pages[i];
5140 if (!PageDirty(page))
5141 continue;
5142
5143 lock_page(page);
5144 WARN_ON(!PagePrivate(page));
5145
5146 clear_page_dirty_for_io(page);
5147 spin_lock_irq(&page->mapping->tree_lock);
5148 if (!PageDirty(page)) {
5149 radix_tree_tag_clear(&page->mapping->page_tree,
5150 page_index(page),
5151 PAGECACHE_TAG_DIRTY);
5152 }
5153 spin_unlock_irq(&page->mapping->tree_lock);
5154 ClearPageError(page);
5155 unlock_page(page);
5156 }
5157 WARN_ON(atomic_read(&eb->refs) == 0);
5158 }
5159
set_extent_buffer_dirty(struct extent_buffer * eb)5160 int set_extent_buffer_dirty(struct extent_buffer *eb)
5161 {
5162 unsigned long i;
5163 unsigned long num_pages;
5164 int was_dirty = 0;
5165
5166 check_buffer_tree_ref(eb);
5167
5168 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5169
5170 num_pages = num_extent_pages(eb->start, eb->len);
5171 WARN_ON(atomic_read(&eb->refs) == 0);
5172 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5173
5174 for (i = 0; i < num_pages; i++)
5175 set_page_dirty(eb->pages[i]);
5176 return was_dirty;
5177 }
5178
clear_extent_buffer_uptodate(struct extent_buffer * eb)5179 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5180 {
5181 unsigned long i;
5182 struct page *page;
5183 unsigned long num_pages;
5184
5185 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5186 num_pages = num_extent_pages(eb->start, eb->len);
5187 for (i = 0; i < num_pages; i++) {
5188 page = eb->pages[i];
5189 if (page)
5190 ClearPageUptodate(page);
5191 }
5192 }
5193
set_extent_buffer_uptodate(struct extent_buffer * eb)5194 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5195 {
5196 unsigned long i;
5197 struct page *page;
5198 unsigned long num_pages;
5199
5200 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5201 num_pages = num_extent_pages(eb->start, eb->len);
5202 for (i = 0; i < num_pages; i++) {
5203 page = eb->pages[i];
5204 SetPageUptodate(page);
5205 }
5206 }
5207
extent_buffer_uptodate(struct extent_buffer * eb)5208 int extent_buffer_uptodate(struct extent_buffer *eb)
5209 {
5210 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5211 }
5212
read_extent_buffer_pages(struct extent_io_tree * tree,struct extent_buffer * eb,int wait,get_extent_t * get_extent,int mirror_num)5213 int read_extent_buffer_pages(struct extent_io_tree *tree,
5214 struct extent_buffer *eb, int wait,
5215 get_extent_t *get_extent, int mirror_num)
5216 {
5217 unsigned long i;
5218 struct page *page;
5219 int err;
5220 int ret = 0;
5221 int locked_pages = 0;
5222 int all_uptodate = 1;
5223 unsigned long num_pages;
5224 unsigned long num_reads = 0;
5225 struct bio *bio = NULL;
5226 unsigned long bio_flags = 0;
5227
5228 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5229 return 0;
5230
5231 num_pages = num_extent_pages(eb->start, eb->len);
5232 for (i = 0; i < num_pages; i++) {
5233 page = eb->pages[i];
5234 if (wait == WAIT_NONE) {
5235 if (!trylock_page(page))
5236 goto unlock_exit;
5237 } else {
5238 lock_page(page);
5239 }
5240 locked_pages++;
5241 }
5242 /*
5243 * We need to firstly lock all pages to make sure that
5244 * the uptodate bit of our pages won't be affected by
5245 * clear_extent_buffer_uptodate().
5246 */
5247 for (i = 0; i < num_pages; i++) {
5248 page = eb->pages[i];
5249 if (!PageUptodate(page)) {
5250 num_reads++;
5251 all_uptodate = 0;
5252 }
5253 }
5254
5255 if (all_uptodate) {
5256 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5257 goto unlock_exit;
5258 }
5259
5260 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5261 eb->read_mirror = 0;
5262 atomic_set(&eb->io_pages, num_reads);
5263 for (i = 0; i < num_pages; i++) {
5264 page = eb->pages[i];
5265
5266 if (!PageUptodate(page)) {
5267 if (ret) {
5268 atomic_dec(&eb->io_pages);
5269 unlock_page(page);
5270 continue;
5271 }
5272
5273 ClearPageError(page);
5274 err = __extent_read_full_page(tree, page,
5275 get_extent, &bio,
5276 mirror_num, &bio_flags,
5277 REQ_META);
5278 if (err) {
5279 ret = err;
5280 /*
5281 * We use &bio in above __extent_read_full_page,
5282 * so we ensure that if it returns error, the
5283 * current page fails to add itself to bio and
5284 * it's been unlocked.
5285 *
5286 * We must dec io_pages by ourselves.
5287 */
5288 atomic_dec(&eb->io_pages);
5289 }
5290 } else {
5291 unlock_page(page);
5292 }
5293 }
5294
5295 if (bio) {
5296 err = submit_one_bio(bio, mirror_num, bio_flags);
5297 if (err)
5298 return err;
5299 }
5300
5301 if (ret || wait != WAIT_COMPLETE)
5302 return ret;
5303
5304 for (i = 0; i < num_pages; i++) {
5305 page = eb->pages[i];
5306 wait_on_page_locked(page);
5307 if (!PageUptodate(page))
5308 ret = -EIO;
5309 }
5310
5311 return ret;
5312
5313 unlock_exit:
5314 while (locked_pages > 0) {
5315 locked_pages--;
5316 page = eb->pages[locked_pages];
5317 unlock_page(page);
5318 }
5319 return ret;
5320 }
5321
read_extent_buffer(struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)5322 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5323 unsigned long start,
5324 unsigned long len)
5325 {
5326 size_t cur;
5327 size_t offset;
5328 struct page *page;
5329 char *kaddr;
5330 char *dst = (char *)dstv;
5331 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5332 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5333
5334 WARN_ON(start > eb->len);
5335 WARN_ON(start + len > eb->start + eb->len);
5336
5337 offset = (start_offset + start) & (PAGE_SIZE - 1);
5338
5339 while (len > 0) {
5340 page = eb->pages[i];
5341
5342 cur = min(len, (PAGE_SIZE - offset));
5343 kaddr = page_address(page);
5344 memcpy(dst, kaddr + offset, cur);
5345
5346 dst += cur;
5347 len -= cur;
5348 offset = 0;
5349 i++;
5350 }
5351 }
5352
read_extent_buffer_to_user(struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)5353 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5354 unsigned long start,
5355 unsigned long len)
5356 {
5357 size_t cur;
5358 size_t offset;
5359 struct page *page;
5360 char *kaddr;
5361 char __user *dst = (char __user *)dstv;
5362 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5363 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5364 int ret = 0;
5365
5366 WARN_ON(start > eb->len);
5367 WARN_ON(start + len > eb->start + eb->len);
5368
5369 offset = (start_offset + start) & (PAGE_SIZE - 1);
5370
5371 while (len > 0) {
5372 page = eb->pages[i];
5373
5374 cur = min(len, (PAGE_SIZE - offset));
5375 kaddr = page_address(page);
5376 if (copy_to_user(dst, kaddr + offset, cur)) {
5377 ret = -EFAULT;
5378 break;
5379 }
5380
5381 dst += cur;
5382 len -= cur;
5383 offset = 0;
5384 i++;
5385 }
5386
5387 return ret;
5388 }
5389
5390 /*
5391 * return 0 if the item is found within a page.
5392 * return 1 if the item spans two pages.
5393 * return -EINVAL otherwise.
5394 */
map_private_extent_buffer(struct extent_buffer * eb,unsigned long start,unsigned long min_len,char ** map,unsigned long * map_start,unsigned long * map_len)5395 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5396 unsigned long min_len, char **map,
5397 unsigned long *map_start,
5398 unsigned long *map_len)
5399 {
5400 size_t offset = start & (PAGE_SIZE - 1);
5401 char *kaddr;
5402 struct page *p;
5403 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5404 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5405 unsigned long end_i = (start_offset + start + min_len - 1) >>
5406 PAGE_SHIFT;
5407
5408 if (i != end_i)
5409 return 1;
5410
5411 if (i == 0) {
5412 offset = start_offset;
5413 *map_start = 0;
5414 } else {
5415 offset = 0;
5416 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5417 }
5418
5419 if (start + min_len > eb->len) {
5420 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5421 eb->start, eb->len, start, min_len);
5422 return -EINVAL;
5423 }
5424
5425 p = eb->pages[i];
5426 kaddr = page_address(p);
5427 *map = kaddr + offset;
5428 *map_len = PAGE_SIZE - offset;
5429 return 0;
5430 }
5431
memcmp_extent_buffer(struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)5432 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5433 unsigned long start,
5434 unsigned long len)
5435 {
5436 size_t cur;
5437 size_t offset;
5438 struct page *page;
5439 char *kaddr;
5440 char *ptr = (char *)ptrv;
5441 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5442 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5443 int ret = 0;
5444
5445 WARN_ON(start > eb->len);
5446 WARN_ON(start + len > eb->start + eb->len);
5447
5448 offset = (start_offset + start) & (PAGE_SIZE - 1);
5449
5450 while (len > 0) {
5451 page = eb->pages[i];
5452
5453 cur = min(len, (PAGE_SIZE - offset));
5454
5455 kaddr = page_address(page);
5456 ret = memcmp(ptr, kaddr + offset, cur);
5457 if (ret)
5458 break;
5459
5460 ptr += cur;
5461 len -= cur;
5462 offset = 0;
5463 i++;
5464 }
5465 return ret;
5466 }
5467
write_extent_buffer(struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)5468 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5469 unsigned long start, unsigned long len)
5470 {
5471 size_t cur;
5472 size_t offset;
5473 struct page *page;
5474 char *kaddr;
5475 char *src = (char *)srcv;
5476 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5477 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5478
5479 WARN_ON(start > eb->len);
5480 WARN_ON(start + len > eb->start + eb->len);
5481
5482 offset = (start_offset + start) & (PAGE_SIZE - 1);
5483
5484 while (len > 0) {
5485 page = eb->pages[i];
5486 WARN_ON(!PageUptodate(page));
5487
5488 cur = min(len, PAGE_SIZE - offset);
5489 kaddr = page_address(page);
5490 memcpy(kaddr + offset, src, cur);
5491
5492 src += cur;
5493 len -= cur;
5494 offset = 0;
5495 i++;
5496 }
5497 }
5498
memset_extent_buffer(struct extent_buffer * eb,char c,unsigned long start,unsigned long len)5499 void memset_extent_buffer(struct extent_buffer *eb, char c,
5500 unsigned long start, unsigned long len)
5501 {
5502 size_t cur;
5503 size_t offset;
5504 struct page *page;
5505 char *kaddr;
5506 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5507 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5508
5509 WARN_ON(start > eb->len);
5510 WARN_ON(start + len > eb->start + eb->len);
5511
5512 offset = (start_offset + start) & (PAGE_SIZE - 1);
5513
5514 while (len > 0) {
5515 page = eb->pages[i];
5516 WARN_ON(!PageUptodate(page));
5517
5518 cur = min(len, PAGE_SIZE - offset);
5519 kaddr = page_address(page);
5520 memset(kaddr + offset, c, cur);
5521
5522 len -= cur;
5523 offset = 0;
5524 i++;
5525 }
5526 }
5527
copy_extent_buffer(struct extent_buffer * dst,struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5528 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5529 unsigned long dst_offset, unsigned long src_offset,
5530 unsigned long len)
5531 {
5532 u64 dst_len = dst->len;
5533 size_t cur;
5534 size_t offset;
5535 struct page *page;
5536 char *kaddr;
5537 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5538 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5539
5540 WARN_ON(src->len != dst_len);
5541
5542 offset = (start_offset + dst_offset) &
5543 (PAGE_SIZE - 1);
5544
5545 while (len > 0) {
5546 page = dst->pages[i];
5547 WARN_ON(!PageUptodate(page));
5548
5549 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5550
5551 kaddr = page_address(page);
5552 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5553
5554 src_offset += cur;
5555 len -= cur;
5556 offset = 0;
5557 i++;
5558 }
5559 }
5560
le_bitmap_set(u8 * map,unsigned int start,int len)5561 void le_bitmap_set(u8 *map, unsigned int start, int len)
5562 {
5563 u8 *p = map + BIT_BYTE(start);
5564 const unsigned int size = start + len;
5565 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5566 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5567
5568 while (len - bits_to_set >= 0) {
5569 *p |= mask_to_set;
5570 len -= bits_to_set;
5571 bits_to_set = BITS_PER_BYTE;
5572 mask_to_set = ~0;
5573 p++;
5574 }
5575 if (len) {
5576 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5577 *p |= mask_to_set;
5578 }
5579 }
5580
le_bitmap_clear(u8 * map,unsigned int start,int len)5581 void le_bitmap_clear(u8 *map, unsigned int start, int len)
5582 {
5583 u8 *p = map + BIT_BYTE(start);
5584 const unsigned int size = start + len;
5585 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5586 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5587
5588 while (len - bits_to_clear >= 0) {
5589 *p &= ~mask_to_clear;
5590 len -= bits_to_clear;
5591 bits_to_clear = BITS_PER_BYTE;
5592 mask_to_clear = ~0;
5593 p++;
5594 }
5595 if (len) {
5596 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5597 *p &= ~mask_to_clear;
5598 }
5599 }
5600
5601 /*
5602 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5603 * given bit number
5604 * @eb: the extent buffer
5605 * @start: offset of the bitmap item in the extent buffer
5606 * @nr: bit number
5607 * @page_index: return index of the page in the extent buffer that contains the
5608 * given bit number
5609 * @page_offset: return offset into the page given by page_index
5610 *
5611 * This helper hides the ugliness of finding the byte in an extent buffer which
5612 * contains a given bit.
5613 */
eb_bitmap_offset(struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * page_index,size_t * page_offset)5614 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5615 unsigned long start, unsigned long nr,
5616 unsigned long *page_index,
5617 size_t *page_offset)
5618 {
5619 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5620 size_t byte_offset = BIT_BYTE(nr);
5621 size_t offset;
5622
5623 /*
5624 * The byte we want is the offset of the extent buffer + the offset of
5625 * the bitmap item in the extent buffer + the offset of the byte in the
5626 * bitmap item.
5627 */
5628 offset = start_offset + start + byte_offset;
5629
5630 *page_index = offset >> PAGE_SHIFT;
5631 *page_offset = offset & (PAGE_SIZE - 1);
5632 }
5633
5634 /**
5635 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5636 * @eb: the extent buffer
5637 * @start: offset of the bitmap item in the extent buffer
5638 * @nr: bit number to test
5639 */
extent_buffer_test_bit(struct extent_buffer * eb,unsigned long start,unsigned long nr)5640 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5641 unsigned long nr)
5642 {
5643 u8 *kaddr;
5644 struct page *page;
5645 unsigned long i;
5646 size_t offset;
5647
5648 eb_bitmap_offset(eb, start, nr, &i, &offset);
5649 page = eb->pages[i];
5650 WARN_ON(!PageUptodate(page));
5651 kaddr = page_address(page);
5652 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5653 }
5654
5655 /**
5656 * extent_buffer_bitmap_set - set an area of a bitmap
5657 * @eb: the extent buffer
5658 * @start: offset of the bitmap item in the extent buffer
5659 * @pos: bit number of the first bit
5660 * @len: number of bits to set
5661 */
extent_buffer_bitmap_set(struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)5662 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5663 unsigned long pos, unsigned long len)
5664 {
5665 u8 *kaddr;
5666 struct page *page;
5667 unsigned long i;
5668 size_t offset;
5669 const unsigned int size = pos + len;
5670 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5671 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5672
5673 eb_bitmap_offset(eb, start, pos, &i, &offset);
5674 page = eb->pages[i];
5675 WARN_ON(!PageUptodate(page));
5676 kaddr = page_address(page);
5677
5678 while (len >= bits_to_set) {
5679 kaddr[offset] |= mask_to_set;
5680 len -= bits_to_set;
5681 bits_to_set = BITS_PER_BYTE;
5682 mask_to_set = ~0;
5683 if (++offset >= PAGE_SIZE && len > 0) {
5684 offset = 0;
5685 page = eb->pages[++i];
5686 WARN_ON(!PageUptodate(page));
5687 kaddr = page_address(page);
5688 }
5689 }
5690 if (len) {
5691 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5692 kaddr[offset] |= mask_to_set;
5693 }
5694 }
5695
5696
5697 /**
5698 * extent_buffer_bitmap_clear - clear an area of a bitmap
5699 * @eb: the extent buffer
5700 * @start: offset of the bitmap item in the extent buffer
5701 * @pos: bit number of the first bit
5702 * @len: number of bits to clear
5703 */
extent_buffer_bitmap_clear(struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)5704 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5705 unsigned long pos, unsigned long len)
5706 {
5707 u8 *kaddr;
5708 struct page *page;
5709 unsigned long i;
5710 size_t offset;
5711 const unsigned int size = pos + len;
5712 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5713 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5714
5715 eb_bitmap_offset(eb, start, pos, &i, &offset);
5716 page = eb->pages[i];
5717 WARN_ON(!PageUptodate(page));
5718 kaddr = page_address(page);
5719
5720 while (len >= bits_to_clear) {
5721 kaddr[offset] &= ~mask_to_clear;
5722 len -= bits_to_clear;
5723 bits_to_clear = BITS_PER_BYTE;
5724 mask_to_clear = ~0;
5725 if (++offset >= PAGE_SIZE && len > 0) {
5726 offset = 0;
5727 page = eb->pages[++i];
5728 WARN_ON(!PageUptodate(page));
5729 kaddr = page_address(page);
5730 }
5731 }
5732 if (len) {
5733 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5734 kaddr[offset] &= ~mask_to_clear;
5735 }
5736 }
5737
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)5738 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5739 {
5740 unsigned long distance = (src > dst) ? src - dst : dst - src;
5741 return distance < len;
5742 }
5743
copy_pages(struct page * dst_page,struct page * src_page,unsigned long dst_off,unsigned long src_off,unsigned long len)5744 static void copy_pages(struct page *dst_page, struct page *src_page,
5745 unsigned long dst_off, unsigned long src_off,
5746 unsigned long len)
5747 {
5748 char *dst_kaddr = page_address(dst_page);
5749 char *src_kaddr;
5750 int must_memmove = 0;
5751
5752 if (dst_page != src_page) {
5753 src_kaddr = page_address(src_page);
5754 } else {
5755 src_kaddr = dst_kaddr;
5756 if (areas_overlap(src_off, dst_off, len))
5757 must_memmove = 1;
5758 }
5759
5760 if (must_memmove)
5761 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5762 else
5763 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5764 }
5765
memcpy_extent_buffer(struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5766 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5767 unsigned long src_offset, unsigned long len)
5768 {
5769 size_t cur;
5770 size_t dst_off_in_page;
5771 size_t src_off_in_page;
5772 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5773 unsigned long dst_i;
5774 unsigned long src_i;
5775
5776 if (src_offset + len > dst->len) {
5777 btrfs_err(dst->fs_info,
5778 "memmove bogus src_offset %lu move len %lu dst len %lu",
5779 src_offset, len, dst->len);
5780 BUG_ON(1);
5781 }
5782 if (dst_offset + len > dst->len) {
5783 btrfs_err(dst->fs_info,
5784 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5785 dst_offset, len, dst->len);
5786 BUG_ON(1);
5787 }
5788
5789 while (len > 0) {
5790 dst_off_in_page = (start_offset + dst_offset) &
5791 (PAGE_SIZE - 1);
5792 src_off_in_page = (start_offset + src_offset) &
5793 (PAGE_SIZE - 1);
5794
5795 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5796 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5797
5798 cur = min(len, (unsigned long)(PAGE_SIZE -
5799 src_off_in_page));
5800 cur = min_t(unsigned long, cur,
5801 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5802
5803 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5804 dst_off_in_page, src_off_in_page, cur);
5805
5806 src_offset += cur;
5807 dst_offset += cur;
5808 len -= cur;
5809 }
5810 }
5811
memmove_extent_buffer(struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)5812 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5813 unsigned long src_offset, unsigned long len)
5814 {
5815 size_t cur;
5816 size_t dst_off_in_page;
5817 size_t src_off_in_page;
5818 unsigned long dst_end = dst_offset + len - 1;
5819 unsigned long src_end = src_offset + len - 1;
5820 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5821 unsigned long dst_i;
5822 unsigned long src_i;
5823
5824 if (src_offset + len > dst->len) {
5825 btrfs_err(dst->fs_info,
5826 "memmove bogus src_offset %lu move len %lu len %lu",
5827 src_offset, len, dst->len);
5828 BUG_ON(1);
5829 }
5830 if (dst_offset + len > dst->len) {
5831 btrfs_err(dst->fs_info,
5832 "memmove bogus dst_offset %lu move len %lu len %lu",
5833 dst_offset, len, dst->len);
5834 BUG_ON(1);
5835 }
5836 if (dst_offset < src_offset) {
5837 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5838 return;
5839 }
5840 while (len > 0) {
5841 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5842 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5843
5844 dst_off_in_page = (start_offset + dst_end) &
5845 (PAGE_SIZE - 1);
5846 src_off_in_page = (start_offset + src_end) &
5847 (PAGE_SIZE - 1);
5848
5849 cur = min_t(unsigned long, len, src_off_in_page + 1);
5850 cur = min(cur, dst_off_in_page + 1);
5851 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5852 dst_off_in_page - cur + 1,
5853 src_off_in_page - cur + 1, cur);
5854
5855 dst_end -= cur;
5856 src_end -= cur;
5857 len -= cur;
5858 }
5859 }
5860
try_release_extent_buffer(struct page * page)5861 int try_release_extent_buffer(struct page *page)
5862 {
5863 struct extent_buffer *eb;
5864
5865 /*
5866 * We need to make sure nobody is attaching this page to an eb right
5867 * now.
5868 */
5869 spin_lock(&page->mapping->private_lock);
5870 if (!PagePrivate(page)) {
5871 spin_unlock(&page->mapping->private_lock);
5872 return 1;
5873 }
5874
5875 eb = (struct extent_buffer *)page->private;
5876 BUG_ON(!eb);
5877
5878 /*
5879 * This is a little awful but should be ok, we need to make sure that
5880 * the eb doesn't disappear out from under us while we're looking at
5881 * this page.
5882 */
5883 spin_lock(&eb->refs_lock);
5884 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5885 spin_unlock(&eb->refs_lock);
5886 spin_unlock(&page->mapping->private_lock);
5887 return 0;
5888 }
5889 spin_unlock(&page->mapping->private_lock);
5890
5891 /*
5892 * If tree ref isn't set then we know the ref on this eb is a real ref,
5893 * so just return, this page will likely be freed soon anyway.
5894 */
5895 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5896 spin_unlock(&eb->refs_lock);
5897 return 0;
5898 }
5899
5900 return release_extent_buffer(eb);
5901 }
5902