• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7  * Copyright (C) 1995, 1996 Paul M. Antoine
8  * Copyright (C) 1998 Ulf Carlsson
9  * Copyright (C) 1999 Silicon Graphics, Inc.
10  * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11  * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
12  * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
13  * Copyright (C) 2014, Imagination Technologies Ltd.
14  */
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/compiler.h>
18 #include <linux/context_tracking.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/kexec.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/extable.h>
25 #include <linux/mm.h>
26 #include <linux/sched.h>
27 #include <linux/smp.h>
28 #include <linux/spinlock.h>
29 #include <linux/kallsyms.h>
30 #include <linux/bootmem.h>
31 #include <linux/interrupt.h>
32 #include <linux/ptrace.h>
33 #include <linux/kgdb.h>
34 #include <linux/kdebug.h>
35 #include <linux/kprobes.h>
36 #include <linux/notifier.h>
37 #include <linux/kdb.h>
38 #include <linux/irq.h>
39 #include <linux/perf_event.h>
40 
41 #include <asm/addrspace.h>
42 #include <asm/bootinfo.h>
43 #include <asm/branch.h>
44 #include <asm/break.h>
45 #include <asm/cop2.h>
46 #include <asm/cpu.h>
47 #include <asm/cpu-type.h>
48 #include <asm/dsp.h>
49 #include <asm/fpu.h>
50 #include <asm/fpu_emulator.h>
51 #include <asm/idle.h>
52 #include <asm/mips-cm.h>
53 #include <asm/mips-r2-to-r6-emul.h>
54 #include <asm/mips-cm.h>
55 #include <asm/mipsregs.h>
56 #include <asm/mipsmtregs.h>
57 #include <asm/module.h>
58 #include <asm/msa.h>
59 #include <asm/pgtable.h>
60 #include <asm/ptrace.h>
61 #include <asm/sections.h>
62 #include <asm/siginfo.h>
63 #include <asm/tlbdebug.h>
64 #include <asm/traps.h>
65 #include <asm/uaccess.h>
66 #include <asm/watch.h>
67 #include <asm/mmu_context.h>
68 #include <asm/types.h>
69 #include <asm/stacktrace.h>
70 #include <asm/uasm.h>
71 
72 extern void check_wait(void);
73 extern asmlinkage void rollback_handle_int(void);
74 extern asmlinkage void handle_int(void);
75 extern u32 handle_tlbl[];
76 extern u32 handle_tlbs[];
77 extern u32 handle_tlbm[];
78 extern asmlinkage void handle_adel(void);
79 extern asmlinkage void handle_ades(void);
80 extern asmlinkage void handle_ibe(void);
81 extern asmlinkage void handle_dbe(void);
82 extern asmlinkage void handle_sys(void);
83 extern asmlinkage void handle_bp(void);
84 extern asmlinkage void handle_ri(void);
85 extern asmlinkage void handle_ri_rdhwr_tlbp(void);
86 extern asmlinkage void handle_ri_rdhwr(void);
87 extern asmlinkage void handle_cpu(void);
88 extern asmlinkage void handle_ov(void);
89 extern asmlinkage void handle_tr(void);
90 extern asmlinkage void handle_msa_fpe(void);
91 extern asmlinkage void handle_fpe(void);
92 extern asmlinkage void handle_ftlb(void);
93 extern asmlinkage void handle_msa(void);
94 extern asmlinkage void handle_mdmx(void);
95 extern asmlinkage void handle_watch(void);
96 extern asmlinkage void handle_mt(void);
97 extern asmlinkage void handle_dsp(void);
98 extern asmlinkage void handle_mcheck(void);
99 extern asmlinkage void handle_reserved(void);
100 extern void tlb_do_page_fault_0(void);
101 
102 void (*board_be_init)(void);
103 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
104 void (*board_nmi_handler_setup)(void);
105 void (*board_ejtag_handler_setup)(void);
106 void (*board_bind_eic_interrupt)(int irq, int regset);
107 void (*board_ebase_setup)(void);
108 void(*board_cache_error_setup)(void);
109 
show_raw_backtrace(unsigned long reg29)110 static void show_raw_backtrace(unsigned long reg29)
111 {
112 	unsigned long *sp = (unsigned long *)(reg29 & ~3);
113 	unsigned long addr;
114 
115 	printk("Call Trace:");
116 #ifdef CONFIG_KALLSYMS
117 	printk("\n");
118 #endif
119 	while (!kstack_end(sp)) {
120 		unsigned long __user *p =
121 			(unsigned long __user *)(unsigned long)sp++;
122 		if (__get_user(addr, p)) {
123 			printk(" (Bad stack address)");
124 			break;
125 		}
126 		if (__kernel_text_address(addr))
127 			print_ip_sym(addr);
128 	}
129 	printk("\n");
130 }
131 
132 #ifdef CONFIG_KALLSYMS
133 int raw_show_trace;
set_raw_show_trace(char * str)134 static int __init set_raw_show_trace(char *str)
135 {
136 	raw_show_trace = 1;
137 	return 1;
138 }
139 __setup("raw_show_trace", set_raw_show_trace);
140 #endif
141 
show_backtrace(struct task_struct * task,const struct pt_regs * regs)142 static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
143 {
144 	unsigned long sp = regs->regs[29];
145 	unsigned long ra = regs->regs[31];
146 	unsigned long pc = regs->cp0_epc;
147 
148 	if (!task)
149 		task = current;
150 
151 	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
152 		show_raw_backtrace(sp);
153 		return;
154 	}
155 	printk("Call Trace:\n");
156 	do {
157 		print_ip_sym(pc);
158 		pc = unwind_stack(task, &sp, pc, &ra);
159 	} while (pc);
160 	pr_cont("\n");
161 }
162 
163 /*
164  * This routine abuses get_user()/put_user() to reference pointers
165  * with at least a bit of error checking ...
166  */
show_stacktrace(struct task_struct * task,const struct pt_regs * regs)167 static void show_stacktrace(struct task_struct *task,
168 	const struct pt_regs *regs)
169 {
170 	const int field = 2 * sizeof(unsigned long);
171 	long stackdata;
172 	int i;
173 	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
174 
175 	printk("Stack :");
176 	i = 0;
177 	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
178 		if (i && ((i % (64 / field)) == 0)) {
179 			pr_cont("\n");
180 			printk("       ");
181 		}
182 		if (i > 39) {
183 			pr_cont(" ...");
184 			break;
185 		}
186 
187 		if (__get_user(stackdata, sp++)) {
188 			pr_cont(" (Bad stack address)");
189 			break;
190 		}
191 
192 		pr_cont(" %0*lx", field, stackdata);
193 		i++;
194 	}
195 	pr_cont("\n");
196 	show_backtrace(task, regs);
197 }
198 
show_stack(struct task_struct * task,unsigned long * sp)199 void show_stack(struct task_struct *task, unsigned long *sp)
200 {
201 	struct pt_regs regs;
202 	mm_segment_t old_fs = get_fs();
203 
204 	regs.cp0_status = KSU_KERNEL;
205 	if (sp) {
206 		regs.regs[29] = (unsigned long)sp;
207 		regs.regs[31] = 0;
208 		regs.cp0_epc = 0;
209 	} else {
210 		if (task && task != current) {
211 			regs.regs[29] = task->thread.reg29;
212 			regs.regs[31] = 0;
213 			regs.cp0_epc = task->thread.reg31;
214 #ifdef CONFIG_KGDB_KDB
215 		} else if (atomic_read(&kgdb_active) != -1 &&
216 			   kdb_current_regs) {
217 			memcpy(&regs, kdb_current_regs, sizeof(regs));
218 #endif /* CONFIG_KGDB_KDB */
219 		} else {
220 			prepare_frametrace(&regs);
221 		}
222 	}
223 	/*
224 	 * show_stack() deals exclusively with kernel mode, so be sure to access
225 	 * the stack in the kernel (not user) address space.
226 	 */
227 	set_fs(KERNEL_DS);
228 	show_stacktrace(task, &regs);
229 	set_fs(old_fs);
230 }
231 
show_code(unsigned int __user * pc)232 static void show_code(unsigned int __user *pc)
233 {
234 	long i;
235 	unsigned short __user *pc16 = NULL;
236 
237 	printk("Code:");
238 
239 	if ((unsigned long)pc & 1)
240 		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
241 	for(i = -3 ; i < 6 ; i++) {
242 		unsigned int insn;
243 		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
244 			pr_cont(" (Bad address in epc)\n");
245 			break;
246 		}
247 		pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
248 	}
249 	pr_cont("\n");
250 }
251 
__show_regs(const struct pt_regs * regs)252 static void __show_regs(const struct pt_regs *regs)
253 {
254 	const int field = 2 * sizeof(unsigned long);
255 	unsigned int cause = regs->cp0_cause;
256 	unsigned int exccode;
257 	int i;
258 
259 	show_regs_print_info(KERN_DEFAULT);
260 
261 	/*
262 	 * Saved main processor registers
263 	 */
264 	for (i = 0; i < 32; ) {
265 		if ((i % 4) == 0)
266 			printk("$%2d   :", i);
267 		if (i == 0)
268 			pr_cont(" %0*lx", field, 0UL);
269 		else if (i == 26 || i == 27)
270 			pr_cont(" %*s", field, "");
271 		else
272 			pr_cont(" %0*lx", field, regs->regs[i]);
273 
274 		i++;
275 		if ((i % 4) == 0)
276 			pr_cont("\n");
277 	}
278 
279 #ifdef CONFIG_CPU_HAS_SMARTMIPS
280 	printk("Acx    : %0*lx\n", field, regs->acx);
281 #endif
282 	printk("Hi    : %0*lx\n", field, regs->hi);
283 	printk("Lo    : %0*lx\n", field, regs->lo);
284 
285 	/*
286 	 * Saved cp0 registers
287 	 */
288 	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
289 	       (void *) regs->cp0_epc);
290 	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
291 	       (void *) regs->regs[31]);
292 
293 	printk("Status: %08x	", (uint32_t) regs->cp0_status);
294 
295 	if (cpu_has_3kex) {
296 		if (regs->cp0_status & ST0_KUO)
297 			pr_cont("KUo ");
298 		if (regs->cp0_status & ST0_IEO)
299 			pr_cont("IEo ");
300 		if (regs->cp0_status & ST0_KUP)
301 			pr_cont("KUp ");
302 		if (regs->cp0_status & ST0_IEP)
303 			pr_cont("IEp ");
304 		if (regs->cp0_status & ST0_KUC)
305 			pr_cont("KUc ");
306 		if (regs->cp0_status & ST0_IEC)
307 			pr_cont("IEc ");
308 	} else if (cpu_has_4kex) {
309 		if (regs->cp0_status & ST0_KX)
310 			pr_cont("KX ");
311 		if (regs->cp0_status & ST0_SX)
312 			pr_cont("SX ");
313 		if (regs->cp0_status & ST0_UX)
314 			pr_cont("UX ");
315 		switch (regs->cp0_status & ST0_KSU) {
316 		case KSU_USER:
317 			pr_cont("USER ");
318 			break;
319 		case KSU_SUPERVISOR:
320 			pr_cont("SUPERVISOR ");
321 			break;
322 		case KSU_KERNEL:
323 			pr_cont("KERNEL ");
324 			break;
325 		default:
326 			pr_cont("BAD_MODE ");
327 			break;
328 		}
329 		if (regs->cp0_status & ST0_ERL)
330 			pr_cont("ERL ");
331 		if (regs->cp0_status & ST0_EXL)
332 			pr_cont("EXL ");
333 		if (regs->cp0_status & ST0_IE)
334 			pr_cont("IE ");
335 	}
336 	pr_cont("\n");
337 
338 	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
339 	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
340 
341 	if (1 <= exccode && exccode <= 5)
342 		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
343 
344 	printk("PrId  : %08x (%s)\n", read_c0_prid(),
345 	       cpu_name_string());
346 }
347 
348 /*
349  * FIXME: really the generic show_regs should take a const pointer argument.
350  */
show_regs(struct pt_regs * regs)351 void show_regs(struct pt_regs *regs)
352 {
353 	__show_regs((struct pt_regs *)regs);
354 }
355 
show_registers(struct pt_regs * regs)356 void show_registers(struct pt_regs *regs)
357 {
358 	const int field = 2 * sizeof(unsigned long);
359 	mm_segment_t old_fs = get_fs();
360 
361 	__show_regs(regs);
362 	print_modules();
363 	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
364 	       current->comm, current->pid, current_thread_info(), current,
365 	      field, current_thread_info()->tp_value);
366 	if (cpu_has_userlocal) {
367 		unsigned long tls;
368 
369 		tls = read_c0_userlocal();
370 		if (tls != current_thread_info()->tp_value)
371 			printk("*HwTLS: %0*lx\n", field, tls);
372 	}
373 
374 	if (!user_mode(regs))
375 		/* Necessary for getting the correct stack content */
376 		set_fs(KERNEL_DS);
377 	show_stacktrace(current, regs);
378 	show_code((unsigned int __user *) regs->cp0_epc);
379 	printk("\n");
380 	set_fs(old_fs);
381 }
382 
383 static DEFINE_RAW_SPINLOCK(die_lock);
384 
die(const char * str,struct pt_regs * regs)385 void __noreturn die(const char *str, struct pt_regs *regs)
386 {
387 	static int die_counter;
388 	int sig = SIGSEGV;
389 
390 	oops_enter();
391 
392 	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
393 		       SIGSEGV) == NOTIFY_STOP)
394 		sig = 0;
395 
396 	console_verbose();
397 	raw_spin_lock_irq(&die_lock);
398 	bust_spinlocks(1);
399 
400 	printk("%s[#%d]:\n", str, ++die_counter);
401 	show_registers(regs);
402 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
403 	raw_spin_unlock_irq(&die_lock);
404 
405 	oops_exit();
406 
407 	if (in_interrupt())
408 		panic("Fatal exception in interrupt");
409 
410 	if (panic_on_oops)
411 		panic("Fatal exception");
412 
413 	if (regs && kexec_should_crash(current))
414 		crash_kexec(regs);
415 
416 	do_exit(sig);
417 }
418 
419 extern struct exception_table_entry __start___dbe_table[];
420 extern struct exception_table_entry __stop___dbe_table[];
421 
422 __asm__(
423 "	.section	__dbe_table, \"a\"\n"
424 "	.previous			\n");
425 
426 /* Given an address, look for it in the exception tables. */
search_dbe_tables(unsigned long addr)427 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
428 {
429 	const struct exception_table_entry *e;
430 
431 	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
432 	if (!e)
433 		e = search_module_dbetables(addr);
434 	return e;
435 }
436 
do_be(struct pt_regs * regs)437 asmlinkage void do_be(struct pt_regs *regs)
438 {
439 	const int field = 2 * sizeof(unsigned long);
440 	const struct exception_table_entry *fixup = NULL;
441 	int data = regs->cp0_cause & 4;
442 	int action = MIPS_BE_FATAL;
443 	enum ctx_state prev_state;
444 
445 	prev_state = exception_enter();
446 	/* XXX For now.	 Fixme, this searches the wrong table ...  */
447 	if (data && !user_mode(regs))
448 		fixup = search_dbe_tables(exception_epc(regs));
449 
450 	if (fixup)
451 		action = MIPS_BE_FIXUP;
452 
453 	if (board_be_handler)
454 		action = board_be_handler(regs, fixup != NULL);
455 	else
456 		mips_cm_error_report();
457 
458 	switch (action) {
459 	case MIPS_BE_DISCARD:
460 		goto out;
461 	case MIPS_BE_FIXUP:
462 		if (fixup) {
463 			regs->cp0_epc = fixup->nextinsn;
464 			goto out;
465 		}
466 		break;
467 	default:
468 		break;
469 	}
470 
471 	/*
472 	 * Assume it would be too dangerous to continue ...
473 	 */
474 	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
475 	       data ? "Data" : "Instruction",
476 	       field, regs->cp0_epc, field, regs->regs[31]);
477 	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
478 		       SIGBUS) == NOTIFY_STOP)
479 		goto out;
480 
481 	die_if_kernel("Oops", regs);
482 	force_sig(SIGBUS, current);
483 
484 out:
485 	exception_exit(prev_state);
486 }
487 
488 /*
489  * ll/sc, rdhwr, sync emulation
490  */
491 
492 #define OPCODE 0xfc000000
493 #define BASE   0x03e00000
494 #define RT     0x001f0000
495 #define OFFSET 0x0000ffff
496 #define LL     0xc0000000
497 #define SC     0xe0000000
498 #define SPEC0  0x00000000
499 #define SPEC3  0x7c000000
500 #define RD     0x0000f800
501 #define FUNC   0x0000003f
502 #define SYNC   0x0000000f
503 #define RDHWR  0x0000003b
504 
505 /*  microMIPS definitions   */
506 #define MM_POOL32A_FUNC 0xfc00ffff
507 #define MM_RDHWR        0x00006b3c
508 #define MM_RS           0x001f0000
509 #define MM_RT           0x03e00000
510 
511 /*
512  * The ll_bit is cleared by r*_switch.S
513  */
514 
515 unsigned int ll_bit;
516 struct task_struct *ll_task;
517 
simulate_ll(struct pt_regs * regs,unsigned int opcode)518 static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
519 {
520 	unsigned long value, __user *vaddr;
521 	long offset;
522 
523 	/*
524 	 * analyse the ll instruction that just caused a ri exception
525 	 * and put the referenced address to addr.
526 	 */
527 
528 	/* sign extend offset */
529 	offset = opcode & OFFSET;
530 	offset <<= 16;
531 	offset >>= 16;
532 
533 	vaddr = (unsigned long __user *)
534 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
535 
536 	if ((unsigned long)vaddr & 3)
537 		return SIGBUS;
538 	if (get_user(value, vaddr))
539 		return SIGSEGV;
540 
541 	preempt_disable();
542 
543 	if (ll_task == NULL || ll_task == current) {
544 		ll_bit = 1;
545 	} else {
546 		ll_bit = 0;
547 	}
548 	ll_task = current;
549 
550 	preempt_enable();
551 
552 	regs->regs[(opcode & RT) >> 16] = value;
553 
554 	return 0;
555 }
556 
simulate_sc(struct pt_regs * regs,unsigned int opcode)557 static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
558 {
559 	unsigned long __user *vaddr;
560 	unsigned long reg;
561 	long offset;
562 
563 	/*
564 	 * analyse the sc instruction that just caused a ri exception
565 	 * and put the referenced address to addr.
566 	 */
567 
568 	/* sign extend offset */
569 	offset = opcode & OFFSET;
570 	offset <<= 16;
571 	offset >>= 16;
572 
573 	vaddr = (unsigned long __user *)
574 		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
575 	reg = (opcode & RT) >> 16;
576 
577 	if ((unsigned long)vaddr & 3)
578 		return SIGBUS;
579 
580 	preempt_disable();
581 
582 	if (ll_bit == 0 || ll_task != current) {
583 		regs->regs[reg] = 0;
584 		preempt_enable();
585 		return 0;
586 	}
587 
588 	preempt_enable();
589 
590 	if (put_user(regs->regs[reg], vaddr))
591 		return SIGSEGV;
592 
593 	regs->regs[reg] = 1;
594 
595 	return 0;
596 }
597 
598 /*
599  * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
600  * opcodes are supposed to result in coprocessor unusable exceptions if
601  * executed on ll/sc-less processors.  That's the theory.  In practice a
602  * few processors such as NEC's VR4100 throw reserved instruction exceptions
603  * instead, so we're doing the emulation thing in both exception handlers.
604  */
simulate_llsc(struct pt_regs * regs,unsigned int opcode)605 static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
606 {
607 	if ((opcode & OPCODE) == LL) {
608 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
609 				1, regs, 0);
610 		return simulate_ll(regs, opcode);
611 	}
612 	if ((opcode & OPCODE) == SC) {
613 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
614 				1, regs, 0);
615 		return simulate_sc(regs, opcode);
616 	}
617 
618 	return -1;			/* Must be something else ... */
619 }
620 
621 /*
622  * Simulate trapping 'rdhwr' instructions to provide user accessible
623  * registers not implemented in hardware.
624  */
simulate_rdhwr(struct pt_regs * regs,int rd,int rt)625 static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
626 {
627 	struct thread_info *ti = task_thread_info(current);
628 
629 	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
630 			1, regs, 0);
631 	switch (rd) {
632 	case MIPS_HWR_CPUNUM:		/* CPU number */
633 		regs->regs[rt] = smp_processor_id();
634 		return 0;
635 	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
636 		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
637 				     current_cpu_data.icache.linesz);
638 		return 0;
639 	case MIPS_HWR_CC:		/* Read count register */
640 		regs->regs[rt] = read_c0_count();
641 		return 0;
642 	case MIPS_HWR_CCRES:		/* Count register resolution */
643 		switch (current_cpu_type()) {
644 		case CPU_20KC:
645 		case CPU_25KF:
646 			regs->regs[rt] = 1;
647 			break;
648 		default:
649 			regs->regs[rt] = 2;
650 		}
651 		return 0;
652 	case MIPS_HWR_ULR:		/* Read UserLocal register */
653 		regs->regs[rt] = ti->tp_value;
654 		return 0;
655 	default:
656 		return -1;
657 	}
658 }
659 
simulate_rdhwr_normal(struct pt_regs * regs,unsigned int opcode)660 static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
661 {
662 	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
663 		int rd = (opcode & RD) >> 11;
664 		int rt = (opcode & RT) >> 16;
665 
666 		simulate_rdhwr(regs, rd, rt);
667 		return 0;
668 	}
669 
670 	/* Not ours.  */
671 	return -1;
672 }
673 
simulate_rdhwr_mm(struct pt_regs * regs,unsigned int opcode)674 static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
675 {
676 	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
677 		int rd = (opcode & MM_RS) >> 16;
678 		int rt = (opcode & MM_RT) >> 21;
679 		simulate_rdhwr(regs, rd, rt);
680 		return 0;
681 	}
682 
683 	/* Not ours.  */
684 	return -1;
685 }
686 
simulate_sync(struct pt_regs * regs,unsigned int opcode)687 static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
688 {
689 	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
690 		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
691 				1, regs, 0);
692 		return 0;
693 	}
694 
695 	return -1;			/* Must be something else ... */
696 }
697 
do_ov(struct pt_regs * regs)698 asmlinkage void do_ov(struct pt_regs *regs)
699 {
700 	enum ctx_state prev_state;
701 	siginfo_t info = {
702 		.si_signo = SIGFPE,
703 		.si_code = FPE_INTOVF,
704 		.si_addr = (void __user *)regs->cp0_epc,
705 	};
706 
707 	prev_state = exception_enter();
708 	die_if_kernel("Integer overflow", regs);
709 
710 	force_sig_info(SIGFPE, &info, current);
711 	exception_exit(prev_state);
712 }
713 
714 /*
715  * Send SIGFPE according to FCSR Cause bits, which must have already
716  * been masked against Enable bits.  This is impotant as Inexact can
717  * happen together with Overflow or Underflow, and `ptrace' can set
718  * any bits.
719  */
force_fcr31_sig(unsigned long fcr31,void __user * fault_addr,struct task_struct * tsk)720 void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
721 		     struct task_struct *tsk)
722 {
723 	struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE };
724 
725 	if (fcr31 & FPU_CSR_INV_X)
726 		si.si_code = FPE_FLTINV;
727 	else if (fcr31 & FPU_CSR_DIV_X)
728 		si.si_code = FPE_FLTDIV;
729 	else if (fcr31 & FPU_CSR_OVF_X)
730 		si.si_code = FPE_FLTOVF;
731 	else if (fcr31 & FPU_CSR_UDF_X)
732 		si.si_code = FPE_FLTUND;
733 	else if (fcr31 & FPU_CSR_INE_X)
734 		si.si_code = FPE_FLTRES;
735 	else
736 		si.si_code = __SI_FAULT;
737 	force_sig_info(SIGFPE, &si, tsk);
738 }
739 
process_fpemu_return(int sig,void __user * fault_addr,unsigned long fcr31)740 int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
741 {
742 	struct siginfo si = { 0 };
743 	struct vm_area_struct *vma;
744 
745 	switch (sig) {
746 	case 0:
747 		return 0;
748 
749 	case SIGFPE:
750 		force_fcr31_sig(fcr31, fault_addr, current);
751 		return 1;
752 
753 	case SIGBUS:
754 		si.si_addr = fault_addr;
755 		si.si_signo = sig;
756 		si.si_code = BUS_ADRERR;
757 		force_sig_info(sig, &si, current);
758 		return 1;
759 
760 	case SIGSEGV:
761 		si.si_addr = fault_addr;
762 		si.si_signo = sig;
763 		down_read(&current->mm->mmap_sem);
764 		vma = find_vma(current->mm, (unsigned long)fault_addr);
765 		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
766 			si.si_code = SEGV_ACCERR;
767 		else
768 			si.si_code = SEGV_MAPERR;
769 		up_read(&current->mm->mmap_sem);
770 		force_sig_info(sig, &si, current);
771 		return 1;
772 
773 	default:
774 		force_sig(sig, current);
775 		return 1;
776 	}
777 }
778 
simulate_fp(struct pt_regs * regs,unsigned int opcode,unsigned long old_epc,unsigned long old_ra)779 static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
780 		       unsigned long old_epc, unsigned long old_ra)
781 {
782 	union mips_instruction inst = { .word = opcode };
783 	void __user *fault_addr;
784 	unsigned long fcr31;
785 	int sig;
786 
787 	/* If it's obviously not an FP instruction, skip it */
788 	switch (inst.i_format.opcode) {
789 	case cop1_op:
790 	case cop1x_op:
791 	case lwc1_op:
792 	case ldc1_op:
793 	case swc1_op:
794 	case sdc1_op:
795 		break;
796 
797 	default:
798 		return -1;
799 	}
800 
801 	/*
802 	 * do_ri skipped over the instruction via compute_return_epc, undo
803 	 * that for the FPU emulator.
804 	 */
805 	regs->cp0_epc = old_epc;
806 	regs->regs[31] = old_ra;
807 
808 	/* Save the FP context to struct thread_struct */
809 	lose_fpu(1);
810 
811 	/* Run the emulator */
812 	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
813 				       &fault_addr);
814 
815 	/*
816 	 * We can't allow the emulated instruction to leave any
817 	 * enabled Cause bits set in $fcr31.
818 	 */
819 	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
820 	current->thread.fpu.fcr31 &= ~fcr31;
821 
822 	/* Restore the hardware register state */
823 	own_fpu(1);
824 
825 	/* Send a signal if required.  */
826 	process_fpemu_return(sig, fault_addr, fcr31);
827 
828 	return 0;
829 }
830 
831 /*
832  * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
833  */
do_fpe(struct pt_regs * regs,unsigned long fcr31)834 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
835 {
836 	enum ctx_state prev_state;
837 	void __user *fault_addr;
838 	int sig;
839 
840 	prev_state = exception_enter();
841 	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
842 		       SIGFPE) == NOTIFY_STOP)
843 		goto out;
844 
845 	/* Clear FCSR.Cause before enabling interrupts */
846 	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
847 	local_irq_enable();
848 
849 	die_if_kernel("FP exception in kernel code", regs);
850 
851 	if (fcr31 & FPU_CSR_UNI_X) {
852 		/*
853 		 * Unimplemented operation exception.  If we've got the full
854 		 * software emulator on-board, let's use it...
855 		 *
856 		 * Force FPU to dump state into task/thread context.  We're
857 		 * moving a lot of data here for what is probably a single
858 		 * instruction, but the alternative is to pre-decode the FP
859 		 * register operands before invoking the emulator, which seems
860 		 * a bit extreme for what should be an infrequent event.
861 		 */
862 		/* Ensure 'resume' not overwrite saved fp context again. */
863 		lose_fpu(1);
864 
865 		/* Run the emulator */
866 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
867 					       &fault_addr);
868 
869 		/*
870 		 * We can't allow the emulated instruction to leave any
871 		 * enabled Cause bits set in $fcr31.
872 		 */
873 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
874 		current->thread.fpu.fcr31 &= ~fcr31;
875 
876 		/* Restore the hardware register state */
877 		own_fpu(1);	/* Using the FPU again.	 */
878 	} else {
879 		sig = SIGFPE;
880 		fault_addr = (void __user *) regs->cp0_epc;
881 	}
882 
883 	/* Send a signal if required.  */
884 	process_fpemu_return(sig, fault_addr, fcr31);
885 
886 out:
887 	exception_exit(prev_state);
888 }
889 
do_trap_or_bp(struct pt_regs * regs,unsigned int code,int si_code,const char * str)890 void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
891 	const char *str)
892 {
893 	siginfo_t info = { 0 };
894 	char b[40];
895 
896 #ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
897 	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
898 			 SIGTRAP) == NOTIFY_STOP)
899 		return;
900 #endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
901 
902 	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
903 		       SIGTRAP) == NOTIFY_STOP)
904 		return;
905 
906 	/*
907 	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
908 	 * insns, even for trap and break codes that indicate arithmetic
909 	 * failures.  Weird ...
910 	 * But should we continue the brokenness???  --macro
911 	 */
912 	switch (code) {
913 	case BRK_OVERFLOW:
914 	case BRK_DIVZERO:
915 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
916 		die_if_kernel(b, regs);
917 		if (code == BRK_DIVZERO)
918 			info.si_code = FPE_INTDIV;
919 		else
920 			info.si_code = FPE_INTOVF;
921 		info.si_signo = SIGFPE;
922 		info.si_addr = (void __user *) regs->cp0_epc;
923 		force_sig_info(SIGFPE, &info, current);
924 		break;
925 	case BRK_BUG:
926 		die_if_kernel("Kernel bug detected", regs);
927 		force_sig(SIGTRAP, current);
928 		break;
929 	case BRK_MEMU:
930 		/*
931 		 * This breakpoint code is used by the FPU emulator to retake
932 		 * control of the CPU after executing the instruction from the
933 		 * delay slot of an emulated branch.
934 		 *
935 		 * Terminate if exception was recognized as a delay slot return
936 		 * otherwise handle as normal.
937 		 */
938 		if (do_dsemulret(regs))
939 			return;
940 
941 		die_if_kernel("Math emu break/trap", regs);
942 		force_sig(SIGTRAP, current);
943 		break;
944 	default:
945 		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
946 		die_if_kernel(b, regs);
947 		if (si_code) {
948 			info.si_signo = SIGTRAP;
949 			info.si_code = si_code;
950 			force_sig_info(SIGTRAP, &info, current);
951 		} else {
952 			force_sig(SIGTRAP, current);
953 		}
954 	}
955 }
956 
do_bp(struct pt_regs * regs)957 asmlinkage void do_bp(struct pt_regs *regs)
958 {
959 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
960 	unsigned int opcode, bcode;
961 	enum ctx_state prev_state;
962 	mm_segment_t seg;
963 
964 	seg = get_fs();
965 	if (!user_mode(regs))
966 		set_fs(KERNEL_DS);
967 
968 	prev_state = exception_enter();
969 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
970 	if (get_isa16_mode(regs->cp0_epc)) {
971 		u16 instr[2];
972 
973 		if (__get_user(instr[0], (u16 __user *)epc))
974 			goto out_sigsegv;
975 
976 		if (!cpu_has_mmips) {
977 			/* MIPS16e mode */
978 			bcode = (instr[0] >> 5) & 0x3f;
979 		} else if (mm_insn_16bit(instr[0])) {
980 			/* 16-bit microMIPS BREAK */
981 			bcode = instr[0] & 0xf;
982 		} else {
983 			/* 32-bit microMIPS BREAK */
984 			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
985 				goto out_sigsegv;
986 			opcode = (instr[0] << 16) | instr[1];
987 			bcode = (opcode >> 6) & ((1 << 20) - 1);
988 		}
989 	} else {
990 		if (__get_user(opcode, (unsigned int __user *)epc))
991 			goto out_sigsegv;
992 		bcode = (opcode >> 6) & ((1 << 20) - 1);
993 	}
994 
995 	/*
996 	 * There is the ancient bug in the MIPS assemblers that the break
997 	 * code starts left to bit 16 instead to bit 6 in the opcode.
998 	 * Gas is bug-compatible, but not always, grrr...
999 	 * We handle both cases with a simple heuristics.  --macro
1000 	 */
1001 	if (bcode >= (1 << 10))
1002 		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1003 
1004 	/*
1005 	 * notify the kprobe handlers, if instruction is likely to
1006 	 * pertain to them.
1007 	 */
1008 	switch (bcode) {
1009 	case BRK_UPROBE:
1010 		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1011 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1012 			goto out;
1013 		else
1014 			break;
1015 	case BRK_UPROBE_XOL:
1016 		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1017 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1018 			goto out;
1019 		else
1020 			break;
1021 	case BRK_KPROBE_BP:
1022 		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1023 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1024 			goto out;
1025 		else
1026 			break;
1027 	case BRK_KPROBE_SSTEPBP:
1028 		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1029 			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1030 			goto out;
1031 		else
1032 			break;
1033 	default:
1034 		break;
1035 	}
1036 
1037 	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1038 
1039 out:
1040 	set_fs(seg);
1041 	exception_exit(prev_state);
1042 	return;
1043 
1044 out_sigsegv:
1045 	force_sig(SIGSEGV, current);
1046 	goto out;
1047 }
1048 
do_tr(struct pt_regs * regs)1049 asmlinkage void do_tr(struct pt_regs *regs)
1050 {
1051 	u32 opcode, tcode = 0;
1052 	enum ctx_state prev_state;
1053 	u16 instr[2];
1054 	mm_segment_t seg;
1055 	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1056 
1057 	seg = get_fs();
1058 	if (!user_mode(regs))
1059 		set_fs(get_ds());
1060 
1061 	prev_state = exception_enter();
1062 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1063 	if (get_isa16_mode(regs->cp0_epc)) {
1064 		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1065 		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1066 			goto out_sigsegv;
1067 		opcode = (instr[0] << 16) | instr[1];
1068 		/* Immediate versions don't provide a code.  */
1069 		if (!(opcode & OPCODE))
1070 			tcode = (opcode >> 12) & ((1 << 4) - 1);
1071 	} else {
1072 		if (__get_user(opcode, (u32 __user *)epc))
1073 			goto out_sigsegv;
1074 		/* Immediate versions don't provide a code.  */
1075 		if (!(opcode & OPCODE))
1076 			tcode = (opcode >> 6) & ((1 << 10) - 1);
1077 	}
1078 
1079 	do_trap_or_bp(regs, tcode, 0, "Trap");
1080 
1081 out:
1082 	set_fs(seg);
1083 	exception_exit(prev_state);
1084 	return;
1085 
1086 out_sigsegv:
1087 	force_sig(SIGSEGV, current);
1088 	goto out;
1089 }
1090 
do_ri(struct pt_regs * regs)1091 asmlinkage void do_ri(struct pt_regs *regs)
1092 {
1093 	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1094 	unsigned long old_epc = regs->cp0_epc;
1095 	unsigned long old31 = regs->regs[31];
1096 	enum ctx_state prev_state;
1097 	unsigned int opcode = 0;
1098 	int status = -1;
1099 
1100 	/*
1101 	 * Avoid any kernel code. Just emulate the R2 instruction
1102 	 * as quickly as possible.
1103 	 */
1104 	if (mipsr2_emulation && cpu_has_mips_r6 &&
1105 	    likely(user_mode(regs)) &&
1106 	    likely(get_user(opcode, epc) >= 0)) {
1107 		unsigned long fcr31 = 0;
1108 
1109 		status = mipsr2_decoder(regs, opcode, &fcr31);
1110 		switch (status) {
1111 		case 0:
1112 		case SIGEMT:
1113 			task_thread_info(current)->r2_emul_return = 1;
1114 			return;
1115 		case SIGILL:
1116 			goto no_r2_instr;
1117 		default:
1118 			process_fpemu_return(status,
1119 					     &current->thread.cp0_baduaddr,
1120 					     fcr31);
1121 			task_thread_info(current)->r2_emul_return = 1;
1122 			return;
1123 		}
1124 	}
1125 
1126 no_r2_instr:
1127 
1128 	prev_state = exception_enter();
1129 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1130 
1131 	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1132 		       SIGILL) == NOTIFY_STOP)
1133 		goto out;
1134 
1135 	die_if_kernel("Reserved instruction in kernel code", regs);
1136 
1137 	if (unlikely(compute_return_epc(regs) < 0))
1138 		goto out;
1139 
1140 	if (!get_isa16_mode(regs->cp0_epc)) {
1141 		if (unlikely(get_user(opcode, epc) < 0))
1142 			status = SIGSEGV;
1143 
1144 		if (!cpu_has_llsc && status < 0)
1145 			status = simulate_llsc(regs, opcode);
1146 
1147 		if (status < 0)
1148 			status = simulate_rdhwr_normal(regs, opcode);
1149 
1150 		if (status < 0)
1151 			status = simulate_sync(regs, opcode);
1152 
1153 		if (status < 0)
1154 			status = simulate_fp(regs, opcode, old_epc, old31);
1155 	} else if (cpu_has_mmips) {
1156 		unsigned short mmop[2] = { 0 };
1157 
1158 		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1159 			status = SIGSEGV;
1160 		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1161 			status = SIGSEGV;
1162 		opcode = mmop[0];
1163 		opcode = (opcode << 16) | mmop[1];
1164 
1165 		if (status < 0)
1166 			status = simulate_rdhwr_mm(regs, opcode);
1167 	}
1168 
1169 	if (status < 0)
1170 		status = SIGILL;
1171 
1172 	if (unlikely(status > 0)) {
1173 		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1174 		regs->regs[31] = old31;
1175 		force_sig(status, current);
1176 	}
1177 
1178 out:
1179 	exception_exit(prev_state);
1180 }
1181 
1182 /*
1183  * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1184  * emulated more than some threshold number of instructions, force migration to
1185  * a "CPU" that has FP support.
1186  */
mt_ase_fp_affinity(void)1187 static void mt_ase_fp_affinity(void)
1188 {
1189 #ifdef CONFIG_MIPS_MT_FPAFF
1190 	if (mt_fpemul_threshold > 0 &&
1191 	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1192 		/*
1193 		 * If there's no FPU present, or if the application has already
1194 		 * restricted the allowed set to exclude any CPUs with FPUs,
1195 		 * we'll skip the procedure.
1196 		 */
1197 		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1198 			cpumask_t tmask;
1199 
1200 			current->thread.user_cpus_allowed
1201 				= current->cpus_allowed;
1202 			cpumask_and(&tmask, &current->cpus_allowed,
1203 				    &mt_fpu_cpumask);
1204 			set_cpus_allowed_ptr(current, &tmask);
1205 			set_thread_flag(TIF_FPUBOUND);
1206 		}
1207 	}
1208 #endif /* CONFIG_MIPS_MT_FPAFF */
1209 }
1210 
1211 /*
1212  * No lock; only written during early bootup by CPU 0.
1213  */
1214 static RAW_NOTIFIER_HEAD(cu2_chain);
1215 
register_cu2_notifier(struct notifier_block * nb)1216 int __ref register_cu2_notifier(struct notifier_block *nb)
1217 {
1218 	return raw_notifier_chain_register(&cu2_chain, nb);
1219 }
1220 
cu2_notifier_call_chain(unsigned long val,void * v)1221 int cu2_notifier_call_chain(unsigned long val, void *v)
1222 {
1223 	return raw_notifier_call_chain(&cu2_chain, val, v);
1224 }
1225 
default_cu2_call(struct notifier_block * nfb,unsigned long action,void * data)1226 static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1227 	void *data)
1228 {
1229 	struct pt_regs *regs = data;
1230 
1231 	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1232 			      "instruction", regs);
1233 	force_sig(SIGILL, current);
1234 
1235 	return NOTIFY_OK;
1236 }
1237 
wait_on_fp_mode_switch(atomic_t * p)1238 static int wait_on_fp_mode_switch(atomic_t *p)
1239 {
1240 	/*
1241 	 * The FP mode for this task is currently being switched. That may
1242 	 * involve modifications to the format of this tasks FP context which
1243 	 * make it unsafe to proceed with execution for the moment. Instead,
1244 	 * schedule some other task.
1245 	 */
1246 	schedule();
1247 	return 0;
1248 }
1249 
enable_restore_fp_context(int msa)1250 static int enable_restore_fp_context(int msa)
1251 {
1252 	int err, was_fpu_owner, prior_msa;
1253 
1254 	/*
1255 	 * If an FP mode switch is currently underway, wait for it to
1256 	 * complete before proceeding.
1257 	 */
1258 	wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1259 			 wait_on_fp_mode_switch, TASK_KILLABLE);
1260 
1261 	if (!used_math()) {
1262 		/* First time FP context user. */
1263 		preempt_disable();
1264 		err = init_fpu();
1265 		if (msa && !err) {
1266 			enable_msa();
1267 			init_msa_upper();
1268 			set_thread_flag(TIF_USEDMSA);
1269 			set_thread_flag(TIF_MSA_CTX_LIVE);
1270 		}
1271 		preempt_enable();
1272 		if (!err)
1273 			set_used_math();
1274 		return err;
1275 	}
1276 
1277 	/*
1278 	 * This task has formerly used the FP context.
1279 	 *
1280 	 * If this thread has no live MSA vector context then we can simply
1281 	 * restore the scalar FP context. If it has live MSA vector context
1282 	 * (that is, it has or may have used MSA since last performing a
1283 	 * function call) then we'll need to restore the vector context. This
1284 	 * applies even if we're currently only executing a scalar FP
1285 	 * instruction. This is because if we were to later execute an MSA
1286 	 * instruction then we'd either have to:
1287 	 *
1288 	 *  - Restore the vector context & clobber any registers modified by
1289 	 *    scalar FP instructions between now & then.
1290 	 *
1291 	 * or
1292 	 *
1293 	 *  - Not restore the vector context & lose the most significant bits
1294 	 *    of all vector registers.
1295 	 *
1296 	 * Neither of those options is acceptable. We cannot restore the least
1297 	 * significant bits of the registers now & only restore the most
1298 	 * significant bits later because the most significant bits of any
1299 	 * vector registers whose aliased FP register is modified now will have
1300 	 * been zeroed. We'd have no way to know that when restoring the vector
1301 	 * context & thus may load an outdated value for the most significant
1302 	 * bits of a vector register.
1303 	 */
1304 	if (!msa && !thread_msa_context_live())
1305 		return own_fpu(1);
1306 
1307 	/*
1308 	 * This task is using or has previously used MSA. Thus we require
1309 	 * that Status.FR == 1.
1310 	 */
1311 	preempt_disable();
1312 	was_fpu_owner = is_fpu_owner();
1313 	err = own_fpu_inatomic(0);
1314 	if (err)
1315 		goto out;
1316 
1317 	enable_msa();
1318 	write_msa_csr(current->thread.fpu.msacsr);
1319 	set_thread_flag(TIF_USEDMSA);
1320 
1321 	/*
1322 	 * If this is the first time that the task is using MSA and it has
1323 	 * previously used scalar FP in this time slice then we already nave
1324 	 * FP context which we shouldn't clobber. We do however need to clear
1325 	 * the upper 64b of each vector register so that this task has no
1326 	 * opportunity to see data left behind by another.
1327 	 */
1328 	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1329 	if (!prior_msa && was_fpu_owner) {
1330 		init_msa_upper();
1331 
1332 		goto out;
1333 	}
1334 
1335 	if (!prior_msa) {
1336 		/*
1337 		 * Restore the least significant 64b of each vector register
1338 		 * from the existing scalar FP context.
1339 		 */
1340 		_restore_fp(current);
1341 
1342 		/*
1343 		 * The task has not formerly used MSA, so clear the upper 64b
1344 		 * of each vector register such that it cannot see data left
1345 		 * behind by another task.
1346 		 */
1347 		init_msa_upper();
1348 	} else {
1349 		/* We need to restore the vector context. */
1350 		restore_msa(current);
1351 
1352 		/* Restore the scalar FP control & status register */
1353 		if (!was_fpu_owner)
1354 			write_32bit_cp1_register(CP1_STATUS,
1355 						 current->thread.fpu.fcr31);
1356 	}
1357 
1358 out:
1359 	preempt_enable();
1360 
1361 	return 0;
1362 }
1363 
do_cpu(struct pt_regs * regs)1364 asmlinkage void do_cpu(struct pt_regs *regs)
1365 {
1366 	enum ctx_state prev_state;
1367 	unsigned int __user *epc;
1368 	unsigned long old_epc, old31;
1369 	void __user *fault_addr;
1370 	unsigned int opcode;
1371 	unsigned long fcr31;
1372 	unsigned int cpid;
1373 	int status, err;
1374 	int sig;
1375 
1376 	prev_state = exception_enter();
1377 	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1378 
1379 	if (cpid != 2)
1380 		die_if_kernel("do_cpu invoked from kernel context!", regs);
1381 
1382 	switch (cpid) {
1383 	case 0:
1384 		epc = (unsigned int __user *)exception_epc(regs);
1385 		old_epc = regs->cp0_epc;
1386 		old31 = regs->regs[31];
1387 		opcode = 0;
1388 		status = -1;
1389 
1390 		if (unlikely(compute_return_epc(regs) < 0))
1391 			break;
1392 
1393 		if (!get_isa16_mode(regs->cp0_epc)) {
1394 			if (unlikely(get_user(opcode, epc) < 0))
1395 				status = SIGSEGV;
1396 
1397 			if (!cpu_has_llsc && status < 0)
1398 				status = simulate_llsc(regs, opcode);
1399 		}
1400 
1401 		if (status < 0)
1402 			status = SIGILL;
1403 
1404 		if (unlikely(status > 0)) {
1405 			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1406 			regs->regs[31] = old31;
1407 			force_sig(status, current);
1408 		}
1409 
1410 		break;
1411 
1412 	case 3:
1413 		/*
1414 		 * The COP3 opcode space and consequently the CP0.Status.CU3
1415 		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1416 		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1417 		 * up the space has been reused for COP1X instructions, that
1418 		 * are enabled by the CP0.Status.CU1 bit and consequently
1419 		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1420 		 * exceptions.  Some FPU-less processors that implement one
1421 		 * of these ISAs however use this code erroneously for COP1X
1422 		 * instructions.  Therefore we redirect this trap to the FP
1423 		 * emulator too.
1424 		 */
1425 		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1426 			force_sig(SIGILL, current);
1427 			break;
1428 		}
1429 		/* Fall through.  */
1430 
1431 	case 1:
1432 		err = enable_restore_fp_context(0);
1433 
1434 		if (raw_cpu_has_fpu && !err)
1435 			break;
1436 
1437 		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1438 					       &fault_addr);
1439 
1440 		/*
1441 		 * We can't allow the emulated instruction to leave
1442 		 * any enabled Cause bits set in $fcr31.
1443 		 */
1444 		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1445 		current->thread.fpu.fcr31 &= ~fcr31;
1446 
1447 		/* Send a signal if required.  */
1448 		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1449 			mt_ase_fp_affinity();
1450 
1451 		break;
1452 
1453 	case 2:
1454 		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1455 		break;
1456 	}
1457 
1458 	exception_exit(prev_state);
1459 }
1460 
do_msa_fpe(struct pt_regs * regs,unsigned int msacsr)1461 asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1462 {
1463 	enum ctx_state prev_state;
1464 
1465 	prev_state = exception_enter();
1466 	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1467 	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1468 		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1469 		goto out;
1470 
1471 	/* Clear MSACSR.Cause before enabling interrupts */
1472 	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1473 	local_irq_enable();
1474 
1475 	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1476 	force_sig(SIGFPE, current);
1477 out:
1478 	exception_exit(prev_state);
1479 }
1480 
do_msa(struct pt_regs * regs)1481 asmlinkage void do_msa(struct pt_regs *regs)
1482 {
1483 	enum ctx_state prev_state;
1484 	int err;
1485 
1486 	prev_state = exception_enter();
1487 
1488 	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1489 		force_sig(SIGILL, current);
1490 		goto out;
1491 	}
1492 
1493 	die_if_kernel("do_msa invoked from kernel context!", regs);
1494 
1495 	err = enable_restore_fp_context(1);
1496 	if (err)
1497 		force_sig(SIGILL, current);
1498 out:
1499 	exception_exit(prev_state);
1500 }
1501 
do_mdmx(struct pt_regs * regs)1502 asmlinkage void do_mdmx(struct pt_regs *regs)
1503 {
1504 	enum ctx_state prev_state;
1505 
1506 	prev_state = exception_enter();
1507 	force_sig(SIGILL, current);
1508 	exception_exit(prev_state);
1509 }
1510 
1511 /*
1512  * Called with interrupts disabled.
1513  */
do_watch(struct pt_regs * regs)1514 asmlinkage void do_watch(struct pt_regs *regs)
1515 {
1516 	siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1517 	enum ctx_state prev_state;
1518 
1519 	prev_state = exception_enter();
1520 	/*
1521 	 * Clear WP (bit 22) bit of cause register so we don't loop
1522 	 * forever.
1523 	 */
1524 	clear_c0_cause(CAUSEF_WP);
1525 
1526 	/*
1527 	 * If the current thread has the watch registers loaded, save
1528 	 * their values and send SIGTRAP.  Otherwise another thread
1529 	 * left the registers set, clear them and continue.
1530 	 */
1531 	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1532 		mips_read_watch_registers();
1533 		local_irq_enable();
1534 		force_sig_info(SIGTRAP, &info, current);
1535 	} else {
1536 		mips_clear_watch_registers();
1537 		local_irq_enable();
1538 	}
1539 	exception_exit(prev_state);
1540 }
1541 
do_mcheck(struct pt_regs * regs)1542 asmlinkage void do_mcheck(struct pt_regs *regs)
1543 {
1544 	int multi_match = regs->cp0_status & ST0_TS;
1545 	enum ctx_state prev_state;
1546 	mm_segment_t old_fs = get_fs();
1547 
1548 	prev_state = exception_enter();
1549 	show_regs(regs);
1550 
1551 	if (multi_match) {
1552 		dump_tlb_regs();
1553 		pr_info("\n");
1554 		dump_tlb_all();
1555 	}
1556 
1557 	if (!user_mode(regs))
1558 		set_fs(KERNEL_DS);
1559 
1560 	show_code((unsigned int __user *) regs->cp0_epc);
1561 
1562 	set_fs(old_fs);
1563 
1564 	/*
1565 	 * Some chips may have other causes of machine check (e.g. SB1
1566 	 * graduation timer)
1567 	 */
1568 	panic("Caught Machine Check exception - %scaused by multiple "
1569 	      "matching entries in the TLB.",
1570 	      (multi_match) ? "" : "not ");
1571 }
1572 
do_mt(struct pt_regs * regs)1573 asmlinkage void do_mt(struct pt_regs *regs)
1574 {
1575 	int subcode;
1576 
1577 	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1578 			>> VPECONTROL_EXCPT_SHIFT;
1579 	switch (subcode) {
1580 	case 0:
1581 		printk(KERN_DEBUG "Thread Underflow\n");
1582 		break;
1583 	case 1:
1584 		printk(KERN_DEBUG "Thread Overflow\n");
1585 		break;
1586 	case 2:
1587 		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1588 		break;
1589 	case 3:
1590 		printk(KERN_DEBUG "Gating Storage Exception\n");
1591 		break;
1592 	case 4:
1593 		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1594 		break;
1595 	case 5:
1596 		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1597 		break;
1598 	default:
1599 		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1600 			subcode);
1601 		break;
1602 	}
1603 	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1604 
1605 	force_sig(SIGILL, current);
1606 }
1607 
1608 
do_dsp(struct pt_regs * regs)1609 asmlinkage void do_dsp(struct pt_regs *regs)
1610 {
1611 	if (cpu_has_dsp)
1612 		panic("Unexpected DSP exception");
1613 
1614 	force_sig(SIGILL, current);
1615 }
1616 
do_reserved(struct pt_regs * regs)1617 asmlinkage void do_reserved(struct pt_regs *regs)
1618 {
1619 	/*
1620 	 * Game over - no way to handle this if it ever occurs.	 Most probably
1621 	 * caused by a new unknown cpu type or after another deadly
1622 	 * hard/software error.
1623 	 */
1624 	show_regs(regs);
1625 	panic("Caught reserved exception %ld - should not happen.",
1626 	      (regs->cp0_cause & 0x7f) >> 2);
1627 }
1628 
1629 static int __initdata l1parity = 1;
nol1parity(char * s)1630 static int __init nol1parity(char *s)
1631 {
1632 	l1parity = 0;
1633 	return 1;
1634 }
1635 __setup("nol1par", nol1parity);
1636 static int __initdata l2parity = 1;
nol2parity(char * s)1637 static int __init nol2parity(char *s)
1638 {
1639 	l2parity = 0;
1640 	return 1;
1641 }
1642 __setup("nol2par", nol2parity);
1643 
1644 /*
1645  * Some MIPS CPUs can enable/disable for cache parity detection, but do
1646  * it different ways.
1647  */
parity_protection_init(void)1648 static inline void parity_protection_init(void)
1649 {
1650 #define ERRCTL_PE	0x80000000
1651 #define ERRCTL_L2P	0x00800000
1652 
1653 	if (mips_cm_revision() >= CM_REV_CM3) {
1654 		ulong gcr_ectl, cp0_ectl;
1655 
1656 		/*
1657 		 * With CM3 systems we need to ensure that the L1 & L2
1658 		 * parity enables are set to the same value, since this
1659 		 * is presumed by the hardware engineers.
1660 		 *
1661 		 * If the user disabled either of L1 or L2 ECC checking,
1662 		 * disable both.
1663 		 */
1664 		l1parity &= l2parity;
1665 		l2parity &= l1parity;
1666 
1667 		/* Probe L1 ECC support */
1668 		cp0_ectl = read_c0_ecc();
1669 		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1670 		back_to_back_c0_hazard();
1671 		cp0_ectl = read_c0_ecc();
1672 
1673 		/* Probe L2 ECC support */
1674 		gcr_ectl = read_gcr_err_control();
1675 
1676 		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT_MSK) ||
1677 		    !(cp0_ectl & ERRCTL_PE)) {
1678 			/*
1679 			 * One of L1 or L2 ECC checking isn't supported,
1680 			 * so we cannot enable either.
1681 			 */
1682 			l1parity = l2parity = 0;
1683 		}
1684 
1685 		/* Configure L1 ECC checking */
1686 		if (l1parity)
1687 			cp0_ectl |= ERRCTL_PE;
1688 		else
1689 			cp0_ectl &= ~ERRCTL_PE;
1690 		write_c0_ecc(cp0_ectl);
1691 		back_to_back_c0_hazard();
1692 		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1693 
1694 		/* Configure L2 ECC checking */
1695 		if (l2parity)
1696 			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1697 		else
1698 			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1699 		write_gcr_err_control(gcr_ectl);
1700 		gcr_ectl = read_gcr_err_control();
1701 		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN_MSK;
1702 		WARN_ON(!!gcr_ectl != l2parity);
1703 
1704 		pr_info("Cache parity protection %sabled\n",
1705 			l1parity ? "en" : "dis");
1706 		return;
1707 	}
1708 
1709 	switch (current_cpu_type()) {
1710 	case CPU_24K:
1711 	case CPU_34K:
1712 	case CPU_74K:
1713 	case CPU_1004K:
1714 	case CPU_1074K:
1715 	case CPU_INTERAPTIV:
1716 	case CPU_PROAPTIV:
1717 	case CPU_P5600:
1718 	case CPU_QEMU_GENERIC:
1719 	case CPU_P6600:
1720 		{
1721 			unsigned long errctl;
1722 			unsigned int l1parity_present, l2parity_present;
1723 
1724 			errctl = read_c0_ecc();
1725 			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1726 
1727 			/* probe L1 parity support */
1728 			write_c0_ecc(errctl | ERRCTL_PE);
1729 			back_to_back_c0_hazard();
1730 			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1731 
1732 			/* probe L2 parity support */
1733 			write_c0_ecc(errctl|ERRCTL_L2P);
1734 			back_to_back_c0_hazard();
1735 			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1736 
1737 			if (l1parity_present && l2parity_present) {
1738 				if (l1parity)
1739 					errctl |= ERRCTL_PE;
1740 				if (l1parity ^ l2parity)
1741 					errctl |= ERRCTL_L2P;
1742 			} else if (l1parity_present) {
1743 				if (l1parity)
1744 					errctl |= ERRCTL_PE;
1745 			} else if (l2parity_present) {
1746 				if (l2parity)
1747 					errctl |= ERRCTL_L2P;
1748 			} else {
1749 				/* No parity available */
1750 			}
1751 
1752 			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1753 
1754 			write_c0_ecc(errctl);
1755 			back_to_back_c0_hazard();
1756 			errctl = read_c0_ecc();
1757 			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1758 
1759 			if (l1parity_present)
1760 				printk(KERN_INFO "Cache parity protection %sabled\n",
1761 				       (errctl & ERRCTL_PE) ? "en" : "dis");
1762 
1763 			if (l2parity_present) {
1764 				if (l1parity_present && l1parity)
1765 					errctl ^= ERRCTL_L2P;
1766 				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1767 				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1768 			}
1769 		}
1770 		break;
1771 
1772 	case CPU_5KC:
1773 	case CPU_5KE:
1774 	case CPU_LOONGSON1:
1775 		write_c0_ecc(0x80000000);
1776 		back_to_back_c0_hazard();
1777 		/* Set the PE bit (bit 31) in the c0_errctl register. */
1778 		printk(KERN_INFO "Cache parity protection %sabled\n",
1779 		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1780 		break;
1781 	case CPU_20KC:
1782 	case CPU_25KF:
1783 		/* Clear the DE bit (bit 16) in the c0_status register. */
1784 		printk(KERN_INFO "Enable cache parity protection for "
1785 		       "MIPS 20KC/25KF CPUs.\n");
1786 		clear_c0_status(ST0_DE);
1787 		break;
1788 	default:
1789 		break;
1790 	}
1791 }
1792 
cache_parity_error(void)1793 asmlinkage void cache_parity_error(void)
1794 {
1795 	const int field = 2 * sizeof(unsigned long);
1796 	unsigned int reg_val;
1797 
1798 	/* For the moment, report the problem and hang. */
1799 	printk("Cache error exception:\n");
1800 	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1801 	reg_val = read_c0_cacheerr();
1802 	printk("c0_cacheerr == %08x\n", reg_val);
1803 
1804 	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1805 	       reg_val & (1<<30) ? "secondary" : "primary",
1806 	       reg_val & (1<<31) ? "data" : "insn");
1807 	if ((cpu_has_mips_r2_r6) &&
1808 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1809 		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1810 			reg_val & (1<<29) ? "ED " : "",
1811 			reg_val & (1<<28) ? "ET " : "",
1812 			reg_val & (1<<27) ? "ES " : "",
1813 			reg_val & (1<<26) ? "EE " : "",
1814 			reg_val & (1<<25) ? "EB " : "",
1815 			reg_val & (1<<24) ? "EI " : "",
1816 			reg_val & (1<<23) ? "E1 " : "",
1817 			reg_val & (1<<22) ? "E0 " : "");
1818 	} else {
1819 		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1820 			reg_val & (1<<29) ? "ED " : "",
1821 			reg_val & (1<<28) ? "ET " : "",
1822 			reg_val & (1<<26) ? "EE " : "",
1823 			reg_val & (1<<25) ? "EB " : "",
1824 			reg_val & (1<<24) ? "EI " : "",
1825 			reg_val & (1<<23) ? "E1 " : "",
1826 			reg_val & (1<<22) ? "E0 " : "");
1827 	}
1828 	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1829 
1830 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1831 	if (reg_val & (1<<22))
1832 		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1833 
1834 	if (reg_val & (1<<23))
1835 		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1836 #endif
1837 
1838 	panic("Can't handle the cache error!");
1839 }
1840 
do_ftlb(void)1841 asmlinkage void do_ftlb(void)
1842 {
1843 	const int field = 2 * sizeof(unsigned long);
1844 	unsigned int reg_val;
1845 
1846 	/* For the moment, report the problem and hang. */
1847 	if ((cpu_has_mips_r2_r6) &&
1848 	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1849 	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1850 		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1851 		       read_c0_ecc());
1852 		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1853 		reg_val = read_c0_cacheerr();
1854 		pr_err("c0_cacheerr == %08x\n", reg_val);
1855 
1856 		if ((reg_val & 0xc0000000) == 0xc0000000) {
1857 			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1858 		} else {
1859 			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1860 			       reg_val & (1<<30) ? "secondary" : "primary",
1861 			       reg_val & (1<<31) ? "data" : "insn");
1862 		}
1863 	} else {
1864 		pr_err("FTLB error exception\n");
1865 	}
1866 	/* Just print the cacheerr bits for now */
1867 	cache_parity_error();
1868 }
1869 
1870 /*
1871  * SDBBP EJTAG debug exception handler.
1872  * We skip the instruction and return to the next instruction.
1873  */
ejtag_exception_handler(struct pt_regs * regs)1874 void ejtag_exception_handler(struct pt_regs *regs)
1875 {
1876 	const int field = 2 * sizeof(unsigned long);
1877 	unsigned long depc, old_epc, old_ra;
1878 	unsigned int debug;
1879 
1880 	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1881 	depc = read_c0_depc();
1882 	debug = read_c0_debug();
1883 	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1884 	if (debug & 0x80000000) {
1885 		/*
1886 		 * In branch delay slot.
1887 		 * We cheat a little bit here and use EPC to calculate the
1888 		 * debug return address (DEPC). EPC is restored after the
1889 		 * calculation.
1890 		 */
1891 		old_epc = regs->cp0_epc;
1892 		old_ra = regs->regs[31];
1893 		regs->cp0_epc = depc;
1894 		compute_return_epc(regs);
1895 		depc = regs->cp0_epc;
1896 		regs->cp0_epc = old_epc;
1897 		regs->regs[31] = old_ra;
1898 	} else
1899 		depc += 4;
1900 	write_c0_depc(depc);
1901 
1902 #if 0
1903 	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1904 	write_c0_debug(debug | 0x100);
1905 #endif
1906 }
1907 
1908 /*
1909  * NMI exception handler.
1910  * No lock; only written during early bootup by CPU 0.
1911  */
1912 static RAW_NOTIFIER_HEAD(nmi_chain);
1913 
register_nmi_notifier(struct notifier_block * nb)1914 int register_nmi_notifier(struct notifier_block *nb)
1915 {
1916 	return raw_notifier_chain_register(&nmi_chain, nb);
1917 }
1918 
nmi_exception_handler(struct pt_regs * regs)1919 void __noreturn nmi_exception_handler(struct pt_regs *regs)
1920 {
1921 	char str[100];
1922 
1923 	nmi_enter();
1924 	raw_notifier_call_chain(&nmi_chain, 0, regs);
1925 	bust_spinlocks(1);
1926 	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1927 		 smp_processor_id(), regs->cp0_epc);
1928 	regs->cp0_epc = read_c0_errorepc();
1929 	die(str, regs);
1930 	nmi_exit();
1931 }
1932 
1933 #define VECTORSPACING 0x100	/* for EI/VI mode */
1934 
1935 unsigned long ebase;
1936 EXPORT_SYMBOL_GPL(ebase);
1937 unsigned long exception_handlers[32];
1938 unsigned long vi_handlers[64];
1939 
set_except_vector(int n,void * addr)1940 void __init *set_except_vector(int n, void *addr)
1941 {
1942 	unsigned long handler = (unsigned long) addr;
1943 	unsigned long old_handler;
1944 
1945 #ifdef CONFIG_CPU_MICROMIPS
1946 	/*
1947 	 * Only the TLB handlers are cache aligned with an even
1948 	 * address. All other handlers are on an odd address and
1949 	 * require no modification. Otherwise, MIPS32 mode will
1950 	 * be entered when handling any TLB exceptions. That
1951 	 * would be bad...since we must stay in microMIPS mode.
1952 	 */
1953 	if (!(handler & 0x1))
1954 		handler |= 1;
1955 #endif
1956 	old_handler = xchg(&exception_handlers[n], handler);
1957 
1958 	if (n == 0 && cpu_has_divec) {
1959 #ifdef CONFIG_CPU_MICROMIPS
1960 		unsigned long jump_mask = ~((1 << 27) - 1);
1961 #else
1962 		unsigned long jump_mask = ~((1 << 28) - 1);
1963 #endif
1964 		u32 *buf = (u32 *)(ebase + 0x200);
1965 		unsigned int k0 = 26;
1966 		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1967 			uasm_i_j(&buf, handler & ~jump_mask);
1968 			uasm_i_nop(&buf);
1969 		} else {
1970 			UASM_i_LA(&buf, k0, handler);
1971 			uasm_i_jr(&buf, k0);
1972 			uasm_i_nop(&buf);
1973 		}
1974 		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1975 	}
1976 	return (void *)old_handler;
1977 }
1978 
do_default_vi(void)1979 static void do_default_vi(void)
1980 {
1981 	show_regs(get_irq_regs());
1982 	panic("Caught unexpected vectored interrupt.");
1983 }
1984 
set_vi_srs_handler(int n,vi_handler_t addr,int srs)1985 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1986 {
1987 	unsigned long handler;
1988 	unsigned long old_handler = vi_handlers[n];
1989 	int srssets = current_cpu_data.srsets;
1990 	u16 *h;
1991 	unsigned char *b;
1992 
1993 	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1994 
1995 	if (addr == NULL) {
1996 		handler = (unsigned long) do_default_vi;
1997 		srs = 0;
1998 	} else
1999 		handler = (unsigned long) addr;
2000 	vi_handlers[n] = handler;
2001 
2002 	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2003 
2004 	if (srs >= srssets)
2005 		panic("Shadow register set %d not supported", srs);
2006 
2007 	if (cpu_has_veic) {
2008 		if (board_bind_eic_interrupt)
2009 			board_bind_eic_interrupt(n, srs);
2010 	} else if (cpu_has_vint) {
2011 		/* SRSMap is only defined if shadow sets are implemented */
2012 		if (srssets > 1)
2013 			change_c0_srsmap(0xf << n*4, srs << n*4);
2014 	}
2015 
2016 	if (srs == 0) {
2017 		/*
2018 		 * If no shadow set is selected then use the default handler
2019 		 * that does normal register saving and standard interrupt exit
2020 		 */
2021 		extern char except_vec_vi, except_vec_vi_lui;
2022 		extern char except_vec_vi_ori, except_vec_vi_end;
2023 		extern char rollback_except_vec_vi;
2024 		char *vec_start = using_rollback_handler() ?
2025 			&rollback_except_vec_vi : &except_vec_vi;
2026 #if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2027 		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2028 		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2029 #else
2030 		const int lui_offset = &except_vec_vi_lui - vec_start;
2031 		const int ori_offset = &except_vec_vi_ori - vec_start;
2032 #endif
2033 		const int handler_len = &except_vec_vi_end - vec_start;
2034 
2035 		if (handler_len > VECTORSPACING) {
2036 			/*
2037 			 * Sigh... panicing won't help as the console
2038 			 * is probably not configured :(
2039 			 */
2040 			panic("VECTORSPACING too small");
2041 		}
2042 
2043 		set_handler(((unsigned long)b - ebase), vec_start,
2044 #ifdef CONFIG_CPU_MICROMIPS
2045 				(handler_len - 1));
2046 #else
2047 				handler_len);
2048 #endif
2049 		h = (u16 *)(b + lui_offset);
2050 		*h = (handler >> 16) & 0xffff;
2051 		h = (u16 *)(b + ori_offset);
2052 		*h = (handler & 0xffff);
2053 		local_flush_icache_range((unsigned long)b,
2054 					 (unsigned long)(b+handler_len));
2055 	}
2056 	else {
2057 		/*
2058 		 * In other cases jump directly to the interrupt handler. It
2059 		 * is the handler's responsibility to save registers if required
2060 		 * (eg hi/lo) and return from the exception using "eret".
2061 		 */
2062 		u32 insn;
2063 
2064 		h = (u16 *)b;
2065 		/* j handler */
2066 #ifdef CONFIG_CPU_MICROMIPS
2067 		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2068 #else
2069 		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2070 #endif
2071 		h[0] = (insn >> 16) & 0xffff;
2072 		h[1] = insn & 0xffff;
2073 		h[2] = 0;
2074 		h[3] = 0;
2075 		local_flush_icache_range((unsigned long)b,
2076 					 (unsigned long)(b+8));
2077 	}
2078 
2079 	return (void *)old_handler;
2080 }
2081 
set_vi_handler(int n,vi_handler_t addr)2082 void *set_vi_handler(int n, vi_handler_t addr)
2083 {
2084 	return set_vi_srs_handler(n, addr, 0);
2085 }
2086 
2087 extern void tlb_init(void);
2088 
2089 /*
2090  * Timer interrupt
2091  */
2092 int cp0_compare_irq;
2093 EXPORT_SYMBOL_GPL(cp0_compare_irq);
2094 int cp0_compare_irq_shift;
2095 
2096 /*
2097  * Performance counter IRQ or -1 if shared with timer
2098  */
2099 int cp0_perfcount_irq;
2100 EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2101 
2102 /*
2103  * Fast debug channel IRQ or -1 if not present
2104  */
2105 int cp0_fdc_irq;
2106 EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2107 
2108 static int noulri;
2109 
ulri_disable(char * s)2110 static int __init ulri_disable(char *s)
2111 {
2112 	pr_info("Disabling ulri\n");
2113 	noulri = 1;
2114 
2115 	return 1;
2116 }
2117 __setup("noulri", ulri_disable);
2118 
2119 /* configure STATUS register */
configure_status(void)2120 static void configure_status(void)
2121 {
2122 	/*
2123 	 * Disable coprocessors and select 32-bit or 64-bit addressing
2124 	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2125 	 * flag that some firmware may have left set and the TS bit (for
2126 	 * IP27).  Set XX for ISA IV code to work.
2127 	 */
2128 	unsigned int status_set = ST0_CU0;
2129 #ifdef CONFIG_64BIT
2130 	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2131 #endif
2132 	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2133 		status_set |= ST0_XX;
2134 	if (cpu_has_dsp)
2135 		status_set |= ST0_MX;
2136 
2137 	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2138 			 status_set);
2139 }
2140 
2141 unsigned int hwrena;
2142 EXPORT_SYMBOL_GPL(hwrena);
2143 
2144 /* configure HWRENA register */
configure_hwrena(void)2145 static void configure_hwrena(void)
2146 {
2147 	hwrena = cpu_hwrena_impl_bits;
2148 
2149 	if (cpu_has_mips_r2_r6)
2150 		hwrena |= MIPS_HWRENA_CPUNUM |
2151 			  MIPS_HWRENA_SYNCISTEP |
2152 			  MIPS_HWRENA_CC |
2153 			  MIPS_HWRENA_CCRES;
2154 
2155 	if (!noulri && cpu_has_userlocal)
2156 		hwrena |= MIPS_HWRENA_ULR;
2157 
2158 	if (hwrena)
2159 		write_c0_hwrena(hwrena);
2160 }
2161 
configure_exception_vector(void)2162 static void configure_exception_vector(void)
2163 {
2164 	if (cpu_has_veic || cpu_has_vint) {
2165 		unsigned long sr = set_c0_status(ST0_BEV);
2166 		/* If available, use WG to set top bits of EBASE */
2167 		if (cpu_has_ebase_wg) {
2168 #ifdef CONFIG_64BIT
2169 			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2170 #else
2171 			write_c0_ebase(ebase | MIPS_EBASE_WG);
2172 #endif
2173 		}
2174 		write_c0_ebase(ebase);
2175 		write_c0_status(sr);
2176 		/* Setting vector spacing enables EI/VI mode  */
2177 		change_c0_intctl(0x3e0, VECTORSPACING);
2178 	}
2179 	if (cpu_has_divec) {
2180 		if (cpu_has_mipsmt) {
2181 			unsigned int vpflags = dvpe();
2182 			set_c0_cause(CAUSEF_IV);
2183 			evpe(vpflags);
2184 		} else
2185 			set_c0_cause(CAUSEF_IV);
2186 	}
2187 }
2188 
per_cpu_trap_init(bool is_boot_cpu)2189 void per_cpu_trap_init(bool is_boot_cpu)
2190 {
2191 	unsigned int cpu = smp_processor_id();
2192 
2193 	configure_status();
2194 	configure_hwrena();
2195 
2196 	configure_exception_vector();
2197 
2198 	/*
2199 	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2200 	 *
2201 	 *  o read IntCtl.IPTI to determine the timer interrupt
2202 	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2203 	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2204 	 */
2205 	if (cpu_has_mips_r2_r6) {
2206 		/*
2207 		 * We shouldn't trust a secondary core has a sane EBASE register
2208 		 * so use the one calculated by the boot CPU.
2209 		 */
2210 		if (!is_boot_cpu) {
2211 			/* If available, use WG to set top bits of EBASE */
2212 			if (cpu_has_ebase_wg) {
2213 #ifdef CONFIG_64BIT
2214 				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2215 #else
2216 				write_c0_ebase(ebase | MIPS_EBASE_WG);
2217 #endif
2218 			}
2219 			write_c0_ebase(ebase);
2220 		}
2221 
2222 		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2223 		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2224 		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2225 		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2226 		if (!cp0_fdc_irq)
2227 			cp0_fdc_irq = -1;
2228 
2229 	} else {
2230 		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2231 		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2232 		cp0_perfcount_irq = -1;
2233 		cp0_fdc_irq = -1;
2234 	}
2235 
2236 	if (!cpu_data[cpu].asid_cache)
2237 		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2238 
2239 	atomic_inc(&init_mm.mm_count);
2240 	current->active_mm = &init_mm;
2241 	BUG_ON(current->mm);
2242 	enter_lazy_tlb(&init_mm, current);
2243 
2244 	/* Boot CPU's cache setup in setup_arch(). */
2245 	if (!is_boot_cpu)
2246 		cpu_cache_init();
2247 	tlb_init();
2248 	TLBMISS_HANDLER_SETUP();
2249 }
2250 
2251 /* Install CPU exception handler */
set_handler(unsigned long offset,void * addr,unsigned long size)2252 void set_handler(unsigned long offset, void *addr, unsigned long size)
2253 {
2254 #ifdef CONFIG_CPU_MICROMIPS
2255 	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2256 #else
2257 	memcpy((void *)(ebase + offset), addr, size);
2258 #endif
2259 	local_flush_icache_range(ebase + offset, ebase + offset + size);
2260 }
2261 
2262 static char panic_null_cerr[] =
2263 	"Trying to set NULL cache error exception handler";
2264 
2265 /*
2266  * Install uncached CPU exception handler.
2267  * This is suitable only for the cache error exception which is the only
2268  * exception handler that is being run uncached.
2269  */
set_uncached_handler(unsigned long offset,void * addr,unsigned long size)2270 void set_uncached_handler(unsigned long offset, void *addr,
2271 	unsigned long size)
2272 {
2273 	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2274 
2275 	if (!addr)
2276 		panic(panic_null_cerr);
2277 
2278 	memcpy((void *)(uncached_ebase + offset), addr, size);
2279 }
2280 
2281 static int __initdata rdhwr_noopt;
set_rdhwr_noopt(char * str)2282 static int __init set_rdhwr_noopt(char *str)
2283 {
2284 	rdhwr_noopt = 1;
2285 	return 1;
2286 }
2287 
2288 __setup("rdhwr_noopt", set_rdhwr_noopt);
2289 
trap_init(void)2290 void __init trap_init(void)
2291 {
2292 	extern char except_vec3_generic;
2293 	extern char except_vec4;
2294 	extern char except_vec3_r4000;
2295 	unsigned long i;
2296 
2297 	check_wait();
2298 
2299 	if (cpu_has_veic || cpu_has_vint) {
2300 		unsigned long size = 0x200 + VECTORSPACING*64;
2301 		phys_addr_t ebase_pa;
2302 
2303 		ebase = (unsigned long)
2304 			__alloc_bootmem(size, 1 << fls(size), 0);
2305 
2306 		/*
2307 		 * Try to ensure ebase resides in KSeg0 if possible.
2308 		 *
2309 		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2310 		 * hitting a poorly defined exception base for Cache Errors.
2311 		 * The allocation is likely to be in the low 512MB of physical,
2312 		 * in which case we should be able to convert to KSeg0.
2313 		 *
2314 		 * EVA is special though as it allows segments to be rearranged
2315 		 * and to become uncached during cache error handling.
2316 		 */
2317 		ebase_pa = __pa(ebase);
2318 		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2319 			ebase = CKSEG0ADDR(ebase_pa);
2320 	} else {
2321 		ebase = CAC_BASE;
2322 
2323 		if (cpu_has_mips_r2_r6) {
2324 			if (cpu_has_ebase_wg) {
2325 #ifdef CONFIG_64BIT
2326 				ebase = (read_c0_ebase_64() & ~0xfff);
2327 #else
2328 				ebase = (read_c0_ebase() & ~0xfff);
2329 #endif
2330 			} else {
2331 				ebase += (read_c0_ebase() & 0x3ffff000);
2332 			}
2333 		}
2334 	}
2335 
2336 	if (cpu_has_mmips) {
2337 		unsigned int config3 = read_c0_config3();
2338 
2339 		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2340 			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2341 		else
2342 			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2343 	}
2344 
2345 	if (board_ebase_setup)
2346 		board_ebase_setup();
2347 	per_cpu_trap_init(true);
2348 
2349 	/*
2350 	 * Copy the generic exception handlers to their final destination.
2351 	 * This will be overridden later as suitable for a particular
2352 	 * configuration.
2353 	 */
2354 	set_handler(0x180, &except_vec3_generic, 0x80);
2355 
2356 	/*
2357 	 * Setup default vectors
2358 	 */
2359 	for (i = 0; i <= 31; i++)
2360 		set_except_vector(i, handle_reserved);
2361 
2362 	/*
2363 	 * Copy the EJTAG debug exception vector handler code to it's final
2364 	 * destination.
2365 	 */
2366 	if (cpu_has_ejtag && board_ejtag_handler_setup)
2367 		board_ejtag_handler_setup();
2368 
2369 	/*
2370 	 * Only some CPUs have the watch exceptions.
2371 	 */
2372 	if (cpu_has_watch)
2373 		set_except_vector(EXCCODE_WATCH, handle_watch);
2374 
2375 	/*
2376 	 * Initialise interrupt handlers
2377 	 */
2378 	if (cpu_has_veic || cpu_has_vint) {
2379 		int nvec = cpu_has_veic ? 64 : 8;
2380 		for (i = 0; i < nvec; i++)
2381 			set_vi_handler(i, NULL);
2382 	}
2383 	else if (cpu_has_divec)
2384 		set_handler(0x200, &except_vec4, 0x8);
2385 
2386 	/*
2387 	 * Some CPUs can enable/disable for cache parity detection, but does
2388 	 * it different ways.
2389 	 */
2390 	parity_protection_init();
2391 
2392 	/*
2393 	 * The Data Bus Errors / Instruction Bus Errors are signaled
2394 	 * by external hardware.  Therefore these two exceptions
2395 	 * may have board specific handlers.
2396 	 */
2397 	if (board_be_init)
2398 		board_be_init();
2399 
2400 	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2401 					rollback_handle_int : handle_int);
2402 	set_except_vector(EXCCODE_MOD, handle_tlbm);
2403 	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2404 	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2405 
2406 	set_except_vector(EXCCODE_ADEL, handle_adel);
2407 	set_except_vector(EXCCODE_ADES, handle_ades);
2408 
2409 	set_except_vector(EXCCODE_IBE, handle_ibe);
2410 	set_except_vector(EXCCODE_DBE, handle_dbe);
2411 
2412 	set_except_vector(EXCCODE_SYS, handle_sys);
2413 	set_except_vector(EXCCODE_BP, handle_bp);
2414 
2415 	if (rdhwr_noopt)
2416 		set_except_vector(EXCCODE_RI, handle_ri);
2417 	else {
2418 		if (cpu_has_vtag_icache)
2419 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2420 		else if (current_cpu_type() == CPU_LOONGSON3)
2421 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2422 		else
2423 			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2424 	}
2425 
2426 	set_except_vector(EXCCODE_CPU, handle_cpu);
2427 	set_except_vector(EXCCODE_OV, handle_ov);
2428 	set_except_vector(EXCCODE_TR, handle_tr);
2429 	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2430 
2431 	if (current_cpu_type() == CPU_R6000 ||
2432 	    current_cpu_type() == CPU_R6000A) {
2433 		/*
2434 		 * The R6000 is the only R-series CPU that features a machine
2435 		 * check exception (similar to the R4000 cache error) and
2436 		 * unaligned ldc1/sdc1 exception.  The handlers have not been
2437 		 * written yet.	 Well, anyway there is no R6000 machine on the
2438 		 * current list of targets for Linux/MIPS.
2439 		 * (Duh, crap, there is someone with a triple R6k machine)
2440 		 */
2441 		//set_except_vector(14, handle_mc);
2442 		//set_except_vector(15, handle_ndc);
2443 	}
2444 
2445 
2446 	if (board_nmi_handler_setup)
2447 		board_nmi_handler_setup();
2448 
2449 	if (cpu_has_fpu && !cpu_has_nofpuex)
2450 		set_except_vector(EXCCODE_FPE, handle_fpe);
2451 
2452 	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2453 
2454 	if (cpu_has_rixiex) {
2455 		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2456 		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2457 	}
2458 
2459 	set_except_vector(EXCCODE_MSADIS, handle_msa);
2460 	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2461 
2462 	if (cpu_has_mcheck)
2463 		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2464 
2465 	if (cpu_has_mipsmt)
2466 		set_except_vector(EXCCODE_THREAD, handle_mt);
2467 
2468 	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2469 
2470 	if (board_cache_error_setup)
2471 		board_cache_error_setup();
2472 
2473 	if (cpu_has_vce)
2474 		/* Special exception: R4[04]00 uses also the divec space. */
2475 		set_handler(0x180, &except_vec3_r4000, 0x100);
2476 	else if (cpu_has_4kex)
2477 		set_handler(0x180, &except_vec3_generic, 0x80);
2478 	else
2479 		set_handler(0x080, &except_vec3_generic, 0x80);
2480 
2481 	local_flush_icache_range(ebase, ebase + 0x400);
2482 
2483 	sort_extable(__start___dbe_table, __stop___dbe_table);
2484 
2485 	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2486 }
2487 
trap_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2488 static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2489 			    void *v)
2490 {
2491 	switch (cmd) {
2492 	case CPU_PM_ENTER_FAILED:
2493 	case CPU_PM_EXIT:
2494 		configure_status();
2495 		configure_hwrena();
2496 		configure_exception_vector();
2497 
2498 		/* Restore register with CPU number for TLB handlers */
2499 		TLBMISS_HANDLER_RESTORE();
2500 
2501 		break;
2502 	}
2503 
2504 	return NOTIFY_OK;
2505 }
2506 
2507 static struct notifier_block trap_pm_notifier_block = {
2508 	.notifier_call = trap_pm_notifier,
2509 };
2510 
trap_pm_init(void)2511 static int __init trap_pm_init(void)
2512 {
2513 	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2514 }
2515 arch_initcall(trap_pm_init);
2516