1 /*
2 * General Purpose functions for the global management of the
3 * Communication Processor Module.
4 * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
5 *
6 * In addition to the individual control of the communication
7 * channels, there are a few functions that globally affect the
8 * communication processor.
9 *
10 * Buffer descriptors must be allocated from the dual ported memory
11 * space. The allocator for that is here. When the communication
12 * process is reset, we reclaim the memory available. There is
13 * currently no deallocator for this memory.
14 * The amount of space available is platform dependent. On the
15 * MBX, the EPPC software loads additional microcode into the
16 * communication processor, and uses some of the DP ram for this
17 * purpose. Current, the first 512 bytes and the last 256 bytes of
18 * memory are used. Right now I am conservative and only use the
19 * memory that can never be used for microcode. If there are
20 * applications that require more DP ram, we can expand the boundaries
21 * but then we have to be careful of any downloaded microcode.
22 */
23 #include <linux/errno.h>
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/param.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/slab.h>
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/8xx_immap.h>
38 #include <asm/cpm1.h>
39 #include <asm/io.h>
40 #include <asm/tlbflush.h>
41 #include <asm/rheap.h>
42 #include <asm/prom.h>
43 #include <asm/cpm.h>
44
45 #include <asm/fs_pd.h>
46
47 #ifdef CONFIG_8xx_GPIO
48 #include <linux/of_gpio.h>
49 #endif
50
51 #define CPM_MAP_SIZE (0x4000)
52
53 cpm8xx_t __iomem *cpmp; /* Pointer to comm processor space */
54 immap_t __iomem *mpc8xx_immr;
55 static cpic8xx_t __iomem *cpic_reg;
56
57 static struct irq_domain *cpm_pic_host;
58
cpm_mask_irq(struct irq_data * d)59 static void cpm_mask_irq(struct irq_data *d)
60 {
61 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
62
63 clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
64 }
65
cpm_unmask_irq(struct irq_data * d)66 static void cpm_unmask_irq(struct irq_data *d)
67 {
68 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
69
70 setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
71 }
72
cpm_end_irq(struct irq_data * d)73 static void cpm_end_irq(struct irq_data *d)
74 {
75 unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
76
77 out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
78 }
79
80 static struct irq_chip cpm_pic = {
81 .name = "CPM PIC",
82 .irq_mask = cpm_mask_irq,
83 .irq_unmask = cpm_unmask_irq,
84 .irq_eoi = cpm_end_irq,
85 };
86
cpm_get_irq(void)87 int cpm_get_irq(void)
88 {
89 int cpm_vec;
90
91 /* Get the vector by setting the ACK bit and then reading
92 * the register.
93 */
94 out_be16(&cpic_reg->cpic_civr, 1);
95 cpm_vec = in_be16(&cpic_reg->cpic_civr);
96 cpm_vec >>= 11;
97
98 return irq_linear_revmap(cpm_pic_host, cpm_vec);
99 }
100
cpm_pic_host_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)101 static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq,
102 irq_hw_number_t hw)
103 {
104 pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
105
106 irq_set_status_flags(virq, IRQ_LEVEL);
107 irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
108 return 0;
109 }
110
111 /* The CPM can generate the error interrupt when there is a race condition
112 * between generating and masking interrupts. All we have to do is ACK it
113 * and return. This is a no-op function so we don't need any special
114 * tests in the interrupt handler.
115 */
cpm_error_interrupt(int irq,void * dev)116 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
117 {
118 return IRQ_HANDLED;
119 }
120
121 static struct irqaction cpm_error_irqaction = {
122 .handler = cpm_error_interrupt,
123 .flags = IRQF_NO_THREAD,
124 .name = "error",
125 };
126
127 static const struct irq_domain_ops cpm_pic_host_ops = {
128 .map = cpm_pic_host_map,
129 };
130
cpm_pic_init(void)131 unsigned int cpm_pic_init(void)
132 {
133 struct device_node *np = NULL;
134 struct resource res;
135 unsigned int sirq = 0, hwirq, eirq;
136 int ret;
137
138 pr_debug("cpm_pic_init\n");
139
140 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
141 if (np == NULL)
142 np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
143 if (np == NULL) {
144 printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
145 return sirq;
146 }
147
148 ret = of_address_to_resource(np, 0, &res);
149 if (ret)
150 goto end;
151
152 cpic_reg = ioremap(res.start, resource_size(&res));
153 if (cpic_reg == NULL)
154 goto end;
155
156 sirq = irq_of_parse_and_map(np, 0);
157 if (!sirq)
158 goto end;
159
160 /* Initialize the CPM interrupt controller. */
161 hwirq = (unsigned int)virq_to_hw(sirq);
162 out_be32(&cpic_reg->cpic_cicr,
163 (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
164 ((hwirq/2) << 13) | CICR_HP_MASK);
165
166 out_be32(&cpic_reg->cpic_cimr, 0);
167
168 cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
169 if (cpm_pic_host == NULL) {
170 printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
171 sirq = 0;
172 goto end;
173 }
174
175 /* Install our own error handler. */
176 np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
177 if (np == NULL)
178 np = of_find_node_by_type(NULL, "cpm");
179 if (np == NULL) {
180 printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
181 goto end;
182 }
183
184 eirq = irq_of_parse_and_map(np, 0);
185 if (!eirq)
186 goto end;
187
188 if (setup_irq(eirq, &cpm_error_irqaction))
189 printk(KERN_ERR "Could not allocate CPM error IRQ!");
190
191 setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
192
193 end:
194 of_node_put(np);
195 return sirq;
196 }
197
cpm_reset(void)198 void __init cpm_reset(void)
199 {
200 sysconf8xx_t __iomem *siu_conf;
201
202 mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
203 if (!mpc8xx_immr) {
204 printk(KERN_CRIT "Could not map IMMR\n");
205 return;
206 }
207
208 cpmp = &mpc8xx_immr->im_cpm;
209
210 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
211 /* Perform a reset.
212 */
213 out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
214
215 /* Wait for it.
216 */
217 while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
218 #endif
219
220 #ifdef CONFIG_UCODE_PATCH
221 cpm_load_patch(cpmp);
222 #endif
223
224 /* Set SDMA Bus Request priority 5.
225 * On 860T, this also enables FEC priority 6. I am not sure
226 * this is what we really want for some applications, but the
227 * manual recommends it.
228 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
229 */
230 siu_conf = immr_map(im_siu_conf);
231 if ((mfspr(SPRN_IMMR) & 0xffff) == 0x0900) /* MPC885 */
232 out_be32(&siu_conf->sc_sdcr, 0x40);
233 else
234 out_be32(&siu_conf->sc_sdcr, 1);
235 immr_unmap(siu_conf);
236 }
237
238 static DEFINE_SPINLOCK(cmd_lock);
239
240 #define MAX_CR_CMD_LOOPS 10000
241
cpm_command(u32 command,u8 opcode)242 int cpm_command(u32 command, u8 opcode)
243 {
244 int i, ret;
245 unsigned long flags;
246
247 if (command & 0xffffff0f)
248 return -EINVAL;
249
250 spin_lock_irqsave(&cmd_lock, flags);
251
252 ret = 0;
253 out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
254 for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
255 if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
256 goto out;
257
258 printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
259 ret = -EIO;
260 out:
261 spin_unlock_irqrestore(&cmd_lock, flags);
262 return ret;
263 }
264 EXPORT_SYMBOL(cpm_command);
265
266 /* Set a baud rate generator. This needs lots of work. There are
267 * four BRGs, any of which can be wired to any channel.
268 * The internal baud rate clock is the system clock divided by 16.
269 * This assumes the baudrate is 16x oversampled by the uart.
270 */
271 #define BRG_INT_CLK (get_brgfreq())
272 #define BRG_UART_CLK (BRG_INT_CLK/16)
273 #define BRG_UART_CLK_DIV16 (BRG_UART_CLK/16)
274
275 void
cpm_setbrg(uint brg,uint rate)276 cpm_setbrg(uint brg, uint rate)
277 {
278 u32 __iomem *bp;
279
280 /* This is good enough to get SMCs running.....
281 */
282 bp = &cpmp->cp_brgc1;
283 bp += brg;
284 /* The BRG has a 12-bit counter. For really slow baud rates (or
285 * really fast processors), we may have to further divide by 16.
286 */
287 if (((BRG_UART_CLK / rate) - 1) < 4096)
288 out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
289 else
290 out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
291 CPM_BRG_EN | CPM_BRG_DIV16);
292 }
293
294 struct cpm_ioport16 {
295 __be16 dir, par, odr_sor, dat, intr;
296 __be16 res[3];
297 };
298
299 struct cpm_ioport32b {
300 __be32 dir, par, odr, dat;
301 };
302
303 struct cpm_ioport32e {
304 __be32 dir, par, sor, odr, dat;
305 };
306
cpm1_set_pin32(int port,int pin,int flags)307 static void cpm1_set_pin32(int port, int pin, int flags)
308 {
309 struct cpm_ioport32e __iomem *iop;
310 pin = 1 << (31 - pin);
311
312 if (port == CPM_PORTB)
313 iop = (struct cpm_ioport32e __iomem *)
314 &mpc8xx_immr->im_cpm.cp_pbdir;
315 else
316 iop = (struct cpm_ioport32e __iomem *)
317 &mpc8xx_immr->im_cpm.cp_pedir;
318
319 if (flags & CPM_PIN_OUTPUT)
320 setbits32(&iop->dir, pin);
321 else
322 clrbits32(&iop->dir, pin);
323
324 if (!(flags & CPM_PIN_GPIO))
325 setbits32(&iop->par, pin);
326 else
327 clrbits32(&iop->par, pin);
328
329 if (port == CPM_PORTB) {
330 if (flags & CPM_PIN_OPENDRAIN)
331 setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
332 else
333 clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
334 }
335
336 if (port == CPM_PORTE) {
337 if (flags & CPM_PIN_SECONDARY)
338 setbits32(&iop->sor, pin);
339 else
340 clrbits32(&iop->sor, pin);
341
342 if (flags & CPM_PIN_OPENDRAIN)
343 setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
344 else
345 clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
346 }
347 }
348
cpm1_set_pin16(int port,int pin,int flags)349 static void cpm1_set_pin16(int port, int pin, int flags)
350 {
351 struct cpm_ioport16 __iomem *iop =
352 (struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
353
354 pin = 1 << (15 - pin);
355
356 if (port != 0)
357 iop += port - 1;
358
359 if (flags & CPM_PIN_OUTPUT)
360 setbits16(&iop->dir, pin);
361 else
362 clrbits16(&iop->dir, pin);
363
364 if (!(flags & CPM_PIN_GPIO))
365 setbits16(&iop->par, pin);
366 else
367 clrbits16(&iop->par, pin);
368
369 if (port == CPM_PORTA) {
370 if (flags & CPM_PIN_OPENDRAIN)
371 setbits16(&iop->odr_sor, pin);
372 else
373 clrbits16(&iop->odr_sor, pin);
374 }
375 if (port == CPM_PORTC) {
376 if (flags & CPM_PIN_SECONDARY)
377 setbits16(&iop->odr_sor, pin);
378 else
379 clrbits16(&iop->odr_sor, pin);
380 }
381 }
382
cpm1_set_pin(enum cpm_port port,int pin,int flags)383 void cpm1_set_pin(enum cpm_port port, int pin, int flags)
384 {
385 if (port == CPM_PORTB || port == CPM_PORTE)
386 cpm1_set_pin32(port, pin, flags);
387 else
388 cpm1_set_pin16(port, pin, flags);
389 }
390
cpm1_clk_setup(enum cpm_clk_target target,int clock,int mode)391 int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
392 {
393 int shift;
394 int i, bits = 0;
395 u32 __iomem *reg;
396 u32 mask = 7;
397
398 u8 clk_map[][3] = {
399 {CPM_CLK_SCC1, CPM_BRG1, 0},
400 {CPM_CLK_SCC1, CPM_BRG2, 1},
401 {CPM_CLK_SCC1, CPM_BRG3, 2},
402 {CPM_CLK_SCC1, CPM_BRG4, 3},
403 {CPM_CLK_SCC1, CPM_CLK1, 4},
404 {CPM_CLK_SCC1, CPM_CLK2, 5},
405 {CPM_CLK_SCC1, CPM_CLK3, 6},
406 {CPM_CLK_SCC1, CPM_CLK4, 7},
407
408 {CPM_CLK_SCC2, CPM_BRG1, 0},
409 {CPM_CLK_SCC2, CPM_BRG2, 1},
410 {CPM_CLK_SCC2, CPM_BRG3, 2},
411 {CPM_CLK_SCC2, CPM_BRG4, 3},
412 {CPM_CLK_SCC2, CPM_CLK1, 4},
413 {CPM_CLK_SCC2, CPM_CLK2, 5},
414 {CPM_CLK_SCC2, CPM_CLK3, 6},
415 {CPM_CLK_SCC2, CPM_CLK4, 7},
416
417 {CPM_CLK_SCC3, CPM_BRG1, 0},
418 {CPM_CLK_SCC3, CPM_BRG2, 1},
419 {CPM_CLK_SCC3, CPM_BRG3, 2},
420 {CPM_CLK_SCC3, CPM_BRG4, 3},
421 {CPM_CLK_SCC3, CPM_CLK5, 4},
422 {CPM_CLK_SCC3, CPM_CLK6, 5},
423 {CPM_CLK_SCC3, CPM_CLK7, 6},
424 {CPM_CLK_SCC3, CPM_CLK8, 7},
425
426 {CPM_CLK_SCC4, CPM_BRG1, 0},
427 {CPM_CLK_SCC4, CPM_BRG2, 1},
428 {CPM_CLK_SCC4, CPM_BRG3, 2},
429 {CPM_CLK_SCC4, CPM_BRG4, 3},
430 {CPM_CLK_SCC4, CPM_CLK5, 4},
431 {CPM_CLK_SCC4, CPM_CLK6, 5},
432 {CPM_CLK_SCC4, CPM_CLK7, 6},
433 {CPM_CLK_SCC4, CPM_CLK8, 7},
434
435 {CPM_CLK_SMC1, CPM_BRG1, 0},
436 {CPM_CLK_SMC1, CPM_BRG2, 1},
437 {CPM_CLK_SMC1, CPM_BRG3, 2},
438 {CPM_CLK_SMC1, CPM_BRG4, 3},
439 {CPM_CLK_SMC1, CPM_CLK1, 4},
440 {CPM_CLK_SMC1, CPM_CLK2, 5},
441 {CPM_CLK_SMC1, CPM_CLK3, 6},
442 {CPM_CLK_SMC1, CPM_CLK4, 7},
443
444 {CPM_CLK_SMC2, CPM_BRG1, 0},
445 {CPM_CLK_SMC2, CPM_BRG2, 1},
446 {CPM_CLK_SMC2, CPM_BRG3, 2},
447 {CPM_CLK_SMC2, CPM_BRG4, 3},
448 {CPM_CLK_SMC2, CPM_CLK5, 4},
449 {CPM_CLK_SMC2, CPM_CLK6, 5},
450 {CPM_CLK_SMC2, CPM_CLK7, 6},
451 {CPM_CLK_SMC2, CPM_CLK8, 7},
452 };
453
454 switch (target) {
455 case CPM_CLK_SCC1:
456 reg = &mpc8xx_immr->im_cpm.cp_sicr;
457 shift = 0;
458 break;
459
460 case CPM_CLK_SCC2:
461 reg = &mpc8xx_immr->im_cpm.cp_sicr;
462 shift = 8;
463 break;
464
465 case CPM_CLK_SCC3:
466 reg = &mpc8xx_immr->im_cpm.cp_sicr;
467 shift = 16;
468 break;
469
470 case CPM_CLK_SCC4:
471 reg = &mpc8xx_immr->im_cpm.cp_sicr;
472 shift = 24;
473 break;
474
475 case CPM_CLK_SMC1:
476 reg = &mpc8xx_immr->im_cpm.cp_simode;
477 shift = 12;
478 break;
479
480 case CPM_CLK_SMC2:
481 reg = &mpc8xx_immr->im_cpm.cp_simode;
482 shift = 28;
483 break;
484
485 default:
486 printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
487 return -EINVAL;
488 }
489
490 for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
491 if (clk_map[i][0] == target && clk_map[i][1] == clock) {
492 bits = clk_map[i][2];
493 break;
494 }
495 }
496
497 if (i == ARRAY_SIZE(clk_map)) {
498 printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
499 return -EINVAL;
500 }
501
502 bits <<= shift;
503 mask <<= shift;
504
505 if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
506 if (mode == CPM_CLK_RTX) {
507 bits |= bits << 3;
508 mask |= mask << 3;
509 } else if (mode == CPM_CLK_RX) {
510 bits <<= 3;
511 mask <<= 3;
512 }
513 }
514
515 out_be32(reg, (in_be32(reg) & ~mask) | bits);
516
517 return 0;
518 }
519
520 /*
521 * GPIO LIB API implementation
522 */
523 #ifdef CONFIG_8xx_GPIO
524
525 struct cpm1_gpio16_chip {
526 struct of_mm_gpio_chip mm_gc;
527 spinlock_t lock;
528
529 /* shadowed data register to clear/set bits safely */
530 u16 cpdata;
531 };
532
cpm1_gpio16_save_regs(struct of_mm_gpio_chip * mm_gc)533 static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
534 {
535 struct cpm1_gpio16_chip *cpm1_gc =
536 container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
537 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
538
539 cpm1_gc->cpdata = in_be16(&iop->dat);
540 }
541
cpm1_gpio16_get(struct gpio_chip * gc,unsigned int gpio)542 static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
543 {
544 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
545 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
546 u16 pin_mask;
547
548 pin_mask = 1 << (15 - gpio);
549
550 return !!(in_be16(&iop->dat) & pin_mask);
551 }
552
__cpm1_gpio16_set(struct of_mm_gpio_chip * mm_gc,u16 pin_mask,int value)553 static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
554 int value)
555 {
556 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
557 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
558
559 if (value)
560 cpm1_gc->cpdata |= pin_mask;
561 else
562 cpm1_gc->cpdata &= ~pin_mask;
563
564 out_be16(&iop->dat, cpm1_gc->cpdata);
565 }
566
cpm1_gpio16_set(struct gpio_chip * gc,unsigned int gpio,int value)567 static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
568 {
569 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
570 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
571 unsigned long flags;
572 u16 pin_mask = 1 << (15 - gpio);
573
574 spin_lock_irqsave(&cpm1_gc->lock, flags);
575
576 __cpm1_gpio16_set(mm_gc, pin_mask, value);
577
578 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
579 }
580
cpm1_gpio16_dir_out(struct gpio_chip * gc,unsigned int gpio,int val)581 static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
582 {
583 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
584 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
585 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
586 unsigned long flags;
587 u16 pin_mask = 1 << (15 - gpio);
588
589 spin_lock_irqsave(&cpm1_gc->lock, flags);
590
591 setbits16(&iop->dir, pin_mask);
592 __cpm1_gpio16_set(mm_gc, pin_mask, val);
593
594 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
595
596 return 0;
597 }
598
cpm1_gpio16_dir_in(struct gpio_chip * gc,unsigned int gpio)599 static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
600 {
601 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
602 struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
603 struct cpm_ioport16 __iomem *iop = mm_gc->regs;
604 unsigned long flags;
605 u16 pin_mask = 1 << (15 - gpio);
606
607 spin_lock_irqsave(&cpm1_gc->lock, flags);
608
609 clrbits16(&iop->dir, pin_mask);
610
611 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
612
613 return 0;
614 }
615
cpm1_gpiochip_add16(struct device_node * np)616 int cpm1_gpiochip_add16(struct device_node *np)
617 {
618 struct cpm1_gpio16_chip *cpm1_gc;
619 struct of_mm_gpio_chip *mm_gc;
620 struct gpio_chip *gc;
621
622 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
623 if (!cpm1_gc)
624 return -ENOMEM;
625
626 spin_lock_init(&cpm1_gc->lock);
627
628 mm_gc = &cpm1_gc->mm_gc;
629 gc = &mm_gc->gc;
630
631 mm_gc->save_regs = cpm1_gpio16_save_regs;
632 gc->ngpio = 16;
633 gc->direction_input = cpm1_gpio16_dir_in;
634 gc->direction_output = cpm1_gpio16_dir_out;
635 gc->get = cpm1_gpio16_get;
636 gc->set = cpm1_gpio16_set;
637
638 return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
639 }
640
641 struct cpm1_gpio32_chip {
642 struct of_mm_gpio_chip mm_gc;
643 spinlock_t lock;
644
645 /* shadowed data register to clear/set bits safely */
646 u32 cpdata;
647 };
648
cpm1_gpio32_save_regs(struct of_mm_gpio_chip * mm_gc)649 static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
650 {
651 struct cpm1_gpio32_chip *cpm1_gc =
652 container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
653 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
654
655 cpm1_gc->cpdata = in_be32(&iop->dat);
656 }
657
cpm1_gpio32_get(struct gpio_chip * gc,unsigned int gpio)658 static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
659 {
660 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
661 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
662 u32 pin_mask;
663
664 pin_mask = 1 << (31 - gpio);
665
666 return !!(in_be32(&iop->dat) & pin_mask);
667 }
668
__cpm1_gpio32_set(struct of_mm_gpio_chip * mm_gc,u32 pin_mask,int value)669 static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
670 int value)
671 {
672 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
673 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
674
675 if (value)
676 cpm1_gc->cpdata |= pin_mask;
677 else
678 cpm1_gc->cpdata &= ~pin_mask;
679
680 out_be32(&iop->dat, cpm1_gc->cpdata);
681 }
682
cpm1_gpio32_set(struct gpio_chip * gc,unsigned int gpio,int value)683 static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
684 {
685 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
686 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
687 unsigned long flags;
688 u32 pin_mask = 1 << (31 - gpio);
689
690 spin_lock_irqsave(&cpm1_gc->lock, flags);
691
692 __cpm1_gpio32_set(mm_gc, pin_mask, value);
693
694 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
695 }
696
cpm1_gpio32_dir_out(struct gpio_chip * gc,unsigned int gpio,int val)697 static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
698 {
699 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
700 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
701 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
702 unsigned long flags;
703 u32 pin_mask = 1 << (31 - gpio);
704
705 spin_lock_irqsave(&cpm1_gc->lock, flags);
706
707 setbits32(&iop->dir, pin_mask);
708 __cpm1_gpio32_set(mm_gc, pin_mask, val);
709
710 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
711
712 return 0;
713 }
714
cpm1_gpio32_dir_in(struct gpio_chip * gc,unsigned int gpio)715 static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
716 {
717 struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
718 struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
719 struct cpm_ioport32b __iomem *iop = mm_gc->regs;
720 unsigned long flags;
721 u32 pin_mask = 1 << (31 - gpio);
722
723 spin_lock_irqsave(&cpm1_gc->lock, flags);
724
725 clrbits32(&iop->dir, pin_mask);
726
727 spin_unlock_irqrestore(&cpm1_gc->lock, flags);
728
729 return 0;
730 }
731
cpm1_gpiochip_add32(struct device_node * np)732 int cpm1_gpiochip_add32(struct device_node *np)
733 {
734 struct cpm1_gpio32_chip *cpm1_gc;
735 struct of_mm_gpio_chip *mm_gc;
736 struct gpio_chip *gc;
737
738 cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
739 if (!cpm1_gc)
740 return -ENOMEM;
741
742 spin_lock_init(&cpm1_gc->lock);
743
744 mm_gc = &cpm1_gc->mm_gc;
745 gc = &mm_gc->gc;
746
747 mm_gc->save_regs = cpm1_gpio32_save_regs;
748 gc->ngpio = 32;
749 gc->direction_input = cpm1_gpio32_dir_in;
750 gc->direction_output = cpm1_gpio32_dir_out;
751 gc->get = cpm1_gpio32_get;
752 gc->set = cpm1_gpio32_set;
753
754 return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
755 }
756
cpm_init_par_io(void)757 static int cpm_init_par_io(void)
758 {
759 struct device_node *np;
760
761 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-a")
762 cpm1_gpiochip_add16(np);
763
764 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-b")
765 cpm1_gpiochip_add32(np);
766
767 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-c")
768 cpm1_gpiochip_add16(np);
769
770 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-d")
771 cpm1_gpiochip_add16(np);
772
773 /* Port E uses CPM2 layout */
774 for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-e")
775 cpm2_gpiochip_add32(np);
776 return 0;
777 }
778 arch_initcall(cpm_init_par_io);
779
780 #endif /* CONFIG_8xx_GPIO */
781