• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * General Purpose functions for the global management of the
3  * Communication Processor Module.
4  * Copyright (c) 1997 Dan error_act (dmalek@jlc.net)
5  *
6  * In addition to the individual control of the communication
7  * channels, there are a few functions that globally affect the
8  * communication processor.
9  *
10  * Buffer descriptors must be allocated from the dual ported memory
11  * space.  The allocator for that is here.  When the communication
12  * process is reset, we reclaim the memory available.  There is
13  * currently no deallocator for this memory.
14  * The amount of space available is platform dependent.  On the
15  * MBX, the EPPC software loads additional microcode into the
16  * communication processor, and uses some of the DP ram for this
17  * purpose.  Current, the first 512 bytes and the last 256 bytes of
18  * memory are used.  Right now I am conservative and only use the
19  * memory that can never be used for microcode.  If there are
20  * applications that require more DP ram, we can expand the boundaries
21  * but then we have to be careful of any downloaded microcode.
22  */
23 #include <linux/errno.h>
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/param.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/slab.h>
35 #include <asm/page.h>
36 #include <asm/pgtable.h>
37 #include <asm/8xx_immap.h>
38 #include <asm/cpm1.h>
39 #include <asm/io.h>
40 #include <asm/tlbflush.h>
41 #include <asm/rheap.h>
42 #include <asm/prom.h>
43 #include <asm/cpm.h>
44 
45 #include <asm/fs_pd.h>
46 
47 #ifdef CONFIG_8xx_GPIO
48 #include <linux/of_gpio.h>
49 #endif
50 
51 #define CPM_MAP_SIZE    (0x4000)
52 
53 cpm8xx_t __iomem *cpmp;  /* Pointer to comm processor space */
54 immap_t __iomem *mpc8xx_immr;
55 static cpic8xx_t __iomem *cpic_reg;
56 
57 static struct irq_domain *cpm_pic_host;
58 
cpm_mask_irq(struct irq_data * d)59 static void cpm_mask_irq(struct irq_data *d)
60 {
61 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
62 
63 	clrbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
64 }
65 
cpm_unmask_irq(struct irq_data * d)66 static void cpm_unmask_irq(struct irq_data *d)
67 {
68 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
69 
70 	setbits32(&cpic_reg->cpic_cimr, (1 << cpm_vec));
71 }
72 
cpm_end_irq(struct irq_data * d)73 static void cpm_end_irq(struct irq_data *d)
74 {
75 	unsigned int cpm_vec = (unsigned int)irqd_to_hwirq(d);
76 
77 	out_be32(&cpic_reg->cpic_cisr, (1 << cpm_vec));
78 }
79 
80 static struct irq_chip cpm_pic = {
81 	.name = "CPM PIC",
82 	.irq_mask = cpm_mask_irq,
83 	.irq_unmask = cpm_unmask_irq,
84 	.irq_eoi = cpm_end_irq,
85 };
86 
cpm_get_irq(void)87 int cpm_get_irq(void)
88 {
89 	int cpm_vec;
90 
91 	/* Get the vector by setting the ACK bit and then reading
92 	 * the register.
93 	 */
94 	out_be16(&cpic_reg->cpic_civr, 1);
95 	cpm_vec = in_be16(&cpic_reg->cpic_civr);
96 	cpm_vec >>= 11;
97 
98 	return irq_linear_revmap(cpm_pic_host, cpm_vec);
99 }
100 
cpm_pic_host_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)101 static int cpm_pic_host_map(struct irq_domain *h, unsigned int virq,
102 			  irq_hw_number_t hw)
103 {
104 	pr_debug("cpm_pic_host_map(%d, 0x%lx)\n", virq, hw);
105 
106 	irq_set_status_flags(virq, IRQ_LEVEL);
107 	irq_set_chip_and_handler(virq, &cpm_pic, handle_fasteoi_irq);
108 	return 0;
109 }
110 
111 /* The CPM can generate the error interrupt when there is a race condition
112  * between generating and masking interrupts.  All we have to do is ACK it
113  * and return.  This is a no-op function so we don't need any special
114  * tests in the interrupt handler.
115  */
cpm_error_interrupt(int irq,void * dev)116 static irqreturn_t cpm_error_interrupt(int irq, void *dev)
117 {
118 	return IRQ_HANDLED;
119 }
120 
121 static struct irqaction cpm_error_irqaction = {
122 	.handler = cpm_error_interrupt,
123 	.flags = IRQF_NO_THREAD,
124 	.name = "error",
125 };
126 
127 static const struct irq_domain_ops cpm_pic_host_ops = {
128 	.map = cpm_pic_host_map,
129 };
130 
cpm_pic_init(void)131 unsigned int cpm_pic_init(void)
132 {
133 	struct device_node *np = NULL;
134 	struct resource res;
135 	unsigned int sirq = 0, hwirq, eirq;
136 	int ret;
137 
138 	pr_debug("cpm_pic_init\n");
139 
140 	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1-pic");
141 	if (np == NULL)
142 		np = of_find_compatible_node(NULL, "cpm-pic", "CPM");
143 	if (np == NULL) {
144 		printk(KERN_ERR "CPM PIC init: can not find cpm-pic node\n");
145 		return sirq;
146 	}
147 
148 	ret = of_address_to_resource(np, 0, &res);
149 	if (ret)
150 		goto end;
151 
152 	cpic_reg = ioremap(res.start, resource_size(&res));
153 	if (cpic_reg == NULL)
154 		goto end;
155 
156 	sirq = irq_of_parse_and_map(np, 0);
157 	if (!sirq)
158 		goto end;
159 
160 	/* Initialize the CPM interrupt controller. */
161 	hwirq = (unsigned int)virq_to_hw(sirq);
162 	out_be32(&cpic_reg->cpic_cicr,
163 	    (CICR_SCD_SCC4 | CICR_SCC_SCC3 | CICR_SCB_SCC2 | CICR_SCA_SCC1) |
164 		((hwirq/2) << 13) | CICR_HP_MASK);
165 
166 	out_be32(&cpic_reg->cpic_cimr, 0);
167 
168 	cpm_pic_host = irq_domain_add_linear(np, 64, &cpm_pic_host_ops, NULL);
169 	if (cpm_pic_host == NULL) {
170 		printk(KERN_ERR "CPM2 PIC: failed to allocate irq host!\n");
171 		sirq = 0;
172 		goto end;
173 	}
174 
175 	/* Install our own error handler. */
176 	np = of_find_compatible_node(NULL, NULL, "fsl,cpm1");
177 	if (np == NULL)
178 		np = of_find_node_by_type(NULL, "cpm");
179 	if (np == NULL) {
180 		printk(KERN_ERR "CPM PIC init: can not find cpm node\n");
181 		goto end;
182 	}
183 
184 	eirq = irq_of_parse_and_map(np, 0);
185 	if (!eirq)
186 		goto end;
187 
188 	if (setup_irq(eirq, &cpm_error_irqaction))
189 		printk(KERN_ERR "Could not allocate CPM error IRQ!");
190 
191 	setbits32(&cpic_reg->cpic_cicr, CICR_IEN);
192 
193 end:
194 	of_node_put(np);
195 	return sirq;
196 }
197 
cpm_reset(void)198 void __init cpm_reset(void)
199 {
200 	sysconf8xx_t __iomem *siu_conf;
201 
202 	mpc8xx_immr = ioremap(get_immrbase(), 0x4000);
203 	if (!mpc8xx_immr) {
204 		printk(KERN_CRIT "Could not map IMMR\n");
205 		return;
206 	}
207 
208 	cpmp = &mpc8xx_immr->im_cpm;
209 
210 #ifndef CONFIG_PPC_EARLY_DEBUG_CPM
211 	/* Perform a reset.
212 	*/
213 	out_be16(&cpmp->cp_cpcr, CPM_CR_RST | CPM_CR_FLG);
214 
215 	/* Wait for it.
216 	*/
217 	while (in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG);
218 #endif
219 
220 #ifdef CONFIG_UCODE_PATCH
221 	cpm_load_patch(cpmp);
222 #endif
223 
224 	/* Set SDMA Bus Request priority 5.
225 	 * On 860T, this also enables FEC priority 6.  I am not sure
226 	 * this is what we really want for some applications, but the
227 	 * manual recommends it.
228 	 * Bit 25, FAM can also be set to use FEC aggressive mode (860T).
229 	 */
230 	siu_conf = immr_map(im_siu_conf);
231 	if ((mfspr(SPRN_IMMR) & 0xffff) == 0x0900) /* MPC885 */
232 		out_be32(&siu_conf->sc_sdcr, 0x40);
233 	else
234 		out_be32(&siu_conf->sc_sdcr, 1);
235 	immr_unmap(siu_conf);
236 }
237 
238 static DEFINE_SPINLOCK(cmd_lock);
239 
240 #define MAX_CR_CMD_LOOPS        10000
241 
cpm_command(u32 command,u8 opcode)242 int cpm_command(u32 command, u8 opcode)
243 {
244 	int i, ret;
245 	unsigned long flags;
246 
247 	if (command & 0xffffff0f)
248 		return -EINVAL;
249 
250 	spin_lock_irqsave(&cmd_lock, flags);
251 
252 	ret = 0;
253 	out_be16(&cpmp->cp_cpcr, command | CPM_CR_FLG | (opcode << 8));
254 	for (i = 0; i < MAX_CR_CMD_LOOPS; i++)
255 		if ((in_be16(&cpmp->cp_cpcr) & CPM_CR_FLG) == 0)
256 			goto out;
257 
258 	printk(KERN_ERR "%s(): Not able to issue CPM command\n", __func__);
259 	ret = -EIO;
260 out:
261 	spin_unlock_irqrestore(&cmd_lock, flags);
262 	return ret;
263 }
264 EXPORT_SYMBOL(cpm_command);
265 
266 /* Set a baud rate generator.  This needs lots of work.  There are
267  * four BRGs, any of which can be wired to any channel.
268  * The internal baud rate clock is the system clock divided by 16.
269  * This assumes the baudrate is 16x oversampled by the uart.
270  */
271 #define BRG_INT_CLK		(get_brgfreq())
272 #define BRG_UART_CLK		(BRG_INT_CLK/16)
273 #define BRG_UART_CLK_DIV16	(BRG_UART_CLK/16)
274 
275 void
cpm_setbrg(uint brg,uint rate)276 cpm_setbrg(uint brg, uint rate)
277 {
278 	u32 __iomem *bp;
279 
280 	/* This is good enough to get SMCs running.....
281 	*/
282 	bp = &cpmp->cp_brgc1;
283 	bp += brg;
284 	/* The BRG has a 12-bit counter.  For really slow baud rates (or
285 	 * really fast processors), we may have to further divide by 16.
286 	 */
287 	if (((BRG_UART_CLK / rate) - 1) < 4096)
288 		out_be32(bp, (((BRG_UART_CLK / rate) - 1) << 1) | CPM_BRG_EN);
289 	else
290 		out_be32(bp, (((BRG_UART_CLK_DIV16 / rate) - 1) << 1) |
291 			      CPM_BRG_EN | CPM_BRG_DIV16);
292 }
293 
294 struct cpm_ioport16 {
295 	__be16 dir, par, odr_sor, dat, intr;
296 	__be16 res[3];
297 };
298 
299 struct cpm_ioport32b {
300 	__be32 dir, par, odr, dat;
301 };
302 
303 struct cpm_ioport32e {
304 	__be32 dir, par, sor, odr, dat;
305 };
306 
cpm1_set_pin32(int port,int pin,int flags)307 static void cpm1_set_pin32(int port, int pin, int flags)
308 {
309 	struct cpm_ioport32e __iomem *iop;
310 	pin = 1 << (31 - pin);
311 
312 	if (port == CPM_PORTB)
313 		iop = (struct cpm_ioport32e __iomem *)
314 		      &mpc8xx_immr->im_cpm.cp_pbdir;
315 	else
316 		iop = (struct cpm_ioport32e __iomem *)
317 		      &mpc8xx_immr->im_cpm.cp_pedir;
318 
319 	if (flags & CPM_PIN_OUTPUT)
320 		setbits32(&iop->dir, pin);
321 	else
322 		clrbits32(&iop->dir, pin);
323 
324 	if (!(flags & CPM_PIN_GPIO))
325 		setbits32(&iop->par, pin);
326 	else
327 		clrbits32(&iop->par, pin);
328 
329 	if (port == CPM_PORTB) {
330 		if (flags & CPM_PIN_OPENDRAIN)
331 			setbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
332 		else
333 			clrbits16(&mpc8xx_immr->im_cpm.cp_pbodr, pin);
334 	}
335 
336 	if (port == CPM_PORTE) {
337 		if (flags & CPM_PIN_SECONDARY)
338 			setbits32(&iop->sor, pin);
339 		else
340 			clrbits32(&iop->sor, pin);
341 
342 		if (flags & CPM_PIN_OPENDRAIN)
343 			setbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
344 		else
345 			clrbits32(&mpc8xx_immr->im_cpm.cp_peodr, pin);
346 	}
347 }
348 
cpm1_set_pin16(int port,int pin,int flags)349 static void cpm1_set_pin16(int port, int pin, int flags)
350 {
351 	struct cpm_ioport16 __iomem *iop =
352 		(struct cpm_ioport16 __iomem *)&mpc8xx_immr->im_ioport;
353 
354 	pin = 1 << (15 - pin);
355 
356 	if (port != 0)
357 		iop += port - 1;
358 
359 	if (flags & CPM_PIN_OUTPUT)
360 		setbits16(&iop->dir, pin);
361 	else
362 		clrbits16(&iop->dir, pin);
363 
364 	if (!(flags & CPM_PIN_GPIO))
365 		setbits16(&iop->par, pin);
366 	else
367 		clrbits16(&iop->par, pin);
368 
369 	if (port == CPM_PORTA) {
370 		if (flags & CPM_PIN_OPENDRAIN)
371 			setbits16(&iop->odr_sor, pin);
372 		else
373 			clrbits16(&iop->odr_sor, pin);
374 	}
375 	if (port == CPM_PORTC) {
376 		if (flags & CPM_PIN_SECONDARY)
377 			setbits16(&iop->odr_sor, pin);
378 		else
379 			clrbits16(&iop->odr_sor, pin);
380 	}
381 }
382 
cpm1_set_pin(enum cpm_port port,int pin,int flags)383 void cpm1_set_pin(enum cpm_port port, int pin, int flags)
384 {
385 	if (port == CPM_PORTB || port == CPM_PORTE)
386 		cpm1_set_pin32(port, pin, flags);
387 	else
388 		cpm1_set_pin16(port, pin, flags);
389 }
390 
cpm1_clk_setup(enum cpm_clk_target target,int clock,int mode)391 int cpm1_clk_setup(enum cpm_clk_target target, int clock, int mode)
392 {
393 	int shift;
394 	int i, bits = 0;
395 	u32 __iomem *reg;
396 	u32 mask = 7;
397 
398 	u8 clk_map[][3] = {
399 		{CPM_CLK_SCC1, CPM_BRG1, 0},
400 		{CPM_CLK_SCC1, CPM_BRG2, 1},
401 		{CPM_CLK_SCC1, CPM_BRG3, 2},
402 		{CPM_CLK_SCC1, CPM_BRG4, 3},
403 		{CPM_CLK_SCC1, CPM_CLK1, 4},
404 		{CPM_CLK_SCC1, CPM_CLK2, 5},
405 		{CPM_CLK_SCC1, CPM_CLK3, 6},
406 		{CPM_CLK_SCC1, CPM_CLK4, 7},
407 
408 		{CPM_CLK_SCC2, CPM_BRG1, 0},
409 		{CPM_CLK_SCC2, CPM_BRG2, 1},
410 		{CPM_CLK_SCC2, CPM_BRG3, 2},
411 		{CPM_CLK_SCC2, CPM_BRG4, 3},
412 		{CPM_CLK_SCC2, CPM_CLK1, 4},
413 		{CPM_CLK_SCC2, CPM_CLK2, 5},
414 		{CPM_CLK_SCC2, CPM_CLK3, 6},
415 		{CPM_CLK_SCC2, CPM_CLK4, 7},
416 
417 		{CPM_CLK_SCC3, CPM_BRG1, 0},
418 		{CPM_CLK_SCC3, CPM_BRG2, 1},
419 		{CPM_CLK_SCC3, CPM_BRG3, 2},
420 		{CPM_CLK_SCC3, CPM_BRG4, 3},
421 		{CPM_CLK_SCC3, CPM_CLK5, 4},
422 		{CPM_CLK_SCC3, CPM_CLK6, 5},
423 		{CPM_CLK_SCC3, CPM_CLK7, 6},
424 		{CPM_CLK_SCC3, CPM_CLK8, 7},
425 
426 		{CPM_CLK_SCC4, CPM_BRG1, 0},
427 		{CPM_CLK_SCC4, CPM_BRG2, 1},
428 		{CPM_CLK_SCC4, CPM_BRG3, 2},
429 		{CPM_CLK_SCC4, CPM_BRG4, 3},
430 		{CPM_CLK_SCC4, CPM_CLK5, 4},
431 		{CPM_CLK_SCC4, CPM_CLK6, 5},
432 		{CPM_CLK_SCC4, CPM_CLK7, 6},
433 		{CPM_CLK_SCC4, CPM_CLK8, 7},
434 
435 		{CPM_CLK_SMC1, CPM_BRG1, 0},
436 		{CPM_CLK_SMC1, CPM_BRG2, 1},
437 		{CPM_CLK_SMC1, CPM_BRG3, 2},
438 		{CPM_CLK_SMC1, CPM_BRG4, 3},
439 		{CPM_CLK_SMC1, CPM_CLK1, 4},
440 		{CPM_CLK_SMC1, CPM_CLK2, 5},
441 		{CPM_CLK_SMC1, CPM_CLK3, 6},
442 		{CPM_CLK_SMC1, CPM_CLK4, 7},
443 
444 		{CPM_CLK_SMC2, CPM_BRG1, 0},
445 		{CPM_CLK_SMC2, CPM_BRG2, 1},
446 		{CPM_CLK_SMC2, CPM_BRG3, 2},
447 		{CPM_CLK_SMC2, CPM_BRG4, 3},
448 		{CPM_CLK_SMC2, CPM_CLK5, 4},
449 		{CPM_CLK_SMC2, CPM_CLK6, 5},
450 		{CPM_CLK_SMC2, CPM_CLK7, 6},
451 		{CPM_CLK_SMC2, CPM_CLK8, 7},
452 	};
453 
454 	switch (target) {
455 	case CPM_CLK_SCC1:
456 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
457 		shift = 0;
458 		break;
459 
460 	case CPM_CLK_SCC2:
461 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
462 		shift = 8;
463 		break;
464 
465 	case CPM_CLK_SCC3:
466 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
467 		shift = 16;
468 		break;
469 
470 	case CPM_CLK_SCC4:
471 		reg = &mpc8xx_immr->im_cpm.cp_sicr;
472 		shift = 24;
473 		break;
474 
475 	case CPM_CLK_SMC1:
476 		reg = &mpc8xx_immr->im_cpm.cp_simode;
477 		shift = 12;
478 		break;
479 
480 	case CPM_CLK_SMC2:
481 		reg = &mpc8xx_immr->im_cpm.cp_simode;
482 		shift = 28;
483 		break;
484 
485 	default:
486 		printk(KERN_ERR "cpm1_clock_setup: invalid clock target\n");
487 		return -EINVAL;
488 	}
489 
490 	for (i = 0; i < ARRAY_SIZE(clk_map); i++) {
491 		if (clk_map[i][0] == target && clk_map[i][1] == clock) {
492 			bits = clk_map[i][2];
493 			break;
494 		}
495 	}
496 
497 	if (i == ARRAY_SIZE(clk_map)) {
498 		printk(KERN_ERR "cpm1_clock_setup: invalid clock combination\n");
499 		return -EINVAL;
500 	}
501 
502 	bits <<= shift;
503 	mask <<= shift;
504 
505 	if (reg == &mpc8xx_immr->im_cpm.cp_sicr) {
506 		if (mode == CPM_CLK_RTX) {
507 			bits |= bits << 3;
508 			mask |= mask << 3;
509 		} else if (mode == CPM_CLK_RX) {
510 			bits <<= 3;
511 			mask <<= 3;
512 		}
513 	}
514 
515 	out_be32(reg, (in_be32(reg) & ~mask) | bits);
516 
517 	return 0;
518 }
519 
520 /*
521  * GPIO LIB API implementation
522  */
523 #ifdef CONFIG_8xx_GPIO
524 
525 struct cpm1_gpio16_chip {
526 	struct of_mm_gpio_chip mm_gc;
527 	spinlock_t lock;
528 
529 	/* shadowed data register to clear/set bits safely */
530 	u16 cpdata;
531 };
532 
cpm1_gpio16_save_regs(struct of_mm_gpio_chip * mm_gc)533 static void cpm1_gpio16_save_regs(struct of_mm_gpio_chip *mm_gc)
534 {
535 	struct cpm1_gpio16_chip *cpm1_gc =
536 		container_of(mm_gc, struct cpm1_gpio16_chip, mm_gc);
537 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
538 
539 	cpm1_gc->cpdata = in_be16(&iop->dat);
540 }
541 
cpm1_gpio16_get(struct gpio_chip * gc,unsigned int gpio)542 static int cpm1_gpio16_get(struct gpio_chip *gc, unsigned int gpio)
543 {
544 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
545 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
546 	u16 pin_mask;
547 
548 	pin_mask = 1 << (15 - gpio);
549 
550 	return !!(in_be16(&iop->dat) & pin_mask);
551 }
552 
__cpm1_gpio16_set(struct of_mm_gpio_chip * mm_gc,u16 pin_mask,int value)553 static void __cpm1_gpio16_set(struct of_mm_gpio_chip *mm_gc, u16 pin_mask,
554 	int value)
555 {
556 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
557 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
558 
559 	if (value)
560 		cpm1_gc->cpdata |= pin_mask;
561 	else
562 		cpm1_gc->cpdata &= ~pin_mask;
563 
564 	out_be16(&iop->dat, cpm1_gc->cpdata);
565 }
566 
cpm1_gpio16_set(struct gpio_chip * gc,unsigned int gpio,int value)567 static void cpm1_gpio16_set(struct gpio_chip *gc, unsigned int gpio, int value)
568 {
569 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
570 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
571 	unsigned long flags;
572 	u16 pin_mask = 1 << (15 - gpio);
573 
574 	spin_lock_irqsave(&cpm1_gc->lock, flags);
575 
576 	__cpm1_gpio16_set(mm_gc, pin_mask, value);
577 
578 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
579 }
580 
cpm1_gpio16_dir_out(struct gpio_chip * gc,unsigned int gpio,int val)581 static int cpm1_gpio16_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
582 {
583 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
584 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
585 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
586 	unsigned long flags;
587 	u16 pin_mask = 1 << (15 - gpio);
588 
589 	spin_lock_irqsave(&cpm1_gc->lock, flags);
590 
591 	setbits16(&iop->dir, pin_mask);
592 	__cpm1_gpio16_set(mm_gc, pin_mask, val);
593 
594 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
595 
596 	return 0;
597 }
598 
cpm1_gpio16_dir_in(struct gpio_chip * gc,unsigned int gpio)599 static int cpm1_gpio16_dir_in(struct gpio_chip *gc, unsigned int gpio)
600 {
601 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
602 	struct cpm1_gpio16_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
603 	struct cpm_ioport16 __iomem *iop = mm_gc->regs;
604 	unsigned long flags;
605 	u16 pin_mask = 1 << (15 - gpio);
606 
607 	spin_lock_irqsave(&cpm1_gc->lock, flags);
608 
609 	clrbits16(&iop->dir, pin_mask);
610 
611 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
612 
613 	return 0;
614 }
615 
cpm1_gpiochip_add16(struct device_node * np)616 int cpm1_gpiochip_add16(struct device_node *np)
617 {
618 	struct cpm1_gpio16_chip *cpm1_gc;
619 	struct of_mm_gpio_chip *mm_gc;
620 	struct gpio_chip *gc;
621 
622 	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
623 	if (!cpm1_gc)
624 		return -ENOMEM;
625 
626 	spin_lock_init(&cpm1_gc->lock);
627 
628 	mm_gc = &cpm1_gc->mm_gc;
629 	gc = &mm_gc->gc;
630 
631 	mm_gc->save_regs = cpm1_gpio16_save_regs;
632 	gc->ngpio = 16;
633 	gc->direction_input = cpm1_gpio16_dir_in;
634 	gc->direction_output = cpm1_gpio16_dir_out;
635 	gc->get = cpm1_gpio16_get;
636 	gc->set = cpm1_gpio16_set;
637 
638 	return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
639 }
640 
641 struct cpm1_gpio32_chip {
642 	struct of_mm_gpio_chip mm_gc;
643 	spinlock_t lock;
644 
645 	/* shadowed data register to clear/set bits safely */
646 	u32 cpdata;
647 };
648 
cpm1_gpio32_save_regs(struct of_mm_gpio_chip * mm_gc)649 static void cpm1_gpio32_save_regs(struct of_mm_gpio_chip *mm_gc)
650 {
651 	struct cpm1_gpio32_chip *cpm1_gc =
652 		container_of(mm_gc, struct cpm1_gpio32_chip, mm_gc);
653 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
654 
655 	cpm1_gc->cpdata = in_be32(&iop->dat);
656 }
657 
cpm1_gpio32_get(struct gpio_chip * gc,unsigned int gpio)658 static int cpm1_gpio32_get(struct gpio_chip *gc, unsigned int gpio)
659 {
660 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
661 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
662 	u32 pin_mask;
663 
664 	pin_mask = 1 << (31 - gpio);
665 
666 	return !!(in_be32(&iop->dat) & pin_mask);
667 }
668 
__cpm1_gpio32_set(struct of_mm_gpio_chip * mm_gc,u32 pin_mask,int value)669 static void __cpm1_gpio32_set(struct of_mm_gpio_chip *mm_gc, u32 pin_mask,
670 	int value)
671 {
672 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
673 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
674 
675 	if (value)
676 		cpm1_gc->cpdata |= pin_mask;
677 	else
678 		cpm1_gc->cpdata &= ~pin_mask;
679 
680 	out_be32(&iop->dat, cpm1_gc->cpdata);
681 }
682 
cpm1_gpio32_set(struct gpio_chip * gc,unsigned int gpio,int value)683 static void cpm1_gpio32_set(struct gpio_chip *gc, unsigned int gpio, int value)
684 {
685 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
686 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
687 	unsigned long flags;
688 	u32 pin_mask = 1 << (31 - gpio);
689 
690 	spin_lock_irqsave(&cpm1_gc->lock, flags);
691 
692 	__cpm1_gpio32_set(mm_gc, pin_mask, value);
693 
694 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
695 }
696 
cpm1_gpio32_dir_out(struct gpio_chip * gc,unsigned int gpio,int val)697 static int cpm1_gpio32_dir_out(struct gpio_chip *gc, unsigned int gpio, int val)
698 {
699 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
700 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
701 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
702 	unsigned long flags;
703 	u32 pin_mask = 1 << (31 - gpio);
704 
705 	spin_lock_irqsave(&cpm1_gc->lock, flags);
706 
707 	setbits32(&iop->dir, pin_mask);
708 	__cpm1_gpio32_set(mm_gc, pin_mask, val);
709 
710 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
711 
712 	return 0;
713 }
714 
cpm1_gpio32_dir_in(struct gpio_chip * gc,unsigned int gpio)715 static int cpm1_gpio32_dir_in(struct gpio_chip *gc, unsigned int gpio)
716 {
717 	struct of_mm_gpio_chip *mm_gc = to_of_mm_gpio_chip(gc);
718 	struct cpm1_gpio32_chip *cpm1_gc = gpiochip_get_data(&mm_gc->gc);
719 	struct cpm_ioport32b __iomem *iop = mm_gc->regs;
720 	unsigned long flags;
721 	u32 pin_mask = 1 << (31 - gpio);
722 
723 	spin_lock_irqsave(&cpm1_gc->lock, flags);
724 
725 	clrbits32(&iop->dir, pin_mask);
726 
727 	spin_unlock_irqrestore(&cpm1_gc->lock, flags);
728 
729 	return 0;
730 }
731 
cpm1_gpiochip_add32(struct device_node * np)732 int cpm1_gpiochip_add32(struct device_node *np)
733 {
734 	struct cpm1_gpio32_chip *cpm1_gc;
735 	struct of_mm_gpio_chip *mm_gc;
736 	struct gpio_chip *gc;
737 
738 	cpm1_gc = kzalloc(sizeof(*cpm1_gc), GFP_KERNEL);
739 	if (!cpm1_gc)
740 		return -ENOMEM;
741 
742 	spin_lock_init(&cpm1_gc->lock);
743 
744 	mm_gc = &cpm1_gc->mm_gc;
745 	gc = &mm_gc->gc;
746 
747 	mm_gc->save_regs = cpm1_gpio32_save_regs;
748 	gc->ngpio = 32;
749 	gc->direction_input = cpm1_gpio32_dir_in;
750 	gc->direction_output = cpm1_gpio32_dir_out;
751 	gc->get = cpm1_gpio32_get;
752 	gc->set = cpm1_gpio32_set;
753 
754 	return of_mm_gpiochip_add_data(np, mm_gc, cpm1_gc);
755 }
756 
cpm_init_par_io(void)757 static int cpm_init_par_io(void)
758 {
759 	struct device_node *np;
760 
761 	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-a")
762 		cpm1_gpiochip_add16(np);
763 
764 	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-b")
765 		cpm1_gpiochip_add32(np);
766 
767 	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-c")
768 		cpm1_gpiochip_add16(np);
769 
770 	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-d")
771 		cpm1_gpiochip_add16(np);
772 
773 	/* Port E uses CPM2 layout */
774 	for_each_compatible_node(np, NULL, "fsl,cpm1-pario-bank-e")
775 		cpm2_gpiochip_add32(np);
776 	return 0;
777 }
778 arch_initcall(cpm_init_par_io);
779 
780 #endif /* CONFIG_8xx_GPIO */
781