1 /*
2 * This file is part of the Chelsio FCoE driver for Linux.
3 *
4 * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/device.h>
36 #include <linux/delay.h>
37 #include <linux/ctype.h>
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
41 #include <linux/compiler.h>
42 #include <linux/export.h>
43 #include <linux/module.h>
44 #include <asm/unaligned.h>
45 #include <asm/page.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_transport_fc.h>
49
50 #include "csio_hw.h"
51 #include "csio_lnode.h"
52 #include "csio_rnode.h"
53 #include "csio_scsi.h"
54 #include "csio_init.h"
55
56 int csio_scsi_eqsize = 65536;
57 int csio_scsi_iqlen = 128;
58 int csio_scsi_ioreqs = 2048;
59 uint32_t csio_max_scan_tmo;
60 uint32_t csio_delta_scan_tmo = 5;
61 int csio_lun_qdepth = 32;
62
63 static int csio_ddp_descs = 128;
64
65 static int csio_do_abrt_cls(struct csio_hw *,
66 struct csio_ioreq *, bool);
67
68 static void csio_scsis_uninit(struct csio_ioreq *, enum csio_scsi_ev);
69 static void csio_scsis_io_active(struct csio_ioreq *, enum csio_scsi_ev);
70 static void csio_scsis_tm_active(struct csio_ioreq *, enum csio_scsi_ev);
71 static void csio_scsis_aborting(struct csio_ioreq *, enum csio_scsi_ev);
72 static void csio_scsis_closing(struct csio_ioreq *, enum csio_scsi_ev);
73 static void csio_scsis_shost_cmpl_await(struct csio_ioreq *, enum csio_scsi_ev);
74
75 /*
76 * csio_scsi_match_io - Match an ioreq with the given SCSI level data.
77 * @ioreq: The I/O request
78 * @sld: Level information
79 *
80 * Should be called with lock held.
81 *
82 */
83 static bool
csio_scsi_match_io(struct csio_ioreq * ioreq,struct csio_scsi_level_data * sld)84 csio_scsi_match_io(struct csio_ioreq *ioreq, struct csio_scsi_level_data *sld)
85 {
86 struct scsi_cmnd *scmnd = csio_scsi_cmnd(ioreq);
87
88 switch (sld->level) {
89 case CSIO_LEV_LUN:
90 if (scmnd == NULL)
91 return false;
92
93 return ((ioreq->lnode == sld->lnode) &&
94 (ioreq->rnode == sld->rnode) &&
95 ((uint64_t)scmnd->device->lun == sld->oslun));
96
97 case CSIO_LEV_RNODE:
98 return ((ioreq->lnode == sld->lnode) &&
99 (ioreq->rnode == sld->rnode));
100 case CSIO_LEV_LNODE:
101 return (ioreq->lnode == sld->lnode);
102 case CSIO_LEV_ALL:
103 return true;
104 default:
105 return false;
106 }
107 }
108
109 /*
110 * csio_scsi_gather_active_ios - Gather active I/Os based on level
111 * @scm: SCSI module
112 * @sld: Level information
113 * @dest: The queue where these I/Os have to be gathered.
114 *
115 * Should be called with lock held.
116 */
117 static void
csio_scsi_gather_active_ios(struct csio_scsim * scm,struct csio_scsi_level_data * sld,struct list_head * dest)118 csio_scsi_gather_active_ios(struct csio_scsim *scm,
119 struct csio_scsi_level_data *sld,
120 struct list_head *dest)
121 {
122 struct list_head *tmp, *next;
123
124 if (list_empty(&scm->active_q))
125 return;
126
127 /* Just splice the entire active_q into dest */
128 if (sld->level == CSIO_LEV_ALL) {
129 list_splice_tail_init(&scm->active_q, dest);
130 return;
131 }
132
133 list_for_each_safe(tmp, next, &scm->active_q) {
134 if (csio_scsi_match_io((struct csio_ioreq *)tmp, sld)) {
135 list_del_init(tmp);
136 list_add_tail(tmp, dest);
137 }
138 }
139 }
140
141 static inline bool
csio_scsi_itnexus_loss_error(uint16_t error)142 csio_scsi_itnexus_loss_error(uint16_t error)
143 {
144 switch (error) {
145 case FW_ERR_LINK_DOWN:
146 case FW_RDEV_NOT_READY:
147 case FW_ERR_RDEV_LOST:
148 case FW_ERR_RDEV_LOGO:
149 case FW_ERR_RDEV_IMPL_LOGO:
150 return 1;
151 }
152 return 0;
153 }
154
155 /*
156 * csio_scsi_fcp_cmnd - Frame the SCSI FCP command paylod.
157 * @req: IO req structure.
158 * @addr: DMA location to place the payload.
159 *
160 * This routine is shared between FCP_WRITE, FCP_READ and FCP_CMD requests.
161 */
162 static inline void
csio_scsi_fcp_cmnd(struct csio_ioreq * req,void * addr)163 csio_scsi_fcp_cmnd(struct csio_ioreq *req, void *addr)
164 {
165 struct fcp_cmnd *fcp_cmnd = (struct fcp_cmnd *)addr;
166 struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
167
168 /* Check for Task Management */
169 if (likely(scmnd->SCp.Message == 0)) {
170 int_to_scsilun(scmnd->device->lun, &fcp_cmnd->fc_lun);
171 fcp_cmnd->fc_tm_flags = 0;
172 fcp_cmnd->fc_cmdref = 0;
173
174 memcpy(fcp_cmnd->fc_cdb, scmnd->cmnd, 16);
175 fcp_cmnd->fc_pri_ta = FCP_PTA_SIMPLE;
176 fcp_cmnd->fc_dl = cpu_to_be32(scsi_bufflen(scmnd));
177
178 if (req->nsge)
179 if (req->datadir == DMA_TO_DEVICE)
180 fcp_cmnd->fc_flags = FCP_CFL_WRDATA;
181 else
182 fcp_cmnd->fc_flags = FCP_CFL_RDDATA;
183 else
184 fcp_cmnd->fc_flags = 0;
185 } else {
186 memset(fcp_cmnd, 0, sizeof(*fcp_cmnd));
187 int_to_scsilun(scmnd->device->lun, &fcp_cmnd->fc_lun);
188 fcp_cmnd->fc_tm_flags = (uint8_t)scmnd->SCp.Message;
189 }
190 }
191
192 /*
193 * csio_scsi_init_cmd_wr - Initialize the SCSI CMD WR.
194 * @req: IO req structure.
195 * @addr: DMA location to place the payload.
196 * @size: Size of WR (including FW WR + immed data + rsp SG entry
197 *
198 * Wrapper for populating fw_scsi_cmd_wr.
199 */
200 static inline void
csio_scsi_init_cmd_wr(struct csio_ioreq * req,void * addr,uint32_t size)201 csio_scsi_init_cmd_wr(struct csio_ioreq *req, void *addr, uint32_t size)
202 {
203 struct csio_hw *hw = req->lnode->hwp;
204 struct csio_rnode *rn = req->rnode;
205 struct fw_scsi_cmd_wr *wr = (struct fw_scsi_cmd_wr *)addr;
206 struct csio_dma_buf *dma_buf;
207 uint8_t imm = csio_hw_to_scsim(hw)->proto_cmd_len;
208
209 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_SCSI_CMD_WR) |
210 FW_SCSI_CMD_WR_IMMDLEN(imm));
211 wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID_V(rn->flowid) |
212 FW_WR_LEN16_V(
213 DIV_ROUND_UP(size, 16)));
214
215 wr->cookie = (uintptr_t) req;
216 wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx));
217 wr->tmo_val = (uint8_t) req->tmo;
218 wr->r3 = 0;
219 memset(&wr->r5, 0, 8);
220
221 /* Get RSP DMA buffer */
222 dma_buf = &req->dma_buf;
223
224 /* Prepare RSP SGL */
225 wr->rsp_dmalen = cpu_to_be32(dma_buf->len);
226 wr->rsp_dmaaddr = cpu_to_be64(dma_buf->paddr);
227
228 wr->r6 = 0;
229
230 wr->u.fcoe.ctl_pri = 0;
231 wr->u.fcoe.cp_en_class = 0;
232 wr->u.fcoe.r4_lo[0] = 0;
233 wr->u.fcoe.r4_lo[1] = 0;
234
235 /* Frame a FCP command */
236 csio_scsi_fcp_cmnd(req, (void *)((uintptr_t)addr +
237 sizeof(struct fw_scsi_cmd_wr)));
238 }
239
240 #define CSIO_SCSI_CMD_WR_SZ(_imm) \
241 (sizeof(struct fw_scsi_cmd_wr) + /* WR size */ \
242 ALIGN((_imm), 16)) /* Immed data */
243
244 #define CSIO_SCSI_CMD_WR_SZ_16(_imm) \
245 (ALIGN(CSIO_SCSI_CMD_WR_SZ((_imm)), 16))
246
247 /*
248 * csio_scsi_cmd - Create a SCSI CMD WR.
249 * @req: IO req structure.
250 *
251 * Gets a WR slot in the ingress queue and initializes it with SCSI CMD WR.
252 *
253 */
254 static inline void
csio_scsi_cmd(struct csio_ioreq * req)255 csio_scsi_cmd(struct csio_ioreq *req)
256 {
257 struct csio_wr_pair wrp;
258 struct csio_hw *hw = req->lnode->hwp;
259 struct csio_scsim *scsim = csio_hw_to_scsim(hw);
260 uint32_t size = CSIO_SCSI_CMD_WR_SZ_16(scsim->proto_cmd_len);
261
262 req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp);
263 if (unlikely(req->drv_status != 0))
264 return;
265
266 if (wrp.size1 >= size) {
267 /* Initialize WR in one shot */
268 csio_scsi_init_cmd_wr(req, wrp.addr1, size);
269 } else {
270 uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx);
271
272 /*
273 * Make a temporary copy of the WR and write back
274 * the copy into the WR pair.
275 */
276 csio_scsi_init_cmd_wr(req, (void *)tmpwr, size);
277 memcpy(wrp.addr1, tmpwr, wrp.size1);
278 memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1);
279 }
280 }
281
282 /*
283 * csio_scsi_init_ulptx_dsgl - Fill in a ULP_TX_SC_DSGL
284 * @hw: HW module
285 * @req: IO request
286 * @sgl: ULP TX SGL pointer.
287 *
288 */
289 static inline void
csio_scsi_init_ultptx_dsgl(struct csio_hw * hw,struct csio_ioreq * req,struct ulptx_sgl * sgl)290 csio_scsi_init_ultptx_dsgl(struct csio_hw *hw, struct csio_ioreq *req,
291 struct ulptx_sgl *sgl)
292 {
293 struct ulptx_sge_pair *sge_pair = NULL;
294 struct scatterlist *sgel;
295 uint32_t i = 0;
296 uint32_t xfer_len;
297 struct list_head *tmp;
298 struct csio_dma_buf *dma_buf;
299 struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
300
301 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) | ULPTX_MORE_F |
302 ULPTX_NSGE_V(req->nsge));
303 /* Now add the data SGLs */
304 if (likely(!req->dcopy)) {
305 scsi_for_each_sg(scmnd, sgel, req->nsge, i) {
306 if (i == 0) {
307 sgl->addr0 = cpu_to_be64(sg_dma_address(sgel));
308 sgl->len0 = cpu_to_be32(sg_dma_len(sgel));
309 sge_pair = (struct ulptx_sge_pair *)(sgl + 1);
310 continue;
311 }
312 if ((i - 1) & 0x1) {
313 sge_pair->addr[1] = cpu_to_be64(
314 sg_dma_address(sgel));
315 sge_pair->len[1] = cpu_to_be32(
316 sg_dma_len(sgel));
317 sge_pair++;
318 } else {
319 sge_pair->addr[0] = cpu_to_be64(
320 sg_dma_address(sgel));
321 sge_pair->len[0] = cpu_to_be32(
322 sg_dma_len(sgel));
323 }
324 }
325 } else {
326 /* Program sg elements with driver's DDP buffer */
327 xfer_len = scsi_bufflen(scmnd);
328 list_for_each(tmp, &req->gen_list) {
329 dma_buf = (struct csio_dma_buf *)tmp;
330 if (i == 0) {
331 sgl->addr0 = cpu_to_be64(dma_buf->paddr);
332 sgl->len0 = cpu_to_be32(
333 min(xfer_len, dma_buf->len));
334 sge_pair = (struct ulptx_sge_pair *)(sgl + 1);
335 } else if ((i - 1) & 0x1) {
336 sge_pair->addr[1] = cpu_to_be64(dma_buf->paddr);
337 sge_pair->len[1] = cpu_to_be32(
338 min(xfer_len, dma_buf->len));
339 sge_pair++;
340 } else {
341 sge_pair->addr[0] = cpu_to_be64(dma_buf->paddr);
342 sge_pair->len[0] = cpu_to_be32(
343 min(xfer_len, dma_buf->len));
344 }
345 xfer_len -= min(xfer_len, dma_buf->len);
346 i++;
347 }
348 }
349 }
350
351 /*
352 * csio_scsi_init_read_wr - Initialize the READ SCSI WR.
353 * @req: IO req structure.
354 * @wrp: DMA location to place the payload.
355 * @size: Size of WR (including FW WR + immed data + rsp SG entry + data SGL
356 *
357 * Wrapper for populating fw_scsi_read_wr.
358 */
359 static inline void
csio_scsi_init_read_wr(struct csio_ioreq * req,void * wrp,uint32_t size)360 csio_scsi_init_read_wr(struct csio_ioreq *req, void *wrp, uint32_t size)
361 {
362 struct csio_hw *hw = req->lnode->hwp;
363 struct csio_rnode *rn = req->rnode;
364 struct fw_scsi_read_wr *wr = (struct fw_scsi_read_wr *)wrp;
365 struct ulptx_sgl *sgl;
366 struct csio_dma_buf *dma_buf;
367 uint8_t imm = csio_hw_to_scsim(hw)->proto_cmd_len;
368 struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
369
370 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_SCSI_READ_WR) |
371 FW_SCSI_READ_WR_IMMDLEN(imm));
372 wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID_V(rn->flowid) |
373 FW_WR_LEN16_V(DIV_ROUND_UP(size, 16)));
374 wr->cookie = (uintptr_t)req;
375 wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx));
376 wr->tmo_val = (uint8_t)(req->tmo);
377 wr->use_xfer_cnt = 1;
378 wr->xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd));
379 wr->ini_xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd));
380 /* Get RSP DMA buffer */
381 dma_buf = &req->dma_buf;
382
383 /* Prepare RSP SGL */
384 wr->rsp_dmalen = cpu_to_be32(dma_buf->len);
385 wr->rsp_dmaaddr = cpu_to_be64(dma_buf->paddr);
386
387 wr->r4 = 0;
388
389 wr->u.fcoe.ctl_pri = 0;
390 wr->u.fcoe.cp_en_class = 0;
391 wr->u.fcoe.r3_lo[0] = 0;
392 wr->u.fcoe.r3_lo[1] = 0;
393 csio_scsi_fcp_cmnd(req, (void *)((uintptr_t)wrp +
394 sizeof(struct fw_scsi_read_wr)));
395
396 /* Move WR pointer past command and immediate data */
397 sgl = (struct ulptx_sgl *)((uintptr_t)wrp +
398 sizeof(struct fw_scsi_read_wr) + ALIGN(imm, 16));
399
400 /* Fill in the DSGL */
401 csio_scsi_init_ultptx_dsgl(hw, req, sgl);
402 }
403
404 /*
405 * csio_scsi_init_write_wr - Initialize the WRITE SCSI WR.
406 * @req: IO req structure.
407 * @wrp: DMA location to place the payload.
408 * @size: Size of WR (including FW WR + immed data + rsp SG entry + data SGL
409 *
410 * Wrapper for populating fw_scsi_write_wr.
411 */
412 static inline void
csio_scsi_init_write_wr(struct csio_ioreq * req,void * wrp,uint32_t size)413 csio_scsi_init_write_wr(struct csio_ioreq *req, void *wrp, uint32_t size)
414 {
415 struct csio_hw *hw = req->lnode->hwp;
416 struct csio_rnode *rn = req->rnode;
417 struct fw_scsi_write_wr *wr = (struct fw_scsi_write_wr *)wrp;
418 struct ulptx_sgl *sgl;
419 struct csio_dma_buf *dma_buf;
420 uint8_t imm = csio_hw_to_scsim(hw)->proto_cmd_len;
421 struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
422
423 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_SCSI_WRITE_WR) |
424 FW_SCSI_WRITE_WR_IMMDLEN(imm));
425 wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID_V(rn->flowid) |
426 FW_WR_LEN16_V(DIV_ROUND_UP(size, 16)));
427 wr->cookie = (uintptr_t)req;
428 wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx));
429 wr->tmo_val = (uint8_t)(req->tmo);
430 wr->use_xfer_cnt = 1;
431 wr->xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd));
432 wr->ini_xfer_cnt = cpu_to_be32(scsi_bufflen(scmnd));
433 /* Get RSP DMA buffer */
434 dma_buf = &req->dma_buf;
435
436 /* Prepare RSP SGL */
437 wr->rsp_dmalen = cpu_to_be32(dma_buf->len);
438 wr->rsp_dmaaddr = cpu_to_be64(dma_buf->paddr);
439
440 wr->r4 = 0;
441
442 wr->u.fcoe.ctl_pri = 0;
443 wr->u.fcoe.cp_en_class = 0;
444 wr->u.fcoe.r3_lo[0] = 0;
445 wr->u.fcoe.r3_lo[1] = 0;
446 csio_scsi_fcp_cmnd(req, (void *)((uintptr_t)wrp +
447 sizeof(struct fw_scsi_write_wr)));
448
449 /* Move WR pointer past command and immediate data */
450 sgl = (struct ulptx_sgl *)((uintptr_t)wrp +
451 sizeof(struct fw_scsi_write_wr) + ALIGN(imm, 16));
452
453 /* Fill in the DSGL */
454 csio_scsi_init_ultptx_dsgl(hw, req, sgl);
455 }
456
457 /* Calculate WR size needed for fw_scsi_read_wr/fw_scsi_write_wr */
458 #define CSIO_SCSI_DATA_WRSZ(req, oper, sz, imm) \
459 do { \
460 (sz) = sizeof(struct fw_scsi_##oper##_wr) + /* WR size */ \
461 ALIGN((imm), 16) + /* Immed data */ \
462 sizeof(struct ulptx_sgl); /* ulptx_sgl */ \
463 \
464 if (unlikely((req)->nsge > 1)) \
465 (sz) += (sizeof(struct ulptx_sge_pair) * \
466 (ALIGN(((req)->nsge - 1), 2) / 2)); \
467 /* Data SGE */ \
468 } while (0)
469
470 /*
471 * csio_scsi_read - Create a SCSI READ WR.
472 * @req: IO req structure.
473 *
474 * Gets a WR slot in the ingress queue and initializes it with
475 * SCSI READ WR.
476 *
477 */
478 static inline void
csio_scsi_read(struct csio_ioreq * req)479 csio_scsi_read(struct csio_ioreq *req)
480 {
481 struct csio_wr_pair wrp;
482 uint32_t size;
483 struct csio_hw *hw = req->lnode->hwp;
484 struct csio_scsim *scsim = csio_hw_to_scsim(hw);
485
486 CSIO_SCSI_DATA_WRSZ(req, read, size, scsim->proto_cmd_len);
487 size = ALIGN(size, 16);
488
489 req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp);
490 if (likely(req->drv_status == 0)) {
491 if (likely(wrp.size1 >= size)) {
492 /* Initialize WR in one shot */
493 csio_scsi_init_read_wr(req, wrp.addr1, size);
494 } else {
495 uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx);
496 /*
497 * Make a temporary copy of the WR and write back
498 * the copy into the WR pair.
499 */
500 csio_scsi_init_read_wr(req, (void *)tmpwr, size);
501 memcpy(wrp.addr1, tmpwr, wrp.size1);
502 memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1);
503 }
504 }
505 }
506
507 /*
508 * csio_scsi_write - Create a SCSI WRITE WR.
509 * @req: IO req structure.
510 *
511 * Gets a WR slot in the ingress queue and initializes it with
512 * SCSI WRITE WR.
513 *
514 */
515 static inline void
csio_scsi_write(struct csio_ioreq * req)516 csio_scsi_write(struct csio_ioreq *req)
517 {
518 struct csio_wr_pair wrp;
519 uint32_t size;
520 struct csio_hw *hw = req->lnode->hwp;
521 struct csio_scsim *scsim = csio_hw_to_scsim(hw);
522
523 CSIO_SCSI_DATA_WRSZ(req, write, size, scsim->proto_cmd_len);
524 size = ALIGN(size, 16);
525
526 req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp);
527 if (likely(req->drv_status == 0)) {
528 if (likely(wrp.size1 >= size)) {
529 /* Initialize WR in one shot */
530 csio_scsi_init_write_wr(req, wrp.addr1, size);
531 } else {
532 uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx);
533 /*
534 * Make a temporary copy of the WR and write back
535 * the copy into the WR pair.
536 */
537 csio_scsi_init_write_wr(req, (void *)tmpwr, size);
538 memcpy(wrp.addr1, tmpwr, wrp.size1);
539 memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1);
540 }
541 }
542 }
543
544 /*
545 * csio_setup_ddp - Setup DDP buffers for Read request.
546 * @req: IO req structure.
547 *
548 * Checks SGLs/Data buffers are virtually contiguous required for DDP.
549 * If contiguous,driver posts SGLs in the WR otherwise post internal
550 * buffers for such request for DDP.
551 */
552 static inline void
csio_setup_ddp(struct csio_scsim * scsim,struct csio_ioreq * req)553 csio_setup_ddp(struct csio_scsim *scsim, struct csio_ioreq *req)
554 {
555 #ifdef __CSIO_DEBUG__
556 struct csio_hw *hw = req->lnode->hwp;
557 #endif
558 struct scatterlist *sgel = NULL;
559 struct scsi_cmnd *scmnd = csio_scsi_cmnd(req);
560 uint64_t sg_addr = 0;
561 uint32_t ddp_pagesz = 4096;
562 uint32_t buf_off;
563 struct csio_dma_buf *dma_buf = NULL;
564 uint32_t alloc_len = 0;
565 uint32_t xfer_len = 0;
566 uint32_t sg_len = 0;
567 uint32_t i;
568
569 scsi_for_each_sg(scmnd, sgel, req->nsge, i) {
570 sg_addr = sg_dma_address(sgel);
571 sg_len = sg_dma_len(sgel);
572
573 buf_off = sg_addr & (ddp_pagesz - 1);
574
575 /* Except 1st buffer,all buffer addr have to be Page aligned */
576 if (i != 0 && buf_off) {
577 csio_dbg(hw, "SGL addr not DDP aligned (%llx:%d)\n",
578 sg_addr, sg_len);
579 goto unaligned;
580 }
581
582 /* Except last buffer,all buffer must end on page boundary */
583 if ((i != (req->nsge - 1)) &&
584 ((buf_off + sg_len) & (ddp_pagesz - 1))) {
585 csio_dbg(hw,
586 "SGL addr not ending on page boundary"
587 "(%llx:%d)\n", sg_addr, sg_len);
588 goto unaligned;
589 }
590 }
591
592 /* SGL's are virtually contiguous. HW will DDP to SGLs */
593 req->dcopy = 0;
594 csio_scsi_read(req);
595
596 return;
597
598 unaligned:
599 CSIO_INC_STATS(scsim, n_unaligned);
600 /*
601 * For unaligned SGLs, driver will allocate internal DDP buffer.
602 * Once command is completed data from DDP buffer copied to SGLs
603 */
604 req->dcopy = 1;
605
606 /* Use gen_list to store the DDP buffers */
607 INIT_LIST_HEAD(&req->gen_list);
608 xfer_len = scsi_bufflen(scmnd);
609
610 i = 0;
611 /* Allocate ddp buffers for this request */
612 while (alloc_len < xfer_len) {
613 dma_buf = csio_get_scsi_ddp(scsim);
614 if (dma_buf == NULL || i > scsim->max_sge) {
615 req->drv_status = -EBUSY;
616 break;
617 }
618 alloc_len += dma_buf->len;
619 /* Added to IO req */
620 list_add_tail(&dma_buf->list, &req->gen_list);
621 i++;
622 }
623
624 if (!req->drv_status) {
625 /* set number of ddp bufs used */
626 req->nsge = i;
627 csio_scsi_read(req);
628 return;
629 }
630
631 /* release dma descs */
632 if (i > 0)
633 csio_put_scsi_ddp_list(scsim, &req->gen_list, i);
634 }
635
636 /*
637 * csio_scsi_init_abrt_cls_wr - Initialize an ABORT/CLOSE WR.
638 * @req: IO req structure.
639 * @addr: DMA location to place the payload.
640 * @size: Size of WR
641 * @abort: abort OR close
642 *
643 * Wrapper for populating fw_scsi_cmd_wr.
644 */
645 static inline void
csio_scsi_init_abrt_cls_wr(struct csio_ioreq * req,void * addr,uint32_t size,bool abort)646 csio_scsi_init_abrt_cls_wr(struct csio_ioreq *req, void *addr, uint32_t size,
647 bool abort)
648 {
649 struct csio_hw *hw = req->lnode->hwp;
650 struct csio_rnode *rn = req->rnode;
651 struct fw_scsi_abrt_cls_wr *wr = (struct fw_scsi_abrt_cls_wr *)addr;
652
653 wr->op_immdlen = cpu_to_be32(FW_WR_OP_V(FW_SCSI_ABRT_CLS_WR));
654 wr->flowid_len16 = cpu_to_be32(FW_WR_FLOWID_V(rn->flowid) |
655 FW_WR_LEN16_V(
656 DIV_ROUND_UP(size, 16)));
657
658 wr->cookie = (uintptr_t) req;
659 wr->iqid = cpu_to_be16(csio_q_physiqid(hw, req->iq_idx));
660 wr->tmo_val = (uint8_t) req->tmo;
661 /* 0 for CHK_ALL_IO tells FW to look up t_cookie */
662 wr->sub_opcode_to_chk_all_io =
663 (FW_SCSI_ABRT_CLS_WR_SUB_OPCODE(abort) |
664 FW_SCSI_ABRT_CLS_WR_CHK_ALL_IO(0));
665 wr->r3[0] = 0;
666 wr->r3[1] = 0;
667 wr->r3[2] = 0;
668 wr->r3[3] = 0;
669 /* Since we re-use the same ioreq for abort as well */
670 wr->t_cookie = (uintptr_t) req;
671 }
672
673 static inline void
csio_scsi_abrt_cls(struct csio_ioreq * req,bool abort)674 csio_scsi_abrt_cls(struct csio_ioreq *req, bool abort)
675 {
676 struct csio_wr_pair wrp;
677 struct csio_hw *hw = req->lnode->hwp;
678 uint32_t size = ALIGN(sizeof(struct fw_scsi_abrt_cls_wr), 16);
679
680 req->drv_status = csio_wr_get(hw, req->eq_idx, size, &wrp);
681 if (req->drv_status != 0)
682 return;
683
684 if (wrp.size1 >= size) {
685 /* Initialize WR in one shot */
686 csio_scsi_init_abrt_cls_wr(req, wrp.addr1, size, abort);
687 } else {
688 uint8_t *tmpwr = csio_q_eq_wrap(hw, req->eq_idx);
689 /*
690 * Make a temporary copy of the WR and write back
691 * the copy into the WR pair.
692 */
693 csio_scsi_init_abrt_cls_wr(req, (void *)tmpwr, size, abort);
694 memcpy(wrp.addr1, tmpwr, wrp.size1);
695 memcpy(wrp.addr2, tmpwr + wrp.size1, size - wrp.size1);
696 }
697 }
698
699 /*****************************************************************************/
700 /* START: SCSI SM */
701 /*****************************************************************************/
702 static void
csio_scsis_uninit(struct csio_ioreq * req,enum csio_scsi_ev evt)703 csio_scsis_uninit(struct csio_ioreq *req, enum csio_scsi_ev evt)
704 {
705 struct csio_hw *hw = req->lnode->hwp;
706 struct csio_scsim *scsim = csio_hw_to_scsim(hw);
707
708 switch (evt) {
709 case CSIO_SCSIE_START_IO:
710
711 if (req->nsge) {
712 if (req->datadir == DMA_TO_DEVICE) {
713 req->dcopy = 0;
714 csio_scsi_write(req);
715 } else
716 csio_setup_ddp(scsim, req);
717 } else {
718 csio_scsi_cmd(req);
719 }
720
721 if (likely(req->drv_status == 0)) {
722 /* change state and enqueue on active_q */
723 csio_set_state(&req->sm, csio_scsis_io_active);
724 list_add_tail(&req->sm.sm_list, &scsim->active_q);
725 csio_wr_issue(hw, req->eq_idx, false);
726 CSIO_INC_STATS(scsim, n_active);
727
728 return;
729 }
730 break;
731
732 case CSIO_SCSIE_START_TM:
733 csio_scsi_cmd(req);
734 if (req->drv_status == 0) {
735 /*
736 * NOTE: We collect the affected I/Os prior to issuing
737 * LUN reset, and not after it. This is to prevent
738 * aborting I/Os that get issued after the LUN reset,
739 * but prior to LUN reset completion (in the event that
740 * the host stack has not blocked I/Os to a LUN that is
741 * being reset.
742 */
743 csio_set_state(&req->sm, csio_scsis_tm_active);
744 list_add_tail(&req->sm.sm_list, &scsim->active_q);
745 csio_wr_issue(hw, req->eq_idx, false);
746 CSIO_INC_STATS(scsim, n_tm_active);
747 }
748 return;
749
750 case CSIO_SCSIE_ABORT:
751 case CSIO_SCSIE_CLOSE:
752 /*
753 * NOTE:
754 * We could get here due to :
755 * - a window in the cleanup path of the SCSI module
756 * (csio_scsi_abort_io()). Please see NOTE in this function.
757 * - a window in the time we tried to issue an abort/close
758 * of a request to FW, and the FW completed the request
759 * itself.
760 * Print a message for now, and return INVAL either way.
761 */
762 req->drv_status = -EINVAL;
763 csio_warn(hw, "Trying to abort/close completed IO:%p!\n", req);
764 break;
765
766 default:
767 csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
768 CSIO_DB_ASSERT(0);
769 }
770 }
771
772 static void
csio_scsis_io_active(struct csio_ioreq * req,enum csio_scsi_ev evt)773 csio_scsis_io_active(struct csio_ioreq *req, enum csio_scsi_ev evt)
774 {
775 struct csio_hw *hw = req->lnode->hwp;
776 struct csio_scsim *scm = csio_hw_to_scsim(hw);
777 struct csio_rnode *rn;
778
779 switch (evt) {
780 case CSIO_SCSIE_COMPLETED:
781 CSIO_DEC_STATS(scm, n_active);
782 list_del_init(&req->sm.sm_list);
783 csio_set_state(&req->sm, csio_scsis_uninit);
784 /*
785 * In MSIX mode, with multiple queues, the SCSI compeltions
786 * could reach us sooner than the FW events sent to indicate
787 * I-T nexus loss (link down, remote device logo etc). We
788 * dont want to be returning such I/Os to the upper layer
789 * immediately, since we wouldnt have reported the I-T nexus
790 * loss itself. This forces us to serialize such completions
791 * with the reporting of the I-T nexus loss. Therefore, we
792 * internally queue up such up such completions in the rnode.
793 * The reporting of I-T nexus loss to the upper layer is then
794 * followed by the returning of I/Os in this internal queue.
795 * Having another state alongwith another queue helps us take
796 * actions for events such as ABORT received while we are
797 * in this rnode queue.
798 */
799 if (unlikely(req->wr_status != FW_SUCCESS)) {
800 rn = req->rnode;
801 /*
802 * FW says remote device is lost, but rnode
803 * doesnt reflect it.
804 */
805 if (csio_scsi_itnexus_loss_error(req->wr_status) &&
806 csio_is_rnode_ready(rn)) {
807 csio_set_state(&req->sm,
808 csio_scsis_shost_cmpl_await);
809 list_add_tail(&req->sm.sm_list,
810 &rn->host_cmpl_q);
811 }
812 }
813
814 break;
815
816 case CSIO_SCSIE_ABORT:
817 csio_scsi_abrt_cls(req, SCSI_ABORT);
818 if (req->drv_status == 0) {
819 csio_wr_issue(hw, req->eq_idx, false);
820 csio_set_state(&req->sm, csio_scsis_aborting);
821 }
822 break;
823
824 case CSIO_SCSIE_CLOSE:
825 csio_scsi_abrt_cls(req, SCSI_CLOSE);
826 if (req->drv_status == 0) {
827 csio_wr_issue(hw, req->eq_idx, false);
828 csio_set_state(&req->sm, csio_scsis_closing);
829 }
830 break;
831
832 case CSIO_SCSIE_DRVCLEANUP:
833 req->wr_status = FW_HOSTERROR;
834 CSIO_DEC_STATS(scm, n_active);
835 csio_set_state(&req->sm, csio_scsis_uninit);
836 break;
837
838 default:
839 csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
840 CSIO_DB_ASSERT(0);
841 }
842 }
843
844 static void
csio_scsis_tm_active(struct csio_ioreq * req,enum csio_scsi_ev evt)845 csio_scsis_tm_active(struct csio_ioreq *req, enum csio_scsi_ev evt)
846 {
847 struct csio_hw *hw = req->lnode->hwp;
848 struct csio_scsim *scm = csio_hw_to_scsim(hw);
849
850 switch (evt) {
851 case CSIO_SCSIE_COMPLETED:
852 CSIO_DEC_STATS(scm, n_tm_active);
853 list_del_init(&req->sm.sm_list);
854 csio_set_state(&req->sm, csio_scsis_uninit);
855
856 break;
857
858 case CSIO_SCSIE_ABORT:
859 csio_scsi_abrt_cls(req, SCSI_ABORT);
860 if (req->drv_status == 0) {
861 csio_wr_issue(hw, req->eq_idx, false);
862 csio_set_state(&req->sm, csio_scsis_aborting);
863 }
864 break;
865
866
867 case CSIO_SCSIE_CLOSE:
868 csio_scsi_abrt_cls(req, SCSI_CLOSE);
869 if (req->drv_status == 0) {
870 csio_wr_issue(hw, req->eq_idx, false);
871 csio_set_state(&req->sm, csio_scsis_closing);
872 }
873 break;
874
875 case CSIO_SCSIE_DRVCLEANUP:
876 req->wr_status = FW_HOSTERROR;
877 CSIO_DEC_STATS(scm, n_tm_active);
878 csio_set_state(&req->sm, csio_scsis_uninit);
879 break;
880
881 default:
882 csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
883 CSIO_DB_ASSERT(0);
884 }
885 }
886
887 static void
csio_scsis_aborting(struct csio_ioreq * req,enum csio_scsi_ev evt)888 csio_scsis_aborting(struct csio_ioreq *req, enum csio_scsi_ev evt)
889 {
890 struct csio_hw *hw = req->lnode->hwp;
891 struct csio_scsim *scm = csio_hw_to_scsim(hw);
892
893 switch (evt) {
894 case CSIO_SCSIE_COMPLETED:
895 csio_dbg(hw,
896 "ioreq %p recvd cmpltd (wr_status:%d) "
897 "in aborting st\n", req, req->wr_status);
898 /*
899 * Use -ECANCELED to explicitly tell the ABORTED event that
900 * the original I/O was returned to driver by FW.
901 * We dont really care if the I/O was returned with success by
902 * FW (because the ABORT and completion of the I/O crossed each
903 * other), or any other return value. Once we are in aborting
904 * state, the success or failure of the I/O is unimportant to
905 * us.
906 */
907 req->drv_status = -ECANCELED;
908 break;
909
910 case CSIO_SCSIE_ABORT:
911 CSIO_INC_STATS(scm, n_abrt_dups);
912 break;
913
914 case CSIO_SCSIE_ABORTED:
915
916 csio_dbg(hw, "abort of %p return status:0x%x drv_status:%x\n",
917 req, req->wr_status, req->drv_status);
918 /*
919 * Check if original I/O WR completed before the Abort
920 * completion.
921 */
922 if (req->drv_status != -ECANCELED) {
923 csio_warn(hw,
924 "Abort completed before original I/O,"
925 " req:%p\n", req);
926 CSIO_DB_ASSERT(0);
927 }
928
929 /*
930 * There are the following possible scenarios:
931 * 1. The abort completed successfully, FW returned FW_SUCCESS.
932 * 2. The completion of an I/O and the receipt of
933 * abort for that I/O by the FW crossed each other.
934 * The FW returned FW_EINVAL. The original I/O would have
935 * returned with FW_SUCCESS or any other SCSI error.
936 * 3. The FW couldnt sent the abort out on the wire, as there
937 * was an I-T nexus loss (link down, remote device logged
938 * out etc). FW sent back an appropriate IT nexus loss status
939 * for the abort.
940 * 4. FW sent an abort, but abort timed out (remote device
941 * didnt respond). FW replied back with
942 * FW_SCSI_ABORT_TIMEDOUT.
943 * 5. FW couldnt genuinely abort the request for some reason,
944 * and sent us an error.
945 *
946 * The first 3 scenarios are treated as succesful abort
947 * operations by the host, while the last 2 are failed attempts
948 * to abort. Manipulate the return value of the request
949 * appropriately, so that host can convey these results
950 * back to the upper layer.
951 */
952 if ((req->wr_status == FW_SUCCESS) ||
953 (req->wr_status == FW_EINVAL) ||
954 csio_scsi_itnexus_loss_error(req->wr_status))
955 req->wr_status = FW_SCSI_ABORT_REQUESTED;
956
957 CSIO_DEC_STATS(scm, n_active);
958 list_del_init(&req->sm.sm_list);
959 csio_set_state(&req->sm, csio_scsis_uninit);
960 break;
961
962 case CSIO_SCSIE_DRVCLEANUP:
963 req->wr_status = FW_HOSTERROR;
964 CSIO_DEC_STATS(scm, n_active);
965 csio_set_state(&req->sm, csio_scsis_uninit);
966 break;
967
968 case CSIO_SCSIE_CLOSE:
969 /*
970 * We can receive this event from the module
971 * cleanup paths, if the FW forgot to reply to the ABORT WR
972 * and left this ioreq in this state. For now, just ignore
973 * the event. The CLOSE event is sent to this state, as
974 * the LINK may have already gone down.
975 */
976 break;
977
978 default:
979 csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
980 CSIO_DB_ASSERT(0);
981 }
982 }
983
984 static void
csio_scsis_closing(struct csio_ioreq * req,enum csio_scsi_ev evt)985 csio_scsis_closing(struct csio_ioreq *req, enum csio_scsi_ev evt)
986 {
987 struct csio_hw *hw = req->lnode->hwp;
988 struct csio_scsim *scm = csio_hw_to_scsim(hw);
989
990 switch (evt) {
991 case CSIO_SCSIE_COMPLETED:
992 csio_dbg(hw,
993 "ioreq %p recvd cmpltd (wr_status:%d) "
994 "in closing st\n", req, req->wr_status);
995 /*
996 * Use -ECANCELED to explicitly tell the CLOSED event that
997 * the original I/O was returned to driver by FW.
998 * We dont really care if the I/O was returned with success by
999 * FW (because the CLOSE and completion of the I/O crossed each
1000 * other), or any other return value. Once we are in aborting
1001 * state, the success or failure of the I/O is unimportant to
1002 * us.
1003 */
1004 req->drv_status = -ECANCELED;
1005 break;
1006
1007 case CSIO_SCSIE_CLOSED:
1008 /*
1009 * Check if original I/O WR completed before the Close
1010 * completion.
1011 */
1012 if (req->drv_status != -ECANCELED) {
1013 csio_fatal(hw,
1014 "Close completed before original I/O,"
1015 " req:%p\n", req);
1016 CSIO_DB_ASSERT(0);
1017 }
1018
1019 /*
1020 * Either close succeeded, or we issued close to FW at the
1021 * same time FW compelted it to us. Either way, the I/O
1022 * is closed.
1023 */
1024 CSIO_DB_ASSERT((req->wr_status == FW_SUCCESS) ||
1025 (req->wr_status == FW_EINVAL));
1026 req->wr_status = FW_SCSI_CLOSE_REQUESTED;
1027
1028 CSIO_DEC_STATS(scm, n_active);
1029 list_del_init(&req->sm.sm_list);
1030 csio_set_state(&req->sm, csio_scsis_uninit);
1031 break;
1032
1033 case CSIO_SCSIE_CLOSE:
1034 break;
1035
1036 case CSIO_SCSIE_DRVCLEANUP:
1037 req->wr_status = FW_HOSTERROR;
1038 CSIO_DEC_STATS(scm, n_active);
1039 csio_set_state(&req->sm, csio_scsis_uninit);
1040 break;
1041
1042 default:
1043 csio_dbg(hw, "Unhandled event:%d sent to req:%p\n", evt, req);
1044 CSIO_DB_ASSERT(0);
1045 }
1046 }
1047
1048 static void
csio_scsis_shost_cmpl_await(struct csio_ioreq * req,enum csio_scsi_ev evt)1049 csio_scsis_shost_cmpl_await(struct csio_ioreq *req, enum csio_scsi_ev evt)
1050 {
1051 switch (evt) {
1052 case CSIO_SCSIE_ABORT:
1053 case CSIO_SCSIE_CLOSE:
1054 /*
1055 * Just succeed the abort request, and hope that
1056 * the remote device unregister path will cleanup
1057 * this I/O to the upper layer within a sane
1058 * amount of time.
1059 */
1060 /*
1061 * A close can come in during a LINK DOWN. The FW would have
1062 * returned us the I/O back, but not the remote device lost
1063 * FW event. In this interval, if the I/O times out at the upper
1064 * layer, a close can come in. Take the same action as abort:
1065 * return success, and hope that the remote device unregister
1066 * path will cleanup this I/O. If the FW still doesnt send
1067 * the msg, the close times out, and the upper layer resorts
1068 * to the next level of error recovery.
1069 */
1070 req->drv_status = 0;
1071 break;
1072 case CSIO_SCSIE_DRVCLEANUP:
1073 csio_set_state(&req->sm, csio_scsis_uninit);
1074 break;
1075 default:
1076 csio_dbg(req->lnode->hwp, "Unhandled event:%d sent to req:%p\n",
1077 evt, req);
1078 CSIO_DB_ASSERT(0);
1079 }
1080 }
1081
1082 /*
1083 * csio_scsi_cmpl_handler - WR completion handler for SCSI.
1084 * @hw: HW module.
1085 * @wr: The completed WR from the ingress queue.
1086 * @len: Length of the WR.
1087 * @flb: Freelist buffer array.
1088 * @priv: Private object
1089 * @scsiwr: Pointer to SCSI WR.
1090 *
1091 * This is the WR completion handler called per completion from the
1092 * ISR. It is called with lock held. It walks past the RSS and CPL message
1093 * header where the actual WR is present.
1094 * It then gets the status, WR handle (ioreq pointer) and the len of
1095 * the WR, based on WR opcode. Only on a non-good status is the entire
1096 * WR copied into the WR cache (ioreq->fw_wr).
1097 * The ioreq corresponding to the WR is returned to the caller.
1098 * NOTE: The SCSI queue doesnt allocate a freelist today, hence
1099 * no freelist buffer is expected.
1100 */
1101 struct csio_ioreq *
csio_scsi_cmpl_handler(struct csio_hw * hw,void * wr,uint32_t len,struct csio_fl_dma_buf * flb,void * priv,uint8_t ** scsiwr)1102 csio_scsi_cmpl_handler(struct csio_hw *hw, void *wr, uint32_t len,
1103 struct csio_fl_dma_buf *flb, void *priv, uint8_t **scsiwr)
1104 {
1105 struct csio_ioreq *ioreq = NULL;
1106 struct cpl_fw6_msg *cpl;
1107 uint8_t *tempwr;
1108 uint8_t status;
1109 struct csio_scsim *scm = csio_hw_to_scsim(hw);
1110
1111 /* skip RSS header */
1112 cpl = (struct cpl_fw6_msg *)((uintptr_t)wr + sizeof(__be64));
1113
1114 if (unlikely(cpl->opcode != CPL_FW6_MSG)) {
1115 csio_warn(hw, "Error: Invalid CPL msg %x recvd on SCSI q\n",
1116 cpl->opcode);
1117 CSIO_INC_STATS(scm, n_inval_cplop);
1118 return NULL;
1119 }
1120
1121 tempwr = (uint8_t *)(cpl->data);
1122 status = csio_wr_status(tempwr);
1123 *scsiwr = tempwr;
1124
1125 if (likely((*tempwr == FW_SCSI_READ_WR) ||
1126 (*tempwr == FW_SCSI_WRITE_WR) ||
1127 (*tempwr == FW_SCSI_CMD_WR))) {
1128 ioreq = (struct csio_ioreq *)((uintptr_t)
1129 (((struct fw_scsi_read_wr *)tempwr)->cookie));
1130 CSIO_DB_ASSERT(virt_addr_valid(ioreq));
1131
1132 ioreq->wr_status = status;
1133
1134 return ioreq;
1135 }
1136
1137 if (*tempwr == FW_SCSI_ABRT_CLS_WR) {
1138 ioreq = (struct csio_ioreq *)((uintptr_t)
1139 (((struct fw_scsi_abrt_cls_wr *)tempwr)->cookie));
1140 CSIO_DB_ASSERT(virt_addr_valid(ioreq));
1141
1142 ioreq->wr_status = status;
1143 return ioreq;
1144 }
1145
1146 csio_warn(hw, "WR with invalid opcode in SCSI IQ: %x\n", *tempwr);
1147 CSIO_INC_STATS(scm, n_inval_scsiop);
1148 return NULL;
1149 }
1150
1151 /*
1152 * csio_scsi_cleanup_io_q - Cleanup the given queue.
1153 * @scm: SCSI module.
1154 * @q: Queue to be cleaned up.
1155 *
1156 * Called with lock held. Has to exit with lock held.
1157 */
1158 void
csio_scsi_cleanup_io_q(struct csio_scsim * scm,struct list_head * q)1159 csio_scsi_cleanup_io_q(struct csio_scsim *scm, struct list_head *q)
1160 {
1161 struct csio_hw *hw = scm->hw;
1162 struct csio_ioreq *ioreq;
1163 struct list_head *tmp, *next;
1164 struct scsi_cmnd *scmnd;
1165
1166 /* Call back the completion routines of the active_q */
1167 list_for_each_safe(tmp, next, q) {
1168 ioreq = (struct csio_ioreq *)tmp;
1169 csio_scsi_drvcleanup(ioreq);
1170 list_del_init(&ioreq->sm.sm_list);
1171 scmnd = csio_scsi_cmnd(ioreq);
1172 spin_unlock_irq(&hw->lock);
1173
1174 /*
1175 * Upper layers may have cleared this command, hence this
1176 * check to avoid accessing stale references.
1177 */
1178 if (scmnd != NULL)
1179 ioreq->io_cbfn(hw, ioreq);
1180
1181 spin_lock_irq(&scm->freelist_lock);
1182 csio_put_scsi_ioreq(scm, ioreq);
1183 spin_unlock_irq(&scm->freelist_lock);
1184
1185 spin_lock_irq(&hw->lock);
1186 }
1187 }
1188
1189 #define CSIO_SCSI_ABORT_Q_POLL_MS 2000
1190
1191 static void
csio_abrt_cls(struct csio_ioreq * ioreq,struct scsi_cmnd * scmnd)1192 csio_abrt_cls(struct csio_ioreq *ioreq, struct scsi_cmnd *scmnd)
1193 {
1194 struct csio_lnode *ln = ioreq->lnode;
1195 struct csio_hw *hw = ln->hwp;
1196 int ready = 0;
1197 struct csio_scsim *scsim = csio_hw_to_scsim(hw);
1198 int rv;
1199
1200 if (csio_scsi_cmnd(ioreq) != scmnd) {
1201 CSIO_INC_STATS(scsim, n_abrt_race_comp);
1202 return;
1203 }
1204
1205 ready = csio_is_lnode_ready(ln);
1206
1207 rv = csio_do_abrt_cls(hw, ioreq, (ready ? SCSI_ABORT : SCSI_CLOSE));
1208 if (rv != 0) {
1209 if (ready)
1210 CSIO_INC_STATS(scsim, n_abrt_busy_error);
1211 else
1212 CSIO_INC_STATS(scsim, n_cls_busy_error);
1213 }
1214 }
1215
1216 /*
1217 * csio_scsi_abort_io_q - Abort all I/Os on given queue
1218 * @scm: SCSI module.
1219 * @q: Queue to abort.
1220 * @tmo: Timeout in ms
1221 *
1222 * Attempt to abort all I/Os on given queue, and wait for a max
1223 * of tmo milliseconds for them to complete. Returns success
1224 * if all I/Os are aborted. Else returns -ETIMEDOUT.
1225 * Should be entered with lock held. Exits with lock held.
1226 * NOTE:
1227 * Lock has to be held across the loop that aborts I/Os, since dropping the lock
1228 * in between can cause the list to be corrupted. As a result, the caller
1229 * of this function has to ensure that the number of I/os to be aborted
1230 * is finite enough to not cause lock-held-for-too-long issues.
1231 */
1232 static int
csio_scsi_abort_io_q(struct csio_scsim * scm,struct list_head * q,uint32_t tmo)1233 csio_scsi_abort_io_q(struct csio_scsim *scm, struct list_head *q, uint32_t tmo)
1234 {
1235 struct csio_hw *hw = scm->hw;
1236 struct list_head *tmp, *next;
1237 int count = DIV_ROUND_UP(tmo, CSIO_SCSI_ABORT_Q_POLL_MS);
1238 struct scsi_cmnd *scmnd;
1239
1240 if (list_empty(q))
1241 return 0;
1242
1243 csio_dbg(hw, "Aborting SCSI I/Os\n");
1244
1245 /* Now abort/close I/Os in the queue passed */
1246 list_for_each_safe(tmp, next, q) {
1247 scmnd = csio_scsi_cmnd((struct csio_ioreq *)tmp);
1248 csio_abrt_cls((struct csio_ioreq *)tmp, scmnd);
1249 }
1250
1251 /* Wait till all active I/Os are completed/aborted/closed */
1252 while (!list_empty(q) && count--) {
1253 spin_unlock_irq(&hw->lock);
1254 msleep(CSIO_SCSI_ABORT_Q_POLL_MS);
1255 spin_lock_irq(&hw->lock);
1256 }
1257
1258 /* all aborts completed */
1259 if (list_empty(q))
1260 return 0;
1261
1262 return -ETIMEDOUT;
1263 }
1264
1265 /*
1266 * csio_scsim_cleanup_io - Cleanup all I/Os in SCSI module.
1267 * @scm: SCSI module.
1268 * @abort: abort required.
1269 * Called with lock held, should exit with lock held.
1270 * Can sleep when waiting for I/Os to complete.
1271 */
1272 int
csio_scsim_cleanup_io(struct csio_scsim * scm,bool abort)1273 csio_scsim_cleanup_io(struct csio_scsim *scm, bool abort)
1274 {
1275 struct csio_hw *hw = scm->hw;
1276 int rv = 0;
1277 int count = DIV_ROUND_UP(60 * 1000, CSIO_SCSI_ABORT_Q_POLL_MS);
1278
1279 /* No I/Os pending */
1280 if (list_empty(&scm->active_q))
1281 return 0;
1282
1283 /* Wait until all active I/Os are completed */
1284 while (!list_empty(&scm->active_q) && count--) {
1285 spin_unlock_irq(&hw->lock);
1286 msleep(CSIO_SCSI_ABORT_Q_POLL_MS);
1287 spin_lock_irq(&hw->lock);
1288 }
1289
1290 /* all I/Os completed */
1291 if (list_empty(&scm->active_q))
1292 return 0;
1293
1294 /* Else abort */
1295 if (abort) {
1296 rv = csio_scsi_abort_io_q(scm, &scm->active_q, 30000);
1297 if (rv == 0)
1298 return rv;
1299 csio_dbg(hw, "Some I/O aborts timed out, cleaning up..\n");
1300 }
1301
1302 csio_scsi_cleanup_io_q(scm, &scm->active_q);
1303
1304 CSIO_DB_ASSERT(list_empty(&scm->active_q));
1305
1306 return rv;
1307 }
1308
1309 /*
1310 * csio_scsim_cleanup_io_lnode - Cleanup all I/Os of given lnode.
1311 * @scm: SCSI module.
1312 * @lnode: lnode
1313 *
1314 * Called with lock held, should exit with lock held.
1315 * Can sleep (with dropped lock) when waiting for I/Os to complete.
1316 */
1317 int
csio_scsim_cleanup_io_lnode(struct csio_scsim * scm,struct csio_lnode * ln)1318 csio_scsim_cleanup_io_lnode(struct csio_scsim *scm, struct csio_lnode *ln)
1319 {
1320 struct csio_hw *hw = scm->hw;
1321 struct csio_scsi_level_data sld;
1322 int rv;
1323 int count = DIV_ROUND_UP(60 * 1000, CSIO_SCSI_ABORT_Q_POLL_MS);
1324
1325 csio_dbg(hw, "Gathering all SCSI I/Os on lnode %p\n", ln);
1326
1327 sld.level = CSIO_LEV_LNODE;
1328 sld.lnode = ln;
1329 INIT_LIST_HEAD(&ln->cmpl_q);
1330 csio_scsi_gather_active_ios(scm, &sld, &ln->cmpl_q);
1331
1332 /* No I/Os pending on this lnode */
1333 if (list_empty(&ln->cmpl_q))
1334 return 0;
1335
1336 /* Wait until all active I/Os on this lnode are completed */
1337 while (!list_empty(&ln->cmpl_q) && count--) {
1338 spin_unlock_irq(&hw->lock);
1339 msleep(CSIO_SCSI_ABORT_Q_POLL_MS);
1340 spin_lock_irq(&hw->lock);
1341 }
1342
1343 /* all I/Os completed */
1344 if (list_empty(&ln->cmpl_q))
1345 return 0;
1346
1347 csio_dbg(hw, "Some I/Os pending on ln:%p, aborting them..\n", ln);
1348
1349 /* I/Os are pending, abort them */
1350 rv = csio_scsi_abort_io_q(scm, &ln->cmpl_q, 30000);
1351 if (rv != 0) {
1352 csio_dbg(hw, "Some I/O aborts timed out, cleaning up..\n");
1353 csio_scsi_cleanup_io_q(scm, &ln->cmpl_q);
1354 }
1355
1356 CSIO_DB_ASSERT(list_empty(&ln->cmpl_q));
1357
1358 return rv;
1359 }
1360
1361 static ssize_t
csio_show_hw_state(struct device * dev,struct device_attribute * attr,char * buf)1362 csio_show_hw_state(struct device *dev,
1363 struct device_attribute *attr, char *buf)
1364 {
1365 struct csio_lnode *ln = shost_priv(class_to_shost(dev));
1366 struct csio_hw *hw = csio_lnode_to_hw(ln);
1367
1368 if (csio_is_hw_ready(hw))
1369 return snprintf(buf, PAGE_SIZE, "ready\n");
1370 else
1371 return snprintf(buf, PAGE_SIZE, "not ready\n");
1372 }
1373
1374 /* Device reset */
1375 static ssize_t
csio_device_reset(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1376 csio_device_reset(struct device *dev,
1377 struct device_attribute *attr, const char *buf, size_t count)
1378 {
1379 struct csio_lnode *ln = shost_priv(class_to_shost(dev));
1380 struct csio_hw *hw = csio_lnode_to_hw(ln);
1381
1382 if (*buf != '1')
1383 return -EINVAL;
1384
1385 /* Delete NPIV lnodes */
1386 csio_lnodes_exit(hw, 1);
1387
1388 /* Block upper IOs */
1389 csio_lnodes_block_request(hw);
1390
1391 spin_lock_irq(&hw->lock);
1392 csio_hw_reset(hw);
1393 spin_unlock_irq(&hw->lock);
1394
1395 /* Unblock upper IOs */
1396 csio_lnodes_unblock_request(hw);
1397 return count;
1398 }
1399
1400 /* disable port */
1401 static ssize_t
csio_disable_port(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1402 csio_disable_port(struct device *dev,
1403 struct device_attribute *attr, const char *buf, size_t count)
1404 {
1405 struct csio_lnode *ln = shost_priv(class_to_shost(dev));
1406 struct csio_hw *hw = csio_lnode_to_hw(ln);
1407 bool disable;
1408
1409 if (*buf == '1' || *buf == '0')
1410 disable = (*buf == '1') ? true : false;
1411 else
1412 return -EINVAL;
1413
1414 /* Block upper IOs */
1415 csio_lnodes_block_by_port(hw, ln->portid);
1416
1417 spin_lock_irq(&hw->lock);
1418 csio_disable_lnodes(hw, ln->portid, disable);
1419 spin_unlock_irq(&hw->lock);
1420
1421 /* Unblock upper IOs */
1422 csio_lnodes_unblock_by_port(hw, ln->portid);
1423 return count;
1424 }
1425
1426 /* Show debug level */
1427 static ssize_t
csio_show_dbg_level(struct device * dev,struct device_attribute * attr,char * buf)1428 csio_show_dbg_level(struct device *dev,
1429 struct device_attribute *attr, char *buf)
1430 {
1431 struct csio_lnode *ln = shost_priv(class_to_shost(dev));
1432
1433 return snprintf(buf, PAGE_SIZE, "%x\n", ln->params.log_level);
1434 }
1435
1436 /* Store debug level */
1437 static ssize_t
csio_store_dbg_level(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1438 csio_store_dbg_level(struct device *dev,
1439 struct device_attribute *attr, const char *buf, size_t count)
1440 {
1441 struct csio_lnode *ln = shost_priv(class_to_shost(dev));
1442 struct csio_hw *hw = csio_lnode_to_hw(ln);
1443 uint32_t dbg_level = 0;
1444
1445 if (!isdigit(buf[0]))
1446 return -EINVAL;
1447
1448 if (sscanf(buf, "%i", &dbg_level))
1449 return -EINVAL;
1450
1451 ln->params.log_level = dbg_level;
1452 hw->params.log_level = dbg_level;
1453
1454 return 0;
1455 }
1456
1457 static DEVICE_ATTR(hw_state, S_IRUGO, csio_show_hw_state, NULL);
1458 static DEVICE_ATTR(device_reset, S_IWUSR, NULL, csio_device_reset);
1459 static DEVICE_ATTR(disable_port, S_IWUSR, NULL, csio_disable_port);
1460 static DEVICE_ATTR(dbg_level, S_IRUGO | S_IWUSR, csio_show_dbg_level,
1461 csio_store_dbg_level);
1462
1463 static struct device_attribute *csio_fcoe_lport_attrs[] = {
1464 &dev_attr_hw_state,
1465 &dev_attr_device_reset,
1466 &dev_attr_disable_port,
1467 &dev_attr_dbg_level,
1468 NULL,
1469 };
1470
1471 static ssize_t
csio_show_num_reg_rnodes(struct device * dev,struct device_attribute * attr,char * buf)1472 csio_show_num_reg_rnodes(struct device *dev,
1473 struct device_attribute *attr, char *buf)
1474 {
1475 struct csio_lnode *ln = shost_priv(class_to_shost(dev));
1476
1477 return snprintf(buf, PAGE_SIZE, "%d\n", ln->num_reg_rnodes);
1478 }
1479
1480 static DEVICE_ATTR(num_reg_rnodes, S_IRUGO, csio_show_num_reg_rnodes, NULL);
1481
1482 static struct device_attribute *csio_fcoe_vport_attrs[] = {
1483 &dev_attr_num_reg_rnodes,
1484 &dev_attr_dbg_level,
1485 NULL,
1486 };
1487
1488 static inline uint32_t
csio_scsi_copy_to_sgl(struct csio_hw * hw,struct csio_ioreq * req)1489 csio_scsi_copy_to_sgl(struct csio_hw *hw, struct csio_ioreq *req)
1490 {
1491 struct scsi_cmnd *scmnd = (struct scsi_cmnd *)csio_scsi_cmnd(req);
1492 struct scatterlist *sg;
1493 uint32_t bytes_left;
1494 uint32_t bytes_copy;
1495 uint32_t buf_off = 0;
1496 uint32_t start_off = 0;
1497 uint32_t sg_off = 0;
1498 void *sg_addr;
1499 void *buf_addr;
1500 struct csio_dma_buf *dma_buf;
1501
1502 bytes_left = scsi_bufflen(scmnd);
1503 sg = scsi_sglist(scmnd);
1504 dma_buf = (struct csio_dma_buf *)csio_list_next(&req->gen_list);
1505
1506 /* Copy data from driver buffer to SGs of SCSI CMD */
1507 while (bytes_left > 0 && sg && dma_buf) {
1508 if (buf_off >= dma_buf->len) {
1509 buf_off = 0;
1510 dma_buf = (struct csio_dma_buf *)
1511 csio_list_next(dma_buf);
1512 continue;
1513 }
1514
1515 if (start_off >= sg->length) {
1516 start_off -= sg->length;
1517 sg = sg_next(sg);
1518 continue;
1519 }
1520
1521 buf_addr = dma_buf->vaddr + buf_off;
1522 sg_off = sg->offset + start_off;
1523 bytes_copy = min((dma_buf->len - buf_off),
1524 sg->length - start_off);
1525 bytes_copy = min((uint32_t)(PAGE_SIZE - (sg_off & ~PAGE_MASK)),
1526 bytes_copy);
1527
1528 sg_addr = kmap_atomic(sg_page(sg) + (sg_off >> PAGE_SHIFT));
1529 if (!sg_addr) {
1530 csio_err(hw, "failed to kmap sg:%p of ioreq:%p\n",
1531 sg, req);
1532 break;
1533 }
1534
1535 csio_dbg(hw, "copy_to_sgl:sg_addr %p sg_off %d buf %p len %d\n",
1536 sg_addr, sg_off, buf_addr, bytes_copy);
1537 memcpy(sg_addr + (sg_off & ~PAGE_MASK), buf_addr, bytes_copy);
1538 kunmap_atomic(sg_addr);
1539
1540 start_off += bytes_copy;
1541 buf_off += bytes_copy;
1542 bytes_left -= bytes_copy;
1543 }
1544
1545 if (bytes_left > 0)
1546 return DID_ERROR;
1547 else
1548 return DID_OK;
1549 }
1550
1551 /*
1552 * csio_scsi_err_handler - SCSI error handler.
1553 * @hw: HW module.
1554 * @req: IO request.
1555 *
1556 */
1557 static inline void
csio_scsi_err_handler(struct csio_hw * hw,struct csio_ioreq * req)1558 csio_scsi_err_handler(struct csio_hw *hw, struct csio_ioreq *req)
1559 {
1560 struct scsi_cmnd *cmnd = (struct scsi_cmnd *)csio_scsi_cmnd(req);
1561 struct csio_scsim *scm = csio_hw_to_scsim(hw);
1562 struct fcp_resp_with_ext *fcp_resp;
1563 struct fcp_resp_rsp_info *rsp_info;
1564 struct csio_dma_buf *dma_buf;
1565 uint8_t flags, scsi_status = 0;
1566 uint32_t host_status = DID_OK;
1567 uint32_t rsp_len = 0, sns_len = 0;
1568 struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata);
1569
1570
1571 switch (req->wr_status) {
1572 case FW_HOSTERROR:
1573 if (unlikely(!csio_is_hw_ready(hw)))
1574 return;
1575
1576 host_status = DID_ERROR;
1577 CSIO_INC_STATS(scm, n_hosterror);
1578
1579 break;
1580 case FW_SCSI_RSP_ERR:
1581 dma_buf = &req->dma_buf;
1582 fcp_resp = (struct fcp_resp_with_ext *)dma_buf->vaddr;
1583 rsp_info = (struct fcp_resp_rsp_info *)(fcp_resp + 1);
1584 flags = fcp_resp->resp.fr_flags;
1585 scsi_status = fcp_resp->resp.fr_status;
1586
1587 if (flags & FCP_RSP_LEN_VAL) {
1588 rsp_len = be32_to_cpu(fcp_resp->ext.fr_rsp_len);
1589 if ((rsp_len != 0 && rsp_len != 4 && rsp_len != 8) ||
1590 (rsp_info->rsp_code != FCP_TMF_CMPL)) {
1591 host_status = DID_ERROR;
1592 goto out;
1593 }
1594 }
1595
1596 if ((flags & FCP_SNS_LEN_VAL) && fcp_resp->ext.fr_sns_len) {
1597 sns_len = be32_to_cpu(fcp_resp->ext.fr_sns_len);
1598 if (sns_len > SCSI_SENSE_BUFFERSIZE)
1599 sns_len = SCSI_SENSE_BUFFERSIZE;
1600
1601 memcpy(cmnd->sense_buffer,
1602 &rsp_info->_fr_resvd[0] + rsp_len, sns_len);
1603 CSIO_INC_STATS(scm, n_autosense);
1604 }
1605
1606 scsi_set_resid(cmnd, 0);
1607
1608 /* Under run */
1609 if (flags & FCP_RESID_UNDER) {
1610 scsi_set_resid(cmnd,
1611 be32_to_cpu(fcp_resp->ext.fr_resid));
1612
1613 if (!(flags & FCP_SNS_LEN_VAL) &&
1614 (scsi_status == SAM_STAT_GOOD) &&
1615 ((scsi_bufflen(cmnd) - scsi_get_resid(cmnd))
1616 < cmnd->underflow))
1617 host_status = DID_ERROR;
1618 } else if (flags & FCP_RESID_OVER)
1619 host_status = DID_ERROR;
1620
1621 CSIO_INC_STATS(scm, n_rsperror);
1622 break;
1623
1624 case FW_SCSI_OVER_FLOW_ERR:
1625 csio_warn(hw,
1626 "Over-flow error,cmnd:0x%x expected len:0x%x"
1627 " resid:0x%x\n", cmnd->cmnd[0],
1628 scsi_bufflen(cmnd), scsi_get_resid(cmnd));
1629 host_status = DID_ERROR;
1630 CSIO_INC_STATS(scm, n_ovflerror);
1631 break;
1632
1633 case FW_SCSI_UNDER_FLOW_ERR:
1634 csio_warn(hw,
1635 "Under-flow error,cmnd:0x%x expected"
1636 " len:0x%x resid:0x%x lun:0x%llx ssn:0x%x\n",
1637 cmnd->cmnd[0], scsi_bufflen(cmnd),
1638 scsi_get_resid(cmnd), cmnd->device->lun,
1639 rn->flowid);
1640 host_status = DID_ERROR;
1641 CSIO_INC_STATS(scm, n_unflerror);
1642 break;
1643
1644 case FW_SCSI_ABORT_REQUESTED:
1645 case FW_SCSI_ABORTED:
1646 case FW_SCSI_CLOSE_REQUESTED:
1647 csio_dbg(hw, "Req %p cmd:%p op:%x %s\n", req, cmnd,
1648 cmnd->cmnd[0],
1649 (req->wr_status == FW_SCSI_CLOSE_REQUESTED) ?
1650 "closed" : "aborted");
1651 /*
1652 * csio_eh_abort_handler checks this value to
1653 * succeed or fail the abort request.
1654 */
1655 host_status = DID_REQUEUE;
1656 if (req->wr_status == FW_SCSI_CLOSE_REQUESTED)
1657 CSIO_INC_STATS(scm, n_closed);
1658 else
1659 CSIO_INC_STATS(scm, n_aborted);
1660 break;
1661
1662 case FW_SCSI_ABORT_TIMEDOUT:
1663 /* FW timed out the abort itself */
1664 csio_dbg(hw, "FW timed out abort req:%p cmnd:%p status:%x\n",
1665 req, cmnd, req->wr_status);
1666 host_status = DID_ERROR;
1667 CSIO_INC_STATS(scm, n_abrt_timedout);
1668 break;
1669
1670 case FW_RDEV_NOT_READY:
1671 /*
1672 * In firmware, a RDEV can get into this state
1673 * temporarily, before moving into dissapeared/lost
1674 * state. So, the driver should complete the request equivalent
1675 * to device-disappeared!
1676 */
1677 CSIO_INC_STATS(scm, n_rdev_nr_error);
1678 host_status = DID_ERROR;
1679 break;
1680
1681 case FW_ERR_RDEV_LOST:
1682 CSIO_INC_STATS(scm, n_rdev_lost_error);
1683 host_status = DID_ERROR;
1684 break;
1685
1686 case FW_ERR_RDEV_LOGO:
1687 CSIO_INC_STATS(scm, n_rdev_logo_error);
1688 host_status = DID_ERROR;
1689 break;
1690
1691 case FW_ERR_RDEV_IMPL_LOGO:
1692 host_status = DID_ERROR;
1693 break;
1694
1695 case FW_ERR_LINK_DOWN:
1696 CSIO_INC_STATS(scm, n_link_down_error);
1697 host_status = DID_ERROR;
1698 break;
1699
1700 case FW_FCOE_NO_XCHG:
1701 CSIO_INC_STATS(scm, n_no_xchg_error);
1702 host_status = DID_ERROR;
1703 break;
1704
1705 default:
1706 csio_err(hw, "Unknown SCSI FW WR status:%d req:%p cmnd:%p\n",
1707 req->wr_status, req, cmnd);
1708 CSIO_DB_ASSERT(0);
1709
1710 CSIO_INC_STATS(scm, n_unknown_error);
1711 host_status = DID_ERROR;
1712 break;
1713 }
1714
1715 out:
1716 if (req->nsge > 0)
1717 scsi_dma_unmap(cmnd);
1718
1719 cmnd->result = (((host_status) << 16) | scsi_status);
1720 cmnd->scsi_done(cmnd);
1721
1722 /* Wake up waiting threads */
1723 csio_scsi_cmnd(req) = NULL;
1724 complete(&req->cmplobj);
1725 }
1726
1727 /*
1728 * csio_scsi_cbfn - SCSI callback function.
1729 * @hw: HW module.
1730 * @req: IO request.
1731 *
1732 */
1733 static void
csio_scsi_cbfn(struct csio_hw * hw,struct csio_ioreq * req)1734 csio_scsi_cbfn(struct csio_hw *hw, struct csio_ioreq *req)
1735 {
1736 struct scsi_cmnd *cmnd = (struct scsi_cmnd *)csio_scsi_cmnd(req);
1737 uint8_t scsi_status = SAM_STAT_GOOD;
1738 uint32_t host_status = DID_OK;
1739
1740 if (likely(req->wr_status == FW_SUCCESS)) {
1741 if (req->nsge > 0) {
1742 scsi_dma_unmap(cmnd);
1743 if (req->dcopy)
1744 host_status = csio_scsi_copy_to_sgl(hw, req);
1745 }
1746
1747 cmnd->result = (((host_status) << 16) | scsi_status);
1748 cmnd->scsi_done(cmnd);
1749 csio_scsi_cmnd(req) = NULL;
1750 CSIO_INC_STATS(csio_hw_to_scsim(hw), n_tot_success);
1751 } else {
1752 /* Error handling */
1753 csio_scsi_err_handler(hw, req);
1754 }
1755 }
1756
1757 /**
1758 * csio_queuecommand - Entry point to kickstart an I/O request.
1759 * @host: The scsi_host pointer.
1760 * @cmnd: The I/O request from ML.
1761 *
1762 * This routine does the following:
1763 * - Checks for HW and Rnode module readiness.
1764 * - Gets a free ioreq structure (which is already initialized
1765 * to uninit during its allocation).
1766 * - Maps SG elements.
1767 * - Initializes ioreq members.
1768 * - Kicks off the SCSI state machine for this IO.
1769 * - Returns busy status on error.
1770 */
1771 static int
csio_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmnd)1772 csio_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmnd)
1773 {
1774 struct csio_lnode *ln = shost_priv(host);
1775 struct csio_hw *hw = csio_lnode_to_hw(ln);
1776 struct csio_scsim *scsim = csio_hw_to_scsim(hw);
1777 struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata);
1778 struct csio_ioreq *ioreq = NULL;
1779 unsigned long flags;
1780 int nsge = 0;
1781 int rv = SCSI_MLQUEUE_HOST_BUSY, nr;
1782 int retval;
1783 int cpu;
1784 struct csio_scsi_qset *sqset;
1785 struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device));
1786
1787 if (!blk_rq_cpu_valid(cmnd->request))
1788 cpu = smp_processor_id();
1789 else
1790 cpu = cmnd->request->cpu;
1791
1792 sqset = &hw->sqset[ln->portid][cpu];
1793
1794 nr = fc_remote_port_chkready(rport);
1795 if (nr) {
1796 cmnd->result = nr;
1797 CSIO_INC_STATS(scsim, n_rn_nr_error);
1798 goto err_done;
1799 }
1800
1801 if (unlikely(!csio_is_hw_ready(hw))) {
1802 cmnd->result = (DID_REQUEUE << 16);
1803 CSIO_INC_STATS(scsim, n_hw_nr_error);
1804 goto err_done;
1805 }
1806
1807 /* Get req->nsge, if there are SG elements to be mapped */
1808 nsge = scsi_dma_map(cmnd);
1809 if (unlikely(nsge < 0)) {
1810 CSIO_INC_STATS(scsim, n_dmamap_error);
1811 goto err;
1812 }
1813
1814 /* Do we support so many mappings? */
1815 if (unlikely(nsge > scsim->max_sge)) {
1816 csio_warn(hw,
1817 "More SGEs than can be supported."
1818 " SGEs: %d, Max SGEs: %d\n", nsge, scsim->max_sge);
1819 CSIO_INC_STATS(scsim, n_unsupp_sge_error);
1820 goto err_dma_unmap;
1821 }
1822
1823 /* Get a free ioreq structure - SM is already set to uninit */
1824 ioreq = csio_get_scsi_ioreq_lock(hw, scsim);
1825 if (!ioreq) {
1826 csio_err(hw, "Out of I/O request elements. Active #:%d\n",
1827 scsim->stats.n_active);
1828 CSIO_INC_STATS(scsim, n_no_req_error);
1829 goto err_dma_unmap;
1830 }
1831
1832 ioreq->nsge = nsge;
1833 ioreq->lnode = ln;
1834 ioreq->rnode = rn;
1835 ioreq->iq_idx = sqset->iq_idx;
1836 ioreq->eq_idx = sqset->eq_idx;
1837 ioreq->wr_status = 0;
1838 ioreq->drv_status = 0;
1839 csio_scsi_cmnd(ioreq) = (void *)cmnd;
1840 ioreq->tmo = 0;
1841 ioreq->datadir = cmnd->sc_data_direction;
1842
1843 if (cmnd->sc_data_direction == DMA_TO_DEVICE) {
1844 CSIO_INC_STATS(ln, n_output_requests);
1845 ln->stats.n_output_bytes += scsi_bufflen(cmnd);
1846 } else if (cmnd->sc_data_direction == DMA_FROM_DEVICE) {
1847 CSIO_INC_STATS(ln, n_input_requests);
1848 ln->stats.n_input_bytes += scsi_bufflen(cmnd);
1849 } else
1850 CSIO_INC_STATS(ln, n_control_requests);
1851
1852 /* Set cbfn */
1853 ioreq->io_cbfn = csio_scsi_cbfn;
1854
1855 /* Needed during abort */
1856 cmnd->host_scribble = (unsigned char *)ioreq;
1857 cmnd->SCp.Message = 0;
1858
1859 /* Kick off SCSI IO SM on the ioreq */
1860 spin_lock_irqsave(&hw->lock, flags);
1861 retval = csio_scsi_start_io(ioreq);
1862 spin_unlock_irqrestore(&hw->lock, flags);
1863
1864 if (retval != 0) {
1865 csio_err(hw, "ioreq: %p couldnt be started, status:%d\n",
1866 ioreq, retval);
1867 CSIO_INC_STATS(scsim, n_busy_error);
1868 goto err_put_req;
1869 }
1870
1871 return 0;
1872
1873 err_put_req:
1874 csio_put_scsi_ioreq_lock(hw, scsim, ioreq);
1875 err_dma_unmap:
1876 if (nsge > 0)
1877 scsi_dma_unmap(cmnd);
1878 err:
1879 return rv;
1880
1881 err_done:
1882 cmnd->scsi_done(cmnd);
1883 return 0;
1884 }
1885
1886 static int
csio_do_abrt_cls(struct csio_hw * hw,struct csio_ioreq * ioreq,bool abort)1887 csio_do_abrt_cls(struct csio_hw *hw, struct csio_ioreq *ioreq, bool abort)
1888 {
1889 int rv;
1890 int cpu = smp_processor_id();
1891 struct csio_lnode *ln = ioreq->lnode;
1892 struct csio_scsi_qset *sqset = &hw->sqset[ln->portid][cpu];
1893
1894 ioreq->tmo = CSIO_SCSI_ABRT_TMO_MS;
1895 /*
1896 * Use current processor queue for posting the abort/close, but retain
1897 * the ingress queue ID of the original I/O being aborted/closed - we
1898 * need the abort/close completion to be received on the same queue
1899 * as the original I/O.
1900 */
1901 ioreq->eq_idx = sqset->eq_idx;
1902
1903 if (abort == SCSI_ABORT)
1904 rv = csio_scsi_abort(ioreq);
1905 else
1906 rv = csio_scsi_close(ioreq);
1907
1908 return rv;
1909 }
1910
1911 static int
csio_eh_abort_handler(struct scsi_cmnd * cmnd)1912 csio_eh_abort_handler(struct scsi_cmnd *cmnd)
1913 {
1914 struct csio_ioreq *ioreq;
1915 struct csio_lnode *ln = shost_priv(cmnd->device->host);
1916 struct csio_hw *hw = csio_lnode_to_hw(ln);
1917 struct csio_scsim *scsim = csio_hw_to_scsim(hw);
1918 int ready = 0, ret;
1919 unsigned long tmo = 0;
1920 int rv;
1921 struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata);
1922
1923 ret = fc_block_scsi_eh(cmnd);
1924 if (ret)
1925 return ret;
1926
1927 ioreq = (struct csio_ioreq *)cmnd->host_scribble;
1928 if (!ioreq)
1929 return SUCCESS;
1930
1931 if (!rn)
1932 return FAILED;
1933
1934 csio_dbg(hw,
1935 "Request to abort ioreq:%p cmd:%p cdb:%08llx"
1936 " ssni:0x%x lun:%llu iq:0x%x\n",
1937 ioreq, cmnd, *((uint64_t *)cmnd->cmnd), rn->flowid,
1938 cmnd->device->lun, csio_q_physiqid(hw, ioreq->iq_idx));
1939
1940 if (((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) != cmnd) {
1941 CSIO_INC_STATS(scsim, n_abrt_race_comp);
1942 return SUCCESS;
1943 }
1944
1945 ready = csio_is_lnode_ready(ln);
1946 tmo = CSIO_SCSI_ABRT_TMO_MS;
1947
1948 reinit_completion(&ioreq->cmplobj);
1949 spin_lock_irq(&hw->lock);
1950 rv = csio_do_abrt_cls(hw, ioreq, (ready ? SCSI_ABORT : SCSI_CLOSE));
1951 spin_unlock_irq(&hw->lock);
1952
1953 if (rv != 0) {
1954 if (rv == -EINVAL) {
1955 /* Return success, if abort/close request issued on
1956 * already completed IO
1957 */
1958 return SUCCESS;
1959 }
1960 if (ready)
1961 CSIO_INC_STATS(scsim, n_abrt_busy_error);
1962 else
1963 CSIO_INC_STATS(scsim, n_cls_busy_error);
1964
1965 goto inval_scmnd;
1966 }
1967
1968 wait_for_completion_timeout(&ioreq->cmplobj, msecs_to_jiffies(tmo));
1969
1970 /* FW didnt respond to abort within our timeout */
1971 if (((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) == cmnd) {
1972
1973 csio_err(hw, "Abort timed out -- req: %p\n", ioreq);
1974 CSIO_INC_STATS(scsim, n_abrt_timedout);
1975
1976 inval_scmnd:
1977 if (ioreq->nsge > 0)
1978 scsi_dma_unmap(cmnd);
1979
1980 spin_lock_irq(&hw->lock);
1981 csio_scsi_cmnd(ioreq) = NULL;
1982 spin_unlock_irq(&hw->lock);
1983
1984 cmnd->result = (DID_ERROR << 16);
1985 cmnd->scsi_done(cmnd);
1986
1987 return FAILED;
1988 }
1989
1990 /* FW successfully aborted the request */
1991 if (host_byte(cmnd->result) == DID_REQUEUE) {
1992 csio_info(hw,
1993 "Aborted SCSI command to (%d:%llu) serial#:0x%lx\n",
1994 cmnd->device->id, cmnd->device->lun,
1995 cmnd->serial_number);
1996 return SUCCESS;
1997 } else {
1998 csio_info(hw,
1999 "Failed to abort SCSI command, (%d:%llu) serial#:0x%lx\n",
2000 cmnd->device->id, cmnd->device->lun,
2001 cmnd->serial_number);
2002 return FAILED;
2003 }
2004 }
2005
2006 /*
2007 * csio_tm_cbfn - TM callback function.
2008 * @hw: HW module.
2009 * @req: IO request.
2010 *
2011 * Cache the result in 'cmnd', since ioreq will be freed soon
2012 * after we return from here, and the waiting thread shouldnt trust
2013 * the ioreq contents.
2014 */
2015 static void
csio_tm_cbfn(struct csio_hw * hw,struct csio_ioreq * req)2016 csio_tm_cbfn(struct csio_hw *hw, struct csio_ioreq *req)
2017 {
2018 struct scsi_cmnd *cmnd = (struct scsi_cmnd *)csio_scsi_cmnd(req);
2019 struct csio_dma_buf *dma_buf;
2020 uint8_t flags = 0;
2021 struct fcp_resp_with_ext *fcp_resp;
2022 struct fcp_resp_rsp_info *rsp_info;
2023
2024 csio_dbg(hw, "req: %p in csio_tm_cbfn status: %d\n",
2025 req, req->wr_status);
2026
2027 /* Cache FW return status */
2028 cmnd->SCp.Status = req->wr_status;
2029
2030 /* Special handling based on FCP response */
2031
2032 /*
2033 * FW returns us this error, if flags were set. FCP4 says
2034 * FCP_RSP_LEN_VAL in flags shall be set for TM completions.
2035 * So if a target were to set this bit, we expect that the
2036 * rsp_code is set to FCP_TMF_CMPL for a successful TM
2037 * completion. Any other rsp_code means TM operation failed.
2038 * If a target were to just ignore setting flags, we treat
2039 * the TM operation as success, and FW returns FW_SUCCESS.
2040 */
2041 if (req->wr_status == FW_SCSI_RSP_ERR) {
2042 dma_buf = &req->dma_buf;
2043 fcp_resp = (struct fcp_resp_with_ext *)dma_buf->vaddr;
2044 rsp_info = (struct fcp_resp_rsp_info *)(fcp_resp + 1);
2045
2046 flags = fcp_resp->resp.fr_flags;
2047
2048 /* Modify return status if flags indicate success */
2049 if (flags & FCP_RSP_LEN_VAL)
2050 if (rsp_info->rsp_code == FCP_TMF_CMPL)
2051 cmnd->SCp.Status = FW_SUCCESS;
2052
2053 csio_dbg(hw, "TM FCP rsp code: %d\n", rsp_info->rsp_code);
2054 }
2055
2056 /* Wake up the TM handler thread */
2057 csio_scsi_cmnd(req) = NULL;
2058 }
2059
2060 static int
csio_eh_lun_reset_handler(struct scsi_cmnd * cmnd)2061 csio_eh_lun_reset_handler(struct scsi_cmnd *cmnd)
2062 {
2063 struct csio_lnode *ln = shost_priv(cmnd->device->host);
2064 struct csio_hw *hw = csio_lnode_to_hw(ln);
2065 struct csio_scsim *scsim = csio_hw_to_scsim(hw);
2066 struct csio_rnode *rn = (struct csio_rnode *)(cmnd->device->hostdata);
2067 struct csio_ioreq *ioreq = NULL;
2068 struct csio_scsi_qset *sqset;
2069 unsigned long flags;
2070 int retval;
2071 int count, ret;
2072 LIST_HEAD(local_q);
2073 struct csio_scsi_level_data sld;
2074
2075 if (!rn)
2076 goto fail;
2077
2078 csio_dbg(hw, "Request to reset LUN:%llu (ssni:0x%x tgtid:%d)\n",
2079 cmnd->device->lun, rn->flowid, rn->scsi_id);
2080
2081 if (!csio_is_lnode_ready(ln)) {
2082 csio_err(hw,
2083 "LUN reset cannot be issued on non-ready"
2084 " local node vnpi:0x%x (LUN:%llu)\n",
2085 ln->vnp_flowid, cmnd->device->lun);
2086 goto fail;
2087 }
2088
2089 /* Lnode is ready, now wait on rport node readiness */
2090 ret = fc_block_scsi_eh(cmnd);
2091 if (ret)
2092 return ret;
2093
2094 /*
2095 * If we have blocked in the previous call, at this point, either the
2096 * remote node has come back online, or device loss timer has fired
2097 * and the remote node is destroyed. Allow the LUN reset only for
2098 * the former case, since LUN reset is a TMF I/O on the wire, and we
2099 * need a valid session to issue it.
2100 */
2101 if (fc_remote_port_chkready(rn->rport)) {
2102 csio_err(hw,
2103 "LUN reset cannot be issued on non-ready"
2104 " remote node ssni:0x%x (LUN:%llu)\n",
2105 rn->flowid, cmnd->device->lun);
2106 goto fail;
2107 }
2108
2109 /* Get a free ioreq structure - SM is already set to uninit */
2110 ioreq = csio_get_scsi_ioreq_lock(hw, scsim);
2111
2112 if (!ioreq) {
2113 csio_err(hw, "Out of IO request elements. Active # :%d\n",
2114 scsim->stats.n_active);
2115 goto fail;
2116 }
2117
2118 sqset = &hw->sqset[ln->portid][smp_processor_id()];
2119 ioreq->nsge = 0;
2120 ioreq->lnode = ln;
2121 ioreq->rnode = rn;
2122 ioreq->iq_idx = sqset->iq_idx;
2123 ioreq->eq_idx = sqset->eq_idx;
2124
2125 csio_scsi_cmnd(ioreq) = cmnd;
2126 cmnd->host_scribble = (unsigned char *)ioreq;
2127 cmnd->SCp.Status = 0;
2128
2129 cmnd->SCp.Message = FCP_TMF_LUN_RESET;
2130 ioreq->tmo = CSIO_SCSI_LUNRST_TMO_MS / 1000;
2131
2132 /*
2133 * FW times the LUN reset for ioreq->tmo, so we got to wait a little
2134 * longer (10s for now) than that to allow FW to return the timed
2135 * out command.
2136 */
2137 count = DIV_ROUND_UP((ioreq->tmo + 10) * 1000, CSIO_SCSI_TM_POLL_MS);
2138
2139 /* Set cbfn */
2140 ioreq->io_cbfn = csio_tm_cbfn;
2141
2142 /* Save of the ioreq info for later use */
2143 sld.level = CSIO_LEV_LUN;
2144 sld.lnode = ioreq->lnode;
2145 sld.rnode = ioreq->rnode;
2146 sld.oslun = cmnd->device->lun;
2147
2148 spin_lock_irqsave(&hw->lock, flags);
2149 /* Kick off TM SM on the ioreq */
2150 retval = csio_scsi_start_tm(ioreq);
2151 spin_unlock_irqrestore(&hw->lock, flags);
2152
2153 if (retval != 0) {
2154 csio_err(hw, "Failed to issue LUN reset, req:%p, status:%d\n",
2155 ioreq, retval);
2156 goto fail_ret_ioreq;
2157 }
2158
2159 csio_dbg(hw, "Waiting max %d secs for LUN reset completion\n",
2160 count * (CSIO_SCSI_TM_POLL_MS / 1000));
2161 /* Wait for completion */
2162 while ((((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) == cmnd)
2163 && count--)
2164 msleep(CSIO_SCSI_TM_POLL_MS);
2165
2166 /* LUN reset timed-out */
2167 if (((struct scsi_cmnd *)csio_scsi_cmnd(ioreq)) == cmnd) {
2168 csio_err(hw, "LUN reset (%d:%llu) timed out\n",
2169 cmnd->device->id, cmnd->device->lun);
2170
2171 spin_lock_irq(&hw->lock);
2172 csio_scsi_drvcleanup(ioreq);
2173 list_del_init(&ioreq->sm.sm_list);
2174 spin_unlock_irq(&hw->lock);
2175
2176 goto fail_ret_ioreq;
2177 }
2178
2179 /* LUN reset returned, check cached status */
2180 if (cmnd->SCp.Status != FW_SUCCESS) {
2181 csio_err(hw, "LUN reset failed (%d:%llu), status: %d\n",
2182 cmnd->device->id, cmnd->device->lun, cmnd->SCp.Status);
2183 goto fail;
2184 }
2185
2186 /* LUN reset succeeded, Start aborting affected I/Os */
2187 /*
2188 * Since the host guarantees during LUN reset that there
2189 * will not be any more I/Os to that LUN, until the LUN reset
2190 * completes, we gather pending I/Os after the LUN reset.
2191 */
2192 spin_lock_irq(&hw->lock);
2193 csio_scsi_gather_active_ios(scsim, &sld, &local_q);
2194
2195 retval = csio_scsi_abort_io_q(scsim, &local_q, 30000);
2196 spin_unlock_irq(&hw->lock);
2197
2198 /* Aborts may have timed out */
2199 if (retval != 0) {
2200 csio_err(hw,
2201 "Attempt to abort I/Os during LUN reset of %llu"
2202 " returned %d\n", cmnd->device->lun, retval);
2203 /* Return I/Os back to active_q */
2204 spin_lock_irq(&hw->lock);
2205 list_splice_tail_init(&local_q, &scsim->active_q);
2206 spin_unlock_irq(&hw->lock);
2207 goto fail;
2208 }
2209
2210 CSIO_INC_STATS(rn, n_lun_rst);
2211
2212 csio_info(hw, "LUN reset occurred (%d:%llu)\n",
2213 cmnd->device->id, cmnd->device->lun);
2214
2215 return SUCCESS;
2216
2217 fail_ret_ioreq:
2218 csio_put_scsi_ioreq_lock(hw, scsim, ioreq);
2219 fail:
2220 CSIO_INC_STATS(rn, n_lun_rst_fail);
2221 return FAILED;
2222 }
2223
2224 static int
csio_slave_alloc(struct scsi_device * sdev)2225 csio_slave_alloc(struct scsi_device *sdev)
2226 {
2227 struct fc_rport *rport = starget_to_rport(scsi_target(sdev));
2228
2229 if (!rport || fc_remote_port_chkready(rport))
2230 return -ENXIO;
2231
2232 sdev->hostdata = *((struct csio_lnode **)(rport->dd_data));
2233
2234 return 0;
2235 }
2236
2237 static int
csio_slave_configure(struct scsi_device * sdev)2238 csio_slave_configure(struct scsi_device *sdev)
2239 {
2240 scsi_change_queue_depth(sdev, csio_lun_qdepth);
2241 return 0;
2242 }
2243
2244 static void
csio_slave_destroy(struct scsi_device * sdev)2245 csio_slave_destroy(struct scsi_device *sdev)
2246 {
2247 sdev->hostdata = NULL;
2248 }
2249
2250 static int
csio_scan_finished(struct Scsi_Host * shost,unsigned long time)2251 csio_scan_finished(struct Scsi_Host *shost, unsigned long time)
2252 {
2253 struct csio_lnode *ln = shost_priv(shost);
2254 int rv = 1;
2255
2256 spin_lock_irq(shost->host_lock);
2257 if (!ln->hwp || csio_list_deleted(&ln->sm.sm_list))
2258 goto out;
2259
2260 rv = csio_scan_done(ln, jiffies, time, csio_max_scan_tmo * HZ,
2261 csio_delta_scan_tmo * HZ);
2262 out:
2263 spin_unlock_irq(shost->host_lock);
2264
2265 return rv;
2266 }
2267
2268 struct scsi_host_template csio_fcoe_shost_template = {
2269 .module = THIS_MODULE,
2270 .name = CSIO_DRV_DESC,
2271 .proc_name = KBUILD_MODNAME,
2272 .queuecommand = csio_queuecommand,
2273 .eh_abort_handler = csio_eh_abort_handler,
2274 .eh_device_reset_handler = csio_eh_lun_reset_handler,
2275 .slave_alloc = csio_slave_alloc,
2276 .slave_configure = csio_slave_configure,
2277 .slave_destroy = csio_slave_destroy,
2278 .scan_finished = csio_scan_finished,
2279 .this_id = -1,
2280 .sg_tablesize = CSIO_SCSI_MAX_SGE,
2281 .cmd_per_lun = CSIO_MAX_CMD_PER_LUN,
2282 .use_clustering = ENABLE_CLUSTERING,
2283 .shost_attrs = csio_fcoe_lport_attrs,
2284 .max_sectors = CSIO_MAX_SECTOR_SIZE,
2285 };
2286
2287 struct scsi_host_template csio_fcoe_shost_vport_template = {
2288 .module = THIS_MODULE,
2289 .name = CSIO_DRV_DESC,
2290 .proc_name = KBUILD_MODNAME,
2291 .queuecommand = csio_queuecommand,
2292 .eh_abort_handler = csio_eh_abort_handler,
2293 .eh_device_reset_handler = csio_eh_lun_reset_handler,
2294 .slave_alloc = csio_slave_alloc,
2295 .slave_configure = csio_slave_configure,
2296 .slave_destroy = csio_slave_destroy,
2297 .scan_finished = csio_scan_finished,
2298 .this_id = -1,
2299 .sg_tablesize = CSIO_SCSI_MAX_SGE,
2300 .cmd_per_lun = CSIO_MAX_CMD_PER_LUN,
2301 .use_clustering = ENABLE_CLUSTERING,
2302 .shost_attrs = csio_fcoe_vport_attrs,
2303 .max_sectors = CSIO_MAX_SECTOR_SIZE,
2304 };
2305
2306 /*
2307 * csio_scsi_alloc_ddp_bufs - Allocate buffers for DDP of unaligned SGLs.
2308 * @scm: SCSI Module
2309 * @hw: HW device.
2310 * @buf_size: buffer size
2311 * @num_buf : Number of buffers.
2312 *
2313 * This routine allocates DMA buffers required for SCSI Data xfer, if
2314 * each SGL buffer for a SCSI Read request posted by SCSI midlayer are
2315 * not virtually contiguous.
2316 */
2317 static int
csio_scsi_alloc_ddp_bufs(struct csio_scsim * scm,struct csio_hw * hw,int buf_size,int num_buf)2318 csio_scsi_alloc_ddp_bufs(struct csio_scsim *scm, struct csio_hw *hw,
2319 int buf_size, int num_buf)
2320 {
2321 int n = 0;
2322 struct list_head *tmp;
2323 struct csio_dma_buf *ddp_desc = NULL;
2324 uint32_t unit_size = 0;
2325
2326 if (!num_buf)
2327 return 0;
2328
2329 if (!buf_size)
2330 return -EINVAL;
2331
2332 INIT_LIST_HEAD(&scm->ddp_freelist);
2333
2334 /* Align buf size to page size */
2335 buf_size = (buf_size + PAGE_SIZE - 1) & PAGE_MASK;
2336 /* Initialize dma descriptors */
2337 for (n = 0; n < num_buf; n++) {
2338 /* Set unit size to request size */
2339 unit_size = buf_size;
2340 ddp_desc = kzalloc(sizeof(struct csio_dma_buf), GFP_KERNEL);
2341 if (!ddp_desc) {
2342 csio_err(hw,
2343 "Failed to allocate ddp descriptors,"
2344 " Num allocated = %d.\n",
2345 scm->stats.n_free_ddp);
2346 goto no_mem;
2347 }
2348
2349 /* Allocate Dma buffers for DDP */
2350 ddp_desc->vaddr = pci_alloc_consistent(hw->pdev, unit_size,
2351 &ddp_desc->paddr);
2352 if (!ddp_desc->vaddr) {
2353 csio_err(hw,
2354 "SCSI response DMA buffer (ddp) allocation"
2355 " failed!\n");
2356 kfree(ddp_desc);
2357 goto no_mem;
2358 }
2359
2360 ddp_desc->len = unit_size;
2361
2362 /* Added it to scsi ddp freelist */
2363 list_add_tail(&ddp_desc->list, &scm->ddp_freelist);
2364 CSIO_INC_STATS(scm, n_free_ddp);
2365 }
2366
2367 return 0;
2368 no_mem:
2369 /* release dma descs back to freelist and free dma memory */
2370 list_for_each(tmp, &scm->ddp_freelist) {
2371 ddp_desc = (struct csio_dma_buf *) tmp;
2372 tmp = csio_list_prev(tmp);
2373 pci_free_consistent(hw->pdev, ddp_desc->len, ddp_desc->vaddr,
2374 ddp_desc->paddr);
2375 list_del_init(&ddp_desc->list);
2376 kfree(ddp_desc);
2377 }
2378 scm->stats.n_free_ddp = 0;
2379
2380 return -ENOMEM;
2381 }
2382
2383 /*
2384 * csio_scsi_free_ddp_bufs - free DDP buffers of unaligned SGLs.
2385 * @scm: SCSI Module
2386 * @hw: HW device.
2387 *
2388 * This routine frees ddp buffers.
2389 */
2390 static void
csio_scsi_free_ddp_bufs(struct csio_scsim * scm,struct csio_hw * hw)2391 csio_scsi_free_ddp_bufs(struct csio_scsim *scm, struct csio_hw *hw)
2392 {
2393 struct list_head *tmp;
2394 struct csio_dma_buf *ddp_desc;
2395
2396 /* release dma descs back to freelist and free dma memory */
2397 list_for_each(tmp, &scm->ddp_freelist) {
2398 ddp_desc = (struct csio_dma_buf *) tmp;
2399 tmp = csio_list_prev(tmp);
2400 pci_free_consistent(hw->pdev, ddp_desc->len, ddp_desc->vaddr,
2401 ddp_desc->paddr);
2402 list_del_init(&ddp_desc->list);
2403 kfree(ddp_desc);
2404 }
2405 scm->stats.n_free_ddp = 0;
2406 }
2407
2408 /**
2409 * csio_scsim_init - Initialize SCSI Module
2410 * @scm: SCSI Module
2411 * @hw: HW module
2412 *
2413 */
2414 int
csio_scsim_init(struct csio_scsim * scm,struct csio_hw * hw)2415 csio_scsim_init(struct csio_scsim *scm, struct csio_hw *hw)
2416 {
2417 int i;
2418 struct csio_ioreq *ioreq;
2419 struct csio_dma_buf *dma_buf;
2420
2421 INIT_LIST_HEAD(&scm->active_q);
2422 scm->hw = hw;
2423
2424 scm->proto_cmd_len = sizeof(struct fcp_cmnd);
2425 scm->proto_rsp_len = CSIO_SCSI_RSP_LEN;
2426 scm->max_sge = CSIO_SCSI_MAX_SGE;
2427
2428 spin_lock_init(&scm->freelist_lock);
2429
2430 /* Pre-allocate ioreqs and initialize them */
2431 INIT_LIST_HEAD(&scm->ioreq_freelist);
2432 for (i = 0; i < csio_scsi_ioreqs; i++) {
2433
2434 ioreq = kzalloc(sizeof(struct csio_ioreq), GFP_KERNEL);
2435 if (!ioreq) {
2436 csio_err(hw,
2437 "I/O request element allocation failed, "
2438 " Num allocated = %d.\n",
2439 scm->stats.n_free_ioreq);
2440
2441 goto free_ioreq;
2442 }
2443
2444 /* Allocate Dma buffers for Response Payload */
2445 dma_buf = &ioreq->dma_buf;
2446 dma_buf->vaddr = pci_pool_alloc(hw->scsi_pci_pool, GFP_KERNEL,
2447 &dma_buf->paddr);
2448 if (!dma_buf->vaddr) {
2449 csio_err(hw,
2450 "SCSI response DMA buffer allocation"
2451 " failed!\n");
2452 kfree(ioreq);
2453 goto free_ioreq;
2454 }
2455
2456 dma_buf->len = scm->proto_rsp_len;
2457
2458 /* Set state to uninit */
2459 csio_init_state(&ioreq->sm, csio_scsis_uninit);
2460 INIT_LIST_HEAD(&ioreq->gen_list);
2461 init_completion(&ioreq->cmplobj);
2462
2463 list_add_tail(&ioreq->sm.sm_list, &scm->ioreq_freelist);
2464 CSIO_INC_STATS(scm, n_free_ioreq);
2465 }
2466
2467 if (csio_scsi_alloc_ddp_bufs(scm, hw, PAGE_SIZE, csio_ddp_descs))
2468 goto free_ioreq;
2469
2470 return 0;
2471
2472 free_ioreq:
2473 /*
2474 * Free up existing allocations, since an error
2475 * from here means we are returning for good
2476 */
2477 while (!list_empty(&scm->ioreq_freelist)) {
2478 struct csio_sm *tmp;
2479
2480 tmp = list_first_entry(&scm->ioreq_freelist,
2481 struct csio_sm, sm_list);
2482 list_del_init(&tmp->sm_list);
2483 ioreq = (struct csio_ioreq *)tmp;
2484
2485 dma_buf = &ioreq->dma_buf;
2486 pci_pool_free(hw->scsi_pci_pool, dma_buf->vaddr,
2487 dma_buf->paddr);
2488
2489 kfree(ioreq);
2490 }
2491
2492 scm->stats.n_free_ioreq = 0;
2493
2494 return -ENOMEM;
2495 }
2496
2497 /**
2498 * csio_scsim_exit: Uninitialize SCSI Module
2499 * @scm: SCSI Module
2500 *
2501 */
2502 void
csio_scsim_exit(struct csio_scsim * scm)2503 csio_scsim_exit(struct csio_scsim *scm)
2504 {
2505 struct csio_ioreq *ioreq;
2506 struct csio_dma_buf *dma_buf;
2507
2508 while (!list_empty(&scm->ioreq_freelist)) {
2509 struct csio_sm *tmp;
2510
2511 tmp = list_first_entry(&scm->ioreq_freelist,
2512 struct csio_sm, sm_list);
2513 list_del_init(&tmp->sm_list);
2514 ioreq = (struct csio_ioreq *)tmp;
2515
2516 dma_buf = &ioreq->dma_buf;
2517 pci_pool_free(scm->hw->scsi_pci_pool, dma_buf->vaddr,
2518 dma_buf->paddr);
2519
2520 kfree(ioreq);
2521 }
2522
2523 scm->stats.n_free_ioreq = 0;
2524
2525 csio_scsi_free_ddp_bufs(scm, scm->hw);
2526 }
2527