• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file implements the perfmon-2 subsystem which is used
3  * to program the IA-64 Performance Monitoring Unit (PMU).
4  *
5  * The initial version of perfmon.c was written by
6  * Ganesh Venkitachalam, IBM Corp.
7  *
8  * Then it was modified for perfmon-1.x by Stephane Eranian and
9  * David Mosberger, Hewlett Packard Co.
10  *
11  * Version Perfmon-2.x is a rewrite of perfmon-1.x
12  * by Stephane Eranian, Hewlett Packard Co.
13  *
14  * Copyright (C) 1999-2005  Hewlett Packard Co
15  *               Stephane Eranian <eranian@hpl.hp.com>
16  *               David Mosberger-Tang <davidm@hpl.hp.com>
17  *
18  * More information about perfmon available at:
19  * 	http://www.hpl.hp.com/research/linux/perfmon
20  */
21 
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
30 #include <linux/mm.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
44 #include <linux/slab.h>
45 #include <linux/cpu.h>
46 
47 #include <asm/errno.h>
48 #include <asm/intrinsics.h>
49 #include <asm/page.h>
50 #include <asm/perfmon.h>
51 #include <asm/processor.h>
52 #include <asm/signal.h>
53 #include <asm/uaccess.h>
54 #include <asm/delay.h>
55 
56 #ifdef CONFIG_PERFMON
57 /*
58  * perfmon context state
59  */
60 #define PFM_CTX_UNLOADED	1	/* context is not loaded onto any task */
61 #define PFM_CTX_LOADED		2	/* context is loaded onto a task */
62 #define PFM_CTX_MASKED		3	/* context is loaded but monitoring is masked due to overflow */
63 #define PFM_CTX_ZOMBIE		4	/* owner of the context is closing it */
64 
65 #define PFM_INVALID_ACTIVATION	(~0UL)
66 
67 #define PFM_NUM_PMC_REGS	64	/* PMC save area for ctxsw */
68 #define PFM_NUM_PMD_REGS	64	/* PMD save area for ctxsw */
69 
70 /*
71  * depth of message queue
72  */
73 #define PFM_MAX_MSGS		32
74 #define PFM_CTXQ_EMPTY(g)	((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
75 
76 /*
77  * type of a PMU register (bitmask).
78  * bitmask structure:
79  * 	bit0   : register implemented
80  * 	bit1   : end marker
81  * 	bit2-3 : reserved
82  * 	bit4   : pmc has pmc.pm
83  * 	bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
84  * 	bit6-7 : register type
85  * 	bit8-31: reserved
86  */
87 #define PFM_REG_NOTIMPL		0x0 /* not implemented at all */
88 #define PFM_REG_IMPL		0x1 /* register implemented */
89 #define PFM_REG_END		0x2 /* end marker */
90 #define PFM_REG_MONITOR		(0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
91 #define PFM_REG_COUNTING	(0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
92 #define PFM_REG_CONTROL		(0x4<<4|PFM_REG_IMPL) /* PMU control register */
93 #define	PFM_REG_CONFIG		(0x8<<4|PFM_REG_IMPL) /* configuration register */
94 #define PFM_REG_BUFFER	 	(0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
95 
96 #define PMC_IS_LAST(i)	(pmu_conf->pmc_desc[i].type & PFM_REG_END)
97 #define PMD_IS_LAST(i)	(pmu_conf->pmd_desc[i].type & PFM_REG_END)
98 
99 #define PMC_OVFL_NOTIFY(ctx, i)	((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
100 
101 /* i assumed unsigned */
102 #define PMC_IS_IMPL(i)	  (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
103 #define PMD_IS_IMPL(i)	  (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
104 
105 /* XXX: these assume that register i is implemented */
106 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
108 #define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
109 #define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
110 
111 #define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
112 #define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
113 #define PMD_PMD_DEP(i)	   pmu_conf->pmd_desc[i].dep_pmd[0]
114 #define PMC_PMD_DEP(i)	   pmu_conf->pmc_desc[i].dep_pmd[0]
115 
116 #define PFM_NUM_IBRS	  IA64_NUM_DBG_REGS
117 #define PFM_NUM_DBRS	  IA64_NUM_DBG_REGS
118 
119 #define CTX_OVFL_NOBLOCK(c)	((c)->ctx_fl_block == 0)
120 #define CTX_HAS_SMPL(c)		((c)->ctx_fl_is_sampling)
121 #define PFM_CTX_TASK(h)		(h)->ctx_task
122 
123 #define PMU_PMC_OI		5 /* position of pmc.oi bit */
124 
125 /* XXX: does not support more than 64 PMDs */
126 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
127 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
128 
129 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
130 
131 #define CTX_USED_IBR(ctx,n) 	(ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USED_DBR(ctx,n) 	(ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
133 #define CTX_USES_DBREGS(ctx)	(((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
134 #define PFM_CODE_RR	0	/* requesting code range restriction */
135 #define PFM_DATA_RR	1	/* requestion data range restriction */
136 
137 #define PFM_CPUINFO_CLEAR(v)	pfm_get_cpu_var(pfm_syst_info) &= ~(v)
138 #define PFM_CPUINFO_SET(v)	pfm_get_cpu_var(pfm_syst_info) |= (v)
139 #define PFM_CPUINFO_GET()	pfm_get_cpu_var(pfm_syst_info)
140 
141 #define RDEP(x)	(1UL<<(x))
142 
143 /*
144  * context protection macros
145  * in SMP:
146  * 	- we need to protect against CPU concurrency (spin_lock)
147  * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
148  * in UP:
149  * 	- we need to protect against PMU overflow interrupts (local_irq_disable)
150  *
151  * spin_lock_irqsave()/spin_unlock_irqrestore():
152  * 	in SMP: local_irq_disable + spin_lock
153  * 	in UP : local_irq_disable
154  *
155  * spin_lock()/spin_lock():
156  * 	in UP : removed automatically
157  * 	in SMP: protect against context accesses from other CPU. interrupts
158  * 	        are not masked. This is useful for the PMU interrupt handler
159  * 	        because we know we will not get PMU concurrency in that code.
160  */
161 #define PROTECT_CTX(c, f) \
162 	do {  \
163 		DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
164 		spin_lock_irqsave(&(c)->ctx_lock, f); \
165 		DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
166 	} while(0)
167 
168 #define UNPROTECT_CTX(c, f) \
169 	do { \
170 		DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
171 		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
172 	} while(0)
173 
174 #define PROTECT_CTX_NOPRINT(c, f) \
175 	do {  \
176 		spin_lock_irqsave(&(c)->ctx_lock, f); \
177 	} while(0)
178 
179 
180 #define UNPROTECT_CTX_NOPRINT(c, f) \
181 	do { \
182 		spin_unlock_irqrestore(&(c)->ctx_lock, f); \
183 	} while(0)
184 
185 
186 #define PROTECT_CTX_NOIRQ(c) \
187 	do {  \
188 		spin_lock(&(c)->ctx_lock); \
189 	} while(0)
190 
191 #define UNPROTECT_CTX_NOIRQ(c) \
192 	do { \
193 		spin_unlock(&(c)->ctx_lock); \
194 	} while(0)
195 
196 
197 #ifdef CONFIG_SMP
198 
199 #define GET_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)
200 #define INC_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)++
201 #define SET_ACTIVATION(c)	(c)->ctx_last_activation = GET_ACTIVATION()
202 
203 #else /* !CONFIG_SMP */
204 #define SET_ACTIVATION(t) 	do {} while(0)
205 #define GET_ACTIVATION(t) 	do {} while(0)
206 #define INC_ACTIVATION(t) 	do {} while(0)
207 #endif /* CONFIG_SMP */
208 
209 #define SET_PMU_OWNER(t, c)	do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
210 #define GET_PMU_OWNER()		pfm_get_cpu_var(pmu_owner)
211 #define GET_PMU_CTX()		pfm_get_cpu_var(pmu_ctx)
212 
213 #define LOCK_PFS(g)	    	spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
214 #define UNLOCK_PFS(g)	    	spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
215 
216 #define PFM_REG_RETFLAG_SET(flags, val)	do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
217 
218 /*
219  * cmp0 must be the value of pmc0
220  */
221 #define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
222 
223 #define PFMFS_MAGIC 0xa0b4d889
224 
225 /*
226  * debugging
227  */
228 #define PFM_DEBUGGING 1
229 #ifdef PFM_DEBUGGING
230 #define DPRINT(a) \
231 	do { \
232 		if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
233 	} while (0)
234 
235 #define DPRINT_ovfl(a) \
236 	do { \
237 		if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
238 	} while (0)
239 #endif
240 
241 /*
242  * 64-bit software counter structure
243  *
244  * the next_reset_type is applied to the next call to pfm_reset_regs()
245  */
246 typedef struct {
247 	unsigned long	val;		/* virtual 64bit counter value */
248 	unsigned long	lval;		/* last reset value */
249 	unsigned long	long_reset;	/* reset value on sampling overflow */
250 	unsigned long	short_reset;    /* reset value on overflow */
251 	unsigned long	reset_pmds[4];  /* which other pmds to reset when this counter overflows */
252 	unsigned long	smpl_pmds[4];   /* which pmds are accessed when counter overflow */
253 	unsigned long	seed;		/* seed for random-number generator */
254 	unsigned long	mask;		/* mask for random-number generator */
255 	unsigned int 	flags;		/* notify/do not notify */
256 	unsigned long	eventid;	/* overflow event identifier */
257 } pfm_counter_t;
258 
259 /*
260  * context flags
261  */
262 typedef struct {
263 	unsigned int block:1;		/* when 1, task will blocked on user notifications */
264 	unsigned int system:1;		/* do system wide monitoring */
265 	unsigned int using_dbreg:1;	/* using range restrictions (debug registers) */
266 	unsigned int is_sampling:1;	/* true if using a custom format */
267 	unsigned int excl_idle:1;	/* exclude idle task in system wide session */
268 	unsigned int going_zombie:1;	/* context is zombie (MASKED+blocking) */
269 	unsigned int trap_reason:2;	/* reason for going into pfm_handle_work() */
270 	unsigned int no_msg:1;		/* no message sent on overflow */
271 	unsigned int can_restart:1;	/* allowed to issue a PFM_RESTART */
272 	unsigned int reserved:22;
273 } pfm_context_flags_t;
274 
275 #define PFM_TRAP_REASON_NONE		0x0	/* default value */
276 #define PFM_TRAP_REASON_BLOCK		0x1	/* we need to block on overflow */
277 #define PFM_TRAP_REASON_RESET		0x2	/* we need to reset PMDs */
278 
279 
280 /*
281  * perfmon context: encapsulates all the state of a monitoring session
282  */
283 
284 typedef struct pfm_context {
285 	spinlock_t		ctx_lock;		/* context protection */
286 
287 	pfm_context_flags_t	ctx_flags;		/* bitmask of flags  (block reason incl.) */
288 	unsigned int		ctx_state;		/* state: active/inactive (no bitfield) */
289 
290 	struct task_struct 	*ctx_task;		/* task to which context is attached */
291 
292 	unsigned long		ctx_ovfl_regs[4];	/* which registers overflowed (notification) */
293 
294 	struct completion	ctx_restart_done;  	/* use for blocking notification mode */
295 
296 	unsigned long		ctx_used_pmds[4];	/* bitmask of PMD used            */
297 	unsigned long		ctx_all_pmds[4];	/* bitmask of all accessible PMDs */
298 	unsigned long		ctx_reload_pmds[4];	/* bitmask of force reload PMD on ctxsw in */
299 
300 	unsigned long		ctx_all_pmcs[4];	/* bitmask of all accessible PMCs */
301 	unsigned long		ctx_reload_pmcs[4];	/* bitmask of force reload PMC on ctxsw in */
302 	unsigned long		ctx_used_monitors[4];	/* bitmask of monitor PMC being used */
303 
304 	unsigned long		ctx_pmcs[PFM_NUM_PMC_REGS];	/*  saved copies of PMC values */
305 
306 	unsigned int		ctx_used_ibrs[1];		/* bitmask of used IBR (speedup ctxsw in) */
307 	unsigned int		ctx_used_dbrs[1];		/* bitmask of used DBR (speedup ctxsw in) */
308 	unsigned long		ctx_dbrs[IA64_NUM_DBG_REGS];	/* DBR values (cache) when not loaded */
309 	unsigned long		ctx_ibrs[IA64_NUM_DBG_REGS];	/* IBR values (cache) when not loaded */
310 
311 	pfm_counter_t		ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
312 
313 	unsigned long		th_pmcs[PFM_NUM_PMC_REGS];	/* PMC thread save state */
314 	unsigned long		th_pmds[PFM_NUM_PMD_REGS];	/* PMD thread save state */
315 
316 	unsigned long		ctx_saved_psr_up;	/* only contains psr.up value */
317 
318 	unsigned long		ctx_last_activation;	/* context last activation number for last_cpu */
319 	unsigned int		ctx_last_cpu;		/* CPU id of current or last CPU used (SMP only) */
320 	unsigned int		ctx_cpu;		/* cpu to which perfmon is applied (system wide) */
321 
322 	int			ctx_fd;			/* file descriptor used my this context */
323 	pfm_ovfl_arg_t		ctx_ovfl_arg;		/* argument to custom buffer format handler */
324 
325 	pfm_buffer_fmt_t	*ctx_buf_fmt;		/* buffer format callbacks */
326 	void			*ctx_smpl_hdr;		/* points to sampling buffer header kernel vaddr */
327 	unsigned long		ctx_smpl_size;		/* size of sampling buffer */
328 	void			*ctx_smpl_vaddr;	/* user level virtual address of smpl buffer */
329 
330 	wait_queue_head_t 	ctx_msgq_wait;
331 	pfm_msg_t		ctx_msgq[PFM_MAX_MSGS];
332 	int			ctx_msgq_head;
333 	int			ctx_msgq_tail;
334 	struct fasync_struct	*ctx_async_queue;
335 
336 	wait_queue_head_t 	ctx_zombieq;		/* termination cleanup wait queue */
337 } pfm_context_t;
338 
339 /*
340  * magic number used to verify that structure is really
341  * a perfmon context
342  */
343 #define PFM_IS_FILE(f)		((f)->f_op == &pfm_file_ops)
344 
345 #define PFM_GET_CTX(t)	 	((pfm_context_t *)(t)->thread.pfm_context)
346 
347 #ifdef CONFIG_SMP
348 #define SET_LAST_CPU(ctx, v)	(ctx)->ctx_last_cpu = (v)
349 #define GET_LAST_CPU(ctx)	(ctx)->ctx_last_cpu
350 #else
351 #define SET_LAST_CPU(ctx, v)	do {} while(0)
352 #define GET_LAST_CPU(ctx)	do {} while(0)
353 #endif
354 
355 
356 #define ctx_fl_block		ctx_flags.block
357 #define ctx_fl_system		ctx_flags.system
358 #define ctx_fl_using_dbreg	ctx_flags.using_dbreg
359 #define ctx_fl_is_sampling	ctx_flags.is_sampling
360 #define ctx_fl_excl_idle	ctx_flags.excl_idle
361 #define ctx_fl_going_zombie	ctx_flags.going_zombie
362 #define ctx_fl_trap_reason	ctx_flags.trap_reason
363 #define ctx_fl_no_msg		ctx_flags.no_msg
364 #define ctx_fl_can_restart	ctx_flags.can_restart
365 
366 #define PFM_SET_WORK_PENDING(t, v)	do { (t)->thread.pfm_needs_checking = v; } while(0);
367 #define PFM_GET_WORK_PENDING(t)		(t)->thread.pfm_needs_checking
368 
369 /*
370  * global information about all sessions
371  * mostly used to synchronize between system wide and per-process
372  */
373 typedef struct {
374 	spinlock_t		pfs_lock;		   /* lock the structure */
375 
376 	unsigned int		pfs_task_sessions;	   /* number of per task sessions */
377 	unsigned int		pfs_sys_sessions;	   /* number of per system wide sessions */
378 	unsigned int		pfs_sys_use_dbregs;	   /* incremented when a system wide session uses debug regs */
379 	unsigned int		pfs_ptrace_use_dbregs;	   /* incremented when a process uses debug regs */
380 	struct task_struct	*pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
381 } pfm_session_t;
382 
383 /*
384  * information about a PMC or PMD.
385  * dep_pmd[]: a bitmask of dependent PMD registers
386  * dep_pmc[]: a bitmask of dependent PMC registers
387  */
388 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
389 typedef struct {
390 	unsigned int		type;
391 	int			pm_pos;
392 	unsigned long		default_value;	/* power-on default value */
393 	unsigned long		reserved_mask;	/* bitmask of reserved bits */
394 	pfm_reg_check_t		read_check;
395 	pfm_reg_check_t		write_check;
396 	unsigned long		dep_pmd[4];
397 	unsigned long		dep_pmc[4];
398 } pfm_reg_desc_t;
399 
400 /* assume cnum is a valid monitor */
401 #define PMC_PM(cnum, val)	(((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
402 
403 /*
404  * This structure is initialized at boot time and contains
405  * a description of the PMU main characteristics.
406  *
407  * If the probe function is defined, detection is based
408  * on its return value:
409  * 	- 0 means recognized PMU
410  * 	- anything else means not supported
411  * When the probe function is not defined, then the pmu_family field
412  * is used and it must match the host CPU family such that:
413  * 	- cpu->family & config->pmu_family != 0
414  */
415 typedef struct {
416 	unsigned long  ovfl_val;	/* overflow value for counters */
417 
418 	pfm_reg_desc_t *pmc_desc;	/* detailed PMC register dependencies descriptions */
419 	pfm_reg_desc_t *pmd_desc;	/* detailed PMD register dependencies descriptions */
420 
421 	unsigned int   num_pmcs;	/* number of PMCS: computed at init time */
422 	unsigned int   num_pmds;	/* number of PMDS: computed at init time */
423 	unsigned long  impl_pmcs[4];	/* bitmask of implemented PMCS */
424 	unsigned long  impl_pmds[4];	/* bitmask of implemented PMDS */
425 
426 	char	      *pmu_name;	/* PMU family name */
427 	unsigned int  pmu_family;	/* cpuid family pattern used to identify pmu */
428 	unsigned int  flags;		/* pmu specific flags */
429 	unsigned int  num_ibrs;		/* number of IBRS: computed at init time */
430 	unsigned int  num_dbrs;		/* number of DBRS: computed at init time */
431 	unsigned int  num_counters;	/* PMC/PMD counting pairs : computed at init time */
432 	int           (*probe)(void);   /* customized probe routine */
433 	unsigned int  use_rr_dbregs:1;	/* set if debug registers used for range restriction */
434 } pmu_config_t;
435 /*
436  * PMU specific flags
437  */
438 #define PFM_PMU_IRQ_RESEND	1	/* PMU needs explicit IRQ resend */
439 
440 /*
441  * debug register related type definitions
442  */
443 typedef struct {
444 	unsigned long ibr_mask:56;
445 	unsigned long ibr_plm:4;
446 	unsigned long ibr_ig:3;
447 	unsigned long ibr_x:1;
448 } ibr_mask_reg_t;
449 
450 typedef struct {
451 	unsigned long dbr_mask:56;
452 	unsigned long dbr_plm:4;
453 	unsigned long dbr_ig:2;
454 	unsigned long dbr_w:1;
455 	unsigned long dbr_r:1;
456 } dbr_mask_reg_t;
457 
458 typedef union {
459 	unsigned long  val;
460 	ibr_mask_reg_t ibr;
461 	dbr_mask_reg_t dbr;
462 } dbreg_t;
463 
464 
465 /*
466  * perfmon command descriptions
467  */
468 typedef struct {
469 	int		(*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
470 	char		*cmd_name;
471 	int		cmd_flags;
472 	unsigned int	cmd_narg;
473 	size_t		cmd_argsize;
474 	int		(*cmd_getsize)(void *arg, size_t *sz);
475 } pfm_cmd_desc_t;
476 
477 #define PFM_CMD_FD		0x01	/* command requires a file descriptor */
478 #define PFM_CMD_ARG_READ	0x02	/* command must read argument(s) */
479 #define PFM_CMD_ARG_RW		0x04	/* command must read/write argument(s) */
480 #define PFM_CMD_STOP		0x08	/* command does not work on zombie context */
481 
482 
483 #define PFM_CMD_NAME(cmd)	pfm_cmd_tab[(cmd)].cmd_name
484 #define PFM_CMD_READ_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
485 #define PFM_CMD_RW_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
486 #define PFM_CMD_USE_FD(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
487 #define PFM_CMD_STOPPED(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
488 
489 #define PFM_CMD_ARG_MANY	-1 /* cannot be zero */
490 
491 typedef struct {
492 	unsigned long pfm_spurious_ovfl_intr_count;	/* keep track of spurious ovfl interrupts */
493 	unsigned long pfm_replay_ovfl_intr_count;	/* keep track of replayed ovfl interrupts */
494 	unsigned long pfm_ovfl_intr_count; 		/* keep track of ovfl interrupts */
495 	unsigned long pfm_ovfl_intr_cycles;		/* cycles spent processing ovfl interrupts */
496 	unsigned long pfm_ovfl_intr_cycles_min;		/* min cycles spent processing ovfl interrupts */
497 	unsigned long pfm_ovfl_intr_cycles_max;		/* max cycles spent processing ovfl interrupts */
498 	unsigned long pfm_smpl_handler_calls;
499 	unsigned long pfm_smpl_handler_cycles;
500 	char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
501 } pfm_stats_t;
502 
503 /*
504  * perfmon internal variables
505  */
506 static pfm_stats_t		pfm_stats[NR_CPUS];
507 static pfm_session_t		pfm_sessions;	/* global sessions information */
508 
509 static DEFINE_SPINLOCK(pfm_alt_install_check);
510 static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
511 
512 static struct proc_dir_entry 	*perfmon_dir;
513 static pfm_uuid_t		pfm_null_uuid = {0,};
514 
515 static spinlock_t		pfm_buffer_fmt_lock;
516 static LIST_HEAD(pfm_buffer_fmt_list);
517 
518 static pmu_config_t		*pmu_conf;
519 
520 /* sysctl() controls */
521 pfm_sysctl_t pfm_sysctl;
522 EXPORT_SYMBOL(pfm_sysctl);
523 
524 static struct ctl_table pfm_ctl_table[] = {
525 	{
526 		.procname	= "debug",
527 		.data		= &pfm_sysctl.debug,
528 		.maxlen		= sizeof(int),
529 		.mode		= 0666,
530 		.proc_handler	= proc_dointvec,
531 	},
532 	{
533 		.procname	= "debug_ovfl",
534 		.data		= &pfm_sysctl.debug_ovfl,
535 		.maxlen		= sizeof(int),
536 		.mode		= 0666,
537 		.proc_handler	= proc_dointvec,
538 	},
539 	{
540 		.procname	= "fastctxsw",
541 		.data		= &pfm_sysctl.fastctxsw,
542 		.maxlen		= sizeof(int),
543 		.mode		= 0600,
544 		.proc_handler	= proc_dointvec,
545 	},
546 	{
547 		.procname	= "expert_mode",
548 		.data		= &pfm_sysctl.expert_mode,
549 		.maxlen		= sizeof(int),
550 		.mode		= 0600,
551 		.proc_handler	= proc_dointvec,
552 	},
553 	{}
554 };
555 static struct ctl_table pfm_sysctl_dir[] = {
556 	{
557 		.procname	= "perfmon",
558 		.mode		= 0555,
559 		.child		= pfm_ctl_table,
560 	},
561  	{}
562 };
563 static struct ctl_table pfm_sysctl_root[] = {
564 	{
565 		.procname	= "kernel",
566 		.mode		= 0555,
567 		.child		= pfm_sysctl_dir,
568 	},
569  	{}
570 };
571 static struct ctl_table_header *pfm_sysctl_header;
572 
573 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
574 
575 #define pfm_get_cpu_var(v)		__ia64_per_cpu_var(v)
576 #define pfm_get_cpu_data(a,b)		per_cpu(a, b)
577 
578 static inline void
pfm_put_task(struct task_struct * task)579 pfm_put_task(struct task_struct *task)
580 {
581 	if (task != current) put_task_struct(task);
582 }
583 
584 static inline void
pfm_reserve_page(unsigned long a)585 pfm_reserve_page(unsigned long a)
586 {
587 	SetPageReserved(vmalloc_to_page((void *)a));
588 }
589 static inline void
pfm_unreserve_page(unsigned long a)590 pfm_unreserve_page(unsigned long a)
591 {
592 	ClearPageReserved(vmalloc_to_page((void*)a));
593 }
594 
595 static inline unsigned long
pfm_protect_ctx_ctxsw(pfm_context_t * x)596 pfm_protect_ctx_ctxsw(pfm_context_t *x)
597 {
598 	spin_lock(&(x)->ctx_lock);
599 	return 0UL;
600 }
601 
602 static inline void
pfm_unprotect_ctx_ctxsw(pfm_context_t * x,unsigned long f)603 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
604 {
605 	spin_unlock(&(x)->ctx_lock);
606 }
607 
608 /* forward declaration */
609 static const struct dentry_operations pfmfs_dentry_operations;
610 
611 static struct dentry *
pfmfs_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)612 pfmfs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data)
613 {
614 	return mount_pseudo(fs_type, "pfm:", NULL, &pfmfs_dentry_operations,
615 			PFMFS_MAGIC);
616 }
617 
618 static struct file_system_type pfm_fs_type = {
619 	.name     = "pfmfs",
620 	.mount    = pfmfs_mount,
621 	.kill_sb  = kill_anon_super,
622 };
623 MODULE_ALIAS_FS("pfmfs");
624 
625 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
626 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
627 DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
628 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
629 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
630 
631 
632 /* forward declaration */
633 static const struct file_operations pfm_file_ops;
634 
635 /*
636  * forward declarations
637  */
638 #ifndef CONFIG_SMP
639 static void pfm_lazy_save_regs (struct task_struct *ta);
640 #endif
641 
642 void dump_pmu_state(const char *);
643 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
644 
645 #include "perfmon_itanium.h"
646 #include "perfmon_mckinley.h"
647 #include "perfmon_montecito.h"
648 #include "perfmon_generic.h"
649 
650 static pmu_config_t *pmu_confs[]={
651 	&pmu_conf_mont,
652 	&pmu_conf_mck,
653 	&pmu_conf_ita,
654 	&pmu_conf_gen, /* must be last */
655 	NULL
656 };
657 
658 
659 static int pfm_end_notify_user(pfm_context_t *ctx);
660 
661 static inline void
pfm_clear_psr_pp(void)662 pfm_clear_psr_pp(void)
663 {
664 	ia64_rsm(IA64_PSR_PP);
665 	ia64_srlz_i();
666 }
667 
668 static inline void
pfm_set_psr_pp(void)669 pfm_set_psr_pp(void)
670 {
671 	ia64_ssm(IA64_PSR_PP);
672 	ia64_srlz_i();
673 }
674 
675 static inline void
pfm_clear_psr_up(void)676 pfm_clear_psr_up(void)
677 {
678 	ia64_rsm(IA64_PSR_UP);
679 	ia64_srlz_i();
680 }
681 
682 static inline void
pfm_set_psr_up(void)683 pfm_set_psr_up(void)
684 {
685 	ia64_ssm(IA64_PSR_UP);
686 	ia64_srlz_i();
687 }
688 
689 static inline unsigned long
pfm_get_psr(void)690 pfm_get_psr(void)
691 {
692 	unsigned long tmp;
693 	tmp = ia64_getreg(_IA64_REG_PSR);
694 	ia64_srlz_i();
695 	return tmp;
696 }
697 
698 static inline void
pfm_set_psr_l(unsigned long val)699 pfm_set_psr_l(unsigned long val)
700 {
701 	ia64_setreg(_IA64_REG_PSR_L, val);
702 	ia64_srlz_i();
703 }
704 
705 static inline void
pfm_freeze_pmu(void)706 pfm_freeze_pmu(void)
707 {
708 	ia64_set_pmc(0,1UL);
709 	ia64_srlz_d();
710 }
711 
712 static inline void
pfm_unfreeze_pmu(void)713 pfm_unfreeze_pmu(void)
714 {
715 	ia64_set_pmc(0,0UL);
716 	ia64_srlz_d();
717 }
718 
719 static inline void
pfm_restore_ibrs(unsigned long * ibrs,unsigned int nibrs)720 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
721 {
722 	int i;
723 
724 	for (i=0; i < nibrs; i++) {
725 		ia64_set_ibr(i, ibrs[i]);
726 		ia64_dv_serialize_instruction();
727 	}
728 	ia64_srlz_i();
729 }
730 
731 static inline void
pfm_restore_dbrs(unsigned long * dbrs,unsigned int ndbrs)732 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
733 {
734 	int i;
735 
736 	for (i=0; i < ndbrs; i++) {
737 		ia64_set_dbr(i, dbrs[i]);
738 		ia64_dv_serialize_data();
739 	}
740 	ia64_srlz_d();
741 }
742 
743 /*
744  * PMD[i] must be a counter. no check is made
745  */
746 static inline unsigned long
pfm_read_soft_counter(pfm_context_t * ctx,int i)747 pfm_read_soft_counter(pfm_context_t *ctx, int i)
748 {
749 	return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
750 }
751 
752 /*
753  * PMD[i] must be a counter. no check is made
754  */
755 static inline void
pfm_write_soft_counter(pfm_context_t * ctx,int i,unsigned long val)756 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
757 {
758 	unsigned long ovfl_val = pmu_conf->ovfl_val;
759 
760 	ctx->ctx_pmds[i].val = val  & ~ovfl_val;
761 	/*
762 	 * writing to unimplemented part is ignore, so we do not need to
763 	 * mask off top part
764 	 */
765 	ia64_set_pmd(i, val & ovfl_val);
766 }
767 
768 static pfm_msg_t *
pfm_get_new_msg(pfm_context_t * ctx)769 pfm_get_new_msg(pfm_context_t *ctx)
770 {
771 	int idx, next;
772 
773 	next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
774 
775 	DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
776 	if (next == ctx->ctx_msgq_head) return NULL;
777 
778  	idx = 	ctx->ctx_msgq_tail;
779 	ctx->ctx_msgq_tail = next;
780 
781 	DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
782 
783 	return ctx->ctx_msgq+idx;
784 }
785 
786 static pfm_msg_t *
pfm_get_next_msg(pfm_context_t * ctx)787 pfm_get_next_msg(pfm_context_t *ctx)
788 {
789 	pfm_msg_t *msg;
790 
791 	DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
792 
793 	if (PFM_CTXQ_EMPTY(ctx)) return NULL;
794 
795 	/*
796 	 * get oldest message
797 	 */
798 	msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
799 
800 	/*
801 	 * and move forward
802 	 */
803 	ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
804 
805 	DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
806 
807 	return msg;
808 }
809 
810 static void
pfm_reset_msgq(pfm_context_t * ctx)811 pfm_reset_msgq(pfm_context_t *ctx)
812 {
813 	ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
814 	DPRINT(("ctx=%p msgq reset\n", ctx));
815 }
816 
817 static void *
pfm_rvmalloc(unsigned long size)818 pfm_rvmalloc(unsigned long size)
819 {
820 	void *mem;
821 	unsigned long addr;
822 
823 	size = PAGE_ALIGN(size);
824 	mem  = vzalloc(size);
825 	if (mem) {
826 		//printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
827 		addr = (unsigned long)mem;
828 		while (size > 0) {
829 			pfm_reserve_page(addr);
830 			addr+=PAGE_SIZE;
831 			size-=PAGE_SIZE;
832 		}
833 	}
834 	return mem;
835 }
836 
837 static void
pfm_rvfree(void * mem,unsigned long size)838 pfm_rvfree(void *mem, unsigned long size)
839 {
840 	unsigned long addr;
841 
842 	if (mem) {
843 		DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
844 		addr = (unsigned long) mem;
845 		while ((long) size > 0) {
846 			pfm_unreserve_page(addr);
847 			addr+=PAGE_SIZE;
848 			size-=PAGE_SIZE;
849 		}
850 		vfree(mem);
851 	}
852 	return;
853 }
854 
855 static pfm_context_t *
pfm_context_alloc(int ctx_flags)856 pfm_context_alloc(int ctx_flags)
857 {
858 	pfm_context_t *ctx;
859 
860 	/*
861 	 * allocate context descriptor
862 	 * must be able to free with interrupts disabled
863 	 */
864 	ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
865 	if (ctx) {
866 		DPRINT(("alloc ctx @%p\n", ctx));
867 
868 		/*
869 		 * init context protection lock
870 		 */
871 		spin_lock_init(&ctx->ctx_lock);
872 
873 		/*
874 		 * context is unloaded
875 		 */
876 		ctx->ctx_state = PFM_CTX_UNLOADED;
877 
878 		/*
879 		 * initialization of context's flags
880 		 */
881 		ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
882 		ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
883 		ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
884 		/*
885 		 * will move to set properties
886 		 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
887 		 */
888 
889 		/*
890 		 * init restart semaphore to locked
891 		 */
892 		init_completion(&ctx->ctx_restart_done);
893 
894 		/*
895 		 * activation is used in SMP only
896 		 */
897 		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
898 		SET_LAST_CPU(ctx, -1);
899 
900 		/*
901 		 * initialize notification message queue
902 		 */
903 		ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
904 		init_waitqueue_head(&ctx->ctx_msgq_wait);
905 		init_waitqueue_head(&ctx->ctx_zombieq);
906 
907 	}
908 	return ctx;
909 }
910 
911 static void
pfm_context_free(pfm_context_t * ctx)912 pfm_context_free(pfm_context_t *ctx)
913 {
914 	if (ctx) {
915 		DPRINT(("free ctx @%p\n", ctx));
916 		kfree(ctx);
917 	}
918 }
919 
920 static void
pfm_mask_monitoring(struct task_struct * task)921 pfm_mask_monitoring(struct task_struct *task)
922 {
923 	pfm_context_t *ctx = PFM_GET_CTX(task);
924 	unsigned long mask, val, ovfl_mask;
925 	int i;
926 
927 	DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
928 
929 	ovfl_mask = pmu_conf->ovfl_val;
930 	/*
931 	 * monitoring can only be masked as a result of a valid
932 	 * counter overflow. In UP, it means that the PMU still
933 	 * has an owner. Note that the owner can be different
934 	 * from the current task. However the PMU state belongs
935 	 * to the owner.
936 	 * In SMP, a valid overflow only happens when task is
937 	 * current. Therefore if we come here, we know that
938 	 * the PMU state belongs to the current task, therefore
939 	 * we can access the live registers.
940 	 *
941 	 * So in both cases, the live register contains the owner's
942 	 * state. We can ONLY touch the PMU registers and NOT the PSR.
943 	 *
944 	 * As a consequence to this call, the ctx->th_pmds[] array
945 	 * contains stale information which must be ignored
946 	 * when context is reloaded AND monitoring is active (see
947 	 * pfm_restart).
948 	 */
949 	mask = ctx->ctx_used_pmds[0];
950 	for (i = 0; mask; i++, mask>>=1) {
951 		/* skip non used pmds */
952 		if ((mask & 0x1) == 0) continue;
953 		val = ia64_get_pmd(i);
954 
955 		if (PMD_IS_COUNTING(i)) {
956 			/*
957 		 	 * we rebuild the full 64 bit value of the counter
958 		 	 */
959 			ctx->ctx_pmds[i].val += (val & ovfl_mask);
960 		} else {
961 			ctx->ctx_pmds[i].val = val;
962 		}
963 		DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
964 			i,
965 			ctx->ctx_pmds[i].val,
966 			val & ovfl_mask));
967 	}
968 	/*
969 	 * mask monitoring by setting the privilege level to 0
970 	 * we cannot use psr.pp/psr.up for this, it is controlled by
971 	 * the user
972 	 *
973 	 * if task is current, modify actual registers, otherwise modify
974 	 * thread save state, i.e., what will be restored in pfm_load_regs()
975 	 */
976 	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
977 	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
978 		if ((mask & 0x1) == 0UL) continue;
979 		ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
980 		ctx->th_pmcs[i] &= ~0xfUL;
981 		DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
982 	}
983 	/*
984 	 * make all of this visible
985 	 */
986 	ia64_srlz_d();
987 }
988 
989 /*
990  * must always be done with task == current
991  *
992  * context must be in MASKED state when calling
993  */
994 static void
pfm_restore_monitoring(struct task_struct * task)995 pfm_restore_monitoring(struct task_struct *task)
996 {
997 	pfm_context_t *ctx = PFM_GET_CTX(task);
998 	unsigned long mask, ovfl_mask;
999 	unsigned long psr, val;
1000 	int i, is_system;
1001 
1002 	is_system = ctx->ctx_fl_system;
1003 	ovfl_mask = pmu_conf->ovfl_val;
1004 
1005 	if (task != current) {
1006 		printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1007 		return;
1008 	}
1009 	if (ctx->ctx_state != PFM_CTX_MASKED) {
1010 		printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1011 			task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1012 		return;
1013 	}
1014 	psr = pfm_get_psr();
1015 	/*
1016 	 * monitoring is masked via the PMC.
1017 	 * As we restore their value, we do not want each counter to
1018 	 * restart right away. We stop monitoring using the PSR,
1019 	 * restore the PMC (and PMD) and then re-establish the psr
1020 	 * as it was. Note that there can be no pending overflow at
1021 	 * this point, because monitoring was MASKED.
1022 	 *
1023 	 * system-wide session are pinned and self-monitoring
1024 	 */
1025 	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1026 		/* disable dcr pp */
1027 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1028 		pfm_clear_psr_pp();
1029 	} else {
1030 		pfm_clear_psr_up();
1031 	}
1032 	/*
1033 	 * first, we restore the PMD
1034 	 */
1035 	mask = ctx->ctx_used_pmds[0];
1036 	for (i = 0; mask; i++, mask>>=1) {
1037 		/* skip non used pmds */
1038 		if ((mask & 0x1) == 0) continue;
1039 
1040 		if (PMD_IS_COUNTING(i)) {
1041 			/*
1042 			 * we split the 64bit value according to
1043 			 * counter width
1044 			 */
1045 			val = ctx->ctx_pmds[i].val & ovfl_mask;
1046 			ctx->ctx_pmds[i].val &= ~ovfl_mask;
1047 		} else {
1048 			val = ctx->ctx_pmds[i].val;
1049 		}
1050 		ia64_set_pmd(i, val);
1051 
1052 		DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1053 			i,
1054 			ctx->ctx_pmds[i].val,
1055 			val));
1056 	}
1057 	/*
1058 	 * restore the PMCs
1059 	 */
1060 	mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1061 	for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1062 		if ((mask & 0x1) == 0UL) continue;
1063 		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1064 		ia64_set_pmc(i, ctx->th_pmcs[i]);
1065 		DPRINT(("[%d] pmc[%d]=0x%lx\n",
1066 					task_pid_nr(task), i, ctx->th_pmcs[i]));
1067 	}
1068 	ia64_srlz_d();
1069 
1070 	/*
1071 	 * must restore DBR/IBR because could be modified while masked
1072 	 * XXX: need to optimize
1073 	 */
1074 	if (ctx->ctx_fl_using_dbreg) {
1075 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1076 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1077 	}
1078 
1079 	/*
1080 	 * now restore PSR
1081 	 */
1082 	if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1083 		/* enable dcr pp */
1084 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1085 		ia64_srlz_i();
1086 	}
1087 	pfm_set_psr_l(psr);
1088 }
1089 
1090 static inline void
pfm_save_pmds(unsigned long * pmds,unsigned long mask)1091 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1092 {
1093 	int i;
1094 
1095 	ia64_srlz_d();
1096 
1097 	for (i=0; mask; i++, mask>>=1) {
1098 		if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1099 	}
1100 }
1101 
1102 /*
1103  * reload from thread state (used for ctxw only)
1104  */
1105 static inline void
pfm_restore_pmds(unsigned long * pmds,unsigned long mask)1106 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1107 {
1108 	int i;
1109 	unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1110 
1111 	for (i=0; mask; i++, mask>>=1) {
1112 		if ((mask & 0x1) == 0) continue;
1113 		val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1114 		ia64_set_pmd(i, val);
1115 	}
1116 	ia64_srlz_d();
1117 }
1118 
1119 /*
1120  * propagate PMD from context to thread-state
1121  */
1122 static inline void
pfm_copy_pmds(struct task_struct * task,pfm_context_t * ctx)1123 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1124 {
1125 	unsigned long ovfl_val = pmu_conf->ovfl_val;
1126 	unsigned long mask = ctx->ctx_all_pmds[0];
1127 	unsigned long val;
1128 	int i;
1129 
1130 	DPRINT(("mask=0x%lx\n", mask));
1131 
1132 	for (i=0; mask; i++, mask>>=1) {
1133 
1134 		val = ctx->ctx_pmds[i].val;
1135 
1136 		/*
1137 		 * We break up the 64 bit value into 2 pieces
1138 		 * the lower bits go to the machine state in the
1139 		 * thread (will be reloaded on ctxsw in).
1140 		 * The upper part stays in the soft-counter.
1141 		 */
1142 		if (PMD_IS_COUNTING(i)) {
1143 			ctx->ctx_pmds[i].val = val & ~ovfl_val;
1144 			 val &= ovfl_val;
1145 		}
1146 		ctx->th_pmds[i] = val;
1147 
1148 		DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1149 			i,
1150 			ctx->th_pmds[i],
1151 			ctx->ctx_pmds[i].val));
1152 	}
1153 }
1154 
1155 /*
1156  * propagate PMC from context to thread-state
1157  */
1158 static inline void
pfm_copy_pmcs(struct task_struct * task,pfm_context_t * ctx)1159 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1160 {
1161 	unsigned long mask = ctx->ctx_all_pmcs[0];
1162 	int i;
1163 
1164 	DPRINT(("mask=0x%lx\n", mask));
1165 
1166 	for (i=0; mask; i++, mask>>=1) {
1167 		/* masking 0 with ovfl_val yields 0 */
1168 		ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1169 		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1170 	}
1171 }
1172 
1173 
1174 
1175 static inline void
pfm_restore_pmcs(unsigned long * pmcs,unsigned long mask)1176 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1177 {
1178 	int i;
1179 
1180 	for (i=0; mask; i++, mask>>=1) {
1181 		if ((mask & 0x1) == 0) continue;
1182 		ia64_set_pmc(i, pmcs[i]);
1183 	}
1184 	ia64_srlz_d();
1185 }
1186 
1187 static inline int
pfm_uuid_cmp(pfm_uuid_t a,pfm_uuid_t b)1188 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1189 {
1190 	return memcmp(a, b, sizeof(pfm_uuid_t));
1191 }
1192 
1193 static inline int
pfm_buf_fmt_exit(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,struct pt_regs * regs)1194 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1195 {
1196 	int ret = 0;
1197 	if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1198 	return ret;
1199 }
1200 
1201 static inline int
pfm_buf_fmt_getsize(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg,unsigned long * size)1202 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1203 {
1204 	int ret = 0;
1205 	if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1206 	return ret;
1207 }
1208 
1209 
1210 static inline int
pfm_buf_fmt_validate(pfm_buffer_fmt_t * fmt,struct task_struct * task,unsigned int flags,int cpu,void * arg)1211 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1212 		     int cpu, void *arg)
1213 {
1214 	int ret = 0;
1215 	if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1216 	return ret;
1217 }
1218 
1219 static inline int
pfm_buf_fmt_init(pfm_buffer_fmt_t * fmt,struct task_struct * task,void * buf,unsigned int flags,int cpu,void * arg)1220 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1221 		     int cpu, void *arg)
1222 {
1223 	int ret = 0;
1224 	if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1225 	return ret;
1226 }
1227 
1228 static inline int
pfm_buf_fmt_restart(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1229 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1230 {
1231 	int ret = 0;
1232 	if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1233 	return ret;
1234 }
1235 
1236 static inline int
pfm_buf_fmt_restart_active(pfm_buffer_fmt_t * fmt,struct task_struct * task,pfm_ovfl_ctrl_t * ctrl,void * buf,struct pt_regs * regs)1237 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1238 {
1239 	int ret = 0;
1240 	if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1241 	return ret;
1242 }
1243 
1244 static pfm_buffer_fmt_t *
__pfm_find_buffer_fmt(pfm_uuid_t uuid)1245 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1246 {
1247 	struct list_head * pos;
1248 	pfm_buffer_fmt_t * entry;
1249 
1250 	list_for_each(pos, &pfm_buffer_fmt_list) {
1251 		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1252 		if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1253 			return entry;
1254 	}
1255 	return NULL;
1256 }
1257 
1258 /*
1259  * find a buffer format based on its uuid
1260  */
1261 static pfm_buffer_fmt_t *
pfm_find_buffer_fmt(pfm_uuid_t uuid)1262 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1263 {
1264 	pfm_buffer_fmt_t * fmt;
1265 	spin_lock(&pfm_buffer_fmt_lock);
1266 	fmt = __pfm_find_buffer_fmt(uuid);
1267 	spin_unlock(&pfm_buffer_fmt_lock);
1268 	return fmt;
1269 }
1270 
1271 int
pfm_register_buffer_fmt(pfm_buffer_fmt_t * fmt)1272 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1273 {
1274 	int ret = 0;
1275 
1276 	/* some sanity checks */
1277 	if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1278 
1279 	/* we need at least a handler */
1280 	if (fmt->fmt_handler == NULL) return -EINVAL;
1281 
1282 	/*
1283 	 * XXX: need check validity of fmt_arg_size
1284 	 */
1285 
1286 	spin_lock(&pfm_buffer_fmt_lock);
1287 
1288 	if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1289 		printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1290 		ret = -EBUSY;
1291 		goto out;
1292 	}
1293 	list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1294 	printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1295 
1296 out:
1297 	spin_unlock(&pfm_buffer_fmt_lock);
1298  	return ret;
1299 }
1300 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1301 
1302 int
pfm_unregister_buffer_fmt(pfm_uuid_t uuid)1303 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1304 {
1305 	pfm_buffer_fmt_t *fmt;
1306 	int ret = 0;
1307 
1308 	spin_lock(&pfm_buffer_fmt_lock);
1309 
1310 	fmt = __pfm_find_buffer_fmt(uuid);
1311 	if (!fmt) {
1312 		printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1313 		ret = -EINVAL;
1314 		goto out;
1315 	}
1316 	list_del_init(&fmt->fmt_list);
1317 	printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1318 
1319 out:
1320 	spin_unlock(&pfm_buffer_fmt_lock);
1321 	return ret;
1322 
1323 }
1324 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1325 
1326 static int
pfm_reserve_session(struct task_struct * task,int is_syswide,unsigned int cpu)1327 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1328 {
1329 	unsigned long flags;
1330 	/*
1331 	 * validity checks on cpu_mask have been done upstream
1332 	 */
1333 	LOCK_PFS(flags);
1334 
1335 	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336 		pfm_sessions.pfs_sys_sessions,
1337 		pfm_sessions.pfs_task_sessions,
1338 		pfm_sessions.pfs_sys_use_dbregs,
1339 		is_syswide,
1340 		cpu));
1341 
1342 	if (is_syswide) {
1343 		/*
1344 		 * cannot mix system wide and per-task sessions
1345 		 */
1346 		if (pfm_sessions.pfs_task_sessions > 0UL) {
1347 			DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348 			  	pfm_sessions.pfs_task_sessions));
1349 			goto abort;
1350 		}
1351 
1352 		if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1353 
1354 		DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1355 
1356 		pfm_sessions.pfs_sys_session[cpu] = task;
1357 
1358 		pfm_sessions.pfs_sys_sessions++ ;
1359 
1360 	} else {
1361 		if (pfm_sessions.pfs_sys_sessions) goto abort;
1362 		pfm_sessions.pfs_task_sessions++;
1363 	}
1364 
1365 	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366 		pfm_sessions.pfs_sys_sessions,
1367 		pfm_sessions.pfs_task_sessions,
1368 		pfm_sessions.pfs_sys_use_dbregs,
1369 		is_syswide,
1370 		cpu));
1371 
1372 	/*
1373 	 * Force idle() into poll mode
1374 	 */
1375 	cpu_idle_poll_ctrl(true);
1376 
1377 	UNLOCK_PFS(flags);
1378 
1379 	return 0;
1380 
1381 error_conflict:
1382 	DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383   		task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1384 		cpu));
1385 abort:
1386 	UNLOCK_PFS(flags);
1387 
1388 	return -EBUSY;
1389 
1390 }
1391 
1392 static int
pfm_unreserve_session(pfm_context_t * ctx,int is_syswide,unsigned int cpu)1393 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1394 {
1395 	unsigned long flags;
1396 	/*
1397 	 * validity checks on cpu_mask have been done upstream
1398 	 */
1399 	LOCK_PFS(flags);
1400 
1401 	DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402 		pfm_sessions.pfs_sys_sessions,
1403 		pfm_sessions.pfs_task_sessions,
1404 		pfm_sessions.pfs_sys_use_dbregs,
1405 		is_syswide,
1406 		cpu));
1407 
1408 
1409 	if (is_syswide) {
1410 		pfm_sessions.pfs_sys_session[cpu] = NULL;
1411 		/*
1412 		 * would not work with perfmon+more than one bit in cpu_mask
1413 		 */
1414 		if (ctx && ctx->ctx_fl_using_dbreg) {
1415 			if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1416 				printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1417 			} else {
1418 				pfm_sessions.pfs_sys_use_dbregs--;
1419 			}
1420 		}
1421 		pfm_sessions.pfs_sys_sessions--;
1422 	} else {
1423 		pfm_sessions.pfs_task_sessions--;
1424 	}
1425 	DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426 		pfm_sessions.pfs_sys_sessions,
1427 		pfm_sessions.pfs_task_sessions,
1428 		pfm_sessions.pfs_sys_use_dbregs,
1429 		is_syswide,
1430 		cpu));
1431 
1432 	/* Undo forced polling. Last session reenables pal_halt */
1433 	cpu_idle_poll_ctrl(false);
1434 
1435 	UNLOCK_PFS(flags);
1436 
1437 	return 0;
1438 }
1439 
1440 /*
1441  * removes virtual mapping of the sampling buffer.
1442  * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1443  * a PROTECT_CTX() section.
1444  */
1445 static int
pfm_remove_smpl_mapping(void * vaddr,unsigned long size)1446 pfm_remove_smpl_mapping(void *vaddr, unsigned long size)
1447 {
1448 	struct task_struct *task = current;
1449 	int r;
1450 
1451 	/* sanity checks */
1452 	if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1453 		printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1454 		return -EINVAL;
1455 	}
1456 
1457 	DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1458 
1459 	/*
1460 	 * does the actual unmapping
1461 	 */
1462 	r = vm_munmap((unsigned long)vaddr, size);
1463 
1464 	if (r !=0) {
1465 		printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1466 	}
1467 
1468 	DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1469 
1470 	return 0;
1471 }
1472 
1473 /*
1474  * free actual physical storage used by sampling buffer
1475  */
1476 #if 0
1477 static int
1478 pfm_free_smpl_buffer(pfm_context_t *ctx)
1479 {
1480 	pfm_buffer_fmt_t *fmt;
1481 
1482 	if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1483 
1484 	/*
1485 	 * we won't use the buffer format anymore
1486 	 */
1487 	fmt = ctx->ctx_buf_fmt;
1488 
1489 	DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1490 		ctx->ctx_smpl_hdr,
1491 		ctx->ctx_smpl_size,
1492 		ctx->ctx_smpl_vaddr));
1493 
1494 	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1495 
1496 	/*
1497 	 * free the buffer
1498 	 */
1499 	pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1500 
1501 	ctx->ctx_smpl_hdr  = NULL;
1502 	ctx->ctx_smpl_size = 0UL;
1503 
1504 	return 0;
1505 
1506 invalid_free:
1507 	printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1508 	return -EINVAL;
1509 }
1510 #endif
1511 
1512 static inline void
pfm_exit_smpl_buffer(pfm_buffer_fmt_t * fmt)1513 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1514 {
1515 	if (fmt == NULL) return;
1516 
1517 	pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1518 
1519 }
1520 
1521 /*
1522  * pfmfs should _never_ be mounted by userland - too much of security hassle,
1523  * no real gain from having the whole whorehouse mounted. So we don't need
1524  * any operations on the root directory. However, we need a non-trivial
1525  * d_name - pfm: will go nicely and kill the special-casing in procfs.
1526  */
1527 static struct vfsmount *pfmfs_mnt __read_mostly;
1528 
1529 static int __init
init_pfm_fs(void)1530 init_pfm_fs(void)
1531 {
1532 	int err = register_filesystem(&pfm_fs_type);
1533 	if (!err) {
1534 		pfmfs_mnt = kern_mount(&pfm_fs_type);
1535 		err = PTR_ERR(pfmfs_mnt);
1536 		if (IS_ERR(pfmfs_mnt))
1537 			unregister_filesystem(&pfm_fs_type);
1538 		else
1539 			err = 0;
1540 	}
1541 	return err;
1542 }
1543 
1544 static ssize_t
pfm_read(struct file * filp,char __user * buf,size_t size,loff_t * ppos)1545 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1546 {
1547 	pfm_context_t *ctx;
1548 	pfm_msg_t *msg;
1549 	ssize_t ret;
1550 	unsigned long flags;
1551   	DECLARE_WAITQUEUE(wait, current);
1552 	if (PFM_IS_FILE(filp) == 0) {
1553 		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1554 		return -EINVAL;
1555 	}
1556 
1557 	ctx = filp->private_data;
1558 	if (ctx == NULL) {
1559 		printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1560 		return -EINVAL;
1561 	}
1562 
1563 	/*
1564 	 * check even when there is no message
1565 	 */
1566 	if (size < sizeof(pfm_msg_t)) {
1567 		DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1568 		return -EINVAL;
1569 	}
1570 
1571 	PROTECT_CTX(ctx, flags);
1572 
1573   	/*
1574 	 * put ourselves on the wait queue
1575 	 */
1576   	add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1577 
1578 
1579   	for(;;) {
1580 		/*
1581 		 * check wait queue
1582 		 */
1583 
1584   		set_current_state(TASK_INTERRUPTIBLE);
1585 
1586 		DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1587 
1588 		ret = 0;
1589 		if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1590 
1591 		UNPROTECT_CTX(ctx, flags);
1592 
1593 		/*
1594 		 * check non-blocking read
1595 		 */
1596       		ret = -EAGAIN;
1597 		if(filp->f_flags & O_NONBLOCK) break;
1598 
1599 		/*
1600 		 * check pending signals
1601 		 */
1602 		if(signal_pending(current)) {
1603 			ret = -EINTR;
1604 			break;
1605 		}
1606       		/*
1607 		 * no message, so wait
1608 		 */
1609       		schedule();
1610 
1611 		PROTECT_CTX(ctx, flags);
1612 	}
1613 	DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1614   	set_current_state(TASK_RUNNING);
1615 	remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1616 
1617 	if (ret < 0) goto abort;
1618 
1619 	ret = -EINVAL;
1620 	msg = pfm_get_next_msg(ctx);
1621 	if (msg == NULL) {
1622 		printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1623 		goto abort_locked;
1624 	}
1625 
1626 	DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1627 
1628 	ret = -EFAULT;
1629   	if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1630 
1631 abort_locked:
1632 	UNPROTECT_CTX(ctx, flags);
1633 abort:
1634 	return ret;
1635 }
1636 
1637 static ssize_t
pfm_write(struct file * file,const char __user * ubuf,size_t size,loff_t * ppos)1638 pfm_write(struct file *file, const char __user *ubuf,
1639 			  size_t size, loff_t *ppos)
1640 {
1641 	DPRINT(("pfm_write called\n"));
1642 	return -EINVAL;
1643 }
1644 
1645 static unsigned int
pfm_poll(struct file * filp,poll_table * wait)1646 pfm_poll(struct file *filp, poll_table * wait)
1647 {
1648 	pfm_context_t *ctx;
1649 	unsigned long flags;
1650 	unsigned int mask = 0;
1651 
1652 	if (PFM_IS_FILE(filp) == 0) {
1653 		printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1654 		return 0;
1655 	}
1656 
1657 	ctx = filp->private_data;
1658 	if (ctx == NULL) {
1659 		printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1660 		return 0;
1661 	}
1662 
1663 
1664 	DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1665 
1666 	poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1667 
1668 	PROTECT_CTX(ctx, flags);
1669 
1670 	if (PFM_CTXQ_EMPTY(ctx) == 0)
1671 		mask =  POLLIN | POLLRDNORM;
1672 
1673 	UNPROTECT_CTX(ctx, flags);
1674 
1675 	DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1676 
1677 	return mask;
1678 }
1679 
1680 static long
pfm_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1681 pfm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1682 {
1683 	DPRINT(("pfm_ioctl called\n"));
1684 	return -EINVAL;
1685 }
1686 
1687 /*
1688  * interrupt cannot be masked when coming here
1689  */
1690 static inline int
pfm_do_fasync(int fd,struct file * filp,pfm_context_t * ctx,int on)1691 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1692 {
1693 	int ret;
1694 
1695 	ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1696 
1697 	DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698 		task_pid_nr(current),
1699 		fd,
1700 		on,
1701 		ctx->ctx_async_queue, ret));
1702 
1703 	return ret;
1704 }
1705 
1706 static int
pfm_fasync(int fd,struct file * filp,int on)1707 pfm_fasync(int fd, struct file *filp, int on)
1708 {
1709 	pfm_context_t *ctx;
1710 	int ret;
1711 
1712 	if (PFM_IS_FILE(filp) == 0) {
1713 		printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1714 		return -EBADF;
1715 	}
1716 
1717 	ctx = filp->private_data;
1718 	if (ctx == NULL) {
1719 		printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1720 		return -EBADF;
1721 	}
1722 	/*
1723 	 * we cannot mask interrupts during this call because this may
1724 	 * may go to sleep if memory is not readily avalaible.
1725 	 *
1726 	 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1727 	 * done in caller. Serialization of this function is ensured by caller.
1728 	 */
1729 	ret = pfm_do_fasync(fd, filp, ctx, on);
1730 
1731 
1732 	DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1733 		fd,
1734 		on,
1735 		ctx->ctx_async_queue, ret));
1736 
1737 	return ret;
1738 }
1739 
1740 #ifdef CONFIG_SMP
1741 /*
1742  * this function is exclusively called from pfm_close().
1743  * The context is not protected at that time, nor are interrupts
1744  * on the remote CPU. That's necessary to avoid deadlocks.
1745  */
1746 static void
pfm_syswide_force_stop(void * info)1747 pfm_syswide_force_stop(void *info)
1748 {
1749 	pfm_context_t   *ctx = (pfm_context_t *)info;
1750 	struct pt_regs *regs = task_pt_regs(current);
1751 	struct task_struct *owner;
1752 	unsigned long flags;
1753 	int ret;
1754 
1755 	if (ctx->ctx_cpu != smp_processor_id()) {
1756 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1757 			ctx->ctx_cpu,
1758 			smp_processor_id());
1759 		return;
1760 	}
1761 	owner = GET_PMU_OWNER();
1762 	if (owner != ctx->ctx_task) {
1763 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1764 			smp_processor_id(),
1765 			task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1766 		return;
1767 	}
1768 	if (GET_PMU_CTX() != ctx) {
1769 		printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1770 			smp_processor_id(),
1771 			GET_PMU_CTX(), ctx);
1772 		return;
1773 	}
1774 
1775 	DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1776 	/*
1777 	 * the context is already protected in pfm_close(), we simply
1778 	 * need to mask interrupts to avoid a PMU interrupt race on
1779 	 * this CPU
1780 	 */
1781 	local_irq_save(flags);
1782 
1783 	ret = pfm_context_unload(ctx, NULL, 0, regs);
1784 	if (ret) {
1785 		DPRINT(("context_unload returned %d\n", ret));
1786 	}
1787 
1788 	/*
1789 	 * unmask interrupts, PMU interrupts are now spurious here
1790 	 */
1791 	local_irq_restore(flags);
1792 }
1793 
1794 static void
pfm_syswide_cleanup_other_cpu(pfm_context_t * ctx)1795 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1796 {
1797 	int ret;
1798 
1799 	DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1800 	ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1801 	DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1802 }
1803 #endif /* CONFIG_SMP */
1804 
1805 /*
1806  * called for each close(). Partially free resources.
1807  * When caller is self-monitoring, the context is unloaded.
1808  */
1809 static int
pfm_flush(struct file * filp,fl_owner_t id)1810 pfm_flush(struct file *filp, fl_owner_t id)
1811 {
1812 	pfm_context_t *ctx;
1813 	struct task_struct *task;
1814 	struct pt_regs *regs;
1815 	unsigned long flags;
1816 	unsigned long smpl_buf_size = 0UL;
1817 	void *smpl_buf_vaddr = NULL;
1818 	int state, is_system;
1819 
1820 	if (PFM_IS_FILE(filp) == 0) {
1821 		DPRINT(("bad magic for\n"));
1822 		return -EBADF;
1823 	}
1824 
1825 	ctx = filp->private_data;
1826 	if (ctx == NULL) {
1827 		printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1828 		return -EBADF;
1829 	}
1830 
1831 	/*
1832 	 * remove our file from the async queue, if we use this mode.
1833 	 * This can be done without the context being protected. We come
1834 	 * here when the context has become unreachable by other tasks.
1835 	 *
1836 	 * We may still have active monitoring at this point and we may
1837 	 * end up in pfm_overflow_handler(). However, fasync_helper()
1838 	 * operates with interrupts disabled and it cleans up the
1839 	 * queue. If the PMU handler is called prior to entering
1840 	 * fasync_helper() then it will send a signal. If it is
1841 	 * invoked after, it will find an empty queue and no
1842 	 * signal will be sent. In both case, we are safe
1843 	 */
1844 	PROTECT_CTX(ctx, flags);
1845 
1846 	state     = ctx->ctx_state;
1847 	is_system = ctx->ctx_fl_system;
1848 
1849 	task = PFM_CTX_TASK(ctx);
1850 	regs = task_pt_regs(task);
1851 
1852 	DPRINT(("ctx_state=%d is_current=%d\n",
1853 		state,
1854 		task == current ? 1 : 0));
1855 
1856 	/*
1857 	 * if state == UNLOADED, then task is NULL
1858 	 */
1859 
1860 	/*
1861 	 * we must stop and unload because we are losing access to the context.
1862 	 */
1863 	if (task == current) {
1864 #ifdef CONFIG_SMP
1865 		/*
1866 		 * the task IS the owner but it migrated to another CPU: that's bad
1867 		 * but we must handle this cleanly. Unfortunately, the kernel does
1868 		 * not provide a mechanism to block migration (while the context is loaded).
1869 		 *
1870 		 * We need to release the resource on the ORIGINAL cpu.
1871 		 */
1872 		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1873 
1874 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1875 			/*
1876 			 * keep context protected but unmask interrupt for IPI
1877 			 */
1878 			local_irq_restore(flags);
1879 
1880 			pfm_syswide_cleanup_other_cpu(ctx);
1881 
1882 			/*
1883 			 * restore interrupt masking
1884 			 */
1885 			local_irq_save(flags);
1886 
1887 			/*
1888 			 * context is unloaded at this point
1889 			 */
1890 		} else
1891 #endif /* CONFIG_SMP */
1892 		{
1893 
1894 			DPRINT(("forcing unload\n"));
1895 			/*
1896 		 	* stop and unload, returning with state UNLOADED
1897 		 	* and session unreserved.
1898 		 	*/
1899 			pfm_context_unload(ctx, NULL, 0, regs);
1900 
1901 			DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1902 		}
1903 	}
1904 
1905 	/*
1906 	 * remove virtual mapping, if any, for the calling task.
1907 	 * cannot reset ctx field until last user is calling close().
1908 	 *
1909 	 * ctx_smpl_vaddr must never be cleared because it is needed
1910 	 * by every task with access to the context
1911 	 *
1912 	 * When called from do_exit(), the mm context is gone already, therefore
1913 	 * mm is NULL, i.e., the VMA is already gone  and we do not have to
1914 	 * do anything here
1915 	 */
1916 	if (ctx->ctx_smpl_vaddr && current->mm) {
1917 		smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1918 		smpl_buf_size  = ctx->ctx_smpl_size;
1919 	}
1920 
1921 	UNPROTECT_CTX(ctx, flags);
1922 
1923 	/*
1924 	 * if there was a mapping, then we systematically remove it
1925 	 * at this point. Cannot be done inside critical section
1926 	 * because some VM function reenables interrupts.
1927 	 *
1928 	 */
1929 	if (smpl_buf_vaddr) pfm_remove_smpl_mapping(smpl_buf_vaddr, smpl_buf_size);
1930 
1931 	return 0;
1932 }
1933 /*
1934  * called either on explicit close() or from exit_files().
1935  * Only the LAST user of the file gets to this point, i.e., it is
1936  * called only ONCE.
1937  *
1938  * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1939  * (fput()),i.e, last task to access the file. Nobody else can access the
1940  * file at this point.
1941  *
1942  * When called from exit_files(), the VMA has been freed because exit_mm()
1943  * is executed before exit_files().
1944  *
1945  * When called from exit_files(), the current task is not yet ZOMBIE but we
1946  * flush the PMU state to the context.
1947  */
1948 static int
pfm_close(struct inode * inode,struct file * filp)1949 pfm_close(struct inode *inode, struct file *filp)
1950 {
1951 	pfm_context_t *ctx;
1952 	struct task_struct *task;
1953 	struct pt_regs *regs;
1954   	DECLARE_WAITQUEUE(wait, current);
1955 	unsigned long flags;
1956 	unsigned long smpl_buf_size = 0UL;
1957 	void *smpl_buf_addr = NULL;
1958 	int free_possible = 1;
1959 	int state, is_system;
1960 
1961 	DPRINT(("pfm_close called private=%p\n", filp->private_data));
1962 
1963 	if (PFM_IS_FILE(filp) == 0) {
1964 		DPRINT(("bad magic\n"));
1965 		return -EBADF;
1966 	}
1967 
1968 	ctx = filp->private_data;
1969 	if (ctx == NULL) {
1970 		printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1971 		return -EBADF;
1972 	}
1973 
1974 	PROTECT_CTX(ctx, flags);
1975 
1976 	state     = ctx->ctx_state;
1977 	is_system = ctx->ctx_fl_system;
1978 
1979 	task = PFM_CTX_TASK(ctx);
1980 	regs = task_pt_regs(task);
1981 
1982 	DPRINT(("ctx_state=%d is_current=%d\n",
1983 		state,
1984 		task == current ? 1 : 0));
1985 
1986 	/*
1987 	 * if task == current, then pfm_flush() unloaded the context
1988 	 */
1989 	if (state == PFM_CTX_UNLOADED) goto doit;
1990 
1991 	/*
1992 	 * context is loaded/masked and task != current, we need to
1993 	 * either force an unload or go zombie
1994 	 */
1995 
1996 	/*
1997 	 * The task is currently blocked or will block after an overflow.
1998 	 * we must force it to wakeup to get out of the
1999 	 * MASKED state and transition to the unloaded state by itself.
2000 	 *
2001 	 * This situation is only possible for per-task mode
2002 	 */
2003 	if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2004 
2005 		/*
2006 		 * set a "partial" zombie state to be checked
2007 		 * upon return from down() in pfm_handle_work().
2008 		 *
2009 		 * We cannot use the ZOMBIE state, because it is checked
2010 		 * by pfm_load_regs() which is called upon wakeup from down().
2011 		 * In such case, it would free the context and then we would
2012 		 * return to pfm_handle_work() which would access the
2013 		 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2014 		 * but visible to pfm_handle_work().
2015 		 *
2016 		 * For some window of time, we have a zombie context with
2017 		 * ctx_state = MASKED  and not ZOMBIE
2018 		 */
2019 		ctx->ctx_fl_going_zombie = 1;
2020 
2021 		/*
2022 		 * force task to wake up from MASKED state
2023 		 */
2024 		complete(&ctx->ctx_restart_done);
2025 
2026 		DPRINT(("waking up ctx_state=%d\n", state));
2027 
2028 		/*
2029 		 * put ourself to sleep waiting for the other
2030 		 * task to report completion
2031 		 *
2032 		 * the context is protected by mutex, therefore there
2033 		 * is no risk of being notified of completion before
2034 		 * begin actually on the waitq.
2035 		 */
2036   		set_current_state(TASK_INTERRUPTIBLE);
2037   		add_wait_queue(&ctx->ctx_zombieq, &wait);
2038 
2039 		UNPROTECT_CTX(ctx, flags);
2040 
2041 		/*
2042 		 * XXX: check for signals :
2043 		 * 	- ok for explicit close
2044 		 * 	- not ok when coming from exit_files()
2045 		 */
2046       		schedule();
2047 
2048 
2049 		PROTECT_CTX(ctx, flags);
2050 
2051 
2052 		remove_wait_queue(&ctx->ctx_zombieq, &wait);
2053   		set_current_state(TASK_RUNNING);
2054 
2055 		/*
2056 		 * context is unloaded at this point
2057 		 */
2058 		DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2059 	}
2060 	else if (task != current) {
2061 #ifdef CONFIG_SMP
2062 		/*
2063 	 	 * switch context to zombie state
2064 	 	 */
2065 		ctx->ctx_state = PFM_CTX_ZOMBIE;
2066 
2067 		DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2068 		/*
2069 		 * cannot free the context on the spot. deferred until
2070 		 * the task notices the ZOMBIE state
2071 		 */
2072 		free_possible = 0;
2073 #else
2074 		pfm_context_unload(ctx, NULL, 0, regs);
2075 #endif
2076 	}
2077 
2078 doit:
2079 	/* reload state, may have changed during  opening of critical section */
2080 	state = ctx->ctx_state;
2081 
2082 	/*
2083 	 * the context is still attached to a task (possibly current)
2084 	 * we cannot destroy it right now
2085 	 */
2086 
2087 	/*
2088 	 * we must free the sampling buffer right here because
2089 	 * we cannot rely on it being cleaned up later by the
2090 	 * monitored task. It is not possible to free vmalloc'ed
2091 	 * memory in pfm_load_regs(). Instead, we remove the buffer
2092 	 * now. should there be subsequent PMU overflow originally
2093 	 * meant for sampling, the will be converted to spurious
2094 	 * and that's fine because the monitoring tools is gone anyway.
2095 	 */
2096 	if (ctx->ctx_smpl_hdr) {
2097 		smpl_buf_addr = ctx->ctx_smpl_hdr;
2098 		smpl_buf_size = ctx->ctx_smpl_size;
2099 		/* no more sampling */
2100 		ctx->ctx_smpl_hdr = NULL;
2101 		ctx->ctx_fl_is_sampling = 0;
2102 	}
2103 
2104 	DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2105 		state,
2106 		free_possible,
2107 		smpl_buf_addr,
2108 		smpl_buf_size));
2109 
2110 	if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2111 
2112 	/*
2113 	 * UNLOADED that the session has already been unreserved.
2114 	 */
2115 	if (state == PFM_CTX_ZOMBIE) {
2116 		pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2117 	}
2118 
2119 	/*
2120 	 * disconnect file descriptor from context must be done
2121 	 * before we unlock.
2122 	 */
2123 	filp->private_data = NULL;
2124 
2125 	/*
2126 	 * if we free on the spot, the context is now completely unreachable
2127 	 * from the callers side. The monitored task side is also cut, so we
2128 	 * can freely cut.
2129 	 *
2130 	 * If we have a deferred free, only the caller side is disconnected.
2131 	 */
2132 	UNPROTECT_CTX(ctx, flags);
2133 
2134 	/*
2135 	 * All memory free operations (especially for vmalloc'ed memory)
2136 	 * MUST be done with interrupts ENABLED.
2137 	 */
2138 	if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2139 
2140 	/*
2141 	 * return the memory used by the context
2142 	 */
2143 	if (free_possible) pfm_context_free(ctx);
2144 
2145 	return 0;
2146 }
2147 
2148 static const struct file_operations pfm_file_ops = {
2149 	.llseek		= no_llseek,
2150 	.read		= pfm_read,
2151 	.write		= pfm_write,
2152 	.poll		= pfm_poll,
2153 	.unlocked_ioctl = pfm_ioctl,
2154 	.fasync		= pfm_fasync,
2155 	.release	= pfm_close,
2156 	.flush		= pfm_flush
2157 };
2158 
pfmfs_dname(struct dentry * dentry,char * buffer,int buflen)2159 static char *pfmfs_dname(struct dentry *dentry, char *buffer, int buflen)
2160 {
2161 	return dynamic_dname(dentry, buffer, buflen, "pfm:[%lu]",
2162 			     d_inode(dentry)->i_ino);
2163 }
2164 
2165 static const struct dentry_operations pfmfs_dentry_operations = {
2166 	.d_delete = always_delete_dentry,
2167 	.d_dname = pfmfs_dname,
2168 };
2169 
2170 
2171 static struct file *
pfm_alloc_file(pfm_context_t * ctx)2172 pfm_alloc_file(pfm_context_t *ctx)
2173 {
2174 	struct file *file;
2175 	struct inode *inode;
2176 	struct path path;
2177 	struct qstr this = { .name = "" };
2178 
2179 	/*
2180 	 * allocate a new inode
2181 	 */
2182 	inode = new_inode(pfmfs_mnt->mnt_sb);
2183 	if (!inode)
2184 		return ERR_PTR(-ENOMEM);
2185 
2186 	DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2187 
2188 	inode->i_mode = S_IFCHR|S_IRUGO;
2189 	inode->i_uid  = current_fsuid();
2190 	inode->i_gid  = current_fsgid();
2191 
2192 	/*
2193 	 * allocate a new dcache entry
2194 	 */
2195 	path.dentry = d_alloc(pfmfs_mnt->mnt_root, &this);
2196 	if (!path.dentry) {
2197 		iput(inode);
2198 		return ERR_PTR(-ENOMEM);
2199 	}
2200 	path.mnt = mntget(pfmfs_mnt);
2201 
2202 	d_add(path.dentry, inode);
2203 
2204 	file = alloc_file(&path, FMODE_READ, &pfm_file_ops);
2205 	if (IS_ERR(file)) {
2206 		path_put(&path);
2207 		return file;
2208 	}
2209 
2210 	file->f_flags = O_RDONLY;
2211 	file->private_data = ctx;
2212 
2213 	return file;
2214 }
2215 
2216 static int
pfm_remap_buffer(struct vm_area_struct * vma,unsigned long buf,unsigned long addr,unsigned long size)2217 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2218 {
2219 	DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2220 
2221 	while (size > 0) {
2222 		unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2223 
2224 
2225 		if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2226 			return -ENOMEM;
2227 
2228 		addr  += PAGE_SIZE;
2229 		buf   += PAGE_SIZE;
2230 		size  -= PAGE_SIZE;
2231 	}
2232 	return 0;
2233 }
2234 
2235 /*
2236  * allocate a sampling buffer and remaps it into the user address space of the task
2237  */
2238 static int
pfm_smpl_buffer_alloc(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned long rsize,void ** user_vaddr)2239 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2240 {
2241 	struct mm_struct *mm = task->mm;
2242 	struct vm_area_struct *vma = NULL;
2243 	unsigned long size;
2244 	void *smpl_buf;
2245 
2246 
2247 	/*
2248 	 * the fixed header + requested size and align to page boundary
2249 	 */
2250 	size = PAGE_ALIGN(rsize);
2251 
2252 	DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2253 
2254 	/*
2255 	 * check requested size to avoid Denial-of-service attacks
2256 	 * XXX: may have to refine this test
2257 	 * Check against address space limit.
2258 	 *
2259 	 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2260 	 * 	return -ENOMEM;
2261 	 */
2262 	if (size > task_rlimit(task, RLIMIT_MEMLOCK))
2263 		return -ENOMEM;
2264 
2265 	/*
2266 	 * We do the easy to undo allocations first.
2267  	 *
2268 	 * pfm_rvmalloc(), clears the buffer, so there is no leak
2269 	 */
2270 	smpl_buf = pfm_rvmalloc(size);
2271 	if (smpl_buf == NULL) {
2272 		DPRINT(("Can't allocate sampling buffer\n"));
2273 		return -ENOMEM;
2274 	}
2275 
2276 	DPRINT(("smpl_buf @%p\n", smpl_buf));
2277 
2278 	/* allocate vma */
2279 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2280 	if (!vma) {
2281 		DPRINT(("Cannot allocate vma\n"));
2282 		goto error_kmem;
2283 	}
2284 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2285 
2286 	/*
2287 	 * partially initialize the vma for the sampling buffer
2288 	 */
2289 	vma->vm_mm	     = mm;
2290 	vma->vm_file	     = get_file(filp);
2291 	vma->vm_flags	     = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
2292 	vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2293 
2294 	/*
2295 	 * Now we have everything we need and we can initialize
2296 	 * and connect all the data structures
2297 	 */
2298 
2299 	ctx->ctx_smpl_hdr   = smpl_buf;
2300 	ctx->ctx_smpl_size  = size; /* aligned size */
2301 
2302 	/*
2303 	 * Let's do the difficult operations next.
2304 	 *
2305 	 * now we atomically find some area in the address space and
2306 	 * remap the buffer in it.
2307 	 */
2308 	down_write(&task->mm->mmap_sem);
2309 
2310 	/* find some free area in address space, must have mmap sem held */
2311 	vma->vm_start = get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS);
2312 	if (IS_ERR_VALUE(vma->vm_start)) {
2313 		DPRINT(("Cannot find unmapped area for size %ld\n", size));
2314 		up_write(&task->mm->mmap_sem);
2315 		goto error;
2316 	}
2317 	vma->vm_end = vma->vm_start + size;
2318 	vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2319 
2320 	DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2321 
2322 	/* can only be applied to current task, need to have the mm semaphore held when called */
2323 	if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2324 		DPRINT(("Can't remap buffer\n"));
2325 		up_write(&task->mm->mmap_sem);
2326 		goto error;
2327 	}
2328 
2329 	/*
2330 	 * now insert the vma in the vm list for the process, must be
2331 	 * done with mmap lock held
2332 	 */
2333 	insert_vm_struct(mm, vma);
2334 
2335 	vm_stat_account(vma->vm_mm, vma->vm_flags, vma_pages(vma));
2336 	up_write(&task->mm->mmap_sem);
2337 
2338 	/*
2339 	 * keep track of user level virtual address
2340 	 */
2341 	ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2342 	*(unsigned long *)user_vaddr = vma->vm_start;
2343 
2344 	return 0;
2345 
2346 error:
2347 	kmem_cache_free(vm_area_cachep, vma);
2348 error_kmem:
2349 	pfm_rvfree(smpl_buf, size);
2350 
2351 	return -ENOMEM;
2352 }
2353 
2354 /*
2355  * XXX: do something better here
2356  */
2357 static int
pfm_bad_permissions(struct task_struct * task)2358 pfm_bad_permissions(struct task_struct *task)
2359 {
2360 	const struct cred *tcred;
2361 	kuid_t uid = current_uid();
2362 	kgid_t gid = current_gid();
2363 	int ret;
2364 
2365 	rcu_read_lock();
2366 	tcred = __task_cred(task);
2367 
2368 	/* inspired by ptrace_attach() */
2369 	DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2370 		from_kuid(&init_user_ns, uid),
2371 		from_kgid(&init_user_ns, gid),
2372 		from_kuid(&init_user_ns, tcred->euid),
2373 		from_kuid(&init_user_ns, tcred->suid),
2374 		from_kuid(&init_user_ns, tcred->uid),
2375 		from_kgid(&init_user_ns, tcred->egid),
2376 		from_kgid(&init_user_ns, tcred->sgid)));
2377 
2378 	ret = ((!uid_eq(uid, tcred->euid))
2379 	       || (!uid_eq(uid, tcred->suid))
2380 	       || (!uid_eq(uid, tcred->uid))
2381 	       || (!gid_eq(gid, tcred->egid))
2382 	       || (!gid_eq(gid, tcred->sgid))
2383 	       || (!gid_eq(gid, tcred->gid))) && !capable(CAP_SYS_PTRACE);
2384 
2385 	rcu_read_unlock();
2386 	return ret;
2387 }
2388 
2389 static int
pfarg_is_sane(struct task_struct * task,pfarg_context_t * pfx)2390 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2391 {
2392 	int ctx_flags;
2393 
2394 	/* valid signal */
2395 
2396 	ctx_flags = pfx->ctx_flags;
2397 
2398 	if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2399 
2400 		/*
2401 		 * cannot block in this mode
2402 		 */
2403 		if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2404 			DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2405 			return -EINVAL;
2406 		}
2407 	} else {
2408 	}
2409 	/* probably more to add here */
2410 
2411 	return 0;
2412 }
2413 
2414 static int
pfm_setup_buffer_fmt(struct task_struct * task,struct file * filp,pfm_context_t * ctx,unsigned int ctx_flags,unsigned int cpu,pfarg_context_t * arg)2415 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2416 		     unsigned int cpu, pfarg_context_t *arg)
2417 {
2418 	pfm_buffer_fmt_t *fmt = NULL;
2419 	unsigned long size = 0UL;
2420 	void *uaddr = NULL;
2421 	void *fmt_arg = NULL;
2422 	int ret = 0;
2423 #define PFM_CTXARG_BUF_ARG(a)	(pfm_buffer_fmt_t *)(a+1)
2424 
2425 	/* invoke and lock buffer format, if found */
2426 	fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2427 	if (fmt == NULL) {
2428 		DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2429 		return -EINVAL;
2430 	}
2431 
2432 	/*
2433 	 * buffer argument MUST be contiguous to pfarg_context_t
2434 	 */
2435 	if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2436 
2437 	ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2438 
2439 	DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2440 
2441 	if (ret) goto error;
2442 
2443 	/* link buffer format and context */
2444 	ctx->ctx_buf_fmt = fmt;
2445 	ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2446 
2447 	/*
2448 	 * check if buffer format wants to use perfmon buffer allocation/mapping service
2449 	 */
2450 	ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2451 	if (ret) goto error;
2452 
2453 	if (size) {
2454 		/*
2455 		 * buffer is always remapped into the caller's address space
2456 		 */
2457 		ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2458 		if (ret) goto error;
2459 
2460 		/* keep track of user address of buffer */
2461 		arg->ctx_smpl_vaddr = uaddr;
2462 	}
2463 	ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2464 
2465 error:
2466 	return ret;
2467 }
2468 
2469 static void
pfm_reset_pmu_state(pfm_context_t * ctx)2470 pfm_reset_pmu_state(pfm_context_t *ctx)
2471 {
2472 	int i;
2473 
2474 	/*
2475 	 * install reset values for PMC.
2476 	 */
2477 	for (i=1; PMC_IS_LAST(i) == 0; i++) {
2478 		if (PMC_IS_IMPL(i) == 0) continue;
2479 		ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2480 		DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2481 	}
2482 	/*
2483 	 * PMD registers are set to 0UL when the context in memset()
2484 	 */
2485 
2486 	/*
2487 	 * On context switched restore, we must restore ALL pmc and ALL pmd even
2488 	 * when they are not actively used by the task. In UP, the incoming process
2489 	 * may otherwise pick up left over PMC, PMD state from the previous process.
2490 	 * As opposed to PMD, stale PMC can cause harm to the incoming
2491 	 * process because they may change what is being measured.
2492 	 * Therefore, we must systematically reinstall the entire
2493 	 * PMC state. In SMP, the same thing is possible on the
2494 	 * same CPU but also on between 2 CPUs.
2495 	 *
2496 	 * The problem with PMD is information leaking especially
2497 	 * to user level when psr.sp=0
2498 	 *
2499 	 * There is unfortunately no easy way to avoid this problem
2500 	 * on either UP or SMP. This definitively slows down the
2501 	 * pfm_load_regs() function.
2502 	 */
2503 
2504 	 /*
2505 	  * bitmask of all PMCs accessible to this context
2506 	  *
2507 	  * PMC0 is treated differently.
2508 	  */
2509 	ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2510 
2511 	/*
2512 	 * bitmask of all PMDs that are accessible to this context
2513 	 */
2514 	ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2515 
2516 	DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2517 
2518 	/*
2519 	 * useful in case of re-enable after disable
2520 	 */
2521 	ctx->ctx_used_ibrs[0] = 0UL;
2522 	ctx->ctx_used_dbrs[0] = 0UL;
2523 }
2524 
2525 static int
pfm_ctx_getsize(void * arg,size_t * sz)2526 pfm_ctx_getsize(void *arg, size_t *sz)
2527 {
2528 	pfarg_context_t *req = (pfarg_context_t *)arg;
2529 	pfm_buffer_fmt_t *fmt;
2530 
2531 	*sz = 0;
2532 
2533 	if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2534 
2535 	fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2536 	if (fmt == NULL) {
2537 		DPRINT(("cannot find buffer format\n"));
2538 		return -EINVAL;
2539 	}
2540 	/* get just enough to copy in user parameters */
2541 	*sz = fmt->fmt_arg_size;
2542 	DPRINT(("arg_size=%lu\n", *sz));
2543 
2544 	return 0;
2545 }
2546 
2547 
2548 
2549 /*
2550  * cannot attach if :
2551  * 	- kernel task
2552  * 	- task not owned by caller
2553  * 	- task incompatible with context mode
2554  */
2555 static int
pfm_task_incompatible(pfm_context_t * ctx,struct task_struct * task)2556 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2557 {
2558 	/*
2559 	 * no kernel task or task not owner by caller
2560 	 */
2561 	if (task->mm == NULL) {
2562 		DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2563 		return -EPERM;
2564 	}
2565 	if (pfm_bad_permissions(task)) {
2566 		DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2567 		return -EPERM;
2568 	}
2569 	/*
2570 	 * cannot block in self-monitoring mode
2571 	 */
2572 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2573 		DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2574 		return -EINVAL;
2575 	}
2576 
2577 	if (task->exit_state == EXIT_ZOMBIE) {
2578 		DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2579 		return -EBUSY;
2580 	}
2581 
2582 	/*
2583 	 * always ok for self
2584 	 */
2585 	if (task == current) return 0;
2586 
2587 	if (!task_is_stopped_or_traced(task)) {
2588 		DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2589 		return -EBUSY;
2590 	}
2591 	/*
2592 	 * make sure the task is off any CPU
2593 	 */
2594 	wait_task_inactive(task, 0);
2595 
2596 	/* more to come... */
2597 
2598 	return 0;
2599 }
2600 
2601 static int
pfm_get_task(pfm_context_t * ctx,pid_t pid,struct task_struct ** task)2602 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2603 {
2604 	struct task_struct *p = current;
2605 	int ret;
2606 
2607 	/* XXX: need to add more checks here */
2608 	if (pid < 2) return -EPERM;
2609 
2610 	if (pid != task_pid_vnr(current)) {
2611 
2612 		read_lock(&tasklist_lock);
2613 
2614 		p = find_task_by_vpid(pid);
2615 
2616 		/* make sure task cannot go away while we operate on it */
2617 		if (p) get_task_struct(p);
2618 
2619 		read_unlock(&tasklist_lock);
2620 
2621 		if (p == NULL) return -ESRCH;
2622 	}
2623 
2624 	ret = pfm_task_incompatible(ctx, p);
2625 	if (ret == 0) {
2626 		*task = p;
2627 	} else if (p != current) {
2628 		pfm_put_task(p);
2629 	}
2630 	return ret;
2631 }
2632 
2633 
2634 
2635 static int
pfm_context_create(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2636 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2637 {
2638 	pfarg_context_t *req = (pfarg_context_t *)arg;
2639 	struct file *filp;
2640 	struct path path;
2641 	int ctx_flags;
2642 	int fd;
2643 	int ret;
2644 
2645 	/* let's check the arguments first */
2646 	ret = pfarg_is_sane(current, req);
2647 	if (ret < 0)
2648 		return ret;
2649 
2650 	ctx_flags = req->ctx_flags;
2651 
2652 	ret = -ENOMEM;
2653 
2654 	fd = get_unused_fd_flags(0);
2655 	if (fd < 0)
2656 		return fd;
2657 
2658 	ctx = pfm_context_alloc(ctx_flags);
2659 	if (!ctx)
2660 		goto error;
2661 
2662 	filp = pfm_alloc_file(ctx);
2663 	if (IS_ERR(filp)) {
2664 		ret = PTR_ERR(filp);
2665 		goto error_file;
2666 	}
2667 
2668 	req->ctx_fd = ctx->ctx_fd = fd;
2669 
2670 	/*
2671 	 * does the user want to sample?
2672 	 */
2673 	if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2674 		ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2675 		if (ret)
2676 			goto buffer_error;
2677 	}
2678 
2679 	DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2680 		ctx,
2681 		ctx_flags,
2682 		ctx->ctx_fl_system,
2683 		ctx->ctx_fl_block,
2684 		ctx->ctx_fl_excl_idle,
2685 		ctx->ctx_fl_no_msg,
2686 		ctx->ctx_fd));
2687 
2688 	/*
2689 	 * initialize soft PMU state
2690 	 */
2691 	pfm_reset_pmu_state(ctx);
2692 
2693 	fd_install(fd, filp);
2694 
2695 	return 0;
2696 
2697 buffer_error:
2698 	path = filp->f_path;
2699 	put_filp(filp);
2700 	path_put(&path);
2701 
2702 	if (ctx->ctx_buf_fmt) {
2703 		pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2704 	}
2705 error_file:
2706 	pfm_context_free(ctx);
2707 
2708 error:
2709 	put_unused_fd(fd);
2710 	return ret;
2711 }
2712 
2713 static inline unsigned long
pfm_new_counter_value(pfm_counter_t * reg,int is_long_reset)2714 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2715 {
2716 	unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2717 	unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2718 	extern unsigned long carta_random32 (unsigned long seed);
2719 
2720 	if (reg->flags & PFM_REGFL_RANDOM) {
2721 		new_seed = carta_random32(old_seed);
2722 		val -= (old_seed & mask);	/* counter values are negative numbers! */
2723 		if ((mask >> 32) != 0)
2724 			/* construct a full 64-bit random value: */
2725 			new_seed |= carta_random32(old_seed >> 32) << 32;
2726 		reg->seed = new_seed;
2727 	}
2728 	reg->lval = val;
2729 	return val;
2730 }
2731 
2732 static void
pfm_reset_regs_masked(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2733 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2734 {
2735 	unsigned long mask = ovfl_regs[0];
2736 	unsigned long reset_others = 0UL;
2737 	unsigned long val;
2738 	int i;
2739 
2740 	/*
2741 	 * now restore reset value on sampling overflowed counters
2742 	 */
2743 	mask >>= PMU_FIRST_COUNTER;
2744 	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2745 
2746 		if ((mask & 0x1UL) == 0UL) continue;
2747 
2748 		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2749 		reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2750 
2751 		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2752 	}
2753 
2754 	/*
2755 	 * Now take care of resetting the other registers
2756 	 */
2757 	for(i = 0; reset_others; i++, reset_others >>= 1) {
2758 
2759 		if ((reset_others & 0x1) == 0) continue;
2760 
2761 		ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2762 
2763 		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2764 			  is_long_reset ? "long" : "short", i, val));
2765 	}
2766 }
2767 
2768 static void
pfm_reset_regs(pfm_context_t * ctx,unsigned long * ovfl_regs,int is_long_reset)2769 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2770 {
2771 	unsigned long mask = ovfl_regs[0];
2772 	unsigned long reset_others = 0UL;
2773 	unsigned long val;
2774 	int i;
2775 
2776 	DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2777 
2778 	if (ctx->ctx_state == PFM_CTX_MASKED) {
2779 		pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2780 		return;
2781 	}
2782 
2783 	/*
2784 	 * now restore reset value on sampling overflowed counters
2785 	 */
2786 	mask >>= PMU_FIRST_COUNTER;
2787 	for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2788 
2789 		if ((mask & 0x1UL) == 0UL) continue;
2790 
2791 		val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2792 		reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2793 
2794 		DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2795 
2796 		pfm_write_soft_counter(ctx, i, val);
2797 	}
2798 
2799 	/*
2800 	 * Now take care of resetting the other registers
2801 	 */
2802 	for(i = 0; reset_others; i++, reset_others >>= 1) {
2803 
2804 		if ((reset_others & 0x1) == 0) continue;
2805 
2806 		val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2807 
2808 		if (PMD_IS_COUNTING(i)) {
2809 			pfm_write_soft_counter(ctx, i, val);
2810 		} else {
2811 			ia64_set_pmd(i, val);
2812 		}
2813 		DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2814 			  is_long_reset ? "long" : "short", i, val));
2815 	}
2816 	ia64_srlz_d();
2817 }
2818 
2819 static int
pfm_write_pmcs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)2820 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2821 {
2822 	struct task_struct *task;
2823 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
2824 	unsigned long value, pmc_pm;
2825 	unsigned long smpl_pmds, reset_pmds, impl_pmds;
2826 	unsigned int cnum, reg_flags, flags, pmc_type;
2827 	int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2828 	int is_monitor, is_counting, state;
2829 	int ret = -EINVAL;
2830 	pfm_reg_check_t	wr_func;
2831 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2832 
2833 	state     = ctx->ctx_state;
2834 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2835 	is_system = ctx->ctx_fl_system;
2836 	task      = ctx->ctx_task;
2837 	impl_pmds = pmu_conf->impl_pmds[0];
2838 
2839 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2840 
2841 	if (is_loaded) {
2842 		/*
2843 		 * In system wide and when the context is loaded, access can only happen
2844 		 * when the caller is running on the CPU being monitored by the session.
2845 		 * It does not have to be the owner (ctx_task) of the context per se.
2846 		 */
2847 		if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2848 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2849 			return -EBUSY;
2850 		}
2851 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2852 	}
2853 	expert_mode = pfm_sysctl.expert_mode;
2854 
2855 	for (i = 0; i < count; i++, req++) {
2856 
2857 		cnum       = req->reg_num;
2858 		reg_flags  = req->reg_flags;
2859 		value      = req->reg_value;
2860 		smpl_pmds  = req->reg_smpl_pmds[0];
2861 		reset_pmds = req->reg_reset_pmds[0];
2862 		flags      = 0;
2863 
2864 
2865 		if (cnum >= PMU_MAX_PMCS) {
2866 			DPRINT(("pmc%u is invalid\n", cnum));
2867 			goto error;
2868 		}
2869 
2870 		pmc_type   = pmu_conf->pmc_desc[cnum].type;
2871 		pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2872 		is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2873 		is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2874 
2875 		/*
2876 		 * we reject all non implemented PMC as well
2877 		 * as attempts to modify PMC[0-3] which are used
2878 		 * as status registers by the PMU
2879 		 */
2880 		if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2881 			DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2882 			goto error;
2883 		}
2884 		wr_func = pmu_conf->pmc_desc[cnum].write_check;
2885 		/*
2886 		 * If the PMC is a monitor, then if the value is not the default:
2887 		 * 	- system-wide session: PMCx.pm=1 (privileged monitor)
2888 		 * 	- per-task           : PMCx.pm=0 (user monitor)
2889 		 */
2890 		if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2891 			DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2892 				cnum,
2893 				pmc_pm,
2894 				is_system));
2895 			goto error;
2896 		}
2897 
2898 		if (is_counting) {
2899 			/*
2900 		 	 * enforce generation of overflow interrupt. Necessary on all
2901 		 	 * CPUs.
2902 		 	 */
2903 			value |= 1 << PMU_PMC_OI;
2904 
2905 			if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2906 				flags |= PFM_REGFL_OVFL_NOTIFY;
2907 			}
2908 
2909 			if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2910 
2911 			/* verify validity of smpl_pmds */
2912 			if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2913 				DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2914 				goto error;
2915 			}
2916 
2917 			/* verify validity of reset_pmds */
2918 			if ((reset_pmds & impl_pmds) != reset_pmds) {
2919 				DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2920 				goto error;
2921 			}
2922 		} else {
2923 			if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2924 				DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2925 				goto error;
2926 			}
2927 			/* eventid on non-counting monitors are ignored */
2928 		}
2929 
2930 		/*
2931 		 * execute write checker, if any
2932 		 */
2933 		if (likely(expert_mode == 0 && wr_func)) {
2934 			ret = (*wr_func)(task, ctx, cnum, &value, regs);
2935 			if (ret) goto error;
2936 			ret = -EINVAL;
2937 		}
2938 
2939 		/*
2940 		 * no error on this register
2941 		 */
2942 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2943 
2944 		/*
2945 		 * Now we commit the changes to the software state
2946 		 */
2947 
2948 		/*
2949 		 * update overflow information
2950 		 */
2951 		if (is_counting) {
2952 			/*
2953 		 	 * full flag update each time a register is programmed
2954 		 	 */
2955 			ctx->ctx_pmds[cnum].flags = flags;
2956 
2957 			ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
2958 			ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
2959 			ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
2960 
2961 			/*
2962 			 * Mark all PMDS to be accessed as used.
2963 			 *
2964 			 * We do not keep track of PMC because we have to
2965 			 * systematically restore ALL of them.
2966 			 *
2967 			 * We do not update the used_monitors mask, because
2968 			 * if we have not programmed them, then will be in
2969 			 * a quiescent state, therefore we will not need to
2970 			 * mask/restore then when context is MASKED.
2971 			 */
2972 			CTX_USED_PMD(ctx, reset_pmds);
2973 			CTX_USED_PMD(ctx, smpl_pmds);
2974 			/*
2975 		 	 * make sure we do not try to reset on
2976 		 	 * restart because we have established new values
2977 		 	 */
2978 			if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
2979 		}
2980 		/*
2981 		 * Needed in case the user does not initialize the equivalent
2982 		 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2983 		 * possible leak here.
2984 		 */
2985 		CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
2986 
2987 		/*
2988 		 * keep track of the monitor PMC that we are using.
2989 		 * we save the value of the pmc in ctx_pmcs[] and if
2990 		 * the monitoring is not stopped for the context we also
2991 		 * place it in the saved state area so that it will be
2992 		 * picked up later by the context switch code.
2993 		 *
2994 		 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2995 		 *
2996 		 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
2997 		 * monitoring needs to be stopped.
2998 		 */
2999 		if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3000 
3001 		/*
3002 		 * update context state
3003 		 */
3004 		ctx->ctx_pmcs[cnum] = value;
3005 
3006 		if (is_loaded) {
3007 			/*
3008 			 * write thread state
3009 			 */
3010 			if (is_system == 0) ctx->th_pmcs[cnum] = value;
3011 
3012 			/*
3013 			 * write hardware register if we can
3014 			 */
3015 			if (can_access_pmu) {
3016 				ia64_set_pmc(cnum, value);
3017 			}
3018 #ifdef CONFIG_SMP
3019 			else {
3020 				/*
3021 				 * per-task SMP only here
3022 				 *
3023 			 	 * we are guaranteed that the task is not running on the other CPU,
3024 			 	 * we indicate that this PMD will need to be reloaded if the task
3025 			 	 * is rescheduled on the CPU it ran last on.
3026 			 	 */
3027 				ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3028 			}
3029 #endif
3030 		}
3031 
3032 		DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3033 			  cnum,
3034 			  value,
3035 			  is_loaded,
3036 			  can_access_pmu,
3037 			  flags,
3038 			  ctx->ctx_all_pmcs[0],
3039 			  ctx->ctx_used_pmds[0],
3040 			  ctx->ctx_pmds[cnum].eventid,
3041 			  smpl_pmds,
3042 			  reset_pmds,
3043 			  ctx->ctx_reload_pmcs[0],
3044 			  ctx->ctx_used_monitors[0],
3045 			  ctx->ctx_ovfl_regs[0]));
3046 	}
3047 
3048 	/*
3049 	 * make sure the changes are visible
3050 	 */
3051 	if (can_access_pmu) ia64_srlz_d();
3052 
3053 	return 0;
3054 error:
3055 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3056 	return ret;
3057 }
3058 
3059 static int
pfm_write_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3060 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3061 {
3062 	struct task_struct *task;
3063 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3064 	unsigned long value, hw_value, ovfl_mask;
3065 	unsigned int cnum;
3066 	int i, can_access_pmu = 0, state;
3067 	int is_counting, is_loaded, is_system, expert_mode;
3068 	int ret = -EINVAL;
3069 	pfm_reg_check_t wr_func;
3070 
3071 
3072 	state     = ctx->ctx_state;
3073 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3074 	is_system = ctx->ctx_fl_system;
3075 	ovfl_mask = pmu_conf->ovfl_val;
3076 	task      = ctx->ctx_task;
3077 
3078 	if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3079 
3080 	/*
3081 	 * on both UP and SMP, we can only write to the PMC when the task is
3082 	 * the owner of the local PMU.
3083 	 */
3084 	if (likely(is_loaded)) {
3085 		/*
3086 		 * In system wide and when the context is loaded, access can only happen
3087 		 * when the caller is running on the CPU being monitored by the session.
3088 		 * It does not have to be the owner (ctx_task) of the context per se.
3089 		 */
3090 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3091 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3092 			return -EBUSY;
3093 		}
3094 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3095 	}
3096 	expert_mode = pfm_sysctl.expert_mode;
3097 
3098 	for (i = 0; i < count; i++, req++) {
3099 
3100 		cnum  = req->reg_num;
3101 		value = req->reg_value;
3102 
3103 		if (!PMD_IS_IMPL(cnum)) {
3104 			DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3105 			goto abort_mission;
3106 		}
3107 		is_counting = PMD_IS_COUNTING(cnum);
3108 		wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3109 
3110 		/*
3111 		 * execute write checker, if any
3112 		 */
3113 		if (unlikely(expert_mode == 0 && wr_func)) {
3114 			unsigned long v = value;
3115 
3116 			ret = (*wr_func)(task, ctx, cnum, &v, regs);
3117 			if (ret) goto abort_mission;
3118 
3119 			value = v;
3120 			ret   = -EINVAL;
3121 		}
3122 
3123 		/*
3124 		 * no error on this register
3125 		 */
3126 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3127 
3128 		/*
3129 		 * now commit changes to software state
3130 		 */
3131 		hw_value = value;
3132 
3133 		/*
3134 		 * update virtualized (64bits) counter
3135 		 */
3136 		if (is_counting) {
3137 			/*
3138 			 * write context state
3139 			 */
3140 			ctx->ctx_pmds[cnum].lval = value;
3141 
3142 			/*
3143 			 * when context is load we use the split value
3144 			 */
3145 			if (is_loaded) {
3146 				hw_value = value &  ovfl_mask;
3147 				value    = value & ~ovfl_mask;
3148 			}
3149 		}
3150 		/*
3151 		 * update reset values (not just for counters)
3152 		 */
3153 		ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3154 		ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3155 
3156 		/*
3157 		 * update randomization parameters (not just for counters)
3158 		 */
3159 		ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3160 		ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3161 
3162 		/*
3163 		 * update context value
3164 		 */
3165 		ctx->ctx_pmds[cnum].val  = value;
3166 
3167 		/*
3168 		 * Keep track of what we use
3169 		 *
3170 		 * We do not keep track of PMC because we have to
3171 		 * systematically restore ALL of them.
3172 		 */
3173 		CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3174 
3175 		/*
3176 		 * mark this PMD register used as well
3177 		 */
3178 		CTX_USED_PMD(ctx, RDEP(cnum));
3179 
3180 		/*
3181 		 * make sure we do not try to reset on
3182 		 * restart because we have established new values
3183 		 */
3184 		if (is_counting && state == PFM_CTX_MASKED) {
3185 			ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3186 		}
3187 
3188 		if (is_loaded) {
3189 			/*
3190 		 	 * write thread state
3191 		 	 */
3192 			if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3193 
3194 			/*
3195 			 * write hardware register if we can
3196 			 */
3197 			if (can_access_pmu) {
3198 				ia64_set_pmd(cnum, hw_value);
3199 			} else {
3200 #ifdef CONFIG_SMP
3201 				/*
3202 			 	 * we are guaranteed that the task is not running on the other CPU,
3203 			 	 * we indicate that this PMD will need to be reloaded if the task
3204 			 	 * is rescheduled on the CPU it ran last on.
3205 			 	 */
3206 				ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3207 #endif
3208 			}
3209 		}
3210 
3211 		DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3212 			  "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3213 			cnum,
3214 			value,
3215 			is_loaded,
3216 			can_access_pmu,
3217 			hw_value,
3218 			ctx->ctx_pmds[cnum].val,
3219 			ctx->ctx_pmds[cnum].short_reset,
3220 			ctx->ctx_pmds[cnum].long_reset,
3221 			PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3222 			ctx->ctx_pmds[cnum].seed,
3223 			ctx->ctx_pmds[cnum].mask,
3224 			ctx->ctx_used_pmds[0],
3225 			ctx->ctx_pmds[cnum].reset_pmds[0],
3226 			ctx->ctx_reload_pmds[0],
3227 			ctx->ctx_all_pmds[0],
3228 			ctx->ctx_ovfl_regs[0]));
3229 	}
3230 
3231 	/*
3232 	 * make changes visible
3233 	 */
3234 	if (can_access_pmu) ia64_srlz_d();
3235 
3236 	return 0;
3237 
3238 abort_mission:
3239 	/*
3240 	 * for now, we have only one possibility for error
3241 	 */
3242 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3243 	return ret;
3244 }
3245 
3246 /*
3247  * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3248  * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3249  * interrupt is delivered during the call, it will be kept pending until we leave, making
3250  * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3251  * guaranteed to return consistent data to the user, it may simply be old. It is not
3252  * trivial to treat the overflow while inside the call because you may end up in
3253  * some module sampling buffer code causing deadlocks.
3254  */
3255 static int
pfm_read_pmds(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3256 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3257 {
3258 	struct task_struct *task;
3259 	unsigned long val = 0UL, lval, ovfl_mask, sval;
3260 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
3261 	unsigned int cnum, reg_flags = 0;
3262 	int i, can_access_pmu = 0, state;
3263 	int is_loaded, is_system, is_counting, expert_mode;
3264 	int ret = -EINVAL;
3265 	pfm_reg_check_t rd_func;
3266 
3267 	/*
3268 	 * access is possible when loaded only for
3269 	 * self-monitoring tasks or in UP mode
3270 	 */
3271 
3272 	state     = ctx->ctx_state;
3273 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3274 	is_system = ctx->ctx_fl_system;
3275 	ovfl_mask = pmu_conf->ovfl_val;
3276 	task      = ctx->ctx_task;
3277 
3278 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3279 
3280 	if (likely(is_loaded)) {
3281 		/*
3282 		 * In system wide and when the context is loaded, access can only happen
3283 		 * when the caller is running on the CPU being monitored by the session.
3284 		 * It does not have to be the owner (ctx_task) of the context per se.
3285 		 */
3286 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3287 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3288 			return -EBUSY;
3289 		}
3290 		/*
3291 		 * this can be true when not self-monitoring only in UP
3292 		 */
3293 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3294 
3295 		if (can_access_pmu) ia64_srlz_d();
3296 	}
3297 	expert_mode = pfm_sysctl.expert_mode;
3298 
3299 	DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3300 		is_loaded,
3301 		can_access_pmu,
3302 		state));
3303 
3304 	/*
3305 	 * on both UP and SMP, we can only read the PMD from the hardware register when
3306 	 * the task is the owner of the local PMU.
3307 	 */
3308 
3309 	for (i = 0; i < count; i++, req++) {
3310 
3311 		cnum        = req->reg_num;
3312 		reg_flags   = req->reg_flags;
3313 
3314 		if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3315 		/*
3316 		 * we can only read the register that we use. That includes
3317 		 * the one we explicitly initialize AND the one we want included
3318 		 * in the sampling buffer (smpl_regs).
3319 		 *
3320 		 * Having this restriction allows optimization in the ctxsw routine
3321 		 * without compromising security (leaks)
3322 		 */
3323 		if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3324 
3325 		sval        = ctx->ctx_pmds[cnum].val;
3326 		lval        = ctx->ctx_pmds[cnum].lval;
3327 		is_counting = PMD_IS_COUNTING(cnum);
3328 
3329 		/*
3330 		 * If the task is not the current one, then we check if the
3331 		 * PMU state is still in the local live register due to lazy ctxsw.
3332 		 * If true, then we read directly from the registers.
3333 		 */
3334 		if (can_access_pmu){
3335 			val = ia64_get_pmd(cnum);
3336 		} else {
3337 			/*
3338 			 * context has been saved
3339 			 * if context is zombie, then task does not exist anymore.
3340 			 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3341 			 */
3342 			val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3343 		}
3344 		rd_func = pmu_conf->pmd_desc[cnum].read_check;
3345 
3346 		if (is_counting) {
3347 			/*
3348 			 * XXX: need to check for overflow when loaded
3349 			 */
3350 			val &= ovfl_mask;
3351 			val += sval;
3352 		}
3353 
3354 		/*
3355 		 * execute read checker, if any
3356 		 */
3357 		if (unlikely(expert_mode == 0 && rd_func)) {
3358 			unsigned long v = val;
3359 			ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3360 			if (ret) goto error;
3361 			val = v;
3362 			ret = -EINVAL;
3363 		}
3364 
3365 		PFM_REG_RETFLAG_SET(reg_flags, 0);
3366 
3367 		DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3368 
3369 		/*
3370 		 * update register return value, abort all if problem during copy.
3371 		 * we only modify the reg_flags field. no check mode is fine because
3372 		 * access has been verified upfront in sys_perfmonctl().
3373 		 */
3374 		req->reg_value            = val;
3375 		req->reg_flags            = reg_flags;
3376 		req->reg_last_reset_val   = lval;
3377 	}
3378 
3379 	return 0;
3380 
3381 error:
3382 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3383 	return ret;
3384 }
3385 
3386 int
pfm_mod_write_pmcs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3387 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3388 {
3389 	pfm_context_t *ctx;
3390 
3391 	if (req == NULL) return -EINVAL;
3392 
3393  	ctx = GET_PMU_CTX();
3394 
3395 	if (ctx == NULL) return -EINVAL;
3396 
3397 	/*
3398 	 * for now limit to current task, which is enough when calling
3399 	 * from overflow handler
3400 	 */
3401 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3402 
3403 	return pfm_write_pmcs(ctx, req, nreq, regs);
3404 }
3405 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3406 
3407 int
pfm_mod_read_pmds(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3408 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3409 {
3410 	pfm_context_t *ctx;
3411 
3412 	if (req == NULL) return -EINVAL;
3413 
3414  	ctx = GET_PMU_CTX();
3415 
3416 	if (ctx == NULL) return -EINVAL;
3417 
3418 	/*
3419 	 * for now limit to current task, which is enough when calling
3420 	 * from overflow handler
3421 	 */
3422 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3423 
3424 	return pfm_read_pmds(ctx, req, nreq, regs);
3425 }
3426 EXPORT_SYMBOL(pfm_mod_read_pmds);
3427 
3428 /*
3429  * Only call this function when a process it trying to
3430  * write the debug registers (reading is always allowed)
3431  */
3432 int
pfm_use_debug_registers(struct task_struct * task)3433 pfm_use_debug_registers(struct task_struct *task)
3434 {
3435 	pfm_context_t *ctx = task->thread.pfm_context;
3436 	unsigned long flags;
3437 	int ret = 0;
3438 
3439 	if (pmu_conf->use_rr_dbregs == 0) return 0;
3440 
3441 	DPRINT(("called for [%d]\n", task_pid_nr(task)));
3442 
3443 	/*
3444 	 * do it only once
3445 	 */
3446 	if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3447 
3448 	/*
3449 	 * Even on SMP, we do not need to use an atomic here because
3450 	 * the only way in is via ptrace() and this is possible only when the
3451 	 * process is stopped. Even in the case where the ctxsw out is not totally
3452 	 * completed by the time we come here, there is no way the 'stopped' process
3453 	 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3454 	 * So this is always safe.
3455 	 */
3456 	if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3457 
3458 	LOCK_PFS(flags);
3459 
3460 	/*
3461 	 * We cannot allow setting breakpoints when system wide monitoring
3462 	 * sessions are using the debug registers.
3463 	 */
3464 	if (pfm_sessions.pfs_sys_use_dbregs> 0)
3465 		ret = -1;
3466 	else
3467 		pfm_sessions.pfs_ptrace_use_dbregs++;
3468 
3469 	DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3470 		  pfm_sessions.pfs_ptrace_use_dbregs,
3471 		  pfm_sessions.pfs_sys_use_dbregs,
3472 		  task_pid_nr(task), ret));
3473 
3474 	UNLOCK_PFS(flags);
3475 
3476 	return ret;
3477 }
3478 
3479 /*
3480  * This function is called for every task that exits with the
3481  * IA64_THREAD_DBG_VALID set. This indicates a task which was
3482  * able to use the debug registers for debugging purposes via
3483  * ptrace(). Therefore we know it was not using them for
3484  * performance monitoring, so we only decrement the number
3485  * of "ptraced" debug register users to keep the count up to date
3486  */
3487 int
pfm_release_debug_registers(struct task_struct * task)3488 pfm_release_debug_registers(struct task_struct *task)
3489 {
3490 	unsigned long flags;
3491 	int ret;
3492 
3493 	if (pmu_conf->use_rr_dbregs == 0) return 0;
3494 
3495 	LOCK_PFS(flags);
3496 	if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3497 		printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3498 		ret = -1;
3499 	}  else {
3500 		pfm_sessions.pfs_ptrace_use_dbregs--;
3501 		ret = 0;
3502 	}
3503 	UNLOCK_PFS(flags);
3504 
3505 	return ret;
3506 }
3507 
3508 static int
pfm_restart(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3509 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3510 {
3511 	struct task_struct *task;
3512 	pfm_buffer_fmt_t *fmt;
3513 	pfm_ovfl_ctrl_t rst_ctrl;
3514 	int state, is_system;
3515 	int ret = 0;
3516 
3517 	state     = ctx->ctx_state;
3518 	fmt       = ctx->ctx_buf_fmt;
3519 	is_system = ctx->ctx_fl_system;
3520 	task      = PFM_CTX_TASK(ctx);
3521 
3522 	switch(state) {
3523 		case PFM_CTX_MASKED:
3524 			break;
3525 		case PFM_CTX_LOADED:
3526 			if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3527 			/* fall through */
3528 		case PFM_CTX_UNLOADED:
3529 		case PFM_CTX_ZOMBIE:
3530 			DPRINT(("invalid state=%d\n", state));
3531 			return -EBUSY;
3532 		default:
3533 			DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3534 			return -EINVAL;
3535 	}
3536 
3537 	/*
3538  	 * In system wide and when the context is loaded, access can only happen
3539  	 * when the caller is running on the CPU being monitored by the session.
3540  	 * It does not have to be the owner (ctx_task) of the context per se.
3541  	 */
3542 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3543 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3544 		return -EBUSY;
3545 	}
3546 
3547 	/* sanity check */
3548 	if (unlikely(task == NULL)) {
3549 		printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3550 		return -EINVAL;
3551 	}
3552 
3553 	if (task == current || is_system) {
3554 
3555 		fmt = ctx->ctx_buf_fmt;
3556 
3557 		DPRINT(("restarting self %d ovfl=0x%lx\n",
3558 			task_pid_nr(task),
3559 			ctx->ctx_ovfl_regs[0]));
3560 
3561 		if (CTX_HAS_SMPL(ctx)) {
3562 
3563 			prefetch(ctx->ctx_smpl_hdr);
3564 
3565 			rst_ctrl.bits.mask_monitoring = 0;
3566 			rst_ctrl.bits.reset_ovfl_pmds = 0;
3567 
3568 			if (state == PFM_CTX_LOADED)
3569 				ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3570 			else
3571 				ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3572 		} else {
3573 			rst_ctrl.bits.mask_monitoring = 0;
3574 			rst_ctrl.bits.reset_ovfl_pmds = 1;
3575 		}
3576 
3577 		if (ret == 0) {
3578 			if (rst_ctrl.bits.reset_ovfl_pmds)
3579 				pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3580 
3581 			if (rst_ctrl.bits.mask_monitoring == 0) {
3582 				DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3583 
3584 				if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3585 			} else {
3586 				DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3587 
3588 				// cannot use pfm_stop_monitoring(task, regs);
3589 			}
3590 		}
3591 		/*
3592 		 * clear overflowed PMD mask to remove any stale information
3593 		 */
3594 		ctx->ctx_ovfl_regs[0] = 0UL;
3595 
3596 		/*
3597 		 * back to LOADED state
3598 		 */
3599 		ctx->ctx_state = PFM_CTX_LOADED;
3600 
3601 		/*
3602 		 * XXX: not really useful for self monitoring
3603 		 */
3604 		ctx->ctx_fl_can_restart = 0;
3605 
3606 		return 0;
3607 	}
3608 
3609 	/*
3610 	 * restart another task
3611 	 */
3612 
3613 	/*
3614 	 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3615 	 * one is seen by the task.
3616 	 */
3617 	if (state == PFM_CTX_MASKED) {
3618 		if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3619 		/*
3620 		 * will prevent subsequent restart before this one is
3621 		 * seen by other task
3622 		 */
3623 		ctx->ctx_fl_can_restart = 0;
3624 	}
3625 
3626 	/*
3627 	 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3628 	 * the task is blocked or on its way to block. That's the normal
3629 	 * restart path. If the monitoring is not masked, then the task
3630 	 * can be actively monitoring and we cannot directly intervene.
3631 	 * Therefore we use the trap mechanism to catch the task and
3632 	 * force it to reset the buffer/reset PMDs.
3633 	 *
3634 	 * if non-blocking, then we ensure that the task will go into
3635 	 * pfm_handle_work() before returning to user mode.
3636 	 *
3637 	 * We cannot explicitly reset another task, it MUST always
3638 	 * be done by the task itself. This works for system wide because
3639 	 * the tool that is controlling the session is logically doing
3640 	 * "self-monitoring".
3641 	 */
3642 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3643 		DPRINT(("unblocking [%d]\n", task_pid_nr(task)));
3644 		complete(&ctx->ctx_restart_done);
3645 	} else {
3646 		DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3647 
3648 		ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3649 
3650 		PFM_SET_WORK_PENDING(task, 1);
3651 
3652 		set_notify_resume(task);
3653 
3654 		/*
3655 		 * XXX: send reschedule if task runs on another CPU
3656 		 */
3657 	}
3658 	return 0;
3659 }
3660 
3661 static int
pfm_debug(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3662 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3663 {
3664 	unsigned int m = *(unsigned int *)arg;
3665 
3666 	pfm_sysctl.debug = m == 0 ? 0 : 1;
3667 
3668 	printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3669 
3670 	if (m == 0) {
3671 		memset(pfm_stats, 0, sizeof(pfm_stats));
3672 		for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3673 	}
3674 	return 0;
3675 }
3676 
3677 /*
3678  * arg can be NULL and count can be zero for this function
3679  */
3680 static int
pfm_write_ibr_dbr(int mode,pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3681 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3682 {
3683 	struct thread_struct *thread = NULL;
3684 	struct task_struct *task;
3685 	pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3686 	unsigned long flags;
3687 	dbreg_t dbreg;
3688 	unsigned int rnum;
3689 	int first_time;
3690 	int ret = 0, state;
3691 	int i, can_access_pmu = 0;
3692 	int is_system, is_loaded;
3693 
3694 	if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3695 
3696 	state     = ctx->ctx_state;
3697 	is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3698 	is_system = ctx->ctx_fl_system;
3699 	task      = ctx->ctx_task;
3700 
3701 	if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3702 
3703 	/*
3704 	 * on both UP and SMP, we can only write to the PMC when the task is
3705 	 * the owner of the local PMU.
3706 	 */
3707 	if (is_loaded) {
3708 		thread = &task->thread;
3709 		/*
3710 		 * In system wide and when the context is loaded, access can only happen
3711 		 * when the caller is running on the CPU being monitored by the session.
3712 		 * It does not have to be the owner (ctx_task) of the context per se.
3713 		 */
3714 		if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3715 			DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3716 			return -EBUSY;
3717 		}
3718 		can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3719 	}
3720 
3721 	/*
3722 	 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3723 	 * ensuring that no real breakpoint can be installed via this call.
3724 	 *
3725 	 * IMPORTANT: regs can be NULL in this function
3726 	 */
3727 
3728 	first_time = ctx->ctx_fl_using_dbreg == 0;
3729 
3730 	/*
3731 	 * don't bother if we are loaded and task is being debugged
3732 	 */
3733 	if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3734 		DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3735 		return -EBUSY;
3736 	}
3737 
3738 	/*
3739 	 * check for debug registers in system wide mode
3740 	 *
3741 	 * If though a check is done in pfm_context_load(),
3742 	 * we must repeat it here, in case the registers are
3743 	 * written after the context is loaded
3744 	 */
3745 	if (is_loaded) {
3746 		LOCK_PFS(flags);
3747 
3748 		if (first_time && is_system) {
3749 			if (pfm_sessions.pfs_ptrace_use_dbregs)
3750 				ret = -EBUSY;
3751 			else
3752 				pfm_sessions.pfs_sys_use_dbregs++;
3753 		}
3754 		UNLOCK_PFS(flags);
3755 	}
3756 
3757 	if (ret != 0) return ret;
3758 
3759 	/*
3760 	 * mark ourself as user of the debug registers for
3761 	 * perfmon purposes.
3762 	 */
3763 	ctx->ctx_fl_using_dbreg = 1;
3764 
3765 	/*
3766  	 * clear hardware registers to make sure we don't
3767  	 * pick up stale state.
3768 	 *
3769 	 * for a system wide session, we do not use
3770 	 * thread.dbr, thread.ibr because this process
3771 	 * never leaves the current CPU and the state
3772 	 * is shared by all processes running on it
3773  	 */
3774 	if (first_time && can_access_pmu) {
3775 		DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3776 		for (i=0; i < pmu_conf->num_ibrs; i++) {
3777 			ia64_set_ibr(i, 0UL);
3778 			ia64_dv_serialize_instruction();
3779 		}
3780 		ia64_srlz_i();
3781 		for (i=0; i < pmu_conf->num_dbrs; i++) {
3782 			ia64_set_dbr(i, 0UL);
3783 			ia64_dv_serialize_data();
3784 		}
3785 		ia64_srlz_d();
3786 	}
3787 
3788 	/*
3789 	 * Now install the values into the registers
3790 	 */
3791 	for (i = 0; i < count; i++, req++) {
3792 
3793 		rnum      = req->dbreg_num;
3794 		dbreg.val = req->dbreg_value;
3795 
3796 		ret = -EINVAL;
3797 
3798 		if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3799 			DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3800 				  rnum, dbreg.val, mode, i, count));
3801 
3802 			goto abort_mission;
3803 		}
3804 
3805 		/*
3806 		 * make sure we do not install enabled breakpoint
3807 		 */
3808 		if (rnum & 0x1) {
3809 			if (mode == PFM_CODE_RR)
3810 				dbreg.ibr.ibr_x = 0;
3811 			else
3812 				dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3813 		}
3814 
3815 		PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3816 
3817 		/*
3818 		 * Debug registers, just like PMC, can only be modified
3819 		 * by a kernel call. Moreover, perfmon() access to those
3820 		 * registers are centralized in this routine. The hardware
3821 		 * does not modify the value of these registers, therefore,
3822 		 * if we save them as they are written, we can avoid having
3823 		 * to save them on context switch out. This is made possible
3824 		 * by the fact that when perfmon uses debug registers, ptrace()
3825 		 * won't be able to modify them concurrently.
3826 		 */
3827 		if (mode == PFM_CODE_RR) {
3828 			CTX_USED_IBR(ctx, rnum);
3829 
3830 			if (can_access_pmu) {
3831 				ia64_set_ibr(rnum, dbreg.val);
3832 				ia64_dv_serialize_instruction();
3833 			}
3834 
3835 			ctx->ctx_ibrs[rnum] = dbreg.val;
3836 
3837 			DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3838 				rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3839 		} else {
3840 			CTX_USED_DBR(ctx, rnum);
3841 
3842 			if (can_access_pmu) {
3843 				ia64_set_dbr(rnum, dbreg.val);
3844 				ia64_dv_serialize_data();
3845 			}
3846 			ctx->ctx_dbrs[rnum] = dbreg.val;
3847 
3848 			DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3849 				rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3850 		}
3851 	}
3852 
3853 	return 0;
3854 
3855 abort_mission:
3856 	/*
3857 	 * in case it was our first attempt, we undo the global modifications
3858 	 */
3859 	if (first_time) {
3860 		LOCK_PFS(flags);
3861 		if (ctx->ctx_fl_system) {
3862 			pfm_sessions.pfs_sys_use_dbregs--;
3863 		}
3864 		UNLOCK_PFS(flags);
3865 		ctx->ctx_fl_using_dbreg = 0;
3866 	}
3867 	/*
3868 	 * install error return flag
3869 	 */
3870 	PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3871 
3872 	return ret;
3873 }
3874 
3875 static int
pfm_write_ibrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3876 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3877 {
3878 	return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3879 }
3880 
3881 static int
pfm_write_dbrs(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3882 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3883 {
3884 	return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3885 }
3886 
3887 int
pfm_mod_write_ibrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3888 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3889 {
3890 	pfm_context_t *ctx;
3891 
3892 	if (req == NULL) return -EINVAL;
3893 
3894  	ctx = GET_PMU_CTX();
3895 
3896 	if (ctx == NULL) return -EINVAL;
3897 
3898 	/*
3899 	 * for now limit to current task, which is enough when calling
3900 	 * from overflow handler
3901 	 */
3902 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3903 
3904 	return pfm_write_ibrs(ctx, req, nreq, regs);
3905 }
3906 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3907 
3908 int
pfm_mod_write_dbrs(struct task_struct * task,void * req,unsigned int nreq,struct pt_regs * regs)3909 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3910 {
3911 	pfm_context_t *ctx;
3912 
3913 	if (req == NULL) return -EINVAL;
3914 
3915  	ctx = GET_PMU_CTX();
3916 
3917 	if (ctx == NULL) return -EINVAL;
3918 
3919 	/*
3920 	 * for now limit to current task, which is enough when calling
3921 	 * from overflow handler
3922 	 */
3923 	if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3924 
3925 	return pfm_write_dbrs(ctx, req, nreq, regs);
3926 }
3927 EXPORT_SYMBOL(pfm_mod_write_dbrs);
3928 
3929 
3930 static int
pfm_get_features(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3931 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3932 {
3933 	pfarg_features_t *req = (pfarg_features_t *)arg;
3934 
3935 	req->ft_version = PFM_VERSION;
3936 	return 0;
3937 }
3938 
3939 static int
pfm_stop(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)3940 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3941 {
3942 	struct pt_regs *tregs;
3943 	struct task_struct *task = PFM_CTX_TASK(ctx);
3944 	int state, is_system;
3945 
3946 	state     = ctx->ctx_state;
3947 	is_system = ctx->ctx_fl_system;
3948 
3949 	/*
3950 	 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3951 	 */
3952 	if (state == PFM_CTX_UNLOADED) return -EINVAL;
3953 
3954 	/*
3955  	 * In system wide and when the context is loaded, access can only happen
3956  	 * when the caller is running on the CPU being monitored by the session.
3957  	 * It does not have to be the owner (ctx_task) of the context per se.
3958  	 */
3959 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3960 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3961 		return -EBUSY;
3962 	}
3963 	DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3964 		task_pid_nr(PFM_CTX_TASK(ctx)),
3965 		state,
3966 		is_system));
3967 	/*
3968 	 * in system mode, we need to update the PMU directly
3969 	 * and the user level state of the caller, which may not
3970 	 * necessarily be the creator of the context.
3971 	 */
3972 	if (is_system) {
3973 		/*
3974 		 * Update local PMU first
3975 		 *
3976 		 * disable dcr pp
3977 		 */
3978 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
3979 		ia64_srlz_i();
3980 
3981 		/*
3982 		 * update local cpuinfo
3983 		 */
3984 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
3985 
3986 		/*
3987 		 * stop monitoring, does srlz.i
3988 		 */
3989 		pfm_clear_psr_pp();
3990 
3991 		/*
3992 		 * stop monitoring in the caller
3993 		 */
3994 		ia64_psr(regs)->pp = 0;
3995 
3996 		return 0;
3997 	}
3998 	/*
3999 	 * per-task mode
4000 	 */
4001 
4002 	if (task == current) {
4003 		/* stop monitoring  at kernel level */
4004 		pfm_clear_psr_up();
4005 
4006 		/*
4007 	 	 * stop monitoring at the user level
4008 	 	 */
4009 		ia64_psr(regs)->up = 0;
4010 	} else {
4011 		tregs = task_pt_regs(task);
4012 
4013 		/*
4014 	 	 * stop monitoring at the user level
4015 	 	 */
4016 		ia64_psr(tregs)->up = 0;
4017 
4018 		/*
4019 		 * monitoring disabled in kernel at next reschedule
4020 		 */
4021 		ctx->ctx_saved_psr_up = 0;
4022 		DPRINT(("task=[%d]\n", task_pid_nr(task)));
4023 	}
4024 	return 0;
4025 }
4026 
4027 
4028 static int
pfm_start(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4029 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4030 {
4031 	struct pt_regs *tregs;
4032 	int state, is_system;
4033 
4034 	state     = ctx->ctx_state;
4035 	is_system = ctx->ctx_fl_system;
4036 
4037 	if (state != PFM_CTX_LOADED) return -EINVAL;
4038 
4039 	/*
4040  	 * In system wide and when the context is loaded, access can only happen
4041  	 * when the caller is running on the CPU being monitored by the session.
4042  	 * It does not have to be the owner (ctx_task) of the context per se.
4043  	 */
4044 	if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4045 		DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4046 		return -EBUSY;
4047 	}
4048 
4049 	/*
4050 	 * in system mode, we need to update the PMU directly
4051 	 * and the user level state of the caller, which may not
4052 	 * necessarily be the creator of the context.
4053 	 */
4054 	if (is_system) {
4055 
4056 		/*
4057 		 * set user level psr.pp for the caller
4058 		 */
4059 		ia64_psr(regs)->pp = 1;
4060 
4061 		/*
4062 		 * now update the local PMU and cpuinfo
4063 		 */
4064 		PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4065 
4066 		/*
4067 		 * start monitoring at kernel level
4068 		 */
4069 		pfm_set_psr_pp();
4070 
4071 		/* enable dcr pp */
4072 		ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4073 		ia64_srlz_i();
4074 
4075 		return 0;
4076 	}
4077 
4078 	/*
4079 	 * per-process mode
4080 	 */
4081 
4082 	if (ctx->ctx_task == current) {
4083 
4084 		/* start monitoring at kernel level */
4085 		pfm_set_psr_up();
4086 
4087 		/*
4088 		 * activate monitoring at user level
4089 		 */
4090 		ia64_psr(regs)->up = 1;
4091 
4092 	} else {
4093 		tregs = task_pt_regs(ctx->ctx_task);
4094 
4095 		/*
4096 		 * start monitoring at the kernel level the next
4097 		 * time the task is scheduled
4098 		 */
4099 		ctx->ctx_saved_psr_up = IA64_PSR_UP;
4100 
4101 		/*
4102 		 * activate monitoring at user level
4103 		 */
4104 		ia64_psr(tregs)->up = 1;
4105 	}
4106 	return 0;
4107 }
4108 
4109 static int
pfm_get_pmc_reset(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4110 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4111 {
4112 	pfarg_reg_t *req = (pfarg_reg_t *)arg;
4113 	unsigned int cnum;
4114 	int i;
4115 	int ret = -EINVAL;
4116 
4117 	for (i = 0; i < count; i++, req++) {
4118 
4119 		cnum = req->reg_num;
4120 
4121 		if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4122 
4123 		req->reg_value = PMC_DFL_VAL(cnum);
4124 
4125 		PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4126 
4127 		DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4128 	}
4129 	return 0;
4130 
4131 abort_mission:
4132 	PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4133 	return ret;
4134 }
4135 
4136 static int
pfm_check_task_exist(pfm_context_t * ctx)4137 pfm_check_task_exist(pfm_context_t *ctx)
4138 {
4139 	struct task_struct *g, *t;
4140 	int ret = -ESRCH;
4141 
4142 	read_lock(&tasklist_lock);
4143 
4144 	do_each_thread (g, t) {
4145 		if (t->thread.pfm_context == ctx) {
4146 			ret = 0;
4147 			goto out;
4148 		}
4149 	} while_each_thread (g, t);
4150 out:
4151 	read_unlock(&tasklist_lock);
4152 
4153 	DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4154 
4155 	return ret;
4156 }
4157 
4158 static int
pfm_context_load(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4159 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4160 {
4161 	struct task_struct *task;
4162 	struct thread_struct *thread;
4163 	struct pfm_context_t *old;
4164 	unsigned long flags;
4165 #ifndef CONFIG_SMP
4166 	struct task_struct *owner_task = NULL;
4167 #endif
4168 	pfarg_load_t *req = (pfarg_load_t *)arg;
4169 	unsigned long *pmcs_source, *pmds_source;
4170 	int the_cpu;
4171 	int ret = 0;
4172 	int state, is_system, set_dbregs = 0;
4173 
4174 	state     = ctx->ctx_state;
4175 	is_system = ctx->ctx_fl_system;
4176 	/*
4177 	 * can only load from unloaded or terminated state
4178 	 */
4179 	if (state != PFM_CTX_UNLOADED) {
4180 		DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4181 			req->load_pid,
4182 			ctx->ctx_state));
4183 		return -EBUSY;
4184 	}
4185 
4186 	DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4187 
4188 	if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4189 		DPRINT(("cannot use blocking mode on self\n"));
4190 		return -EINVAL;
4191 	}
4192 
4193 	ret = pfm_get_task(ctx, req->load_pid, &task);
4194 	if (ret) {
4195 		DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4196 		return ret;
4197 	}
4198 
4199 	ret = -EINVAL;
4200 
4201 	/*
4202 	 * system wide is self monitoring only
4203 	 */
4204 	if (is_system && task != current) {
4205 		DPRINT(("system wide is self monitoring only load_pid=%d\n",
4206 			req->load_pid));
4207 		goto error;
4208 	}
4209 
4210 	thread = &task->thread;
4211 
4212 	ret = 0;
4213 	/*
4214 	 * cannot load a context which is using range restrictions,
4215 	 * into a task that is being debugged.
4216 	 */
4217 	if (ctx->ctx_fl_using_dbreg) {
4218 		if (thread->flags & IA64_THREAD_DBG_VALID) {
4219 			ret = -EBUSY;
4220 			DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4221 			goto error;
4222 		}
4223 		LOCK_PFS(flags);
4224 
4225 		if (is_system) {
4226 			if (pfm_sessions.pfs_ptrace_use_dbregs) {
4227 				DPRINT(("cannot load [%d] dbregs in use\n",
4228 							task_pid_nr(task)));
4229 				ret = -EBUSY;
4230 			} else {
4231 				pfm_sessions.pfs_sys_use_dbregs++;
4232 				DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4233 				set_dbregs = 1;
4234 			}
4235 		}
4236 
4237 		UNLOCK_PFS(flags);
4238 
4239 		if (ret) goto error;
4240 	}
4241 
4242 	/*
4243 	 * SMP system-wide monitoring implies self-monitoring.
4244 	 *
4245 	 * The programming model expects the task to
4246 	 * be pinned on a CPU throughout the session.
4247 	 * Here we take note of the current CPU at the
4248 	 * time the context is loaded. No call from
4249 	 * another CPU will be allowed.
4250 	 *
4251 	 * The pinning via shed_setaffinity()
4252 	 * must be done by the calling task prior
4253 	 * to this call.
4254 	 *
4255 	 * systemwide: keep track of CPU this session is supposed to run on
4256 	 */
4257 	the_cpu = ctx->ctx_cpu = smp_processor_id();
4258 
4259 	ret = -EBUSY;
4260 	/*
4261 	 * now reserve the session
4262 	 */
4263 	ret = pfm_reserve_session(current, is_system, the_cpu);
4264 	if (ret) goto error;
4265 
4266 	/*
4267 	 * task is necessarily stopped at this point.
4268 	 *
4269 	 * If the previous context was zombie, then it got removed in
4270 	 * pfm_save_regs(). Therefore we should not see it here.
4271 	 * If we see a context, then this is an active context
4272 	 *
4273 	 * XXX: needs to be atomic
4274 	 */
4275 	DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4276 		thread->pfm_context, ctx));
4277 
4278 	ret = -EBUSY;
4279 	old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4280 	if (old != NULL) {
4281 		DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4282 		goto error_unres;
4283 	}
4284 
4285 	pfm_reset_msgq(ctx);
4286 
4287 	ctx->ctx_state = PFM_CTX_LOADED;
4288 
4289 	/*
4290 	 * link context to task
4291 	 */
4292 	ctx->ctx_task = task;
4293 
4294 	if (is_system) {
4295 		/*
4296 		 * we load as stopped
4297 		 */
4298 		PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4299 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4300 
4301 		if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4302 	} else {
4303 		thread->flags |= IA64_THREAD_PM_VALID;
4304 	}
4305 
4306 	/*
4307 	 * propagate into thread-state
4308 	 */
4309 	pfm_copy_pmds(task, ctx);
4310 	pfm_copy_pmcs(task, ctx);
4311 
4312 	pmcs_source = ctx->th_pmcs;
4313 	pmds_source = ctx->th_pmds;
4314 
4315 	/*
4316 	 * always the case for system-wide
4317 	 */
4318 	if (task == current) {
4319 
4320 		if (is_system == 0) {
4321 
4322 			/* allow user level control */
4323 			ia64_psr(regs)->sp = 0;
4324 			DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4325 
4326 			SET_LAST_CPU(ctx, smp_processor_id());
4327 			INC_ACTIVATION();
4328 			SET_ACTIVATION(ctx);
4329 #ifndef CONFIG_SMP
4330 			/*
4331 			 * push the other task out, if any
4332 			 */
4333 			owner_task = GET_PMU_OWNER();
4334 			if (owner_task) pfm_lazy_save_regs(owner_task);
4335 #endif
4336 		}
4337 		/*
4338 		 * load all PMD from ctx to PMU (as opposed to thread state)
4339 		 * restore all PMC from ctx to PMU
4340 		 */
4341 		pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4342 		pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4343 
4344 		ctx->ctx_reload_pmcs[0] = 0UL;
4345 		ctx->ctx_reload_pmds[0] = 0UL;
4346 
4347 		/*
4348 		 * guaranteed safe by earlier check against DBG_VALID
4349 		 */
4350 		if (ctx->ctx_fl_using_dbreg) {
4351 			pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4352 			pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4353 		}
4354 		/*
4355 		 * set new ownership
4356 		 */
4357 		SET_PMU_OWNER(task, ctx);
4358 
4359 		DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4360 	} else {
4361 		/*
4362 		 * when not current, task MUST be stopped, so this is safe
4363 		 */
4364 		regs = task_pt_regs(task);
4365 
4366 		/* force a full reload */
4367 		ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4368 		SET_LAST_CPU(ctx, -1);
4369 
4370 		/* initial saved psr (stopped) */
4371 		ctx->ctx_saved_psr_up = 0UL;
4372 		ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4373 	}
4374 
4375 	ret = 0;
4376 
4377 error_unres:
4378 	if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4379 error:
4380 	/*
4381 	 * we must undo the dbregs setting (for system-wide)
4382 	 */
4383 	if (ret && set_dbregs) {
4384 		LOCK_PFS(flags);
4385 		pfm_sessions.pfs_sys_use_dbregs--;
4386 		UNLOCK_PFS(flags);
4387 	}
4388 	/*
4389 	 * release task, there is now a link with the context
4390 	 */
4391 	if (is_system == 0 && task != current) {
4392 		pfm_put_task(task);
4393 
4394 		if (ret == 0) {
4395 			ret = pfm_check_task_exist(ctx);
4396 			if (ret) {
4397 				ctx->ctx_state = PFM_CTX_UNLOADED;
4398 				ctx->ctx_task  = NULL;
4399 			}
4400 		}
4401 	}
4402 	return ret;
4403 }
4404 
4405 /*
4406  * in this function, we do not need to increase the use count
4407  * for the task via get_task_struct(), because we hold the
4408  * context lock. If the task were to disappear while having
4409  * a context attached, it would go through pfm_exit_thread()
4410  * which also grabs the context lock  and would therefore be blocked
4411  * until we are here.
4412  */
4413 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4414 
4415 static int
pfm_context_unload(pfm_context_t * ctx,void * arg,int count,struct pt_regs * regs)4416 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4417 {
4418 	struct task_struct *task = PFM_CTX_TASK(ctx);
4419 	struct pt_regs *tregs;
4420 	int prev_state, is_system;
4421 	int ret;
4422 
4423 	DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4424 
4425 	prev_state = ctx->ctx_state;
4426 	is_system  = ctx->ctx_fl_system;
4427 
4428 	/*
4429 	 * unload only when necessary
4430 	 */
4431 	if (prev_state == PFM_CTX_UNLOADED) {
4432 		DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4433 		return 0;
4434 	}
4435 
4436 	/*
4437 	 * clear psr and dcr bits
4438 	 */
4439 	ret = pfm_stop(ctx, NULL, 0, regs);
4440 	if (ret) return ret;
4441 
4442 	ctx->ctx_state = PFM_CTX_UNLOADED;
4443 
4444 	/*
4445 	 * in system mode, we need to update the PMU directly
4446 	 * and the user level state of the caller, which may not
4447 	 * necessarily be the creator of the context.
4448 	 */
4449 	if (is_system) {
4450 
4451 		/*
4452 		 * Update cpuinfo
4453 		 *
4454 		 * local PMU is taken care of in pfm_stop()
4455 		 */
4456 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4457 		PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4458 
4459 		/*
4460 		 * save PMDs in context
4461 		 * release ownership
4462 		 */
4463 		pfm_flush_pmds(current, ctx);
4464 
4465 		/*
4466 		 * at this point we are done with the PMU
4467 		 * so we can unreserve the resource.
4468 		 */
4469 		if (prev_state != PFM_CTX_ZOMBIE)
4470 			pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4471 
4472 		/*
4473 		 * disconnect context from task
4474 		 */
4475 		task->thread.pfm_context = NULL;
4476 		/*
4477 		 * disconnect task from context
4478 		 */
4479 		ctx->ctx_task = NULL;
4480 
4481 		/*
4482 		 * There is nothing more to cleanup here.
4483 		 */
4484 		return 0;
4485 	}
4486 
4487 	/*
4488 	 * per-task mode
4489 	 */
4490 	tregs = task == current ? regs : task_pt_regs(task);
4491 
4492 	if (task == current) {
4493 		/*
4494 		 * cancel user level control
4495 		 */
4496 		ia64_psr(regs)->sp = 1;
4497 
4498 		DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4499 	}
4500 	/*
4501 	 * save PMDs to context
4502 	 * release ownership
4503 	 */
4504 	pfm_flush_pmds(task, ctx);
4505 
4506 	/*
4507 	 * at this point we are done with the PMU
4508 	 * so we can unreserve the resource.
4509 	 *
4510 	 * when state was ZOMBIE, we have already unreserved.
4511 	 */
4512 	if (prev_state != PFM_CTX_ZOMBIE)
4513 		pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4514 
4515 	/*
4516 	 * reset activation counter and psr
4517 	 */
4518 	ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4519 	SET_LAST_CPU(ctx, -1);
4520 
4521 	/*
4522 	 * PMU state will not be restored
4523 	 */
4524 	task->thread.flags &= ~IA64_THREAD_PM_VALID;
4525 
4526 	/*
4527 	 * break links between context and task
4528 	 */
4529 	task->thread.pfm_context  = NULL;
4530 	ctx->ctx_task             = NULL;
4531 
4532 	PFM_SET_WORK_PENDING(task, 0);
4533 
4534 	ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4535 	ctx->ctx_fl_can_restart  = 0;
4536 	ctx->ctx_fl_going_zombie = 0;
4537 
4538 	DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4539 
4540 	return 0;
4541 }
4542 
4543 
4544 /*
4545  * called only from exit_thread()
4546  * we come here only if the task has a context attached (loaded or masked)
4547  */
4548 void
pfm_exit_thread(struct task_struct * task)4549 pfm_exit_thread(struct task_struct *task)
4550 {
4551 	pfm_context_t *ctx;
4552 	unsigned long flags;
4553 	struct pt_regs *regs = task_pt_regs(task);
4554 	int ret, state;
4555 	int free_ok = 0;
4556 
4557 	ctx = PFM_GET_CTX(task);
4558 
4559 	PROTECT_CTX(ctx, flags);
4560 
4561 	DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4562 
4563 	state = ctx->ctx_state;
4564 	switch(state) {
4565 		case PFM_CTX_UNLOADED:
4566 			/*
4567 	 		 * only comes to this function if pfm_context is not NULL, i.e., cannot
4568 			 * be in unloaded state
4569 	 		 */
4570 			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4571 			break;
4572 		case PFM_CTX_LOADED:
4573 		case PFM_CTX_MASKED:
4574 			ret = pfm_context_unload(ctx, NULL, 0, regs);
4575 			if (ret) {
4576 				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4577 			}
4578 			DPRINT(("ctx unloaded for current state was %d\n", state));
4579 
4580 			pfm_end_notify_user(ctx);
4581 			break;
4582 		case PFM_CTX_ZOMBIE:
4583 			ret = pfm_context_unload(ctx, NULL, 0, regs);
4584 			if (ret) {
4585 				printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4586 			}
4587 			free_ok = 1;
4588 			break;
4589 		default:
4590 			printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4591 			break;
4592 	}
4593 	UNPROTECT_CTX(ctx, flags);
4594 
4595 	{ u64 psr = pfm_get_psr();
4596 	  BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4597 	  BUG_ON(GET_PMU_OWNER());
4598 	  BUG_ON(ia64_psr(regs)->up);
4599 	  BUG_ON(ia64_psr(regs)->pp);
4600 	}
4601 
4602 	/*
4603 	 * All memory free operations (especially for vmalloc'ed memory)
4604 	 * MUST be done with interrupts ENABLED.
4605 	 */
4606 	if (free_ok) pfm_context_free(ctx);
4607 }
4608 
4609 /*
4610  * functions MUST be listed in the increasing order of their index (see permfon.h)
4611  */
4612 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4613 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4614 #define PFM_CMD_PCLRWS	(PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4615 #define PFM_CMD_PCLRW	(PFM_CMD_FD|PFM_CMD_ARG_RW)
4616 #define PFM_CMD_NONE	{ NULL, "no-cmd", 0, 0, 0, NULL}
4617 
4618 static pfm_cmd_desc_t pfm_cmd_tab[]={
4619 /* 0  */PFM_CMD_NONE,
4620 /* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4621 /* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4622 /* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4623 /* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4624 /* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4625 /* 6  */PFM_CMD_NONE,
4626 /* 7  */PFM_CMD_NONE,
4627 /* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4628 /* 9  */PFM_CMD_NONE,
4629 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4630 /* 11 */PFM_CMD_NONE,
4631 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4632 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4633 /* 14 */PFM_CMD_NONE,
4634 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4635 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4636 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4637 /* 18 */PFM_CMD_NONE,
4638 /* 19 */PFM_CMD_NONE,
4639 /* 20 */PFM_CMD_NONE,
4640 /* 21 */PFM_CMD_NONE,
4641 /* 22 */PFM_CMD_NONE,
4642 /* 23 */PFM_CMD_NONE,
4643 /* 24 */PFM_CMD_NONE,
4644 /* 25 */PFM_CMD_NONE,
4645 /* 26 */PFM_CMD_NONE,
4646 /* 27 */PFM_CMD_NONE,
4647 /* 28 */PFM_CMD_NONE,
4648 /* 29 */PFM_CMD_NONE,
4649 /* 30 */PFM_CMD_NONE,
4650 /* 31 */PFM_CMD_NONE,
4651 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4652 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4653 };
4654 #define PFM_CMD_COUNT	(sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4655 
4656 static int
pfm_check_task_state(pfm_context_t * ctx,int cmd,unsigned long flags)4657 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4658 {
4659 	struct task_struct *task;
4660 	int state, old_state;
4661 
4662 recheck:
4663 	state = ctx->ctx_state;
4664 	task  = ctx->ctx_task;
4665 
4666 	if (task == NULL) {
4667 		DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4668 		return 0;
4669 	}
4670 
4671 	DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4672 		ctx->ctx_fd,
4673 		state,
4674 		task_pid_nr(task),
4675 		task->state, PFM_CMD_STOPPED(cmd)));
4676 
4677 	/*
4678 	 * self-monitoring always ok.
4679 	 *
4680 	 * for system-wide the caller can either be the creator of the
4681 	 * context (to one to which the context is attached to) OR
4682 	 * a task running on the same CPU as the session.
4683 	 */
4684 	if (task == current || ctx->ctx_fl_system) return 0;
4685 
4686 	/*
4687 	 * we are monitoring another thread
4688 	 */
4689 	switch(state) {
4690 		case PFM_CTX_UNLOADED:
4691 			/*
4692 			 * if context is UNLOADED we are safe to go
4693 			 */
4694 			return 0;
4695 		case PFM_CTX_ZOMBIE:
4696 			/*
4697 			 * no command can operate on a zombie context
4698 			 */
4699 			DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4700 			return -EINVAL;
4701 		case PFM_CTX_MASKED:
4702 			/*
4703 			 * PMU state has been saved to software even though
4704 			 * the thread may still be running.
4705 			 */
4706 			if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4707 	}
4708 
4709 	/*
4710 	 * context is LOADED or MASKED. Some commands may need to have
4711 	 * the task stopped.
4712 	 *
4713 	 * We could lift this restriction for UP but it would mean that
4714 	 * the user has no guarantee the task would not run between
4715 	 * two successive calls to perfmonctl(). That's probably OK.
4716 	 * If this user wants to ensure the task does not run, then
4717 	 * the task must be stopped.
4718 	 */
4719 	if (PFM_CMD_STOPPED(cmd)) {
4720 		if (!task_is_stopped_or_traced(task)) {
4721 			DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4722 			return -EBUSY;
4723 		}
4724 		/*
4725 		 * task is now stopped, wait for ctxsw out
4726 		 *
4727 		 * This is an interesting point in the code.
4728 		 * We need to unprotect the context because
4729 		 * the pfm_save_regs() routines needs to grab
4730 		 * the same lock. There are danger in doing
4731 		 * this because it leaves a window open for
4732 		 * another task to get access to the context
4733 		 * and possibly change its state. The one thing
4734 		 * that is not possible is for the context to disappear
4735 		 * because we are protected by the VFS layer, i.e.,
4736 		 * get_fd()/put_fd().
4737 		 */
4738 		old_state = state;
4739 
4740 		UNPROTECT_CTX(ctx, flags);
4741 
4742 		wait_task_inactive(task, 0);
4743 
4744 		PROTECT_CTX(ctx, flags);
4745 
4746 		/*
4747 		 * we must recheck to verify if state has changed
4748 		 */
4749 		if (ctx->ctx_state != old_state) {
4750 			DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4751 			goto recheck;
4752 		}
4753 	}
4754 	return 0;
4755 }
4756 
4757 /*
4758  * system-call entry point (must return long)
4759  */
4760 asmlinkage long
sys_perfmonctl(int fd,int cmd,void __user * arg,int count)4761 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4762 {
4763 	struct fd f = {NULL, 0};
4764 	pfm_context_t *ctx = NULL;
4765 	unsigned long flags = 0UL;
4766 	void *args_k = NULL;
4767 	long ret; /* will expand int return types */
4768 	size_t base_sz, sz, xtra_sz = 0;
4769 	int narg, completed_args = 0, call_made = 0, cmd_flags;
4770 	int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4771 	int (*getsize)(void *arg, size_t *sz);
4772 #define PFM_MAX_ARGSIZE	4096
4773 
4774 	/*
4775 	 * reject any call if perfmon was disabled at initialization
4776 	 */
4777 	if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4778 
4779 	if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4780 		DPRINT(("invalid cmd=%d\n", cmd));
4781 		return -EINVAL;
4782 	}
4783 
4784 	func      = pfm_cmd_tab[cmd].cmd_func;
4785 	narg      = pfm_cmd_tab[cmd].cmd_narg;
4786 	base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4787 	getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4788 	cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4789 
4790 	if (unlikely(func == NULL)) {
4791 		DPRINT(("invalid cmd=%d\n", cmd));
4792 		return -EINVAL;
4793 	}
4794 
4795 	DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4796 		PFM_CMD_NAME(cmd),
4797 		cmd,
4798 		narg,
4799 		base_sz,
4800 		count));
4801 
4802 	/*
4803 	 * check if number of arguments matches what the command expects
4804 	 */
4805 	if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4806 		return -EINVAL;
4807 
4808 restart_args:
4809 	sz = xtra_sz + base_sz*count;
4810 	/*
4811 	 * limit abuse to min page size
4812 	 */
4813 	if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4814 		printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4815 		return -E2BIG;
4816 	}
4817 
4818 	/*
4819 	 * allocate default-sized argument buffer
4820 	 */
4821 	if (likely(count && args_k == NULL)) {
4822 		args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4823 		if (args_k == NULL) return -ENOMEM;
4824 	}
4825 
4826 	ret = -EFAULT;
4827 
4828 	/*
4829 	 * copy arguments
4830 	 *
4831 	 * assume sz = 0 for command without parameters
4832 	 */
4833 	if (sz && copy_from_user(args_k, arg, sz)) {
4834 		DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4835 		goto error_args;
4836 	}
4837 
4838 	/*
4839 	 * check if command supports extra parameters
4840 	 */
4841 	if (completed_args == 0 && getsize) {
4842 		/*
4843 		 * get extra parameters size (based on main argument)
4844 		 */
4845 		ret = (*getsize)(args_k, &xtra_sz);
4846 		if (ret) goto error_args;
4847 
4848 		completed_args = 1;
4849 
4850 		DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4851 
4852 		/* retry if necessary */
4853 		if (likely(xtra_sz)) goto restart_args;
4854 	}
4855 
4856 	if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4857 
4858 	ret = -EBADF;
4859 
4860 	f = fdget(fd);
4861 	if (unlikely(f.file == NULL)) {
4862 		DPRINT(("invalid fd %d\n", fd));
4863 		goto error_args;
4864 	}
4865 	if (unlikely(PFM_IS_FILE(f.file) == 0)) {
4866 		DPRINT(("fd %d not related to perfmon\n", fd));
4867 		goto error_args;
4868 	}
4869 
4870 	ctx = f.file->private_data;
4871 	if (unlikely(ctx == NULL)) {
4872 		DPRINT(("no context for fd %d\n", fd));
4873 		goto error_args;
4874 	}
4875 	prefetch(&ctx->ctx_state);
4876 
4877 	PROTECT_CTX(ctx, flags);
4878 
4879 	/*
4880 	 * check task is stopped
4881 	 */
4882 	ret = pfm_check_task_state(ctx, cmd, flags);
4883 	if (unlikely(ret)) goto abort_locked;
4884 
4885 skip_fd:
4886 	ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4887 
4888 	call_made = 1;
4889 
4890 abort_locked:
4891 	if (likely(ctx)) {
4892 		DPRINT(("context unlocked\n"));
4893 		UNPROTECT_CTX(ctx, flags);
4894 	}
4895 
4896 	/* copy argument back to user, if needed */
4897 	if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4898 
4899 error_args:
4900 	if (f.file)
4901 		fdput(f);
4902 
4903 	kfree(args_k);
4904 
4905 	DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4906 
4907 	return ret;
4908 }
4909 
4910 static void
pfm_resume_after_ovfl(pfm_context_t * ctx,unsigned long ovfl_regs,struct pt_regs * regs)4911 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4912 {
4913 	pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4914 	pfm_ovfl_ctrl_t rst_ctrl;
4915 	int state;
4916 	int ret = 0;
4917 
4918 	state = ctx->ctx_state;
4919 	/*
4920 	 * Unlock sampling buffer and reset index atomically
4921 	 * XXX: not really needed when blocking
4922 	 */
4923 	if (CTX_HAS_SMPL(ctx)) {
4924 
4925 		rst_ctrl.bits.mask_monitoring = 0;
4926 		rst_ctrl.bits.reset_ovfl_pmds = 0;
4927 
4928 		if (state == PFM_CTX_LOADED)
4929 			ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4930 		else
4931 			ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4932 	} else {
4933 		rst_ctrl.bits.mask_monitoring = 0;
4934 		rst_ctrl.bits.reset_ovfl_pmds = 1;
4935 	}
4936 
4937 	if (ret == 0) {
4938 		if (rst_ctrl.bits.reset_ovfl_pmds) {
4939 			pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4940 		}
4941 		if (rst_ctrl.bits.mask_monitoring == 0) {
4942 			DPRINT(("resuming monitoring\n"));
4943 			if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4944 		} else {
4945 			DPRINT(("stopping monitoring\n"));
4946 			//pfm_stop_monitoring(current, regs);
4947 		}
4948 		ctx->ctx_state = PFM_CTX_LOADED;
4949 	}
4950 }
4951 
4952 /*
4953  * context MUST BE LOCKED when calling
4954  * can only be called for current
4955  */
4956 static void
pfm_context_force_terminate(pfm_context_t * ctx,struct pt_regs * regs)4957 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
4958 {
4959 	int ret;
4960 
4961 	DPRINT(("entering for [%d]\n", task_pid_nr(current)));
4962 
4963 	ret = pfm_context_unload(ctx, NULL, 0, regs);
4964 	if (ret) {
4965 		printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
4966 	}
4967 
4968 	/*
4969 	 * and wakeup controlling task, indicating we are now disconnected
4970 	 */
4971 	wake_up_interruptible(&ctx->ctx_zombieq);
4972 
4973 	/*
4974 	 * given that context is still locked, the controlling
4975 	 * task will only get access when we return from
4976 	 * pfm_handle_work().
4977 	 */
4978 }
4979 
4980 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
4981 
4982  /*
4983   * pfm_handle_work() can be called with interrupts enabled
4984   * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4985   * call may sleep, therefore we must re-enable interrupts
4986   * to avoid deadlocks. It is safe to do so because this function
4987   * is called ONLY when returning to user level (pUStk=1), in which case
4988   * there is no risk of kernel stack overflow due to deep
4989   * interrupt nesting.
4990   */
4991 void
pfm_handle_work(void)4992 pfm_handle_work(void)
4993 {
4994 	pfm_context_t *ctx;
4995 	struct pt_regs *regs;
4996 	unsigned long flags, dummy_flags;
4997 	unsigned long ovfl_regs;
4998 	unsigned int reason;
4999 	int ret;
5000 
5001 	ctx = PFM_GET_CTX(current);
5002 	if (ctx == NULL) {
5003 		printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5004 			task_pid_nr(current));
5005 		return;
5006 	}
5007 
5008 	PROTECT_CTX(ctx, flags);
5009 
5010 	PFM_SET_WORK_PENDING(current, 0);
5011 
5012 	regs = task_pt_regs(current);
5013 
5014 	/*
5015 	 * extract reason for being here and clear
5016 	 */
5017 	reason = ctx->ctx_fl_trap_reason;
5018 	ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5019 	ovfl_regs = ctx->ctx_ovfl_regs[0];
5020 
5021 	DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5022 
5023 	/*
5024 	 * must be done before we check for simple-reset mode
5025 	 */
5026 	if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5027 		goto do_zombie;
5028 
5029 	//if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5030 	if (reason == PFM_TRAP_REASON_RESET)
5031 		goto skip_blocking;
5032 
5033 	/*
5034 	 * restore interrupt mask to what it was on entry.
5035 	 * Could be enabled/diasbled.
5036 	 */
5037 	UNPROTECT_CTX(ctx, flags);
5038 
5039 	/*
5040 	 * force interrupt enable because of down_interruptible()
5041 	 */
5042 	local_irq_enable();
5043 
5044 	DPRINT(("before block sleeping\n"));
5045 
5046 	/*
5047 	 * may go through without blocking on SMP systems
5048 	 * if restart has been received already by the time we call down()
5049 	 */
5050 	ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5051 
5052 	DPRINT(("after block sleeping ret=%d\n", ret));
5053 
5054 	/*
5055 	 * lock context and mask interrupts again
5056 	 * We save flags into a dummy because we may have
5057 	 * altered interrupts mask compared to entry in this
5058 	 * function.
5059 	 */
5060 	PROTECT_CTX(ctx, dummy_flags);
5061 
5062 	/*
5063 	 * we need to read the ovfl_regs only after wake-up
5064 	 * because we may have had pfm_write_pmds() in between
5065 	 * and that can changed PMD values and therefore
5066 	 * ovfl_regs is reset for these new PMD values.
5067 	 */
5068 	ovfl_regs = ctx->ctx_ovfl_regs[0];
5069 
5070 	if (ctx->ctx_fl_going_zombie) {
5071 do_zombie:
5072 		DPRINT(("context is zombie, bailing out\n"));
5073 		pfm_context_force_terminate(ctx, regs);
5074 		goto nothing_to_do;
5075 	}
5076 	/*
5077 	 * in case of interruption of down() we don't restart anything
5078 	 */
5079 	if (ret < 0)
5080 		goto nothing_to_do;
5081 
5082 skip_blocking:
5083 	pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5084 	ctx->ctx_ovfl_regs[0] = 0UL;
5085 
5086 nothing_to_do:
5087 	/*
5088 	 * restore flags as they were upon entry
5089 	 */
5090 	UNPROTECT_CTX(ctx, flags);
5091 }
5092 
5093 static int
pfm_notify_user(pfm_context_t * ctx,pfm_msg_t * msg)5094 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5095 {
5096 	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5097 		DPRINT(("ignoring overflow notification, owner is zombie\n"));
5098 		return 0;
5099 	}
5100 
5101 	DPRINT(("waking up somebody\n"));
5102 
5103 	if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5104 
5105 	/*
5106 	 * safe, we are not in intr handler, nor in ctxsw when
5107 	 * we come here
5108 	 */
5109 	kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5110 
5111 	return 0;
5112 }
5113 
5114 static int
pfm_ovfl_notify_user(pfm_context_t * ctx,unsigned long ovfl_pmds)5115 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5116 {
5117 	pfm_msg_t *msg = NULL;
5118 
5119 	if (ctx->ctx_fl_no_msg == 0) {
5120 		msg = pfm_get_new_msg(ctx);
5121 		if (msg == NULL) {
5122 			printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5123 			return -1;
5124 		}
5125 
5126 		msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5127 		msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5128 		msg->pfm_ovfl_msg.msg_active_set   = 0;
5129 		msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5130 		msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5131 		msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5132 		msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5133 		msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5134 	}
5135 
5136 	DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5137 		msg,
5138 		ctx->ctx_fl_no_msg,
5139 		ctx->ctx_fd,
5140 		ovfl_pmds));
5141 
5142 	return pfm_notify_user(ctx, msg);
5143 }
5144 
5145 static int
pfm_end_notify_user(pfm_context_t * ctx)5146 pfm_end_notify_user(pfm_context_t *ctx)
5147 {
5148 	pfm_msg_t *msg;
5149 
5150 	msg = pfm_get_new_msg(ctx);
5151 	if (msg == NULL) {
5152 		printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5153 		return -1;
5154 	}
5155 	/* no leak */
5156 	memset(msg, 0, sizeof(*msg));
5157 
5158 	msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5159 	msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5160 	msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5161 
5162 	DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5163 		msg,
5164 		ctx->ctx_fl_no_msg,
5165 		ctx->ctx_fd));
5166 
5167 	return pfm_notify_user(ctx, msg);
5168 }
5169 
5170 /*
5171  * main overflow processing routine.
5172  * it can be called from the interrupt path or explicitly during the context switch code
5173  */
pfm_overflow_handler(struct task_struct * task,pfm_context_t * ctx,unsigned long pmc0,struct pt_regs * regs)5174 static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5175 				unsigned long pmc0, struct pt_regs *regs)
5176 {
5177 	pfm_ovfl_arg_t *ovfl_arg;
5178 	unsigned long mask;
5179 	unsigned long old_val, ovfl_val, new_val;
5180 	unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5181 	unsigned long tstamp;
5182 	pfm_ovfl_ctrl_t	ovfl_ctrl;
5183 	unsigned int i, has_smpl;
5184 	int must_notify = 0;
5185 
5186 	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5187 
5188 	/*
5189 	 * sanity test. Should never happen
5190 	 */
5191 	if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5192 
5193 	tstamp   = ia64_get_itc();
5194 	mask     = pmc0 >> PMU_FIRST_COUNTER;
5195 	ovfl_val = pmu_conf->ovfl_val;
5196 	has_smpl = CTX_HAS_SMPL(ctx);
5197 
5198 	DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5199 		     "used_pmds=0x%lx\n",
5200 			pmc0,
5201 			task ? task_pid_nr(task): -1,
5202 			(regs ? regs->cr_iip : 0),
5203 			CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5204 			ctx->ctx_used_pmds[0]));
5205 
5206 
5207 	/*
5208 	 * first we update the virtual counters
5209 	 * assume there was a prior ia64_srlz_d() issued
5210 	 */
5211 	for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5212 
5213 		/* skip pmd which did not overflow */
5214 		if ((mask & 0x1) == 0) continue;
5215 
5216 		/*
5217 		 * Note that the pmd is not necessarily 0 at this point as qualified events
5218 		 * may have happened before the PMU was frozen. The residual count is not
5219 		 * taken into consideration here but will be with any read of the pmd via
5220 		 * pfm_read_pmds().
5221 		 */
5222 		old_val              = new_val = ctx->ctx_pmds[i].val;
5223 		new_val             += 1 + ovfl_val;
5224 		ctx->ctx_pmds[i].val = new_val;
5225 
5226 		/*
5227 		 * check for overflow condition
5228 		 */
5229 		if (likely(old_val > new_val)) {
5230 			ovfl_pmds |= 1UL << i;
5231 			if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5232 		}
5233 
5234 		DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5235 			i,
5236 			new_val,
5237 			old_val,
5238 			ia64_get_pmd(i) & ovfl_val,
5239 			ovfl_pmds,
5240 			ovfl_notify));
5241 	}
5242 
5243 	/*
5244 	 * there was no 64-bit overflow, nothing else to do
5245 	 */
5246 	if (ovfl_pmds == 0UL) return;
5247 
5248 	/*
5249 	 * reset all control bits
5250 	 */
5251 	ovfl_ctrl.val = 0;
5252 	reset_pmds    = 0UL;
5253 
5254 	/*
5255 	 * if a sampling format module exists, then we "cache" the overflow by
5256 	 * calling the module's handler() routine.
5257 	 */
5258 	if (has_smpl) {
5259 		unsigned long start_cycles, end_cycles;
5260 		unsigned long pmd_mask;
5261 		int j, k, ret = 0;
5262 		int this_cpu = smp_processor_id();
5263 
5264 		pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5265 		ovfl_arg = &ctx->ctx_ovfl_arg;
5266 
5267 		prefetch(ctx->ctx_smpl_hdr);
5268 
5269 		for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5270 
5271 			mask = 1UL << i;
5272 
5273 			if ((pmd_mask & 0x1) == 0) continue;
5274 
5275 			ovfl_arg->ovfl_pmd      = (unsigned char )i;
5276 			ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5277 			ovfl_arg->active_set    = 0;
5278 			ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5279 			ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5280 
5281 			ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5282 			ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5283 			ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5284 
5285 			/*
5286 		 	 * copy values of pmds of interest. Sampling format may copy them
5287 		 	 * into sampling buffer.
5288 		 	 */
5289 			if (smpl_pmds) {
5290 				for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5291 					if ((smpl_pmds & 0x1) == 0) continue;
5292 					ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5293 					DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5294 				}
5295 			}
5296 
5297 			pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5298 
5299 			start_cycles = ia64_get_itc();
5300 
5301 			/*
5302 		 	 * call custom buffer format record (handler) routine
5303 		 	 */
5304 			ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5305 
5306 			end_cycles = ia64_get_itc();
5307 
5308 			/*
5309 			 * For those controls, we take the union because they have
5310 			 * an all or nothing behavior.
5311 			 */
5312 			ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5313 			ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5314 			ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5315 			/*
5316 			 * build the bitmask of pmds to reset now
5317 			 */
5318 			if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5319 
5320 			pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5321 		}
5322 		/*
5323 		 * when the module cannot handle the rest of the overflows, we abort right here
5324 		 */
5325 		if (ret && pmd_mask) {
5326 			DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5327 				pmd_mask<<PMU_FIRST_COUNTER));
5328 		}
5329 		/*
5330 		 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5331 		 */
5332 		ovfl_pmds &= ~reset_pmds;
5333 	} else {
5334 		/*
5335 		 * when no sampling module is used, then the default
5336 		 * is to notify on overflow if requested by user
5337 		 */
5338 		ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5339 		ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5340 		ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5341 		ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5342 		/*
5343 		 * if needed, we reset all overflowed pmds
5344 		 */
5345 		if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5346 	}
5347 
5348 	DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5349 
5350 	/*
5351 	 * reset the requested PMD registers using the short reset values
5352 	 */
5353 	if (reset_pmds) {
5354 		unsigned long bm = reset_pmds;
5355 		pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5356 	}
5357 
5358 	if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5359 		/*
5360 		 * keep track of what to reset when unblocking
5361 		 */
5362 		ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5363 
5364 		/*
5365 		 * check for blocking context
5366 		 */
5367 		if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5368 
5369 			ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5370 
5371 			/*
5372 			 * set the perfmon specific checking pending work for the task
5373 			 */
5374 			PFM_SET_WORK_PENDING(task, 1);
5375 
5376 			/*
5377 			 * when coming from ctxsw, current still points to the
5378 			 * previous task, therefore we must work with task and not current.
5379 			 */
5380 			set_notify_resume(task);
5381 		}
5382 		/*
5383 		 * defer until state is changed (shorten spin window). the context is locked
5384 		 * anyway, so the signal receiver would come spin for nothing.
5385 		 */
5386 		must_notify = 1;
5387 	}
5388 
5389 	DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5390 			GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5391 			PFM_GET_WORK_PENDING(task),
5392 			ctx->ctx_fl_trap_reason,
5393 			ovfl_pmds,
5394 			ovfl_notify,
5395 			ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5396 	/*
5397 	 * in case monitoring must be stopped, we toggle the psr bits
5398 	 */
5399 	if (ovfl_ctrl.bits.mask_monitoring) {
5400 		pfm_mask_monitoring(task);
5401 		ctx->ctx_state = PFM_CTX_MASKED;
5402 		ctx->ctx_fl_can_restart = 1;
5403 	}
5404 
5405 	/*
5406 	 * send notification now
5407 	 */
5408 	if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5409 
5410 	return;
5411 
5412 sanity_check:
5413 	printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5414 			smp_processor_id(),
5415 			task ? task_pid_nr(task) : -1,
5416 			pmc0);
5417 	return;
5418 
5419 stop_monitoring:
5420 	/*
5421 	 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5422 	 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5423 	 * come here as zombie only if the task is the current task. In which case, we
5424 	 * can access the PMU  hardware directly.
5425 	 *
5426 	 * Note that zombies do have PM_VALID set. So here we do the minimal.
5427 	 *
5428 	 * In case the context was zombified it could not be reclaimed at the time
5429 	 * the monitoring program exited. At this point, the PMU reservation has been
5430 	 * returned, the sampiing buffer has been freed. We must convert this call
5431 	 * into a spurious interrupt. However, we must also avoid infinite overflows
5432 	 * by stopping monitoring for this task. We can only come here for a per-task
5433 	 * context. All we need to do is to stop monitoring using the psr bits which
5434 	 * are always task private. By re-enabling secure montioring, we ensure that
5435 	 * the monitored task will not be able to re-activate monitoring.
5436 	 * The task will eventually be context switched out, at which point the context
5437 	 * will be reclaimed (that includes releasing ownership of the PMU).
5438 	 *
5439 	 * So there might be a window of time where the number of per-task session is zero
5440 	 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5441 	 * context. This is safe because if a per-task session comes in, it will push this one
5442 	 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5443 	 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5444 	 * also push our zombie context out.
5445 	 *
5446 	 * Overall pretty hairy stuff....
5447 	 */
5448 	DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5449 	pfm_clear_psr_up();
5450 	ia64_psr(regs)->up = 0;
5451 	ia64_psr(regs)->sp = 1;
5452 	return;
5453 }
5454 
5455 static int
pfm_do_interrupt_handler(void * arg,struct pt_regs * regs)5456 pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5457 {
5458 	struct task_struct *task;
5459 	pfm_context_t *ctx;
5460 	unsigned long flags;
5461 	u64 pmc0;
5462 	int this_cpu = smp_processor_id();
5463 	int retval = 0;
5464 
5465 	pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5466 
5467 	/*
5468 	 * srlz.d done before arriving here
5469 	 */
5470 	pmc0 = ia64_get_pmc(0);
5471 
5472 	task = GET_PMU_OWNER();
5473 	ctx  = GET_PMU_CTX();
5474 
5475 	/*
5476 	 * if we have some pending bits set
5477 	 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5478 	 */
5479 	if (PMC0_HAS_OVFL(pmc0) && task) {
5480 		/*
5481 		 * we assume that pmc0.fr is always set here
5482 		 */
5483 
5484 		/* sanity check */
5485 		if (!ctx) goto report_spurious1;
5486 
5487 		if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5488 			goto report_spurious2;
5489 
5490 		PROTECT_CTX_NOPRINT(ctx, flags);
5491 
5492 		pfm_overflow_handler(task, ctx, pmc0, regs);
5493 
5494 		UNPROTECT_CTX_NOPRINT(ctx, flags);
5495 
5496 	} else {
5497 		pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5498 		retval = -1;
5499 	}
5500 	/*
5501 	 * keep it unfrozen at all times
5502 	 */
5503 	pfm_unfreeze_pmu();
5504 
5505 	return retval;
5506 
5507 report_spurious1:
5508 	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5509 		this_cpu, task_pid_nr(task));
5510 	pfm_unfreeze_pmu();
5511 	return -1;
5512 report_spurious2:
5513 	printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5514 		this_cpu,
5515 		task_pid_nr(task));
5516 	pfm_unfreeze_pmu();
5517 	return -1;
5518 }
5519 
5520 static irqreturn_t
pfm_interrupt_handler(int irq,void * arg)5521 pfm_interrupt_handler(int irq, void *arg)
5522 {
5523 	unsigned long start_cycles, total_cycles;
5524 	unsigned long min, max;
5525 	int this_cpu;
5526 	int ret;
5527 	struct pt_regs *regs = get_irq_regs();
5528 
5529 	this_cpu = get_cpu();
5530 	if (likely(!pfm_alt_intr_handler)) {
5531 		min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5532 		max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5533 
5534 		start_cycles = ia64_get_itc();
5535 
5536 		ret = pfm_do_interrupt_handler(arg, regs);
5537 
5538 		total_cycles = ia64_get_itc();
5539 
5540 		/*
5541 		 * don't measure spurious interrupts
5542 		 */
5543 		if (likely(ret == 0)) {
5544 			total_cycles -= start_cycles;
5545 
5546 			if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5547 			if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5548 
5549 			pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5550 		}
5551 	}
5552 	else {
5553 		(*pfm_alt_intr_handler->handler)(irq, arg, regs);
5554 	}
5555 
5556 	put_cpu();
5557 	return IRQ_HANDLED;
5558 }
5559 
5560 /*
5561  * /proc/perfmon interface, for debug only
5562  */
5563 
5564 #define PFM_PROC_SHOW_HEADER	((void *)(long)nr_cpu_ids+1)
5565 
5566 static void *
pfm_proc_start(struct seq_file * m,loff_t * pos)5567 pfm_proc_start(struct seq_file *m, loff_t *pos)
5568 {
5569 	if (*pos == 0) {
5570 		return PFM_PROC_SHOW_HEADER;
5571 	}
5572 
5573 	while (*pos <= nr_cpu_ids) {
5574 		if (cpu_online(*pos - 1)) {
5575 			return (void *)*pos;
5576 		}
5577 		++*pos;
5578 	}
5579 	return NULL;
5580 }
5581 
5582 static void *
pfm_proc_next(struct seq_file * m,void * v,loff_t * pos)5583 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5584 {
5585 	++*pos;
5586 	return pfm_proc_start(m, pos);
5587 }
5588 
5589 static void
pfm_proc_stop(struct seq_file * m,void * v)5590 pfm_proc_stop(struct seq_file *m, void *v)
5591 {
5592 }
5593 
5594 static void
pfm_proc_show_header(struct seq_file * m)5595 pfm_proc_show_header(struct seq_file *m)
5596 {
5597 	struct list_head * pos;
5598 	pfm_buffer_fmt_t * entry;
5599 	unsigned long flags;
5600 
5601  	seq_printf(m,
5602 		"perfmon version           : %u.%u\n"
5603 		"model                     : %s\n"
5604 		"fastctxsw                 : %s\n"
5605 		"expert mode               : %s\n"
5606 		"ovfl_mask                 : 0x%lx\n"
5607 		"PMU flags                 : 0x%x\n",
5608 		PFM_VERSION_MAJ, PFM_VERSION_MIN,
5609 		pmu_conf->pmu_name,
5610 		pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5611 		pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5612 		pmu_conf->ovfl_val,
5613 		pmu_conf->flags);
5614 
5615   	LOCK_PFS(flags);
5616 
5617  	seq_printf(m,
5618  		"proc_sessions             : %u\n"
5619  		"sys_sessions              : %u\n"
5620  		"sys_use_dbregs            : %u\n"
5621  		"ptrace_use_dbregs         : %u\n",
5622  		pfm_sessions.pfs_task_sessions,
5623  		pfm_sessions.pfs_sys_sessions,
5624  		pfm_sessions.pfs_sys_use_dbregs,
5625  		pfm_sessions.pfs_ptrace_use_dbregs);
5626 
5627   	UNLOCK_PFS(flags);
5628 
5629 	spin_lock(&pfm_buffer_fmt_lock);
5630 
5631 	list_for_each(pos, &pfm_buffer_fmt_list) {
5632 		entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5633 		seq_printf(m, "format                    : %16phD %s\n",
5634 			   entry->fmt_uuid, entry->fmt_name);
5635 	}
5636 	spin_unlock(&pfm_buffer_fmt_lock);
5637 
5638 }
5639 
5640 static int
pfm_proc_show(struct seq_file * m,void * v)5641 pfm_proc_show(struct seq_file *m, void *v)
5642 {
5643 	unsigned long psr;
5644 	unsigned int i;
5645 	int cpu;
5646 
5647 	if (v == PFM_PROC_SHOW_HEADER) {
5648 		pfm_proc_show_header(m);
5649 		return 0;
5650 	}
5651 
5652 	/* show info for CPU (v - 1) */
5653 
5654 	cpu = (long)v - 1;
5655 	seq_printf(m,
5656 		"CPU%-2d overflow intrs      : %lu\n"
5657 		"CPU%-2d overflow cycles     : %lu\n"
5658 		"CPU%-2d overflow min        : %lu\n"
5659 		"CPU%-2d overflow max        : %lu\n"
5660 		"CPU%-2d smpl handler calls  : %lu\n"
5661 		"CPU%-2d smpl handler cycles : %lu\n"
5662 		"CPU%-2d spurious intrs      : %lu\n"
5663 		"CPU%-2d replay   intrs      : %lu\n"
5664 		"CPU%-2d syst_wide           : %d\n"
5665 		"CPU%-2d dcr_pp              : %d\n"
5666 		"CPU%-2d exclude idle        : %d\n"
5667 		"CPU%-2d owner               : %d\n"
5668 		"CPU%-2d context             : %p\n"
5669 		"CPU%-2d activations         : %lu\n",
5670 		cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5671 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5672 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5673 		cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5674 		cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5675 		cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5676 		cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5677 		cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5678 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5679 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5680 		cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5681 		cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5682 		cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5683 		cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5684 
5685 	if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5686 
5687 		psr = pfm_get_psr();
5688 
5689 		ia64_srlz_d();
5690 
5691 		seq_printf(m,
5692 			"CPU%-2d psr                 : 0x%lx\n"
5693 			"CPU%-2d pmc0                : 0x%lx\n",
5694 			cpu, psr,
5695 			cpu, ia64_get_pmc(0));
5696 
5697 		for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5698 			if (PMC_IS_COUNTING(i) == 0) continue;
5699    			seq_printf(m,
5700 				"CPU%-2d pmc%u                : 0x%lx\n"
5701    				"CPU%-2d pmd%u                : 0x%lx\n",
5702 				cpu, i, ia64_get_pmc(i),
5703 				cpu, i, ia64_get_pmd(i));
5704   		}
5705 	}
5706 	return 0;
5707 }
5708 
5709 const struct seq_operations pfm_seq_ops = {
5710 	.start =	pfm_proc_start,
5711  	.next =		pfm_proc_next,
5712  	.stop =		pfm_proc_stop,
5713  	.show =		pfm_proc_show
5714 };
5715 
5716 static int
pfm_proc_open(struct inode * inode,struct file * file)5717 pfm_proc_open(struct inode *inode, struct file *file)
5718 {
5719 	return seq_open(file, &pfm_seq_ops);
5720 }
5721 
5722 
5723 /*
5724  * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5725  * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5726  * is active or inactive based on mode. We must rely on the value in
5727  * local_cpu_data->pfm_syst_info
5728  */
5729 void
pfm_syst_wide_update_task(struct task_struct * task,unsigned long info,int is_ctxswin)5730 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5731 {
5732 	struct pt_regs *regs;
5733 	unsigned long dcr;
5734 	unsigned long dcr_pp;
5735 
5736 	dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5737 
5738 	/*
5739 	 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5740 	 * on every CPU, so we can rely on the pid to identify the idle task.
5741 	 */
5742 	if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5743 		regs = task_pt_regs(task);
5744 		ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5745 		return;
5746 	}
5747 	/*
5748 	 * if monitoring has started
5749 	 */
5750 	if (dcr_pp) {
5751 		dcr = ia64_getreg(_IA64_REG_CR_DCR);
5752 		/*
5753 		 * context switching in?
5754 		 */
5755 		if (is_ctxswin) {
5756 			/* mask monitoring for the idle task */
5757 			ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5758 			pfm_clear_psr_pp();
5759 			ia64_srlz_i();
5760 			return;
5761 		}
5762 		/*
5763 		 * context switching out
5764 		 * restore monitoring for next task
5765 		 *
5766 		 * Due to inlining this odd if-then-else construction generates
5767 		 * better code.
5768 		 */
5769 		ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5770 		pfm_set_psr_pp();
5771 		ia64_srlz_i();
5772 	}
5773 }
5774 
5775 #ifdef CONFIG_SMP
5776 
5777 static void
pfm_force_cleanup(pfm_context_t * ctx,struct pt_regs * regs)5778 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5779 {
5780 	struct task_struct *task = ctx->ctx_task;
5781 
5782 	ia64_psr(regs)->up = 0;
5783 	ia64_psr(regs)->sp = 1;
5784 
5785 	if (GET_PMU_OWNER() == task) {
5786 		DPRINT(("cleared ownership for [%d]\n",
5787 					task_pid_nr(ctx->ctx_task)));
5788 		SET_PMU_OWNER(NULL, NULL);
5789 	}
5790 
5791 	/*
5792 	 * disconnect the task from the context and vice-versa
5793 	 */
5794 	PFM_SET_WORK_PENDING(task, 0);
5795 
5796 	task->thread.pfm_context  = NULL;
5797 	task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5798 
5799 	DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5800 }
5801 
5802 
5803 /*
5804  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5805  */
5806 void
pfm_save_regs(struct task_struct * task)5807 pfm_save_regs(struct task_struct *task)
5808 {
5809 	pfm_context_t *ctx;
5810 	unsigned long flags;
5811 	u64 psr;
5812 
5813 
5814 	ctx = PFM_GET_CTX(task);
5815 	if (ctx == NULL) return;
5816 
5817 	/*
5818  	 * we always come here with interrupts ALREADY disabled by
5819  	 * the scheduler. So we simply need to protect against concurrent
5820 	 * access, not CPU concurrency.
5821 	 */
5822 	flags = pfm_protect_ctx_ctxsw(ctx);
5823 
5824 	if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5825 		struct pt_regs *regs = task_pt_regs(task);
5826 
5827 		pfm_clear_psr_up();
5828 
5829 		pfm_force_cleanup(ctx, regs);
5830 
5831 		BUG_ON(ctx->ctx_smpl_hdr);
5832 
5833 		pfm_unprotect_ctx_ctxsw(ctx, flags);
5834 
5835 		pfm_context_free(ctx);
5836 		return;
5837 	}
5838 
5839 	/*
5840 	 * save current PSR: needed because we modify it
5841 	 */
5842 	ia64_srlz_d();
5843 	psr = pfm_get_psr();
5844 
5845 	BUG_ON(psr & (IA64_PSR_I));
5846 
5847 	/*
5848 	 * stop monitoring:
5849 	 * This is the last instruction which may generate an overflow
5850 	 *
5851 	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5852 	 * It will be restored from ipsr when going back to user level
5853 	 */
5854 	pfm_clear_psr_up();
5855 
5856 	/*
5857 	 * keep a copy of psr.up (for reload)
5858 	 */
5859 	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5860 
5861 	/*
5862 	 * release ownership of this PMU.
5863 	 * PM interrupts are masked, so nothing
5864 	 * can happen.
5865 	 */
5866 	SET_PMU_OWNER(NULL, NULL);
5867 
5868 	/*
5869 	 * we systematically save the PMD as we have no
5870 	 * guarantee we will be schedule at that same
5871 	 * CPU again.
5872 	 */
5873 	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5874 
5875 	/*
5876 	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5877 	 * we will need it on the restore path to check
5878 	 * for pending overflow.
5879 	 */
5880 	ctx->th_pmcs[0] = ia64_get_pmc(0);
5881 
5882 	/*
5883 	 * unfreeze PMU if had pending overflows
5884 	 */
5885 	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5886 
5887 	/*
5888 	 * finally, allow context access.
5889 	 * interrupts will still be masked after this call.
5890 	 */
5891 	pfm_unprotect_ctx_ctxsw(ctx, flags);
5892 }
5893 
5894 #else /* !CONFIG_SMP */
5895 void
pfm_save_regs(struct task_struct * task)5896 pfm_save_regs(struct task_struct *task)
5897 {
5898 	pfm_context_t *ctx;
5899 	u64 psr;
5900 
5901 	ctx = PFM_GET_CTX(task);
5902 	if (ctx == NULL) return;
5903 
5904 	/*
5905 	 * save current PSR: needed because we modify it
5906 	 */
5907 	psr = pfm_get_psr();
5908 
5909 	BUG_ON(psr & (IA64_PSR_I));
5910 
5911 	/*
5912 	 * stop monitoring:
5913 	 * This is the last instruction which may generate an overflow
5914 	 *
5915 	 * We do not need to set psr.sp because, it is irrelevant in kernel.
5916 	 * It will be restored from ipsr when going back to user level
5917 	 */
5918 	pfm_clear_psr_up();
5919 
5920 	/*
5921 	 * keep a copy of psr.up (for reload)
5922 	 */
5923 	ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5924 }
5925 
5926 static void
pfm_lazy_save_regs(struct task_struct * task)5927 pfm_lazy_save_regs (struct task_struct *task)
5928 {
5929 	pfm_context_t *ctx;
5930 	unsigned long flags;
5931 
5932 	{ u64 psr  = pfm_get_psr();
5933 	  BUG_ON(psr & IA64_PSR_UP);
5934 	}
5935 
5936 	ctx = PFM_GET_CTX(task);
5937 
5938 	/*
5939 	 * we need to mask PMU overflow here to
5940 	 * make sure that we maintain pmc0 until
5941 	 * we save it. overflow interrupts are
5942 	 * treated as spurious if there is no
5943 	 * owner.
5944 	 *
5945 	 * XXX: I don't think this is necessary
5946 	 */
5947 	PROTECT_CTX(ctx,flags);
5948 
5949 	/*
5950 	 * release ownership of this PMU.
5951 	 * must be done before we save the registers.
5952 	 *
5953 	 * after this call any PMU interrupt is treated
5954 	 * as spurious.
5955 	 */
5956 	SET_PMU_OWNER(NULL, NULL);
5957 
5958 	/*
5959 	 * save all the pmds we use
5960 	 */
5961 	pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5962 
5963 	/*
5964 	 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5965 	 * it is needed to check for pended overflow
5966 	 * on the restore path
5967 	 */
5968 	ctx->th_pmcs[0] = ia64_get_pmc(0);
5969 
5970 	/*
5971 	 * unfreeze PMU if had pending overflows
5972 	 */
5973 	if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5974 
5975 	/*
5976 	 * now get can unmask PMU interrupts, they will
5977 	 * be treated as purely spurious and we will not
5978 	 * lose any information
5979 	 */
5980 	UNPROTECT_CTX(ctx,flags);
5981 }
5982 #endif /* CONFIG_SMP */
5983 
5984 #ifdef CONFIG_SMP
5985 /*
5986  * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5987  */
5988 void
pfm_load_regs(struct task_struct * task)5989 pfm_load_regs (struct task_struct *task)
5990 {
5991 	pfm_context_t *ctx;
5992 	unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
5993 	unsigned long flags;
5994 	u64 psr, psr_up;
5995 	int need_irq_resend;
5996 
5997 	ctx = PFM_GET_CTX(task);
5998 	if (unlikely(ctx == NULL)) return;
5999 
6000 	BUG_ON(GET_PMU_OWNER());
6001 
6002 	/*
6003 	 * possible on unload
6004 	 */
6005 	if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6006 
6007 	/*
6008  	 * we always come here with interrupts ALREADY disabled by
6009  	 * the scheduler. So we simply need to protect against concurrent
6010 	 * access, not CPU concurrency.
6011 	 */
6012 	flags = pfm_protect_ctx_ctxsw(ctx);
6013 	psr   = pfm_get_psr();
6014 
6015 	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6016 
6017 	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6018 	BUG_ON(psr & IA64_PSR_I);
6019 
6020 	if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6021 		struct pt_regs *regs = task_pt_regs(task);
6022 
6023 		BUG_ON(ctx->ctx_smpl_hdr);
6024 
6025 		pfm_force_cleanup(ctx, regs);
6026 
6027 		pfm_unprotect_ctx_ctxsw(ctx, flags);
6028 
6029 		/*
6030 		 * this one (kmalloc'ed) is fine with interrupts disabled
6031 		 */
6032 		pfm_context_free(ctx);
6033 
6034 		return;
6035 	}
6036 
6037 	/*
6038 	 * we restore ALL the debug registers to avoid picking up
6039 	 * stale state.
6040 	 */
6041 	if (ctx->ctx_fl_using_dbreg) {
6042 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6043 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6044 	}
6045 	/*
6046 	 * retrieve saved psr.up
6047 	 */
6048 	psr_up = ctx->ctx_saved_psr_up;
6049 
6050 	/*
6051 	 * if we were the last user of the PMU on that CPU,
6052 	 * then nothing to do except restore psr
6053 	 */
6054 	if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6055 
6056 		/*
6057 		 * retrieve partial reload masks (due to user modifications)
6058 		 */
6059 		pmc_mask = ctx->ctx_reload_pmcs[0];
6060 		pmd_mask = ctx->ctx_reload_pmds[0];
6061 
6062 	} else {
6063 		/*
6064 	 	 * To avoid leaking information to the user level when psr.sp=0,
6065 	 	 * we must reload ALL implemented pmds (even the ones we don't use).
6066 	 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6067 	 	 * we initialized or requested (sampling) so there is no risk there.
6068 	 	 */
6069 		pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6070 
6071 		/*
6072 	 	 * ALL accessible PMCs are systematically reloaded, unused registers
6073 	 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6074 	 	 * up stale configuration.
6075 	 	 *
6076 	 	 * PMC0 is never in the mask. It is always restored separately.
6077 	 	 */
6078 		pmc_mask = ctx->ctx_all_pmcs[0];
6079 	}
6080 	/*
6081 	 * when context is MASKED, we will restore PMC with plm=0
6082 	 * and PMD with stale information, but that's ok, nothing
6083 	 * will be captured.
6084 	 *
6085 	 * XXX: optimize here
6086 	 */
6087 	if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6088 	if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6089 
6090 	/*
6091 	 * check for pending overflow at the time the state
6092 	 * was saved.
6093 	 */
6094 	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6095 		/*
6096 		 * reload pmc0 with the overflow information
6097 		 * On McKinley PMU, this will trigger a PMU interrupt
6098 		 */
6099 		ia64_set_pmc(0, ctx->th_pmcs[0]);
6100 		ia64_srlz_d();
6101 		ctx->th_pmcs[0] = 0UL;
6102 
6103 		/*
6104 		 * will replay the PMU interrupt
6105 		 */
6106 		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6107 
6108 		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6109 	}
6110 
6111 	/*
6112 	 * we just did a reload, so we reset the partial reload fields
6113 	 */
6114 	ctx->ctx_reload_pmcs[0] = 0UL;
6115 	ctx->ctx_reload_pmds[0] = 0UL;
6116 
6117 	SET_LAST_CPU(ctx, smp_processor_id());
6118 
6119 	/*
6120 	 * dump activation value for this PMU
6121 	 */
6122 	INC_ACTIVATION();
6123 	/*
6124 	 * record current activation for this context
6125 	 */
6126 	SET_ACTIVATION(ctx);
6127 
6128 	/*
6129 	 * establish new ownership.
6130 	 */
6131 	SET_PMU_OWNER(task, ctx);
6132 
6133 	/*
6134 	 * restore the psr.up bit. measurement
6135 	 * is active again.
6136 	 * no PMU interrupt can happen at this point
6137 	 * because we still have interrupts disabled.
6138 	 */
6139 	if (likely(psr_up)) pfm_set_psr_up();
6140 
6141 	/*
6142 	 * allow concurrent access to context
6143 	 */
6144 	pfm_unprotect_ctx_ctxsw(ctx, flags);
6145 }
6146 #else /*  !CONFIG_SMP */
6147 /*
6148  * reload PMU state for UP kernels
6149  * in 2.5 we come here with interrupts disabled
6150  */
6151 void
pfm_load_regs(struct task_struct * task)6152 pfm_load_regs (struct task_struct *task)
6153 {
6154 	pfm_context_t *ctx;
6155 	struct task_struct *owner;
6156 	unsigned long pmd_mask, pmc_mask;
6157 	u64 psr, psr_up;
6158 	int need_irq_resend;
6159 
6160 	owner = GET_PMU_OWNER();
6161 	ctx   = PFM_GET_CTX(task);
6162 	psr   = pfm_get_psr();
6163 
6164 	BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6165 	BUG_ON(psr & IA64_PSR_I);
6166 
6167 	/*
6168 	 * we restore ALL the debug registers to avoid picking up
6169 	 * stale state.
6170 	 *
6171 	 * This must be done even when the task is still the owner
6172 	 * as the registers may have been modified via ptrace()
6173 	 * (not perfmon) by the previous task.
6174 	 */
6175 	if (ctx->ctx_fl_using_dbreg) {
6176 		pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6177 		pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6178 	}
6179 
6180 	/*
6181 	 * retrieved saved psr.up
6182 	 */
6183 	psr_up = ctx->ctx_saved_psr_up;
6184 	need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6185 
6186 	/*
6187 	 * short path, our state is still there, just
6188 	 * need to restore psr and we go
6189 	 *
6190 	 * we do not touch either PMC nor PMD. the psr is not touched
6191 	 * by the overflow_handler. So we are safe w.r.t. to interrupt
6192 	 * concurrency even without interrupt masking.
6193 	 */
6194 	if (likely(owner == task)) {
6195 		if (likely(psr_up)) pfm_set_psr_up();
6196 		return;
6197 	}
6198 
6199 	/*
6200 	 * someone else is still using the PMU, first push it out and
6201 	 * then we'll be able to install our stuff !
6202 	 *
6203 	 * Upon return, there will be no owner for the current PMU
6204 	 */
6205 	if (owner) pfm_lazy_save_regs(owner);
6206 
6207 	/*
6208 	 * To avoid leaking information to the user level when psr.sp=0,
6209 	 * we must reload ALL implemented pmds (even the ones we don't use).
6210 	 * In the kernel we only allow PFM_READ_PMDS on registers which
6211 	 * we initialized or requested (sampling) so there is no risk there.
6212 	 */
6213 	pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6214 
6215 	/*
6216 	 * ALL accessible PMCs are systematically reloaded, unused registers
6217 	 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6218 	 * up stale configuration.
6219 	 *
6220 	 * PMC0 is never in the mask. It is always restored separately
6221 	 */
6222 	pmc_mask = ctx->ctx_all_pmcs[0];
6223 
6224 	pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6225 	pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6226 
6227 	/*
6228 	 * check for pending overflow at the time the state
6229 	 * was saved.
6230 	 */
6231 	if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6232 		/*
6233 		 * reload pmc0 with the overflow information
6234 		 * On McKinley PMU, this will trigger a PMU interrupt
6235 		 */
6236 		ia64_set_pmc(0, ctx->th_pmcs[0]);
6237 		ia64_srlz_d();
6238 
6239 		ctx->th_pmcs[0] = 0UL;
6240 
6241 		/*
6242 		 * will replay the PMU interrupt
6243 		 */
6244 		if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6245 
6246 		pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6247 	}
6248 
6249 	/*
6250 	 * establish new ownership.
6251 	 */
6252 	SET_PMU_OWNER(task, ctx);
6253 
6254 	/*
6255 	 * restore the psr.up bit. measurement
6256 	 * is active again.
6257 	 * no PMU interrupt can happen at this point
6258 	 * because we still have interrupts disabled.
6259 	 */
6260 	if (likely(psr_up)) pfm_set_psr_up();
6261 }
6262 #endif /* CONFIG_SMP */
6263 
6264 /*
6265  * this function assumes monitoring is stopped
6266  */
6267 static void
pfm_flush_pmds(struct task_struct * task,pfm_context_t * ctx)6268 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6269 {
6270 	u64 pmc0;
6271 	unsigned long mask2, val, pmd_val, ovfl_val;
6272 	int i, can_access_pmu = 0;
6273 	int is_self;
6274 
6275 	/*
6276 	 * is the caller the task being monitored (or which initiated the
6277 	 * session for system wide measurements)
6278 	 */
6279 	is_self = ctx->ctx_task == task ? 1 : 0;
6280 
6281 	/*
6282 	 * can access PMU is task is the owner of the PMU state on the current CPU
6283 	 * or if we are running on the CPU bound to the context in system-wide mode
6284 	 * (that is not necessarily the task the context is attached to in this mode).
6285 	 * In system-wide we always have can_access_pmu true because a task running on an
6286 	 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6287 	 */
6288 	can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6289 	if (can_access_pmu) {
6290 		/*
6291 		 * Mark the PMU as not owned
6292 		 * This will cause the interrupt handler to do nothing in case an overflow
6293 		 * interrupt was in-flight
6294 		 * This also guarantees that pmc0 will contain the final state
6295 		 * It virtually gives us full control on overflow processing from that point
6296 		 * on.
6297 		 */
6298 		SET_PMU_OWNER(NULL, NULL);
6299 		DPRINT(("releasing ownership\n"));
6300 
6301 		/*
6302 		 * read current overflow status:
6303 		 *
6304 		 * we are guaranteed to read the final stable state
6305 		 */
6306 		ia64_srlz_d();
6307 		pmc0 = ia64_get_pmc(0); /* slow */
6308 
6309 		/*
6310 		 * reset freeze bit, overflow status information destroyed
6311 		 */
6312 		pfm_unfreeze_pmu();
6313 	} else {
6314 		pmc0 = ctx->th_pmcs[0];
6315 		/*
6316 		 * clear whatever overflow status bits there were
6317 		 */
6318 		ctx->th_pmcs[0] = 0;
6319 	}
6320 	ovfl_val = pmu_conf->ovfl_val;
6321 	/*
6322 	 * we save all the used pmds
6323 	 * we take care of overflows for counting PMDs
6324 	 *
6325 	 * XXX: sampling situation is not taken into account here
6326 	 */
6327 	mask2 = ctx->ctx_used_pmds[0];
6328 
6329 	DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6330 
6331 	for (i = 0; mask2; i++, mask2>>=1) {
6332 
6333 		/* skip non used pmds */
6334 		if ((mask2 & 0x1) == 0) continue;
6335 
6336 		/*
6337 		 * can access PMU always true in system wide mode
6338 		 */
6339 		val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6340 
6341 		if (PMD_IS_COUNTING(i)) {
6342 			DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6343 				task_pid_nr(task),
6344 				i,
6345 				ctx->ctx_pmds[i].val,
6346 				val & ovfl_val));
6347 
6348 			/*
6349 			 * we rebuild the full 64 bit value of the counter
6350 			 */
6351 			val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6352 
6353 			/*
6354 			 * now everything is in ctx_pmds[] and we need
6355 			 * to clear the saved context from save_regs() such that
6356 			 * pfm_read_pmds() gets the correct value
6357 			 */
6358 			pmd_val = 0UL;
6359 
6360 			/*
6361 			 * take care of overflow inline
6362 			 */
6363 			if (pmc0 & (1UL << i)) {
6364 				val += 1 + ovfl_val;
6365 				DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6366 			}
6367 		}
6368 
6369 		DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6370 
6371 		if (is_self) ctx->th_pmds[i] = pmd_val;
6372 
6373 		ctx->ctx_pmds[i].val = val;
6374 	}
6375 }
6376 
6377 static struct irqaction perfmon_irqaction = {
6378 	.handler = pfm_interrupt_handler,
6379 	.name    = "perfmon"
6380 };
6381 
6382 static void
pfm_alt_save_pmu_state(void * data)6383 pfm_alt_save_pmu_state(void *data)
6384 {
6385 	struct pt_regs *regs;
6386 
6387 	regs = task_pt_regs(current);
6388 
6389 	DPRINT(("called\n"));
6390 
6391 	/*
6392 	 * should not be necessary but
6393 	 * let's take not risk
6394 	 */
6395 	pfm_clear_psr_up();
6396 	pfm_clear_psr_pp();
6397 	ia64_psr(regs)->pp = 0;
6398 
6399 	/*
6400 	 * This call is required
6401 	 * May cause a spurious interrupt on some processors
6402 	 */
6403 	pfm_freeze_pmu();
6404 
6405 	ia64_srlz_d();
6406 }
6407 
6408 void
pfm_alt_restore_pmu_state(void * data)6409 pfm_alt_restore_pmu_state(void *data)
6410 {
6411 	struct pt_regs *regs;
6412 
6413 	regs = task_pt_regs(current);
6414 
6415 	DPRINT(("called\n"));
6416 
6417 	/*
6418 	 * put PMU back in state expected
6419 	 * by perfmon
6420 	 */
6421 	pfm_clear_psr_up();
6422 	pfm_clear_psr_pp();
6423 	ia64_psr(regs)->pp = 0;
6424 
6425 	/*
6426 	 * perfmon runs with PMU unfrozen at all times
6427 	 */
6428 	pfm_unfreeze_pmu();
6429 
6430 	ia64_srlz_d();
6431 }
6432 
6433 int
pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6434 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6435 {
6436 	int ret, i;
6437 	int reserve_cpu;
6438 
6439 	/* some sanity checks */
6440 	if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6441 
6442 	/* do the easy test first */
6443 	if (pfm_alt_intr_handler) return -EBUSY;
6444 
6445 	/* one at a time in the install or remove, just fail the others */
6446 	if (!spin_trylock(&pfm_alt_install_check)) {
6447 		return -EBUSY;
6448 	}
6449 
6450 	/* reserve our session */
6451 	for_each_online_cpu(reserve_cpu) {
6452 		ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6453 		if (ret) goto cleanup_reserve;
6454 	}
6455 
6456 	/* save the current system wide pmu states */
6457 	ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6458 	if (ret) {
6459 		DPRINT(("on_each_cpu() failed: %d\n", ret));
6460 		goto cleanup_reserve;
6461 	}
6462 
6463 	/* officially change to the alternate interrupt handler */
6464 	pfm_alt_intr_handler = hdl;
6465 
6466 	spin_unlock(&pfm_alt_install_check);
6467 
6468 	return 0;
6469 
6470 cleanup_reserve:
6471 	for_each_online_cpu(i) {
6472 		/* don't unreserve more than we reserved */
6473 		if (i >= reserve_cpu) break;
6474 
6475 		pfm_unreserve_session(NULL, 1, i);
6476 	}
6477 
6478 	spin_unlock(&pfm_alt_install_check);
6479 
6480 	return ret;
6481 }
6482 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6483 
6484 int
pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t * hdl)6485 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6486 {
6487 	int i;
6488 	int ret;
6489 
6490 	if (hdl == NULL) return -EINVAL;
6491 
6492 	/* cannot remove someone else's handler! */
6493 	if (pfm_alt_intr_handler != hdl) return -EINVAL;
6494 
6495 	/* one at a time in the install or remove, just fail the others */
6496 	if (!spin_trylock(&pfm_alt_install_check)) {
6497 		return -EBUSY;
6498 	}
6499 
6500 	pfm_alt_intr_handler = NULL;
6501 
6502 	ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6503 	if (ret) {
6504 		DPRINT(("on_each_cpu() failed: %d\n", ret));
6505 	}
6506 
6507 	for_each_online_cpu(i) {
6508 		pfm_unreserve_session(NULL, 1, i);
6509 	}
6510 
6511 	spin_unlock(&pfm_alt_install_check);
6512 
6513 	return 0;
6514 }
6515 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6516 
6517 /*
6518  * perfmon initialization routine, called from the initcall() table
6519  */
6520 static int init_pfm_fs(void);
6521 
6522 static int __init
pfm_probe_pmu(void)6523 pfm_probe_pmu(void)
6524 {
6525 	pmu_config_t **p;
6526 	int family;
6527 
6528 	family = local_cpu_data->family;
6529 	p      = pmu_confs;
6530 
6531 	while(*p) {
6532 		if ((*p)->probe) {
6533 			if ((*p)->probe() == 0) goto found;
6534 		} else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6535 			goto found;
6536 		}
6537 		p++;
6538 	}
6539 	return -1;
6540 found:
6541 	pmu_conf = *p;
6542 	return 0;
6543 }
6544 
6545 static const struct file_operations pfm_proc_fops = {
6546 	.open		= pfm_proc_open,
6547 	.read		= seq_read,
6548 	.llseek		= seq_lseek,
6549 	.release	= seq_release,
6550 };
6551 
6552 int __init
pfm_init(void)6553 pfm_init(void)
6554 {
6555 	unsigned int n, n_counters, i;
6556 
6557 	printk("perfmon: version %u.%u IRQ %u\n",
6558 		PFM_VERSION_MAJ,
6559 		PFM_VERSION_MIN,
6560 		IA64_PERFMON_VECTOR);
6561 
6562 	if (pfm_probe_pmu()) {
6563 		printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6564 				local_cpu_data->family);
6565 		return -ENODEV;
6566 	}
6567 
6568 	/*
6569 	 * compute the number of implemented PMD/PMC from the
6570 	 * description tables
6571 	 */
6572 	n = 0;
6573 	for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6574 		if (PMC_IS_IMPL(i) == 0) continue;
6575 		pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6576 		n++;
6577 	}
6578 	pmu_conf->num_pmcs = n;
6579 
6580 	n = 0; n_counters = 0;
6581 	for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6582 		if (PMD_IS_IMPL(i) == 0) continue;
6583 		pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6584 		n++;
6585 		if (PMD_IS_COUNTING(i)) n_counters++;
6586 	}
6587 	pmu_conf->num_pmds      = n;
6588 	pmu_conf->num_counters  = n_counters;
6589 
6590 	/*
6591 	 * sanity checks on the number of debug registers
6592 	 */
6593 	if (pmu_conf->use_rr_dbregs) {
6594 		if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6595 			printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6596 			pmu_conf = NULL;
6597 			return -1;
6598 		}
6599 		if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6600 			printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6601 			pmu_conf = NULL;
6602 			return -1;
6603 		}
6604 	}
6605 
6606 	printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6607 	       pmu_conf->pmu_name,
6608 	       pmu_conf->num_pmcs,
6609 	       pmu_conf->num_pmds,
6610 	       pmu_conf->num_counters,
6611 	       ffz(pmu_conf->ovfl_val));
6612 
6613 	/* sanity check */
6614 	if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6615 		printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6616 		pmu_conf = NULL;
6617 		return -1;
6618 	}
6619 
6620 	/*
6621 	 * create /proc/perfmon (mostly for debugging purposes)
6622 	 */
6623 	perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6624 	if (perfmon_dir == NULL) {
6625 		printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6626 		pmu_conf = NULL;
6627 		return -1;
6628 	}
6629 
6630 	/*
6631 	 * create /proc/sys/kernel/perfmon (for debugging purposes)
6632 	 */
6633 	pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6634 
6635 	/*
6636 	 * initialize all our spinlocks
6637 	 */
6638 	spin_lock_init(&pfm_sessions.pfs_lock);
6639 	spin_lock_init(&pfm_buffer_fmt_lock);
6640 
6641 	init_pfm_fs();
6642 
6643 	for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6644 
6645 	return 0;
6646 }
6647 
6648 __initcall(pfm_init);
6649 
6650 /*
6651  * this function is called before pfm_init()
6652  */
6653 void
pfm_init_percpu(void)6654 pfm_init_percpu (void)
6655 {
6656 	static int first_time=1;
6657 	/*
6658 	 * make sure no measurement is active
6659 	 * (may inherit programmed PMCs from EFI).
6660 	 */
6661 	pfm_clear_psr_pp();
6662 	pfm_clear_psr_up();
6663 
6664 	/*
6665 	 * we run with the PMU not frozen at all times
6666 	 */
6667 	pfm_unfreeze_pmu();
6668 
6669 	if (first_time) {
6670 		register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6671 		first_time=0;
6672 	}
6673 
6674 	ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6675 	ia64_srlz_d();
6676 }
6677 
6678 /*
6679  * used for debug purposes only
6680  */
6681 void
dump_pmu_state(const char * from)6682 dump_pmu_state(const char *from)
6683 {
6684 	struct task_struct *task;
6685 	struct pt_regs *regs;
6686 	pfm_context_t *ctx;
6687 	unsigned long psr, dcr, info, flags;
6688 	int i, this_cpu;
6689 
6690 	local_irq_save(flags);
6691 
6692 	this_cpu = smp_processor_id();
6693 	regs     = task_pt_regs(current);
6694 	info     = PFM_CPUINFO_GET();
6695 	dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6696 
6697 	if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6698 		local_irq_restore(flags);
6699 		return;
6700 	}
6701 
6702 	printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6703 		this_cpu,
6704 		from,
6705 		task_pid_nr(current),
6706 		regs->cr_iip,
6707 		current->comm);
6708 
6709 	task = GET_PMU_OWNER();
6710 	ctx  = GET_PMU_CTX();
6711 
6712 	printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6713 
6714 	psr = pfm_get_psr();
6715 
6716 	printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6717 		this_cpu,
6718 		ia64_get_pmc(0),
6719 		psr & IA64_PSR_PP ? 1 : 0,
6720 		psr & IA64_PSR_UP ? 1 : 0,
6721 		dcr & IA64_DCR_PP ? 1 : 0,
6722 		info,
6723 		ia64_psr(regs)->up,
6724 		ia64_psr(regs)->pp);
6725 
6726 	ia64_psr(regs)->up = 0;
6727 	ia64_psr(regs)->pp = 0;
6728 
6729 	for (i=1; PMC_IS_LAST(i) == 0; i++) {
6730 		if (PMC_IS_IMPL(i) == 0) continue;
6731 		printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6732 	}
6733 
6734 	for (i=1; PMD_IS_LAST(i) == 0; i++) {
6735 		if (PMD_IS_IMPL(i) == 0) continue;
6736 		printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6737 	}
6738 
6739 	if (ctx) {
6740 		printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6741 				this_cpu,
6742 				ctx->ctx_state,
6743 				ctx->ctx_smpl_vaddr,
6744 				ctx->ctx_smpl_hdr,
6745 				ctx->ctx_msgq_head,
6746 				ctx->ctx_msgq_tail,
6747 				ctx->ctx_saved_psr_up);
6748 	}
6749 	local_irq_restore(flags);
6750 }
6751 
6752 /*
6753  * called from process.c:copy_thread(). task is new child.
6754  */
6755 void
pfm_inherit(struct task_struct * task,struct pt_regs * regs)6756 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6757 {
6758 	struct thread_struct *thread;
6759 
6760 	DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6761 
6762 	thread = &task->thread;
6763 
6764 	/*
6765 	 * cut links inherited from parent (current)
6766 	 */
6767 	thread->pfm_context = NULL;
6768 
6769 	PFM_SET_WORK_PENDING(task, 0);
6770 
6771 	/*
6772 	 * the psr bits are already set properly in copy_threads()
6773 	 */
6774 }
6775 #else  /* !CONFIG_PERFMON */
6776 asmlinkage long
sys_perfmonctl(int fd,int cmd,void * arg,int count)6777 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6778 {
6779 	return -ENOSYS;
6780 }
6781 #endif /* CONFIG_PERFMON */
6782