1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67 #include <linux/crash_dump.h>
68
69 #include "cxgb4.h"
70 #include "cxgb4_filter.h"
71 #include "t4_regs.h"
72 #include "t4_values.h"
73 #include "t4_msg.h"
74 #include "t4fw_api.h"
75 #include "t4fw_version.h"
76 #include "cxgb4_dcb.h"
77 #include "cxgb4_debugfs.h"
78 #include "clip_tbl.h"
79 #include "l2t.h"
80 #include "sched.h"
81 #include "cxgb4_tc_u32.h"
82
83 char cxgb4_driver_name[] = KBUILD_MODNAME;
84
85 #ifdef DRV_VERSION
86 #undef DRV_VERSION
87 #endif
88 #define DRV_VERSION "2.0.0-ko"
89 const char cxgb4_driver_version[] = DRV_VERSION;
90 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
91
92 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
93 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
94 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
95
96 /* Macros needed to support the PCI Device ID Table ...
97 */
98 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
99 static const struct pci_device_id cxgb4_pci_tbl[] = {
100 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
101
102 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
103 * called for both.
104 */
105 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
106
107 #define CH_PCI_ID_TABLE_ENTRY(devid) \
108 {PCI_VDEVICE(CHELSIO, (devid)), 4}
109
110 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
111 { 0, } \
112 }
113
114 #include "t4_pci_id_tbl.h"
115
116 #define FW4_FNAME "cxgb4/t4fw.bin"
117 #define FW5_FNAME "cxgb4/t5fw.bin"
118 #define FW6_FNAME "cxgb4/t6fw.bin"
119 #define FW4_CFNAME "cxgb4/t4-config.txt"
120 #define FW5_CFNAME "cxgb4/t5-config.txt"
121 #define FW6_CFNAME "cxgb4/t6-config.txt"
122 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
123 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
124 #define PHY_AQ1202_DEVICEID 0x4409
125 #define PHY_BCM84834_DEVICEID 0x4486
126
127 MODULE_DESCRIPTION(DRV_DESC);
128 MODULE_AUTHOR("Chelsio Communications");
129 MODULE_LICENSE("Dual BSD/GPL");
130 MODULE_VERSION(DRV_VERSION);
131 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
132 MODULE_FIRMWARE(FW4_FNAME);
133 MODULE_FIRMWARE(FW5_FNAME);
134 MODULE_FIRMWARE(FW6_FNAME);
135
136 /*
137 * Normally we're willing to become the firmware's Master PF but will be happy
138 * if another PF has already become the Master and initialized the adapter.
139 * Setting "force_init" will cause this driver to forcibly establish itself as
140 * the Master PF and initialize the adapter.
141 */
142 static uint force_init;
143
144 module_param(force_init, uint, 0644);
145 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
146 "deprecated parameter");
147
148 static int dflt_msg_enable = DFLT_MSG_ENABLE;
149
150 module_param(dflt_msg_enable, int, 0644);
151 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap, "
152 "deprecated parameter");
153
154 /*
155 * The driver uses the best interrupt scheme available on a platform in the
156 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
157 * of these schemes the driver may consider as follows:
158 *
159 * msi = 2: choose from among all three options
160 * msi = 1: only consider MSI and INTx interrupts
161 * msi = 0: force INTx interrupts
162 */
163 static int msi = 2;
164
165 module_param(msi, int, 0644);
166 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
167
168 /*
169 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
170 * offset by 2 bytes in order to have the IP headers line up on 4-byte
171 * boundaries. This is a requirement for many architectures which will throw
172 * a machine check fault if an attempt is made to access one of the 4-byte IP
173 * header fields on a non-4-byte boundary. And it's a major performance issue
174 * even on some architectures which allow it like some implementations of the
175 * x86 ISA. However, some architectures don't mind this and for some very
176 * edge-case performance sensitive applications (like forwarding large volumes
177 * of small packets), setting this DMA offset to 0 will decrease the number of
178 * PCI-E Bus transfers enough to measurably affect performance.
179 */
180 static int rx_dma_offset = 2;
181
182 #ifdef CONFIG_PCI_IOV
183 /* Configure the number of PCI-E Virtual Function which are to be instantiated
184 * on SR-IOV Capable Physical Functions.
185 */
186 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
187
188 module_param_array(num_vf, uint, NULL, 0644);
189 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3, deprecated parameter - please use the pci sysfs interface.");
190 #endif
191
192 /* TX Queue select used to determine what algorithm to use for selecting TX
193 * queue. Select between the kernel provided function (select_queue=0) or user
194 * cxgb_select_queue function (select_queue=1)
195 *
196 * Default: select_queue=0
197 */
198 static int select_queue;
199 module_param(select_queue, int, 0644);
200 MODULE_PARM_DESC(select_queue,
201 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
202
203 static struct dentry *cxgb4_debugfs_root;
204
205 LIST_HEAD(adapter_list);
206 DEFINE_MUTEX(uld_mutex);
207
link_report(struct net_device * dev)208 static void link_report(struct net_device *dev)
209 {
210 if (!netif_carrier_ok(dev))
211 netdev_info(dev, "link down\n");
212 else {
213 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
214
215 const char *s;
216 const struct port_info *p = netdev_priv(dev);
217
218 switch (p->link_cfg.speed) {
219 case 10000:
220 s = "10Gbps";
221 break;
222 case 1000:
223 s = "1000Mbps";
224 break;
225 case 100:
226 s = "100Mbps";
227 break;
228 case 40000:
229 s = "40Gbps";
230 break;
231 default:
232 pr_info("%s: unsupported speed: %d\n",
233 dev->name, p->link_cfg.speed);
234 return;
235 }
236
237 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
238 fc[p->link_cfg.fc]);
239 }
240 }
241
242 #ifdef CONFIG_CHELSIO_T4_DCB
243 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
dcb_tx_queue_prio_enable(struct net_device * dev,int enable)244 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
245 {
246 struct port_info *pi = netdev_priv(dev);
247 struct adapter *adap = pi->adapter;
248 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
249 int i;
250
251 /* We use a simple mapping of Port TX Queue Index to DCB
252 * Priority when we're enabling DCB.
253 */
254 for (i = 0; i < pi->nqsets; i++, txq++) {
255 u32 name, value;
256 int err;
257
258 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
259 FW_PARAMS_PARAM_X_V(
260 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
261 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
262 value = enable ? i : 0xffffffff;
263
264 /* Since we can be called while atomic (from "interrupt
265 * level") we need to issue the Set Parameters Commannd
266 * without sleeping (timeout < 0).
267 */
268 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
269 &name, &value,
270 -FW_CMD_MAX_TIMEOUT);
271
272 if (err)
273 dev_err(adap->pdev_dev,
274 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
275 enable ? "set" : "unset", pi->port_id, i, -err);
276 else
277 txq->dcb_prio = value;
278 }
279 }
280
cxgb4_dcb_enabled(const struct net_device * dev)281 static int cxgb4_dcb_enabled(const struct net_device *dev)
282 {
283 struct port_info *pi = netdev_priv(dev);
284
285 if (!pi->dcb.enabled)
286 return 0;
287
288 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
289 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
290 }
291 #endif /* CONFIG_CHELSIO_T4_DCB */
292
t4_os_link_changed(struct adapter * adapter,int port_id,int link_stat)293 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
294 {
295 struct net_device *dev = adapter->port[port_id];
296
297 /* Skip changes from disabled ports. */
298 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
299 if (link_stat)
300 netif_carrier_on(dev);
301 else {
302 #ifdef CONFIG_CHELSIO_T4_DCB
303 if (cxgb4_dcb_enabled(dev)) {
304 cxgb4_dcb_state_init(dev);
305 dcb_tx_queue_prio_enable(dev, false);
306 }
307 #endif /* CONFIG_CHELSIO_T4_DCB */
308 netif_carrier_off(dev);
309 }
310
311 link_report(dev);
312 }
313 }
314
t4_os_portmod_changed(const struct adapter * adap,int port_id)315 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
316 {
317 static const char *mod_str[] = {
318 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
319 };
320
321 const struct net_device *dev = adap->port[port_id];
322 const struct port_info *pi = netdev_priv(dev);
323
324 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
325 netdev_info(dev, "port module unplugged\n");
326 else if (pi->mod_type < ARRAY_SIZE(mod_str))
327 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
328 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
329 netdev_info(dev, "%s: unsupported port module inserted\n",
330 dev->name);
331 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
332 netdev_info(dev, "%s: unknown port module inserted\n",
333 dev->name);
334 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
335 netdev_info(dev, "%s: transceiver module error\n", dev->name);
336 else
337 netdev_info(dev, "%s: unknown module type %d inserted\n",
338 dev->name, pi->mod_type);
339 }
340
341 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
342 module_param(dbfifo_int_thresh, int, 0644);
343 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
344
345 /*
346 * usecs to sleep while draining the dbfifo
347 */
348 static int dbfifo_drain_delay = 1000;
349 module_param(dbfifo_drain_delay, int, 0644);
350 MODULE_PARM_DESC(dbfifo_drain_delay,
351 "usecs to sleep while draining the dbfifo");
352
cxgb4_set_addr_hash(struct port_info * pi)353 static inline int cxgb4_set_addr_hash(struct port_info *pi)
354 {
355 struct adapter *adap = pi->adapter;
356 u64 vec = 0;
357 bool ucast = false;
358 struct hash_mac_addr *entry;
359
360 /* Calculate the hash vector for the updated list and program it */
361 list_for_each_entry(entry, &adap->mac_hlist, list) {
362 ucast |= is_unicast_ether_addr(entry->addr);
363 vec |= (1ULL << hash_mac_addr(entry->addr));
364 }
365 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
366 vec, false);
367 }
368
cxgb4_mac_sync(struct net_device * netdev,const u8 * mac_addr)369 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
370 {
371 struct port_info *pi = netdev_priv(netdev);
372 struct adapter *adap = pi->adapter;
373 int ret;
374 u64 mhash = 0;
375 u64 uhash = 0;
376 bool free = false;
377 bool ucast = is_unicast_ether_addr(mac_addr);
378 const u8 *maclist[1] = {mac_addr};
379 struct hash_mac_addr *new_entry;
380
381 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
382 NULL, ucast ? &uhash : &mhash, false);
383 if (ret < 0)
384 goto out;
385 /* if hash != 0, then add the addr to hash addr list
386 * so on the end we will calculate the hash for the
387 * list and program it
388 */
389 if (uhash || mhash) {
390 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
391 if (!new_entry)
392 return -ENOMEM;
393 ether_addr_copy(new_entry->addr, mac_addr);
394 list_add_tail(&new_entry->list, &adap->mac_hlist);
395 ret = cxgb4_set_addr_hash(pi);
396 }
397 out:
398 return ret < 0 ? ret : 0;
399 }
400
cxgb4_mac_unsync(struct net_device * netdev,const u8 * mac_addr)401 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
402 {
403 struct port_info *pi = netdev_priv(netdev);
404 struct adapter *adap = pi->adapter;
405 int ret;
406 const u8 *maclist[1] = {mac_addr};
407 struct hash_mac_addr *entry, *tmp;
408
409 /* If the MAC address to be removed is in the hash addr
410 * list, delete it from the list and update hash vector
411 */
412 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
413 if (ether_addr_equal(entry->addr, mac_addr)) {
414 list_del(&entry->list);
415 kfree(entry);
416 return cxgb4_set_addr_hash(pi);
417 }
418 }
419
420 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
421 return ret < 0 ? -EINVAL : 0;
422 }
423
424 /*
425 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
426 * If @mtu is -1 it is left unchanged.
427 */
set_rxmode(struct net_device * dev,int mtu,bool sleep_ok)428 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
429 {
430 struct port_info *pi = netdev_priv(dev);
431 struct adapter *adapter = pi->adapter;
432
433 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
434 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
435
436 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
437 (dev->flags & IFF_PROMISC) ? 1 : 0,
438 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
439 sleep_ok);
440 }
441
442 /**
443 * link_start - enable a port
444 * @dev: the port to enable
445 *
446 * Performs the MAC and PHY actions needed to enable a port.
447 */
link_start(struct net_device * dev)448 static int link_start(struct net_device *dev)
449 {
450 int ret;
451 struct port_info *pi = netdev_priv(dev);
452 unsigned int mb = pi->adapter->pf;
453
454 /*
455 * We do not set address filters and promiscuity here, the stack does
456 * that step explicitly.
457 */
458 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
459 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
460 if (ret == 0) {
461 ret = t4_change_mac(pi->adapter, mb, pi->viid,
462 pi->xact_addr_filt, dev->dev_addr, true,
463 true);
464 if (ret >= 0) {
465 pi->xact_addr_filt = ret;
466 ret = 0;
467 }
468 }
469 if (ret == 0)
470 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
471 &pi->link_cfg);
472 if (ret == 0) {
473 local_bh_disable();
474 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
475 true, CXGB4_DCB_ENABLED);
476 local_bh_enable();
477 }
478
479 return ret;
480 }
481
482 #ifdef CONFIG_CHELSIO_T4_DCB
483 /* Handle a Data Center Bridging update message from the firmware. */
dcb_rpl(struct adapter * adap,const struct fw_port_cmd * pcmd)484 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
485 {
486 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
487 struct net_device *dev = adap->port[adap->chan_map[port]];
488 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
489 int new_dcb_enabled;
490
491 cxgb4_dcb_handle_fw_update(adap, pcmd);
492 new_dcb_enabled = cxgb4_dcb_enabled(dev);
493
494 /* If the DCB has become enabled or disabled on the port then we're
495 * going to need to set up/tear down DCB Priority parameters for the
496 * TX Queues associated with the port.
497 */
498 if (new_dcb_enabled != old_dcb_enabled)
499 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
500 }
501 #endif /* CONFIG_CHELSIO_T4_DCB */
502
503 /* Response queue handler for the FW event queue.
504 */
fwevtq_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * gl)505 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
506 const struct pkt_gl *gl)
507 {
508 u8 opcode = ((const struct rss_header *)rsp)->opcode;
509
510 rsp++; /* skip RSS header */
511
512 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
513 */
514 if (unlikely(opcode == CPL_FW4_MSG &&
515 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
516 rsp++;
517 opcode = ((const struct rss_header *)rsp)->opcode;
518 rsp++;
519 if (opcode != CPL_SGE_EGR_UPDATE) {
520 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
521 , opcode);
522 goto out;
523 }
524 }
525
526 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
527 const struct cpl_sge_egr_update *p = (void *)rsp;
528 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
529 struct sge_txq *txq;
530
531 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
532 txq->restarts++;
533 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
534 struct sge_eth_txq *eq;
535
536 eq = container_of(txq, struct sge_eth_txq, q);
537 netif_tx_wake_queue(eq->txq);
538 } else {
539 struct sge_ofld_txq *oq;
540
541 oq = container_of(txq, struct sge_ofld_txq, q);
542 tasklet_schedule(&oq->qresume_tsk);
543 }
544 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
545 const struct cpl_fw6_msg *p = (void *)rsp;
546
547 #ifdef CONFIG_CHELSIO_T4_DCB
548 const struct fw_port_cmd *pcmd = (const void *)p->data;
549 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
550 unsigned int action =
551 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
552
553 if (cmd == FW_PORT_CMD &&
554 action == FW_PORT_ACTION_GET_PORT_INFO) {
555 int port = FW_PORT_CMD_PORTID_G(
556 be32_to_cpu(pcmd->op_to_portid));
557 struct net_device *dev =
558 q->adap->port[q->adap->chan_map[port]];
559 int state_input = ((pcmd->u.info.dcbxdis_pkd &
560 FW_PORT_CMD_DCBXDIS_F)
561 ? CXGB4_DCB_INPUT_FW_DISABLED
562 : CXGB4_DCB_INPUT_FW_ENABLED);
563
564 cxgb4_dcb_state_fsm(dev, state_input);
565 }
566
567 if (cmd == FW_PORT_CMD &&
568 action == FW_PORT_ACTION_L2_DCB_CFG)
569 dcb_rpl(q->adap, pcmd);
570 else
571 #endif
572 if (p->type == 0)
573 t4_handle_fw_rpl(q->adap, p->data);
574 } else if (opcode == CPL_L2T_WRITE_RPL) {
575 const struct cpl_l2t_write_rpl *p = (void *)rsp;
576
577 do_l2t_write_rpl(q->adap, p);
578 } else if (opcode == CPL_SET_TCB_RPL) {
579 const struct cpl_set_tcb_rpl *p = (void *)rsp;
580
581 filter_rpl(q->adap, p);
582 } else
583 dev_err(q->adap->pdev_dev,
584 "unexpected CPL %#x on FW event queue\n", opcode);
585 out:
586 return 0;
587 }
588
disable_msi(struct adapter * adapter)589 static void disable_msi(struct adapter *adapter)
590 {
591 if (adapter->flags & USING_MSIX) {
592 pci_disable_msix(adapter->pdev);
593 adapter->flags &= ~USING_MSIX;
594 } else if (adapter->flags & USING_MSI) {
595 pci_disable_msi(adapter->pdev);
596 adapter->flags &= ~USING_MSI;
597 }
598 }
599
600 /*
601 * Interrupt handler for non-data events used with MSI-X.
602 */
t4_nondata_intr(int irq,void * cookie)603 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
604 {
605 struct adapter *adap = cookie;
606 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
607
608 if (v & PFSW_F) {
609 adap->swintr = 1;
610 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
611 }
612 if (adap->flags & MASTER_PF)
613 t4_slow_intr_handler(adap);
614 return IRQ_HANDLED;
615 }
616
617 /*
618 * Name the MSI-X interrupts.
619 */
name_msix_vecs(struct adapter * adap)620 static void name_msix_vecs(struct adapter *adap)
621 {
622 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
623
624 /* non-data interrupts */
625 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
626
627 /* FW events */
628 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
629 adap->port[0]->name);
630
631 /* Ethernet queues */
632 for_each_port(adap, j) {
633 struct net_device *d = adap->port[j];
634 const struct port_info *pi = netdev_priv(d);
635
636 for (i = 0; i < pi->nqsets; i++, msi_idx++)
637 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
638 d->name, i);
639 }
640 }
641
request_msix_queue_irqs(struct adapter * adap)642 static int request_msix_queue_irqs(struct adapter *adap)
643 {
644 struct sge *s = &adap->sge;
645 int err, ethqidx;
646 int msi_index = 2;
647
648 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
649 adap->msix_info[1].desc, &s->fw_evtq);
650 if (err)
651 return err;
652
653 for_each_ethrxq(s, ethqidx) {
654 err = request_irq(adap->msix_info[msi_index].vec,
655 t4_sge_intr_msix, 0,
656 adap->msix_info[msi_index].desc,
657 &s->ethrxq[ethqidx].rspq);
658 if (err)
659 goto unwind;
660 msi_index++;
661 }
662 return 0;
663
664 unwind:
665 while (--ethqidx >= 0)
666 free_irq(adap->msix_info[--msi_index].vec,
667 &s->ethrxq[ethqidx].rspq);
668 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
669 return err;
670 }
671
free_msix_queue_irqs(struct adapter * adap)672 static void free_msix_queue_irqs(struct adapter *adap)
673 {
674 int i, msi_index = 2;
675 struct sge *s = &adap->sge;
676
677 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
678 for_each_ethrxq(s, i)
679 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
680 }
681
682 /**
683 * cxgb4_write_rss - write the RSS table for a given port
684 * @pi: the port
685 * @queues: array of queue indices for RSS
686 *
687 * Sets up the portion of the HW RSS table for the port's VI to distribute
688 * packets to the Rx queues in @queues.
689 * Should never be called before setting up sge eth rx queues
690 */
cxgb4_write_rss(const struct port_info * pi,const u16 * queues)691 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
692 {
693 u16 *rss;
694 int i, err;
695 struct adapter *adapter = pi->adapter;
696 const struct sge_eth_rxq *rxq;
697
698 rxq = &adapter->sge.ethrxq[pi->first_qset];
699 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
700 if (!rss)
701 return -ENOMEM;
702
703 /* map the queue indices to queue ids */
704 for (i = 0; i < pi->rss_size; i++, queues++)
705 rss[i] = rxq[*queues].rspq.abs_id;
706
707 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
708 pi->rss_size, rss, pi->rss_size);
709 /* If Tunnel All Lookup isn't specified in the global RSS
710 * Configuration, then we need to specify a default Ingress
711 * Queue for any ingress packets which aren't hashed. We'll
712 * use our first ingress queue ...
713 */
714 if (!err)
715 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
716 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
717 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
718 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
719 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
720 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
721 rss[0]);
722 kfree(rss);
723 return err;
724 }
725
726 /**
727 * setup_rss - configure RSS
728 * @adap: the adapter
729 *
730 * Sets up RSS for each port.
731 */
setup_rss(struct adapter * adap)732 static int setup_rss(struct adapter *adap)
733 {
734 int i, j, err;
735
736 for_each_port(adap, i) {
737 const struct port_info *pi = adap2pinfo(adap, i);
738
739 /* Fill default values with equal distribution */
740 for (j = 0; j < pi->rss_size; j++)
741 pi->rss[j] = j % pi->nqsets;
742
743 err = cxgb4_write_rss(pi, pi->rss);
744 if (err)
745 return err;
746 }
747 return 0;
748 }
749
750 /*
751 * Return the channel of the ingress queue with the given qid.
752 */
rxq_to_chan(const struct sge * p,unsigned int qid)753 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
754 {
755 qid -= p->ingr_start;
756 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
757 }
758
759 /*
760 * Wait until all NAPI handlers are descheduled.
761 */
quiesce_rx(struct adapter * adap)762 static void quiesce_rx(struct adapter *adap)
763 {
764 int i;
765
766 for (i = 0; i < adap->sge.ingr_sz; i++) {
767 struct sge_rspq *q = adap->sge.ingr_map[i];
768
769 if (q && q->handler) {
770 napi_disable(&q->napi);
771 local_bh_disable();
772 while (!cxgb_poll_lock_napi(q))
773 mdelay(1);
774 local_bh_enable();
775 }
776
777 }
778 }
779
780 /* Disable interrupt and napi handler */
disable_interrupts(struct adapter * adap)781 static void disable_interrupts(struct adapter *adap)
782 {
783 if (adap->flags & FULL_INIT_DONE) {
784 t4_intr_disable(adap);
785 if (adap->flags & USING_MSIX) {
786 free_msix_queue_irqs(adap);
787 free_irq(adap->msix_info[0].vec, adap);
788 } else {
789 free_irq(adap->pdev->irq, adap);
790 }
791 quiesce_rx(adap);
792 }
793 }
794
795 /*
796 * Enable NAPI scheduling and interrupt generation for all Rx queues.
797 */
enable_rx(struct adapter * adap)798 static void enable_rx(struct adapter *adap)
799 {
800 int i;
801
802 for (i = 0; i < adap->sge.ingr_sz; i++) {
803 struct sge_rspq *q = adap->sge.ingr_map[i];
804
805 if (!q)
806 continue;
807 if (q->handler) {
808 cxgb_busy_poll_init_lock(q);
809 napi_enable(&q->napi);
810 }
811 /* 0-increment GTS to start the timer and enable interrupts */
812 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
813 SEINTARM_V(q->intr_params) |
814 INGRESSQID_V(q->cntxt_id));
815 }
816 }
817
818
setup_fw_sge_queues(struct adapter * adap)819 static int setup_fw_sge_queues(struct adapter *adap)
820 {
821 struct sge *s = &adap->sge;
822 int err = 0;
823
824 bitmap_zero(s->starving_fl, s->egr_sz);
825 bitmap_zero(s->txq_maperr, s->egr_sz);
826
827 if (adap->flags & USING_MSIX)
828 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */
829 else {
830 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
831 NULL, NULL, NULL, -1);
832 if (err)
833 return err;
834 adap->msi_idx = -((int)s->intrq.abs_id + 1);
835 }
836
837 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
838 adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
839 if (err)
840 t4_free_sge_resources(adap);
841 return err;
842 }
843
844 /**
845 * setup_sge_queues - configure SGE Tx/Rx/response queues
846 * @adap: the adapter
847 *
848 * Determines how many sets of SGE queues to use and initializes them.
849 * We support multiple queue sets per port if we have MSI-X, otherwise
850 * just one queue set per port.
851 */
setup_sge_queues(struct adapter * adap)852 static int setup_sge_queues(struct adapter *adap)
853 {
854 int err, i, j;
855 struct sge *s = &adap->sge;
856 struct sge_uld_rxq_info *rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
857 unsigned int cmplqid = 0;
858
859 for_each_port(adap, i) {
860 struct net_device *dev = adap->port[i];
861 struct port_info *pi = netdev_priv(dev);
862 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
863 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
864
865 for (j = 0; j < pi->nqsets; j++, q++) {
866 if (adap->msi_idx > 0)
867 adap->msi_idx++;
868 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
869 adap->msi_idx, &q->fl,
870 t4_ethrx_handler,
871 NULL,
872 t4_get_mps_bg_map(adap,
873 pi->tx_chan));
874 if (err)
875 goto freeout;
876 q->rspq.idx = j;
877 memset(&q->stats, 0, sizeof(q->stats));
878 }
879 for (j = 0; j < pi->nqsets; j++, t++) {
880 err = t4_sge_alloc_eth_txq(adap, t, dev,
881 netdev_get_tx_queue(dev, j),
882 s->fw_evtq.cntxt_id);
883 if (err)
884 goto freeout;
885 }
886 }
887
888 j = s->ofldqsets / adap->params.nports; /* iscsi queues per channel */
889 for_each_ofldtxq(s, i) {
890 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
891 adap->port[i / j],
892 s->fw_evtq.cntxt_id);
893 if (err)
894 goto freeout;
895 }
896
897 for_each_port(adap, i) {
898 /* Note that cmplqid below is 0 if we don't
899 * have RDMA queues, and that's the right value.
900 */
901 if (rxq_info)
902 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
903
904 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
905 s->fw_evtq.cntxt_id, cmplqid);
906 if (err)
907 goto freeout;
908 }
909
910 t4_write_reg(adap, is_t4(adap->params.chip) ?
911 MPS_TRC_RSS_CONTROL_A :
912 MPS_T5_TRC_RSS_CONTROL_A,
913 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
914 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
915 return 0;
916 freeout:
917 t4_free_sge_resources(adap);
918 return err;
919 }
920
921 /*
922 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
923 * The allocated memory is cleared.
924 */
t4_alloc_mem(size_t size)925 void *t4_alloc_mem(size_t size)
926 {
927 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
928
929 if (!p)
930 p = vzalloc(size);
931 return p;
932 }
933
934 /*
935 * Free memory allocated through alloc_mem().
936 */
t4_free_mem(void * addr)937 void t4_free_mem(void *addr)
938 {
939 kvfree(addr);
940 }
941
cxgb_select_queue(struct net_device * dev,struct sk_buff * skb,void * accel_priv,select_queue_fallback_t fallback)942 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
943 void *accel_priv, select_queue_fallback_t fallback)
944 {
945 int txq;
946
947 #ifdef CONFIG_CHELSIO_T4_DCB
948 /* If a Data Center Bridging has been successfully negotiated on this
949 * link then we'll use the skb's priority to map it to a TX Queue.
950 * The skb's priority is determined via the VLAN Tag Priority Code
951 * Point field.
952 */
953 if (cxgb4_dcb_enabled(dev)) {
954 u16 vlan_tci;
955 int err;
956
957 err = vlan_get_tag(skb, &vlan_tci);
958 if (unlikely(err)) {
959 if (net_ratelimit())
960 netdev_warn(dev,
961 "TX Packet without VLAN Tag on DCB Link\n");
962 txq = 0;
963 } else {
964 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
965 #ifdef CONFIG_CHELSIO_T4_FCOE
966 if (skb->protocol == htons(ETH_P_FCOE))
967 txq = skb->priority & 0x7;
968 #endif /* CONFIG_CHELSIO_T4_FCOE */
969 }
970 return txq;
971 }
972 #endif /* CONFIG_CHELSIO_T4_DCB */
973
974 if (select_queue) {
975 txq = (skb_rx_queue_recorded(skb)
976 ? skb_get_rx_queue(skb)
977 : smp_processor_id());
978
979 while (unlikely(txq >= dev->real_num_tx_queues))
980 txq -= dev->real_num_tx_queues;
981
982 return txq;
983 }
984
985 return fallback(dev, skb) % dev->real_num_tx_queues;
986 }
987
closest_timer(const struct sge * s,int time)988 static int closest_timer(const struct sge *s, int time)
989 {
990 int i, delta, match = 0, min_delta = INT_MAX;
991
992 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
993 delta = time - s->timer_val[i];
994 if (delta < 0)
995 delta = -delta;
996 if (delta < min_delta) {
997 min_delta = delta;
998 match = i;
999 }
1000 }
1001 return match;
1002 }
1003
closest_thres(const struct sge * s,int thres)1004 static int closest_thres(const struct sge *s, int thres)
1005 {
1006 int i, delta, match = 0, min_delta = INT_MAX;
1007
1008 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1009 delta = thres - s->counter_val[i];
1010 if (delta < 0)
1011 delta = -delta;
1012 if (delta < min_delta) {
1013 min_delta = delta;
1014 match = i;
1015 }
1016 }
1017 return match;
1018 }
1019
1020 /**
1021 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1022 * @q: the Rx queue
1023 * @us: the hold-off time in us, or 0 to disable timer
1024 * @cnt: the hold-off packet count, or 0 to disable counter
1025 *
1026 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1027 * one of the two needs to be enabled for the queue to generate interrupts.
1028 */
cxgb4_set_rspq_intr_params(struct sge_rspq * q,unsigned int us,unsigned int cnt)1029 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1030 unsigned int us, unsigned int cnt)
1031 {
1032 struct adapter *adap = q->adap;
1033
1034 if ((us | cnt) == 0)
1035 cnt = 1;
1036
1037 if (cnt) {
1038 int err;
1039 u32 v, new_idx;
1040
1041 new_idx = closest_thres(&adap->sge, cnt);
1042 if (q->desc && q->pktcnt_idx != new_idx) {
1043 /* the queue has already been created, update it */
1044 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1045 FW_PARAMS_PARAM_X_V(
1046 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1047 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1048 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1049 &v, &new_idx);
1050 if (err)
1051 return err;
1052 }
1053 q->pktcnt_idx = new_idx;
1054 }
1055
1056 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1057 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1058 return 0;
1059 }
1060
cxgb_set_features(struct net_device * dev,netdev_features_t features)1061 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1062 {
1063 const struct port_info *pi = netdev_priv(dev);
1064 netdev_features_t changed = dev->features ^ features;
1065 int err;
1066
1067 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1068 return 0;
1069
1070 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1071 -1, -1, -1,
1072 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1073 if (unlikely(err))
1074 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1075 return err;
1076 }
1077
setup_debugfs(struct adapter * adap)1078 static int setup_debugfs(struct adapter *adap)
1079 {
1080 if (IS_ERR_OR_NULL(adap->debugfs_root))
1081 return -1;
1082
1083 #ifdef CONFIG_DEBUG_FS
1084 t4_setup_debugfs(adap);
1085 #endif
1086 return 0;
1087 }
1088
1089 /*
1090 * upper-layer driver support
1091 */
1092
1093 /*
1094 * Allocate an active-open TID and set it to the supplied value.
1095 */
cxgb4_alloc_atid(struct tid_info * t,void * data)1096 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1097 {
1098 int atid = -1;
1099
1100 spin_lock_bh(&t->atid_lock);
1101 if (t->afree) {
1102 union aopen_entry *p = t->afree;
1103
1104 atid = (p - t->atid_tab) + t->atid_base;
1105 t->afree = p->next;
1106 p->data = data;
1107 t->atids_in_use++;
1108 }
1109 spin_unlock_bh(&t->atid_lock);
1110 return atid;
1111 }
1112 EXPORT_SYMBOL(cxgb4_alloc_atid);
1113
1114 /*
1115 * Release an active-open TID.
1116 */
cxgb4_free_atid(struct tid_info * t,unsigned int atid)1117 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1118 {
1119 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1120
1121 spin_lock_bh(&t->atid_lock);
1122 p->next = t->afree;
1123 t->afree = p;
1124 t->atids_in_use--;
1125 spin_unlock_bh(&t->atid_lock);
1126 }
1127 EXPORT_SYMBOL(cxgb4_free_atid);
1128
1129 /*
1130 * Allocate a server TID and set it to the supplied value.
1131 */
cxgb4_alloc_stid(struct tid_info * t,int family,void * data)1132 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1133 {
1134 int stid;
1135
1136 spin_lock_bh(&t->stid_lock);
1137 if (family == PF_INET) {
1138 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1139 if (stid < t->nstids)
1140 __set_bit(stid, t->stid_bmap);
1141 else
1142 stid = -1;
1143 } else {
1144 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1145 if (stid < 0)
1146 stid = -1;
1147 }
1148 if (stid >= 0) {
1149 t->stid_tab[stid].data = data;
1150 stid += t->stid_base;
1151 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1152 * This is equivalent to 4 TIDs. With CLIP enabled it
1153 * needs 2 TIDs.
1154 */
1155 if (family == PF_INET)
1156 t->stids_in_use++;
1157 else
1158 t->stids_in_use += 2;
1159 }
1160 spin_unlock_bh(&t->stid_lock);
1161 return stid;
1162 }
1163 EXPORT_SYMBOL(cxgb4_alloc_stid);
1164
1165 /* Allocate a server filter TID and set it to the supplied value.
1166 */
cxgb4_alloc_sftid(struct tid_info * t,int family,void * data)1167 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1168 {
1169 int stid;
1170
1171 spin_lock_bh(&t->stid_lock);
1172 if (family == PF_INET) {
1173 stid = find_next_zero_bit(t->stid_bmap,
1174 t->nstids + t->nsftids, t->nstids);
1175 if (stid < (t->nstids + t->nsftids))
1176 __set_bit(stid, t->stid_bmap);
1177 else
1178 stid = -1;
1179 } else {
1180 stid = -1;
1181 }
1182 if (stid >= 0) {
1183 t->stid_tab[stid].data = data;
1184 stid -= t->nstids;
1185 stid += t->sftid_base;
1186 t->sftids_in_use++;
1187 }
1188 spin_unlock_bh(&t->stid_lock);
1189 return stid;
1190 }
1191 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1192
1193 /* Release a server TID.
1194 */
cxgb4_free_stid(struct tid_info * t,unsigned int stid,int family)1195 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1196 {
1197 /* Is it a server filter TID? */
1198 if (t->nsftids && (stid >= t->sftid_base)) {
1199 stid -= t->sftid_base;
1200 stid += t->nstids;
1201 } else {
1202 stid -= t->stid_base;
1203 }
1204
1205 spin_lock_bh(&t->stid_lock);
1206 if (family == PF_INET)
1207 __clear_bit(stid, t->stid_bmap);
1208 else
1209 bitmap_release_region(t->stid_bmap, stid, 1);
1210 t->stid_tab[stid].data = NULL;
1211 if (stid < t->nstids) {
1212 if (family == PF_INET)
1213 t->stids_in_use--;
1214 else
1215 t->stids_in_use -= 2;
1216 } else {
1217 t->sftids_in_use--;
1218 }
1219 spin_unlock_bh(&t->stid_lock);
1220 }
1221 EXPORT_SYMBOL(cxgb4_free_stid);
1222
1223 /*
1224 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1225 */
mk_tid_release(struct sk_buff * skb,unsigned int chan,unsigned int tid)1226 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1227 unsigned int tid)
1228 {
1229 struct cpl_tid_release *req;
1230
1231 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1232 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1233 INIT_TP_WR(req, tid);
1234 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1235 }
1236
1237 /*
1238 * Queue a TID release request and if necessary schedule a work queue to
1239 * process it.
1240 */
cxgb4_queue_tid_release(struct tid_info * t,unsigned int chan,unsigned int tid)1241 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1242 unsigned int tid)
1243 {
1244 void **p = &t->tid_tab[tid];
1245 struct adapter *adap = container_of(t, struct adapter, tids);
1246
1247 spin_lock_bh(&adap->tid_release_lock);
1248 *p = adap->tid_release_head;
1249 /* Low 2 bits encode the Tx channel number */
1250 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1251 if (!adap->tid_release_task_busy) {
1252 adap->tid_release_task_busy = true;
1253 queue_work(adap->workq, &adap->tid_release_task);
1254 }
1255 spin_unlock_bh(&adap->tid_release_lock);
1256 }
1257
1258 /*
1259 * Process the list of pending TID release requests.
1260 */
process_tid_release_list(struct work_struct * work)1261 static void process_tid_release_list(struct work_struct *work)
1262 {
1263 struct sk_buff *skb;
1264 struct adapter *adap;
1265
1266 adap = container_of(work, struct adapter, tid_release_task);
1267
1268 spin_lock_bh(&adap->tid_release_lock);
1269 while (adap->tid_release_head) {
1270 void **p = adap->tid_release_head;
1271 unsigned int chan = (uintptr_t)p & 3;
1272 p = (void *)p - chan;
1273
1274 adap->tid_release_head = *p;
1275 *p = NULL;
1276 spin_unlock_bh(&adap->tid_release_lock);
1277
1278 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1279 GFP_KERNEL)))
1280 schedule_timeout_uninterruptible(1);
1281
1282 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1283 t4_ofld_send(adap, skb);
1284 spin_lock_bh(&adap->tid_release_lock);
1285 }
1286 adap->tid_release_task_busy = false;
1287 spin_unlock_bh(&adap->tid_release_lock);
1288 }
1289
1290 /*
1291 * Release a TID and inform HW. If we are unable to allocate the release
1292 * message we defer to a work queue.
1293 */
cxgb4_remove_tid(struct tid_info * t,unsigned int chan,unsigned int tid)1294 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1295 {
1296 struct sk_buff *skb;
1297 struct adapter *adap = container_of(t, struct adapter, tids);
1298
1299 WARN_ON(tid >= t->ntids);
1300
1301 if (t->tid_tab[tid]) {
1302 t->tid_tab[tid] = NULL;
1303 if (t->hash_base && (tid >= t->hash_base))
1304 atomic_dec(&t->hash_tids_in_use);
1305 else
1306 atomic_dec(&t->tids_in_use);
1307 }
1308
1309 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1310 if (likely(skb)) {
1311 mk_tid_release(skb, chan, tid);
1312 t4_ofld_send(adap, skb);
1313 } else
1314 cxgb4_queue_tid_release(t, chan, tid);
1315 }
1316 EXPORT_SYMBOL(cxgb4_remove_tid);
1317
1318 /*
1319 * Allocate and initialize the TID tables. Returns 0 on success.
1320 */
tid_init(struct tid_info * t)1321 static int tid_init(struct tid_info *t)
1322 {
1323 struct adapter *adap = container_of(t, struct adapter, tids);
1324 unsigned int max_ftids = t->nftids + t->nsftids;
1325 unsigned int natids = t->natids;
1326 unsigned int stid_bmap_size;
1327 unsigned int ftid_bmap_size;
1328 size_t size;
1329
1330 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1331 ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1332 size = t->ntids * sizeof(*t->tid_tab) +
1333 natids * sizeof(*t->atid_tab) +
1334 t->nstids * sizeof(*t->stid_tab) +
1335 t->nsftids * sizeof(*t->stid_tab) +
1336 stid_bmap_size * sizeof(long) +
1337 max_ftids * sizeof(*t->ftid_tab) +
1338 ftid_bmap_size * sizeof(long);
1339
1340 t->tid_tab = t4_alloc_mem(size);
1341 if (!t->tid_tab)
1342 return -ENOMEM;
1343
1344 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1345 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1346 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1347 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1348 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1349 spin_lock_init(&t->stid_lock);
1350 spin_lock_init(&t->atid_lock);
1351 spin_lock_init(&t->ftid_lock);
1352
1353 t->stids_in_use = 0;
1354 t->sftids_in_use = 0;
1355 t->afree = NULL;
1356 t->atids_in_use = 0;
1357 atomic_set(&t->tids_in_use, 0);
1358 atomic_set(&t->hash_tids_in_use, 0);
1359
1360 /* Setup the free list for atid_tab and clear the stid bitmap. */
1361 if (natids) {
1362 while (--natids)
1363 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1364 t->afree = t->atid_tab;
1365 }
1366
1367 if (is_offload(adap)) {
1368 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1369 /* Reserve stid 0 for T4/T5 adapters */
1370 if (!t->stid_base &&
1371 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1372 __set_bit(0, t->stid_bmap);
1373 }
1374
1375 bitmap_zero(t->ftid_bmap, t->nftids);
1376 return 0;
1377 }
1378
1379 /**
1380 * cxgb4_create_server - create an IP server
1381 * @dev: the device
1382 * @stid: the server TID
1383 * @sip: local IP address to bind server to
1384 * @sport: the server's TCP port
1385 * @queue: queue to direct messages from this server to
1386 *
1387 * Create an IP server for the given port and address.
1388 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1389 */
cxgb4_create_server(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue)1390 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1391 __be32 sip, __be16 sport, __be16 vlan,
1392 unsigned int queue)
1393 {
1394 unsigned int chan;
1395 struct sk_buff *skb;
1396 struct adapter *adap;
1397 struct cpl_pass_open_req *req;
1398 int ret;
1399
1400 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1401 if (!skb)
1402 return -ENOMEM;
1403
1404 adap = netdev2adap(dev);
1405 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1406 INIT_TP_WR(req, 0);
1407 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1408 req->local_port = sport;
1409 req->peer_port = htons(0);
1410 req->local_ip = sip;
1411 req->peer_ip = htonl(0);
1412 chan = rxq_to_chan(&adap->sge, queue);
1413 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1414 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1415 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1416 ret = t4_mgmt_tx(adap, skb);
1417 return net_xmit_eval(ret);
1418 }
1419 EXPORT_SYMBOL(cxgb4_create_server);
1420
1421 /* cxgb4_create_server6 - create an IPv6 server
1422 * @dev: the device
1423 * @stid: the server TID
1424 * @sip: local IPv6 address to bind server to
1425 * @sport: the server's TCP port
1426 * @queue: queue to direct messages from this server to
1427 *
1428 * Create an IPv6 server for the given port and address.
1429 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1430 */
cxgb4_create_server6(const struct net_device * dev,unsigned int stid,const struct in6_addr * sip,__be16 sport,unsigned int queue)1431 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1432 const struct in6_addr *sip, __be16 sport,
1433 unsigned int queue)
1434 {
1435 unsigned int chan;
1436 struct sk_buff *skb;
1437 struct adapter *adap;
1438 struct cpl_pass_open_req6 *req;
1439 int ret;
1440
1441 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1442 if (!skb)
1443 return -ENOMEM;
1444
1445 adap = netdev2adap(dev);
1446 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1447 INIT_TP_WR(req, 0);
1448 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1449 req->local_port = sport;
1450 req->peer_port = htons(0);
1451 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1452 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1453 req->peer_ip_hi = cpu_to_be64(0);
1454 req->peer_ip_lo = cpu_to_be64(0);
1455 chan = rxq_to_chan(&adap->sge, queue);
1456 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1457 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1458 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1459 ret = t4_mgmt_tx(adap, skb);
1460 return net_xmit_eval(ret);
1461 }
1462 EXPORT_SYMBOL(cxgb4_create_server6);
1463
cxgb4_remove_server(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)1464 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1465 unsigned int queue, bool ipv6)
1466 {
1467 struct sk_buff *skb;
1468 struct adapter *adap;
1469 struct cpl_close_listsvr_req *req;
1470 int ret;
1471
1472 adap = netdev2adap(dev);
1473
1474 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1475 if (!skb)
1476 return -ENOMEM;
1477
1478 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1479 INIT_TP_WR(req, 0);
1480 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1481 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1482 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1483 ret = t4_mgmt_tx(adap, skb);
1484 return net_xmit_eval(ret);
1485 }
1486 EXPORT_SYMBOL(cxgb4_remove_server);
1487
1488 /**
1489 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1490 * @mtus: the HW MTU table
1491 * @mtu: the target MTU
1492 * @idx: index of selected entry in the MTU table
1493 *
1494 * Returns the index and the value in the HW MTU table that is closest to
1495 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1496 * table, in which case that smallest available value is selected.
1497 */
cxgb4_best_mtu(const unsigned short * mtus,unsigned short mtu,unsigned int * idx)1498 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1499 unsigned int *idx)
1500 {
1501 unsigned int i = 0;
1502
1503 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1504 ++i;
1505 if (idx)
1506 *idx = i;
1507 return mtus[i];
1508 }
1509 EXPORT_SYMBOL(cxgb4_best_mtu);
1510
1511 /**
1512 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1513 * @mtus: the HW MTU table
1514 * @header_size: Header Size
1515 * @data_size_max: maximum Data Segment Size
1516 * @data_size_align: desired Data Segment Size Alignment (2^N)
1517 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1518 *
1519 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1520 * MTU Table based solely on a Maximum MTU parameter, we break that
1521 * parameter up into a Header Size and Maximum Data Segment Size, and
1522 * provide a desired Data Segment Size Alignment. If we find an MTU in
1523 * the Hardware MTU Table which will result in a Data Segment Size with
1524 * the requested alignment _and_ that MTU isn't "too far" from the
1525 * closest MTU, then we'll return that rather than the closest MTU.
1526 */
cxgb4_best_aligned_mtu(const unsigned short * mtus,unsigned short header_size,unsigned short data_size_max,unsigned short data_size_align,unsigned int * mtu_idxp)1527 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1528 unsigned short header_size,
1529 unsigned short data_size_max,
1530 unsigned short data_size_align,
1531 unsigned int *mtu_idxp)
1532 {
1533 unsigned short max_mtu = header_size + data_size_max;
1534 unsigned short data_size_align_mask = data_size_align - 1;
1535 int mtu_idx, aligned_mtu_idx;
1536
1537 /* Scan the MTU Table till we find an MTU which is larger than our
1538 * Maximum MTU or we reach the end of the table. Along the way,
1539 * record the last MTU found, if any, which will result in a Data
1540 * Segment Length matching the requested alignment.
1541 */
1542 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1543 unsigned short data_size = mtus[mtu_idx] - header_size;
1544
1545 /* If this MTU minus the Header Size would result in a
1546 * Data Segment Size of the desired alignment, remember it.
1547 */
1548 if ((data_size & data_size_align_mask) == 0)
1549 aligned_mtu_idx = mtu_idx;
1550
1551 /* If we're not at the end of the Hardware MTU Table and the
1552 * next element is larger than our Maximum MTU, drop out of
1553 * the loop.
1554 */
1555 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1556 break;
1557 }
1558
1559 /* If we fell out of the loop because we ran to the end of the table,
1560 * then we just have to use the last [largest] entry.
1561 */
1562 if (mtu_idx == NMTUS)
1563 mtu_idx--;
1564
1565 /* If we found an MTU which resulted in the requested Data Segment
1566 * Length alignment and that's "not far" from the largest MTU which is
1567 * less than or equal to the maximum MTU, then use that.
1568 */
1569 if (aligned_mtu_idx >= 0 &&
1570 mtu_idx - aligned_mtu_idx <= 1)
1571 mtu_idx = aligned_mtu_idx;
1572
1573 /* If the caller has passed in an MTU Index pointer, pass the
1574 * MTU Index back. Return the MTU value.
1575 */
1576 if (mtu_idxp)
1577 *mtu_idxp = mtu_idx;
1578 return mtus[mtu_idx];
1579 }
1580 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1581
1582 /**
1583 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1584 * @chip: chip type
1585 * @viid: VI id of the given port
1586 *
1587 * Return the SMT index for this VI.
1588 */
cxgb4_tp_smt_idx(enum chip_type chip,unsigned int viid)1589 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1590 {
1591 /* In T4/T5, SMT contains 256 SMAC entries organized in
1592 * 128 rows of 2 entries each.
1593 * In T6, SMT contains 256 SMAC entries in 256 rows.
1594 * TODO: The below code needs to be updated when we add support
1595 * for 256 VFs.
1596 */
1597 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1598 return ((viid & 0x7f) << 1);
1599 else
1600 return (viid & 0x7f);
1601 }
1602 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1603
1604 /**
1605 * cxgb4_port_chan - get the HW channel of a port
1606 * @dev: the net device for the port
1607 *
1608 * Return the HW Tx channel of the given port.
1609 */
cxgb4_port_chan(const struct net_device * dev)1610 unsigned int cxgb4_port_chan(const struct net_device *dev)
1611 {
1612 return netdev2pinfo(dev)->tx_chan;
1613 }
1614 EXPORT_SYMBOL(cxgb4_port_chan);
1615
cxgb4_dbfifo_count(const struct net_device * dev,int lpfifo)1616 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1617 {
1618 struct adapter *adap = netdev2adap(dev);
1619 u32 v1, v2, lp_count, hp_count;
1620
1621 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1622 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1623 if (is_t4(adap->params.chip)) {
1624 lp_count = LP_COUNT_G(v1);
1625 hp_count = HP_COUNT_G(v1);
1626 } else {
1627 lp_count = LP_COUNT_T5_G(v1);
1628 hp_count = HP_COUNT_T5_G(v2);
1629 }
1630 return lpfifo ? lp_count : hp_count;
1631 }
1632 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1633
1634 /**
1635 * cxgb4_port_viid - get the VI id of a port
1636 * @dev: the net device for the port
1637 *
1638 * Return the VI id of the given port.
1639 */
cxgb4_port_viid(const struct net_device * dev)1640 unsigned int cxgb4_port_viid(const struct net_device *dev)
1641 {
1642 return netdev2pinfo(dev)->viid;
1643 }
1644 EXPORT_SYMBOL(cxgb4_port_viid);
1645
1646 /**
1647 * cxgb4_port_idx - get the index of a port
1648 * @dev: the net device for the port
1649 *
1650 * Return the index of the given port.
1651 */
cxgb4_port_idx(const struct net_device * dev)1652 unsigned int cxgb4_port_idx(const struct net_device *dev)
1653 {
1654 return netdev2pinfo(dev)->port_id;
1655 }
1656 EXPORT_SYMBOL(cxgb4_port_idx);
1657
cxgb4_get_tcp_stats(struct pci_dev * pdev,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6)1658 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1659 struct tp_tcp_stats *v6)
1660 {
1661 struct adapter *adap = pci_get_drvdata(pdev);
1662
1663 spin_lock(&adap->stats_lock);
1664 t4_tp_get_tcp_stats(adap, v4, v6);
1665 spin_unlock(&adap->stats_lock);
1666 }
1667 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1668
cxgb4_iscsi_init(struct net_device * dev,unsigned int tag_mask,const unsigned int * pgsz_order)1669 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1670 const unsigned int *pgsz_order)
1671 {
1672 struct adapter *adap = netdev2adap(dev);
1673
1674 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1675 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1676 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1677 HPZ3_V(pgsz_order[3]));
1678 }
1679 EXPORT_SYMBOL(cxgb4_iscsi_init);
1680
cxgb4_flush_eq_cache(struct net_device * dev)1681 int cxgb4_flush_eq_cache(struct net_device *dev)
1682 {
1683 struct adapter *adap = netdev2adap(dev);
1684
1685 return t4_sge_ctxt_flush(adap, adap->mbox);
1686 }
1687 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1688
read_eq_indices(struct adapter * adap,u16 qid,u16 * pidx,u16 * cidx)1689 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1690 {
1691 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1692 __be64 indices;
1693 int ret;
1694
1695 spin_lock(&adap->win0_lock);
1696 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1697 sizeof(indices), (__be32 *)&indices,
1698 T4_MEMORY_READ);
1699 spin_unlock(&adap->win0_lock);
1700 if (!ret) {
1701 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1702 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1703 }
1704 return ret;
1705 }
1706
cxgb4_sync_txq_pidx(struct net_device * dev,u16 qid,u16 pidx,u16 size)1707 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1708 u16 size)
1709 {
1710 struct adapter *adap = netdev2adap(dev);
1711 u16 hw_pidx, hw_cidx;
1712 int ret;
1713
1714 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1715 if (ret)
1716 goto out;
1717
1718 if (pidx != hw_pidx) {
1719 u16 delta;
1720 u32 val;
1721
1722 if (pidx >= hw_pidx)
1723 delta = pidx - hw_pidx;
1724 else
1725 delta = size - hw_pidx + pidx;
1726
1727 if (is_t4(adap->params.chip))
1728 val = PIDX_V(delta);
1729 else
1730 val = PIDX_T5_V(delta);
1731 wmb();
1732 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1733 QID_V(qid) | val);
1734 }
1735 out:
1736 return ret;
1737 }
1738 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1739
cxgb4_read_tpte(struct net_device * dev,u32 stag,__be32 * tpte)1740 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1741 {
1742 struct adapter *adap;
1743 u32 offset, memtype, memaddr;
1744 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1745 u32 edc0_end, edc1_end, mc0_end, mc1_end;
1746 int ret;
1747
1748 adap = netdev2adap(dev);
1749
1750 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1751
1752 /* Figure out where the offset lands in the Memory Type/Address scheme.
1753 * This code assumes that the memory is laid out starting at offset 0
1754 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1755 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
1756 * MC0, and some have both MC0 and MC1.
1757 */
1758 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1759 edc0_size = EDRAM0_SIZE_G(size) << 20;
1760 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1761 edc1_size = EDRAM1_SIZE_G(size) << 20;
1762 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1763 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1764
1765 edc0_end = edc0_size;
1766 edc1_end = edc0_end + edc1_size;
1767 mc0_end = edc1_end + mc0_size;
1768
1769 if (offset < edc0_end) {
1770 memtype = MEM_EDC0;
1771 memaddr = offset;
1772 } else if (offset < edc1_end) {
1773 memtype = MEM_EDC1;
1774 memaddr = offset - edc0_end;
1775 } else {
1776 if (offset < mc0_end) {
1777 memtype = MEM_MC0;
1778 memaddr = offset - edc1_end;
1779 } else if (is_t5(adap->params.chip)) {
1780 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1781 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1782 mc1_end = mc0_end + mc1_size;
1783 if (offset < mc1_end) {
1784 memtype = MEM_MC1;
1785 memaddr = offset - mc0_end;
1786 } else {
1787 /* offset beyond the end of any memory */
1788 goto err;
1789 }
1790 } else {
1791 /* T4/T6 only has a single memory channel */
1792 goto err;
1793 }
1794 }
1795
1796 spin_lock(&adap->win0_lock);
1797 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1798 spin_unlock(&adap->win0_lock);
1799 return ret;
1800
1801 err:
1802 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1803 stag, offset);
1804 return -EINVAL;
1805 }
1806 EXPORT_SYMBOL(cxgb4_read_tpte);
1807
cxgb4_read_sge_timestamp(struct net_device * dev)1808 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1809 {
1810 u32 hi, lo;
1811 struct adapter *adap;
1812
1813 adap = netdev2adap(dev);
1814 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1815 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1816
1817 return ((u64)hi << 32) | (u64)lo;
1818 }
1819 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1820
cxgb4_bar2_sge_qregs(struct net_device * dev,unsigned int qid,enum cxgb4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)1821 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1822 unsigned int qid,
1823 enum cxgb4_bar2_qtype qtype,
1824 int user,
1825 u64 *pbar2_qoffset,
1826 unsigned int *pbar2_qid)
1827 {
1828 return t4_bar2_sge_qregs(netdev2adap(dev),
1829 qid,
1830 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1831 ? T4_BAR2_QTYPE_EGRESS
1832 : T4_BAR2_QTYPE_INGRESS),
1833 user,
1834 pbar2_qoffset,
1835 pbar2_qid);
1836 }
1837 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1838
1839 static struct pci_driver cxgb4_driver;
1840
check_neigh_update(struct neighbour * neigh)1841 static void check_neigh_update(struct neighbour *neigh)
1842 {
1843 const struct device *parent;
1844 const struct net_device *netdev = neigh->dev;
1845
1846 if (netdev->priv_flags & IFF_802_1Q_VLAN)
1847 netdev = vlan_dev_real_dev(netdev);
1848 parent = netdev->dev.parent;
1849 if (parent && parent->driver == &cxgb4_driver.driver)
1850 t4_l2t_update(dev_get_drvdata(parent), neigh);
1851 }
1852
netevent_cb(struct notifier_block * nb,unsigned long event,void * data)1853 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1854 void *data)
1855 {
1856 switch (event) {
1857 case NETEVENT_NEIGH_UPDATE:
1858 check_neigh_update(data);
1859 break;
1860 case NETEVENT_REDIRECT:
1861 default:
1862 break;
1863 }
1864 return 0;
1865 }
1866
1867 static bool netevent_registered;
1868 static struct notifier_block cxgb4_netevent_nb = {
1869 .notifier_call = netevent_cb
1870 };
1871
drain_db_fifo(struct adapter * adap,int usecs)1872 static void drain_db_fifo(struct adapter *adap, int usecs)
1873 {
1874 u32 v1, v2, lp_count, hp_count;
1875
1876 do {
1877 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1878 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1879 if (is_t4(adap->params.chip)) {
1880 lp_count = LP_COUNT_G(v1);
1881 hp_count = HP_COUNT_G(v1);
1882 } else {
1883 lp_count = LP_COUNT_T5_G(v1);
1884 hp_count = HP_COUNT_T5_G(v2);
1885 }
1886
1887 if (lp_count == 0 && hp_count == 0)
1888 break;
1889 set_current_state(TASK_UNINTERRUPTIBLE);
1890 schedule_timeout(usecs_to_jiffies(usecs));
1891 } while (1);
1892 }
1893
disable_txq_db(struct sge_txq * q)1894 static void disable_txq_db(struct sge_txq *q)
1895 {
1896 unsigned long flags;
1897
1898 spin_lock_irqsave(&q->db_lock, flags);
1899 q->db_disabled = 1;
1900 spin_unlock_irqrestore(&q->db_lock, flags);
1901 }
1902
enable_txq_db(struct adapter * adap,struct sge_txq * q)1903 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1904 {
1905 spin_lock_irq(&q->db_lock);
1906 if (q->db_pidx_inc) {
1907 /* Make sure that all writes to the TX descriptors
1908 * are committed before we tell HW about them.
1909 */
1910 wmb();
1911 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1912 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1913 q->db_pidx_inc = 0;
1914 }
1915 q->db_disabled = 0;
1916 spin_unlock_irq(&q->db_lock);
1917 }
1918
disable_dbs(struct adapter * adap)1919 static void disable_dbs(struct adapter *adap)
1920 {
1921 int i;
1922
1923 for_each_ethrxq(&adap->sge, i)
1924 disable_txq_db(&adap->sge.ethtxq[i].q);
1925 for_each_ofldtxq(&adap->sge, i)
1926 disable_txq_db(&adap->sge.ofldtxq[i].q);
1927 for_each_port(adap, i)
1928 disable_txq_db(&adap->sge.ctrlq[i].q);
1929 }
1930
enable_dbs(struct adapter * adap)1931 static void enable_dbs(struct adapter *adap)
1932 {
1933 int i;
1934
1935 for_each_ethrxq(&adap->sge, i)
1936 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1937 for_each_ofldtxq(&adap->sge, i)
1938 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
1939 for_each_port(adap, i)
1940 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1941 }
1942
notify_rdma_uld(struct adapter * adap,enum cxgb4_control cmd)1943 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1944 {
1945 enum cxgb4_uld type = CXGB4_ULD_RDMA;
1946
1947 if (adap->uld && adap->uld[type].handle)
1948 adap->uld[type].control(adap->uld[type].handle, cmd);
1949 }
1950
process_db_full(struct work_struct * work)1951 static void process_db_full(struct work_struct *work)
1952 {
1953 struct adapter *adap;
1954
1955 adap = container_of(work, struct adapter, db_full_task);
1956
1957 drain_db_fifo(adap, dbfifo_drain_delay);
1958 enable_dbs(adap);
1959 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1960 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1961 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1962 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1963 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1964 else
1965 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1966 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
1967 }
1968
sync_txq_pidx(struct adapter * adap,struct sge_txq * q)1969 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
1970 {
1971 u16 hw_pidx, hw_cidx;
1972 int ret;
1973
1974 spin_lock_irq(&q->db_lock);
1975 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
1976 if (ret)
1977 goto out;
1978 if (q->db_pidx != hw_pidx) {
1979 u16 delta;
1980 u32 val;
1981
1982 if (q->db_pidx >= hw_pidx)
1983 delta = q->db_pidx - hw_pidx;
1984 else
1985 delta = q->size - hw_pidx + q->db_pidx;
1986
1987 if (is_t4(adap->params.chip))
1988 val = PIDX_V(delta);
1989 else
1990 val = PIDX_T5_V(delta);
1991 wmb();
1992 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1993 QID_V(q->cntxt_id) | val);
1994 }
1995 out:
1996 q->db_disabled = 0;
1997 q->db_pidx_inc = 0;
1998 spin_unlock_irq(&q->db_lock);
1999 if (ret)
2000 CH_WARN(adap, "DB drop recovery failed.\n");
2001 }
2002
recover_all_queues(struct adapter * adap)2003 static void recover_all_queues(struct adapter *adap)
2004 {
2005 int i;
2006
2007 for_each_ethrxq(&adap->sge, i)
2008 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2009 for_each_ofldtxq(&adap->sge, i)
2010 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2011 for_each_port(adap, i)
2012 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2013 }
2014
process_db_drop(struct work_struct * work)2015 static void process_db_drop(struct work_struct *work)
2016 {
2017 struct adapter *adap;
2018
2019 adap = container_of(work, struct adapter, db_drop_task);
2020
2021 if (is_t4(adap->params.chip)) {
2022 drain_db_fifo(adap, dbfifo_drain_delay);
2023 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2024 drain_db_fifo(adap, dbfifo_drain_delay);
2025 recover_all_queues(adap);
2026 drain_db_fifo(adap, dbfifo_drain_delay);
2027 enable_dbs(adap);
2028 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2029 } else if (is_t5(adap->params.chip)) {
2030 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2031 u16 qid = (dropped_db >> 15) & 0x1ffff;
2032 u16 pidx_inc = dropped_db & 0x1fff;
2033 u64 bar2_qoffset;
2034 unsigned int bar2_qid;
2035 int ret;
2036
2037 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2038 0, &bar2_qoffset, &bar2_qid);
2039 if (ret)
2040 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2041 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2042 else
2043 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2044 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2045
2046 /* Re-enable BAR2 WC */
2047 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2048 }
2049
2050 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2051 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2052 }
2053
t4_db_full(struct adapter * adap)2054 void t4_db_full(struct adapter *adap)
2055 {
2056 if (is_t4(adap->params.chip)) {
2057 disable_dbs(adap);
2058 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2059 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2060 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2061 queue_work(adap->workq, &adap->db_full_task);
2062 }
2063 }
2064
t4_db_dropped(struct adapter * adap)2065 void t4_db_dropped(struct adapter *adap)
2066 {
2067 if (is_t4(adap->params.chip)) {
2068 disable_dbs(adap);
2069 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2070 }
2071 queue_work(adap->workq, &adap->db_drop_task);
2072 }
2073
t4_register_netevent_notifier(void)2074 void t4_register_netevent_notifier(void)
2075 {
2076 if (!netevent_registered) {
2077 register_netevent_notifier(&cxgb4_netevent_nb);
2078 netevent_registered = true;
2079 }
2080 }
2081
detach_ulds(struct adapter * adap)2082 static void detach_ulds(struct adapter *adap)
2083 {
2084 unsigned int i;
2085
2086 mutex_lock(&uld_mutex);
2087 list_del(&adap->list_node);
2088 for (i = 0; i < CXGB4_ULD_MAX; i++)
2089 if (adap->uld && adap->uld[i].handle) {
2090 adap->uld[i].state_change(adap->uld[i].handle,
2091 CXGB4_STATE_DETACH);
2092 adap->uld[i].handle = NULL;
2093 }
2094 if (netevent_registered && list_empty(&adapter_list)) {
2095 unregister_netevent_notifier(&cxgb4_netevent_nb);
2096 netevent_registered = false;
2097 }
2098 mutex_unlock(&uld_mutex);
2099 }
2100
notify_ulds(struct adapter * adap,enum cxgb4_state new_state)2101 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2102 {
2103 unsigned int i;
2104
2105 mutex_lock(&uld_mutex);
2106 for (i = 0; i < CXGB4_ULD_MAX; i++)
2107 if (adap->uld && adap->uld[i].handle)
2108 adap->uld[i].state_change(adap->uld[i].handle,
2109 new_state);
2110 mutex_unlock(&uld_mutex);
2111 }
2112
2113 #if IS_ENABLED(CONFIG_IPV6)
cxgb4_inet6addr_handler(struct notifier_block * this,unsigned long event,void * data)2114 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2115 unsigned long event, void *data)
2116 {
2117 struct inet6_ifaddr *ifa = data;
2118 struct net_device *event_dev = ifa->idev->dev;
2119 const struct device *parent = NULL;
2120 #if IS_ENABLED(CONFIG_BONDING)
2121 struct adapter *adap;
2122 #endif
2123 if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2124 event_dev = vlan_dev_real_dev(event_dev);
2125 #if IS_ENABLED(CONFIG_BONDING)
2126 if (event_dev->flags & IFF_MASTER) {
2127 list_for_each_entry(adap, &adapter_list, list_node) {
2128 switch (event) {
2129 case NETDEV_UP:
2130 cxgb4_clip_get(adap->port[0],
2131 (const u32 *)ifa, 1);
2132 break;
2133 case NETDEV_DOWN:
2134 cxgb4_clip_release(adap->port[0],
2135 (const u32 *)ifa, 1);
2136 break;
2137 default:
2138 break;
2139 }
2140 }
2141 return NOTIFY_OK;
2142 }
2143 #endif
2144
2145 if (event_dev)
2146 parent = event_dev->dev.parent;
2147
2148 if (parent && parent->driver == &cxgb4_driver.driver) {
2149 switch (event) {
2150 case NETDEV_UP:
2151 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2152 break;
2153 case NETDEV_DOWN:
2154 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2155 break;
2156 default:
2157 break;
2158 }
2159 }
2160 return NOTIFY_OK;
2161 }
2162
2163 static bool inet6addr_registered;
2164 static struct notifier_block cxgb4_inet6addr_notifier = {
2165 .notifier_call = cxgb4_inet6addr_handler
2166 };
2167
update_clip(const struct adapter * adap)2168 static void update_clip(const struct adapter *adap)
2169 {
2170 int i;
2171 struct net_device *dev;
2172 int ret;
2173
2174 rcu_read_lock();
2175
2176 for (i = 0; i < MAX_NPORTS; i++) {
2177 dev = adap->port[i];
2178 ret = 0;
2179
2180 if (dev)
2181 ret = cxgb4_update_root_dev_clip(dev);
2182
2183 if (ret < 0)
2184 break;
2185 }
2186 rcu_read_unlock();
2187 }
2188 #endif /* IS_ENABLED(CONFIG_IPV6) */
2189
2190 /**
2191 * cxgb_up - enable the adapter
2192 * @adap: adapter being enabled
2193 *
2194 * Called when the first port is enabled, this function performs the
2195 * actions necessary to make an adapter operational, such as completing
2196 * the initialization of HW modules, and enabling interrupts.
2197 *
2198 * Must be called with the rtnl lock held.
2199 */
cxgb_up(struct adapter * adap)2200 static int cxgb_up(struct adapter *adap)
2201 {
2202 int err;
2203
2204 mutex_lock(&uld_mutex);
2205 err = setup_sge_queues(adap);
2206 if (err)
2207 goto rel_lock;
2208 err = setup_rss(adap);
2209 if (err)
2210 goto freeq;
2211
2212 if (adap->flags & USING_MSIX) {
2213 name_msix_vecs(adap);
2214 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2215 adap->msix_info[0].desc, adap);
2216 if (err)
2217 goto irq_err;
2218 err = request_msix_queue_irqs(adap);
2219 if (err) {
2220 free_irq(adap->msix_info[0].vec, adap);
2221 goto irq_err;
2222 }
2223 } else {
2224 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2225 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2226 adap->port[0]->name, adap);
2227 if (err)
2228 goto irq_err;
2229 }
2230
2231 enable_rx(adap);
2232 t4_sge_start(adap);
2233 t4_intr_enable(adap);
2234 adap->flags |= FULL_INIT_DONE;
2235 mutex_unlock(&uld_mutex);
2236
2237 notify_ulds(adap, CXGB4_STATE_UP);
2238 #if IS_ENABLED(CONFIG_IPV6)
2239 update_clip(adap);
2240 #endif
2241 /* Initialize hash mac addr list*/
2242 INIT_LIST_HEAD(&adap->mac_hlist);
2243 return err;
2244
2245 irq_err:
2246 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2247 freeq:
2248 t4_free_sge_resources(adap);
2249 rel_lock:
2250 mutex_unlock(&uld_mutex);
2251 return err;
2252 }
2253
cxgb_down(struct adapter * adapter)2254 static void cxgb_down(struct adapter *adapter)
2255 {
2256 cancel_work_sync(&adapter->tid_release_task);
2257 cancel_work_sync(&adapter->db_full_task);
2258 cancel_work_sync(&adapter->db_drop_task);
2259 adapter->tid_release_task_busy = false;
2260 adapter->tid_release_head = NULL;
2261
2262 t4_sge_stop(adapter);
2263 t4_free_sge_resources(adapter);
2264 adapter->flags &= ~FULL_INIT_DONE;
2265 }
2266
2267 /*
2268 * net_device operations
2269 */
cxgb_open(struct net_device * dev)2270 static int cxgb_open(struct net_device *dev)
2271 {
2272 int err;
2273 struct port_info *pi = netdev_priv(dev);
2274 struct adapter *adapter = pi->adapter;
2275
2276 netif_carrier_off(dev);
2277
2278 if (!(adapter->flags & FULL_INIT_DONE)) {
2279 err = cxgb_up(adapter);
2280 if (err < 0)
2281 return err;
2282 }
2283
2284 err = link_start(dev);
2285 if (!err)
2286 netif_tx_start_all_queues(dev);
2287 return err;
2288 }
2289
cxgb_close(struct net_device * dev)2290 static int cxgb_close(struct net_device *dev)
2291 {
2292 struct port_info *pi = netdev_priv(dev);
2293 struct adapter *adapter = pi->adapter;
2294
2295 netif_tx_stop_all_queues(dev);
2296 netif_carrier_off(dev);
2297 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2298 }
2299
cxgb4_create_server_filter(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue,unsigned char port,unsigned char mask)2300 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2301 __be32 sip, __be16 sport, __be16 vlan,
2302 unsigned int queue, unsigned char port, unsigned char mask)
2303 {
2304 int ret;
2305 struct filter_entry *f;
2306 struct adapter *adap;
2307 int i;
2308 u8 *val;
2309
2310 adap = netdev2adap(dev);
2311
2312 /* Adjust stid to correct filter index */
2313 stid -= adap->tids.sftid_base;
2314 stid += adap->tids.nftids;
2315
2316 /* Check to make sure the filter requested is writable ...
2317 */
2318 f = &adap->tids.ftid_tab[stid];
2319 ret = writable_filter(f);
2320 if (ret)
2321 return ret;
2322
2323 /* Clear out any old resources being used by the filter before
2324 * we start constructing the new filter.
2325 */
2326 if (f->valid)
2327 clear_filter(adap, f);
2328
2329 /* Clear out filter specifications */
2330 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2331 f->fs.val.lport = cpu_to_be16(sport);
2332 f->fs.mask.lport = ~0;
2333 val = (u8 *)&sip;
2334 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2335 for (i = 0; i < 4; i++) {
2336 f->fs.val.lip[i] = val[i];
2337 f->fs.mask.lip[i] = ~0;
2338 }
2339 if (adap->params.tp.vlan_pri_map & PORT_F) {
2340 f->fs.val.iport = port;
2341 f->fs.mask.iport = mask;
2342 }
2343 }
2344
2345 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2346 f->fs.val.proto = IPPROTO_TCP;
2347 f->fs.mask.proto = ~0;
2348 }
2349
2350 f->fs.dirsteer = 1;
2351 f->fs.iq = queue;
2352 /* Mark filter as locked */
2353 f->locked = 1;
2354 f->fs.rpttid = 1;
2355
2356 ret = set_filter_wr(adap, stid);
2357 if (ret) {
2358 clear_filter(adap, f);
2359 return ret;
2360 }
2361
2362 return 0;
2363 }
2364 EXPORT_SYMBOL(cxgb4_create_server_filter);
2365
cxgb4_remove_server_filter(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)2366 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2367 unsigned int queue, bool ipv6)
2368 {
2369 struct filter_entry *f;
2370 struct adapter *adap;
2371
2372 adap = netdev2adap(dev);
2373
2374 /* Adjust stid to correct filter index */
2375 stid -= adap->tids.sftid_base;
2376 stid += adap->tids.nftids;
2377
2378 f = &adap->tids.ftid_tab[stid];
2379 /* Unlock the filter */
2380 f->locked = 0;
2381
2382 return delete_filter(adap, stid);
2383 }
2384 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2385
cxgb_get_stats(struct net_device * dev,struct rtnl_link_stats64 * ns)2386 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2387 struct rtnl_link_stats64 *ns)
2388 {
2389 struct port_stats stats;
2390 struct port_info *p = netdev_priv(dev);
2391 struct adapter *adapter = p->adapter;
2392
2393 /* Block retrieving statistics during EEH error
2394 * recovery. Otherwise, the recovery might fail
2395 * and the PCI device will be removed permanently
2396 */
2397 spin_lock(&adapter->stats_lock);
2398 if (!netif_device_present(dev)) {
2399 spin_unlock(&adapter->stats_lock);
2400 return ns;
2401 }
2402 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2403 &p->stats_base);
2404 spin_unlock(&adapter->stats_lock);
2405
2406 ns->tx_bytes = stats.tx_octets;
2407 ns->tx_packets = stats.tx_frames;
2408 ns->rx_bytes = stats.rx_octets;
2409 ns->rx_packets = stats.rx_frames;
2410 ns->multicast = stats.rx_mcast_frames;
2411
2412 /* detailed rx_errors */
2413 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2414 stats.rx_runt;
2415 ns->rx_over_errors = 0;
2416 ns->rx_crc_errors = stats.rx_fcs_err;
2417 ns->rx_frame_errors = stats.rx_symbol_err;
2418 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
2419 stats.rx_ovflow2 + stats.rx_ovflow3 +
2420 stats.rx_trunc0 + stats.rx_trunc1 +
2421 stats.rx_trunc2 + stats.rx_trunc3;
2422 ns->rx_missed_errors = 0;
2423
2424 /* detailed tx_errors */
2425 ns->tx_aborted_errors = 0;
2426 ns->tx_carrier_errors = 0;
2427 ns->tx_fifo_errors = 0;
2428 ns->tx_heartbeat_errors = 0;
2429 ns->tx_window_errors = 0;
2430
2431 ns->tx_errors = stats.tx_error_frames;
2432 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2433 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2434 return ns;
2435 }
2436
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)2437 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2438 {
2439 unsigned int mbox;
2440 int ret = 0, prtad, devad;
2441 struct port_info *pi = netdev_priv(dev);
2442 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2443
2444 switch (cmd) {
2445 case SIOCGMIIPHY:
2446 if (pi->mdio_addr < 0)
2447 return -EOPNOTSUPP;
2448 data->phy_id = pi->mdio_addr;
2449 break;
2450 case SIOCGMIIREG:
2451 case SIOCSMIIREG:
2452 if (mdio_phy_id_is_c45(data->phy_id)) {
2453 prtad = mdio_phy_id_prtad(data->phy_id);
2454 devad = mdio_phy_id_devad(data->phy_id);
2455 } else if (data->phy_id < 32) {
2456 prtad = data->phy_id;
2457 devad = 0;
2458 data->reg_num &= 0x1f;
2459 } else
2460 return -EINVAL;
2461
2462 mbox = pi->adapter->pf;
2463 if (cmd == SIOCGMIIREG)
2464 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2465 data->reg_num, &data->val_out);
2466 else
2467 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2468 data->reg_num, data->val_in);
2469 break;
2470 case SIOCGHWTSTAMP:
2471 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2472 sizeof(pi->tstamp_config)) ?
2473 -EFAULT : 0;
2474 case SIOCSHWTSTAMP:
2475 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2476 sizeof(pi->tstamp_config)))
2477 return -EFAULT;
2478
2479 switch (pi->tstamp_config.rx_filter) {
2480 case HWTSTAMP_FILTER_NONE:
2481 pi->rxtstamp = false;
2482 break;
2483 case HWTSTAMP_FILTER_ALL:
2484 pi->rxtstamp = true;
2485 break;
2486 default:
2487 pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2488 return -ERANGE;
2489 }
2490
2491 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2492 sizeof(pi->tstamp_config)) ?
2493 -EFAULT : 0;
2494 default:
2495 return -EOPNOTSUPP;
2496 }
2497 return ret;
2498 }
2499
cxgb_set_rxmode(struct net_device * dev)2500 static void cxgb_set_rxmode(struct net_device *dev)
2501 {
2502 /* unfortunately we can't return errors to the stack */
2503 set_rxmode(dev, -1, false);
2504 }
2505
cxgb_change_mtu(struct net_device * dev,int new_mtu)2506 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2507 {
2508 int ret;
2509 struct port_info *pi = netdev_priv(dev);
2510
2511 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
2512 return -EINVAL;
2513 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2514 -1, -1, -1, true);
2515 if (!ret)
2516 dev->mtu = new_mtu;
2517 return ret;
2518 }
2519
2520 #ifdef CONFIG_PCI_IOV
dummy_open(struct net_device * dev)2521 static int dummy_open(struct net_device *dev)
2522 {
2523 /* Turn carrier off since we don't have to transmit anything on this
2524 * interface.
2525 */
2526 netif_carrier_off(dev);
2527 return 0;
2528 }
2529
2530 /* Fill MAC address that will be assigned by the FW */
fill_vf_station_mac_addr(struct adapter * adap)2531 static void fill_vf_station_mac_addr(struct adapter *adap)
2532 {
2533 unsigned int i;
2534 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2535 int err;
2536 u8 *na;
2537 u16 a, b;
2538
2539 err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2540 if (!err) {
2541 na = adap->params.vpd.na;
2542 for (i = 0; i < ETH_ALEN; i++)
2543 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2544 hex2val(na[2 * i + 1]));
2545 a = (hw_addr[0] << 8) | hw_addr[1];
2546 b = (hw_addr[1] << 8) | hw_addr[2];
2547 a ^= b;
2548 a |= 0x0200; /* locally assigned Ethernet MAC address */
2549 a &= ~0x0100; /* not a multicast Ethernet MAC address */
2550 macaddr[0] = a >> 8;
2551 macaddr[1] = a & 0xff;
2552
2553 for (i = 2; i < 5; i++)
2554 macaddr[i] = hw_addr[i + 1];
2555
2556 for (i = 0; i < adap->num_vfs; i++) {
2557 macaddr[5] = adap->pf * 16 + i;
2558 ether_addr_copy(adap->vfinfo[i].vf_mac_addr, macaddr);
2559 }
2560 }
2561 }
2562
cxgb_set_vf_mac(struct net_device * dev,int vf,u8 * mac)2563 static int cxgb_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2564 {
2565 struct port_info *pi = netdev_priv(dev);
2566 struct adapter *adap = pi->adapter;
2567 int ret;
2568
2569 /* verify MAC addr is valid */
2570 if (!is_valid_ether_addr(mac)) {
2571 dev_err(pi->adapter->pdev_dev,
2572 "Invalid Ethernet address %pM for VF %d\n",
2573 mac, vf);
2574 return -EINVAL;
2575 }
2576
2577 dev_info(pi->adapter->pdev_dev,
2578 "Setting MAC %pM on VF %d\n", mac, vf);
2579 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2580 if (!ret)
2581 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2582 return ret;
2583 }
2584
cxgb_get_vf_config(struct net_device * dev,int vf,struct ifla_vf_info * ivi)2585 static int cxgb_get_vf_config(struct net_device *dev,
2586 int vf, struct ifla_vf_info *ivi)
2587 {
2588 struct port_info *pi = netdev_priv(dev);
2589 struct adapter *adap = pi->adapter;
2590
2591 if (vf >= adap->num_vfs)
2592 return -EINVAL;
2593 ivi->vf = vf;
2594 ether_addr_copy(ivi->mac, adap->vfinfo[vf].vf_mac_addr);
2595 return 0;
2596 }
2597 #endif
2598
cxgb_set_mac_addr(struct net_device * dev,void * p)2599 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2600 {
2601 int ret;
2602 struct sockaddr *addr = p;
2603 struct port_info *pi = netdev_priv(dev);
2604
2605 if (!is_valid_ether_addr(addr->sa_data))
2606 return -EADDRNOTAVAIL;
2607
2608 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2609 pi->xact_addr_filt, addr->sa_data, true, true);
2610 if (ret < 0)
2611 return ret;
2612
2613 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2614 pi->xact_addr_filt = ret;
2615 return 0;
2616 }
2617
2618 #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)2619 static void cxgb_netpoll(struct net_device *dev)
2620 {
2621 struct port_info *pi = netdev_priv(dev);
2622 struct adapter *adap = pi->adapter;
2623
2624 if (adap->flags & USING_MSIX) {
2625 int i;
2626 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2627
2628 for (i = pi->nqsets; i; i--, rx++)
2629 t4_sge_intr_msix(0, &rx->rspq);
2630 } else
2631 t4_intr_handler(adap)(0, adap);
2632 }
2633 #endif
2634
cxgb_set_tx_maxrate(struct net_device * dev,int index,u32 rate)2635 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2636 {
2637 struct port_info *pi = netdev_priv(dev);
2638 struct adapter *adap = pi->adapter;
2639 struct sched_class *e;
2640 struct ch_sched_params p;
2641 struct ch_sched_queue qe;
2642 u32 req_rate;
2643 int err = 0;
2644
2645 if (!can_sched(dev))
2646 return -ENOTSUPP;
2647
2648 if (index < 0 || index > pi->nqsets - 1)
2649 return -EINVAL;
2650
2651 if (!(adap->flags & FULL_INIT_DONE)) {
2652 dev_err(adap->pdev_dev,
2653 "Failed to rate limit on queue %d. Link Down?\n",
2654 index);
2655 return -EINVAL;
2656 }
2657
2658 /* Convert from Mbps to Kbps */
2659 req_rate = rate << 10;
2660
2661 /* Max rate is 10 Gbps */
2662 if (req_rate >= SCHED_MAX_RATE_KBPS) {
2663 dev_err(adap->pdev_dev,
2664 "Invalid rate %u Mbps, Max rate is %u Gbps\n",
2665 rate, SCHED_MAX_RATE_KBPS);
2666 return -ERANGE;
2667 }
2668
2669 /* First unbind the queue from any existing class */
2670 memset(&qe, 0, sizeof(qe));
2671 qe.queue = index;
2672 qe.class = SCHED_CLS_NONE;
2673
2674 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2675 if (err) {
2676 dev_err(adap->pdev_dev,
2677 "Unbinding Queue %d on port %d fail. Err: %d\n",
2678 index, pi->port_id, err);
2679 return err;
2680 }
2681
2682 /* Queue already unbound */
2683 if (!req_rate)
2684 return 0;
2685
2686 /* Fetch any available unused or matching scheduling class */
2687 memset(&p, 0, sizeof(p));
2688 p.type = SCHED_CLASS_TYPE_PACKET;
2689 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
2690 p.u.params.mode = SCHED_CLASS_MODE_CLASS;
2691 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2692 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2693 p.u.params.channel = pi->tx_chan;
2694 p.u.params.class = SCHED_CLS_NONE;
2695 p.u.params.minrate = 0;
2696 p.u.params.maxrate = req_rate;
2697 p.u.params.weight = 0;
2698 p.u.params.pktsize = dev->mtu;
2699
2700 e = cxgb4_sched_class_alloc(dev, &p);
2701 if (!e)
2702 return -ENOMEM;
2703
2704 /* Bind the queue to a scheduling class */
2705 memset(&qe, 0, sizeof(qe));
2706 qe.queue = index;
2707 qe.class = e->idx;
2708
2709 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2710 if (err)
2711 dev_err(adap->pdev_dev,
2712 "Queue rate limiting failed. Err: %d\n", err);
2713 return err;
2714 }
2715
cxgb_setup_tc(struct net_device * dev,u32 handle,__be16 proto,struct tc_to_netdev * tc)2716 static int cxgb_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
2717 struct tc_to_netdev *tc)
2718 {
2719 struct port_info *pi = netdev2pinfo(dev);
2720 struct adapter *adap = netdev2adap(dev);
2721
2722 if (!(adap->flags & FULL_INIT_DONE)) {
2723 dev_err(adap->pdev_dev,
2724 "Failed to setup tc on port %d. Link Down?\n",
2725 pi->port_id);
2726 return -EINVAL;
2727 }
2728
2729 if (TC_H_MAJ(handle) == TC_H_MAJ(TC_H_INGRESS) &&
2730 tc->type == TC_SETUP_CLSU32) {
2731 switch (tc->cls_u32->command) {
2732 case TC_CLSU32_NEW_KNODE:
2733 case TC_CLSU32_REPLACE_KNODE:
2734 return cxgb4_config_knode(dev, proto, tc->cls_u32);
2735 case TC_CLSU32_DELETE_KNODE:
2736 return cxgb4_delete_knode(dev, proto, tc->cls_u32);
2737 default:
2738 return -EOPNOTSUPP;
2739 }
2740 }
2741
2742 return -EOPNOTSUPP;
2743 }
2744
cxgb_fix_features(struct net_device * dev,netdev_features_t features)2745 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2746 netdev_features_t features)
2747 {
2748 /* Disable GRO, if RX_CSUM is disabled */
2749 if (!(features & NETIF_F_RXCSUM))
2750 features &= ~NETIF_F_GRO;
2751
2752 return features;
2753 }
2754
2755 static const struct net_device_ops cxgb4_netdev_ops = {
2756 .ndo_open = cxgb_open,
2757 .ndo_stop = cxgb_close,
2758 .ndo_start_xmit = t4_eth_xmit,
2759 .ndo_select_queue = cxgb_select_queue,
2760 .ndo_get_stats64 = cxgb_get_stats,
2761 .ndo_set_rx_mode = cxgb_set_rxmode,
2762 .ndo_set_mac_address = cxgb_set_mac_addr,
2763 .ndo_set_features = cxgb_set_features,
2764 .ndo_validate_addr = eth_validate_addr,
2765 .ndo_do_ioctl = cxgb_ioctl,
2766 .ndo_change_mtu = cxgb_change_mtu,
2767 #ifdef CONFIG_NET_POLL_CONTROLLER
2768 .ndo_poll_controller = cxgb_netpoll,
2769 #endif
2770 #ifdef CONFIG_CHELSIO_T4_FCOE
2771 .ndo_fcoe_enable = cxgb_fcoe_enable,
2772 .ndo_fcoe_disable = cxgb_fcoe_disable,
2773 #endif /* CONFIG_CHELSIO_T4_FCOE */
2774 #ifdef CONFIG_NET_RX_BUSY_POLL
2775 .ndo_busy_poll = cxgb_busy_poll,
2776 #endif
2777 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate,
2778 .ndo_setup_tc = cxgb_setup_tc,
2779 .ndo_fix_features = cxgb_fix_features,
2780 };
2781
2782 #ifdef CONFIG_PCI_IOV
2783 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
2784 .ndo_open = dummy_open,
2785 .ndo_set_vf_mac = cxgb_set_vf_mac,
2786 .ndo_get_vf_config = cxgb_get_vf_config,
2787 };
2788 #endif
2789
get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)2790 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2791 {
2792 struct adapter *adapter = netdev2adap(dev);
2793
2794 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
2795 strlcpy(info->version, cxgb4_driver_version,
2796 sizeof(info->version));
2797 strlcpy(info->bus_info, pci_name(adapter->pdev),
2798 sizeof(info->bus_info));
2799 }
2800
2801 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
2802 .get_drvinfo = get_drvinfo,
2803 };
2804
t4_fatal_err(struct adapter * adap)2805 void t4_fatal_err(struct adapter *adap)
2806 {
2807 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2808 t4_intr_disable(adap);
2809 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
2810 }
2811
setup_memwin(struct adapter * adap)2812 static void setup_memwin(struct adapter *adap)
2813 {
2814 u32 nic_win_base = t4_get_util_window(adap);
2815
2816 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
2817 }
2818
setup_memwin_rdma(struct adapter * adap)2819 static void setup_memwin_rdma(struct adapter *adap)
2820 {
2821 if (adap->vres.ocq.size) {
2822 u32 start;
2823 unsigned int sz_kb;
2824
2825 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
2826 start &= PCI_BASE_ADDRESS_MEM_MASK;
2827 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
2828 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
2829 t4_write_reg(adap,
2830 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
2831 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
2832 t4_write_reg(adap,
2833 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
2834 adap->vres.ocq.start);
2835 t4_read_reg(adap,
2836 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
2837 }
2838 }
2839
adap_init1(struct adapter * adap,struct fw_caps_config_cmd * c)2840 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
2841 {
2842 u32 v;
2843 int ret;
2844
2845 /* get device capabilities */
2846 memset(c, 0, sizeof(*c));
2847 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2848 FW_CMD_REQUEST_F | FW_CMD_READ_F);
2849 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
2850 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
2851 if (ret < 0)
2852 return ret;
2853
2854 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2855 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
2856 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
2857 if (ret < 0)
2858 return ret;
2859
2860 ret = t4_config_glbl_rss(adap, adap->pf,
2861 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
2862 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
2863 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
2864 if (ret < 0)
2865 return ret;
2866
2867 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
2868 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
2869 FW_CMD_CAP_PF);
2870 if (ret < 0)
2871 return ret;
2872
2873 t4_sge_init(adap);
2874
2875 /* tweak some settings */
2876 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
2877 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
2878 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
2879 v = t4_read_reg(adap, TP_PIO_DATA_A);
2880 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
2881
2882 /* first 4 Tx modulation queues point to consecutive Tx channels */
2883 adap->params.tp.tx_modq_map = 0xE4;
2884 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
2885 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
2886
2887 /* associate each Tx modulation queue with consecutive Tx channels */
2888 v = 0x84218421;
2889 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2890 &v, 1, TP_TX_SCHED_HDR_A);
2891 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2892 &v, 1, TP_TX_SCHED_FIFO_A);
2893 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
2894 &v, 1, TP_TX_SCHED_PCMD_A);
2895
2896 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
2897 if (is_offload(adap)) {
2898 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
2899 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2900 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2901 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2902 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2903 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
2904 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2905 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2906 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
2907 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
2908 }
2909
2910 /* get basic stuff going */
2911 return t4_early_init(adap, adap->pf);
2912 }
2913
2914 /*
2915 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
2916 */
2917 #define MAX_ATIDS 8192U
2918
2919 /*
2920 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
2921 *
2922 * If the firmware we're dealing with has Configuration File support, then
2923 * we use that to perform all configuration
2924 */
2925
2926 /*
2927 * Tweak configuration based on module parameters, etc. Most of these have
2928 * defaults assigned to them by Firmware Configuration Files (if we're using
2929 * them) but need to be explicitly set if we're using hard-coded
2930 * initialization. But even in the case of using Firmware Configuration
2931 * Files, we'd like to expose the ability to change these via module
2932 * parameters so these are essentially common tweaks/settings for
2933 * Configuration Files and hard-coded initialization ...
2934 */
adap_init0_tweaks(struct adapter * adapter)2935 static int adap_init0_tweaks(struct adapter *adapter)
2936 {
2937 /*
2938 * Fix up various Host-Dependent Parameters like Page Size, Cache
2939 * Line Size, etc. The firmware default is for a 4KB Page Size and
2940 * 64B Cache Line Size ...
2941 */
2942 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
2943
2944 /*
2945 * Process module parameters which affect early initialization.
2946 */
2947 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
2948 dev_err(&adapter->pdev->dev,
2949 "Ignoring illegal rx_dma_offset=%d, using 2\n",
2950 rx_dma_offset);
2951 rx_dma_offset = 2;
2952 }
2953 t4_set_reg_field(adapter, SGE_CONTROL_A,
2954 PKTSHIFT_V(PKTSHIFT_M),
2955 PKTSHIFT_V(rx_dma_offset));
2956
2957 /*
2958 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
2959 * adds the pseudo header itself.
2960 */
2961 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
2962 CSUM_HAS_PSEUDO_HDR_F, 0);
2963
2964 return 0;
2965 }
2966
2967 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
2968 * unto themselves and they contain their own firmware to perform their
2969 * tasks ...
2970 */
phy_aq1202_version(const u8 * phy_fw_data,size_t phy_fw_size)2971 static int phy_aq1202_version(const u8 *phy_fw_data,
2972 size_t phy_fw_size)
2973 {
2974 int offset;
2975
2976 /* At offset 0x8 you're looking for the primary image's
2977 * starting offset which is 3 Bytes wide
2978 *
2979 * At offset 0xa of the primary image, you look for the offset
2980 * of the DRAM segment which is 3 Bytes wide.
2981 *
2982 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
2983 * wide
2984 */
2985 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
2986 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
2987 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
2988
2989 offset = le24(phy_fw_data + 0x8) << 12;
2990 offset = le24(phy_fw_data + offset + 0xa);
2991 return be16(phy_fw_data + offset + 0x27e);
2992
2993 #undef be16
2994 #undef le16
2995 #undef le24
2996 }
2997
2998 static struct info_10gbt_phy_fw {
2999 unsigned int phy_fw_id; /* PCI Device ID */
3000 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
3001 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3002 int phy_flash; /* Has FLASH for PHY Firmware */
3003 } phy_info_array[] = {
3004 {
3005 PHY_AQ1202_DEVICEID,
3006 PHY_AQ1202_FIRMWARE,
3007 phy_aq1202_version,
3008 1,
3009 },
3010 {
3011 PHY_BCM84834_DEVICEID,
3012 PHY_BCM84834_FIRMWARE,
3013 NULL,
3014 0,
3015 },
3016 { 0, NULL, NULL },
3017 };
3018
find_phy_info(int devid)3019 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3020 {
3021 int i;
3022
3023 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3024 if (phy_info_array[i].phy_fw_id == devid)
3025 return &phy_info_array[i];
3026 }
3027 return NULL;
3028 }
3029
3030 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
3031 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
3032 * we return a negative error number. If we transfer new firmware we return 1
3033 * (from t4_load_phy_fw()). If we don't do anything we return 0.
3034 */
adap_init0_phy(struct adapter * adap)3035 static int adap_init0_phy(struct adapter *adap)
3036 {
3037 const struct firmware *phyf;
3038 int ret;
3039 struct info_10gbt_phy_fw *phy_info;
3040
3041 /* Use the device ID to determine which PHY file to flash.
3042 */
3043 phy_info = find_phy_info(adap->pdev->device);
3044 if (!phy_info) {
3045 dev_warn(adap->pdev_dev,
3046 "No PHY Firmware file found for this PHY\n");
3047 return -EOPNOTSUPP;
3048 }
3049
3050 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3051 * use that. The adapter firmware provides us with a memory buffer
3052 * where we can load a PHY firmware file from the host if we want to
3053 * override the PHY firmware File in flash.
3054 */
3055 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3056 adap->pdev_dev);
3057 if (ret < 0) {
3058 /* For adapters without FLASH attached to PHY for their
3059 * firmware, it's obviously a fatal error if we can't get the
3060 * firmware to the adapter. For adapters with PHY firmware
3061 * FLASH storage, it's worth a warning if we can't find the
3062 * PHY Firmware but we'll neuter the error ...
3063 */
3064 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3065 "/lib/firmware/%s, error %d\n",
3066 phy_info->phy_fw_file, -ret);
3067 if (phy_info->phy_flash) {
3068 int cur_phy_fw_ver = 0;
3069
3070 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3071 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3072 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3073 ret = 0;
3074 }
3075
3076 return ret;
3077 }
3078
3079 /* Load PHY Firmware onto adapter.
3080 */
3081 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3082 phy_info->phy_fw_version,
3083 (u8 *)phyf->data, phyf->size);
3084 if (ret < 0)
3085 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3086 -ret);
3087 else if (ret > 0) {
3088 int new_phy_fw_ver = 0;
3089
3090 if (phy_info->phy_fw_version)
3091 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3092 phyf->size);
3093 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3094 "Firmware /lib/firmware/%s, version %#x\n",
3095 phy_info->phy_fw_file, new_phy_fw_ver);
3096 }
3097
3098 release_firmware(phyf);
3099
3100 return ret;
3101 }
3102
3103 /*
3104 * Attempt to initialize the adapter via a Firmware Configuration File.
3105 */
adap_init0_config(struct adapter * adapter,int reset)3106 static int adap_init0_config(struct adapter *adapter, int reset)
3107 {
3108 struct fw_caps_config_cmd caps_cmd;
3109 const struct firmware *cf;
3110 unsigned long mtype = 0, maddr = 0;
3111 u32 finiver, finicsum, cfcsum;
3112 int ret;
3113 int config_issued = 0;
3114 char *fw_config_file, fw_config_file_path[256];
3115 char *config_name = NULL;
3116
3117 /*
3118 * Reset device if necessary.
3119 */
3120 if (reset) {
3121 ret = t4_fw_reset(adapter, adapter->mbox,
3122 PIORSTMODE_F | PIORST_F);
3123 if (ret < 0)
3124 goto bye;
3125 }
3126
3127 /* If this is a 10Gb/s-BT adapter make sure the chip-external
3128 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
3129 * to be performed after any global adapter RESET above since some
3130 * PHYs only have local RAM copies of the PHY firmware.
3131 */
3132 if (is_10gbt_device(adapter->pdev->device)) {
3133 ret = adap_init0_phy(adapter);
3134 if (ret < 0)
3135 goto bye;
3136 }
3137 /*
3138 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3139 * then use that. Otherwise, use the configuration file stored
3140 * in the adapter flash ...
3141 */
3142 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3143 case CHELSIO_T4:
3144 fw_config_file = FW4_CFNAME;
3145 break;
3146 case CHELSIO_T5:
3147 fw_config_file = FW5_CFNAME;
3148 break;
3149 case CHELSIO_T6:
3150 fw_config_file = FW6_CFNAME;
3151 break;
3152 default:
3153 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3154 adapter->pdev->device);
3155 ret = -EINVAL;
3156 goto bye;
3157 }
3158
3159 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3160 if (ret < 0) {
3161 config_name = "On FLASH";
3162 mtype = FW_MEMTYPE_CF_FLASH;
3163 maddr = t4_flash_cfg_addr(adapter);
3164 } else {
3165 u32 params[7], val[7];
3166
3167 sprintf(fw_config_file_path,
3168 "/lib/firmware/%s", fw_config_file);
3169 config_name = fw_config_file_path;
3170
3171 if (cf->size >= FLASH_CFG_MAX_SIZE)
3172 ret = -ENOMEM;
3173 else {
3174 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3175 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3176 ret = t4_query_params(adapter, adapter->mbox,
3177 adapter->pf, 0, 1, params, val);
3178 if (ret == 0) {
3179 /*
3180 * For t4_memory_rw() below addresses and
3181 * sizes have to be in terms of multiples of 4
3182 * bytes. So, if the Configuration File isn't
3183 * a multiple of 4 bytes in length we'll have
3184 * to write that out separately since we can't
3185 * guarantee that the bytes following the
3186 * residual byte in the buffer returned by
3187 * request_firmware() are zeroed out ...
3188 */
3189 size_t resid = cf->size & 0x3;
3190 size_t size = cf->size & ~0x3;
3191 __be32 *data = (__be32 *)cf->data;
3192
3193 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3194 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3195
3196 spin_lock(&adapter->win0_lock);
3197 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3198 size, data, T4_MEMORY_WRITE);
3199 if (ret == 0 && resid != 0) {
3200 union {
3201 __be32 word;
3202 char buf[4];
3203 } last;
3204 int i;
3205
3206 last.word = data[size >> 2];
3207 for (i = resid; i < 4; i++)
3208 last.buf[i] = 0;
3209 ret = t4_memory_rw(adapter, 0, mtype,
3210 maddr + size,
3211 4, &last.word,
3212 T4_MEMORY_WRITE);
3213 }
3214 spin_unlock(&adapter->win0_lock);
3215 }
3216 }
3217
3218 release_firmware(cf);
3219 if (ret)
3220 goto bye;
3221 }
3222
3223 /*
3224 * Issue a Capability Configuration command to the firmware to get it
3225 * to parse the Configuration File. We don't use t4_fw_config_file()
3226 * because we want the ability to modify various features after we've
3227 * processed the configuration file ...
3228 */
3229 memset(&caps_cmd, 0, sizeof(caps_cmd));
3230 caps_cmd.op_to_write =
3231 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3232 FW_CMD_REQUEST_F |
3233 FW_CMD_READ_F);
3234 caps_cmd.cfvalid_to_len16 =
3235 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3236 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3237 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3238 FW_LEN16(caps_cmd));
3239 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3240 &caps_cmd);
3241
3242 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3243 * Configuration File in FLASH), our last gasp effort is to use the
3244 * Firmware Configuration File which is embedded in the firmware. A
3245 * very few early versions of the firmware didn't have one embedded
3246 * but we can ignore those.
3247 */
3248 if (ret == -ENOENT) {
3249 memset(&caps_cmd, 0, sizeof(caps_cmd));
3250 caps_cmd.op_to_write =
3251 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3252 FW_CMD_REQUEST_F |
3253 FW_CMD_READ_F);
3254 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3255 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3256 sizeof(caps_cmd), &caps_cmd);
3257 config_name = "Firmware Default";
3258 }
3259
3260 config_issued = 1;
3261 if (ret < 0)
3262 goto bye;
3263
3264 finiver = ntohl(caps_cmd.finiver);
3265 finicsum = ntohl(caps_cmd.finicsum);
3266 cfcsum = ntohl(caps_cmd.cfcsum);
3267 if (finicsum != cfcsum)
3268 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3269 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3270 finicsum, cfcsum);
3271
3272 /*
3273 * And now tell the firmware to use the configuration we just loaded.
3274 */
3275 caps_cmd.op_to_write =
3276 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3277 FW_CMD_REQUEST_F |
3278 FW_CMD_WRITE_F);
3279 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3280 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3281 NULL);
3282 if (ret < 0)
3283 goto bye;
3284
3285 /*
3286 * Tweak configuration based on system architecture, module
3287 * parameters, etc.
3288 */
3289 ret = adap_init0_tweaks(adapter);
3290 if (ret < 0)
3291 goto bye;
3292
3293 /*
3294 * And finally tell the firmware to initialize itself using the
3295 * parameters from the Configuration File.
3296 */
3297 ret = t4_fw_initialize(adapter, adapter->mbox);
3298 if (ret < 0)
3299 goto bye;
3300
3301 /* Emit Firmware Configuration File information and return
3302 * successfully.
3303 */
3304 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3305 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3306 config_name, finiver, cfcsum);
3307 return 0;
3308
3309 /*
3310 * Something bad happened. Return the error ... (If the "error"
3311 * is that there's no Configuration File on the adapter we don't
3312 * want to issue a warning since this is fairly common.)
3313 */
3314 bye:
3315 if (config_issued && ret != -ENOENT)
3316 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3317 config_name, -ret);
3318 return ret;
3319 }
3320
3321 static struct fw_info fw_info_array[] = {
3322 {
3323 .chip = CHELSIO_T4,
3324 .fs_name = FW4_CFNAME,
3325 .fw_mod_name = FW4_FNAME,
3326 .fw_hdr = {
3327 .chip = FW_HDR_CHIP_T4,
3328 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3329 .intfver_nic = FW_INTFVER(T4, NIC),
3330 .intfver_vnic = FW_INTFVER(T4, VNIC),
3331 .intfver_ri = FW_INTFVER(T4, RI),
3332 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3333 .intfver_fcoe = FW_INTFVER(T4, FCOE),
3334 },
3335 }, {
3336 .chip = CHELSIO_T5,
3337 .fs_name = FW5_CFNAME,
3338 .fw_mod_name = FW5_FNAME,
3339 .fw_hdr = {
3340 .chip = FW_HDR_CHIP_T5,
3341 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3342 .intfver_nic = FW_INTFVER(T5, NIC),
3343 .intfver_vnic = FW_INTFVER(T5, VNIC),
3344 .intfver_ri = FW_INTFVER(T5, RI),
3345 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3346 .intfver_fcoe = FW_INTFVER(T5, FCOE),
3347 },
3348 }, {
3349 .chip = CHELSIO_T6,
3350 .fs_name = FW6_CFNAME,
3351 .fw_mod_name = FW6_FNAME,
3352 .fw_hdr = {
3353 .chip = FW_HDR_CHIP_T6,
3354 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3355 .intfver_nic = FW_INTFVER(T6, NIC),
3356 .intfver_vnic = FW_INTFVER(T6, VNIC),
3357 .intfver_ofld = FW_INTFVER(T6, OFLD),
3358 .intfver_ri = FW_INTFVER(T6, RI),
3359 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3360 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3361 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3362 .intfver_fcoe = FW_INTFVER(T6, FCOE),
3363 },
3364 }
3365
3366 };
3367
find_fw_info(int chip)3368 static struct fw_info *find_fw_info(int chip)
3369 {
3370 int i;
3371
3372 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3373 if (fw_info_array[i].chip == chip)
3374 return &fw_info_array[i];
3375 }
3376 return NULL;
3377 }
3378
3379 /*
3380 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3381 */
adap_init0(struct adapter * adap)3382 static int adap_init0(struct adapter *adap)
3383 {
3384 int ret;
3385 u32 v, port_vec;
3386 enum dev_state state;
3387 u32 params[7], val[7];
3388 struct fw_caps_config_cmd caps_cmd;
3389 int reset = 1;
3390
3391 /* Grab Firmware Device Log parameters as early as possible so we have
3392 * access to it for debugging, etc.
3393 */
3394 ret = t4_init_devlog_params(adap);
3395 if (ret < 0)
3396 return ret;
3397
3398 /* Contact FW, advertising Master capability */
3399 ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3400 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3401 if (ret < 0) {
3402 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3403 ret);
3404 return ret;
3405 }
3406 if (ret == adap->mbox)
3407 adap->flags |= MASTER_PF;
3408
3409 /*
3410 * If we're the Master PF Driver and the device is uninitialized,
3411 * then let's consider upgrading the firmware ... (We always want
3412 * to check the firmware version number in order to A. get it for
3413 * later reporting and B. to warn if the currently loaded firmware
3414 * is excessively mismatched relative to the driver.)
3415 */
3416 t4_get_fw_version(adap, &adap->params.fw_vers);
3417 t4_get_bs_version(adap, &adap->params.bs_vers);
3418 t4_get_tp_version(adap, &adap->params.tp_vers);
3419 t4_get_exprom_version(adap, &adap->params.er_vers);
3420
3421 ret = t4_check_fw_version(adap);
3422 /* If firmware is too old (not supported by driver) force an update. */
3423 if (ret)
3424 state = DEV_STATE_UNINIT;
3425 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3426 struct fw_info *fw_info;
3427 struct fw_hdr *card_fw;
3428 const struct firmware *fw;
3429 const u8 *fw_data = NULL;
3430 unsigned int fw_size = 0;
3431
3432 /* This is the firmware whose headers the driver was compiled
3433 * against
3434 */
3435 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3436 if (fw_info == NULL) {
3437 dev_err(adap->pdev_dev,
3438 "unable to get firmware info for chip %d.\n",
3439 CHELSIO_CHIP_VERSION(adap->params.chip));
3440 return -EINVAL;
3441 }
3442
3443 /* allocate memory to read the header of the firmware on the
3444 * card
3445 */
3446 card_fw = t4_alloc_mem(sizeof(*card_fw));
3447
3448 /* Get FW from from /lib/firmware/ */
3449 ret = request_firmware(&fw, fw_info->fw_mod_name,
3450 adap->pdev_dev);
3451 if (ret < 0) {
3452 dev_err(adap->pdev_dev,
3453 "unable to load firmware image %s, error %d\n",
3454 fw_info->fw_mod_name, ret);
3455 } else {
3456 fw_data = fw->data;
3457 fw_size = fw->size;
3458 }
3459
3460 /* upgrade FW logic */
3461 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3462 state, &reset);
3463
3464 /* Cleaning up */
3465 release_firmware(fw);
3466 t4_free_mem(card_fw);
3467
3468 if (ret < 0)
3469 goto bye;
3470 }
3471
3472 /*
3473 * Grab VPD parameters. This should be done after we establish a
3474 * connection to the firmware since some of the VPD parameters
3475 * (notably the Core Clock frequency) are retrieved via requests to
3476 * the firmware. On the other hand, we need these fairly early on
3477 * so we do this right after getting ahold of the firmware.
3478 */
3479 ret = t4_get_vpd_params(adap, &adap->params.vpd);
3480 if (ret < 0)
3481 goto bye;
3482
3483 /*
3484 * Find out what ports are available to us. Note that we need to do
3485 * this before calling adap_init0_no_config() since it needs nports
3486 * and portvec ...
3487 */
3488 v =
3489 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3490 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3491 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3492 if (ret < 0)
3493 goto bye;
3494
3495 adap->params.nports = hweight32(port_vec);
3496 adap->params.portvec = port_vec;
3497
3498 /* If the firmware is initialized already, emit a simply note to that
3499 * effect. Otherwise, it's time to try initializing the adapter.
3500 */
3501 if (state == DEV_STATE_INIT) {
3502 dev_info(adap->pdev_dev, "Coming up as %s: "\
3503 "Adapter already initialized\n",
3504 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3505 } else {
3506 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3507 "Initializing adapter\n");
3508
3509 /* Find out whether we're dealing with a version of the
3510 * firmware which has configuration file support.
3511 */
3512 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3513 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3514 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3515 params, val);
3516
3517 /* If the firmware doesn't support Configuration Files,
3518 * return an error.
3519 */
3520 if (ret < 0) {
3521 dev_err(adap->pdev_dev, "firmware doesn't support "
3522 "Firmware Configuration Files\n");
3523 goto bye;
3524 }
3525
3526 /* The firmware provides us with a memory buffer where we can
3527 * load a Configuration File from the host if we want to
3528 * override the Configuration File in flash.
3529 */
3530 ret = adap_init0_config(adap, reset);
3531 if (ret == -ENOENT) {
3532 dev_err(adap->pdev_dev, "no Configuration File "
3533 "present on adapter.\n");
3534 goto bye;
3535 }
3536 if (ret < 0) {
3537 dev_err(adap->pdev_dev, "could not initialize "
3538 "adapter, error %d\n", -ret);
3539 goto bye;
3540 }
3541 }
3542
3543 /* Give the SGE code a chance to pull in anything that it needs ...
3544 * Note that this must be called after we retrieve our VPD parameters
3545 * in order to know how to convert core ticks to seconds, etc.
3546 */
3547 ret = t4_sge_init(adap);
3548 if (ret < 0)
3549 goto bye;
3550
3551 if (is_bypass_device(adap->pdev->device))
3552 adap->params.bypass = 1;
3553
3554 /*
3555 * Grab some of our basic fundamental operating parameters.
3556 */
3557 #define FW_PARAM_DEV(param) \
3558 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3559 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3560
3561 #define FW_PARAM_PFVF(param) \
3562 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3563 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
3564 FW_PARAMS_PARAM_Y_V(0) | \
3565 FW_PARAMS_PARAM_Z_V(0)
3566
3567 params[0] = FW_PARAM_PFVF(EQ_START);
3568 params[1] = FW_PARAM_PFVF(L2T_START);
3569 params[2] = FW_PARAM_PFVF(L2T_END);
3570 params[3] = FW_PARAM_PFVF(FILTER_START);
3571 params[4] = FW_PARAM_PFVF(FILTER_END);
3572 params[5] = FW_PARAM_PFVF(IQFLINT_START);
3573 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3574 if (ret < 0)
3575 goto bye;
3576 adap->sge.egr_start = val[0];
3577 adap->l2t_start = val[1];
3578 adap->l2t_end = val[2];
3579 adap->tids.ftid_base = val[3];
3580 adap->tids.nftids = val[4] - val[3] + 1;
3581 adap->sge.ingr_start = val[5];
3582
3583 /* qids (ingress/egress) returned from firmware can be anywhere
3584 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3585 * Hence driver needs to allocate memory for this range to
3586 * store the queue info. Get the highest IQFLINT/EQ index returned
3587 * in FW_EQ_*_CMD.alloc command.
3588 */
3589 params[0] = FW_PARAM_PFVF(EQ_END);
3590 params[1] = FW_PARAM_PFVF(IQFLINT_END);
3591 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3592 if (ret < 0)
3593 goto bye;
3594 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3595 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3596
3597 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3598 sizeof(*adap->sge.egr_map), GFP_KERNEL);
3599 if (!adap->sge.egr_map) {
3600 ret = -ENOMEM;
3601 goto bye;
3602 }
3603
3604 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3605 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3606 if (!adap->sge.ingr_map) {
3607 ret = -ENOMEM;
3608 goto bye;
3609 }
3610
3611 /* Allocate the memory for the vaious egress queue bitmaps
3612 * ie starving_fl, txq_maperr and blocked_fl.
3613 */
3614 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3615 sizeof(long), GFP_KERNEL);
3616 if (!adap->sge.starving_fl) {
3617 ret = -ENOMEM;
3618 goto bye;
3619 }
3620
3621 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3622 sizeof(long), GFP_KERNEL);
3623 if (!adap->sge.txq_maperr) {
3624 ret = -ENOMEM;
3625 goto bye;
3626 }
3627
3628 #ifdef CONFIG_DEBUG_FS
3629 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3630 sizeof(long), GFP_KERNEL);
3631 if (!adap->sge.blocked_fl) {
3632 ret = -ENOMEM;
3633 goto bye;
3634 }
3635 #endif
3636
3637 params[0] = FW_PARAM_PFVF(CLIP_START);
3638 params[1] = FW_PARAM_PFVF(CLIP_END);
3639 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3640 if (ret < 0)
3641 goto bye;
3642 adap->clipt_start = val[0];
3643 adap->clipt_end = val[1];
3644
3645 /* We don't yet have a PARAMs calls to retrieve the number of Traffic
3646 * Classes supported by the hardware/firmware so we hard code it here
3647 * for now.
3648 */
3649 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
3650
3651 /* query params related to active filter region */
3652 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3653 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3654 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3655 /* If Active filter size is set we enable establishing
3656 * offload connection through firmware work request
3657 */
3658 if ((val[0] != val[1]) && (ret >= 0)) {
3659 adap->flags |= FW_OFLD_CONN;
3660 adap->tids.aftid_base = val[0];
3661 adap->tids.aftid_end = val[1];
3662 }
3663
3664 /* If we're running on newer firmware, let it know that we're
3665 * prepared to deal with encapsulated CPL messages. Older
3666 * firmware won't understand this and we'll just get
3667 * unencapsulated messages ...
3668 */
3669 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3670 val[0] = 1;
3671 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3672
3673 /*
3674 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3675 * capability. Earlier versions of the firmware didn't have the
3676 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3677 * permission to use ULPTX MEMWRITE DSGL.
3678 */
3679 if (is_t4(adap->params.chip)) {
3680 adap->params.ulptx_memwrite_dsgl = false;
3681 } else {
3682 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3683 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3684 1, params, val);
3685 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3686 }
3687
3688 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
3689 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
3690 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3691 1, params, val);
3692 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
3693
3694 /*
3695 * Get device capabilities so we can determine what resources we need
3696 * to manage.
3697 */
3698 memset(&caps_cmd, 0, sizeof(caps_cmd));
3699 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3700 FW_CMD_REQUEST_F | FW_CMD_READ_F);
3701 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3702 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3703 &caps_cmd);
3704 if (ret < 0)
3705 goto bye;
3706
3707 if (caps_cmd.ofldcaps) {
3708 /* query offload-related parameters */
3709 params[0] = FW_PARAM_DEV(NTID);
3710 params[1] = FW_PARAM_PFVF(SERVER_START);
3711 params[2] = FW_PARAM_PFVF(SERVER_END);
3712 params[3] = FW_PARAM_PFVF(TDDP_START);
3713 params[4] = FW_PARAM_PFVF(TDDP_END);
3714 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3715 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3716 params, val);
3717 if (ret < 0)
3718 goto bye;
3719 adap->tids.ntids = val[0];
3720 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3721 adap->tids.stid_base = val[1];
3722 adap->tids.nstids = val[2] - val[1] + 1;
3723 /*
3724 * Setup server filter region. Divide the available filter
3725 * region into two parts. Regular filters get 1/3rd and server
3726 * filters get 2/3rd part. This is only enabled if workarond
3727 * path is enabled.
3728 * 1. For regular filters.
3729 * 2. Server filter: This are special filters which are used
3730 * to redirect SYN packets to offload queue.
3731 */
3732 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3733 adap->tids.sftid_base = adap->tids.ftid_base +
3734 DIV_ROUND_UP(adap->tids.nftids, 3);
3735 adap->tids.nsftids = adap->tids.nftids -
3736 DIV_ROUND_UP(adap->tids.nftids, 3);
3737 adap->tids.nftids = adap->tids.sftid_base -
3738 adap->tids.ftid_base;
3739 }
3740 adap->vres.ddp.start = val[3];
3741 adap->vres.ddp.size = val[4] - val[3] + 1;
3742 adap->params.ofldq_wr_cred = val[5];
3743
3744 adap->params.offload = 1;
3745 adap->num_ofld_uld += 1;
3746 }
3747 if (caps_cmd.rdmacaps) {
3748 params[0] = FW_PARAM_PFVF(STAG_START);
3749 params[1] = FW_PARAM_PFVF(STAG_END);
3750 params[2] = FW_PARAM_PFVF(RQ_START);
3751 params[3] = FW_PARAM_PFVF(RQ_END);
3752 params[4] = FW_PARAM_PFVF(PBL_START);
3753 params[5] = FW_PARAM_PFVF(PBL_END);
3754 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3755 params, val);
3756 if (ret < 0)
3757 goto bye;
3758 adap->vres.stag.start = val[0];
3759 adap->vres.stag.size = val[1] - val[0] + 1;
3760 adap->vres.rq.start = val[2];
3761 adap->vres.rq.size = val[3] - val[2] + 1;
3762 adap->vres.pbl.start = val[4];
3763 adap->vres.pbl.size = val[5] - val[4] + 1;
3764
3765 params[0] = FW_PARAM_PFVF(SQRQ_START);
3766 params[1] = FW_PARAM_PFVF(SQRQ_END);
3767 params[2] = FW_PARAM_PFVF(CQ_START);
3768 params[3] = FW_PARAM_PFVF(CQ_END);
3769 params[4] = FW_PARAM_PFVF(OCQ_START);
3770 params[5] = FW_PARAM_PFVF(OCQ_END);
3771 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
3772 val);
3773 if (ret < 0)
3774 goto bye;
3775 adap->vres.qp.start = val[0];
3776 adap->vres.qp.size = val[1] - val[0] + 1;
3777 adap->vres.cq.start = val[2];
3778 adap->vres.cq.size = val[3] - val[2] + 1;
3779 adap->vres.ocq.start = val[4];
3780 adap->vres.ocq.size = val[5] - val[4] + 1;
3781
3782 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
3783 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
3784 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
3785 val);
3786 if (ret < 0) {
3787 adap->params.max_ordird_qp = 8;
3788 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
3789 ret = 0;
3790 } else {
3791 adap->params.max_ordird_qp = val[0];
3792 adap->params.max_ird_adapter = val[1];
3793 }
3794 dev_info(adap->pdev_dev,
3795 "max_ordird_qp %d max_ird_adapter %d\n",
3796 adap->params.max_ordird_qp,
3797 adap->params.max_ird_adapter);
3798 adap->num_ofld_uld += 2;
3799 }
3800 if (caps_cmd.iscsicaps) {
3801 params[0] = FW_PARAM_PFVF(ISCSI_START);
3802 params[1] = FW_PARAM_PFVF(ISCSI_END);
3803 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
3804 params, val);
3805 if (ret < 0)
3806 goto bye;
3807 adap->vres.iscsi.start = val[0];
3808 adap->vres.iscsi.size = val[1] - val[0] + 1;
3809 /* LIO target and cxgb4i initiaitor */
3810 adap->num_ofld_uld += 2;
3811 }
3812 if (caps_cmd.cryptocaps) {
3813 /* Should query params here...TODO */
3814 adap->params.crypto |= ULP_CRYPTO_LOOKASIDE;
3815 adap->num_uld += 1;
3816 }
3817 #undef FW_PARAM_PFVF
3818 #undef FW_PARAM_DEV
3819
3820 /* The MTU/MSS Table is initialized by now, so load their values. If
3821 * we're initializing the adapter, then we'll make any modifications
3822 * we want to the MTU/MSS Table and also initialize the congestion
3823 * parameters.
3824 */
3825 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
3826 if (state != DEV_STATE_INIT) {
3827 int i;
3828
3829 /* The default MTU Table contains values 1492 and 1500.
3830 * However, for TCP, it's better to have two values which are
3831 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
3832 * This allows us to have a TCP Data Payload which is a
3833 * multiple of 8 regardless of what combination of TCP Options
3834 * are in use (always a multiple of 4 bytes) which is
3835 * important for performance reasons. For instance, if no
3836 * options are in use, then we have a 20-byte IP header and a
3837 * 20-byte TCP header. In this case, a 1500-byte MSS would
3838 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
3839 * which is not a multiple of 8. So using an MSS of 1488 in
3840 * this case results in a TCP Data Payload of 1448 bytes which
3841 * is a multiple of 8. On the other hand, if 12-byte TCP Time
3842 * Stamps have been negotiated, then an MTU of 1500 bytes
3843 * results in a TCP Data Payload of 1448 bytes which, as
3844 * above, is a multiple of 8 bytes ...
3845 */
3846 for (i = 0; i < NMTUS; i++)
3847 if (adap->params.mtus[i] == 1492) {
3848 adap->params.mtus[i] = 1488;
3849 break;
3850 }
3851
3852 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3853 adap->params.b_wnd);
3854 }
3855 t4_init_sge_params(adap);
3856 adap->flags |= FW_OK;
3857 t4_init_tp_params(adap);
3858 return 0;
3859
3860 /*
3861 * Something bad happened. If a command timed out or failed with EIO
3862 * FW does not operate within its spec or something catastrophic
3863 * happened to HW/FW, stop issuing commands.
3864 */
3865 bye:
3866 kfree(adap->sge.egr_map);
3867 kfree(adap->sge.ingr_map);
3868 kfree(adap->sge.starving_fl);
3869 kfree(adap->sge.txq_maperr);
3870 #ifdef CONFIG_DEBUG_FS
3871 kfree(adap->sge.blocked_fl);
3872 #endif
3873 if (ret != -ETIMEDOUT && ret != -EIO)
3874 t4_fw_bye(adap, adap->mbox);
3875 return ret;
3876 }
3877
3878 /* EEH callbacks */
3879
eeh_err_detected(struct pci_dev * pdev,pci_channel_state_t state)3880 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
3881 pci_channel_state_t state)
3882 {
3883 int i;
3884 struct adapter *adap = pci_get_drvdata(pdev);
3885
3886 if (!adap)
3887 goto out;
3888
3889 rtnl_lock();
3890 adap->flags &= ~FW_OK;
3891 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
3892 spin_lock(&adap->stats_lock);
3893 for_each_port(adap, i) {
3894 struct net_device *dev = adap->port[i];
3895
3896 netif_device_detach(dev);
3897 netif_carrier_off(dev);
3898 }
3899 spin_unlock(&adap->stats_lock);
3900 disable_interrupts(adap);
3901 if (adap->flags & FULL_INIT_DONE)
3902 cxgb_down(adap);
3903 rtnl_unlock();
3904 if ((adap->flags & DEV_ENABLED)) {
3905 pci_disable_device(pdev);
3906 adap->flags &= ~DEV_ENABLED;
3907 }
3908 out: return state == pci_channel_io_perm_failure ?
3909 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
3910 }
3911
eeh_slot_reset(struct pci_dev * pdev)3912 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
3913 {
3914 int i, ret;
3915 struct fw_caps_config_cmd c;
3916 struct adapter *adap = pci_get_drvdata(pdev);
3917
3918 if (!adap) {
3919 pci_restore_state(pdev);
3920 pci_save_state(pdev);
3921 return PCI_ERS_RESULT_RECOVERED;
3922 }
3923
3924 if (!(adap->flags & DEV_ENABLED)) {
3925 if (pci_enable_device(pdev)) {
3926 dev_err(&pdev->dev, "Cannot reenable PCI "
3927 "device after reset\n");
3928 return PCI_ERS_RESULT_DISCONNECT;
3929 }
3930 adap->flags |= DEV_ENABLED;
3931 }
3932
3933 pci_set_master(pdev);
3934 pci_restore_state(pdev);
3935 pci_save_state(pdev);
3936 pci_cleanup_aer_uncorrect_error_status(pdev);
3937
3938 if (t4_wait_dev_ready(adap->regs) < 0)
3939 return PCI_ERS_RESULT_DISCONNECT;
3940 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
3941 return PCI_ERS_RESULT_DISCONNECT;
3942 adap->flags |= FW_OK;
3943 if (adap_init1(adap, &c))
3944 return PCI_ERS_RESULT_DISCONNECT;
3945
3946 for_each_port(adap, i) {
3947 struct port_info *p = adap2pinfo(adap, i);
3948
3949 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
3950 NULL, NULL);
3951 if (ret < 0)
3952 return PCI_ERS_RESULT_DISCONNECT;
3953 p->viid = ret;
3954 p->xact_addr_filt = -1;
3955 }
3956
3957 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
3958 adap->params.b_wnd);
3959 setup_memwin(adap);
3960 if (cxgb_up(adap))
3961 return PCI_ERS_RESULT_DISCONNECT;
3962 return PCI_ERS_RESULT_RECOVERED;
3963 }
3964
eeh_resume(struct pci_dev * pdev)3965 static void eeh_resume(struct pci_dev *pdev)
3966 {
3967 int i;
3968 struct adapter *adap = pci_get_drvdata(pdev);
3969
3970 if (!adap)
3971 return;
3972
3973 rtnl_lock();
3974 for_each_port(adap, i) {
3975 struct net_device *dev = adap->port[i];
3976
3977 if (netif_running(dev)) {
3978 link_start(dev);
3979 cxgb_set_rxmode(dev);
3980 }
3981 netif_device_attach(dev);
3982 }
3983 rtnl_unlock();
3984 }
3985
3986 static const struct pci_error_handlers cxgb4_eeh = {
3987 .error_detected = eeh_err_detected,
3988 .slot_reset = eeh_slot_reset,
3989 .resume = eeh_resume,
3990 };
3991
3992 /* Return true if the Link Configuration supports "High Speeds" (those greater
3993 * than 1Gb/s).
3994 */
is_x_10g_port(const struct link_config * lc)3995 static inline bool is_x_10g_port(const struct link_config *lc)
3996 {
3997 unsigned int speeds, high_speeds;
3998
3999 speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported));
4000 high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G);
4001
4002 return high_speeds != 0;
4003 }
4004
4005 /*
4006 * Perform default configuration of DMA queues depending on the number and type
4007 * of ports we found and the number of available CPUs. Most settings can be
4008 * modified by the admin prior to actual use.
4009 */
cfg_queues(struct adapter * adap)4010 static void cfg_queues(struct adapter *adap)
4011 {
4012 struct sge *s = &adap->sge;
4013 int i, n10g = 0, qidx = 0;
4014 #ifndef CONFIG_CHELSIO_T4_DCB
4015 int q10g = 0;
4016 #endif
4017
4018 /* Reduce memory usage in kdump environment, disable all offload.
4019 */
4020 if (is_kdump_kernel()) {
4021 adap->params.offload = 0;
4022 adap->params.crypto = 0;
4023 } else if (is_uld(adap) && t4_uld_mem_alloc(adap)) {
4024 adap->params.offload = 0;
4025 adap->params.crypto = 0;
4026 }
4027
4028 for_each_port(adap, i)
4029 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4030 #ifdef CONFIG_CHELSIO_T4_DCB
4031 /* For Data Center Bridging support we need to be able to support up
4032 * to 8 Traffic Priorities; each of which will be assigned to its
4033 * own TX Queue in order to prevent Head-Of-Line Blocking.
4034 */
4035 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4036 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4037 MAX_ETH_QSETS, adap->params.nports * 8);
4038 BUG_ON(1);
4039 }
4040
4041 for_each_port(adap, i) {
4042 struct port_info *pi = adap2pinfo(adap, i);
4043
4044 pi->first_qset = qidx;
4045 pi->nqsets = 8;
4046 qidx += pi->nqsets;
4047 }
4048 #else /* !CONFIG_CHELSIO_T4_DCB */
4049 /*
4050 * We default to 1 queue per non-10G port and up to # of cores queues
4051 * per 10G port.
4052 */
4053 if (n10g)
4054 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4055 if (q10g > netif_get_num_default_rss_queues())
4056 q10g = netif_get_num_default_rss_queues();
4057
4058 for_each_port(adap, i) {
4059 struct port_info *pi = adap2pinfo(adap, i);
4060
4061 pi->first_qset = qidx;
4062 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4063 qidx += pi->nqsets;
4064 }
4065 #endif /* !CONFIG_CHELSIO_T4_DCB */
4066
4067 s->ethqsets = qidx;
4068 s->max_ethqsets = qidx; /* MSI-X may lower it later */
4069
4070 if (is_uld(adap)) {
4071 /*
4072 * For offload we use 1 queue/channel if all ports are up to 1G,
4073 * otherwise we divide all available queues amongst the channels
4074 * capped by the number of available cores.
4075 */
4076 if (n10g) {
4077 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4078 s->ofldqsets = roundup(i, adap->params.nports);
4079 } else {
4080 s->ofldqsets = adap->params.nports;
4081 }
4082 }
4083
4084 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4085 struct sge_eth_rxq *r = &s->ethrxq[i];
4086
4087 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4088 r->fl.size = 72;
4089 }
4090
4091 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4092 s->ethtxq[i].q.size = 1024;
4093
4094 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4095 s->ctrlq[i].q.size = 512;
4096
4097 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4098 s->ofldtxq[i].q.size = 1024;
4099
4100 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4101 init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4102 }
4103
4104 /*
4105 * Reduce the number of Ethernet queues across all ports to at most n.
4106 * n provides at least one queue per port.
4107 */
reduce_ethqs(struct adapter * adap,int n)4108 static void reduce_ethqs(struct adapter *adap, int n)
4109 {
4110 int i;
4111 struct port_info *pi;
4112
4113 while (n < adap->sge.ethqsets)
4114 for_each_port(adap, i) {
4115 pi = adap2pinfo(adap, i);
4116 if (pi->nqsets > 1) {
4117 pi->nqsets--;
4118 adap->sge.ethqsets--;
4119 if (adap->sge.ethqsets <= n)
4120 break;
4121 }
4122 }
4123
4124 n = 0;
4125 for_each_port(adap, i) {
4126 pi = adap2pinfo(adap, i);
4127 pi->first_qset = n;
4128 n += pi->nqsets;
4129 }
4130 }
4131
get_msix_info(struct adapter * adap)4132 static int get_msix_info(struct adapter *adap)
4133 {
4134 struct uld_msix_info *msix_info;
4135 unsigned int max_ingq = 0;
4136
4137 if (is_offload(adap))
4138 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4139 if (is_pci_uld(adap))
4140 max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4141
4142 if (!max_ingq)
4143 goto out;
4144
4145 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4146 if (!msix_info)
4147 return -ENOMEM;
4148
4149 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4150 sizeof(long), GFP_KERNEL);
4151 if (!adap->msix_bmap_ulds.msix_bmap) {
4152 kfree(msix_info);
4153 return -ENOMEM;
4154 }
4155 spin_lock_init(&adap->msix_bmap_ulds.lock);
4156 adap->msix_info_ulds = msix_info;
4157 out:
4158 return 0;
4159 }
4160
free_msix_info(struct adapter * adap)4161 static void free_msix_info(struct adapter *adap)
4162 {
4163 if (!(adap->num_uld && adap->num_ofld_uld))
4164 return;
4165
4166 kfree(adap->msix_info_ulds);
4167 kfree(adap->msix_bmap_ulds.msix_bmap);
4168 }
4169
4170 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4171 #define EXTRA_VECS 2
4172
enable_msix(struct adapter * adap)4173 static int enable_msix(struct adapter *adap)
4174 {
4175 int ofld_need = 0, uld_need = 0;
4176 int i, j, want, need, allocated;
4177 struct sge *s = &adap->sge;
4178 unsigned int nchan = adap->params.nports;
4179 struct msix_entry *entries;
4180 int max_ingq = MAX_INGQ;
4181
4182 if (is_pci_uld(adap))
4183 max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
4184 if (is_offload(adap))
4185 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
4186 entries = kmalloc(sizeof(*entries) * (max_ingq + 1),
4187 GFP_KERNEL);
4188 if (!entries)
4189 return -ENOMEM;
4190
4191 /* map for msix */
4192 if (get_msix_info(adap)) {
4193 adap->params.offload = 0;
4194 adap->params.crypto = 0;
4195 }
4196
4197 for (i = 0; i < max_ingq + 1; ++i)
4198 entries[i].entry = i;
4199
4200 want = s->max_ethqsets + EXTRA_VECS;
4201 if (is_offload(adap)) {
4202 want += adap->num_ofld_uld * s->ofldqsets;
4203 ofld_need = adap->num_ofld_uld * nchan;
4204 }
4205 if (is_pci_uld(adap)) {
4206 want += adap->num_uld * s->ofldqsets;
4207 uld_need = adap->num_uld * nchan;
4208 }
4209 #ifdef CONFIG_CHELSIO_T4_DCB
4210 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4211 * each port.
4212 */
4213 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4214 #else
4215 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
4216 #endif
4217 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4218 if (allocated < 0) {
4219 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4220 " not using MSI-X\n");
4221 kfree(entries);
4222 return allocated;
4223 }
4224
4225 /* Distribute available vectors to the various queue groups.
4226 * Every group gets its minimum requirement and NIC gets top
4227 * priority for leftovers.
4228 */
4229 i = allocated - EXTRA_VECS - ofld_need - uld_need;
4230 if (i < s->max_ethqsets) {
4231 s->max_ethqsets = i;
4232 if (i < s->ethqsets)
4233 reduce_ethqs(adap, i);
4234 }
4235 if (is_uld(adap)) {
4236 if (allocated < want)
4237 s->nqs_per_uld = nchan;
4238 else
4239 s->nqs_per_uld = s->ofldqsets;
4240 }
4241
4242 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
4243 adap->msix_info[i].vec = entries[i].vector;
4244 if (is_uld(adap)) {
4245 for (j = 0 ; i < allocated; ++i, j++) {
4246 adap->msix_info_ulds[j].vec = entries[i].vector;
4247 adap->msix_info_ulds[j].idx = i;
4248 }
4249 adap->msix_bmap_ulds.mapsize = j;
4250 }
4251 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4252 "nic %d per uld %d\n",
4253 allocated, s->max_ethqsets, s->nqs_per_uld);
4254
4255 kfree(entries);
4256 return 0;
4257 }
4258
4259 #undef EXTRA_VECS
4260
init_rss(struct adapter * adap)4261 static int init_rss(struct adapter *adap)
4262 {
4263 unsigned int i;
4264 int err;
4265
4266 err = t4_init_rss_mode(adap, adap->mbox);
4267 if (err)
4268 return err;
4269
4270 for_each_port(adap, i) {
4271 struct port_info *pi = adap2pinfo(adap, i);
4272
4273 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4274 if (!pi->rss)
4275 return -ENOMEM;
4276 }
4277 return 0;
4278 }
4279
cxgb4_get_pcie_dev_link_caps(struct adapter * adap,enum pci_bus_speed * speed,enum pcie_link_width * width)4280 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4281 enum pci_bus_speed *speed,
4282 enum pcie_link_width *width)
4283 {
4284 u32 lnkcap1, lnkcap2;
4285 int err1, err2;
4286
4287 #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */
4288
4289 *speed = PCI_SPEED_UNKNOWN;
4290 *width = PCIE_LNK_WIDTH_UNKNOWN;
4291
4292 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4293 &lnkcap1);
4294 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4295 &lnkcap2);
4296 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4297 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4298 *speed = PCIE_SPEED_8_0GT;
4299 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4300 *speed = PCIE_SPEED_5_0GT;
4301 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4302 *speed = PCIE_SPEED_2_5GT;
4303 }
4304 if (!err1) {
4305 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4306 if (!lnkcap2) { /* pre-r3.0 */
4307 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4308 *speed = PCIE_SPEED_5_0GT;
4309 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4310 *speed = PCIE_SPEED_2_5GT;
4311 }
4312 }
4313
4314 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4315 return err1 ? err1 : err2 ? err2 : -EINVAL;
4316 return 0;
4317 }
4318
cxgb4_check_pcie_caps(struct adapter * adap)4319 static void cxgb4_check_pcie_caps(struct adapter *adap)
4320 {
4321 enum pcie_link_width width, width_cap;
4322 enum pci_bus_speed speed, speed_cap;
4323
4324 #define PCIE_SPEED_STR(speed) \
4325 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4326 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4327 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4328 "Unknown")
4329
4330 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4331 dev_warn(adap->pdev_dev,
4332 "Unable to determine PCIe device BW capabilities\n");
4333 return;
4334 }
4335
4336 if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4337 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4338 dev_warn(adap->pdev_dev,
4339 "Unable to determine PCI Express bandwidth.\n");
4340 return;
4341 }
4342
4343 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4344 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4345 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4346 width, width_cap);
4347 if (speed < speed_cap || width < width_cap)
4348 dev_info(adap->pdev_dev,
4349 "A slot with more lanes and/or higher speed is "
4350 "suggested for optimal performance.\n");
4351 }
4352
4353 /* Dump basic information about the adapter */
print_adapter_info(struct adapter * adapter)4354 static void print_adapter_info(struct adapter *adapter)
4355 {
4356 /* Device information */
4357 dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4358 adapter->params.vpd.id,
4359 CHELSIO_CHIP_RELEASE(adapter->params.chip));
4360 dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4361 adapter->params.vpd.sn, adapter->params.vpd.pn);
4362
4363 /* Firmware Version */
4364 if (!adapter->params.fw_vers)
4365 dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4366 else
4367 dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4368 FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4369 FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4370 FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4371 FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4372
4373 /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4374 * Firmware, so dev_info() is more appropriate here.)
4375 */
4376 if (!adapter->params.bs_vers)
4377 dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4378 else
4379 dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4380 FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4381 FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4382 FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4383 FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4384
4385 /* TP Microcode Version */
4386 if (!adapter->params.tp_vers)
4387 dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4388 else
4389 dev_info(adapter->pdev_dev,
4390 "TP Microcode version: %u.%u.%u.%u\n",
4391 FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4392 FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4393 FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4394 FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4395
4396 /* Expansion ROM version */
4397 if (!adapter->params.er_vers)
4398 dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4399 else
4400 dev_info(adapter->pdev_dev,
4401 "Expansion ROM version: %u.%u.%u.%u\n",
4402 FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4403 FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4404 FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4405 FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4406
4407 /* Software/Hardware configuration */
4408 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4409 is_offload(adapter) ? "R" : "",
4410 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4411 (adapter->flags & USING_MSI) ? "MSI" : ""),
4412 is_offload(adapter) ? "Offload" : "non-Offload");
4413 }
4414
print_port_info(const struct net_device * dev)4415 static void print_port_info(const struct net_device *dev)
4416 {
4417 char buf[80];
4418 char *bufp = buf;
4419 const char *spd = "";
4420 const struct port_info *pi = netdev_priv(dev);
4421 const struct adapter *adap = pi->adapter;
4422
4423 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4424 spd = " 2.5 GT/s";
4425 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4426 spd = " 5 GT/s";
4427 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4428 spd = " 8 GT/s";
4429
4430 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4431 bufp += sprintf(bufp, "100/");
4432 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4433 bufp += sprintf(bufp, "1000/");
4434 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4435 bufp += sprintf(bufp, "10G/");
4436 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G)
4437 bufp += sprintf(bufp, "25G/");
4438 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4439 bufp += sprintf(bufp, "40G/");
4440 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G)
4441 bufp += sprintf(bufp, "100G/");
4442 if (bufp != buf)
4443 --bufp;
4444 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4445
4446 netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4447 dev->name, adap->params.vpd.id, adap->name, buf);
4448 }
4449
enable_pcie_relaxed_ordering(struct pci_dev * dev)4450 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4451 {
4452 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4453 }
4454
4455 /*
4456 * Free the following resources:
4457 * - memory used for tables
4458 * - MSI/MSI-X
4459 * - net devices
4460 * - resources FW is holding for us
4461 */
free_some_resources(struct adapter * adapter)4462 static void free_some_resources(struct adapter *adapter)
4463 {
4464 unsigned int i;
4465
4466 t4_free_mem(adapter->l2t);
4467 t4_cleanup_sched(adapter);
4468 t4_free_mem(adapter->tids.tid_tab);
4469 cxgb4_cleanup_tc_u32(adapter);
4470 kfree(adapter->sge.egr_map);
4471 kfree(adapter->sge.ingr_map);
4472 kfree(adapter->sge.starving_fl);
4473 kfree(adapter->sge.txq_maperr);
4474 #ifdef CONFIG_DEBUG_FS
4475 kfree(adapter->sge.blocked_fl);
4476 #endif
4477 disable_msi(adapter);
4478
4479 for_each_port(adapter, i)
4480 if (adapter->port[i]) {
4481 struct port_info *pi = adap2pinfo(adapter, i);
4482
4483 if (pi->viid != 0)
4484 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4485 0, pi->viid);
4486 kfree(adap2pinfo(adapter, i)->rss);
4487 free_netdev(adapter->port[i]);
4488 }
4489 if (adapter->flags & FW_OK)
4490 t4_fw_bye(adapter, adapter->pf);
4491 }
4492
4493 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4494 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4495 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4496 #define SEGMENT_SIZE 128
4497
get_chip_type(struct pci_dev * pdev,u32 pl_rev)4498 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4499 {
4500 u16 device_id;
4501
4502 /* Retrieve adapter's device ID */
4503 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4504
4505 switch (device_id >> 12) {
4506 case CHELSIO_T4:
4507 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4508 case CHELSIO_T5:
4509 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4510 case CHELSIO_T6:
4511 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4512 default:
4513 dev_err(&pdev->dev, "Device %d is not supported\n",
4514 device_id);
4515 }
4516 return -EINVAL;
4517 }
4518
4519 #ifdef CONFIG_PCI_IOV
dummy_setup(struct net_device * dev)4520 static void dummy_setup(struct net_device *dev)
4521 {
4522 dev->type = ARPHRD_NONE;
4523 dev->mtu = 0;
4524 dev->hard_header_len = 0;
4525 dev->addr_len = 0;
4526 dev->tx_queue_len = 0;
4527 dev->flags |= IFF_NOARP;
4528 dev->priv_flags |= IFF_NO_QUEUE;
4529
4530 /* Initialize the device structure. */
4531 dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
4532 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
4533 dev->destructor = free_netdev;
4534 }
4535
config_mgmt_dev(struct pci_dev * pdev)4536 static int config_mgmt_dev(struct pci_dev *pdev)
4537 {
4538 struct adapter *adap = pci_get_drvdata(pdev);
4539 struct net_device *netdev;
4540 struct port_info *pi;
4541 char name[IFNAMSIZ];
4542 int err;
4543
4544 snprintf(name, IFNAMSIZ, "mgmtpf%d%d", adap->adap_idx, adap->pf);
4545 netdev = alloc_netdev(0, name, NET_NAME_UNKNOWN, dummy_setup);
4546 if (!netdev)
4547 return -ENOMEM;
4548
4549 pi = netdev_priv(netdev);
4550 pi->adapter = adap;
4551 SET_NETDEV_DEV(netdev, &pdev->dev);
4552
4553 adap->port[0] = netdev;
4554
4555 err = register_netdev(adap->port[0]);
4556 if (err) {
4557 pr_info("Unable to register VF mgmt netdev %s\n", name);
4558 free_netdev(adap->port[0]);
4559 adap->port[0] = NULL;
4560 return err;
4561 }
4562 return 0;
4563 }
4564
cxgb4_iov_configure(struct pci_dev * pdev,int num_vfs)4565 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4566 {
4567 struct adapter *adap = pci_get_drvdata(pdev);
4568 int err = 0;
4569 int current_vfs = pci_num_vf(pdev);
4570 u32 pcie_fw;
4571
4572 pcie_fw = readl(adap->regs + PCIE_FW_A);
4573 /* Check if cxgb4 is the MASTER and fw is initialized */
4574 if (!(pcie_fw & PCIE_FW_INIT_F) ||
4575 !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4576 PCIE_FW_MASTER_G(pcie_fw) != 4) {
4577 dev_warn(&pdev->dev,
4578 "cxgb4 driver needs to be MASTER to support SRIOV\n");
4579 return -EOPNOTSUPP;
4580 }
4581
4582 /* If any of the VF's is already assigned to Guest OS, then
4583 * SRIOV for the same cannot be modified
4584 */
4585 if (current_vfs && pci_vfs_assigned(pdev)) {
4586 dev_err(&pdev->dev,
4587 "Cannot modify SR-IOV while VFs are assigned\n");
4588 num_vfs = current_vfs;
4589 return num_vfs;
4590 }
4591
4592 /* Disable SRIOV when zero is passed.
4593 * One needs to disable SRIOV before modifying it, else
4594 * stack throws the below warning:
4595 * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4596 */
4597 if (!num_vfs) {
4598 pci_disable_sriov(pdev);
4599 if (adap->port[0]) {
4600 unregister_netdev(adap->port[0]);
4601 adap->port[0] = NULL;
4602 }
4603 /* free VF resources */
4604 kfree(adap->vfinfo);
4605 adap->vfinfo = NULL;
4606 adap->num_vfs = 0;
4607 return num_vfs;
4608 }
4609
4610 if (num_vfs != current_vfs) {
4611 err = pci_enable_sriov(pdev, num_vfs);
4612 if (err)
4613 return err;
4614
4615 adap->num_vfs = num_vfs;
4616 err = config_mgmt_dev(pdev);
4617 if (err)
4618 return err;
4619 }
4620
4621 adap->vfinfo = kcalloc(adap->num_vfs,
4622 sizeof(struct vf_info), GFP_KERNEL);
4623 if (adap->vfinfo)
4624 fill_vf_station_mac_addr(adap);
4625 return num_vfs;
4626 }
4627 #endif
4628
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)4629 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4630 {
4631 int func, i, err, s_qpp, qpp, num_seg;
4632 struct port_info *pi;
4633 bool highdma = false;
4634 struct adapter *adapter = NULL;
4635 struct net_device *netdev;
4636 void __iomem *regs;
4637 u32 whoami, pl_rev;
4638 enum chip_type chip;
4639 static int adap_idx = 1;
4640
4641 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4642
4643 err = pci_request_regions(pdev, KBUILD_MODNAME);
4644 if (err) {
4645 /* Just info, some other driver may have claimed the device. */
4646 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4647 return err;
4648 }
4649
4650 err = pci_enable_device(pdev);
4651 if (err) {
4652 dev_err(&pdev->dev, "cannot enable PCI device\n");
4653 goto out_release_regions;
4654 }
4655
4656 regs = pci_ioremap_bar(pdev, 0);
4657 if (!regs) {
4658 dev_err(&pdev->dev, "cannot map device registers\n");
4659 err = -ENOMEM;
4660 goto out_disable_device;
4661 }
4662
4663 err = t4_wait_dev_ready(regs);
4664 if (err < 0)
4665 goto out_unmap_bar0;
4666
4667 /* We control everything through one PF */
4668 whoami = readl(regs + PL_WHOAMI_A);
4669 pl_rev = REV_G(readl(regs + PL_REV_A));
4670 chip = get_chip_type(pdev, pl_rev);
4671 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4672 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4673 if (func != ent->driver_data) {
4674 #ifndef CONFIG_PCI_IOV
4675 iounmap(regs);
4676 #endif
4677 pci_disable_device(pdev);
4678 pci_save_state(pdev); /* to restore SR-IOV later */
4679 goto sriov;
4680 }
4681
4682 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4683 highdma = true;
4684 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4685 if (err) {
4686 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4687 "coherent allocations\n");
4688 goto out_unmap_bar0;
4689 }
4690 } else {
4691 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4692 if (err) {
4693 dev_err(&pdev->dev, "no usable DMA configuration\n");
4694 goto out_unmap_bar0;
4695 }
4696 }
4697
4698 pci_enable_pcie_error_reporting(pdev);
4699 enable_pcie_relaxed_ordering(pdev);
4700 pci_set_master(pdev);
4701 pci_save_state(pdev);
4702
4703 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4704 if (!adapter) {
4705 err = -ENOMEM;
4706 goto out_unmap_bar0;
4707 }
4708 adap_idx++;
4709
4710 adapter->workq = create_singlethread_workqueue("cxgb4");
4711 if (!adapter->workq) {
4712 err = -ENOMEM;
4713 goto out_free_adapter;
4714 }
4715
4716 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4717 (sizeof(struct mbox_cmd) *
4718 T4_OS_LOG_MBOX_CMDS),
4719 GFP_KERNEL);
4720 if (!adapter->mbox_log) {
4721 err = -ENOMEM;
4722 goto out_free_adapter;
4723 }
4724 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4725
4726 /* PCI device has been enabled */
4727 adapter->flags |= DEV_ENABLED;
4728
4729 adapter->regs = regs;
4730 adapter->pdev = pdev;
4731 adapter->pdev_dev = &pdev->dev;
4732 adapter->name = pci_name(pdev);
4733 adapter->mbox = func;
4734 adapter->pf = func;
4735 adapter->msg_enable = dflt_msg_enable;
4736 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4737
4738 spin_lock_init(&adapter->stats_lock);
4739 spin_lock_init(&adapter->tid_release_lock);
4740 spin_lock_init(&adapter->win0_lock);
4741
4742 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4743 INIT_WORK(&adapter->db_full_task, process_db_full);
4744 INIT_WORK(&adapter->db_drop_task, process_db_drop);
4745
4746 err = t4_prep_adapter(adapter);
4747 if (err)
4748 goto out_free_adapter;
4749
4750
4751 if (!is_t4(adapter->params.chip)) {
4752 s_qpp = (QUEUESPERPAGEPF0_S +
4753 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4754 adapter->pf);
4755 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4756 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4757 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4758
4759 /* Each segment size is 128B. Write coalescing is enabled only
4760 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4761 * queue is less no of segments that can be accommodated in
4762 * a page size.
4763 */
4764 if (qpp > num_seg) {
4765 dev_err(&pdev->dev,
4766 "Incorrect number of egress queues per page\n");
4767 err = -EINVAL;
4768 goto out_free_adapter;
4769 }
4770 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4771 pci_resource_len(pdev, 2));
4772 if (!adapter->bar2) {
4773 dev_err(&pdev->dev, "cannot map device bar2 region\n");
4774 err = -ENOMEM;
4775 goto out_free_adapter;
4776 }
4777 }
4778
4779 setup_memwin(adapter);
4780 err = adap_init0(adapter);
4781 #ifdef CONFIG_DEBUG_FS
4782 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4783 #endif
4784 setup_memwin_rdma(adapter);
4785 if (err)
4786 goto out_unmap_bar;
4787
4788 /* configure SGE_STAT_CFG_A to read WC stats */
4789 if (!is_t4(adapter->params.chip))
4790 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4791 (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4792 T6_STATMODE_V(0)));
4793
4794 for_each_port(adapter, i) {
4795 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4796 MAX_ETH_QSETS);
4797 if (!netdev) {
4798 err = -ENOMEM;
4799 goto out_free_dev;
4800 }
4801
4802 SET_NETDEV_DEV(netdev, &pdev->dev);
4803
4804 adapter->port[i] = netdev;
4805 pi = netdev_priv(netdev);
4806 pi->adapter = adapter;
4807 pi->xact_addr_filt = -1;
4808 pi->port_id = i;
4809 netdev->irq = pdev->irq;
4810
4811 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4812 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4813 NETIF_F_RXCSUM | NETIF_F_RXHASH |
4814 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
4815 NETIF_F_HW_TC;
4816 if (highdma)
4817 netdev->hw_features |= NETIF_F_HIGHDMA;
4818 netdev->features |= netdev->hw_features;
4819 netdev->vlan_features = netdev->features & VLAN_FEAT;
4820
4821 netdev->priv_flags |= IFF_UNICAST_FLT;
4822
4823 netdev->netdev_ops = &cxgb4_netdev_ops;
4824 #ifdef CONFIG_CHELSIO_T4_DCB
4825 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4826 cxgb4_dcb_state_init(netdev);
4827 #endif
4828 cxgb4_set_ethtool_ops(netdev);
4829 }
4830
4831 pci_set_drvdata(pdev, adapter);
4832
4833 if (adapter->flags & FW_OK) {
4834 err = t4_port_init(adapter, func, func, 0);
4835 if (err)
4836 goto out_free_dev;
4837 } else if (adapter->params.nports == 1) {
4838 /* If we don't have a connection to the firmware -- possibly
4839 * because of an error -- grab the raw VPD parameters so we
4840 * can set the proper MAC Address on the debug network
4841 * interface that we've created.
4842 */
4843 u8 hw_addr[ETH_ALEN];
4844 u8 *na = adapter->params.vpd.na;
4845
4846 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4847 if (!err) {
4848 for (i = 0; i < ETH_ALEN; i++)
4849 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4850 hex2val(na[2 * i + 1]));
4851 t4_set_hw_addr(adapter, 0, hw_addr);
4852 }
4853 }
4854
4855 /* Configure queues and allocate tables now, they can be needed as
4856 * soon as the first register_netdev completes.
4857 */
4858 cfg_queues(adapter);
4859
4860 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4861 if (!adapter->l2t) {
4862 /* We tolerate a lack of L2T, giving up some functionality */
4863 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4864 adapter->params.offload = 0;
4865 }
4866
4867 #if IS_ENABLED(CONFIG_IPV6)
4868 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4869 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4870 /* CLIP functionality is not present in hardware,
4871 * hence disable all offload features
4872 */
4873 dev_warn(&pdev->dev,
4874 "CLIP not enabled in hardware, continuing\n");
4875 adapter->params.offload = 0;
4876 } else {
4877 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4878 adapter->clipt_end);
4879 if (!adapter->clipt) {
4880 /* We tolerate a lack of clip_table, giving up
4881 * some functionality
4882 */
4883 dev_warn(&pdev->dev,
4884 "could not allocate Clip table, continuing\n");
4885 adapter->params.offload = 0;
4886 }
4887 }
4888 #endif
4889
4890 for_each_port(adapter, i) {
4891 pi = adap2pinfo(adapter, i);
4892 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
4893 if (!pi->sched_tbl)
4894 dev_warn(&pdev->dev,
4895 "could not activate scheduling on port %d\n",
4896 i);
4897 }
4898
4899 if (tid_init(&adapter->tids) < 0) {
4900 dev_warn(&pdev->dev, "could not allocate TID table, "
4901 "continuing\n");
4902 adapter->params.offload = 0;
4903 } else {
4904 adapter->tc_u32 = cxgb4_init_tc_u32(adapter,
4905 CXGB4_MAX_LINK_HANDLE);
4906 if (!adapter->tc_u32)
4907 dev_warn(&pdev->dev,
4908 "could not offload tc u32, continuing\n");
4909 }
4910
4911 if (is_offload(adapter)) {
4912 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4913 u32 hash_base, hash_reg;
4914
4915 if (chip <= CHELSIO_T5) {
4916 hash_reg = LE_DB_TID_HASHBASE_A;
4917 hash_base = t4_read_reg(adapter, hash_reg);
4918 adapter->tids.hash_base = hash_base / 4;
4919 } else {
4920 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4921 hash_base = t4_read_reg(adapter, hash_reg);
4922 adapter->tids.hash_base = hash_base;
4923 }
4924 }
4925 }
4926
4927 /* See what interrupts we'll be using */
4928 if (msi > 1 && enable_msix(adapter) == 0)
4929 adapter->flags |= USING_MSIX;
4930 else if (msi > 0 && pci_enable_msi(pdev) == 0) {
4931 adapter->flags |= USING_MSI;
4932 if (msi > 1)
4933 free_msix_info(adapter);
4934 }
4935
4936 /* check for PCI Express bandwidth capabiltites */
4937 cxgb4_check_pcie_caps(adapter);
4938
4939 err = init_rss(adapter);
4940 if (err)
4941 goto out_free_dev;
4942
4943 /*
4944 * The card is now ready to go. If any errors occur during device
4945 * registration we do not fail the whole card but rather proceed only
4946 * with the ports we manage to register successfully. However we must
4947 * register at least one net device.
4948 */
4949 for_each_port(adapter, i) {
4950 pi = adap2pinfo(adapter, i);
4951 adapter->port[i]->dev_port = pi->lport;
4952 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4953 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4954
4955 err = register_netdev(adapter->port[i]);
4956 if (err)
4957 break;
4958 adapter->chan_map[pi->tx_chan] = i;
4959 print_port_info(adapter->port[i]);
4960 }
4961 if (i == 0) {
4962 dev_err(&pdev->dev, "could not register any net devices\n");
4963 goto out_free_dev;
4964 }
4965 if (err) {
4966 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
4967 err = 0;
4968 }
4969
4970 if (cxgb4_debugfs_root) {
4971 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
4972 cxgb4_debugfs_root);
4973 setup_debugfs(adapter);
4974 }
4975
4976 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
4977 pdev->needs_freset = 1;
4978
4979 if (is_uld(adapter)) {
4980 mutex_lock(&uld_mutex);
4981 list_add_tail(&adapter->list_node, &adapter_list);
4982 mutex_unlock(&uld_mutex);
4983 }
4984
4985 print_adapter_info(adapter);
4986 setup_fw_sge_queues(adapter);
4987 return 0;
4988
4989 sriov:
4990 #ifdef CONFIG_PCI_IOV
4991 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) {
4992 dev_warn(&pdev->dev,
4993 "Enabling SR-IOV VFs using the num_vf module "
4994 "parameter is deprecated - please use the pci sysfs "
4995 "interface instead.\n");
4996 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
4997 dev_info(&pdev->dev,
4998 "instantiated %u virtual functions\n",
4999 num_vf[func]);
5000 }
5001
5002 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5003 if (!adapter) {
5004 err = -ENOMEM;
5005 goto free_pci_region;
5006 }
5007
5008 adapter->pdev = pdev;
5009 adapter->pdev_dev = &pdev->dev;
5010 adapter->name = pci_name(pdev);
5011 adapter->mbox = func;
5012 adapter->pf = func;
5013 adapter->regs = regs;
5014 adapter->adap_idx = adap_idx;
5015 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5016 (sizeof(struct mbox_cmd) *
5017 T4_OS_LOG_MBOX_CMDS),
5018 GFP_KERNEL);
5019 if (!adapter->mbox_log) {
5020 err = -ENOMEM;
5021 goto free_adapter;
5022 }
5023 pci_set_drvdata(pdev, adapter);
5024 return 0;
5025
5026 free_adapter:
5027 kfree(adapter);
5028 free_pci_region:
5029 iounmap(regs);
5030 pci_disable_sriov(pdev);
5031 pci_release_regions(pdev);
5032 return err;
5033 #else
5034 return 0;
5035 #endif
5036
5037 out_free_dev:
5038 free_some_resources(adapter);
5039 if (adapter->flags & USING_MSIX)
5040 free_msix_info(adapter);
5041 if (adapter->num_uld || adapter->num_ofld_uld)
5042 t4_uld_mem_free(adapter);
5043 out_unmap_bar:
5044 if (!is_t4(adapter->params.chip))
5045 iounmap(adapter->bar2);
5046 out_free_adapter:
5047 if (adapter->workq)
5048 destroy_workqueue(adapter->workq);
5049
5050 kfree(adapter->mbox_log);
5051 kfree(adapter);
5052 out_unmap_bar0:
5053 iounmap(regs);
5054 out_disable_device:
5055 pci_disable_pcie_error_reporting(pdev);
5056 pci_disable_device(pdev);
5057 out_release_regions:
5058 pci_release_regions(pdev);
5059 return err;
5060 }
5061
remove_one(struct pci_dev * pdev)5062 static void remove_one(struct pci_dev *pdev)
5063 {
5064 struct adapter *adapter = pci_get_drvdata(pdev);
5065
5066 if (!adapter) {
5067 pci_release_regions(pdev);
5068 return;
5069 }
5070
5071 if (adapter->pf == 4) {
5072 int i;
5073
5074 /* Tear down per-adapter Work Queue first since it can contain
5075 * references to our adapter data structure.
5076 */
5077 destroy_workqueue(adapter->workq);
5078
5079 if (is_uld(adapter))
5080 detach_ulds(adapter);
5081
5082 disable_interrupts(adapter);
5083
5084 for_each_port(adapter, i)
5085 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5086 unregister_netdev(adapter->port[i]);
5087
5088 debugfs_remove_recursive(adapter->debugfs_root);
5089
5090 /* If we allocated filters, free up state associated with any
5091 * valid filters ...
5092 */
5093 clear_all_filters(adapter);
5094
5095 if (adapter->flags & FULL_INIT_DONE)
5096 cxgb_down(adapter);
5097
5098 if (adapter->flags & USING_MSIX)
5099 free_msix_info(adapter);
5100 if (adapter->num_uld || adapter->num_ofld_uld)
5101 t4_uld_mem_free(adapter);
5102 free_some_resources(adapter);
5103 #if IS_ENABLED(CONFIG_IPV6)
5104 t4_cleanup_clip_tbl(adapter);
5105 #endif
5106 iounmap(adapter->regs);
5107 if (!is_t4(adapter->params.chip))
5108 iounmap(adapter->bar2);
5109 pci_disable_pcie_error_reporting(pdev);
5110 if ((adapter->flags & DEV_ENABLED)) {
5111 pci_disable_device(pdev);
5112 adapter->flags &= ~DEV_ENABLED;
5113 }
5114 pci_release_regions(pdev);
5115 kfree(adapter->mbox_log);
5116 synchronize_rcu();
5117 kfree(adapter);
5118 }
5119 #ifdef CONFIG_PCI_IOV
5120 else {
5121 if (adapter->port[0])
5122 unregister_netdev(adapter->port[0]);
5123 iounmap(adapter->regs);
5124 kfree(adapter->vfinfo);
5125 kfree(adapter);
5126 pci_disable_sriov(pdev);
5127 pci_release_regions(pdev);
5128 }
5129 #endif
5130 }
5131
5132 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5133 * delivery. This is essentially a stripped down version of the PCI remove()
5134 * function where we do the minimal amount of work necessary to shutdown any
5135 * further activity.
5136 */
shutdown_one(struct pci_dev * pdev)5137 static void shutdown_one(struct pci_dev *pdev)
5138 {
5139 struct adapter *adapter = pci_get_drvdata(pdev);
5140
5141 /* As with remove_one() above (see extended comment), we only want do
5142 * do cleanup on PCI Devices which went all the way through init_one()
5143 * ...
5144 */
5145 if (!adapter) {
5146 pci_release_regions(pdev);
5147 return;
5148 }
5149
5150 if (adapter->pf == 4) {
5151 int i;
5152
5153 for_each_port(adapter, i)
5154 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5155 cxgb_close(adapter->port[i]);
5156
5157 t4_uld_clean_up(adapter);
5158 disable_interrupts(adapter);
5159 disable_msi(adapter);
5160
5161 t4_sge_stop(adapter);
5162 if (adapter->flags & FW_OK)
5163 t4_fw_bye(adapter, adapter->mbox);
5164 }
5165 #ifdef CONFIG_PCI_IOV
5166 else {
5167 if (adapter->port[0])
5168 unregister_netdev(adapter->port[0]);
5169 iounmap(adapter->regs);
5170 kfree(adapter->vfinfo);
5171 kfree(adapter);
5172 pci_disable_sriov(pdev);
5173 pci_release_regions(pdev);
5174 }
5175 #endif
5176 }
5177
5178 static struct pci_driver cxgb4_driver = {
5179 .name = KBUILD_MODNAME,
5180 .id_table = cxgb4_pci_tbl,
5181 .probe = init_one,
5182 .remove = remove_one,
5183 .shutdown = shutdown_one,
5184 #ifdef CONFIG_PCI_IOV
5185 .sriov_configure = cxgb4_iov_configure,
5186 #endif
5187 .err_handler = &cxgb4_eeh,
5188 };
5189
cxgb4_init_module(void)5190 static int __init cxgb4_init_module(void)
5191 {
5192 int ret;
5193
5194 /* Debugfs support is optional, just warn if this fails */
5195 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5196 if (!cxgb4_debugfs_root)
5197 pr_warn("could not create debugfs entry, continuing\n");
5198
5199 ret = pci_register_driver(&cxgb4_driver);
5200 if (ret < 0)
5201 debugfs_remove(cxgb4_debugfs_root);
5202
5203 #if IS_ENABLED(CONFIG_IPV6)
5204 if (!inet6addr_registered) {
5205 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5206 inet6addr_registered = true;
5207 }
5208 #endif
5209
5210 return ret;
5211 }
5212
cxgb4_cleanup_module(void)5213 static void __exit cxgb4_cleanup_module(void)
5214 {
5215 #if IS_ENABLED(CONFIG_IPV6)
5216 if (inet6addr_registered) {
5217 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5218 inet6addr_registered = false;
5219 }
5220 #endif
5221 pci_unregister_driver(&cxgb4_driver);
5222 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
5223 }
5224
5225 module_init(cxgb4_init_module);
5226 module_exit(cxgb4_cleanup_module);
5227