1 /*
2 * fs/dax.c - Direct Access filesystem code
3 * Copyright (c) 2013-2014 Intel Corporation
4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/iomap.h>
35 #include "internal.h"
36
37 /*
38 * We use lowest available bit in exceptional entry for locking, other two
39 * bits to determine entry type. In total 3 special bits.
40 */
41 #define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 3)
42 #define RADIX_DAX_PTE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
43 #define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
44 #define RADIX_DAX_TYPE_MASK (RADIX_DAX_PTE | RADIX_DAX_PMD)
45 #define RADIX_DAX_TYPE(entry) ((unsigned long)entry & RADIX_DAX_TYPE_MASK)
46 #define RADIX_DAX_SECTOR(entry) (((unsigned long)entry >> RADIX_DAX_SHIFT))
47 #define RADIX_DAX_ENTRY(sector, pmd) ((void *)((unsigned long)sector << \
48 RADIX_DAX_SHIFT | (pmd ? RADIX_DAX_PMD : RADIX_DAX_PTE) | \
49 RADIX_TREE_EXCEPTIONAL_ENTRY))
50
51 /* We choose 4096 entries - same as per-zone page wait tables */
52 #define DAX_WAIT_TABLE_BITS 12
53 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
54
55 wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56
init_dax_wait_table(void)57 static int __init init_dax_wait_table(void)
58 {
59 int i;
60
61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 init_waitqueue_head(wait_table + i);
63 return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66
dax_entry_waitqueue(struct address_space * mapping,pgoff_t index)67 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
68 pgoff_t index)
69 {
70 unsigned long hash = hash_long((unsigned long)mapping ^ index,
71 DAX_WAIT_TABLE_BITS);
72 return wait_table + hash;
73 }
74
dax_map_atomic(struct block_device * bdev,struct blk_dax_ctl * dax)75 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
76 {
77 struct request_queue *q = bdev->bd_queue;
78 long rc = -EIO;
79
80 dax->addr = ERR_PTR(-EIO);
81 if (blk_queue_enter(q, true) != 0)
82 return rc;
83
84 rc = bdev_direct_access(bdev, dax);
85 if (rc < 0) {
86 dax->addr = ERR_PTR(rc);
87 blk_queue_exit(q);
88 return rc;
89 }
90 return rc;
91 }
92
dax_unmap_atomic(struct block_device * bdev,const struct blk_dax_ctl * dax)93 static void dax_unmap_atomic(struct block_device *bdev,
94 const struct blk_dax_ctl *dax)
95 {
96 if (IS_ERR(dax->addr))
97 return;
98 blk_queue_exit(bdev->bd_queue);
99 }
100
read_dax_sector(struct block_device * bdev,sector_t n)101 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
102 {
103 struct page *page = alloc_pages(GFP_KERNEL, 0);
104 struct blk_dax_ctl dax = {
105 .size = PAGE_SIZE,
106 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
107 };
108 long rc;
109
110 if (!page)
111 return ERR_PTR(-ENOMEM);
112
113 rc = dax_map_atomic(bdev, &dax);
114 if (rc < 0)
115 return ERR_PTR(rc);
116 memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
117 dax_unmap_atomic(bdev, &dax);
118 return page;
119 }
120
buffer_written(struct buffer_head * bh)121 static bool buffer_written(struct buffer_head *bh)
122 {
123 return buffer_mapped(bh) && !buffer_unwritten(bh);
124 }
125
126 /*
127 * When ext4 encounters a hole, it returns without modifying the buffer_head
128 * which means that we can't trust b_size. To cope with this, we set b_state
129 * to 0 before calling get_block and, if any bit is set, we know we can trust
130 * b_size. Unfortunate, really, since ext4 knows precisely how long a hole is
131 * and would save us time calling get_block repeatedly.
132 */
buffer_size_valid(struct buffer_head * bh)133 static bool buffer_size_valid(struct buffer_head *bh)
134 {
135 return bh->b_state != 0;
136 }
137
138
to_sector(const struct buffer_head * bh,const struct inode * inode)139 static sector_t to_sector(const struct buffer_head *bh,
140 const struct inode *inode)
141 {
142 sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
143
144 return sector;
145 }
146
dax_io(struct inode * inode,struct iov_iter * iter,loff_t start,loff_t end,get_block_t get_block,struct buffer_head * bh)147 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
148 loff_t start, loff_t end, get_block_t get_block,
149 struct buffer_head *bh)
150 {
151 loff_t pos = start, max = start, bh_max = start;
152 bool hole = false;
153 struct block_device *bdev = NULL;
154 int rw = iov_iter_rw(iter), rc;
155 long map_len = 0;
156 struct blk_dax_ctl dax = {
157 .addr = ERR_PTR(-EIO),
158 };
159 unsigned blkbits = inode->i_blkbits;
160 sector_t file_blks = (i_size_read(inode) + (1 << blkbits) - 1)
161 >> blkbits;
162
163 if (rw == READ)
164 end = min(end, i_size_read(inode));
165
166 while (pos < end) {
167 size_t len;
168 if (pos == max) {
169 long page = pos >> PAGE_SHIFT;
170 sector_t block = page << (PAGE_SHIFT - blkbits);
171 unsigned first = pos - (block << blkbits);
172 long size;
173
174 if (pos == bh_max) {
175 bh->b_size = PAGE_ALIGN(end - pos);
176 bh->b_state = 0;
177 rc = get_block(inode, block, bh, rw == WRITE);
178 if (rc)
179 break;
180 if (!buffer_size_valid(bh))
181 bh->b_size = 1 << blkbits;
182 bh_max = pos - first + bh->b_size;
183 bdev = bh->b_bdev;
184 /*
185 * We allow uninitialized buffers for writes
186 * beyond EOF as those cannot race with faults
187 */
188 WARN_ON_ONCE(
189 (buffer_new(bh) && block < file_blks) ||
190 (rw == WRITE && buffer_unwritten(bh)));
191 } else {
192 unsigned done = bh->b_size -
193 (bh_max - (pos - first));
194 bh->b_blocknr += done >> blkbits;
195 bh->b_size -= done;
196 }
197
198 hole = rw == READ && !buffer_written(bh);
199 if (hole) {
200 size = bh->b_size - first;
201 } else {
202 dax_unmap_atomic(bdev, &dax);
203 dax.sector = to_sector(bh, inode);
204 dax.size = bh->b_size;
205 map_len = dax_map_atomic(bdev, &dax);
206 if (map_len < 0) {
207 rc = map_len;
208 break;
209 }
210 dax.addr += first;
211 size = map_len - first;
212 }
213 /*
214 * pos + size is one past the last offset for IO,
215 * so pos + size can overflow loff_t at extreme offsets.
216 * Cast to u64 to catch this and get the true minimum.
217 */
218 max = min_t(u64, pos + size, end);
219 }
220
221 if (iov_iter_rw(iter) == WRITE) {
222 len = copy_from_iter_pmem(dax.addr, max - pos, iter);
223 } else if (!hole)
224 len = copy_to_iter((void __force *) dax.addr, max - pos,
225 iter);
226 else
227 len = iov_iter_zero(max - pos, iter);
228
229 if (!len) {
230 rc = -EFAULT;
231 break;
232 }
233
234 pos += len;
235 if (!IS_ERR(dax.addr))
236 dax.addr += len;
237 }
238
239 dax_unmap_atomic(bdev, &dax);
240
241 return (pos == start) ? rc : pos - start;
242 }
243
244 /**
245 * dax_do_io - Perform I/O to a DAX file
246 * @iocb: The control block for this I/O
247 * @inode: The file which the I/O is directed at
248 * @iter: The addresses to do I/O from or to
249 * @get_block: The filesystem method used to translate file offsets to blocks
250 * @end_io: A filesystem callback for I/O completion
251 * @flags: See below
252 *
253 * This function uses the same locking scheme as do_blockdev_direct_IO:
254 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
255 * caller for writes. For reads, we take and release the i_mutex ourselves.
256 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
257 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
258 * is in progress.
259 */
dax_do_io(struct kiocb * iocb,struct inode * inode,struct iov_iter * iter,get_block_t get_block,dio_iodone_t end_io,int flags)260 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
261 struct iov_iter *iter, get_block_t get_block,
262 dio_iodone_t end_io, int flags)
263 {
264 struct buffer_head bh;
265 ssize_t retval = -EINVAL;
266 loff_t pos = iocb->ki_pos;
267 loff_t end = pos + iov_iter_count(iter);
268
269 memset(&bh, 0, sizeof(bh));
270 bh.b_bdev = inode->i_sb->s_bdev;
271
272 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
273 inode_lock(inode);
274
275 /* Protects against truncate */
276 if (!(flags & DIO_SKIP_DIO_COUNT))
277 inode_dio_begin(inode);
278
279 retval = dax_io(inode, iter, pos, end, get_block, &bh);
280
281 if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
282 inode_unlock(inode);
283
284 if (end_io) {
285 int err;
286
287 err = end_io(iocb, pos, retval, bh.b_private);
288 if (err)
289 retval = err;
290 }
291
292 if (!(flags & DIO_SKIP_DIO_COUNT))
293 inode_dio_end(inode);
294 return retval;
295 }
296 EXPORT_SYMBOL_GPL(dax_do_io);
297
298 /*
299 * DAX radix tree locking
300 */
301 struct exceptional_entry_key {
302 struct address_space *mapping;
303 unsigned long index;
304 };
305
306 struct wait_exceptional_entry_queue {
307 wait_queue_t wait;
308 struct exceptional_entry_key key;
309 };
310
wake_exceptional_entry_func(wait_queue_t * wait,unsigned int mode,int sync,void * keyp)311 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode,
312 int sync, void *keyp)
313 {
314 struct exceptional_entry_key *key = keyp;
315 struct wait_exceptional_entry_queue *ewait =
316 container_of(wait, struct wait_exceptional_entry_queue, wait);
317
318 if (key->mapping != ewait->key.mapping ||
319 key->index != ewait->key.index)
320 return 0;
321 return autoremove_wake_function(wait, mode, sync, NULL);
322 }
323
324 /*
325 * Check whether the given slot is locked. The function must be called with
326 * mapping->tree_lock held
327 */
slot_locked(struct address_space * mapping,void ** slot)328 static inline int slot_locked(struct address_space *mapping, void **slot)
329 {
330 unsigned long entry = (unsigned long)
331 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
332 return entry & RADIX_DAX_ENTRY_LOCK;
333 }
334
335 /*
336 * Mark the given slot is locked. The function must be called with
337 * mapping->tree_lock held
338 */
lock_slot(struct address_space * mapping,void ** slot)339 static inline void *lock_slot(struct address_space *mapping, void **slot)
340 {
341 unsigned long entry = (unsigned long)
342 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
343
344 entry |= RADIX_DAX_ENTRY_LOCK;
345 radix_tree_replace_slot(slot, (void *)entry);
346 return (void *)entry;
347 }
348
349 /*
350 * Mark the given slot is unlocked. The function must be called with
351 * mapping->tree_lock held
352 */
unlock_slot(struct address_space * mapping,void ** slot)353 static inline void *unlock_slot(struct address_space *mapping, void **slot)
354 {
355 unsigned long entry = (unsigned long)
356 radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
357
358 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
359 radix_tree_replace_slot(slot, (void *)entry);
360 return (void *)entry;
361 }
362
363 /*
364 * Lookup entry in radix tree, wait for it to become unlocked if it is
365 * exceptional entry and return it. The caller must call
366 * put_unlocked_mapping_entry() when he decided not to lock the entry or
367 * put_locked_mapping_entry() when he locked the entry and now wants to
368 * unlock it.
369 *
370 * The function must be called with mapping->tree_lock held.
371 */
get_unlocked_mapping_entry(struct address_space * mapping,pgoff_t index,void *** slotp)372 static void *get_unlocked_mapping_entry(struct address_space *mapping,
373 pgoff_t index, void ***slotp)
374 {
375 void *ret, **slot;
376 struct wait_exceptional_entry_queue ewait;
377 wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index);
378
379 init_wait(&ewait.wait);
380 ewait.wait.func = wake_exceptional_entry_func;
381 ewait.key.mapping = mapping;
382 ewait.key.index = index;
383
384 for (;;) {
385 ret = __radix_tree_lookup(&mapping->page_tree, index, NULL,
386 &slot);
387 if (!ret || !radix_tree_exceptional_entry(ret) ||
388 !slot_locked(mapping, slot)) {
389 if (slotp)
390 *slotp = slot;
391 return ret;
392 }
393 prepare_to_wait_exclusive(wq, &ewait.wait,
394 TASK_UNINTERRUPTIBLE);
395 spin_unlock_irq(&mapping->tree_lock);
396 schedule();
397 finish_wait(wq, &ewait.wait);
398 spin_lock_irq(&mapping->tree_lock);
399 }
400 }
401
402 /*
403 * Find radix tree entry at given index. If it points to a page, return with
404 * the page locked. If it points to the exceptional entry, return with the
405 * radix tree entry locked. If the radix tree doesn't contain given index,
406 * create empty exceptional entry for the index and return with it locked.
407 *
408 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
409 * persistent memory the benefit is doubtful. We can add that later if we can
410 * show it helps.
411 */
grab_mapping_entry(struct address_space * mapping,pgoff_t index)412 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index)
413 {
414 void *ret, **slot;
415
416 restart:
417 spin_lock_irq(&mapping->tree_lock);
418 ret = get_unlocked_mapping_entry(mapping, index, &slot);
419 /* No entry for given index? Make sure radix tree is big enough. */
420 if (!ret) {
421 int err;
422
423 spin_unlock_irq(&mapping->tree_lock);
424 err = radix_tree_preload(
425 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
426 if (err)
427 return ERR_PTR(err);
428 ret = (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
429 RADIX_DAX_ENTRY_LOCK);
430 spin_lock_irq(&mapping->tree_lock);
431 err = radix_tree_insert(&mapping->page_tree, index, ret);
432 radix_tree_preload_end();
433 if (err) {
434 spin_unlock_irq(&mapping->tree_lock);
435 /* Someone already created the entry? */
436 if (err == -EEXIST)
437 goto restart;
438 return ERR_PTR(err);
439 }
440 /* Good, we have inserted empty locked entry into the tree. */
441 mapping->nrexceptional++;
442 spin_unlock_irq(&mapping->tree_lock);
443 return ret;
444 }
445 /* Normal page in radix tree? */
446 if (!radix_tree_exceptional_entry(ret)) {
447 struct page *page = ret;
448
449 get_page(page);
450 spin_unlock_irq(&mapping->tree_lock);
451 lock_page(page);
452 /* Page got truncated? Retry... */
453 if (unlikely(page->mapping != mapping)) {
454 unlock_page(page);
455 put_page(page);
456 goto restart;
457 }
458 return page;
459 }
460 ret = lock_slot(mapping, slot);
461 spin_unlock_irq(&mapping->tree_lock);
462 return ret;
463 }
464
dax_wake_mapping_entry_waiter(struct address_space * mapping,pgoff_t index,bool wake_all)465 void dax_wake_mapping_entry_waiter(struct address_space *mapping,
466 pgoff_t index, bool wake_all)
467 {
468 wait_queue_head_t *wq = dax_entry_waitqueue(mapping, index);
469
470 /*
471 * Checking for locked entry and prepare_to_wait_exclusive() happens
472 * under mapping->tree_lock, ditto for entry handling in our callers.
473 * So at this point all tasks that could have seen our entry locked
474 * must be in the waitqueue and the following check will see them.
475 */
476 if (waitqueue_active(wq)) {
477 struct exceptional_entry_key key;
478
479 key.mapping = mapping;
480 key.index = index;
481 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
482 }
483 }
484
dax_unlock_mapping_entry(struct address_space * mapping,pgoff_t index)485 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
486 {
487 void *ret, **slot;
488
489 spin_lock_irq(&mapping->tree_lock);
490 ret = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot);
491 if (WARN_ON_ONCE(!ret || !radix_tree_exceptional_entry(ret) ||
492 !slot_locked(mapping, slot))) {
493 spin_unlock_irq(&mapping->tree_lock);
494 return;
495 }
496 unlock_slot(mapping, slot);
497 spin_unlock_irq(&mapping->tree_lock);
498 dax_wake_mapping_entry_waiter(mapping, index, false);
499 }
500
put_locked_mapping_entry(struct address_space * mapping,pgoff_t index,void * entry)501 static void put_locked_mapping_entry(struct address_space *mapping,
502 pgoff_t index, void *entry)
503 {
504 if (!radix_tree_exceptional_entry(entry)) {
505 unlock_page(entry);
506 put_page(entry);
507 } else {
508 dax_unlock_mapping_entry(mapping, index);
509 }
510 }
511
512 /*
513 * Called when we are done with radix tree entry we looked up via
514 * get_unlocked_mapping_entry() and which we didn't lock in the end.
515 */
put_unlocked_mapping_entry(struct address_space * mapping,pgoff_t index,void * entry)516 static void put_unlocked_mapping_entry(struct address_space *mapping,
517 pgoff_t index, void *entry)
518 {
519 if (!radix_tree_exceptional_entry(entry))
520 return;
521
522 /* We have to wake up next waiter for the radix tree entry lock */
523 dax_wake_mapping_entry_waiter(mapping, index, false);
524 }
525
526 /*
527 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
528 * entry to get unlocked before deleting it.
529 */
dax_delete_mapping_entry(struct address_space * mapping,pgoff_t index)530 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
531 {
532 void *entry;
533
534 spin_lock_irq(&mapping->tree_lock);
535 entry = get_unlocked_mapping_entry(mapping, index, NULL);
536 /*
537 * This gets called from truncate / punch_hole path. As such, the caller
538 * must hold locks protecting against concurrent modifications of the
539 * radix tree (usually fs-private i_mmap_sem for writing). Since the
540 * caller has seen exceptional entry for this index, we better find it
541 * at that index as well...
542 */
543 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) {
544 spin_unlock_irq(&mapping->tree_lock);
545 return 0;
546 }
547 radix_tree_delete(&mapping->page_tree, index);
548 mapping->nrexceptional--;
549 spin_unlock_irq(&mapping->tree_lock);
550 dax_wake_mapping_entry_waiter(mapping, index, true);
551
552 return 1;
553 }
554
555 /*
556 * The user has performed a load from a hole in the file. Allocating
557 * a new page in the file would cause excessive storage usage for
558 * workloads with sparse files. We allocate a page cache page instead.
559 * We'll kick it out of the page cache if it's ever written to,
560 * otherwise it will simply fall out of the page cache under memory
561 * pressure without ever having been dirtied.
562 */
dax_load_hole(struct address_space * mapping,void * entry,struct vm_fault * vmf)563 static int dax_load_hole(struct address_space *mapping, void *entry,
564 struct vm_fault *vmf)
565 {
566 struct page *page;
567
568 /* Hole page already exists? Return it... */
569 if (!radix_tree_exceptional_entry(entry)) {
570 vmf->page = entry;
571 return VM_FAULT_LOCKED;
572 }
573
574 /* This will replace locked radix tree entry with a hole page */
575 page = find_or_create_page(mapping, vmf->pgoff,
576 vmf->gfp_mask | __GFP_ZERO);
577 if (!page) {
578 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
579 return VM_FAULT_OOM;
580 }
581 vmf->page = page;
582 return VM_FAULT_LOCKED;
583 }
584
copy_user_dax(struct block_device * bdev,sector_t sector,size_t size,struct page * to,unsigned long vaddr)585 static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size,
586 struct page *to, unsigned long vaddr)
587 {
588 struct blk_dax_ctl dax = {
589 .sector = sector,
590 .size = size,
591 };
592 void *vto;
593
594 if (dax_map_atomic(bdev, &dax) < 0)
595 return PTR_ERR(dax.addr);
596 vto = kmap_atomic(to);
597 copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
598 kunmap_atomic(vto);
599 dax_unmap_atomic(bdev, &dax);
600 return 0;
601 }
602
603 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_SHIFT))
604
dax_insert_mapping_entry(struct address_space * mapping,struct vm_fault * vmf,void * entry,sector_t sector)605 static void *dax_insert_mapping_entry(struct address_space *mapping,
606 struct vm_fault *vmf,
607 void *entry, sector_t sector)
608 {
609 struct radix_tree_root *page_tree = &mapping->page_tree;
610 int error = 0;
611 bool hole_fill = false;
612 void *new_entry;
613 pgoff_t index = vmf->pgoff;
614
615 if (vmf->flags & FAULT_FLAG_WRITE)
616 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
617
618 /* Replacing hole page with block mapping? */
619 if (!radix_tree_exceptional_entry(entry)) {
620 hole_fill = true;
621 /*
622 * Unmap the page now before we remove it from page cache below.
623 * The page is locked so it cannot be faulted in again.
624 */
625 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
626 PAGE_SIZE, 0);
627 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM);
628 if (error)
629 return ERR_PTR(error);
630 }
631
632 spin_lock_irq(&mapping->tree_lock);
633 new_entry = (void *)((unsigned long)RADIX_DAX_ENTRY(sector, false) |
634 RADIX_DAX_ENTRY_LOCK);
635 if (hole_fill) {
636 __delete_from_page_cache(entry, NULL);
637 /* Drop pagecache reference */
638 put_page(entry);
639 error = radix_tree_insert(page_tree, index, new_entry);
640 if (error) {
641 new_entry = ERR_PTR(error);
642 goto unlock;
643 }
644 mapping->nrexceptional++;
645 } else {
646 void **slot;
647 void *ret;
648
649 ret = __radix_tree_lookup(page_tree, index, NULL, &slot);
650 WARN_ON_ONCE(ret != entry);
651 radix_tree_replace_slot(slot, new_entry);
652 }
653 if (vmf->flags & FAULT_FLAG_WRITE)
654 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
655 unlock:
656 spin_unlock_irq(&mapping->tree_lock);
657 if (hole_fill) {
658 radix_tree_preload_end();
659 /*
660 * We don't need hole page anymore, it has been replaced with
661 * locked radix tree entry now.
662 */
663 if (mapping->a_ops->freepage)
664 mapping->a_ops->freepage(entry);
665 unlock_page(entry);
666 put_page(entry);
667 }
668 return new_entry;
669 }
670
dax_writeback_one(struct block_device * bdev,struct address_space * mapping,pgoff_t index,void * entry)671 static int dax_writeback_one(struct block_device *bdev,
672 struct address_space *mapping, pgoff_t index, void *entry)
673 {
674 struct radix_tree_root *page_tree = &mapping->page_tree;
675 int type = RADIX_DAX_TYPE(entry);
676 struct radix_tree_node *node;
677 struct blk_dax_ctl dax;
678 void **slot;
679 int ret = 0;
680
681 spin_lock_irq(&mapping->tree_lock);
682 /*
683 * Regular page slots are stabilized by the page lock even
684 * without the tree itself locked. These unlocked entries
685 * need verification under the tree lock.
686 */
687 if (!__radix_tree_lookup(page_tree, index, &node, &slot))
688 goto unlock;
689 if (*slot != entry)
690 goto unlock;
691
692 /* another fsync thread may have already written back this entry */
693 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
694 goto unlock;
695
696 if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
697 ret = -EIO;
698 goto unlock;
699 }
700
701 dax.sector = RADIX_DAX_SECTOR(entry);
702 dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
703 spin_unlock_irq(&mapping->tree_lock);
704
705 /*
706 * We cannot hold tree_lock while calling dax_map_atomic() because it
707 * eventually calls cond_resched().
708 */
709 ret = dax_map_atomic(bdev, &dax);
710 if (ret < 0)
711 return ret;
712
713 if (WARN_ON_ONCE(ret < dax.size)) {
714 ret = -EIO;
715 goto unmap;
716 }
717
718 wb_cache_pmem(dax.addr, dax.size);
719
720 spin_lock_irq(&mapping->tree_lock);
721 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
722 spin_unlock_irq(&mapping->tree_lock);
723 unmap:
724 dax_unmap_atomic(bdev, &dax);
725 return ret;
726
727 unlock:
728 spin_unlock_irq(&mapping->tree_lock);
729 return ret;
730 }
731
732 /*
733 * Flush the mapping to the persistent domain within the byte range of [start,
734 * end]. This is required by data integrity operations to ensure file data is
735 * on persistent storage prior to completion of the operation.
736 */
dax_writeback_mapping_range(struct address_space * mapping,struct block_device * bdev,struct writeback_control * wbc)737 int dax_writeback_mapping_range(struct address_space *mapping,
738 struct block_device *bdev, struct writeback_control *wbc)
739 {
740 struct inode *inode = mapping->host;
741 pgoff_t start_index, end_index, pmd_index;
742 pgoff_t indices[PAGEVEC_SIZE];
743 struct pagevec pvec;
744 bool done = false;
745 int i, ret = 0;
746 void *entry;
747
748 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
749 return -EIO;
750
751 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
752 return 0;
753
754 start_index = wbc->range_start >> PAGE_SHIFT;
755 end_index = wbc->range_end >> PAGE_SHIFT;
756 pmd_index = DAX_PMD_INDEX(start_index);
757
758 rcu_read_lock();
759 entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
760 rcu_read_unlock();
761
762 /* see if the start of our range is covered by a PMD entry */
763 if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
764 start_index = pmd_index;
765
766 tag_pages_for_writeback(mapping, start_index, end_index);
767
768 pagevec_init(&pvec, 0);
769 while (!done) {
770 pvec.nr = find_get_entries_tag(mapping, start_index,
771 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
772 pvec.pages, indices);
773
774 if (pvec.nr == 0)
775 break;
776
777 for (i = 0; i < pvec.nr; i++) {
778 if (indices[i] > end_index) {
779 done = true;
780 break;
781 }
782
783 ret = dax_writeback_one(bdev, mapping, indices[i],
784 pvec.pages[i]);
785 if (ret < 0)
786 return ret;
787 }
788 start_index = indices[pvec.nr - 1] + 1;
789 }
790 return 0;
791 }
792 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
793
dax_insert_mapping(struct address_space * mapping,struct block_device * bdev,sector_t sector,size_t size,void ** entryp,struct vm_area_struct * vma,struct vm_fault * vmf)794 static int dax_insert_mapping(struct address_space *mapping,
795 struct block_device *bdev, sector_t sector, size_t size,
796 void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf)
797 {
798 unsigned long vaddr = (unsigned long)vmf->virtual_address;
799 struct blk_dax_ctl dax = {
800 .sector = sector,
801 .size = size,
802 };
803 void *ret;
804 void *entry = *entryp;
805
806 if (dax_map_atomic(bdev, &dax) < 0)
807 return PTR_ERR(dax.addr);
808 dax_unmap_atomic(bdev, &dax);
809
810 ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector);
811 if (IS_ERR(ret))
812 return PTR_ERR(ret);
813 *entryp = ret;
814
815 return vm_insert_mixed(vma, vaddr, dax.pfn);
816 }
817
818 /**
819 * dax_fault - handle a page fault on a DAX file
820 * @vma: The virtual memory area where the fault occurred
821 * @vmf: The description of the fault
822 * @get_block: The filesystem method used to translate file offsets to blocks
823 *
824 * When a page fault occurs, filesystems may call this helper in their
825 * fault handler for DAX files. dax_fault() assumes the caller has done all
826 * the necessary locking for the page fault to proceed successfully.
827 */
dax_fault(struct vm_area_struct * vma,struct vm_fault * vmf,get_block_t get_block)828 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
829 get_block_t get_block)
830 {
831 struct file *file = vma->vm_file;
832 struct address_space *mapping = file->f_mapping;
833 struct inode *inode = mapping->host;
834 void *entry;
835 struct buffer_head bh;
836 unsigned long vaddr = (unsigned long)vmf->virtual_address;
837 unsigned blkbits = inode->i_blkbits;
838 sector_t block;
839 pgoff_t size;
840 int error;
841 int major = 0;
842
843 /*
844 * Check whether offset isn't beyond end of file now. Caller is supposed
845 * to hold locks serializing us with truncate / punch hole so this is
846 * a reliable test.
847 */
848 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
849 if (vmf->pgoff >= size)
850 return VM_FAULT_SIGBUS;
851
852 memset(&bh, 0, sizeof(bh));
853 block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
854 bh.b_bdev = inode->i_sb->s_bdev;
855 bh.b_size = PAGE_SIZE;
856
857 entry = grab_mapping_entry(mapping, vmf->pgoff);
858 if (IS_ERR(entry)) {
859 error = PTR_ERR(entry);
860 goto out;
861 }
862
863 error = get_block(inode, block, &bh, 0);
864 if (!error && (bh.b_size < PAGE_SIZE))
865 error = -EIO; /* fs corruption? */
866 if (error)
867 goto unlock_entry;
868
869 if (vmf->cow_page) {
870 struct page *new_page = vmf->cow_page;
871 if (buffer_written(&bh))
872 error = copy_user_dax(bh.b_bdev, to_sector(&bh, inode),
873 bh.b_size, new_page, vaddr);
874 else
875 clear_user_highpage(new_page, vaddr);
876 if (error)
877 goto unlock_entry;
878 if (!radix_tree_exceptional_entry(entry)) {
879 vmf->page = entry;
880 return VM_FAULT_LOCKED;
881 }
882 vmf->entry = entry;
883 return VM_FAULT_DAX_LOCKED;
884 }
885
886 if (!buffer_mapped(&bh)) {
887 if (vmf->flags & FAULT_FLAG_WRITE) {
888 error = get_block(inode, block, &bh, 1);
889 count_vm_event(PGMAJFAULT);
890 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
891 major = VM_FAULT_MAJOR;
892 if (!error && (bh.b_size < PAGE_SIZE))
893 error = -EIO;
894 if (error)
895 goto unlock_entry;
896 } else {
897 return dax_load_hole(mapping, entry, vmf);
898 }
899 }
900
901 /* Filesystem should not return unwritten buffers to us! */
902 WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
903 error = dax_insert_mapping(mapping, bh.b_bdev, to_sector(&bh, inode),
904 bh.b_size, &entry, vma, vmf);
905 unlock_entry:
906 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
907 out:
908 if (error == -ENOMEM)
909 return VM_FAULT_OOM | major;
910 /* -EBUSY is fine, somebody else faulted on the same PTE */
911 if ((error < 0) && (error != -EBUSY))
912 return VM_FAULT_SIGBUS | major;
913 return VM_FAULT_NOPAGE | major;
914 }
915 EXPORT_SYMBOL_GPL(dax_fault);
916
917 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
918 /*
919 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up
920 * more often than one might expect in the below function.
921 */
922 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
923
__dax_dbg(struct buffer_head * bh,unsigned long address,const char * reason,const char * fn)924 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
925 const char *reason, const char *fn)
926 {
927 if (bh) {
928 char bname[BDEVNAME_SIZE];
929 bdevname(bh->b_bdev, bname);
930 pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
931 "length %zd fallback: %s\n", fn, current->comm,
932 address, bname, bh->b_state, (u64)bh->b_blocknr,
933 bh->b_size, reason);
934 } else {
935 pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
936 current->comm, address, reason);
937 }
938 }
939
940 #define dax_pmd_dbg(bh, address, reason) __dax_dbg(bh, address, reason, "dax_pmd")
941
942 /**
943 * dax_pmd_fault - handle a PMD fault on a DAX file
944 * @vma: The virtual memory area where the fault occurred
945 * @vmf: The description of the fault
946 * @get_block: The filesystem method used to translate file offsets to blocks
947 *
948 * When a page fault occurs, filesystems may call this helper in their
949 * pmd_fault handler for DAX files.
950 */
dax_pmd_fault(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags,get_block_t get_block)951 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
952 pmd_t *pmd, unsigned int flags, get_block_t get_block)
953 {
954 struct file *file = vma->vm_file;
955 struct address_space *mapping = file->f_mapping;
956 struct inode *inode = mapping->host;
957 struct buffer_head bh;
958 unsigned blkbits = inode->i_blkbits;
959 unsigned long pmd_addr = address & PMD_MASK;
960 bool write = flags & FAULT_FLAG_WRITE;
961 struct block_device *bdev;
962 pgoff_t size, pgoff;
963 sector_t block;
964 int result = 0;
965 bool alloc = false;
966
967 /* dax pmd mappings require pfn_t_devmap() */
968 if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
969 return VM_FAULT_FALLBACK;
970
971 /* Fall back to PTEs if we're going to COW */
972 if (write && !(vma->vm_flags & VM_SHARED)) {
973 split_huge_pmd(vma, pmd, address);
974 dax_pmd_dbg(NULL, address, "cow write");
975 return VM_FAULT_FALLBACK;
976 }
977 /* If the PMD would extend outside the VMA */
978 if (pmd_addr < vma->vm_start) {
979 dax_pmd_dbg(NULL, address, "vma start unaligned");
980 return VM_FAULT_FALLBACK;
981 }
982 if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
983 dax_pmd_dbg(NULL, address, "vma end unaligned");
984 return VM_FAULT_FALLBACK;
985 }
986
987 pgoff = linear_page_index(vma, pmd_addr);
988 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
989 if (pgoff >= size)
990 return VM_FAULT_SIGBUS;
991 /* If the PMD would cover blocks out of the file */
992 if ((pgoff | PG_PMD_COLOUR) >= size) {
993 dax_pmd_dbg(NULL, address,
994 "offset + huge page size > file size");
995 return VM_FAULT_FALLBACK;
996 }
997
998 memset(&bh, 0, sizeof(bh));
999 bh.b_bdev = inode->i_sb->s_bdev;
1000 block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
1001
1002 bh.b_size = PMD_SIZE;
1003
1004 if (get_block(inode, block, &bh, 0) != 0)
1005 return VM_FAULT_SIGBUS;
1006
1007 if (!buffer_mapped(&bh) && write) {
1008 if (get_block(inode, block, &bh, 1) != 0)
1009 return VM_FAULT_SIGBUS;
1010 alloc = true;
1011 WARN_ON_ONCE(buffer_unwritten(&bh) || buffer_new(&bh));
1012 }
1013
1014 bdev = bh.b_bdev;
1015
1016 /*
1017 * If the filesystem isn't willing to tell us the length of a hole,
1018 * just fall back to PTEs. Calling get_block 512 times in a loop
1019 * would be silly.
1020 */
1021 if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
1022 dax_pmd_dbg(&bh, address, "allocated block too small");
1023 return VM_FAULT_FALLBACK;
1024 }
1025
1026 /*
1027 * If we allocated new storage, make sure no process has any
1028 * zero pages covering this hole
1029 */
1030 if (alloc) {
1031 loff_t lstart = pgoff << PAGE_SHIFT;
1032 loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
1033
1034 truncate_pagecache_range(inode, lstart, lend);
1035 }
1036
1037 if (!write && !buffer_mapped(&bh)) {
1038 spinlock_t *ptl;
1039 pmd_t entry;
1040 struct page *zero_page = mm_get_huge_zero_page(vma->vm_mm);
1041
1042 if (unlikely(!zero_page)) {
1043 dax_pmd_dbg(&bh, address, "no zero page");
1044 goto fallback;
1045 }
1046
1047 ptl = pmd_lock(vma->vm_mm, pmd);
1048 if (!pmd_none(*pmd)) {
1049 spin_unlock(ptl);
1050 dax_pmd_dbg(&bh, address, "pmd already present");
1051 goto fallback;
1052 }
1053
1054 dev_dbg(part_to_dev(bdev->bd_part),
1055 "%s: %s addr: %lx pfn: <zero> sect: %llx\n",
1056 __func__, current->comm, address,
1057 (unsigned long long) to_sector(&bh, inode));
1058
1059 entry = mk_pmd(zero_page, vma->vm_page_prot);
1060 entry = pmd_mkhuge(entry);
1061 set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
1062 result = VM_FAULT_NOPAGE;
1063 spin_unlock(ptl);
1064 } else {
1065 struct blk_dax_ctl dax = {
1066 .sector = to_sector(&bh, inode),
1067 .size = PMD_SIZE,
1068 };
1069 long length = dax_map_atomic(bdev, &dax);
1070
1071 if (length < 0) {
1072 dax_pmd_dbg(&bh, address, "dax-error fallback");
1073 goto fallback;
1074 }
1075 if (length < PMD_SIZE) {
1076 dax_pmd_dbg(&bh, address, "dax-length too small");
1077 dax_unmap_atomic(bdev, &dax);
1078 goto fallback;
1079 }
1080 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
1081 dax_pmd_dbg(&bh, address, "pfn unaligned");
1082 dax_unmap_atomic(bdev, &dax);
1083 goto fallback;
1084 }
1085
1086 if (!pfn_t_devmap(dax.pfn)) {
1087 dax_unmap_atomic(bdev, &dax);
1088 dax_pmd_dbg(&bh, address, "pfn not in memmap");
1089 goto fallback;
1090 }
1091 dax_unmap_atomic(bdev, &dax);
1092
1093 /*
1094 * For PTE faults we insert a radix tree entry for reads, and
1095 * leave it clean. Then on the first write we dirty the radix
1096 * tree entry via the dax_pfn_mkwrite() path. This sequence
1097 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
1098 * call into get_block() to translate the pgoff to a sector in
1099 * order to be able to create a new radix tree entry.
1100 *
1101 * The PMD path doesn't have an equivalent to
1102 * dax_pfn_mkwrite(), though, so for a read followed by a
1103 * write we traverse all the way through dax_pmd_fault()
1104 * twice. This means we can just skip inserting a radix tree
1105 * entry completely on the initial read and just wait until
1106 * the write to insert a dirty entry.
1107 */
1108 if (write) {
1109 /*
1110 * We should insert radix-tree entry and dirty it here.
1111 * For now this is broken...
1112 */
1113 }
1114
1115 dev_dbg(part_to_dev(bdev->bd_part),
1116 "%s: %s addr: %lx pfn: %lx sect: %llx\n",
1117 __func__, current->comm, address,
1118 pfn_t_to_pfn(dax.pfn),
1119 (unsigned long long) dax.sector);
1120 result |= vmf_insert_pfn_pmd(vma, address, pmd,
1121 dax.pfn, write);
1122 }
1123
1124 out:
1125 return result;
1126
1127 fallback:
1128 count_vm_event(THP_FAULT_FALLBACK);
1129 result = VM_FAULT_FALLBACK;
1130 goto out;
1131 }
1132 EXPORT_SYMBOL_GPL(dax_pmd_fault);
1133 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1134
1135 /**
1136 * dax_pfn_mkwrite - handle first write to DAX page
1137 * @vma: The virtual memory area where the fault occurred
1138 * @vmf: The description of the fault
1139 */
dax_pfn_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)1140 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1141 {
1142 struct file *file = vma->vm_file;
1143 struct address_space *mapping = file->f_mapping;
1144 void *entry;
1145 pgoff_t index = vmf->pgoff;
1146
1147 spin_lock_irq(&mapping->tree_lock);
1148 entry = get_unlocked_mapping_entry(mapping, index, NULL);
1149 if (!entry || !radix_tree_exceptional_entry(entry))
1150 goto out;
1151 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY);
1152 put_unlocked_mapping_entry(mapping, index, entry);
1153 out:
1154 spin_unlock_irq(&mapping->tree_lock);
1155 return VM_FAULT_NOPAGE;
1156 }
1157 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1158
dax_range_is_aligned(struct block_device * bdev,unsigned int offset,unsigned int length)1159 static bool dax_range_is_aligned(struct block_device *bdev,
1160 unsigned int offset, unsigned int length)
1161 {
1162 unsigned short sector_size = bdev_logical_block_size(bdev);
1163
1164 if (!IS_ALIGNED(offset, sector_size))
1165 return false;
1166 if (!IS_ALIGNED(length, sector_size))
1167 return false;
1168
1169 return true;
1170 }
1171
__dax_zero_page_range(struct block_device * bdev,sector_t sector,unsigned int offset,unsigned int length)1172 int __dax_zero_page_range(struct block_device *bdev, sector_t sector,
1173 unsigned int offset, unsigned int length)
1174 {
1175 struct blk_dax_ctl dax = {
1176 .sector = sector,
1177 .size = PAGE_SIZE,
1178 };
1179
1180 if (dax_range_is_aligned(bdev, offset, length)) {
1181 sector_t start_sector = dax.sector + (offset >> 9);
1182
1183 return blkdev_issue_zeroout(bdev, start_sector,
1184 length >> 9, GFP_NOFS, true);
1185 } else {
1186 if (dax_map_atomic(bdev, &dax) < 0)
1187 return PTR_ERR(dax.addr);
1188 clear_pmem(dax.addr + offset, length);
1189 dax_unmap_atomic(bdev, &dax);
1190 }
1191 return 0;
1192 }
1193 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1194
1195 /**
1196 * dax_zero_page_range - zero a range within a page of a DAX file
1197 * @inode: The file being truncated
1198 * @from: The file offset that is being truncated to
1199 * @length: The number of bytes to zero
1200 * @get_block: The filesystem method used to translate file offsets to blocks
1201 *
1202 * This function can be called by a filesystem when it is zeroing part of a
1203 * page in a DAX file. This is intended for hole-punch operations. If
1204 * you are truncating a file, the helper function dax_truncate_page() may be
1205 * more convenient.
1206 */
dax_zero_page_range(struct inode * inode,loff_t from,unsigned length,get_block_t get_block)1207 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1208 get_block_t get_block)
1209 {
1210 struct buffer_head bh;
1211 pgoff_t index = from >> PAGE_SHIFT;
1212 unsigned offset = from & (PAGE_SIZE-1);
1213 int err;
1214
1215 /* Block boundary? Nothing to do */
1216 if (!length)
1217 return 0;
1218 BUG_ON((offset + length) > PAGE_SIZE);
1219
1220 memset(&bh, 0, sizeof(bh));
1221 bh.b_bdev = inode->i_sb->s_bdev;
1222 bh.b_size = PAGE_SIZE;
1223 err = get_block(inode, index, &bh, 0);
1224 if (err < 0 || !buffer_written(&bh))
1225 return err;
1226
1227 return __dax_zero_page_range(bh.b_bdev, to_sector(&bh, inode),
1228 offset, length);
1229 }
1230 EXPORT_SYMBOL_GPL(dax_zero_page_range);
1231
1232 /**
1233 * dax_truncate_page - handle a partial page being truncated in a DAX file
1234 * @inode: The file being truncated
1235 * @from: The file offset that is being truncated to
1236 * @get_block: The filesystem method used to translate file offsets to blocks
1237 *
1238 * Similar to block_truncate_page(), this function can be called by a
1239 * filesystem when it is truncating a DAX file to handle the partial page.
1240 */
dax_truncate_page(struct inode * inode,loff_t from,get_block_t get_block)1241 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1242 {
1243 unsigned length = PAGE_ALIGN(from) - from;
1244 return dax_zero_page_range(inode, from, length, get_block);
1245 }
1246 EXPORT_SYMBOL_GPL(dax_truncate_page);
1247
1248 #ifdef CONFIG_FS_IOMAP
1249 static loff_t
iomap_dax_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)1250 iomap_dax_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1251 struct iomap *iomap)
1252 {
1253 struct iov_iter *iter = data;
1254 loff_t end = pos + length, done = 0;
1255 ssize_t ret = 0;
1256
1257 if (iov_iter_rw(iter) == READ) {
1258 end = min(end, i_size_read(inode));
1259 if (pos >= end)
1260 return 0;
1261
1262 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1263 return iov_iter_zero(min(length, end - pos), iter);
1264 }
1265
1266 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1267 return -EIO;
1268
1269 /*
1270 * Write can allocate block for an area which has a hole page mapped
1271 * into page tables. We have to tear down these mappings so that data
1272 * written by write(2) is visible in mmap.
1273 */
1274 if ((iomap->flags & IOMAP_F_NEW) && inode->i_mapping->nrpages) {
1275 invalidate_inode_pages2_range(inode->i_mapping,
1276 pos >> PAGE_SHIFT,
1277 (end - 1) >> PAGE_SHIFT);
1278 }
1279
1280 while (pos < end) {
1281 unsigned offset = pos & (PAGE_SIZE - 1);
1282 struct blk_dax_ctl dax = { 0 };
1283 ssize_t map_len;
1284
1285 if (fatal_signal_pending(current)) {
1286 ret = -EINTR;
1287 break;
1288 }
1289
1290 dax.sector = iomap->blkno +
1291 (((pos & PAGE_MASK) - iomap->offset) >> 9);
1292 dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK;
1293 map_len = dax_map_atomic(iomap->bdev, &dax);
1294 if (map_len < 0) {
1295 ret = map_len;
1296 break;
1297 }
1298
1299 dax.addr += offset;
1300 map_len -= offset;
1301 if (map_len > end - pos)
1302 map_len = end - pos;
1303
1304 if (iov_iter_rw(iter) == WRITE)
1305 map_len = copy_from_iter_pmem(dax.addr, map_len, iter);
1306 else
1307 map_len = copy_to_iter(dax.addr, map_len, iter);
1308 dax_unmap_atomic(iomap->bdev, &dax);
1309 if (map_len <= 0) {
1310 ret = map_len ? map_len : -EFAULT;
1311 break;
1312 }
1313
1314 pos += map_len;
1315 length -= map_len;
1316 done += map_len;
1317 }
1318
1319 return done ? done : ret;
1320 }
1321
1322 /**
1323 * iomap_dax_rw - Perform I/O to a DAX file
1324 * @iocb: The control block for this I/O
1325 * @iter: The addresses to do I/O from or to
1326 * @ops: iomap ops passed from the file system
1327 *
1328 * This function performs read and write operations to directly mapped
1329 * persistent memory. The callers needs to take care of read/write exclusion
1330 * and evicting any page cache pages in the region under I/O.
1331 */
1332 ssize_t
iomap_dax_rw(struct kiocb * iocb,struct iov_iter * iter,struct iomap_ops * ops)1333 iomap_dax_rw(struct kiocb *iocb, struct iov_iter *iter,
1334 struct iomap_ops *ops)
1335 {
1336 struct address_space *mapping = iocb->ki_filp->f_mapping;
1337 struct inode *inode = mapping->host;
1338 loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1339 unsigned flags = 0;
1340
1341 if (iov_iter_rw(iter) == WRITE)
1342 flags |= IOMAP_WRITE;
1343
1344 while (iov_iter_count(iter)) {
1345 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1346 iter, iomap_dax_actor);
1347 if (ret <= 0)
1348 break;
1349 pos += ret;
1350 done += ret;
1351 }
1352
1353 iocb->ki_pos += done;
1354 return done ? done : ret;
1355 }
1356 EXPORT_SYMBOL_GPL(iomap_dax_rw);
1357
1358 /**
1359 * iomap_dax_fault - handle a page fault on a DAX file
1360 * @vma: The virtual memory area where the fault occurred
1361 * @vmf: The description of the fault
1362 * @ops: iomap ops passed from the file system
1363 *
1364 * When a page fault occurs, filesystems may call this helper in their fault
1365 * or mkwrite handler for DAX files. Assumes the caller has done all the
1366 * necessary locking for the page fault to proceed successfully.
1367 */
iomap_dax_fault(struct vm_area_struct * vma,struct vm_fault * vmf,struct iomap_ops * ops)1368 int iomap_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
1369 struct iomap_ops *ops)
1370 {
1371 struct address_space *mapping = vma->vm_file->f_mapping;
1372 struct inode *inode = mapping->host;
1373 unsigned long vaddr = (unsigned long)vmf->virtual_address;
1374 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1375 sector_t sector;
1376 struct iomap iomap = { 0 };
1377 unsigned flags = 0;
1378 int error, major = 0;
1379 void *entry;
1380
1381 /*
1382 * Check whether offset isn't beyond end of file now. Caller is supposed
1383 * to hold locks serializing us with truncate / punch hole so this is
1384 * a reliable test.
1385 */
1386 if (pos >= i_size_read(inode))
1387 return VM_FAULT_SIGBUS;
1388
1389 entry = grab_mapping_entry(mapping, vmf->pgoff);
1390 if (IS_ERR(entry)) {
1391 error = PTR_ERR(entry);
1392 goto out;
1393 }
1394
1395 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1396 flags |= IOMAP_WRITE;
1397
1398 /*
1399 * Note that we don't bother to use iomap_apply here: DAX required
1400 * the file system block size to be equal the page size, which means
1401 * that we never have to deal with more than a single extent here.
1402 */
1403 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1404 if (error)
1405 goto unlock_entry;
1406 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1407 error = -EIO; /* fs corruption? */
1408 goto unlock_entry;
1409 }
1410
1411 sector = iomap.blkno + (((pos & PAGE_MASK) - iomap.offset) >> 9);
1412
1413 if (vmf->cow_page) {
1414 switch (iomap.type) {
1415 case IOMAP_HOLE:
1416 case IOMAP_UNWRITTEN:
1417 clear_user_highpage(vmf->cow_page, vaddr);
1418 break;
1419 case IOMAP_MAPPED:
1420 error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE,
1421 vmf->cow_page, vaddr);
1422 break;
1423 default:
1424 WARN_ON_ONCE(1);
1425 error = -EIO;
1426 break;
1427 }
1428
1429 if (error)
1430 goto unlock_entry;
1431 if (!radix_tree_exceptional_entry(entry)) {
1432 vmf->page = entry;
1433 return VM_FAULT_LOCKED;
1434 }
1435 vmf->entry = entry;
1436 return VM_FAULT_DAX_LOCKED;
1437 }
1438
1439 switch (iomap.type) {
1440 case IOMAP_MAPPED:
1441 if (iomap.flags & IOMAP_F_NEW) {
1442 count_vm_event(PGMAJFAULT);
1443 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1444 major = VM_FAULT_MAJOR;
1445 }
1446 error = dax_insert_mapping(mapping, iomap.bdev, sector,
1447 PAGE_SIZE, &entry, vma, vmf);
1448 break;
1449 case IOMAP_UNWRITTEN:
1450 case IOMAP_HOLE:
1451 if (!(vmf->flags & FAULT_FLAG_WRITE))
1452 return dax_load_hole(mapping, entry, vmf);
1453 /*FALLTHRU*/
1454 default:
1455 WARN_ON_ONCE(1);
1456 error = -EIO;
1457 break;
1458 }
1459
1460 unlock_entry:
1461 put_locked_mapping_entry(mapping, vmf->pgoff, entry);
1462 out:
1463 if (error == -ENOMEM)
1464 return VM_FAULT_OOM | major;
1465 /* -EBUSY is fine, somebody else faulted on the same PTE */
1466 if (error < 0 && error != -EBUSY)
1467 return VM_FAULT_SIGBUS | major;
1468 return VM_FAULT_NOPAGE | major;
1469 }
1470 EXPORT_SYMBOL_GPL(iomap_dax_fault);
1471 #endif /* CONFIG_FS_IOMAP */
1472