• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _ASM_X86_PROCESSOR_H
2 #define _ASM_X86_PROCESSOR_H
3 
4 #include <asm/processor-flags.h>
5 
6 /* Forward declaration, a strange C thing */
7 struct task_struct;
8 struct mm_struct;
9 struct vm86;
10 
11 #include <asm/math_emu.h>
12 #include <asm/segment.h>
13 #include <asm/types.h>
14 #include <uapi/asm/sigcontext.h>
15 #include <asm/current.h>
16 #include <asm/cpufeatures.h>
17 #include <asm/page.h>
18 #include <asm/pgtable_types.h>
19 #include <asm/percpu.h>
20 #include <asm/msr.h>
21 #include <asm/desc_defs.h>
22 #include <asm/nops.h>
23 #include <asm/special_insns.h>
24 #include <asm/fpu/types.h>
25 
26 #include <linux/personality.h>
27 #include <linux/cache.h>
28 #include <linux/threads.h>
29 #include <linux/math64.h>
30 #include <linux/err.h>
31 #include <linux/irqflags.h>
32 
33 /*
34  * We handle most unaligned accesses in hardware.  On the other hand
35  * unaligned DMA can be quite expensive on some Nehalem processors.
36  *
37  * Based on this we disable the IP header alignment in network drivers.
38  */
39 #define NET_IP_ALIGN	0
40 
41 #define HBP_NUM 4
42 /*
43  * Default implementation of macro that returns current
44  * instruction pointer ("program counter").
45  */
current_text_addr(void)46 static inline void *current_text_addr(void)
47 {
48 	void *pc;
49 
50 	asm volatile("mov $1f, %0; 1:":"=r" (pc));
51 
52 	return pc;
53 }
54 
55 /*
56  * These alignment constraints are for performance in the vSMP case,
57  * but in the task_struct case we must also meet hardware imposed
58  * alignment requirements of the FPU state:
59  */
60 #ifdef CONFIG_X86_VSMP
61 # define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
62 # define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
63 #else
64 # define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
65 # define ARCH_MIN_MMSTRUCT_ALIGN	0
66 #endif
67 
68 enum tlb_infos {
69 	ENTRIES,
70 	NR_INFO
71 };
72 
73 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
74 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
75 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
76 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
77 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
78 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
79 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
80 
81 /*
82  *  CPU type and hardware bug flags. Kept separately for each CPU.
83  *  Members of this structure are referenced in head.S, so think twice
84  *  before touching them. [mj]
85  */
86 
87 struct cpuinfo_x86 {
88 	__u8			x86;		/* CPU family */
89 	__u8			x86_vendor;	/* CPU vendor */
90 	__u8			x86_model;
91 	__u8			x86_stepping;
92 #ifdef CONFIG_X86_32
93 	char			wp_works_ok;	/* It doesn't on 386's */
94 
95 	/* Problems on some 486Dx4's and old 386's: */
96 	char			rfu;
97 	char			pad0;
98 	char			pad1;
99 #else
100 	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
101 	int			x86_tlbsize;
102 #endif
103 	__u8			x86_virt_bits;
104 	__u8			x86_phys_bits;
105 	/* CPUID returned core id bits: */
106 	__u8			x86_coreid_bits;
107 	__u8			cu_id;
108 	/* Max extended CPUID function supported: */
109 	__u32			extended_cpuid_level;
110 	/* Maximum supported CPUID level, -1=no CPUID: */
111 	int			cpuid_level;
112 	__u32			x86_capability[NCAPINTS + NBUGINTS];
113 	char			x86_vendor_id[16];
114 	char			x86_model_id[64];
115 	/* in KB - valid for CPUS which support this call: */
116 	unsigned int		x86_cache_size;
117 	int			x86_cache_alignment;	/* In bytes */
118 	/* Cache QoS architectural values: */
119 	int			x86_cache_max_rmid;	/* max index */
120 	int			x86_cache_occ_scale;	/* scale to bytes */
121 	int			x86_power;
122 	unsigned long		loops_per_jiffy;
123 	/* cpuid returned max cores value: */
124 	u16			 x86_max_cores;
125 	u16			apicid;
126 	u16			initial_apicid;
127 	u16			x86_clflush_size;
128 	/* number of cores as seen by the OS: */
129 	u16			booted_cores;
130 	/* Physical processor id: */
131 	u16			phys_proc_id;
132 	/* Logical processor id: */
133 	u16			logical_proc_id;
134 	/* Core id: */
135 	u16			cpu_core_id;
136 	/* Index into per_cpu list: */
137 	u16			cpu_index;
138 	u32			microcode;
139 };
140 
141 #define X86_VENDOR_INTEL	0
142 #define X86_VENDOR_CYRIX	1
143 #define X86_VENDOR_AMD		2
144 #define X86_VENDOR_UMC		3
145 #define X86_VENDOR_CENTAUR	5
146 #define X86_VENDOR_TRANSMETA	7
147 #define X86_VENDOR_NSC		8
148 #define X86_VENDOR_NUM		9
149 
150 #define X86_VENDOR_UNKNOWN	0xff
151 
152 /*
153  * capabilities of CPUs
154  */
155 extern struct cpuinfo_x86	boot_cpu_data;
156 extern struct cpuinfo_x86	new_cpu_data;
157 
158 extern struct tss_struct	doublefault_tss;
159 extern __u32			cpu_caps_cleared[NCAPINTS + NBUGINTS];
160 extern __u32			cpu_caps_set[NCAPINTS + NBUGINTS];
161 
162 #ifdef CONFIG_SMP
163 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
164 #define cpu_data(cpu)		per_cpu(cpu_info, cpu)
165 #else
166 #define cpu_info		boot_cpu_data
167 #define cpu_data(cpu)		boot_cpu_data
168 #endif
169 
170 extern const struct seq_operations cpuinfo_op;
171 
172 #define cache_line_size()	(boot_cpu_data.x86_cache_alignment)
173 
174 extern void cpu_detect(struct cpuinfo_x86 *c);
175 
176 extern void early_cpu_init(void);
177 extern void identify_boot_cpu(void);
178 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
179 extern void print_cpu_info(struct cpuinfo_x86 *);
180 void print_cpu_msr(struct cpuinfo_x86 *);
181 extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
182 extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
183 extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
184 
185 extern void detect_extended_topology(struct cpuinfo_x86 *c);
186 extern void detect_ht(struct cpuinfo_x86 *c);
187 
188 #ifdef CONFIG_X86_32
189 extern int have_cpuid_p(void);
190 #else
have_cpuid_p(void)191 static inline int have_cpuid_p(void)
192 {
193 	return 1;
194 }
195 #endif
native_cpuid(unsigned int * eax,unsigned int * ebx,unsigned int * ecx,unsigned int * edx)196 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
197 				unsigned int *ecx, unsigned int *edx)
198 {
199 	/* ecx is often an input as well as an output. */
200 	asm volatile("cpuid"
201 	    : "=a" (*eax),
202 	      "=b" (*ebx),
203 	      "=c" (*ecx),
204 	      "=d" (*edx)
205 	    : "0" (*eax), "2" (*ecx)
206 	    : "memory");
207 }
208 
load_cr3(pgd_t * pgdir)209 static inline void load_cr3(pgd_t *pgdir)
210 {
211 	write_cr3(__pa(pgdir));
212 }
213 
214 #ifdef CONFIG_X86_32
215 /* This is the TSS defined by the hardware. */
216 struct x86_hw_tss {
217 	unsigned short		back_link, __blh;
218 	unsigned long		sp0;
219 	unsigned short		ss0, __ss0h;
220 	unsigned long		sp1;
221 
222 	/*
223 	 * We don't use ring 1, so ss1 is a convenient scratch space in
224 	 * the same cacheline as sp0.  We use ss1 to cache the value in
225 	 * MSR_IA32_SYSENTER_CS.  When we context switch
226 	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
227 	 * written matches ss1, and, if it's not, then we wrmsr the new
228 	 * value and update ss1.
229 	 *
230 	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
231 	 * that we set it to zero in vm86 tasks to avoid corrupting the
232 	 * stack if we were to go through the sysenter path from vm86
233 	 * mode.
234 	 */
235 	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */
236 
237 	unsigned short		__ss1h;
238 	unsigned long		sp2;
239 	unsigned short		ss2, __ss2h;
240 	unsigned long		__cr3;
241 	unsigned long		ip;
242 	unsigned long		flags;
243 	unsigned long		ax;
244 	unsigned long		cx;
245 	unsigned long		dx;
246 	unsigned long		bx;
247 	unsigned long		sp;
248 	unsigned long		bp;
249 	unsigned long		si;
250 	unsigned long		di;
251 	unsigned short		es, __esh;
252 	unsigned short		cs, __csh;
253 	unsigned short		ss, __ssh;
254 	unsigned short		ds, __dsh;
255 	unsigned short		fs, __fsh;
256 	unsigned short		gs, __gsh;
257 	unsigned short		ldt, __ldth;
258 	unsigned short		trace;
259 	unsigned short		io_bitmap_base;
260 
261 } __attribute__((packed));
262 #else
263 struct x86_hw_tss {
264 	u32			reserved1;
265 	u64			sp0;
266 	u64			sp1;
267 	u64			sp2;
268 	u64			reserved2;
269 	u64			ist[7];
270 	u32			reserved3;
271 	u32			reserved4;
272 	u16			reserved5;
273 	u16			io_bitmap_base;
274 
275 } __attribute__((packed)) ____cacheline_aligned;
276 #endif
277 
278 /*
279  * IO-bitmap sizes:
280  */
281 #define IO_BITMAP_BITS			65536
282 #define IO_BITMAP_BYTES			(IO_BITMAP_BITS/8)
283 #define IO_BITMAP_LONGS			(IO_BITMAP_BYTES/sizeof(long))
284 #define IO_BITMAP_OFFSET		offsetof(struct tss_struct, io_bitmap)
285 #define INVALID_IO_BITMAP_OFFSET	0x8000
286 
287 struct tss_struct {
288 	/*
289 	 * The hardware state:
290 	 */
291 	struct x86_hw_tss	x86_tss;
292 
293 	/*
294 	 * The extra 1 is there because the CPU will access an
295 	 * additional byte beyond the end of the IO permission
296 	 * bitmap. The extra byte must be all 1 bits, and must
297 	 * be within the limit.
298 	 */
299 	unsigned long		io_bitmap[IO_BITMAP_LONGS + 1];
300 
301 #ifdef CONFIG_X86_32
302 	/*
303 	 * Space for the temporary SYSENTER stack.
304 	 */
305 	unsigned long		SYSENTER_stack_canary;
306 	unsigned long		SYSENTER_stack[64];
307 #endif
308 
309 } ____cacheline_aligned;
310 
311 DECLARE_PER_CPU_SHARED_ALIGNED_USER_MAPPED(struct tss_struct, cpu_tss);
312 
313 #ifdef CONFIG_X86_32
314 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
315 #endif
316 
317 /*
318  * Save the original ist values for checking stack pointers during debugging
319  */
320 struct orig_ist {
321 	unsigned long		ist[7];
322 };
323 
324 #ifdef CONFIG_X86_64
325 DECLARE_PER_CPU(struct orig_ist, orig_ist);
326 
327 union irq_stack_union {
328 	char irq_stack[IRQ_STACK_SIZE];
329 	/*
330 	 * GCC hardcodes the stack canary as %gs:40.  Since the
331 	 * irq_stack is the object at %gs:0, we reserve the bottom
332 	 * 48 bytes of the irq stack for the canary.
333 	 */
334 	struct {
335 		char gs_base[40];
336 		unsigned long stack_canary;
337 	};
338 };
339 
340 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
341 DECLARE_INIT_PER_CPU(irq_stack_union);
342 
343 DECLARE_PER_CPU(char *, irq_stack_ptr);
344 DECLARE_PER_CPU(unsigned int, irq_count);
345 extern asmlinkage void ignore_sysret(void);
346 #else	/* X86_64 */
347 #ifdef CONFIG_CC_STACKPROTECTOR
348 /*
349  * Make sure stack canary segment base is cached-aligned:
350  *   "For Intel Atom processors, avoid non zero segment base address
351  *    that is not aligned to cache line boundary at all cost."
352  * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
353  */
354 struct stack_canary {
355 	char __pad[20];		/* canary at %gs:20 */
356 	unsigned long canary;
357 };
358 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
359 #endif
360 /*
361  * per-CPU IRQ handling stacks
362  */
363 struct irq_stack {
364 	u32                     stack[THREAD_SIZE/sizeof(u32)];
365 } __aligned(THREAD_SIZE);
366 
367 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
368 DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
369 #endif	/* X86_64 */
370 
371 extern unsigned int fpu_kernel_xstate_size;
372 extern unsigned int fpu_user_xstate_size;
373 
374 struct perf_event;
375 
376 typedef struct {
377 	unsigned long		seg;
378 } mm_segment_t;
379 
380 struct thread_struct {
381 	/* Cached TLS descriptors: */
382 	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
383 	unsigned long		sp0;
384 	unsigned long		sp;
385 #ifdef CONFIG_X86_32
386 	unsigned long		sysenter_cs;
387 #else
388 	unsigned short		es;
389 	unsigned short		ds;
390 	unsigned short		fsindex;
391 	unsigned short		gsindex;
392 #endif
393 
394 #ifdef CONFIG_X86_64
395 	unsigned long		fsbase;
396 	unsigned long		gsbase;
397 #else
398 	/*
399 	 * XXX: this could presumably be unsigned short.  Alternatively,
400 	 * 32-bit kernels could be taught to use fsindex instead.
401 	 */
402 	unsigned long fs;
403 	unsigned long gs;
404 #endif
405 
406 	/* Save middle states of ptrace breakpoints */
407 	struct perf_event	*ptrace_bps[HBP_NUM];
408 	/* Debug status used for traps, single steps, etc... */
409 	unsigned long           debugreg6;
410 	/* Keep track of the exact dr7 value set by the user */
411 	unsigned long           ptrace_dr7;
412 	/* Fault info: */
413 	unsigned long		cr2;
414 	unsigned long		trap_nr;
415 	unsigned long		error_code;
416 #ifdef CONFIG_VM86
417 	/* Virtual 86 mode info */
418 	struct vm86		*vm86;
419 #endif
420 	/* IO permissions: */
421 	unsigned long		*io_bitmap_ptr;
422 	unsigned long		iopl;
423 	/* Max allowed port in the bitmap, in bytes: */
424 	unsigned		io_bitmap_max;
425 
426 	mm_segment_t		addr_limit;
427 
428 	unsigned int		sig_on_uaccess_err:1;
429 	unsigned int		uaccess_err:1;	/* uaccess failed */
430 
431 	/* Floating point and extended processor state */
432 	struct fpu		fpu;
433 	/*
434 	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
435 	 * the end.
436 	 */
437 };
438 
439 /*
440  * Thread-synchronous status.
441  *
442  * This is different from the flags in that nobody else
443  * ever touches our thread-synchronous status, so we don't
444  * have to worry about atomic accesses.
445  */
446 #define TS_COMPAT		0x0002	/* 32bit syscall active (64BIT)*/
447 
448 /*
449  * Set IOPL bits in EFLAGS from given mask
450  */
native_set_iopl_mask(unsigned mask)451 static inline void native_set_iopl_mask(unsigned mask)
452 {
453 #ifdef CONFIG_X86_32
454 	unsigned int reg;
455 
456 	asm volatile ("pushfl;"
457 		      "popl %0;"
458 		      "andl %1, %0;"
459 		      "orl %2, %0;"
460 		      "pushl %0;"
461 		      "popfl"
462 		      : "=&r" (reg)
463 		      : "i" (~X86_EFLAGS_IOPL), "r" (mask));
464 #endif
465 }
466 
467 static inline void
native_load_sp0(struct tss_struct * tss,struct thread_struct * thread)468 native_load_sp0(struct tss_struct *tss, struct thread_struct *thread)
469 {
470 	tss->x86_tss.sp0 = thread->sp0;
471 #ifdef CONFIG_X86_32
472 	/* Only happens when SEP is enabled, no need to test "SEP"arately: */
473 	if (unlikely(tss->x86_tss.ss1 != thread->sysenter_cs)) {
474 		tss->x86_tss.ss1 = thread->sysenter_cs;
475 		wrmsr(MSR_IA32_SYSENTER_CS, thread->sysenter_cs, 0);
476 	}
477 #endif
478 }
479 
native_swapgs(void)480 static inline void native_swapgs(void)
481 {
482 #ifdef CONFIG_X86_64
483 	asm volatile("swapgs" ::: "memory");
484 #endif
485 }
486 
current_top_of_stack(void)487 static inline unsigned long current_top_of_stack(void)
488 {
489 #ifdef CONFIG_X86_64
490 	return this_cpu_read_stable(cpu_tss.x86_tss.sp0);
491 #else
492 	/* sp0 on x86_32 is special in and around vm86 mode. */
493 	return this_cpu_read_stable(cpu_current_top_of_stack);
494 #endif
495 }
496 
497 #ifdef CONFIG_PARAVIRT
498 #include <asm/paravirt.h>
499 #else
500 #define __cpuid			native_cpuid
501 
load_sp0(struct tss_struct * tss,struct thread_struct * thread)502 static inline void load_sp0(struct tss_struct *tss,
503 			    struct thread_struct *thread)
504 {
505 	native_load_sp0(tss, thread);
506 }
507 
508 #define set_iopl_mask native_set_iopl_mask
509 #endif /* CONFIG_PARAVIRT */
510 
511 /* Free all resources held by a thread. */
512 extern void release_thread(struct task_struct *);
513 
514 unsigned long get_wchan(struct task_struct *p);
515 
516 /*
517  * Generic CPUID function
518  * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
519  * resulting in stale register contents being returned.
520  */
cpuid(unsigned int op,unsigned int * eax,unsigned int * ebx,unsigned int * ecx,unsigned int * edx)521 static inline void cpuid(unsigned int op,
522 			 unsigned int *eax, unsigned int *ebx,
523 			 unsigned int *ecx, unsigned int *edx)
524 {
525 	*eax = op;
526 	*ecx = 0;
527 	__cpuid(eax, ebx, ecx, edx);
528 }
529 
530 /* Some CPUID calls want 'count' to be placed in ecx */
cpuid_count(unsigned int op,int count,unsigned int * eax,unsigned int * ebx,unsigned int * ecx,unsigned int * edx)531 static inline void cpuid_count(unsigned int op, int count,
532 			       unsigned int *eax, unsigned int *ebx,
533 			       unsigned int *ecx, unsigned int *edx)
534 {
535 	*eax = op;
536 	*ecx = count;
537 	__cpuid(eax, ebx, ecx, edx);
538 }
539 
540 /*
541  * CPUID functions returning a single datum
542  */
cpuid_eax(unsigned int op)543 static inline unsigned int cpuid_eax(unsigned int op)
544 {
545 	unsigned int eax, ebx, ecx, edx;
546 
547 	cpuid(op, &eax, &ebx, &ecx, &edx);
548 
549 	return eax;
550 }
551 
cpuid_ebx(unsigned int op)552 static inline unsigned int cpuid_ebx(unsigned int op)
553 {
554 	unsigned int eax, ebx, ecx, edx;
555 
556 	cpuid(op, &eax, &ebx, &ecx, &edx);
557 
558 	return ebx;
559 }
560 
cpuid_ecx(unsigned int op)561 static inline unsigned int cpuid_ecx(unsigned int op)
562 {
563 	unsigned int eax, ebx, ecx, edx;
564 
565 	cpuid(op, &eax, &ebx, &ecx, &edx);
566 
567 	return ecx;
568 }
569 
cpuid_edx(unsigned int op)570 static inline unsigned int cpuid_edx(unsigned int op)
571 {
572 	unsigned int eax, ebx, ecx, edx;
573 
574 	cpuid(op, &eax, &ebx, &ecx, &edx);
575 
576 	return edx;
577 }
578 
579 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
rep_nop(void)580 static __always_inline void rep_nop(void)
581 {
582 	asm volatile("rep; nop" ::: "memory");
583 }
584 
cpu_relax(void)585 static __always_inline void cpu_relax(void)
586 {
587 	rep_nop();
588 }
589 
590 #define cpu_relax_lowlatency() cpu_relax()
591 
592 /* Stop speculative execution and prefetching of modified code. */
sync_core(void)593 static inline void sync_core(void)
594 {
595 	int tmp;
596 
597 #ifdef CONFIG_X86_32
598 	/*
599 	 * Do a CPUID if available, otherwise do a jump.  The jump
600 	 * can conveniently enough be the jump around CPUID.
601 	 */
602 	asm volatile("cmpl %2,%1\n\t"
603 		     "jl 1f\n\t"
604 		     "cpuid\n"
605 		     "1:"
606 		     : "=a" (tmp)
607 		     : "rm" (boot_cpu_data.cpuid_level), "ri" (0), "0" (1)
608 		     : "ebx", "ecx", "edx", "memory");
609 #else
610 	/*
611 	 * CPUID is a barrier to speculative execution.
612 	 * Prefetched instructions are automatically
613 	 * invalidated when modified.
614 	 */
615 	asm volatile("cpuid"
616 		     : "=a" (tmp)
617 		     : "0" (1)
618 		     : "ebx", "ecx", "edx", "memory");
619 #endif
620 }
621 
622 extern void select_idle_routine(const struct cpuinfo_x86 *c);
623 extern void init_amd_e400_c1e_mask(void);
624 
625 extern unsigned long		boot_option_idle_override;
626 extern bool			amd_e400_c1e_detected;
627 
628 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
629 			 IDLE_POLL};
630 
631 extern void enable_sep_cpu(void);
632 extern int sysenter_setup(void);
633 
634 extern void early_trap_init(void);
635 void early_trap_pf_init(void);
636 
637 /* Defined in head.S */
638 extern struct desc_ptr		early_gdt_descr;
639 
640 extern void cpu_set_gdt(int);
641 extern void switch_to_new_gdt(int);
642 extern void load_percpu_segment(int);
643 extern void cpu_init(void);
644 
get_debugctlmsr(void)645 static inline unsigned long get_debugctlmsr(void)
646 {
647 	unsigned long debugctlmsr = 0;
648 
649 #ifndef CONFIG_X86_DEBUGCTLMSR
650 	if (boot_cpu_data.x86 < 6)
651 		return 0;
652 #endif
653 	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
654 
655 	return debugctlmsr;
656 }
657 
update_debugctlmsr(unsigned long debugctlmsr)658 static inline void update_debugctlmsr(unsigned long debugctlmsr)
659 {
660 #ifndef CONFIG_X86_DEBUGCTLMSR
661 	if (boot_cpu_data.x86 < 6)
662 		return;
663 #endif
664 	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
665 }
666 
667 extern void set_task_blockstep(struct task_struct *task, bool on);
668 
669 /* Boot loader type from the setup header: */
670 extern int			bootloader_type;
671 extern int			bootloader_version;
672 
673 extern char			ignore_fpu_irq;
674 
675 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
676 #define ARCH_HAS_PREFETCHW
677 #define ARCH_HAS_SPINLOCK_PREFETCH
678 
679 #ifdef CONFIG_X86_32
680 # define BASE_PREFETCH		""
681 # define ARCH_HAS_PREFETCH
682 #else
683 # define BASE_PREFETCH		"prefetcht0 %P1"
684 #endif
685 
686 /*
687  * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
688  *
689  * It's not worth to care about 3dnow prefetches for the K6
690  * because they are microcoded there and very slow.
691  */
prefetch(const void * x)692 static inline void prefetch(const void *x)
693 {
694 	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
695 			  X86_FEATURE_XMM,
696 			  "m" (*(const char *)x));
697 }
698 
699 /*
700  * 3dnow prefetch to get an exclusive cache line.
701  * Useful for spinlocks to avoid one state transition in the
702  * cache coherency protocol:
703  */
prefetchw(const void * x)704 static inline void prefetchw(const void *x)
705 {
706 	alternative_input(BASE_PREFETCH, "prefetchw %P1",
707 			  X86_FEATURE_3DNOWPREFETCH,
708 			  "m" (*(const char *)x));
709 }
710 
spin_lock_prefetch(const void * x)711 static inline void spin_lock_prefetch(const void *x)
712 {
713 	prefetchw(x);
714 }
715 
716 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
717 			   TOP_OF_KERNEL_STACK_PADDING)
718 
719 #ifdef CONFIG_X86_32
720 /*
721  * User space process size: 3GB (default).
722  */
723 #define TASK_SIZE		PAGE_OFFSET
724 #define TASK_SIZE_MAX		TASK_SIZE
725 #define STACK_TOP		TASK_SIZE
726 #define STACK_TOP_MAX		STACK_TOP
727 
728 #define INIT_THREAD  {							  \
729 	.sp0			= TOP_OF_INIT_STACK,			  \
730 	.sysenter_cs		= __KERNEL_CS,				  \
731 	.io_bitmap_ptr		= NULL,					  \
732 	.addr_limit		= KERNEL_DS,				  \
733 }
734 
735 /*
736  * TOP_OF_KERNEL_STACK_PADDING reserves 8 bytes on top of the ring0 stack.
737  * This is necessary to guarantee that the entire "struct pt_regs"
738  * is accessible even if the CPU haven't stored the SS/ESP registers
739  * on the stack (interrupt gate does not save these registers
740  * when switching to the same priv ring).
741  * Therefore beware: accessing the ss/esp fields of the
742  * "struct pt_regs" is possible, but they may contain the
743  * completely wrong values.
744  */
745 #define task_pt_regs(task) \
746 ({									\
747 	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
748 	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
749 	((struct pt_regs *)__ptr) - 1;					\
750 })
751 
752 #define KSTK_ESP(task)		(task_pt_regs(task)->sp)
753 
754 #else
755 /*
756  * User space process size. 47bits minus one guard page.  The guard
757  * page is necessary on Intel CPUs: if a SYSCALL instruction is at
758  * the highest possible canonical userspace address, then that
759  * syscall will enter the kernel with a non-canonical return
760  * address, and SYSRET will explode dangerously.  We avoid this
761  * particular problem by preventing anything from being mapped
762  * at the maximum canonical address.
763  */
764 #define TASK_SIZE_MAX	((1UL << 47) - PAGE_SIZE)
765 
766 /* This decides where the kernel will search for a free chunk of vm
767  * space during mmap's.
768  */
769 #define IA32_PAGE_OFFSET	((current->personality & ADDR_LIMIT_3GB) ? \
770 					0xc0000000 : 0xFFFFe000)
771 
772 #define TASK_SIZE		(test_thread_flag(TIF_ADDR32) ? \
773 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
774 #define TASK_SIZE_OF(child)	((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
775 					IA32_PAGE_OFFSET : TASK_SIZE_MAX)
776 
777 #define STACK_TOP		TASK_SIZE
778 #define STACK_TOP_MAX		TASK_SIZE_MAX
779 
780 #define INIT_THREAD  {						\
781 	.sp0			= TOP_OF_INIT_STACK,		\
782 	.addr_limit		= KERNEL_DS,			\
783 }
784 
785 #define task_pt_regs(tsk)	((struct pt_regs *)(tsk)->thread.sp0 - 1)
786 extern unsigned long KSTK_ESP(struct task_struct *task);
787 
788 #endif /* CONFIG_X86_64 */
789 
790 extern unsigned long thread_saved_pc(struct task_struct *tsk);
791 
792 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
793 					       unsigned long new_sp);
794 
795 /*
796  * This decides where the kernel will search for a free chunk of vm
797  * space during mmap's.
798  */
799 #define TASK_UNMAPPED_BASE	(PAGE_ALIGN(TASK_SIZE / 3))
800 
801 #define KSTK_EIP(task)		(task_pt_regs(task)->ip)
802 
803 /* Get/set a process' ability to use the timestamp counter instruction */
804 #define GET_TSC_CTL(adr)	get_tsc_mode((adr))
805 #define SET_TSC_CTL(val)	set_tsc_mode((val))
806 
807 extern int get_tsc_mode(unsigned long adr);
808 extern int set_tsc_mode(unsigned int val);
809 
810 /* Register/unregister a process' MPX related resource */
811 #define MPX_ENABLE_MANAGEMENT()	mpx_enable_management()
812 #define MPX_DISABLE_MANAGEMENT()	mpx_disable_management()
813 
814 #ifdef CONFIG_X86_INTEL_MPX
815 extern int mpx_enable_management(void);
816 extern int mpx_disable_management(void);
817 #else
mpx_enable_management(void)818 static inline int mpx_enable_management(void)
819 {
820 	return -EINVAL;
821 }
mpx_disable_management(void)822 static inline int mpx_disable_management(void)
823 {
824 	return -EINVAL;
825 }
826 #endif /* CONFIG_X86_INTEL_MPX */
827 
828 extern u16 amd_get_nb_id(int cpu);
829 extern u32 amd_get_nodes_per_socket(void);
830 
hypervisor_cpuid_base(const char * sig,uint32_t leaves)831 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
832 {
833 	uint32_t base, eax, signature[3];
834 
835 	for (base = 0x40000000; base < 0x40010000; base += 0x100) {
836 		cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
837 
838 		if (!memcmp(sig, signature, 12) &&
839 		    (leaves == 0 || ((eax - base) >= leaves)))
840 			return base;
841 	}
842 
843 	return 0;
844 }
845 
846 extern unsigned long arch_align_stack(unsigned long sp);
847 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
848 
849 void default_idle(void);
850 #ifdef	CONFIG_XEN
851 bool xen_set_default_idle(void);
852 #else
853 #define xen_set_default_idle 0
854 #endif
855 
856 void stop_this_cpu(void *dummy);
857 void df_debug(struct pt_regs *regs, long error_code);
858 #endif /* _ASM_X86_PROCESSOR_H */
859