1 /*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 #include <linux/prefetch.h>
78 #include <linux/cpufreq_times.h>
79
80 #include <asm/switch_to.h>
81 #include <asm/tlb.h>
82 #include <asm/irq_regs.h>
83 #include <asm/mutex.h>
84 #ifdef CONFIG_PARAVIRT
85 #include <asm/paravirt.h>
86 #endif
87
88 #include "sched.h"
89 #include "../workqueue_internal.h"
90 #include "../smpboot.h"
91
92 #define CREATE_TRACE_POINTS
93 #include <trace/events/sched.h>
94 #include "walt.h"
95
96 DEFINE_MUTEX(sched_domains_mutex);
97 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
98
99 static void update_rq_clock_task(struct rq *rq, s64 delta);
100
update_rq_clock(struct rq * rq)101 void update_rq_clock(struct rq *rq)
102 {
103 s64 delta;
104
105 lockdep_assert_held(&rq->lock);
106
107 if (rq->clock_skip_update & RQCF_ACT_SKIP)
108 return;
109
110 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
111 if (delta < 0)
112 return;
113 rq->clock += delta;
114 update_rq_clock_task(rq, delta);
115 }
116
117 /*
118 * Debugging: various feature bits
119 */
120
121 #define SCHED_FEAT(name, enabled) \
122 (1UL << __SCHED_FEAT_##name) * enabled |
123
124 const_debug unsigned int sysctl_sched_features =
125 #include "features.h"
126 0;
127
128 #undef SCHED_FEAT
129
130 /*
131 * Number of tasks to iterate in a single balance run.
132 * Limited because this is done with IRQs disabled.
133 */
134 const_debug unsigned int sysctl_sched_nr_migrate = 32;
135
136 /*
137 * period over which we average the RT time consumption, measured
138 * in ms.
139 *
140 * default: 1s
141 */
142 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
143
144 /*
145 * period over which we measure -rt task cpu usage in us.
146 * default: 1s
147 */
148 unsigned int sysctl_sched_rt_period = 1000000;
149
150 __read_mostly int scheduler_running;
151
152 /*
153 * part of the period that we allow rt tasks to run in us.
154 * default: 0.95s
155 */
156 int sysctl_sched_rt_runtime = 950000;
157
158 /* cpus with isolated domains */
159 cpumask_var_t cpu_isolated_map;
160
161 struct rq *
lock_rq_of(struct task_struct * p,struct rq_flags * flags)162 lock_rq_of(struct task_struct *p, struct rq_flags *flags)
163 {
164 return task_rq_lock(p, flags);
165 }
166
167 void
unlock_rq_of(struct rq * rq,struct task_struct * p,struct rq_flags * flags)168 unlock_rq_of(struct rq *rq, struct task_struct *p, struct rq_flags *flags)
169 {
170 task_rq_unlock(rq, p, flags);
171 }
172
173 /*
174 * this_rq_lock - lock this runqueue and disable interrupts.
175 */
this_rq_lock(void)176 static struct rq *this_rq_lock(void)
177 __acquires(rq->lock)
178 {
179 struct rq *rq;
180
181 local_irq_disable();
182 rq = this_rq();
183 raw_spin_lock(&rq->lock);
184
185 return rq;
186 }
187
188 /*
189 * __task_rq_lock - lock the rq @p resides on.
190 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)191 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
192 __acquires(rq->lock)
193 {
194 struct rq *rq;
195
196 lockdep_assert_held(&p->pi_lock);
197
198 for (;;) {
199 rq = task_rq(p);
200 raw_spin_lock(&rq->lock);
201 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
202 rf->cookie = lockdep_pin_lock(&rq->lock);
203 return rq;
204 }
205 raw_spin_unlock(&rq->lock);
206
207 while (unlikely(task_on_rq_migrating(p)))
208 cpu_relax();
209 }
210 }
211
212 /*
213 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
214 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)215 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
216 __acquires(p->pi_lock)
217 __acquires(rq->lock)
218 {
219 struct rq *rq;
220
221 for (;;) {
222 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
223 rq = task_rq(p);
224 raw_spin_lock(&rq->lock);
225 /*
226 * move_queued_task() task_rq_lock()
227 *
228 * ACQUIRE (rq->lock)
229 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
230 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
231 * [S] ->cpu = new_cpu [L] task_rq()
232 * [L] ->on_rq
233 * RELEASE (rq->lock)
234 *
235 * If we observe the old cpu in task_rq_lock, the acquire of
236 * the old rq->lock will fully serialize against the stores.
237 *
238 * If we observe the new cpu in task_rq_lock, the acquire will
239 * pair with the WMB to ensure we must then also see migrating.
240 */
241 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
242 rf->cookie = lockdep_pin_lock(&rq->lock);
243 return rq;
244 }
245 raw_spin_unlock(&rq->lock);
246 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
247
248 while (unlikely(task_on_rq_migrating(p)))
249 cpu_relax();
250 }
251 }
252
253 #ifdef CONFIG_SCHED_HRTICK
254 /*
255 * Use HR-timers to deliver accurate preemption points.
256 */
257
hrtick_clear(struct rq * rq)258 static void hrtick_clear(struct rq *rq)
259 {
260 if (hrtimer_active(&rq->hrtick_timer))
261 hrtimer_cancel(&rq->hrtick_timer);
262 }
263
264 /*
265 * High-resolution timer tick.
266 * Runs from hardirq context with interrupts disabled.
267 */
hrtick(struct hrtimer * timer)268 static enum hrtimer_restart hrtick(struct hrtimer *timer)
269 {
270 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
271
272 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
273
274 raw_spin_lock(&rq->lock);
275 update_rq_clock(rq);
276 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
277 raw_spin_unlock(&rq->lock);
278
279 return HRTIMER_NORESTART;
280 }
281
282 #ifdef CONFIG_SMP
283
__hrtick_restart(struct rq * rq)284 static void __hrtick_restart(struct rq *rq)
285 {
286 struct hrtimer *timer = &rq->hrtick_timer;
287
288 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
289 }
290
291 /*
292 * called from hardirq (IPI) context
293 */
__hrtick_start(void * arg)294 static void __hrtick_start(void *arg)
295 {
296 struct rq *rq = arg;
297
298 raw_spin_lock(&rq->lock);
299 __hrtick_restart(rq);
300 rq->hrtick_csd_pending = 0;
301 raw_spin_unlock(&rq->lock);
302 }
303
304 /*
305 * Called to set the hrtick timer state.
306 *
307 * called with rq->lock held and irqs disabled
308 */
hrtick_start(struct rq * rq,u64 delay)309 void hrtick_start(struct rq *rq, u64 delay)
310 {
311 struct hrtimer *timer = &rq->hrtick_timer;
312 ktime_t time;
313 s64 delta;
314
315 /*
316 * Don't schedule slices shorter than 10000ns, that just
317 * doesn't make sense and can cause timer DoS.
318 */
319 delta = max_t(s64, delay, 10000LL);
320 time = ktime_add_ns(timer->base->get_time(), delta);
321
322 hrtimer_set_expires(timer, time);
323
324 if (rq == this_rq()) {
325 __hrtick_restart(rq);
326 } else if (!rq->hrtick_csd_pending) {
327 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
328 rq->hrtick_csd_pending = 1;
329 }
330 }
331
332 #else
333 /*
334 * Called to set the hrtick timer state.
335 *
336 * called with rq->lock held and irqs disabled
337 */
hrtick_start(struct rq * rq,u64 delay)338 void hrtick_start(struct rq *rq, u64 delay)
339 {
340 /*
341 * Don't schedule slices shorter than 10000ns, that just
342 * doesn't make sense. Rely on vruntime for fairness.
343 */
344 delay = max_t(u64, delay, 10000LL);
345 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
346 HRTIMER_MODE_REL_PINNED);
347 }
348 #endif /* CONFIG_SMP */
349
init_rq_hrtick(struct rq * rq)350 static void init_rq_hrtick(struct rq *rq)
351 {
352 #ifdef CONFIG_SMP
353 rq->hrtick_csd_pending = 0;
354
355 rq->hrtick_csd.flags = 0;
356 rq->hrtick_csd.func = __hrtick_start;
357 rq->hrtick_csd.info = rq;
358 #endif
359
360 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
361 rq->hrtick_timer.function = hrtick;
362 }
363 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)364 static inline void hrtick_clear(struct rq *rq)
365 {
366 }
367
init_rq_hrtick(struct rq * rq)368 static inline void init_rq_hrtick(struct rq *rq)
369 {
370 }
371 #endif /* CONFIG_SCHED_HRTICK */
372
373 /*
374 * cmpxchg based fetch_or, macro so it works for different integer types
375 */
376 #define fetch_or(ptr, mask) \
377 ({ \
378 typeof(ptr) _ptr = (ptr); \
379 typeof(mask) _mask = (mask); \
380 typeof(*_ptr) _old, _val = *_ptr; \
381 \
382 for (;;) { \
383 _old = cmpxchg(_ptr, _val, _val | _mask); \
384 if (_old == _val) \
385 break; \
386 _val = _old; \
387 } \
388 _old; \
389 })
390
391 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
392 /*
393 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
394 * this avoids any races wrt polling state changes and thereby avoids
395 * spurious IPIs.
396 */
set_nr_and_not_polling(struct task_struct * p)397 static bool set_nr_and_not_polling(struct task_struct *p)
398 {
399 struct thread_info *ti = task_thread_info(p);
400 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
401 }
402
403 /*
404 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
405 *
406 * If this returns true, then the idle task promises to call
407 * sched_ttwu_pending() and reschedule soon.
408 */
set_nr_if_polling(struct task_struct * p)409 static bool set_nr_if_polling(struct task_struct *p)
410 {
411 struct thread_info *ti = task_thread_info(p);
412 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
413
414 for (;;) {
415 if (!(val & _TIF_POLLING_NRFLAG))
416 return false;
417 if (val & _TIF_NEED_RESCHED)
418 return true;
419 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
420 if (old == val)
421 break;
422 val = old;
423 }
424 return true;
425 }
426
427 #else
set_nr_and_not_polling(struct task_struct * p)428 static bool set_nr_and_not_polling(struct task_struct *p)
429 {
430 set_tsk_need_resched(p);
431 return true;
432 }
433
434 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)435 static bool set_nr_if_polling(struct task_struct *p)
436 {
437 return false;
438 }
439 #endif
440 #endif
441
wake_q_add(struct wake_q_head * head,struct task_struct * task)442 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
443 {
444 struct wake_q_node *node = &task->wake_q;
445
446 /*
447 * Atomically grab the task, if ->wake_q is !nil already it means
448 * its already queued (either by us or someone else) and will get the
449 * wakeup due to that.
450 *
451 * This cmpxchg() implies a full barrier, which pairs with the write
452 * barrier implied by the wakeup in wake_up_q().
453 */
454 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
455 return;
456
457 get_task_struct(task);
458
459 /*
460 * The head is context local, there can be no concurrency.
461 */
462 *head->lastp = node;
463 head->lastp = &node->next;
464 }
465
wake_up_q(struct wake_q_head * head)466 void wake_up_q(struct wake_q_head *head)
467 {
468 struct wake_q_node *node = head->first;
469
470 while (node != WAKE_Q_TAIL) {
471 struct task_struct *task;
472
473 task = container_of(node, struct task_struct, wake_q);
474 BUG_ON(!task);
475 /* task can safely be re-inserted now */
476 node = node->next;
477 task->wake_q.next = NULL;
478
479 /*
480 * wake_up_process() implies a wmb() to pair with the queueing
481 * in wake_q_add() so as not to miss wakeups.
482 */
483 wake_up_process(task);
484 put_task_struct(task);
485 }
486 }
487
488 /*
489 * resched_curr - mark rq's current task 'to be rescheduled now'.
490 *
491 * On UP this means the setting of the need_resched flag, on SMP it
492 * might also involve a cross-CPU call to trigger the scheduler on
493 * the target CPU.
494 */
resched_curr(struct rq * rq)495 void resched_curr(struct rq *rq)
496 {
497 struct task_struct *curr = rq->curr;
498 int cpu;
499
500 lockdep_assert_held(&rq->lock);
501
502 if (test_tsk_need_resched(curr))
503 return;
504
505 cpu = cpu_of(rq);
506
507 if (cpu == smp_processor_id()) {
508 set_tsk_need_resched(curr);
509 set_preempt_need_resched();
510 return;
511 }
512
513 if (set_nr_and_not_polling(curr))
514 smp_send_reschedule(cpu);
515 else
516 trace_sched_wake_idle_without_ipi(cpu);
517 }
518
resched_cpu(int cpu)519 void resched_cpu(int cpu)
520 {
521 struct rq *rq = cpu_rq(cpu);
522 unsigned long flags;
523
524 raw_spin_lock_irqsave(&rq->lock, flags);
525 if (cpu_online(cpu) || cpu == smp_processor_id())
526 resched_curr(rq);
527 raw_spin_unlock_irqrestore(&rq->lock, flags);
528 }
529
530 #ifdef CONFIG_SMP
531 #ifdef CONFIG_NO_HZ_COMMON
532 /*
533 * In the semi idle case, use the nearest busy cpu for migrating timers
534 * from an idle cpu. This is good for power-savings.
535 *
536 * We don't do similar optimization for completely idle system, as
537 * selecting an idle cpu will add more delays to the timers than intended
538 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
539 */
get_nohz_timer_target(void)540 int get_nohz_timer_target(void)
541 {
542 int i, cpu = smp_processor_id();
543 struct sched_domain *sd;
544
545 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
546 return cpu;
547
548 rcu_read_lock();
549 for_each_domain(cpu, sd) {
550 for_each_cpu(i, sched_domain_span(sd)) {
551 if (cpu == i)
552 continue;
553
554 if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
555 cpu = i;
556 goto unlock;
557 }
558 }
559 }
560
561 if (!is_housekeeping_cpu(cpu))
562 cpu = housekeeping_any_cpu();
563 unlock:
564 rcu_read_unlock();
565 return cpu;
566 }
567 /*
568 * When add_timer_on() enqueues a timer into the timer wheel of an
569 * idle CPU then this timer might expire before the next timer event
570 * which is scheduled to wake up that CPU. In case of a completely
571 * idle system the next event might even be infinite time into the
572 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
573 * leaves the inner idle loop so the newly added timer is taken into
574 * account when the CPU goes back to idle and evaluates the timer
575 * wheel for the next timer event.
576 */
wake_up_idle_cpu(int cpu)577 static void wake_up_idle_cpu(int cpu)
578 {
579 struct rq *rq = cpu_rq(cpu);
580
581 if (cpu == smp_processor_id())
582 return;
583
584 if (set_nr_and_not_polling(rq->idle))
585 smp_send_reschedule(cpu);
586 else
587 trace_sched_wake_idle_without_ipi(cpu);
588 }
589
wake_up_full_nohz_cpu(int cpu)590 static bool wake_up_full_nohz_cpu(int cpu)
591 {
592 /*
593 * We just need the target to call irq_exit() and re-evaluate
594 * the next tick. The nohz full kick at least implies that.
595 * If needed we can still optimize that later with an
596 * empty IRQ.
597 */
598 if (cpu_is_offline(cpu))
599 return true; /* Don't try to wake offline CPUs. */
600 if (tick_nohz_full_cpu(cpu)) {
601 if (cpu != smp_processor_id() ||
602 tick_nohz_tick_stopped())
603 tick_nohz_full_kick_cpu(cpu);
604 return true;
605 }
606
607 return false;
608 }
609
610 /*
611 * Wake up the specified CPU. If the CPU is going offline, it is the
612 * caller's responsibility to deal with the lost wakeup, for example,
613 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
614 */
wake_up_nohz_cpu(int cpu)615 void wake_up_nohz_cpu(int cpu)
616 {
617 if (!wake_up_full_nohz_cpu(cpu))
618 wake_up_idle_cpu(cpu);
619 }
620
got_nohz_idle_kick(void)621 static inline bool got_nohz_idle_kick(void)
622 {
623 int cpu = smp_processor_id();
624
625 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
626 return false;
627
628 if (idle_cpu(cpu) && !need_resched())
629 return true;
630
631 /*
632 * We can't run Idle Load Balance on this CPU for this time so we
633 * cancel it and clear NOHZ_BALANCE_KICK
634 */
635 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
636 return false;
637 }
638
639 #else /* CONFIG_NO_HZ_COMMON */
640
got_nohz_idle_kick(void)641 static inline bool got_nohz_idle_kick(void)
642 {
643 return false;
644 }
645
646 #endif /* CONFIG_NO_HZ_COMMON */
647
648 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)649 bool sched_can_stop_tick(struct rq *rq)
650 {
651 int fifo_nr_running;
652
653 /* Deadline tasks, even if single, need the tick */
654 if (rq->dl.dl_nr_running)
655 return false;
656
657 /*
658 * If there are more than one RR tasks, we need the tick to effect the
659 * actual RR behaviour.
660 */
661 if (rq->rt.rr_nr_running) {
662 if (rq->rt.rr_nr_running == 1)
663 return true;
664 else
665 return false;
666 }
667
668 /*
669 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
670 * forced preemption between FIFO tasks.
671 */
672 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
673 if (fifo_nr_running)
674 return true;
675
676 /*
677 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
678 * if there's more than one we need the tick for involuntary
679 * preemption.
680 */
681 if (rq->nr_running > 1)
682 return false;
683
684 return true;
685 }
686 #endif /* CONFIG_NO_HZ_FULL */
687
sched_avg_update(struct rq * rq)688 void sched_avg_update(struct rq *rq)
689 {
690 s64 period = sched_avg_period();
691
692 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
693 /*
694 * Inline assembly required to prevent the compiler
695 * optimising this loop into a divmod call.
696 * See __iter_div_u64_rem() for another example of this.
697 */
698 asm("" : "+rm" (rq->age_stamp));
699 rq->age_stamp += period;
700 rq->rt_avg /= 2;
701 }
702 }
703
704 #endif /* CONFIG_SMP */
705
706 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
707 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
708 /*
709 * Iterate task_group tree rooted at *from, calling @down when first entering a
710 * node and @up when leaving it for the final time.
711 *
712 * Caller must hold rcu_lock or sufficient equivalent.
713 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)714 int walk_tg_tree_from(struct task_group *from,
715 tg_visitor down, tg_visitor up, void *data)
716 {
717 struct task_group *parent, *child;
718 int ret;
719
720 parent = from;
721
722 down:
723 ret = (*down)(parent, data);
724 if (ret)
725 goto out;
726 list_for_each_entry_rcu(child, &parent->children, siblings) {
727 parent = child;
728 goto down;
729
730 up:
731 continue;
732 }
733 ret = (*up)(parent, data);
734 if (ret || parent == from)
735 goto out;
736
737 child = parent;
738 parent = parent->parent;
739 if (parent)
740 goto up;
741 out:
742 return ret;
743 }
744
tg_nop(struct task_group * tg,void * data)745 int tg_nop(struct task_group *tg, void *data)
746 {
747 return 0;
748 }
749 #endif
750
set_load_weight(struct task_struct * p)751 static void set_load_weight(struct task_struct *p)
752 {
753 int prio = p->static_prio - MAX_RT_PRIO;
754 struct load_weight *load = &p->se.load;
755
756 /*
757 * SCHED_IDLE tasks get minimal weight:
758 */
759 if (idle_policy(p->policy)) {
760 load->weight = scale_load(WEIGHT_IDLEPRIO);
761 load->inv_weight = WMULT_IDLEPRIO;
762 return;
763 }
764
765 load->weight = scale_load(sched_prio_to_weight[prio]);
766 load->inv_weight = sched_prio_to_wmult[prio];
767 }
768
enqueue_task(struct rq * rq,struct task_struct * p,int flags)769 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
770 {
771 update_rq_clock(rq);
772 if (!(flags & ENQUEUE_RESTORE))
773 sched_info_queued(rq, p);
774 p->sched_class->enqueue_task(rq, p, flags);
775 }
776
dequeue_task(struct rq * rq,struct task_struct * p,int flags)777 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
778 {
779 update_rq_clock(rq);
780 if (!(flags & DEQUEUE_SAVE))
781 sched_info_dequeued(rq, p);
782 p->sched_class->dequeue_task(rq, p, flags);
783 }
784
activate_task(struct rq * rq,struct task_struct * p,int flags)785 void activate_task(struct rq *rq, struct task_struct *p, int flags)
786 {
787 if (task_contributes_to_load(p))
788 rq->nr_uninterruptible--;
789
790 enqueue_task(rq, p, flags);
791 }
792
deactivate_task(struct rq * rq,struct task_struct * p,int flags)793 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
794 {
795 if (task_contributes_to_load(p))
796 rq->nr_uninterruptible++;
797
798 dequeue_task(rq, p, flags);
799 }
800
update_rq_clock_task(struct rq * rq,s64 delta)801 static void update_rq_clock_task(struct rq *rq, s64 delta)
802 {
803 /*
804 * In theory, the compile should just see 0 here, and optimize out the call
805 * to sched_rt_avg_update. But I don't trust it...
806 */
807 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
808 s64 steal = 0, irq_delta = 0;
809 #endif
810 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
811 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
812
813 /*
814 * Since irq_time is only updated on {soft,}irq_exit, we might run into
815 * this case when a previous update_rq_clock() happened inside a
816 * {soft,}irq region.
817 *
818 * When this happens, we stop ->clock_task and only update the
819 * prev_irq_time stamp to account for the part that fit, so that a next
820 * update will consume the rest. This ensures ->clock_task is
821 * monotonic.
822 *
823 * It does however cause some slight miss-attribution of {soft,}irq
824 * time, a more accurate solution would be to update the irq_time using
825 * the current rq->clock timestamp, except that would require using
826 * atomic ops.
827 */
828 if (irq_delta > delta)
829 irq_delta = delta;
830
831 rq->prev_irq_time += irq_delta;
832 delta -= irq_delta;
833 #endif
834 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
835 if (static_key_false((¶virt_steal_rq_enabled))) {
836 steal = paravirt_steal_clock(cpu_of(rq));
837 steal -= rq->prev_steal_time_rq;
838
839 if (unlikely(steal > delta))
840 steal = delta;
841
842 rq->prev_steal_time_rq += steal;
843 delta -= steal;
844 }
845 #endif
846
847 rq->clock_task += delta;
848
849 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
850 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
851 sched_rt_avg_update(rq, irq_delta + steal);
852 #endif
853 }
854
sched_set_stop_task(int cpu,struct task_struct * stop)855 void sched_set_stop_task(int cpu, struct task_struct *stop)
856 {
857 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
858 struct task_struct *old_stop = cpu_rq(cpu)->stop;
859
860 if (stop) {
861 /*
862 * Make it appear like a SCHED_FIFO task, its something
863 * userspace knows about and won't get confused about.
864 *
865 * Also, it will make PI more or less work without too
866 * much confusion -- but then, stop work should not
867 * rely on PI working anyway.
868 */
869 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
870
871 stop->sched_class = &stop_sched_class;
872 }
873
874 cpu_rq(cpu)->stop = stop;
875
876 if (old_stop) {
877 /*
878 * Reset it back to a normal scheduling class so that
879 * it can die in pieces.
880 */
881 old_stop->sched_class = &rt_sched_class;
882 }
883 }
884
885 /*
886 * __normal_prio - return the priority that is based on the static prio
887 */
__normal_prio(struct task_struct * p)888 static inline int __normal_prio(struct task_struct *p)
889 {
890 return p->static_prio;
891 }
892
893 /*
894 * Calculate the expected normal priority: i.e. priority
895 * without taking RT-inheritance into account. Might be
896 * boosted by interactivity modifiers. Changes upon fork,
897 * setprio syscalls, and whenever the interactivity
898 * estimator recalculates.
899 */
normal_prio(struct task_struct * p)900 static inline int normal_prio(struct task_struct *p)
901 {
902 int prio;
903
904 if (task_has_dl_policy(p))
905 prio = MAX_DL_PRIO-1;
906 else if (task_has_rt_policy(p))
907 prio = MAX_RT_PRIO-1 - p->rt_priority;
908 else
909 prio = __normal_prio(p);
910 return prio;
911 }
912
913 /*
914 * Calculate the current priority, i.e. the priority
915 * taken into account by the scheduler. This value might
916 * be boosted by RT tasks, or might be boosted by
917 * interactivity modifiers. Will be RT if the task got
918 * RT-boosted. If not then it returns p->normal_prio.
919 */
effective_prio(struct task_struct * p)920 static int effective_prio(struct task_struct *p)
921 {
922 p->normal_prio = normal_prio(p);
923 /*
924 * If we are RT tasks or we were boosted to RT priority,
925 * keep the priority unchanged. Otherwise, update priority
926 * to the normal priority:
927 */
928 if (!rt_prio(p->prio))
929 return p->normal_prio;
930 return p->prio;
931 }
932
933 /**
934 * task_curr - is this task currently executing on a CPU?
935 * @p: the task in question.
936 *
937 * Return: 1 if the task is currently executing. 0 otherwise.
938 */
task_curr(const struct task_struct * p)939 inline int task_curr(const struct task_struct *p)
940 {
941 return cpu_curr(task_cpu(p)) == p;
942 }
943
944 /*
945 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
946 * use the balance_callback list if you want balancing.
947 *
948 * this means any call to check_class_changed() must be followed by a call to
949 * balance_callback().
950 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)951 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
952 const struct sched_class *prev_class,
953 int oldprio)
954 {
955 if (prev_class != p->sched_class) {
956 if (prev_class->switched_from)
957 prev_class->switched_from(rq, p);
958
959 p->sched_class->switched_to(rq, p);
960 } else if (oldprio != p->prio || dl_task(p))
961 p->sched_class->prio_changed(rq, p, oldprio);
962 }
963
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)964 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
965 {
966 const struct sched_class *class;
967
968 if (p->sched_class == rq->curr->sched_class) {
969 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
970 } else {
971 for_each_class(class) {
972 if (class == rq->curr->sched_class)
973 break;
974 if (class == p->sched_class) {
975 resched_curr(rq);
976 break;
977 }
978 }
979 }
980
981 /*
982 * A queue event has occurred, and we're going to schedule. In
983 * this case, we can save a useless back to back clock update.
984 */
985 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
986 rq_clock_skip_update(rq, true);
987 }
988
989 #ifdef CONFIG_SMP
990 /*
991 * This is how migration works:
992 *
993 * 1) we invoke migration_cpu_stop() on the target CPU using
994 * stop_one_cpu().
995 * 2) stopper starts to run (implicitly forcing the migrated thread
996 * off the CPU)
997 * 3) it checks whether the migrated task is still in the wrong runqueue.
998 * 4) if it's in the wrong runqueue then the migration thread removes
999 * it and puts it into the right queue.
1000 * 5) stopper completes and stop_one_cpu() returns and the migration
1001 * is done.
1002 */
1003
1004 /*
1005 * move_queued_task - move a queued task to new rq.
1006 *
1007 * Returns (locked) new rq. Old rq's lock is released.
1008 */
move_queued_task(struct rq * rq,struct task_struct * p,int new_cpu)1009 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1010 {
1011 lockdep_assert_held(&rq->lock);
1012
1013 p->on_rq = TASK_ON_RQ_MIGRATING;
1014 dequeue_task(rq, p, 0);
1015 double_lock_balance(rq, cpu_rq(new_cpu));
1016 set_task_cpu(p, new_cpu);
1017 double_unlock_balance(rq, cpu_rq(new_cpu));
1018 raw_spin_unlock(&rq->lock);
1019
1020 rq = cpu_rq(new_cpu);
1021
1022 raw_spin_lock(&rq->lock);
1023 BUG_ON(task_cpu(p) != new_cpu);
1024 enqueue_task(rq, p, 0);
1025 p->on_rq = TASK_ON_RQ_QUEUED;
1026 check_preempt_curr(rq, p, 0);
1027
1028 return rq;
1029 }
1030
1031 struct migration_arg {
1032 struct task_struct *task;
1033 int dest_cpu;
1034 };
1035
1036 /*
1037 * Move (not current) task off this cpu, onto dest cpu. We're doing
1038 * this because either it can't run here any more (set_cpus_allowed()
1039 * away from this CPU, or CPU going down), or because we're
1040 * attempting to rebalance this task on exec (sched_exec).
1041 *
1042 * So we race with normal scheduler movements, but that's OK, as long
1043 * as the task is no longer on this CPU.
1044 */
__migrate_task(struct rq * rq,struct task_struct * p,int dest_cpu)1045 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1046 {
1047 if (unlikely(!cpu_active(dest_cpu)))
1048 return rq;
1049
1050 /* Affinity changed (again). */
1051 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1052 return rq;
1053
1054 rq = move_queued_task(rq, p, dest_cpu);
1055
1056 return rq;
1057 }
1058
1059 /*
1060 * migration_cpu_stop - this will be executed by a highprio stopper thread
1061 * and performs thread migration by bumping thread off CPU then
1062 * 'pushing' onto another runqueue.
1063 */
migration_cpu_stop(void * data)1064 static int migration_cpu_stop(void *data)
1065 {
1066 struct migration_arg *arg = data;
1067 struct task_struct *p = arg->task;
1068 struct rq *rq = this_rq();
1069
1070 /*
1071 * The original target cpu might have gone down and we might
1072 * be on another cpu but it doesn't matter.
1073 */
1074 local_irq_disable();
1075 /*
1076 * We need to explicitly wake pending tasks before running
1077 * __migrate_task() such that we will not miss enforcing cpus_allowed
1078 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1079 */
1080 sched_ttwu_pending();
1081
1082 raw_spin_lock(&p->pi_lock);
1083 raw_spin_lock(&rq->lock);
1084 /*
1085 * If task_rq(p) != rq, it cannot be migrated here, because we're
1086 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1087 * we're holding p->pi_lock.
1088 */
1089 if (task_rq(p) == rq) {
1090 if (task_on_rq_queued(p))
1091 rq = __migrate_task(rq, p, arg->dest_cpu);
1092 else
1093 p->wake_cpu = arg->dest_cpu;
1094 }
1095 raw_spin_unlock(&rq->lock);
1096 raw_spin_unlock(&p->pi_lock);
1097
1098 local_irq_enable();
1099 return 0;
1100 }
1101
1102 /*
1103 * sched_class::set_cpus_allowed must do the below, but is not required to
1104 * actually call this function.
1105 */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask)1106 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1107 {
1108 cpumask_copy(&p->cpus_allowed, new_mask);
1109 p->nr_cpus_allowed = cpumask_weight(new_mask);
1110 }
1111
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1112 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1113 {
1114 struct rq *rq = task_rq(p);
1115 bool queued, running;
1116
1117 lockdep_assert_held(&p->pi_lock);
1118
1119 queued = task_on_rq_queued(p);
1120 running = task_current(rq, p);
1121
1122 if (queued) {
1123 /*
1124 * Because __kthread_bind() calls this on blocked tasks without
1125 * holding rq->lock.
1126 */
1127 lockdep_assert_held(&rq->lock);
1128 dequeue_task(rq, p, DEQUEUE_SAVE);
1129 }
1130 if (running)
1131 put_prev_task(rq, p);
1132
1133 p->sched_class->set_cpus_allowed(p, new_mask);
1134
1135 if (queued)
1136 enqueue_task(rq, p, ENQUEUE_RESTORE);
1137 if (running)
1138 set_curr_task(rq, p);
1139 }
1140
1141 /*
1142 * Change a given task's CPU affinity. Migrate the thread to a
1143 * proper CPU and schedule it away if the CPU it's executing on
1144 * is removed from the allowed bitmask.
1145 *
1146 * NOTE: the caller must have a valid reference to the task, the
1147 * task must not exit() & deallocate itself prematurely. The
1148 * call is not atomic; no spinlocks may be held.
1149 */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1150 static int __set_cpus_allowed_ptr(struct task_struct *p,
1151 const struct cpumask *new_mask, bool check)
1152 {
1153 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1154 unsigned int dest_cpu;
1155 struct rq_flags rf;
1156 struct rq *rq;
1157 int ret = 0;
1158
1159 rq = task_rq_lock(p, &rf);
1160 update_rq_clock(rq);
1161
1162 if (p->flags & PF_KTHREAD) {
1163 /*
1164 * Kernel threads are allowed on online && !active CPUs
1165 */
1166 cpu_valid_mask = cpu_online_mask;
1167 }
1168
1169 /*
1170 * Must re-check here, to close a race against __kthread_bind(),
1171 * sched_setaffinity() is not guaranteed to observe the flag.
1172 */
1173 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1174 ret = -EINVAL;
1175 goto out;
1176 }
1177
1178 if (cpumask_equal(&p->cpus_allowed, new_mask))
1179 goto out;
1180
1181 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1182 ret = -EINVAL;
1183 goto out;
1184 }
1185
1186 do_set_cpus_allowed(p, new_mask);
1187
1188 if (p->flags & PF_KTHREAD) {
1189 /*
1190 * For kernel threads that do indeed end up on online &&
1191 * !active we want to ensure they are strict per-cpu threads.
1192 */
1193 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1194 !cpumask_intersects(new_mask, cpu_active_mask) &&
1195 p->nr_cpus_allowed != 1);
1196 }
1197
1198 /* Can the task run on the task's current CPU? If so, we're done */
1199 if (cpumask_test_cpu(task_cpu(p), new_mask))
1200 goto out;
1201
1202 dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1203 if (task_running(rq, p) || p->state == TASK_WAKING) {
1204 struct migration_arg arg = { p, dest_cpu };
1205 /* Need help from migration thread: drop lock and wait. */
1206 task_rq_unlock(rq, p, &rf);
1207 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1208 tlb_migrate_finish(p->mm);
1209 return 0;
1210 } else if (task_on_rq_queued(p)) {
1211 /*
1212 * OK, since we're going to drop the lock immediately
1213 * afterwards anyway.
1214 */
1215 lockdep_unpin_lock(&rq->lock, rf.cookie);
1216 rq = move_queued_task(rq, p, dest_cpu);
1217 lockdep_repin_lock(&rq->lock, rf.cookie);
1218 }
1219 out:
1220 task_rq_unlock(rq, p, &rf);
1221
1222 return ret;
1223 }
1224
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1225 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1226 {
1227 return __set_cpus_allowed_ptr(p, new_mask, false);
1228 }
1229 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1230
set_task_cpu(struct task_struct * p,unsigned int new_cpu)1231 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1232 {
1233 #ifdef CONFIG_SCHED_DEBUG
1234 /*
1235 * We should never call set_task_cpu() on a blocked task,
1236 * ttwu() will sort out the placement.
1237 */
1238 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1239 !p->on_rq);
1240
1241 /*
1242 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1243 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1244 * time relying on p->on_rq.
1245 */
1246 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1247 p->sched_class == &fair_sched_class &&
1248 (p->on_rq && !task_on_rq_migrating(p)));
1249
1250 #ifdef CONFIG_LOCKDEP
1251 /*
1252 * The caller should hold either p->pi_lock or rq->lock, when changing
1253 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1254 *
1255 * sched_move_task() holds both and thus holding either pins the cgroup,
1256 * see task_group().
1257 *
1258 * Furthermore, all task_rq users should acquire both locks, see
1259 * task_rq_lock().
1260 */
1261 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1262 lockdep_is_held(&task_rq(p)->lock)));
1263 #endif
1264 #endif
1265
1266 trace_sched_migrate_task(p, new_cpu);
1267
1268 if (task_cpu(p) != new_cpu) {
1269 if (p->sched_class->migrate_task_rq)
1270 p->sched_class->migrate_task_rq(p);
1271 p->se.nr_migrations++;
1272 perf_event_task_migrate(p);
1273
1274 walt_fixup_busy_time(p, new_cpu);
1275 }
1276
1277 __set_task_cpu(p, new_cpu);
1278 }
1279
__migrate_swap_task(struct task_struct * p,int cpu)1280 static void __migrate_swap_task(struct task_struct *p, int cpu)
1281 {
1282 if (task_on_rq_queued(p)) {
1283 struct rq *src_rq, *dst_rq;
1284
1285 src_rq = task_rq(p);
1286 dst_rq = cpu_rq(cpu);
1287
1288 p->on_rq = TASK_ON_RQ_MIGRATING;
1289 deactivate_task(src_rq, p, 0);
1290 p->on_rq = TASK_ON_RQ_MIGRATING;
1291 set_task_cpu(p, cpu);
1292 p->on_rq = TASK_ON_RQ_QUEUED;
1293 activate_task(dst_rq, p, 0);
1294 p->on_rq = TASK_ON_RQ_QUEUED;
1295 check_preempt_curr(dst_rq, p, 0);
1296 } else {
1297 /*
1298 * Task isn't running anymore; make it appear like we migrated
1299 * it before it went to sleep. This means on wakeup we make the
1300 * previous cpu our target instead of where it really is.
1301 */
1302 p->wake_cpu = cpu;
1303 }
1304 }
1305
1306 struct migration_swap_arg {
1307 struct task_struct *src_task, *dst_task;
1308 int src_cpu, dst_cpu;
1309 };
1310
migrate_swap_stop(void * data)1311 static int migrate_swap_stop(void *data)
1312 {
1313 struct migration_swap_arg *arg = data;
1314 struct rq *src_rq, *dst_rq;
1315 int ret = -EAGAIN;
1316
1317 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1318 return -EAGAIN;
1319
1320 src_rq = cpu_rq(arg->src_cpu);
1321 dst_rq = cpu_rq(arg->dst_cpu);
1322
1323 double_raw_lock(&arg->src_task->pi_lock,
1324 &arg->dst_task->pi_lock);
1325 double_rq_lock(src_rq, dst_rq);
1326
1327 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1328 goto unlock;
1329
1330 if (task_cpu(arg->src_task) != arg->src_cpu)
1331 goto unlock;
1332
1333 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1334 goto unlock;
1335
1336 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1337 goto unlock;
1338
1339 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1340 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1341
1342 ret = 0;
1343
1344 unlock:
1345 double_rq_unlock(src_rq, dst_rq);
1346 raw_spin_unlock(&arg->dst_task->pi_lock);
1347 raw_spin_unlock(&arg->src_task->pi_lock);
1348
1349 return ret;
1350 }
1351
1352 /*
1353 * Cross migrate two tasks
1354 */
migrate_swap(struct task_struct * cur,struct task_struct * p)1355 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1356 {
1357 struct migration_swap_arg arg;
1358 int ret = -EINVAL;
1359
1360 arg = (struct migration_swap_arg){
1361 .src_task = cur,
1362 .src_cpu = task_cpu(cur),
1363 .dst_task = p,
1364 .dst_cpu = task_cpu(p),
1365 };
1366
1367 if (arg.src_cpu == arg.dst_cpu)
1368 goto out;
1369
1370 /*
1371 * These three tests are all lockless; this is OK since all of them
1372 * will be re-checked with proper locks held further down the line.
1373 */
1374 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1375 goto out;
1376
1377 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1378 goto out;
1379
1380 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1381 goto out;
1382
1383 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1384 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1385
1386 out:
1387 return ret;
1388 }
1389
1390 /*
1391 * wait_task_inactive - wait for a thread to unschedule.
1392 *
1393 * If @match_state is nonzero, it's the @p->state value just checked and
1394 * not expected to change. If it changes, i.e. @p might have woken up,
1395 * then return zero. When we succeed in waiting for @p to be off its CPU,
1396 * we return a positive number (its total switch count). If a second call
1397 * a short while later returns the same number, the caller can be sure that
1398 * @p has remained unscheduled the whole time.
1399 *
1400 * The caller must ensure that the task *will* unschedule sometime soon,
1401 * else this function might spin for a *long* time. This function can't
1402 * be called with interrupts off, or it may introduce deadlock with
1403 * smp_call_function() if an IPI is sent by the same process we are
1404 * waiting to become inactive.
1405 */
wait_task_inactive(struct task_struct * p,long match_state)1406 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1407 {
1408 int running, queued;
1409 struct rq_flags rf;
1410 unsigned long ncsw;
1411 struct rq *rq;
1412
1413 for (;;) {
1414 /*
1415 * We do the initial early heuristics without holding
1416 * any task-queue locks at all. We'll only try to get
1417 * the runqueue lock when things look like they will
1418 * work out!
1419 */
1420 rq = task_rq(p);
1421
1422 /*
1423 * If the task is actively running on another CPU
1424 * still, just relax and busy-wait without holding
1425 * any locks.
1426 *
1427 * NOTE! Since we don't hold any locks, it's not
1428 * even sure that "rq" stays as the right runqueue!
1429 * But we don't care, since "task_running()" will
1430 * return false if the runqueue has changed and p
1431 * is actually now running somewhere else!
1432 */
1433 while (task_running(rq, p)) {
1434 if (match_state && unlikely(p->state != match_state))
1435 return 0;
1436 cpu_relax();
1437 }
1438
1439 /*
1440 * Ok, time to look more closely! We need the rq
1441 * lock now, to be *sure*. If we're wrong, we'll
1442 * just go back and repeat.
1443 */
1444 rq = task_rq_lock(p, &rf);
1445 trace_sched_wait_task(p);
1446 running = task_running(rq, p);
1447 queued = task_on_rq_queued(p);
1448 ncsw = 0;
1449 if (!match_state || p->state == match_state)
1450 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1451 task_rq_unlock(rq, p, &rf);
1452
1453 /*
1454 * If it changed from the expected state, bail out now.
1455 */
1456 if (unlikely(!ncsw))
1457 break;
1458
1459 /*
1460 * Was it really running after all now that we
1461 * checked with the proper locks actually held?
1462 *
1463 * Oops. Go back and try again..
1464 */
1465 if (unlikely(running)) {
1466 cpu_relax();
1467 continue;
1468 }
1469
1470 /*
1471 * It's not enough that it's not actively running,
1472 * it must be off the runqueue _entirely_, and not
1473 * preempted!
1474 *
1475 * So if it was still runnable (but just not actively
1476 * running right now), it's preempted, and we should
1477 * yield - it could be a while.
1478 */
1479 if (unlikely(queued)) {
1480 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1481
1482 set_current_state(TASK_UNINTERRUPTIBLE);
1483 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1484 continue;
1485 }
1486
1487 /*
1488 * Ahh, all good. It wasn't running, and it wasn't
1489 * runnable, which means that it will never become
1490 * running in the future either. We're all done!
1491 */
1492 break;
1493 }
1494
1495 return ncsw;
1496 }
1497
1498 /***
1499 * kick_process - kick a running thread to enter/exit the kernel
1500 * @p: the to-be-kicked thread
1501 *
1502 * Cause a process which is running on another CPU to enter
1503 * kernel-mode, without any delay. (to get signals handled.)
1504 *
1505 * NOTE: this function doesn't have to take the runqueue lock,
1506 * because all it wants to ensure is that the remote task enters
1507 * the kernel. If the IPI races and the task has been migrated
1508 * to another CPU then no harm is done and the purpose has been
1509 * achieved as well.
1510 */
kick_process(struct task_struct * p)1511 void kick_process(struct task_struct *p)
1512 {
1513 int cpu;
1514
1515 preempt_disable();
1516 cpu = task_cpu(p);
1517 if ((cpu != smp_processor_id()) && task_curr(p))
1518 smp_send_reschedule(cpu);
1519 preempt_enable();
1520 }
1521 EXPORT_SYMBOL_GPL(kick_process);
1522
1523 /*
1524 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1525 *
1526 * A few notes on cpu_active vs cpu_online:
1527 *
1528 * - cpu_active must be a subset of cpu_online
1529 *
1530 * - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1531 * see __set_cpus_allowed_ptr(). At this point the newly online
1532 * cpu isn't yet part of the sched domains, and balancing will not
1533 * see it.
1534 *
1535 * - on cpu-down we clear cpu_active() to mask the sched domains and
1536 * avoid the load balancer to place new tasks on the to be removed
1537 * cpu. Existing tasks will remain running there and will be taken
1538 * off.
1539 *
1540 * This means that fallback selection must not select !active CPUs.
1541 * And can assume that any active CPU must be online. Conversely
1542 * select_task_rq() below may allow selection of !active CPUs in order
1543 * to satisfy the above rules.
1544 */
select_fallback_rq(int cpu,struct task_struct * p)1545 static int select_fallback_rq(int cpu, struct task_struct *p)
1546 {
1547 int nid = cpu_to_node(cpu);
1548 const struct cpumask *nodemask = NULL;
1549 enum { cpuset, possible, fail } state = cpuset;
1550 int dest_cpu;
1551
1552 /*
1553 * If the node that the cpu is on has been offlined, cpu_to_node()
1554 * will return -1. There is no cpu on the node, and we should
1555 * select the cpu on the other node.
1556 */
1557 if (nid != -1) {
1558 nodemask = cpumask_of_node(nid);
1559
1560 /* Look for allowed, online CPU in same node. */
1561 for_each_cpu(dest_cpu, nodemask) {
1562 if (!cpu_active(dest_cpu))
1563 continue;
1564 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1565 return dest_cpu;
1566 }
1567 }
1568
1569 for (;;) {
1570 /* Any allowed, online CPU? */
1571 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1572 if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1573 continue;
1574 if (!cpu_online(dest_cpu))
1575 continue;
1576 goto out;
1577 }
1578
1579 /* No more Mr. Nice Guy. */
1580 switch (state) {
1581 case cpuset:
1582 if (IS_ENABLED(CONFIG_CPUSETS)) {
1583 cpuset_cpus_allowed_fallback(p);
1584 state = possible;
1585 break;
1586 }
1587 /* fall-through */
1588 case possible:
1589 do_set_cpus_allowed(p, cpu_possible_mask);
1590 state = fail;
1591 break;
1592
1593 case fail:
1594 BUG();
1595 break;
1596 }
1597 }
1598
1599 out:
1600 if (state != cpuset) {
1601 /*
1602 * Don't tell them about moving exiting tasks or
1603 * kernel threads (both mm NULL), since they never
1604 * leave kernel.
1605 */
1606 if (p->mm && printk_ratelimit()) {
1607 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1608 task_pid_nr(p), p->comm, cpu);
1609 }
1610 }
1611
1612 return dest_cpu;
1613 }
1614
1615 /*
1616 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1617 */
1618 static inline
select_task_rq(struct task_struct * p,int cpu,int sd_flags,int wake_flags)1619 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1620 {
1621 lockdep_assert_held(&p->pi_lock);
1622
1623 if (tsk_nr_cpus_allowed(p) > 1)
1624 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1625 else
1626 cpu = cpumask_any(tsk_cpus_allowed(p));
1627
1628 /*
1629 * In order not to call set_task_cpu() on a blocking task we need
1630 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1631 * cpu.
1632 *
1633 * Since this is common to all placement strategies, this lives here.
1634 *
1635 * [ this allows ->select_task() to simply return task_cpu(p) and
1636 * not worry about this generic constraint ]
1637 */
1638 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1639 !cpu_online(cpu)))
1640 cpu = select_fallback_rq(task_cpu(p), p);
1641
1642 return cpu;
1643 }
1644
update_avg(u64 * avg,u64 sample)1645 static void update_avg(u64 *avg, u64 sample)
1646 {
1647 s64 diff = sample - *avg;
1648 *avg += diff >> 3;
1649 }
1650
1651 #else
1652
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1653 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1654 const struct cpumask *new_mask, bool check)
1655 {
1656 return set_cpus_allowed_ptr(p, new_mask);
1657 }
1658
1659 #endif /* CONFIG_SMP */
1660
1661 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)1662 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1663 {
1664 struct rq *rq;
1665
1666 if (!schedstat_enabled())
1667 return;
1668
1669 rq = this_rq();
1670
1671 #ifdef CONFIG_SMP
1672 if (cpu == rq->cpu) {
1673 schedstat_inc(rq->ttwu_local);
1674 schedstat_inc(p->se.statistics.nr_wakeups_local);
1675 } else {
1676 struct sched_domain *sd;
1677
1678 schedstat_inc(p->se.statistics.nr_wakeups_remote);
1679 rcu_read_lock();
1680 for_each_domain(rq->cpu, sd) {
1681 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1682 schedstat_inc(sd->ttwu_wake_remote);
1683 break;
1684 }
1685 }
1686 rcu_read_unlock();
1687 }
1688
1689 if (wake_flags & WF_MIGRATED)
1690 schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1691 #endif /* CONFIG_SMP */
1692
1693 schedstat_inc(rq->ttwu_count);
1694 schedstat_inc(p->se.statistics.nr_wakeups);
1695
1696 if (wake_flags & WF_SYNC)
1697 schedstat_inc(p->se.statistics.nr_wakeups_sync);
1698 }
1699
ttwu_activate(struct rq * rq,struct task_struct * p,int en_flags)1700 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1701 {
1702 activate_task(rq, p, en_flags);
1703 p->on_rq = TASK_ON_RQ_QUEUED;
1704
1705 /* if a worker is waking up, notify workqueue */
1706 if (p->flags & PF_WQ_WORKER)
1707 wq_worker_waking_up(p, cpu_of(rq));
1708 }
1709
1710 /*
1711 * Mark the task runnable and perform wakeup-preemption.
1712 */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct pin_cookie cookie)1713 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1714 struct pin_cookie cookie)
1715 {
1716 check_preempt_curr(rq, p, wake_flags);
1717 p->state = TASK_RUNNING;
1718 trace_sched_wakeup(p);
1719
1720 #ifdef CONFIG_SMP
1721 if (p->sched_class->task_woken) {
1722 /*
1723 * Our task @p is fully woken up and running; so its safe to
1724 * drop the rq->lock, hereafter rq is only used for statistics.
1725 */
1726 lockdep_unpin_lock(&rq->lock, cookie);
1727 p->sched_class->task_woken(rq, p);
1728 lockdep_repin_lock(&rq->lock, cookie);
1729 }
1730
1731 if (rq->idle_stamp) {
1732 u64 delta = rq_clock(rq) - rq->idle_stamp;
1733 u64 max = 2*rq->max_idle_balance_cost;
1734
1735 update_avg(&rq->avg_idle, delta);
1736
1737 if (rq->avg_idle > max)
1738 rq->avg_idle = max;
1739
1740 rq->idle_stamp = 0;
1741 }
1742 #endif
1743 }
1744
1745 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct pin_cookie cookie)1746 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1747 struct pin_cookie cookie)
1748 {
1749 int en_flags = ENQUEUE_WAKEUP;
1750
1751 lockdep_assert_held(&rq->lock);
1752
1753 #ifdef CONFIG_SMP
1754 if (p->sched_contributes_to_load)
1755 rq->nr_uninterruptible--;
1756
1757 if (wake_flags & WF_MIGRATED)
1758 en_flags |= ENQUEUE_MIGRATED;
1759 #endif
1760
1761 ttwu_activate(rq, p, en_flags);
1762 ttwu_do_wakeup(rq, p, wake_flags, cookie);
1763 }
1764
1765 /*
1766 * Called in case the task @p isn't fully descheduled from its runqueue,
1767 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1768 * since all we need to do is flip p->state to TASK_RUNNING, since
1769 * the task is still ->on_rq.
1770 */
ttwu_remote(struct task_struct * p,int wake_flags)1771 static int ttwu_remote(struct task_struct *p, int wake_flags)
1772 {
1773 struct rq_flags rf;
1774 struct rq *rq;
1775 int ret = 0;
1776
1777 rq = __task_rq_lock(p, &rf);
1778 if (task_on_rq_queued(p)) {
1779 /* check_preempt_curr() may use rq clock */
1780 update_rq_clock(rq);
1781 ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1782 ret = 1;
1783 }
1784 __task_rq_unlock(rq, &rf);
1785
1786 return ret;
1787 }
1788
1789 #ifdef CONFIG_SMP
sched_ttwu_pending(void)1790 void sched_ttwu_pending(void)
1791 {
1792 struct rq *rq = this_rq();
1793 struct llist_node *llist = llist_del_all(&rq->wake_list);
1794 struct pin_cookie cookie;
1795 struct task_struct *p;
1796 unsigned long flags;
1797
1798 if (!llist)
1799 return;
1800
1801 raw_spin_lock_irqsave(&rq->lock, flags);
1802 cookie = lockdep_pin_lock(&rq->lock);
1803
1804 while (llist) {
1805 int wake_flags = 0;
1806
1807 p = llist_entry(llist, struct task_struct, wake_entry);
1808 llist = llist_next(llist);
1809
1810 if (p->sched_remote_wakeup)
1811 wake_flags = WF_MIGRATED;
1812
1813 ttwu_do_activate(rq, p, wake_flags, cookie);
1814 }
1815
1816 lockdep_unpin_lock(&rq->lock, cookie);
1817 raw_spin_unlock_irqrestore(&rq->lock, flags);
1818 }
1819
scheduler_ipi(void)1820 void scheduler_ipi(void)
1821 {
1822 /*
1823 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1824 * TIF_NEED_RESCHED remotely (for the first time) will also send
1825 * this IPI.
1826 */
1827 preempt_fold_need_resched();
1828
1829 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1830 return;
1831
1832 /*
1833 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1834 * traditionally all their work was done from the interrupt return
1835 * path. Now that we actually do some work, we need to make sure
1836 * we do call them.
1837 *
1838 * Some archs already do call them, luckily irq_enter/exit nest
1839 * properly.
1840 *
1841 * Arguably we should visit all archs and update all handlers,
1842 * however a fair share of IPIs are still resched only so this would
1843 * somewhat pessimize the simple resched case.
1844 */
1845 irq_enter();
1846 sched_ttwu_pending();
1847
1848 /*
1849 * Check if someone kicked us for doing the nohz idle load balance.
1850 */
1851 if (unlikely(got_nohz_idle_kick())) {
1852 this_rq()->idle_balance = 1;
1853 raise_softirq_irqoff(SCHED_SOFTIRQ);
1854 }
1855 irq_exit();
1856 }
1857
ttwu_queue_remote(struct task_struct * p,int cpu,int wake_flags)1858 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1859 {
1860 struct rq *rq = cpu_rq(cpu);
1861
1862 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1863
1864 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1865 if (!set_nr_if_polling(rq->idle))
1866 smp_send_reschedule(cpu);
1867 else
1868 trace_sched_wake_idle_without_ipi(cpu);
1869 }
1870 }
1871
wake_up_if_idle(int cpu)1872 void wake_up_if_idle(int cpu)
1873 {
1874 struct rq *rq = cpu_rq(cpu);
1875 unsigned long flags;
1876
1877 rcu_read_lock();
1878
1879 if (!is_idle_task(rcu_dereference(rq->curr)))
1880 goto out;
1881
1882 if (set_nr_if_polling(rq->idle)) {
1883 trace_sched_wake_idle_without_ipi(cpu);
1884 } else {
1885 raw_spin_lock_irqsave(&rq->lock, flags);
1886 if (is_idle_task(rq->curr))
1887 smp_send_reschedule(cpu);
1888 /* Else cpu is not in idle, do nothing here */
1889 raw_spin_unlock_irqrestore(&rq->lock, flags);
1890 }
1891
1892 out:
1893 rcu_read_unlock();
1894 }
1895
cpus_share_cache(int this_cpu,int that_cpu)1896 bool cpus_share_cache(int this_cpu, int that_cpu)
1897 {
1898 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1899 }
1900 #endif /* CONFIG_SMP */
1901
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)1902 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1903 {
1904 struct rq *rq = cpu_rq(cpu);
1905 struct pin_cookie cookie;
1906
1907 #if defined(CONFIG_SMP)
1908 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1909 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1910 ttwu_queue_remote(p, cpu, wake_flags);
1911 return;
1912 }
1913 #endif
1914
1915 raw_spin_lock(&rq->lock);
1916 cookie = lockdep_pin_lock(&rq->lock);
1917 ttwu_do_activate(rq, p, wake_flags, cookie);
1918 lockdep_unpin_lock(&rq->lock, cookie);
1919 raw_spin_unlock(&rq->lock);
1920 }
1921
1922 /*
1923 * Notes on Program-Order guarantees on SMP systems.
1924 *
1925 * MIGRATION
1926 *
1927 * The basic program-order guarantee on SMP systems is that when a task [t]
1928 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1929 * execution on its new cpu [c1].
1930 *
1931 * For migration (of runnable tasks) this is provided by the following means:
1932 *
1933 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1934 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1935 * rq(c1)->lock (if not at the same time, then in that order).
1936 * C) LOCK of the rq(c1)->lock scheduling in task
1937 *
1938 * Transitivity guarantees that B happens after A and C after B.
1939 * Note: we only require RCpc transitivity.
1940 * Note: the cpu doing B need not be c0 or c1
1941 *
1942 * Example:
1943 *
1944 * CPU0 CPU1 CPU2
1945 *
1946 * LOCK rq(0)->lock
1947 * sched-out X
1948 * sched-in Y
1949 * UNLOCK rq(0)->lock
1950 *
1951 * LOCK rq(0)->lock // orders against CPU0
1952 * dequeue X
1953 * UNLOCK rq(0)->lock
1954 *
1955 * LOCK rq(1)->lock
1956 * enqueue X
1957 * UNLOCK rq(1)->lock
1958 *
1959 * LOCK rq(1)->lock // orders against CPU2
1960 * sched-out Z
1961 * sched-in X
1962 * UNLOCK rq(1)->lock
1963 *
1964 *
1965 * BLOCKING -- aka. SLEEP + WAKEUP
1966 *
1967 * For blocking we (obviously) need to provide the same guarantee as for
1968 * migration. However the means are completely different as there is no lock
1969 * chain to provide order. Instead we do:
1970 *
1971 * 1) smp_store_release(X->on_cpu, 0)
1972 * 2) smp_cond_load_acquire(!X->on_cpu)
1973 *
1974 * Example:
1975 *
1976 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1977 *
1978 * LOCK rq(0)->lock LOCK X->pi_lock
1979 * dequeue X
1980 * sched-out X
1981 * smp_store_release(X->on_cpu, 0);
1982 *
1983 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1984 * X->state = WAKING
1985 * set_task_cpu(X,2)
1986 *
1987 * LOCK rq(2)->lock
1988 * enqueue X
1989 * X->state = RUNNING
1990 * UNLOCK rq(2)->lock
1991 *
1992 * LOCK rq(2)->lock // orders against CPU1
1993 * sched-out Z
1994 * sched-in X
1995 * UNLOCK rq(2)->lock
1996 *
1997 * UNLOCK X->pi_lock
1998 * UNLOCK rq(0)->lock
1999 *
2000 *
2001 * However; for wakeups there is a second guarantee we must provide, namely we
2002 * must observe the state that lead to our wakeup. That is, not only must our
2003 * task observe its own prior state, it must also observe the stores prior to
2004 * its wakeup.
2005 *
2006 * This means that any means of doing remote wakeups must order the CPU doing
2007 * the wakeup against the CPU the task is going to end up running on. This,
2008 * however, is already required for the regular Program-Order guarantee above,
2009 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
2010 *
2011 */
2012
2013 /**
2014 * try_to_wake_up - wake up a thread
2015 * @p: the thread to be awakened
2016 * @state: the mask of task states that can be woken
2017 * @wake_flags: wake modifier flags (WF_*)
2018 *
2019 * Put it on the run-queue if it's not already there. The "current"
2020 * thread is always on the run-queue (except when the actual
2021 * re-schedule is in progress), and as such you're allowed to do
2022 * the simpler "current->state = TASK_RUNNING" to mark yourself
2023 * runnable without the overhead of this.
2024 *
2025 * Return: %true if @p was woken up, %false if it was already running.
2026 * or @state didn't match @p's state.
2027 */
2028 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)2029 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2030 {
2031 unsigned long flags;
2032 int cpu, success = 0;
2033 #ifdef CONFIG_SMP
2034 struct rq *rq;
2035 u64 wallclock;
2036 #endif
2037
2038 /*
2039 * If we are going to wake up a thread waiting for CONDITION we
2040 * need to ensure that CONDITION=1 done by the caller can not be
2041 * reordered with p->state check below. This pairs with mb() in
2042 * set_current_state() the waiting thread does.
2043 */
2044 smp_mb__before_spinlock();
2045 raw_spin_lock_irqsave(&p->pi_lock, flags);
2046 if (!(p->state & state))
2047 goto out;
2048
2049 trace_sched_waking(p);
2050
2051 success = 1; /* we're going to change ->state */
2052 cpu = task_cpu(p);
2053
2054 /*
2055 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2056 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2057 * in smp_cond_load_acquire() below.
2058 *
2059 * sched_ttwu_pending() try_to_wake_up()
2060 * [S] p->on_rq = 1; [L] P->state
2061 * UNLOCK rq->lock -----.
2062 * \
2063 * +--- RMB
2064 * schedule() /
2065 * LOCK rq->lock -----'
2066 * UNLOCK rq->lock
2067 *
2068 * [task p]
2069 * [S] p->state = UNINTERRUPTIBLE [L] p->on_rq
2070 *
2071 * Pairs with the UNLOCK+LOCK on rq->lock from the
2072 * last wakeup of our task and the schedule that got our task
2073 * current.
2074 */
2075 smp_rmb();
2076 if (p->on_rq && ttwu_remote(p, wake_flags))
2077 goto stat;
2078
2079 #ifdef CONFIG_SMP
2080 /*
2081 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2082 * possible to, falsely, observe p->on_cpu == 0.
2083 *
2084 * One must be running (->on_cpu == 1) in order to remove oneself
2085 * from the runqueue.
2086 *
2087 * [S] ->on_cpu = 1; [L] ->on_rq
2088 * UNLOCK rq->lock
2089 * RMB
2090 * LOCK rq->lock
2091 * [S] ->on_rq = 0; [L] ->on_cpu
2092 *
2093 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2094 * from the consecutive calls to schedule(); the first switching to our
2095 * task, the second putting it to sleep.
2096 */
2097 smp_rmb();
2098
2099 /*
2100 * If the owning (remote) cpu is still in the middle of schedule() with
2101 * this task as prev, wait until its done referencing the task.
2102 *
2103 * Pairs with the smp_store_release() in finish_lock_switch().
2104 *
2105 * This ensures that tasks getting woken will be fully ordered against
2106 * their previous state and preserve Program Order.
2107 */
2108 smp_cond_load_acquire(&p->on_cpu, !VAL);
2109
2110 rq = cpu_rq(task_cpu(p));
2111
2112 raw_spin_lock(&rq->lock);
2113 wallclock = walt_ktime_clock();
2114 walt_update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
2115 walt_update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
2116 raw_spin_unlock(&rq->lock);
2117
2118 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2119 p->state = TASK_WAKING;
2120
2121 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2122
2123 if (task_cpu(p) != cpu) {
2124 wake_flags |= WF_MIGRATED;
2125 set_task_cpu(p, cpu);
2126 }
2127
2128 #endif /* CONFIG_SMP */
2129
2130 ttwu_queue(p, cpu, wake_flags);
2131 stat:
2132 ttwu_stat(p, cpu, wake_flags);
2133 out:
2134 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2135
2136 return success;
2137 }
2138
2139 /**
2140 * try_to_wake_up_local - try to wake up a local task with rq lock held
2141 * @p: the thread to be awakened
2142 * @cookie: context's cookie for pinning
2143 *
2144 * Put @p on the run-queue if it's not already there. The caller must
2145 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2146 * the current task.
2147 */
try_to_wake_up_local(struct task_struct * p,struct pin_cookie cookie)2148 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2149 {
2150 struct rq *rq = task_rq(p);
2151
2152 if (WARN_ON_ONCE(rq != this_rq()) ||
2153 WARN_ON_ONCE(p == current))
2154 return;
2155
2156 lockdep_assert_held(&rq->lock);
2157
2158 if (!raw_spin_trylock(&p->pi_lock)) {
2159 /*
2160 * This is OK, because current is on_cpu, which avoids it being
2161 * picked for load-balance and preemption/IRQs are still
2162 * disabled avoiding further scheduler activity on it and we've
2163 * not yet picked a replacement task.
2164 */
2165 lockdep_unpin_lock(&rq->lock, cookie);
2166 raw_spin_unlock(&rq->lock);
2167 raw_spin_lock(&p->pi_lock);
2168 raw_spin_lock(&rq->lock);
2169 lockdep_repin_lock(&rq->lock, cookie);
2170 }
2171
2172 if (!(p->state & TASK_NORMAL))
2173 goto out;
2174
2175 trace_sched_waking(p);
2176
2177 if (!task_on_rq_queued(p)) {
2178 u64 wallclock = walt_ktime_clock();
2179
2180 walt_update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
2181 walt_update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
2182 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2183 }
2184
2185 ttwu_do_wakeup(rq, p, 0, cookie);
2186 ttwu_stat(p, smp_processor_id(), 0);
2187 out:
2188 raw_spin_unlock(&p->pi_lock);
2189 }
2190
2191 /**
2192 * wake_up_process - Wake up a specific process
2193 * @p: The process to be woken up.
2194 *
2195 * Attempt to wake up the nominated process and move it to the set of runnable
2196 * processes.
2197 *
2198 * Return: 1 if the process was woken up, 0 if it was already running.
2199 *
2200 * It may be assumed that this function implies a write memory barrier before
2201 * changing the task state if and only if any tasks are woken up.
2202 */
wake_up_process(struct task_struct * p)2203 int wake_up_process(struct task_struct *p)
2204 {
2205 return try_to_wake_up(p, TASK_NORMAL, 0);
2206 }
2207 EXPORT_SYMBOL(wake_up_process);
2208
wake_up_state(struct task_struct * p,unsigned int state)2209 int wake_up_state(struct task_struct *p, unsigned int state)
2210 {
2211 return try_to_wake_up(p, state, 0);
2212 }
2213
2214 /*
2215 * This function clears the sched_dl_entity static params.
2216 */
__dl_clear_params(struct task_struct * p)2217 void __dl_clear_params(struct task_struct *p)
2218 {
2219 struct sched_dl_entity *dl_se = &p->dl;
2220
2221 dl_se->dl_runtime = 0;
2222 dl_se->dl_deadline = 0;
2223 dl_se->dl_period = 0;
2224 dl_se->flags = 0;
2225 dl_se->dl_bw = 0;
2226 dl_se->dl_density = 0;
2227
2228 dl_se->dl_throttled = 0;
2229 dl_se->dl_yielded = 0;
2230 }
2231
2232 /*
2233 * Perform scheduler related setup for a newly forked process p.
2234 * p is forked by current.
2235 *
2236 * __sched_fork() is basic setup used by init_idle() too:
2237 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)2238 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2239 {
2240 p->on_rq = 0;
2241
2242 p->se.on_rq = 0;
2243 p->se.exec_start = 0;
2244 p->se.sum_exec_runtime = 0;
2245 p->se.prev_sum_exec_runtime = 0;
2246 p->se.nr_migrations = 0;
2247 p->se.vruntime = 0;
2248 #ifdef CONFIG_SCHED_WALT
2249 p->last_sleep_ts = 0;
2250 #endif
2251
2252 INIT_LIST_HEAD(&p->se.group_node);
2253 walt_init_new_task_load(p);
2254
2255 #ifdef CONFIG_FAIR_GROUP_SCHED
2256 p->se.cfs_rq = NULL;
2257 #endif
2258
2259 #ifdef CONFIG_SCHEDSTATS
2260 /* Even if schedstat is disabled, there should not be garbage */
2261 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2262 #endif
2263
2264 #ifdef CONFIG_CPU_FREQ_TIMES
2265 cpufreq_task_times_init(p);
2266 #endif
2267
2268 RB_CLEAR_NODE(&p->dl.rb_node);
2269 init_dl_task_timer(&p->dl);
2270 __dl_clear_params(p);
2271
2272 INIT_LIST_HEAD(&p->rt.run_list);
2273 p->rt.timeout = 0;
2274 p->rt.time_slice = sched_rr_timeslice;
2275 p->rt.on_rq = 0;
2276 p->rt.on_list = 0;
2277
2278 #ifdef CONFIG_PREEMPT_NOTIFIERS
2279 INIT_HLIST_HEAD(&p->preempt_notifiers);
2280 #endif
2281
2282 #ifdef CONFIG_NUMA_BALANCING
2283 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2284 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2285 p->mm->numa_scan_seq = 0;
2286 }
2287
2288 if (clone_flags & CLONE_VM)
2289 p->numa_preferred_nid = current->numa_preferred_nid;
2290 else
2291 p->numa_preferred_nid = -1;
2292
2293 p->node_stamp = 0ULL;
2294 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2295 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2296 p->numa_work.next = &p->numa_work;
2297 p->numa_faults = NULL;
2298 p->last_task_numa_placement = 0;
2299 p->last_sum_exec_runtime = 0;
2300
2301 p->numa_group = NULL;
2302 #endif /* CONFIG_NUMA_BALANCING */
2303 }
2304
2305 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2306
2307 #ifdef CONFIG_NUMA_BALANCING
2308
set_numabalancing_state(bool enabled)2309 void set_numabalancing_state(bool enabled)
2310 {
2311 if (enabled)
2312 static_branch_enable(&sched_numa_balancing);
2313 else
2314 static_branch_disable(&sched_numa_balancing);
2315 }
2316
2317 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2318 int sysctl_numa_balancing(struct ctl_table *table, int write,
2319 void __user *buffer, size_t *lenp, loff_t *ppos)
2320 {
2321 struct ctl_table t;
2322 int err;
2323 int state = static_branch_likely(&sched_numa_balancing);
2324
2325 if (write && !capable(CAP_SYS_ADMIN))
2326 return -EPERM;
2327
2328 t = *table;
2329 t.data = &state;
2330 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2331 if (err < 0)
2332 return err;
2333 if (write)
2334 set_numabalancing_state(state);
2335 return err;
2336 }
2337 #endif
2338 #endif
2339
2340 #ifdef CONFIG_SCHEDSTATS
2341
2342 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2343 static bool __initdata __sched_schedstats = false;
2344
set_schedstats(bool enabled)2345 static void set_schedstats(bool enabled)
2346 {
2347 if (enabled)
2348 static_branch_enable(&sched_schedstats);
2349 else
2350 static_branch_disable(&sched_schedstats);
2351 }
2352
force_schedstat_enabled(void)2353 void force_schedstat_enabled(void)
2354 {
2355 if (!schedstat_enabled()) {
2356 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2357 static_branch_enable(&sched_schedstats);
2358 }
2359 }
2360
setup_schedstats(char * str)2361 static int __init setup_schedstats(char *str)
2362 {
2363 int ret = 0;
2364 if (!str)
2365 goto out;
2366
2367 /*
2368 * This code is called before jump labels have been set up, so we can't
2369 * change the static branch directly just yet. Instead set a temporary
2370 * variable so init_schedstats() can do it later.
2371 */
2372 if (!strcmp(str, "enable")) {
2373 __sched_schedstats = true;
2374 ret = 1;
2375 } else if (!strcmp(str, "disable")) {
2376 __sched_schedstats = false;
2377 ret = 1;
2378 }
2379 out:
2380 if (!ret)
2381 pr_warn("Unable to parse schedstats=\n");
2382
2383 return ret;
2384 }
2385 __setup("schedstats=", setup_schedstats);
2386
init_schedstats(void)2387 static void __init init_schedstats(void)
2388 {
2389 set_schedstats(__sched_schedstats);
2390 }
2391
2392 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2393 int sysctl_schedstats(struct ctl_table *table, int write,
2394 void __user *buffer, size_t *lenp, loff_t *ppos)
2395 {
2396 struct ctl_table t;
2397 int err;
2398 int state = static_branch_likely(&sched_schedstats);
2399
2400 if (write && !capable(CAP_SYS_ADMIN))
2401 return -EPERM;
2402
2403 t = *table;
2404 t.data = &state;
2405 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2406 if (err < 0)
2407 return err;
2408 if (write)
2409 set_schedstats(state);
2410 return err;
2411 }
2412 #endif /* CONFIG_PROC_SYSCTL */
2413 #else /* !CONFIG_SCHEDSTATS */
init_schedstats(void)2414 static inline void init_schedstats(void) {}
2415 #endif /* CONFIG_SCHEDSTATS */
2416
2417 /*
2418 * fork()/clone()-time setup:
2419 */
sched_fork(unsigned long clone_flags,struct task_struct * p)2420 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2421 {
2422 unsigned long flags;
2423 int cpu = get_cpu();
2424
2425 __sched_fork(clone_flags, p);
2426 /*
2427 * We mark the process as NEW here. This guarantees that
2428 * nobody will actually run it, and a signal or other external
2429 * event cannot wake it up and insert it on the runqueue either.
2430 */
2431 p->state = TASK_NEW;
2432
2433 /*
2434 * Make sure we do not leak PI boosting priority to the child.
2435 */
2436 p->prio = current->normal_prio;
2437
2438 /*
2439 * Revert to default priority/policy on fork if requested.
2440 */
2441 if (unlikely(p->sched_reset_on_fork)) {
2442 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2443 p->policy = SCHED_NORMAL;
2444 p->static_prio = NICE_TO_PRIO(0);
2445 p->rt_priority = 0;
2446 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2447 p->static_prio = NICE_TO_PRIO(0);
2448
2449 p->prio = p->normal_prio = __normal_prio(p);
2450 set_load_weight(p);
2451
2452 /*
2453 * We don't need the reset flag anymore after the fork. It has
2454 * fulfilled its duty:
2455 */
2456 p->sched_reset_on_fork = 0;
2457 }
2458
2459 if (dl_prio(p->prio)) {
2460 put_cpu();
2461 return -EAGAIN;
2462 } else if (rt_prio(p->prio)) {
2463 p->sched_class = &rt_sched_class;
2464 } else {
2465 p->sched_class = &fair_sched_class;
2466 }
2467
2468 init_entity_runnable_average(&p->se);
2469
2470 /*
2471 * The child is not yet in the pid-hash so no cgroup attach races,
2472 * and the cgroup is pinned to this child due to cgroup_fork()
2473 * is ran before sched_fork().
2474 *
2475 * Silence PROVE_RCU.
2476 */
2477 raw_spin_lock_irqsave(&p->pi_lock, flags);
2478 /*
2479 * We're setting the cpu for the first time, we don't migrate,
2480 * so use __set_task_cpu().
2481 */
2482 __set_task_cpu(p, cpu);
2483 if (p->sched_class->task_fork)
2484 p->sched_class->task_fork(p);
2485 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2486
2487 #ifdef CONFIG_SCHED_INFO
2488 if (likely(sched_info_on()))
2489 memset(&p->sched_info, 0, sizeof(p->sched_info));
2490 #endif
2491 #if defined(CONFIG_SMP)
2492 p->on_cpu = 0;
2493 #endif
2494 init_task_preempt_count(p);
2495 #ifdef CONFIG_SMP
2496 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2497 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2498 #endif
2499
2500 put_cpu();
2501 return 0;
2502 }
2503
to_ratio(u64 period,u64 runtime)2504 unsigned long to_ratio(u64 period, u64 runtime)
2505 {
2506 if (runtime == RUNTIME_INF)
2507 return 1ULL << 20;
2508
2509 /*
2510 * Doing this here saves a lot of checks in all
2511 * the calling paths, and returning zero seems
2512 * safe for them anyway.
2513 */
2514 if (period == 0)
2515 return 0;
2516
2517 return div64_u64(runtime << 20, period);
2518 }
2519
2520 #ifdef CONFIG_SMP
dl_bw_of(int i)2521 inline struct dl_bw *dl_bw_of(int i)
2522 {
2523 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2524 "sched RCU must be held");
2525 return &cpu_rq(i)->rd->dl_bw;
2526 }
2527
dl_bw_cpus(int i)2528 static inline int dl_bw_cpus(int i)
2529 {
2530 struct root_domain *rd = cpu_rq(i)->rd;
2531 int cpus = 0;
2532
2533 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2534 "sched RCU must be held");
2535 for_each_cpu_and(i, rd->span, cpu_active_mask)
2536 cpus++;
2537
2538 return cpus;
2539 }
2540 #else
dl_bw_of(int i)2541 inline struct dl_bw *dl_bw_of(int i)
2542 {
2543 return &cpu_rq(i)->dl.dl_bw;
2544 }
2545
dl_bw_cpus(int i)2546 static inline int dl_bw_cpus(int i)
2547 {
2548 return 1;
2549 }
2550 #endif
2551
2552 /*
2553 * We must be sure that accepting a new task (or allowing changing the
2554 * parameters of an existing one) is consistent with the bandwidth
2555 * constraints. If yes, this function also accordingly updates the currently
2556 * allocated bandwidth to reflect the new situation.
2557 *
2558 * This function is called while holding p's rq->lock.
2559 *
2560 * XXX we should delay bw change until the task's 0-lag point, see
2561 * __setparam_dl().
2562 */
dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)2563 static int dl_overflow(struct task_struct *p, int policy,
2564 const struct sched_attr *attr)
2565 {
2566
2567 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2568 u64 period = attr->sched_period ?: attr->sched_deadline;
2569 u64 runtime = attr->sched_runtime;
2570 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2571 int cpus, err = -1;
2572
2573 /* !deadline task may carry old deadline bandwidth */
2574 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2575 return 0;
2576
2577 /*
2578 * Either if a task, enters, leave, or stays -deadline but changes
2579 * its parameters, we may need to update accordingly the total
2580 * allocated bandwidth of the container.
2581 */
2582 raw_spin_lock(&dl_b->lock);
2583 cpus = dl_bw_cpus(task_cpu(p));
2584 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2585 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2586 __dl_add(dl_b, new_bw);
2587 err = 0;
2588 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2589 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2590 __dl_clear(dl_b, p->dl.dl_bw);
2591 __dl_add(dl_b, new_bw);
2592 err = 0;
2593 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2594 __dl_clear(dl_b, p->dl.dl_bw);
2595 err = 0;
2596 }
2597 raw_spin_unlock(&dl_b->lock);
2598
2599 return err;
2600 }
2601
2602 extern void init_dl_bw(struct dl_bw *dl_b);
2603
2604 /*
2605 * wake_up_new_task - wake up a newly created task for the first time.
2606 *
2607 * This function will do some initial scheduler statistics housekeeping
2608 * that must be done for every newly created context, then puts the task
2609 * on the runqueue and wakes it.
2610 */
wake_up_new_task(struct task_struct * p)2611 void wake_up_new_task(struct task_struct *p)
2612 {
2613 struct rq_flags rf;
2614 struct rq *rq;
2615
2616 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2617
2618 walt_init_new_task_load(p);
2619
2620 p->state = TASK_RUNNING;
2621 #ifdef CONFIG_SMP
2622 /*
2623 * Fork balancing, do it here and not earlier because:
2624 * - cpus_allowed can change in the fork path
2625 * - any previously selected cpu might disappear through hotplug
2626 *
2627 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2628 * as we're not fully set-up yet.
2629 */
2630 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2631 #endif
2632 rq = __task_rq_lock(p, &rf);
2633 update_rq_clock(rq);
2634 post_init_entity_util_avg(&p->se);
2635
2636 walt_mark_task_starting(p);
2637
2638 activate_task(rq, p, ENQUEUE_WAKEUP_NEW);
2639 p->on_rq = TASK_ON_RQ_QUEUED;
2640 trace_sched_wakeup_new(p);
2641 check_preempt_curr(rq, p, WF_FORK);
2642 #ifdef CONFIG_SMP
2643 if (p->sched_class->task_woken) {
2644 /*
2645 * Nothing relies on rq->lock after this, so its fine to
2646 * drop it.
2647 */
2648 lockdep_unpin_lock(&rq->lock, rf.cookie);
2649 p->sched_class->task_woken(rq, p);
2650 lockdep_repin_lock(&rq->lock, rf.cookie);
2651 }
2652 #endif
2653 task_rq_unlock(rq, p, &rf);
2654 }
2655
2656 #ifdef CONFIG_PREEMPT_NOTIFIERS
2657
2658 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2659
preempt_notifier_inc(void)2660 void preempt_notifier_inc(void)
2661 {
2662 static_key_slow_inc(&preempt_notifier_key);
2663 }
2664 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2665
preempt_notifier_dec(void)2666 void preempt_notifier_dec(void)
2667 {
2668 static_key_slow_dec(&preempt_notifier_key);
2669 }
2670 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2671
2672 /**
2673 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2674 * @notifier: notifier struct to register
2675 */
preempt_notifier_register(struct preempt_notifier * notifier)2676 void preempt_notifier_register(struct preempt_notifier *notifier)
2677 {
2678 if (!static_key_false(&preempt_notifier_key))
2679 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2680
2681 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
2682 }
2683 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2684
2685 /**
2686 * preempt_notifier_unregister - no longer interested in preemption notifications
2687 * @notifier: notifier struct to unregister
2688 *
2689 * This is *not* safe to call from within a preemption notifier.
2690 */
preempt_notifier_unregister(struct preempt_notifier * notifier)2691 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2692 {
2693 hlist_del(¬ifier->link);
2694 }
2695 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2696
__fire_sched_in_preempt_notifiers(struct task_struct * curr)2697 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2698 {
2699 struct preempt_notifier *notifier;
2700
2701 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2702 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2703 }
2704
fire_sched_in_preempt_notifiers(struct task_struct * curr)2705 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2706 {
2707 if (static_key_false(&preempt_notifier_key))
2708 __fire_sched_in_preempt_notifiers(curr);
2709 }
2710
2711 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2712 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2713 struct task_struct *next)
2714 {
2715 struct preempt_notifier *notifier;
2716
2717 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2718 notifier->ops->sched_out(notifier, next);
2719 }
2720
2721 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2722 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2723 struct task_struct *next)
2724 {
2725 if (static_key_false(&preempt_notifier_key))
2726 __fire_sched_out_preempt_notifiers(curr, next);
2727 }
2728
2729 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2730
fire_sched_in_preempt_notifiers(struct task_struct * curr)2731 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2732 {
2733 }
2734
2735 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2736 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2737 struct task_struct *next)
2738 {
2739 }
2740
2741 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2742
2743 /**
2744 * prepare_task_switch - prepare to switch tasks
2745 * @rq: the runqueue preparing to switch
2746 * @prev: the current task that is being switched out
2747 * @next: the task we are going to switch to.
2748 *
2749 * This is called with the rq lock held and interrupts off. It must
2750 * be paired with a subsequent finish_task_switch after the context
2751 * switch.
2752 *
2753 * prepare_task_switch sets up locking and calls architecture specific
2754 * hooks.
2755 */
2756 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)2757 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2758 struct task_struct *next)
2759 {
2760 sched_info_switch(rq, prev, next);
2761 perf_event_task_sched_out(prev, next);
2762 fire_sched_out_preempt_notifiers(prev, next);
2763 prepare_lock_switch(rq, next);
2764 prepare_arch_switch(next);
2765 }
2766
2767 /**
2768 * finish_task_switch - clean up after a task-switch
2769 * @prev: the thread we just switched away from.
2770 *
2771 * finish_task_switch must be called after the context switch, paired
2772 * with a prepare_task_switch call before the context switch.
2773 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2774 * and do any other architecture-specific cleanup actions.
2775 *
2776 * Note that we may have delayed dropping an mm in context_switch(). If
2777 * so, we finish that here outside of the runqueue lock. (Doing it
2778 * with the lock held can cause deadlocks; see schedule() for
2779 * details.)
2780 *
2781 * The context switch have flipped the stack from under us and restored the
2782 * local variables which were saved when this task called schedule() in the
2783 * past. prev == current is still correct but we need to recalculate this_rq
2784 * because prev may have moved to another CPU.
2785 */
finish_task_switch(struct task_struct * prev)2786 static struct rq *finish_task_switch(struct task_struct *prev)
2787 __releases(rq->lock)
2788 {
2789 struct rq *rq = this_rq();
2790 struct mm_struct *mm = rq->prev_mm;
2791 long prev_state;
2792
2793 /*
2794 * The previous task will have left us with a preempt_count of 2
2795 * because it left us after:
2796 *
2797 * schedule()
2798 * preempt_disable(); // 1
2799 * __schedule()
2800 * raw_spin_lock_irq(&rq->lock) // 2
2801 *
2802 * Also, see FORK_PREEMPT_COUNT.
2803 */
2804 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2805 "corrupted preempt_count: %s/%d/0x%x\n",
2806 current->comm, current->pid, preempt_count()))
2807 preempt_count_set(FORK_PREEMPT_COUNT);
2808
2809 rq->prev_mm = NULL;
2810
2811 /*
2812 * A task struct has one reference for the use as "current".
2813 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2814 * schedule one last time. The schedule call will never return, and
2815 * the scheduled task must drop that reference.
2816 *
2817 * We must observe prev->state before clearing prev->on_cpu (in
2818 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2819 * running on another CPU and we could rave with its RUNNING -> DEAD
2820 * transition, resulting in a double drop.
2821 */
2822 prev_state = prev->state;
2823 vtime_task_switch(prev);
2824 perf_event_task_sched_in(prev, current);
2825 finish_lock_switch(rq, prev);
2826 finish_arch_post_lock_switch();
2827
2828 fire_sched_in_preempt_notifiers(current);
2829 if (mm)
2830 mmdrop(mm);
2831 if (unlikely(prev_state == TASK_DEAD)) {
2832 if (prev->sched_class->task_dead)
2833 prev->sched_class->task_dead(prev);
2834
2835 /*
2836 * Remove function-return probe instances associated with this
2837 * task and put them back on the free list.
2838 */
2839 kprobe_flush_task(prev);
2840
2841 /* Task is done with its stack. */
2842 put_task_stack(prev);
2843
2844 put_task_struct(prev);
2845 }
2846
2847 tick_nohz_task_switch();
2848 return rq;
2849 }
2850
2851 #ifdef CONFIG_SMP
2852
2853 /* rq->lock is NOT held, but preemption is disabled */
__balance_callback(struct rq * rq)2854 static void __balance_callback(struct rq *rq)
2855 {
2856 struct callback_head *head, *next;
2857 void (*func)(struct rq *rq);
2858 unsigned long flags;
2859
2860 raw_spin_lock_irqsave(&rq->lock, flags);
2861 head = rq->balance_callback;
2862 rq->balance_callback = NULL;
2863 while (head) {
2864 func = (void (*)(struct rq *))head->func;
2865 next = head->next;
2866 head->next = NULL;
2867 head = next;
2868
2869 func(rq);
2870 }
2871 raw_spin_unlock_irqrestore(&rq->lock, flags);
2872 }
2873
balance_callback(struct rq * rq)2874 static inline void balance_callback(struct rq *rq)
2875 {
2876 if (unlikely(rq->balance_callback))
2877 __balance_callback(rq);
2878 }
2879
2880 #else
2881
balance_callback(struct rq * rq)2882 static inline void balance_callback(struct rq *rq)
2883 {
2884 }
2885
2886 #endif
2887
2888 /**
2889 * schedule_tail - first thing a freshly forked thread must call.
2890 * @prev: the thread we just switched away from.
2891 */
schedule_tail(struct task_struct * prev)2892 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2893 __releases(rq->lock)
2894 {
2895 struct rq *rq;
2896
2897 /*
2898 * New tasks start with FORK_PREEMPT_COUNT, see there and
2899 * finish_task_switch() for details.
2900 *
2901 * finish_task_switch() will drop rq->lock() and lower preempt_count
2902 * and the preempt_enable() will end up enabling preemption (on
2903 * PREEMPT_COUNT kernels).
2904 */
2905
2906 rq = finish_task_switch(prev);
2907 balance_callback(rq);
2908 preempt_enable();
2909
2910 if (current->set_child_tid)
2911 put_user(task_pid_vnr(current), current->set_child_tid);
2912 }
2913
2914 /*
2915 * context_switch - switch to the new MM and the new thread's register state.
2916 */
2917 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct pin_cookie cookie)2918 context_switch(struct rq *rq, struct task_struct *prev,
2919 struct task_struct *next, struct pin_cookie cookie)
2920 {
2921 struct mm_struct *mm, *oldmm;
2922
2923 prepare_task_switch(rq, prev, next);
2924
2925 mm = next->mm;
2926 oldmm = prev->active_mm;
2927 /*
2928 * For paravirt, this is coupled with an exit in switch_to to
2929 * combine the page table reload and the switch backend into
2930 * one hypercall.
2931 */
2932 arch_start_context_switch(prev);
2933
2934 if (!mm) {
2935 next->active_mm = oldmm;
2936 atomic_inc(&oldmm->mm_count);
2937 enter_lazy_tlb(oldmm, next);
2938 } else
2939 switch_mm_irqs_off(oldmm, mm, next);
2940
2941 if (!prev->mm) {
2942 prev->active_mm = NULL;
2943 rq->prev_mm = oldmm;
2944 }
2945 /*
2946 * Since the runqueue lock will be released by the next
2947 * task (which is an invalid locking op but in the case
2948 * of the scheduler it's an obvious special-case), so we
2949 * do an early lockdep release here:
2950 */
2951 lockdep_unpin_lock(&rq->lock, cookie);
2952 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2953
2954 /* Here we just switch the register state and the stack. */
2955 switch_to(prev, next, prev);
2956 barrier();
2957
2958 return finish_task_switch(prev);
2959 }
2960
2961 /*
2962 * nr_running and nr_context_switches:
2963 *
2964 * externally visible scheduler statistics: current number of runnable
2965 * threads, total number of context switches performed since bootup.
2966 */
nr_running(void)2967 unsigned long nr_running(void)
2968 {
2969 unsigned long i, sum = 0;
2970
2971 for_each_online_cpu(i)
2972 sum += cpu_rq(i)->nr_running;
2973
2974 return sum;
2975 }
2976
2977 /*
2978 * Check if only the current task is running on the cpu.
2979 *
2980 * Caution: this function does not check that the caller has disabled
2981 * preemption, thus the result might have a time-of-check-to-time-of-use
2982 * race. The caller is responsible to use it correctly, for example:
2983 *
2984 * - from a non-preemptable section (of course)
2985 *
2986 * - from a thread that is bound to a single CPU
2987 *
2988 * - in a loop with very short iterations (e.g. a polling loop)
2989 */
single_task_running(void)2990 bool single_task_running(void)
2991 {
2992 return raw_rq()->nr_running == 1;
2993 }
2994 EXPORT_SYMBOL(single_task_running);
2995
nr_context_switches(void)2996 unsigned long long nr_context_switches(void)
2997 {
2998 int i;
2999 unsigned long long sum = 0;
3000
3001 for_each_possible_cpu(i)
3002 sum += cpu_rq(i)->nr_switches;
3003
3004 return sum;
3005 }
3006
nr_iowait(void)3007 unsigned long nr_iowait(void)
3008 {
3009 unsigned long i, sum = 0;
3010
3011 for_each_possible_cpu(i)
3012 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3013
3014 return sum;
3015 }
3016
nr_iowait_cpu(int cpu)3017 unsigned long nr_iowait_cpu(int cpu)
3018 {
3019 struct rq *this = cpu_rq(cpu);
3020 return atomic_read(&this->nr_iowait);
3021 }
3022
3023 #ifdef CONFIG_CPU_QUIET
nr_running_integral(unsigned int cpu)3024 u64 nr_running_integral(unsigned int cpu)
3025 {
3026 unsigned int seqcnt;
3027 u64 integral;
3028 struct rq *q;
3029
3030 if (cpu >= nr_cpu_ids)
3031 return 0;
3032
3033 q = cpu_rq(cpu);
3034
3035 /*
3036 * Update average to avoid reading stalled value if there were
3037 * no run-queue changes for a long time. On the other hand if
3038 * the changes are happening right now, just read current value
3039 * directly.
3040 */
3041
3042 seqcnt = read_seqcount_begin(&q->ave_seqcnt);
3043 integral = do_nr_running_integral(q);
3044 if (read_seqcount_retry(&q->ave_seqcnt, seqcnt)) {
3045 read_seqcount_begin(&q->ave_seqcnt);
3046 integral = q->nr_running_integral;
3047 }
3048
3049 return integral;
3050 }
3051 #endif
3052
get_iowait_load(unsigned long * nr_waiters,unsigned long * load)3053 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
3054 {
3055 struct rq *rq = this_rq();
3056 *nr_waiters = atomic_read(&rq->nr_iowait);
3057 *load = rq->load.weight;
3058 }
3059
3060 #ifdef CONFIG_SMP
3061
3062 /*
3063 * sched_exec - execve() is a valuable balancing opportunity, because at
3064 * this point the task has the smallest effective memory and cache footprint.
3065 */
sched_exec(void)3066 void sched_exec(void)
3067 {
3068 struct task_struct *p = current;
3069 unsigned long flags;
3070 int dest_cpu;
3071
3072 raw_spin_lock_irqsave(&p->pi_lock, flags);
3073 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3074 if (dest_cpu == smp_processor_id())
3075 goto unlock;
3076
3077 if (likely(cpu_active(dest_cpu))) {
3078 struct migration_arg arg = { p, dest_cpu };
3079
3080 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3081 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3082 return;
3083 }
3084 unlock:
3085 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3086 }
3087
3088 #endif
3089
3090 DEFINE_PER_CPU(struct kernel_stat, kstat);
3091 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3092
3093 EXPORT_PER_CPU_SYMBOL(kstat);
3094 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3095
3096 /*
3097 * The function fair_sched_class.update_curr accesses the struct curr
3098 * and its field curr->exec_start; when called from task_sched_runtime(),
3099 * we observe a high rate of cache misses in practice.
3100 * Prefetching this data results in improved performance.
3101 */
prefetch_curr_exec_start(struct task_struct * p)3102 static inline void prefetch_curr_exec_start(struct task_struct *p)
3103 {
3104 #ifdef CONFIG_FAIR_GROUP_SCHED
3105 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3106 #else
3107 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3108 #endif
3109 prefetch(curr);
3110 prefetch(&curr->exec_start);
3111 }
3112
3113 /*
3114 * Return accounted runtime for the task.
3115 * In case the task is currently running, return the runtime plus current's
3116 * pending runtime that have not been accounted yet.
3117 */
task_sched_runtime(struct task_struct * p)3118 unsigned long long task_sched_runtime(struct task_struct *p)
3119 {
3120 struct rq_flags rf;
3121 struct rq *rq;
3122 u64 ns;
3123
3124 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3125 /*
3126 * 64-bit doesn't need locks to atomically read a 64bit value.
3127 * So we have a optimization chance when the task's delta_exec is 0.
3128 * Reading ->on_cpu is racy, but this is ok.
3129 *
3130 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3131 * If we race with it entering cpu, unaccounted time is 0. This is
3132 * indistinguishable from the read occurring a few cycles earlier.
3133 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3134 * been accounted, so we're correct here as well.
3135 */
3136 if (!p->on_cpu || !task_on_rq_queued(p))
3137 return p->se.sum_exec_runtime;
3138 #endif
3139
3140 rq = task_rq_lock(p, &rf);
3141 /*
3142 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3143 * project cycles that may never be accounted to this
3144 * thread, breaking clock_gettime().
3145 */
3146 if (task_current(rq, p) && task_on_rq_queued(p)) {
3147 prefetch_curr_exec_start(p);
3148 update_rq_clock(rq);
3149 p->sched_class->update_curr(rq);
3150 }
3151 ns = p->se.sum_exec_runtime;
3152 task_rq_unlock(rq, p, &rf);
3153
3154 return ns;
3155 }
3156
3157 /*
3158 * This function gets called by the timer code, with HZ frequency.
3159 * We call it with interrupts disabled.
3160 */
scheduler_tick(void)3161 void scheduler_tick(void)
3162 {
3163 int cpu = smp_processor_id();
3164 struct rq *rq = cpu_rq(cpu);
3165 struct task_struct *curr = rq->curr;
3166
3167 sched_clock_tick();
3168
3169 raw_spin_lock(&rq->lock);
3170 walt_set_window_start(rq);
3171 walt_update_task_ravg(rq->curr, rq, TASK_UPDATE,
3172 walt_ktime_clock(), 0);
3173 update_rq_clock(rq);
3174 curr->sched_class->task_tick(rq, curr, 0);
3175 cpu_load_update_active(rq);
3176 calc_global_load_tick(rq);
3177 raw_spin_unlock(&rq->lock);
3178
3179 perf_event_task_tick();
3180
3181 #ifdef CONFIG_SMP
3182 rq->idle_balance = idle_cpu(cpu);
3183 trigger_load_balance(rq);
3184 #endif
3185 rq_last_tick_reset(rq);
3186
3187 if (curr->sched_class == &fair_sched_class)
3188 check_for_migration(rq, curr);
3189 }
3190
3191 #ifdef CONFIG_NO_HZ_FULL
3192 /**
3193 * scheduler_tick_max_deferment
3194 *
3195 * Keep at least one tick per second when a single
3196 * active task is running because the scheduler doesn't
3197 * yet completely support full dynticks environment.
3198 *
3199 * This makes sure that uptime, CFS vruntime, load
3200 * balancing, etc... continue to move forward, even
3201 * with a very low granularity.
3202 *
3203 * Return: Maximum deferment in nanoseconds.
3204 */
scheduler_tick_max_deferment(void)3205 u64 scheduler_tick_max_deferment(void)
3206 {
3207 struct rq *rq = this_rq();
3208 unsigned long next, now = READ_ONCE(jiffies);
3209
3210 next = rq->last_sched_tick + HZ;
3211
3212 if (time_before_eq(next, now))
3213 return 0;
3214
3215 return jiffies_to_nsecs(next - now);
3216 }
3217 #endif
3218
3219 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3220 defined(CONFIG_PREEMPT_TRACER))
3221 /*
3222 * If the value passed in is equal to the current preempt count
3223 * then we just disabled preemption. Start timing the latency.
3224 */
preempt_latency_start(int val)3225 static inline void preempt_latency_start(int val)
3226 {
3227 if (preempt_count() == val) {
3228 unsigned long ip = get_lock_parent_ip();
3229 #ifdef CONFIG_DEBUG_PREEMPT
3230 current->preempt_disable_ip = ip;
3231 #endif
3232 trace_preempt_off(CALLER_ADDR0, ip);
3233 }
3234 }
3235
preempt_count_add(int val)3236 void preempt_count_add(int val)
3237 {
3238 #ifdef CONFIG_DEBUG_PREEMPT
3239 /*
3240 * Underflow?
3241 */
3242 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3243 return;
3244 #endif
3245 __preempt_count_add(val);
3246 #ifdef CONFIG_DEBUG_PREEMPT
3247 /*
3248 * Spinlock count overflowing soon?
3249 */
3250 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3251 PREEMPT_MASK - 10);
3252 #endif
3253 preempt_latency_start(val);
3254 }
3255 EXPORT_SYMBOL(preempt_count_add);
3256 NOKPROBE_SYMBOL(preempt_count_add);
3257
3258 /*
3259 * If the value passed in equals to the current preempt count
3260 * then we just enabled preemption. Stop timing the latency.
3261 */
preempt_latency_stop(int val)3262 static inline void preempt_latency_stop(int val)
3263 {
3264 if (preempt_count() == val)
3265 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3266 }
3267
preempt_count_sub(int val)3268 void preempt_count_sub(int val)
3269 {
3270 #ifdef CONFIG_DEBUG_PREEMPT
3271 /*
3272 * Underflow?
3273 */
3274 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3275 return;
3276 /*
3277 * Is the spinlock portion underflowing?
3278 */
3279 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3280 !(preempt_count() & PREEMPT_MASK)))
3281 return;
3282 #endif
3283
3284 preempt_latency_stop(val);
3285 __preempt_count_sub(val);
3286 }
3287 EXPORT_SYMBOL(preempt_count_sub);
3288 NOKPROBE_SYMBOL(preempt_count_sub);
3289
3290 #else
preempt_latency_start(int val)3291 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)3292 static inline void preempt_latency_stop(int val) { }
3293 #endif
3294
3295 /*
3296 * Print scheduling while atomic bug:
3297 */
__schedule_bug(struct task_struct * prev)3298 static noinline void __schedule_bug(struct task_struct *prev)
3299 {
3300 /* Save this before calling printk(), since that will clobber it */
3301 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3302
3303 if (oops_in_progress)
3304 return;
3305
3306 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3307 prev->comm, prev->pid, preempt_count());
3308
3309 debug_show_held_locks(prev);
3310 print_modules();
3311 if (irqs_disabled())
3312 print_irqtrace_events(prev);
3313 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3314 && in_atomic_preempt_off()) {
3315 pr_err("Preemption disabled at:");
3316 print_ip_sym(preempt_disable_ip);
3317 pr_cont("\n");
3318 }
3319 if (panic_on_warn)
3320 panic("scheduling while atomic\n");
3321
3322 dump_stack();
3323 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3324 }
3325
3326 /*
3327 * Various schedule()-time debugging checks and statistics:
3328 */
schedule_debug(struct task_struct * prev)3329 static inline void schedule_debug(struct task_struct *prev)
3330 {
3331 #ifdef CONFIG_SCHED_STACK_END_CHECK
3332 if (task_stack_end_corrupted(prev))
3333 panic("corrupted stack end detected inside scheduler\n");
3334 #endif
3335
3336 if (unlikely(in_atomic_preempt_off())) {
3337 __schedule_bug(prev);
3338 preempt_count_set(PREEMPT_DISABLED);
3339 }
3340 rcu_sleep_check();
3341
3342 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3343
3344 schedstat_inc(this_rq()->sched_count);
3345 }
3346
3347 /*
3348 * Pick up the highest-prio task:
3349 */
3350 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct pin_cookie cookie)3351 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3352 {
3353 const struct sched_class *class = &fair_sched_class;
3354 struct task_struct *p;
3355
3356 /*
3357 * Optimization: we know that if all tasks are in
3358 * the fair class we can call that function directly:
3359 */
3360 if (likely(prev->sched_class == class &&
3361 rq->nr_running == rq->cfs.h_nr_running)) {
3362 p = fair_sched_class.pick_next_task(rq, prev, cookie);
3363 if (unlikely(p == RETRY_TASK))
3364 goto again;
3365
3366 /* assumes fair_sched_class->next == idle_sched_class */
3367 if (unlikely(!p))
3368 p = idle_sched_class.pick_next_task(rq, prev, cookie);
3369
3370 return p;
3371 }
3372
3373 again:
3374 for_each_class(class) {
3375 p = class->pick_next_task(rq, prev, cookie);
3376 if (p) {
3377 if (unlikely(p == RETRY_TASK))
3378 goto again;
3379 return p;
3380 }
3381 }
3382
3383 BUG(); /* the idle class will always have a runnable task */
3384 }
3385
3386 /*
3387 * __schedule() is the main scheduler function.
3388 *
3389 * The main means of driving the scheduler and thus entering this function are:
3390 *
3391 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3392 *
3393 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3394 * paths. For example, see arch/x86/entry_64.S.
3395 *
3396 * To drive preemption between tasks, the scheduler sets the flag in timer
3397 * interrupt handler scheduler_tick().
3398 *
3399 * 3. Wakeups don't really cause entry into schedule(). They add a
3400 * task to the run-queue and that's it.
3401 *
3402 * Now, if the new task added to the run-queue preempts the current
3403 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3404 * called on the nearest possible occasion:
3405 *
3406 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3407 *
3408 * - in syscall or exception context, at the next outmost
3409 * preempt_enable(). (this might be as soon as the wake_up()'s
3410 * spin_unlock()!)
3411 *
3412 * - in IRQ context, return from interrupt-handler to
3413 * preemptible context
3414 *
3415 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3416 * then at the next:
3417 *
3418 * - cond_resched() call
3419 * - explicit schedule() call
3420 * - return from syscall or exception to user-space
3421 * - return from interrupt-handler to user-space
3422 *
3423 * WARNING: must be called with preemption disabled!
3424 */
__schedule(bool preempt)3425 static void __sched notrace __schedule(bool preempt)
3426 {
3427 struct task_struct *prev, *next;
3428 unsigned long *switch_count;
3429 struct pin_cookie cookie;
3430 struct rq *rq;
3431 int cpu;
3432 u64 wallclock;
3433
3434 cpu = smp_processor_id();
3435 rq = cpu_rq(cpu);
3436 prev = rq->curr;
3437
3438 schedule_debug(prev);
3439
3440 if (sched_feat(HRTICK))
3441 hrtick_clear(rq);
3442
3443 local_irq_disable();
3444 rcu_note_context_switch();
3445
3446 /*
3447 * Make sure that signal_pending_state()->signal_pending() below
3448 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3449 * done by the caller to avoid the race with signal_wake_up().
3450 */
3451 smp_mb__before_spinlock();
3452 raw_spin_lock(&rq->lock);
3453 cookie = lockdep_pin_lock(&rq->lock);
3454
3455 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3456
3457 switch_count = &prev->nivcsw;
3458 if (!preempt && prev->state) {
3459 if (unlikely(signal_pending_state(prev->state, prev))) {
3460 prev->state = TASK_RUNNING;
3461 } else {
3462 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3463 prev->on_rq = 0;
3464
3465 /*
3466 * If a worker went to sleep, notify and ask workqueue
3467 * whether it wants to wake up a task to maintain
3468 * concurrency.
3469 */
3470 if (prev->flags & PF_WQ_WORKER) {
3471 struct task_struct *to_wakeup;
3472
3473 to_wakeup = wq_worker_sleeping(prev);
3474 if (to_wakeup)
3475 try_to_wake_up_local(to_wakeup, cookie);
3476 }
3477 }
3478 switch_count = &prev->nvcsw;
3479 }
3480
3481 if (task_on_rq_queued(prev))
3482 update_rq_clock(rq);
3483
3484 next = pick_next_task(rq, prev, cookie);
3485 wallclock = walt_ktime_clock();
3486 walt_update_task_ravg(prev, rq, PUT_PREV_TASK, wallclock, 0);
3487 walt_update_task_ravg(next, rq, PICK_NEXT_TASK, wallclock, 0);
3488 clear_tsk_need_resched(prev);
3489 clear_preempt_need_resched();
3490 rq->clock_skip_update = 0;
3491
3492 if (likely(prev != next)) {
3493 #ifdef CONFIG_SCHED_WALT
3494 if (!prev->on_rq)
3495 prev->last_sleep_ts = wallclock;
3496 #endif
3497 rq->nr_switches++;
3498 rq->curr = next;
3499 ++*switch_count;
3500
3501 trace_sched_switch(preempt, prev, next);
3502 rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3503 } else {
3504 lockdep_unpin_lock(&rq->lock, cookie);
3505 raw_spin_unlock_irq(&rq->lock);
3506 }
3507
3508 balance_callback(rq);
3509 }
3510
do_task_dead(void)3511 void __noreturn do_task_dead(void)
3512 {
3513 /*
3514 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3515 * when the following two conditions become true.
3516 * - There is race condition of mmap_sem (It is acquired by
3517 * exit_mm()), and
3518 * - SMI occurs before setting TASK_RUNINNG.
3519 * (or hypervisor of virtual machine switches to other guest)
3520 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3521 *
3522 * To avoid it, we have to wait for releasing tsk->pi_lock which
3523 * is held by try_to_wake_up()
3524 */
3525 smp_mb();
3526 raw_spin_unlock_wait(¤t->pi_lock);
3527
3528 /* causes final put_task_struct in finish_task_switch(). */
3529 __set_current_state(TASK_DEAD);
3530 current->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
3531 __schedule(false);
3532 BUG();
3533 /* Avoid "noreturn function does return". */
3534 for (;;)
3535 cpu_relax(); /* For when BUG is null */
3536 }
3537
sched_submit_work(struct task_struct * tsk)3538 static inline void sched_submit_work(struct task_struct *tsk)
3539 {
3540 if (!tsk->state || tsk_is_pi_blocked(tsk))
3541 return;
3542 /*
3543 * If we are going to sleep and we have plugged IO queued,
3544 * make sure to submit it to avoid deadlocks.
3545 */
3546 if (blk_needs_flush_plug(tsk))
3547 blk_schedule_flush_plug(tsk);
3548 }
3549
schedule(void)3550 asmlinkage __visible void __sched schedule(void)
3551 {
3552 struct task_struct *tsk = current;
3553
3554 sched_submit_work(tsk);
3555 do {
3556 preempt_disable();
3557 __schedule(false);
3558 sched_preempt_enable_no_resched();
3559 } while (need_resched());
3560 }
3561 EXPORT_SYMBOL(schedule);
3562
3563 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)3564 asmlinkage __visible void __sched schedule_user(void)
3565 {
3566 /*
3567 * If we come here after a random call to set_need_resched(),
3568 * or we have been woken up remotely but the IPI has not yet arrived,
3569 * we haven't yet exited the RCU idle mode. Do it here manually until
3570 * we find a better solution.
3571 *
3572 * NB: There are buggy callers of this function. Ideally we
3573 * should warn if prev_state != CONTEXT_USER, but that will trigger
3574 * too frequently to make sense yet.
3575 */
3576 enum ctx_state prev_state = exception_enter();
3577 schedule();
3578 exception_exit(prev_state);
3579 }
3580 #endif
3581
3582 /**
3583 * schedule_preempt_disabled - called with preemption disabled
3584 *
3585 * Returns with preemption disabled. Note: preempt_count must be 1
3586 */
schedule_preempt_disabled(void)3587 void __sched schedule_preempt_disabled(void)
3588 {
3589 sched_preempt_enable_no_resched();
3590 schedule();
3591 preempt_disable();
3592 }
3593
preempt_schedule_common(void)3594 static void __sched notrace preempt_schedule_common(void)
3595 {
3596 do {
3597 /*
3598 * Because the function tracer can trace preempt_count_sub()
3599 * and it also uses preempt_enable/disable_notrace(), if
3600 * NEED_RESCHED is set, the preempt_enable_notrace() called
3601 * by the function tracer will call this function again and
3602 * cause infinite recursion.
3603 *
3604 * Preemption must be disabled here before the function
3605 * tracer can trace. Break up preempt_disable() into two
3606 * calls. One to disable preemption without fear of being
3607 * traced. The other to still record the preemption latency,
3608 * which can also be traced by the function tracer.
3609 */
3610 preempt_disable_notrace();
3611 preempt_latency_start(1);
3612 __schedule(true);
3613 preempt_latency_stop(1);
3614 preempt_enable_no_resched_notrace();
3615
3616 /*
3617 * Check again in case we missed a preemption opportunity
3618 * between schedule and now.
3619 */
3620 } while (need_resched());
3621 }
3622
3623 #ifdef CONFIG_PREEMPT
3624 /*
3625 * this is the entry point to schedule() from in-kernel preemption
3626 * off of preempt_enable. Kernel preemptions off return from interrupt
3627 * occur there and call schedule directly.
3628 */
preempt_schedule(void)3629 asmlinkage __visible void __sched notrace preempt_schedule(void)
3630 {
3631 /*
3632 * If there is a non-zero preempt_count or interrupts are disabled,
3633 * we do not want to preempt the current task. Just return..
3634 */
3635 if (likely(!preemptible()))
3636 return;
3637
3638 preempt_schedule_common();
3639 }
3640 NOKPROBE_SYMBOL(preempt_schedule);
3641 EXPORT_SYMBOL(preempt_schedule);
3642
3643 /**
3644 * preempt_schedule_notrace - preempt_schedule called by tracing
3645 *
3646 * The tracing infrastructure uses preempt_enable_notrace to prevent
3647 * recursion and tracing preempt enabling caused by the tracing
3648 * infrastructure itself. But as tracing can happen in areas coming
3649 * from userspace or just about to enter userspace, a preempt enable
3650 * can occur before user_exit() is called. This will cause the scheduler
3651 * to be called when the system is still in usermode.
3652 *
3653 * To prevent this, the preempt_enable_notrace will use this function
3654 * instead of preempt_schedule() to exit user context if needed before
3655 * calling the scheduler.
3656 */
preempt_schedule_notrace(void)3657 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3658 {
3659 enum ctx_state prev_ctx;
3660
3661 if (likely(!preemptible()))
3662 return;
3663
3664 do {
3665 /*
3666 * Because the function tracer can trace preempt_count_sub()
3667 * and it also uses preempt_enable/disable_notrace(), if
3668 * NEED_RESCHED is set, the preempt_enable_notrace() called
3669 * by the function tracer will call this function again and
3670 * cause infinite recursion.
3671 *
3672 * Preemption must be disabled here before the function
3673 * tracer can trace. Break up preempt_disable() into two
3674 * calls. One to disable preemption without fear of being
3675 * traced. The other to still record the preemption latency,
3676 * which can also be traced by the function tracer.
3677 */
3678 preempt_disable_notrace();
3679 preempt_latency_start(1);
3680 /*
3681 * Needs preempt disabled in case user_exit() is traced
3682 * and the tracer calls preempt_enable_notrace() causing
3683 * an infinite recursion.
3684 */
3685 prev_ctx = exception_enter();
3686 __schedule(true);
3687 exception_exit(prev_ctx);
3688
3689 preempt_latency_stop(1);
3690 preempt_enable_no_resched_notrace();
3691 } while (need_resched());
3692 }
3693 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3694
3695 #endif /* CONFIG_PREEMPT */
3696
3697 /*
3698 * this is the entry point to schedule() from kernel preemption
3699 * off of irq context.
3700 * Note, that this is called and return with irqs disabled. This will
3701 * protect us against recursive calling from irq.
3702 */
preempt_schedule_irq(void)3703 asmlinkage __visible void __sched preempt_schedule_irq(void)
3704 {
3705 enum ctx_state prev_state;
3706
3707 /* Catch callers which need to be fixed */
3708 BUG_ON(preempt_count() || !irqs_disabled());
3709
3710 prev_state = exception_enter();
3711
3712 do {
3713 preempt_disable();
3714 local_irq_enable();
3715 __schedule(true);
3716 local_irq_disable();
3717 sched_preempt_enable_no_resched();
3718 } while (need_resched());
3719
3720 exception_exit(prev_state);
3721 }
3722
default_wake_function(wait_queue_t * curr,unsigned mode,int wake_flags,void * key)3723 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3724 void *key)
3725 {
3726 return try_to_wake_up(curr->private, mode, wake_flags);
3727 }
3728 EXPORT_SYMBOL(default_wake_function);
3729
3730 #ifdef CONFIG_RT_MUTEXES
3731
3732 /*
3733 * rt_mutex_setprio - set the current priority of a task
3734 * @p: task
3735 * @prio: prio value (kernel-internal form)
3736 *
3737 * This function changes the 'effective' priority of a task. It does
3738 * not touch ->normal_prio like __setscheduler().
3739 *
3740 * Used by the rt_mutex code to implement priority inheritance
3741 * logic. Call site only calls if the priority of the task changed.
3742 */
rt_mutex_setprio(struct task_struct * p,int prio)3743 void rt_mutex_setprio(struct task_struct *p, int prio)
3744 {
3745 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3746 const struct sched_class *prev_class;
3747 struct rq_flags rf;
3748 struct rq *rq;
3749
3750 BUG_ON(prio > MAX_PRIO);
3751
3752 rq = __task_rq_lock(p, &rf);
3753 update_rq_clock(rq);
3754
3755 /*
3756 * Idle task boosting is a nono in general. There is one
3757 * exception, when PREEMPT_RT and NOHZ is active:
3758 *
3759 * The idle task calls get_next_timer_interrupt() and holds
3760 * the timer wheel base->lock on the CPU and another CPU wants
3761 * to access the timer (probably to cancel it). We can safely
3762 * ignore the boosting request, as the idle CPU runs this code
3763 * with interrupts disabled and will complete the lock
3764 * protected section without being interrupted. So there is no
3765 * real need to boost.
3766 */
3767 if (unlikely(p == rq->idle)) {
3768 WARN_ON(p != rq->curr);
3769 WARN_ON(p->pi_blocked_on);
3770 goto out_unlock;
3771 }
3772
3773 trace_sched_pi_setprio(p, prio);
3774 oldprio = p->prio;
3775
3776 if (oldprio == prio)
3777 queue_flag &= ~DEQUEUE_MOVE;
3778
3779 prev_class = p->sched_class;
3780 queued = task_on_rq_queued(p);
3781 running = task_current(rq, p);
3782 if (queued)
3783 dequeue_task(rq, p, queue_flag);
3784 if (running)
3785 put_prev_task(rq, p);
3786
3787 /*
3788 * Boosting condition are:
3789 * 1. -rt task is running and holds mutex A
3790 * --> -dl task blocks on mutex A
3791 *
3792 * 2. -dl task is running and holds mutex A
3793 * --> -dl task blocks on mutex A and could preempt the
3794 * running task
3795 */
3796 if (dl_prio(prio)) {
3797 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3798 if (!dl_prio(p->normal_prio) ||
3799 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3800 p->dl.dl_boosted = 1;
3801 queue_flag |= ENQUEUE_REPLENISH;
3802 } else
3803 p->dl.dl_boosted = 0;
3804 p->sched_class = &dl_sched_class;
3805 } else if (rt_prio(prio)) {
3806 if (dl_prio(oldprio))
3807 p->dl.dl_boosted = 0;
3808 if (oldprio < prio)
3809 queue_flag |= ENQUEUE_HEAD;
3810 p->sched_class = &rt_sched_class;
3811 } else {
3812 if (dl_prio(oldprio))
3813 p->dl.dl_boosted = 0;
3814 if (rt_prio(oldprio))
3815 p->rt.timeout = 0;
3816 p->sched_class = &fair_sched_class;
3817 }
3818
3819 p->prio = prio;
3820
3821 if (queued)
3822 enqueue_task(rq, p, queue_flag);
3823 if (running)
3824 set_curr_task(rq, p);
3825
3826 check_class_changed(rq, p, prev_class, oldprio);
3827 out_unlock:
3828 preempt_disable(); /* avoid rq from going away on us */
3829 __task_rq_unlock(rq, &rf);
3830
3831 balance_callback(rq);
3832 preempt_enable();
3833 }
3834 #endif
3835
set_user_nice(struct task_struct * p,long nice)3836 void set_user_nice(struct task_struct *p, long nice)
3837 {
3838 bool queued, running;
3839 int old_prio, delta;
3840 struct rq_flags rf;
3841 struct rq *rq;
3842
3843 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3844 return;
3845 /*
3846 * We have to be careful, if called from sys_setpriority(),
3847 * the task might be in the middle of scheduling on another CPU.
3848 */
3849 rq = task_rq_lock(p, &rf);
3850 update_rq_clock(rq);
3851
3852 /*
3853 * The RT priorities are set via sched_setscheduler(), but we still
3854 * allow the 'normal' nice value to be set - but as expected
3855 * it wont have any effect on scheduling until the task is
3856 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3857 */
3858 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3859 p->static_prio = NICE_TO_PRIO(nice);
3860 goto out_unlock;
3861 }
3862 queued = task_on_rq_queued(p);
3863 running = task_current(rq, p);
3864 if (queued)
3865 dequeue_task(rq, p, DEQUEUE_SAVE);
3866 if (running)
3867 put_prev_task(rq, p);
3868
3869 p->static_prio = NICE_TO_PRIO(nice);
3870 set_load_weight(p);
3871 old_prio = p->prio;
3872 p->prio = effective_prio(p);
3873 delta = p->prio - old_prio;
3874
3875 if (queued) {
3876 enqueue_task(rq, p, ENQUEUE_RESTORE);
3877 /*
3878 * If the task increased its priority or is running and
3879 * lowered its priority, then reschedule its CPU:
3880 */
3881 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3882 resched_curr(rq);
3883 }
3884 if (running)
3885 set_curr_task(rq, p);
3886 out_unlock:
3887 task_rq_unlock(rq, p, &rf);
3888 }
3889 EXPORT_SYMBOL(set_user_nice);
3890
3891 /*
3892 * can_nice - check if a task can reduce its nice value
3893 * @p: task
3894 * @nice: nice value
3895 */
can_nice(const struct task_struct * p,const int nice)3896 int can_nice(const struct task_struct *p, const int nice)
3897 {
3898 /* convert nice value [19,-20] to rlimit style value [1,40] */
3899 int nice_rlim = nice_to_rlimit(nice);
3900
3901 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3902 capable(CAP_SYS_NICE));
3903 }
3904
3905 #ifdef __ARCH_WANT_SYS_NICE
3906
3907 /*
3908 * sys_nice - change the priority of the current process.
3909 * @increment: priority increment
3910 *
3911 * sys_setpriority is a more generic, but much slower function that
3912 * does similar things.
3913 */
SYSCALL_DEFINE1(nice,int,increment)3914 SYSCALL_DEFINE1(nice, int, increment)
3915 {
3916 long nice, retval;
3917
3918 /*
3919 * Setpriority might change our priority at the same moment.
3920 * We don't have to worry. Conceptually one call occurs first
3921 * and we have a single winner.
3922 */
3923 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3924 nice = task_nice(current) + increment;
3925
3926 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3927 if (increment < 0 && !can_nice(current, nice))
3928 return -EPERM;
3929
3930 retval = security_task_setnice(current, nice);
3931 if (retval)
3932 return retval;
3933
3934 set_user_nice(current, nice);
3935 return 0;
3936 }
3937
3938 #endif
3939
3940 /**
3941 * task_prio - return the priority value of a given task.
3942 * @p: the task in question.
3943 *
3944 * Return: The priority value as seen by users in /proc.
3945 * RT tasks are offset by -200. Normal tasks are centered
3946 * around 0, value goes from -16 to +15.
3947 */
task_prio(const struct task_struct * p)3948 int task_prio(const struct task_struct *p)
3949 {
3950 return p->prio - MAX_RT_PRIO;
3951 }
3952
3953 /**
3954 * idle_cpu - is a given cpu idle currently?
3955 * @cpu: the processor in question.
3956 *
3957 * Return: 1 if the CPU is currently idle. 0 otherwise.
3958 */
idle_cpu(int cpu)3959 int idle_cpu(int cpu)
3960 {
3961 struct rq *rq = cpu_rq(cpu);
3962
3963 if (rq->curr != rq->idle)
3964 return 0;
3965
3966 if (rq->nr_running)
3967 return 0;
3968
3969 #ifdef CONFIG_SMP
3970 if (!llist_empty(&rq->wake_list))
3971 return 0;
3972 #endif
3973
3974 return 1;
3975 }
3976
3977 /**
3978 * idle_task - return the idle task for a given cpu.
3979 * @cpu: the processor in question.
3980 *
3981 * Return: The idle task for the cpu @cpu.
3982 */
idle_task(int cpu)3983 struct task_struct *idle_task(int cpu)
3984 {
3985 return cpu_rq(cpu)->idle;
3986 }
3987
3988 /**
3989 * find_process_by_pid - find a process with a matching PID value.
3990 * @pid: the pid in question.
3991 *
3992 * The task of @pid, if found. %NULL otherwise.
3993 */
find_process_by_pid(pid_t pid)3994 static struct task_struct *find_process_by_pid(pid_t pid)
3995 {
3996 return pid ? find_task_by_vpid(pid) : current;
3997 }
3998
3999 /*
4000 * This function initializes the sched_dl_entity of a newly becoming
4001 * SCHED_DEADLINE task.
4002 *
4003 * Only the static values are considered here, the actual runtime and the
4004 * absolute deadline will be properly calculated when the task is enqueued
4005 * for the first time with its new policy.
4006 */
4007 static void
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)4008 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
4009 {
4010 struct sched_dl_entity *dl_se = &p->dl;
4011
4012 dl_se->dl_runtime = attr->sched_runtime;
4013 dl_se->dl_deadline = attr->sched_deadline;
4014 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
4015 dl_se->flags = attr->sched_flags;
4016 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
4017 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
4018
4019 /*
4020 * Changing the parameters of a task is 'tricky' and we're not doing
4021 * the correct thing -- also see task_dead_dl() and switched_from_dl().
4022 *
4023 * What we SHOULD do is delay the bandwidth release until the 0-lag
4024 * point. This would include retaining the task_struct until that time
4025 * and change dl_overflow() to not immediately decrement the current
4026 * amount.
4027 *
4028 * Instead we retain the current runtime/deadline and let the new
4029 * parameters take effect after the current reservation period lapses.
4030 * This is safe (albeit pessimistic) because the 0-lag point is always
4031 * before the current scheduling deadline.
4032 *
4033 * We can still have temporary overloads because we do not delay the
4034 * change in bandwidth until that time; so admission control is
4035 * not on the safe side. It does however guarantee tasks will never
4036 * consume more than promised.
4037 */
4038 }
4039
4040 /*
4041 * sched_setparam() passes in -1 for its policy, to let the functions
4042 * it calls know not to change it.
4043 */
4044 #define SETPARAM_POLICY -1
4045
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)4046 static void __setscheduler_params(struct task_struct *p,
4047 const struct sched_attr *attr)
4048 {
4049 int policy = attr->sched_policy;
4050
4051 if (policy == SETPARAM_POLICY)
4052 policy = p->policy;
4053
4054 p->policy = policy;
4055
4056 if (dl_policy(policy))
4057 __setparam_dl(p, attr);
4058 else if (fair_policy(policy))
4059 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4060
4061 /*
4062 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4063 * !rt_policy. Always setting this ensures that things like
4064 * getparam()/getattr() don't report silly values for !rt tasks.
4065 */
4066 p->rt_priority = attr->sched_priority;
4067 p->normal_prio = normal_prio(p);
4068 set_load_weight(p);
4069 }
4070
4071 /* Actually do priority change: must hold pi & rq lock. */
__setscheduler(struct rq * rq,struct task_struct * p,const struct sched_attr * attr,bool keep_boost)4072 static void __setscheduler(struct rq *rq, struct task_struct *p,
4073 const struct sched_attr *attr, bool keep_boost)
4074 {
4075 __setscheduler_params(p, attr);
4076
4077 /*
4078 * Keep a potential priority boosting if called from
4079 * sched_setscheduler().
4080 */
4081 if (keep_boost)
4082 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
4083 else
4084 p->prio = normal_prio(p);
4085
4086 if (dl_prio(p->prio))
4087 p->sched_class = &dl_sched_class;
4088 else if (rt_prio(p->prio))
4089 p->sched_class = &rt_sched_class;
4090 else
4091 p->sched_class = &fair_sched_class;
4092 }
4093
4094 static void
__getparam_dl(struct task_struct * p,struct sched_attr * attr)4095 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
4096 {
4097 struct sched_dl_entity *dl_se = &p->dl;
4098
4099 attr->sched_priority = p->rt_priority;
4100 attr->sched_runtime = dl_se->dl_runtime;
4101 attr->sched_deadline = dl_se->dl_deadline;
4102 attr->sched_period = dl_se->dl_period;
4103 attr->sched_flags = dl_se->flags;
4104 }
4105
4106 /*
4107 * This function validates the new parameters of a -deadline task.
4108 * We ask for the deadline not being zero, and greater or equal
4109 * than the runtime, as well as the period of being zero or
4110 * greater than deadline. Furthermore, we have to be sure that
4111 * user parameters are above the internal resolution of 1us (we
4112 * check sched_runtime only since it is always the smaller one) and
4113 * below 2^63 ns (we have to check both sched_deadline and
4114 * sched_period, as the latter can be zero).
4115 */
4116 static bool
__checkparam_dl(const struct sched_attr * attr)4117 __checkparam_dl(const struct sched_attr *attr)
4118 {
4119 /* deadline != 0 */
4120 if (attr->sched_deadline == 0)
4121 return false;
4122
4123 /*
4124 * Since we truncate DL_SCALE bits, make sure we're at least
4125 * that big.
4126 */
4127 if (attr->sched_runtime < (1ULL << DL_SCALE))
4128 return false;
4129
4130 /*
4131 * Since we use the MSB for wrap-around and sign issues, make
4132 * sure it's not set (mind that period can be equal to zero).
4133 */
4134 if (attr->sched_deadline & (1ULL << 63) ||
4135 attr->sched_period & (1ULL << 63))
4136 return false;
4137
4138 /* runtime <= deadline <= period (if period != 0) */
4139 if ((attr->sched_period != 0 &&
4140 attr->sched_period < attr->sched_deadline) ||
4141 attr->sched_deadline < attr->sched_runtime)
4142 return false;
4143
4144 return true;
4145 }
4146
4147 /*
4148 * check the target process has a UID that matches the current process's
4149 */
check_same_owner(struct task_struct * p)4150 static bool check_same_owner(struct task_struct *p)
4151 {
4152 const struct cred *cred = current_cred(), *pcred;
4153 bool match;
4154
4155 rcu_read_lock();
4156 pcred = __task_cred(p);
4157 match = (uid_eq(cred->euid, pcred->euid) ||
4158 uid_eq(cred->euid, pcred->uid));
4159 rcu_read_unlock();
4160 return match;
4161 }
4162
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)4163 static bool dl_param_changed(struct task_struct *p,
4164 const struct sched_attr *attr)
4165 {
4166 struct sched_dl_entity *dl_se = &p->dl;
4167
4168 if (dl_se->dl_runtime != attr->sched_runtime ||
4169 dl_se->dl_deadline != attr->sched_deadline ||
4170 dl_se->dl_period != attr->sched_period ||
4171 dl_se->flags != attr->sched_flags)
4172 return true;
4173
4174 return false;
4175 }
4176
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)4177 static int __sched_setscheduler(struct task_struct *p,
4178 const struct sched_attr *attr,
4179 bool user, bool pi)
4180 {
4181 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4182 MAX_RT_PRIO - 1 - attr->sched_priority;
4183 int retval, oldprio, oldpolicy = -1, queued, running;
4184 int new_effective_prio, policy = attr->sched_policy;
4185 const struct sched_class *prev_class;
4186 struct rq_flags rf;
4187 int reset_on_fork;
4188 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4189 struct rq *rq;
4190
4191 /* may grab non-irq protected spin_locks */
4192 BUG_ON(in_interrupt());
4193 recheck:
4194 /* double check policy once rq lock held */
4195 if (policy < 0) {
4196 reset_on_fork = p->sched_reset_on_fork;
4197 policy = oldpolicy = p->policy;
4198 } else {
4199 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4200
4201 if (!valid_policy(policy))
4202 return -EINVAL;
4203 }
4204
4205 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4206 return -EINVAL;
4207
4208 /*
4209 * Valid priorities for SCHED_FIFO and SCHED_RR are
4210 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4211 * SCHED_BATCH and SCHED_IDLE is 0.
4212 */
4213 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4214 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4215 return -EINVAL;
4216 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4217 (rt_policy(policy) != (attr->sched_priority != 0)))
4218 return -EINVAL;
4219
4220 /*
4221 * Allow unprivileged RT tasks to decrease priority:
4222 */
4223 if (user && !capable(CAP_SYS_NICE)) {
4224 if (fair_policy(policy)) {
4225 if (attr->sched_nice < task_nice(p) &&
4226 !can_nice(p, attr->sched_nice))
4227 return -EPERM;
4228 }
4229
4230 if (rt_policy(policy)) {
4231 unsigned long rlim_rtprio =
4232 task_rlimit(p, RLIMIT_RTPRIO);
4233
4234 /* can't set/change the rt policy */
4235 if (policy != p->policy && !rlim_rtprio)
4236 return -EPERM;
4237
4238 /* can't increase priority */
4239 if (attr->sched_priority > p->rt_priority &&
4240 attr->sched_priority > rlim_rtprio)
4241 return -EPERM;
4242 }
4243
4244 /*
4245 * Can't set/change SCHED_DEADLINE policy at all for now
4246 * (safest behavior); in the future we would like to allow
4247 * unprivileged DL tasks to increase their relative deadline
4248 * or reduce their runtime (both ways reducing utilization)
4249 */
4250 if (dl_policy(policy))
4251 return -EPERM;
4252
4253 /*
4254 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4255 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4256 */
4257 if (idle_policy(p->policy) && !idle_policy(policy)) {
4258 if (!can_nice(p, task_nice(p)))
4259 return -EPERM;
4260 }
4261
4262 /* can't change other user's priorities */
4263 if (!check_same_owner(p))
4264 return -EPERM;
4265
4266 /* Normal users shall not reset the sched_reset_on_fork flag */
4267 if (p->sched_reset_on_fork && !reset_on_fork)
4268 return -EPERM;
4269 }
4270
4271 if (user) {
4272 retval = security_task_setscheduler(p);
4273 if (retval)
4274 return retval;
4275 }
4276
4277 /*
4278 * make sure no PI-waiters arrive (or leave) while we are
4279 * changing the priority of the task:
4280 *
4281 * To be able to change p->policy safely, the appropriate
4282 * runqueue lock must be held.
4283 */
4284 rq = task_rq_lock(p, &rf);
4285 update_rq_clock(rq);
4286
4287 /*
4288 * Changing the policy of the stop threads its a very bad idea
4289 */
4290 if (p == rq->stop) {
4291 task_rq_unlock(rq, p, &rf);
4292 return -EINVAL;
4293 }
4294
4295 /*
4296 * If not changing anything there's no need to proceed further,
4297 * but store a possible modification of reset_on_fork.
4298 */
4299 if (unlikely(policy == p->policy)) {
4300 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4301 goto change;
4302 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4303 goto change;
4304 if (dl_policy(policy) && dl_param_changed(p, attr))
4305 goto change;
4306
4307 p->sched_reset_on_fork = reset_on_fork;
4308 task_rq_unlock(rq, p, &rf);
4309 return 0;
4310 }
4311 change:
4312
4313 if (user) {
4314 #ifdef CONFIG_RT_GROUP_SCHED
4315 /*
4316 * Do not allow realtime tasks into groups that have no runtime
4317 * assigned.
4318 */
4319 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4320 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4321 !task_group_is_autogroup(task_group(p))) {
4322 task_rq_unlock(rq, p, &rf);
4323 return -EPERM;
4324 }
4325 #endif
4326 #ifdef CONFIG_SMP
4327 if (dl_bandwidth_enabled() && dl_policy(policy)) {
4328 cpumask_t *span = rq->rd->span;
4329
4330 /*
4331 * Don't allow tasks with an affinity mask smaller than
4332 * the entire root_domain to become SCHED_DEADLINE. We
4333 * will also fail if there's no bandwidth available.
4334 */
4335 if (!cpumask_subset(span, &p->cpus_allowed) ||
4336 rq->rd->dl_bw.bw == 0) {
4337 task_rq_unlock(rq, p, &rf);
4338 return -EPERM;
4339 }
4340 }
4341 #endif
4342 }
4343
4344 /* recheck policy now with rq lock held */
4345 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4346 policy = oldpolicy = -1;
4347 task_rq_unlock(rq, p, &rf);
4348 goto recheck;
4349 }
4350
4351 /*
4352 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4353 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4354 * is available.
4355 */
4356 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4357 task_rq_unlock(rq, p, &rf);
4358 return -EBUSY;
4359 }
4360
4361 p->sched_reset_on_fork = reset_on_fork;
4362 oldprio = p->prio;
4363
4364 if (pi) {
4365 /*
4366 * Take priority boosted tasks into account. If the new
4367 * effective priority is unchanged, we just store the new
4368 * normal parameters and do not touch the scheduler class and
4369 * the runqueue. This will be done when the task deboost
4370 * itself.
4371 */
4372 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4373 if (new_effective_prio == oldprio)
4374 queue_flags &= ~DEQUEUE_MOVE;
4375 }
4376
4377 queued = task_on_rq_queued(p);
4378 running = task_current(rq, p);
4379 if (queued)
4380 dequeue_task(rq, p, queue_flags);
4381 if (running)
4382 put_prev_task(rq, p);
4383
4384 prev_class = p->sched_class;
4385 __setscheduler(rq, p, attr, pi);
4386
4387 if (queued) {
4388 /*
4389 * We enqueue to tail when the priority of a task is
4390 * increased (user space view).
4391 */
4392 if (oldprio < p->prio)
4393 queue_flags |= ENQUEUE_HEAD;
4394
4395 enqueue_task(rq, p, queue_flags);
4396 }
4397 if (running)
4398 set_curr_task(rq, p);
4399
4400 check_class_changed(rq, p, prev_class, oldprio);
4401 preempt_disable(); /* avoid rq from going away on us */
4402 task_rq_unlock(rq, p, &rf);
4403
4404 if (pi)
4405 rt_mutex_adjust_pi(p);
4406
4407 /*
4408 * Run balance callbacks after we've adjusted the PI chain.
4409 */
4410 balance_callback(rq);
4411 preempt_enable();
4412
4413 return 0;
4414 }
4415
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)4416 static int _sched_setscheduler(struct task_struct *p, int policy,
4417 const struct sched_param *param, bool check)
4418 {
4419 struct sched_attr attr = {
4420 .sched_policy = policy,
4421 .sched_priority = param->sched_priority,
4422 .sched_nice = PRIO_TO_NICE(p->static_prio),
4423 };
4424
4425 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4426 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4427 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4428 policy &= ~SCHED_RESET_ON_FORK;
4429 attr.sched_policy = policy;
4430 }
4431
4432 return __sched_setscheduler(p, &attr, check, true);
4433 }
4434 /**
4435 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4436 * @p: the task in question.
4437 * @policy: new policy.
4438 * @param: structure containing the new RT priority.
4439 *
4440 * Return: 0 on success. An error code otherwise.
4441 *
4442 * NOTE that the task may be already dead.
4443 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)4444 int sched_setscheduler(struct task_struct *p, int policy,
4445 const struct sched_param *param)
4446 {
4447 return _sched_setscheduler(p, policy, param, true);
4448 }
4449 EXPORT_SYMBOL_GPL(sched_setscheduler);
4450
sched_setattr(struct task_struct * p,const struct sched_attr * attr)4451 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4452 {
4453 return __sched_setscheduler(p, attr, true, true);
4454 }
4455 EXPORT_SYMBOL_GPL(sched_setattr);
4456
4457 /**
4458 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4459 * @p: the task in question.
4460 * @policy: new policy.
4461 * @param: structure containing the new RT priority.
4462 *
4463 * Just like sched_setscheduler, only don't bother checking if the
4464 * current context has permission. For example, this is needed in
4465 * stop_machine(): we create temporary high priority worker threads,
4466 * but our caller might not have that capability.
4467 *
4468 * Return: 0 on success. An error code otherwise.
4469 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)4470 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4471 const struct sched_param *param)
4472 {
4473 return _sched_setscheduler(p, policy, param, false);
4474 }
4475 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4476
4477 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)4478 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4479 {
4480 struct sched_param lparam;
4481 struct task_struct *p;
4482 int retval;
4483
4484 if (!param || pid < 0)
4485 return -EINVAL;
4486 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4487 return -EFAULT;
4488
4489 rcu_read_lock();
4490 retval = -ESRCH;
4491 p = find_process_by_pid(pid);
4492 if (p != NULL)
4493 retval = sched_setscheduler(p, policy, &lparam);
4494 rcu_read_unlock();
4495
4496 return retval;
4497 }
4498
4499 /*
4500 * Mimics kernel/events/core.c perf_copy_attr().
4501 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)4502 static int sched_copy_attr(struct sched_attr __user *uattr,
4503 struct sched_attr *attr)
4504 {
4505 u32 size;
4506 int ret;
4507
4508 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4509 return -EFAULT;
4510
4511 /*
4512 * zero the full structure, so that a short copy will be nice.
4513 */
4514 memset(attr, 0, sizeof(*attr));
4515
4516 ret = get_user(size, &uattr->size);
4517 if (ret)
4518 return ret;
4519
4520 if (size > PAGE_SIZE) /* silly large */
4521 goto err_size;
4522
4523 if (!size) /* abi compat */
4524 size = SCHED_ATTR_SIZE_VER0;
4525
4526 if (size < SCHED_ATTR_SIZE_VER0)
4527 goto err_size;
4528
4529 /*
4530 * If we're handed a bigger struct than we know of,
4531 * ensure all the unknown bits are 0 - i.e. new
4532 * user-space does not rely on any kernel feature
4533 * extensions we dont know about yet.
4534 */
4535 if (size > sizeof(*attr)) {
4536 unsigned char __user *addr;
4537 unsigned char __user *end;
4538 unsigned char val;
4539
4540 addr = (void __user *)uattr + sizeof(*attr);
4541 end = (void __user *)uattr + size;
4542
4543 for (; addr < end; addr++) {
4544 ret = get_user(val, addr);
4545 if (ret)
4546 return ret;
4547 if (val)
4548 goto err_size;
4549 }
4550 size = sizeof(*attr);
4551 }
4552
4553 ret = copy_from_user(attr, uattr, size);
4554 if (ret)
4555 return -EFAULT;
4556
4557 /*
4558 * XXX: do we want to be lenient like existing syscalls; or do we want
4559 * to be strict and return an error on out-of-bounds values?
4560 */
4561 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4562
4563 return 0;
4564
4565 err_size:
4566 put_user(sizeof(*attr), &uattr->size);
4567 return -E2BIG;
4568 }
4569
4570 /**
4571 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4572 * @pid: the pid in question.
4573 * @policy: new policy.
4574 * @param: structure containing the new RT priority.
4575 *
4576 * Return: 0 on success. An error code otherwise.
4577 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)4578 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4579 struct sched_param __user *, param)
4580 {
4581 /* negative values for policy are not valid */
4582 if (policy < 0)
4583 return -EINVAL;
4584
4585 return do_sched_setscheduler(pid, policy, param);
4586 }
4587
4588 /**
4589 * sys_sched_setparam - set/change the RT priority of a thread
4590 * @pid: the pid in question.
4591 * @param: structure containing the new RT priority.
4592 *
4593 * Return: 0 on success. An error code otherwise.
4594 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)4595 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4596 {
4597 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4598 }
4599
4600 /**
4601 * sys_sched_setattr - same as above, but with extended sched_attr
4602 * @pid: the pid in question.
4603 * @uattr: structure containing the extended parameters.
4604 * @flags: for future extension.
4605 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)4606 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4607 unsigned int, flags)
4608 {
4609 struct sched_attr attr;
4610 struct task_struct *p;
4611 int retval;
4612
4613 if (!uattr || pid < 0 || flags)
4614 return -EINVAL;
4615
4616 retval = sched_copy_attr(uattr, &attr);
4617 if (retval)
4618 return retval;
4619
4620 if ((int)attr.sched_policy < 0)
4621 return -EINVAL;
4622
4623 rcu_read_lock();
4624 retval = -ESRCH;
4625 p = find_process_by_pid(pid);
4626 if (p != NULL)
4627 retval = sched_setattr(p, &attr);
4628 rcu_read_unlock();
4629
4630 return retval;
4631 }
4632
4633 /**
4634 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4635 * @pid: the pid in question.
4636 *
4637 * Return: On success, the policy of the thread. Otherwise, a negative error
4638 * code.
4639 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)4640 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4641 {
4642 struct task_struct *p;
4643 int retval;
4644
4645 if (pid < 0)
4646 return -EINVAL;
4647
4648 retval = -ESRCH;
4649 rcu_read_lock();
4650 p = find_process_by_pid(pid);
4651 if (p) {
4652 retval = security_task_getscheduler(p);
4653 if (!retval)
4654 retval = p->policy
4655 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4656 }
4657 rcu_read_unlock();
4658 return retval;
4659 }
4660
4661 /**
4662 * sys_sched_getparam - get the RT priority of a thread
4663 * @pid: the pid in question.
4664 * @param: structure containing the RT priority.
4665 *
4666 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4667 * code.
4668 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)4669 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4670 {
4671 struct sched_param lp = { .sched_priority = 0 };
4672 struct task_struct *p;
4673 int retval;
4674
4675 if (!param || pid < 0)
4676 return -EINVAL;
4677
4678 rcu_read_lock();
4679 p = find_process_by_pid(pid);
4680 retval = -ESRCH;
4681 if (!p)
4682 goto out_unlock;
4683
4684 retval = security_task_getscheduler(p);
4685 if (retval)
4686 goto out_unlock;
4687
4688 if (task_has_rt_policy(p))
4689 lp.sched_priority = p->rt_priority;
4690 rcu_read_unlock();
4691
4692 /*
4693 * This one might sleep, we cannot do it with a spinlock held ...
4694 */
4695 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4696
4697 return retval;
4698
4699 out_unlock:
4700 rcu_read_unlock();
4701 return retval;
4702 }
4703
sched_read_attr(struct sched_attr __user * uattr,struct sched_attr * attr,unsigned int usize)4704 static int sched_read_attr(struct sched_attr __user *uattr,
4705 struct sched_attr *attr,
4706 unsigned int usize)
4707 {
4708 int ret;
4709
4710 if (!access_ok(VERIFY_WRITE, uattr, usize))
4711 return -EFAULT;
4712
4713 /*
4714 * If we're handed a smaller struct than we know of,
4715 * ensure all the unknown bits are 0 - i.e. old
4716 * user-space does not get uncomplete information.
4717 */
4718 if (usize < sizeof(*attr)) {
4719 unsigned char *addr;
4720 unsigned char *end;
4721
4722 addr = (void *)attr + usize;
4723 end = (void *)attr + sizeof(*attr);
4724
4725 for (; addr < end; addr++) {
4726 if (*addr)
4727 return -EFBIG;
4728 }
4729
4730 attr->size = usize;
4731 }
4732
4733 ret = copy_to_user(uattr, attr, attr->size);
4734 if (ret)
4735 return -EFAULT;
4736
4737 return 0;
4738 }
4739
4740 /**
4741 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4742 * @pid: the pid in question.
4743 * @uattr: structure containing the extended parameters.
4744 * @size: sizeof(attr) for fwd/bwd comp.
4745 * @flags: for future extension.
4746 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,size,unsigned int,flags)4747 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4748 unsigned int, size, unsigned int, flags)
4749 {
4750 struct sched_attr attr = {
4751 .size = sizeof(struct sched_attr),
4752 };
4753 struct task_struct *p;
4754 int retval;
4755
4756 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4757 size < SCHED_ATTR_SIZE_VER0 || flags)
4758 return -EINVAL;
4759
4760 rcu_read_lock();
4761 p = find_process_by_pid(pid);
4762 retval = -ESRCH;
4763 if (!p)
4764 goto out_unlock;
4765
4766 retval = security_task_getscheduler(p);
4767 if (retval)
4768 goto out_unlock;
4769
4770 attr.sched_policy = p->policy;
4771 if (p->sched_reset_on_fork)
4772 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4773 if (task_has_dl_policy(p))
4774 __getparam_dl(p, &attr);
4775 else if (task_has_rt_policy(p))
4776 attr.sched_priority = p->rt_priority;
4777 else
4778 attr.sched_nice = task_nice(p);
4779
4780 rcu_read_unlock();
4781
4782 retval = sched_read_attr(uattr, &attr, size);
4783 return retval;
4784
4785 out_unlock:
4786 rcu_read_unlock();
4787 return retval;
4788 }
4789
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)4790 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4791 {
4792 cpumask_var_t cpus_allowed, new_mask;
4793 struct task_struct *p;
4794 int retval;
4795
4796 rcu_read_lock();
4797
4798 p = find_process_by_pid(pid);
4799 if (!p) {
4800 rcu_read_unlock();
4801 return -ESRCH;
4802 }
4803
4804 /* Prevent p going away */
4805 get_task_struct(p);
4806 rcu_read_unlock();
4807
4808 if (p->flags & PF_NO_SETAFFINITY) {
4809 retval = -EINVAL;
4810 goto out_put_task;
4811 }
4812 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4813 retval = -ENOMEM;
4814 goto out_put_task;
4815 }
4816 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4817 retval = -ENOMEM;
4818 goto out_free_cpus_allowed;
4819 }
4820 retval = -EPERM;
4821 if (!check_same_owner(p)) {
4822 rcu_read_lock();
4823 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4824 rcu_read_unlock();
4825 goto out_free_new_mask;
4826 }
4827 rcu_read_unlock();
4828 }
4829
4830 retval = security_task_setscheduler(p);
4831 if (retval)
4832 goto out_free_new_mask;
4833
4834
4835 cpuset_cpus_allowed(p, cpus_allowed);
4836 cpumask_and(new_mask, in_mask, cpus_allowed);
4837
4838 /*
4839 * Since bandwidth control happens on root_domain basis,
4840 * if admission test is enabled, we only admit -deadline
4841 * tasks allowed to run on all the CPUs in the task's
4842 * root_domain.
4843 */
4844 #ifdef CONFIG_SMP
4845 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4846 rcu_read_lock();
4847 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4848 retval = -EBUSY;
4849 rcu_read_unlock();
4850 goto out_free_new_mask;
4851 }
4852 rcu_read_unlock();
4853 }
4854 #endif
4855 again:
4856 retval = __set_cpus_allowed_ptr(p, new_mask, true);
4857
4858 if (!retval) {
4859 cpuset_cpus_allowed(p, cpus_allowed);
4860 if (!cpumask_subset(new_mask, cpus_allowed)) {
4861 /*
4862 * We must have raced with a concurrent cpuset
4863 * update. Just reset the cpus_allowed to the
4864 * cpuset's cpus_allowed
4865 */
4866 cpumask_copy(new_mask, cpus_allowed);
4867 goto again;
4868 }
4869 }
4870 out_free_new_mask:
4871 free_cpumask_var(new_mask);
4872 out_free_cpus_allowed:
4873 free_cpumask_var(cpus_allowed);
4874 out_put_task:
4875 put_task_struct(p);
4876 return retval;
4877 }
4878
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)4879 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4880 struct cpumask *new_mask)
4881 {
4882 if (len < cpumask_size())
4883 cpumask_clear(new_mask);
4884 else if (len > cpumask_size())
4885 len = cpumask_size();
4886
4887 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4888 }
4889
4890 /**
4891 * sys_sched_setaffinity - set the cpu affinity of a process
4892 * @pid: pid of the process
4893 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4894 * @user_mask_ptr: user-space pointer to the new cpu mask
4895 *
4896 * Return: 0 on success. An error code otherwise.
4897 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)4898 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4899 unsigned long __user *, user_mask_ptr)
4900 {
4901 cpumask_var_t new_mask;
4902 int retval;
4903
4904 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4905 return -ENOMEM;
4906
4907 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4908 if (retval == 0)
4909 retval = sched_setaffinity(pid, new_mask);
4910 free_cpumask_var(new_mask);
4911 return retval;
4912 }
4913
sched_getaffinity(pid_t pid,struct cpumask * mask)4914 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4915 {
4916 struct task_struct *p;
4917 unsigned long flags;
4918 int retval;
4919
4920 rcu_read_lock();
4921
4922 retval = -ESRCH;
4923 p = find_process_by_pid(pid);
4924 if (!p)
4925 goto out_unlock;
4926
4927 retval = security_task_getscheduler(p);
4928 if (retval)
4929 goto out_unlock;
4930
4931 raw_spin_lock_irqsave(&p->pi_lock, flags);
4932 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4933 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4934
4935 out_unlock:
4936 rcu_read_unlock();
4937
4938 return retval;
4939 }
4940
4941 /**
4942 * sys_sched_getaffinity - get the cpu affinity of a process
4943 * @pid: pid of the process
4944 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4945 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4946 *
4947 * Return: size of CPU mask copied to user_mask_ptr on success. An
4948 * error code otherwise.
4949 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)4950 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4951 unsigned long __user *, user_mask_ptr)
4952 {
4953 int ret;
4954 cpumask_var_t mask;
4955
4956 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4957 return -EINVAL;
4958 if (len & (sizeof(unsigned long)-1))
4959 return -EINVAL;
4960
4961 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4962 return -ENOMEM;
4963
4964 ret = sched_getaffinity(pid, mask);
4965 if (ret == 0) {
4966 size_t retlen = min_t(size_t, len, cpumask_size());
4967
4968 if (copy_to_user(user_mask_ptr, mask, retlen))
4969 ret = -EFAULT;
4970 else
4971 ret = retlen;
4972 }
4973 free_cpumask_var(mask);
4974
4975 return ret;
4976 }
4977
4978 /**
4979 * sys_sched_yield - yield the current processor to other threads.
4980 *
4981 * This function yields the current CPU to other tasks. If there are no
4982 * other threads running on this CPU then this function will return.
4983 *
4984 * Return: 0.
4985 */
SYSCALL_DEFINE0(sched_yield)4986 SYSCALL_DEFINE0(sched_yield)
4987 {
4988 struct rq *rq = this_rq_lock();
4989
4990 schedstat_inc(rq->yld_count);
4991 current->sched_class->yield_task(rq);
4992
4993 /*
4994 * Since we are going to call schedule() anyway, there's
4995 * no need to preempt or enable interrupts:
4996 */
4997 __release(rq->lock);
4998 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4999 do_raw_spin_unlock(&rq->lock);
5000 sched_preempt_enable_no_resched();
5001
5002 schedule();
5003
5004 return 0;
5005 }
5006
5007 #ifndef CONFIG_PREEMPT
_cond_resched(void)5008 int __sched _cond_resched(void)
5009 {
5010 if (should_resched(0)) {
5011 preempt_schedule_common();
5012 return 1;
5013 }
5014 return 0;
5015 }
5016 EXPORT_SYMBOL(_cond_resched);
5017 #endif
5018
5019 /*
5020 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5021 * call schedule, and on return reacquire the lock.
5022 *
5023 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5024 * operations here to prevent schedule() from being called twice (once via
5025 * spin_unlock(), once by hand).
5026 */
__cond_resched_lock(spinlock_t * lock)5027 int __cond_resched_lock(spinlock_t *lock)
5028 {
5029 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5030 int ret = 0;
5031
5032 lockdep_assert_held(lock);
5033
5034 if (spin_needbreak(lock) || resched) {
5035 spin_unlock(lock);
5036 if (resched)
5037 preempt_schedule_common();
5038 else
5039 cpu_relax();
5040 ret = 1;
5041 spin_lock(lock);
5042 }
5043 return ret;
5044 }
5045 EXPORT_SYMBOL(__cond_resched_lock);
5046
__cond_resched_softirq(void)5047 int __sched __cond_resched_softirq(void)
5048 {
5049 BUG_ON(!in_softirq());
5050
5051 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
5052 local_bh_enable();
5053 preempt_schedule_common();
5054 local_bh_disable();
5055 return 1;
5056 }
5057 return 0;
5058 }
5059 EXPORT_SYMBOL(__cond_resched_softirq);
5060
5061 /**
5062 * yield - yield the current processor to other threads.
5063 *
5064 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5065 *
5066 * The scheduler is at all times free to pick the calling task as the most
5067 * eligible task to run, if removing the yield() call from your code breaks
5068 * it, its already broken.
5069 *
5070 * Typical broken usage is:
5071 *
5072 * while (!event)
5073 * yield();
5074 *
5075 * where one assumes that yield() will let 'the other' process run that will
5076 * make event true. If the current task is a SCHED_FIFO task that will never
5077 * happen. Never use yield() as a progress guarantee!!
5078 *
5079 * If you want to use yield() to wait for something, use wait_event().
5080 * If you want to use yield() to be 'nice' for others, use cond_resched().
5081 * If you still want to use yield(), do not!
5082 */
yield(void)5083 void __sched yield(void)
5084 {
5085 set_current_state(TASK_RUNNING);
5086 sys_sched_yield();
5087 }
5088 EXPORT_SYMBOL(yield);
5089
5090 /**
5091 * yield_to - yield the current processor to another thread in
5092 * your thread group, or accelerate that thread toward the
5093 * processor it's on.
5094 * @p: target task
5095 * @preempt: whether task preemption is allowed or not
5096 *
5097 * It's the caller's job to ensure that the target task struct
5098 * can't go away on us before we can do any checks.
5099 *
5100 * Return:
5101 * true (>0) if we indeed boosted the target task.
5102 * false (0) if we failed to boost the target.
5103 * -ESRCH if there's no task to yield to.
5104 */
yield_to(struct task_struct * p,bool preempt)5105 int __sched yield_to(struct task_struct *p, bool preempt)
5106 {
5107 struct task_struct *curr = current;
5108 struct rq *rq, *p_rq;
5109 unsigned long flags;
5110 int yielded = 0;
5111
5112 local_irq_save(flags);
5113 rq = this_rq();
5114
5115 again:
5116 p_rq = task_rq(p);
5117 /*
5118 * If we're the only runnable task on the rq and target rq also
5119 * has only one task, there's absolutely no point in yielding.
5120 */
5121 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5122 yielded = -ESRCH;
5123 goto out_irq;
5124 }
5125
5126 double_rq_lock(rq, p_rq);
5127 if (task_rq(p) != p_rq) {
5128 double_rq_unlock(rq, p_rq);
5129 goto again;
5130 }
5131
5132 if (!curr->sched_class->yield_to_task)
5133 goto out_unlock;
5134
5135 if (curr->sched_class != p->sched_class)
5136 goto out_unlock;
5137
5138 if (task_running(p_rq, p) || p->state)
5139 goto out_unlock;
5140
5141 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5142 if (yielded) {
5143 schedstat_inc(rq->yld_count);
5144 /*
5145 * Make p's CPU reschedule; pick_next_entity takes care of
5146 * fairness.
5147 */
5148 if (preempt && rq != p_rq)
5149 resched_curr(p_rq);
5150 }
5151
5152 out_unlock:
5153 double_rq_unlock(rq, p_rq);
5154 out_irq:
5155 local_irq_restore(flags);
5156
5157 if (yielded > 0)
5158 schedule();
5159
5160 return yielded;
5161 }
5162 EXPORT_SYMBOL_GPL(yield_to);
5163
5164 /*
5165 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5166 * that process accounting knows that this is a task in IO wait state.
5167 */
io_schedule_timeout(long timeout)5168 long __sched io_schedule_timeout(long timeout)
5169 {
5170 int old_iowait = current->in_iowait;
5171 struct rq *rq;
5172 long ret;
5173
5174 current->in_iowait = 1;
5175 blk_schedule_flush_plug(current);
5176
5177 delayacct_blkio_start();
5178 rq = raw_rq();
5179 atomic_inc(&rq->nr_iowait);
5180 ret = schedule_timeout(timeout);
5181 current->in_iowait = old_iowait;
5182 atomic_dec(&rq->nr_iowait);
5183 delayacct_blkio_end();
5184
5185 return ret;
5186 }
5187 EXPORT_SYMBOL(io_schedule_timeout);
5188
5189 /**
5190 * sys_sched_get_priority_max - return maximum RT priority.
5191 * @policy: scheduling class.
5192 *
5193 * Return: On success, this syscall returns the maximum
5194 * rt_priority that can be used by a given scheduling class.
5195 * On failure, a negative error code is returned.
5196 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)5197 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5198 {
5199 int ret = -EINVAL;
5200
5201 switch (policy) {
5202 case SCHED_FIFO:
5203 case SCHED_RR:
5204 ret = MAX_USER_RT_PRIO-1;
5205 break;
5206 case SCHED_DEADLINE:
5207 case SCHED_NORMAL:
5208 case SCHED_BATCH:
5209 case SCHED_IDLE:
5210 ret = 0;
5211 break;
5212 }
5213 return ret;
5214 }
5215
5216 /**
5217 * sys_sched_get_priority_min - return minimum RT priority.
5218 * @policy: scheduling class.
5219 *
5220 * Return: On success, this syscall returns the minimum
5221 * rt_priority that can be used by a given scheduling class.
5222 * On failure, a negative error code is returned.
5223 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)5224 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5225 {
5226 int ret = -EINVAL;
5227
5228 switch (policy) {
5229 case SCHED_FIFO:
5230 case SCHED_RR:
5231 ret = 1;
5232 break;
5233 case SCHED_DEADLINE:
5234 case SCHED_NORMAL:
5235 case SCHED_BATCH:
5236 case SCHED_IDLE:
5237 ret = 0;
5238 }
5239 return ret;
5240 }
5241
5242 /**
5243 * sys_sched_rr_get_interval - return the default timeslice of a process.
5244 * @pid: pid of the process.
5245 * @interval: userspace pointer to the timeslice value.
5246 *
5247 * this syscall writes the default timeslice value of a given process
5248 * into the user-space timespec buffer. A value of '0' means infinity.
5249 *
5250 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5251 * an error code.
5252 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct timespec __user *,interval)5253 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5254 struct timespec __user *, interval)
5255 {
5256 struct task_struct *p;
5257 unsigned int time_slice;
5258 struct rq_flags rf;
5259 struct timespec t;
5260 struct rq *rq;
5261 int retval;
5262
5263 if (pid < 0)
5264 return -EINVAL;
5265
5266 retval = -ESRCH;
5267 rcu_read_lock();
5268 p = find_process_by_pid(pid);
5269 if (!p)
5270 goto out_unlock;
5271
5272 retval = security_task_getscheduler(p);
5273 if (retval)
5274 goto out_unlock;
5275
5276 rq = task_rq_lock(p, &rf);
5277 time_slice = 0;
5278 if (p->sched_class->get_rr_interval)
5279 time_slice = p->sched_class->get_rr_interval(rq, p);
5280 task_rq_unlock(rq, p, &rf);
5281
5282 rcu_read_unlock();
5283 jiffies_to_timespec(time_slice, &t);
5284 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5285 return retval;
5286
5287 out_unlock:
5288 rcu_read_unlock();
5289 return retval;
5290 }
5291
5292 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5293
sched_show_task(struct task_struct * p)5294 void sched_show_task(struct task_struct *p)
5295 {
5296 unsigned long free = 0;
5297 int ppid;
5298 unsigned long state = p->state;
5299
5300 if (!try_get_task_stack(p))
5301 return;
5302 if (state)
5303 state = __ffs(state) + 1;
5304 printk(KERN_INFO "%-15.15s %c", p->comm,
5305 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5306 if (state == TASK_RUNNING)
5307 printk(KERN_CONT " running task ");
5308 #ifdef CONFIG_DEBUG_STACK_USAGE
5309 free = stack_not_used(p);
5310 #endif
5311 ppid = 0;
5312 rcu_read_lock();
5313 if (pid_alive(p))
5314 ppid = task_pid_nr(rcu_dereference(p->real_parent));
5315 rcu_read_unlock();
5316 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5317 task_pid_nr(p), ppid,
5318 (unsigned long)task_thread_info(p)->flags);
5319
5320 print_worker_info(KERN_INFO, p);
5321 show_stack(p, NULL);
5322 put_task_stack(p);
5323 }
5324
show_state_filter(unsigned long state_filter)5325 void show_state_filter(unsigned long state_filter)
5326 {
5327 struct task_struct *g, *p;
5328
5329 #if BITS_PER_LONG == 32
5330 printk(KERN_INFO
5331 " task PC stack pid father\n");
5332 #else
5333 printk(KERN_INFO
5334 " task PC stack pid father\n");
5335 #endif
5336 rcu_read_lock();
5337 for_each_process_thread(g, p) {
5338 /*
5339 * reset the NMI-timeout, listing all files on a slow
5340 * console might take a lot of time:
5341 * Also, reset softlockup watchdogs on all CPUs, because
5342 * another CPU might be blocked waiting for us to process
5343 * an IPI.
5344 */
5345 touch_nmi_watchdog();
5346 touch_all_softlockup_watchdogs();
5347 if (!state_filter || (p->state & state_filter))
5348 sched_show_task(p);
5349 }
5350
5351 #ifdef CONFIG_SCHED_DEBUG
5352 if (!state_filter)
5353 sysrq_sched_debug_show();
5354 #endif
5355 rcu_read_unlock();
5356 /*
5357 * Only show locks if all tasks are dumped:
5358 */
5359 if (!state_filter)
5360 debug_show_all_locks();
5361 }
5362
init_idle_bootup_task(struct task_struct * idle)5363 void init_idle_bootup_task(struct task_struct *idle)
5364 {
5365 idle->sched_class = &idle_sched_class;
5366 }
5367
5368 /**
5369 * init_idle - set up an idle thread for a given CPU
5370 * @idle: task in question
5371 * @cpu: cpu the idle task belongs to
5372 *
5373 * NOTE: this function does not set the idle thread's NEED_RESCHED
5374 * flag, to make booting more robust.
5375 */
init_idle(struct task_struct * idle,int cpu)5376 void init_idle(struct task_struct *idle, int cpu)
5377 {
5378 struct rq *rq = cpu_rq(cpu);
5379 unsigned long flags;
5380
5381 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5382 raw_spin_lock(&rq->lock);
5383
5384 __sched_fork(0, idle);
5385 idle->state = TASK_RUNNING;
5386 idle->se.exec_start = sched_clock();
5387
5388 kasan_unpoison_task_stack(idle);
5389
5390 #ifdef CONFIG_SMP
5391 /*
5392 * Its possible that init_idle() gets called multiple times on a task,
5393 * in that case do_set_cpus_allowed() will not do the right thing.
5394 *
5395 * And since this is boot we can forgo the serialization.
5396 */
5397 set_cpus_allowed_common(idle, cpumask_of(cpu));
5398 #endif
5399 /*
5400 * We're having a chicken and egg problem, even though we are
5401 * holding rq->lock, the cpu isn't yet set to this cpu so the
5402 * lockdep check in task_group() will fail.
5403 *
5404 * Similar case to sched_fork(). / Alternatively we could
5405 * use task_rq_lock() here and obtain the other rq->lock.
5406 *
5407 * Silence PROVE_RCU
5408 */
5409 rcu_read_lock();
5410 __set_task_cpu(idle, cpu);
5411 rcu_read_unlock();
5412
5413 rq->curr = rq->idle = idle;
5414 idle->on_rq = TASK_ON_RQ_QUEUED;
5415 #ifdef CONFIG_SMP
5416 idle->on_cpu = 1;
5417 #endif
5418 raw_spin_unlock(&rq->lock);
5419 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5420
5421 /* Set the preempt count _outside_ the spinlocks! */
5422 init_idle_preempt_count(idle, cpu);
5423
5424 /*
5425 * The idle tasks have their own, simple scheduling class:
5426 */
5427 idle->sched_class = &idle_sched_class;
5428 ftrace_graph_init_idle_task(idle, cpu);
5429 vtime_init_idle(idle, cpu);
5430 #ifdef CONFIG_SMP
5431 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5432 #endif
5433 }
5434
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)5435 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5436 const struct cpumask *trial)
5437 {
5438 int ret = 1, trial_cpus;
5439 struct dl_bw *cur_dl_b;
5440 unsigned long flags;
5441
5442 if (!cpumask_weight(cur))
5443 return ret;
5444
5445 rcu_read_lock_sched();
5446 cur_dl_b = dl_bw_of(cpumask_any(cur));
5447 trial_cpus = cpumask_weight(trial);
5448
5449 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5450 if (cur_dl_b->bw != -1 &&
5451 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5452 ret = 0;
5453 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5454 rcu_read_unlock_sched();
5455
5456 return ret;
5457 }
5458
task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)5459 int task_can_attach(struct task_struct *p,
5460 const struct cpumask *cs_cpus_allowed)
5461 {
5462 int ret = 0;
5463
5464 /*
5465 * Kthreads which disallow setaffinity shouldn't be moved
5466 * to a new cpuset; we don't want to change their cpu
5467 * affinity and isolating such threads by their set of
5468 * allowed nodes is unnecessary. Thus, cpusets are not
5469 * applicable for such threads. This prevents checking for
5470 * success of set_cpus_allowed_ptr() on all attached tasks
5471 * before cpus_allowed may be changed.
5472 */
5473 if (p->flags & PF_NO_SETAFFINITY) {
5474 ret = -EINVAL;
5475 goto out;
5476 }
5477
5478 #ifdef CONFIG_SMP
5479 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5480 cs_cpus_allowed)) {
5481 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5482 cs_cpus_allowed);
5483 struct dl_bw *dl_b;
5484 bool overflow;
5485 int cpus;
5486 unsigned long flags;
5487
5488 rcu_read_lock_sched();
5489 dl_b = dl_bw_of(dest_cpu);
5490 raw_spin_lock_irqsave(&dl_b->lock, flags);
5491 cpus = dl_bw_cpus(dest_cpu);
5492 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5493 if (overflow)
5494 ret = -EBUSY;
5495 else {
5496 /*
5497 * We reserve space for this task in the destination
5498 * root_domain, as we can't fail after this point.
5499 * We will free resources in the source root_domain
5500 * later on (see set_cpus_allowed_dl()).
5501 */
5502 __dl_add(dl_b, p->dl.dl_bw);
5503 }
5504 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5505 rcu_read_unlock_sched();
5506
5507 }
5508 #endif
5509 out:
5510 return ret;
5511 }
5512
5513 #ifdef CONFIG_SMP
5514
5515 static bool sched_smp_initialized __read_mostly;
5516
5517 #ifdef CONFIG_NUMA_BALANCING
5518 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)5519 int migrate_task_to(struct task_struct *p, int target_cpu)
5520 {
5521 struct migration_arg arg = { p, target_cpu };
5522 int curr_cpu = task_cpu(p);
5523
5524 if (curr_cpu == target_cpu)
5525 return 0;
5526
5527 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5528 return -EINVAL;
5529
5530 /* TODO: This is not properly updating schedstats */
5531
5532 trace_sched_move_numa(p, curr_cpu, target_cpu);
5533 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5534 }
5535
5536 /*
5537 * Requeue a task on a given node and accurately track the number of NUMA
5538 * tasks on the runqueues
5539 */
sched_setnuma(struct task_struct * p,int nid)5540 void sched_setnuma(struct task_struct *p, int nid)
5541 {
5542 bool queued, running;
5543 struct rq_flags rf;
5544 struct rq *rq;
5545
5546 rq = task_rq_lock(p, &rf);
5547 queued = task_on_rq_queued(p);
5548 running = task_current(rq, p);
5549
5550 if (queued)
5551 dequeue_task(rq, p, DEQUEUE_SAVE);
5552 if (running)
5553 put_prev_task(rq, p);
5554
5555 p->numa_preferred_nid = nid;
5556
5557 if (queued)
5558 enqueue_task(rq, p, ENQUEUE_RESTORE);
5559 if (running)
5560 set_curr_task(rq, p);
5561 task_rq_unlock(rq, p, &rf);
5562 }
5563 #endif /* CONFIG_NUMA_BALANCING */
5564
5565 #ifdef CONFIG_HOTPLUG_CPU
5566 /*
5567 * Ensures that the idle task is using init_mm right before its cpu goes
5568 * offline.
5569 */
idle_task_exit(void)5570 void idle_task_exit(void)
5571 {
5572 struct mm_struct *mm = current->active_mm;
5573
5574 BUG_ON(cpu_online(smp_processor_id()));
5575
5576 if (mm != &init_mm) {
5577 switch_mm(mm, &init_mm, current);
5578 finish_arch_post_lock_switch();
5579 }
5580 mmdrop(mm);
5581 }
5582
5583 /*
5584 * Since this CPU is going 'away' for a while, fold any nr_active delta
5585 * we might have. Assumes we're called after migrate_tasks() so that the
5586 * nr_active count is stable. We need to take the teardown thread which
5587 * is calling this into account, so we hand in adjust = 1 to the load
5588 * calculation.
5589 *
5590 * Also see the comment "Global load-average calculations".
5591 */
calc_load_migrate(struct rq * rq)5592 static void calc_load_migrate(struct rq *rq)
5593 {
5594 long delta = calc_load_fold_active(rq, 1);
5595 if (delta)
5596 atomic_long_add(delta, &calc_load_tasks);
5597 }
5598
put_prev_task_fake(struct rq * rq,struct task_struct * prev)5599 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5600 {
5601 }
5602
5603 static const struct sched_class fake_sched_class = {
5604 .put_prev_task = put_prev_task_fake,
5605 };
5606
5607 static struct task_struct fake_task = {
5608 /*
5609 * Avoid pull_{rt,dl}_task()
5610 */
5611 .prio = MAX_PRIO + 1,
5612 .sched_class = &fake_sched_class,
5613 };
5614
5615 /*
5616 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5617 * try_to_wake_up()->select_task_rq().
5618 *
5619 * Called with rq->lock held even though we'er in stop_machine() and
5620 * there's no concurrency possible, we hold the required locks anyway
5621 * because of lock validation efforts.
5622 */
migrate_tasks(struct rq * dead_rq)5623 static void migrate_tasks(struct rq *dead_rq)
5624 {
5625 struct rq *rq = dead_rq;
5626 struct task_struct *next, *stop = rq->stop;
5627 struct pin_cookie cookie;
5628 int dest_cpu;
5629
5630 /*
5631 * Fudge the rq selection such that the below task selection loop
5632 * doesn't get stuck on the currently eligible stop task.
5633 *
5634 * We're currently inside stop_machine() and the rq is either stuck
5635 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5636 * either way we should never end up calling schedule() until we're
5637 * done here.
5638 */
5639 rq->stop = NULL;
5640
5641 /*
5642 * put_prev_task() and pick_next_task() sched
5643 * class method both need to have an up-to-date
5644 * value of rq->clock[_task]
5645 */
5646 update_rq_clock(rq);
5647
5648 for (;;) {
5649 /*
5650 * There's this thread running, bail when that's the only
5651 * remaining thread.
5652 */
5653 if (rq->nr_running == 1)
5654 break;
5655
5656 /*
5657 * pick_next_task assumes pinned rq->lock.
5658 */
5659 cookie = lockdep_pin_lock(&rq->lock);
5660 next = pick_next_task(rq, &fake_task, cookie);
5661 BUG_ON(!next);
5662 next->sched_class->put_prev_task(rq, next);
5663
5664 /*
5665 * Rules for changing task_struct::cpus_allowed are holding
5666 * both pi_lock and rq->lock, such that holding either
5667 * stabilizes the mask.
5668 *
5669 * Drop rq->lock is not quite as disastrous as it usually is
5670 * because !cpu_active at this point, which means load-balance
5671 * will not interfere. Also, stop-machine.
5672 */
5673 lockdep_unpin_lock(&rq->lock, cookie);
5674 raw_spin_unlock(&rq->lock);
5675 raw_spin_lock(&next->pi_lock);
5676 raw_spin_lock(&rq->lock);
5677
5678 /*
5679 * Since we're inside stop-machine, _nothing_ should have
5680 * changed the task, WARN if weird stuff happened, because in
5681 * that case the above rq->lock drop is a fail too.
5682 */
5683 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5684 raw_spin_unlock(&next->pi_lock);
5685 continue;
5686 }
5687
5688 /* Find suitable destination for @next, with force if needed. */
5689 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5690
5691 rq = __migrate_task(rq, next, dest_cpu);
5692 if (rq != dead_rq) {
5693 raw_spin_unlock(&rq->lock);
5694 rq = dead_rq;
5695 raw_spin_lock(&rq->lock);
5696 }
5697 raw_spin_unlock(&next->pi_lock);
5698 }
5699
5700 rq->stop = stop;
5701 }
5702 #endif /* CONFIG_HOTPLUG_CPU */
5703
set_rq_online(struct rq * rq)5704 static void set_rq_online(struct rq *rq)
5705 {
5706 if (!rq->online) {
5707 const struct sched_class *class;
5708
5709 cpumask_set_cpu(rq->cpu, rq->rd->online);
5710 rq->online = 1;
5711
5712 for_each_class(class) {
5713 if (class->rq_online)
5714 class->rq_online(rq);
5715 }
5716 }
5717 }
5718
set_rq_offline(struct rq * rq)5719 static void set_rq_offline(struct rq *rq)
5720 {
5721 if (rq->online) {
5722 const struct sched_class *class;
5723
5724 for_each_class(class) {
5725 if (class->rq_offline)
5726 class->rq_offline(rq);
5727 }
5728
5729 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5730 rq->online = 0;
5731 }
5732 }
5733
set_cpu_rq_start_time(unsigned int cpu)5734 static void set_cpu_rq_start_time(unsigned int cpu)
5735 {
5736 struct rq *rq = cpu_rq(cpu);
5737
5738 rq->age_stamp = sched_clock_cpu(cpu);
5739 }
5740
5741 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5742
5743 #ifdef CONFIG_SCHED_DEBUG
5744
5745 static __read_mostly int sched_debug_enabled;
5746
sched_debug_setup(char * str)5747 static int __init sched_debug_setup(char *str)
5748 {
5749 sched_debug_enabled = 1;
5750
5751 return 0;
5752 }
5753 early_param("sched_debug", sched_debug_setup);
5754
sched_debug(void)5755 static inline bool sched_debug(void)
5756 {
5757 return sched_debug_enabled;
5758 }
5759
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)5760 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5761 struct cpumask *groupmask)
5762 {
5763 struct sched_group *group = sd->groups;
5764
5765 cpumask_clear(groupmask);
5766
5767 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5768
5769 if (!(sd->flags & SD_LOAD_BALANCE)) {
5770 printk("does not load-balance\n");
5771 return -1;
5772 }
5773
5774 printk(KERN_CONT "span %*pbl level %s\n",
5775 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5776
5777 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5778 printk(KERN_ERR "ERROR: domain->span does not contain "
5779 "CPU%d\n", cpu);
5780 }
5781 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5782 printk(KERN_ERR "ERROR: domain->groups does not contain"
5783 " CPU%d\n", cpu);
5784 }
5785
5786 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5787 do {
5788 if (!group) {
5789 printk("\n");
5790 printk(KERN_ERR "ERROR: group is NULL\n");
5791 break;
5792 }
5793
5794 if (!cpumask_weight(sched_group_cpus(group))) {
5795 printk(KERN_CONT "\n");
5796 printk(KERN_ERR "ERROR: empty group\n");
5797 break;
5798 }
5799
5800 if (!(sd->flags & SD_OVERLAP) &&
5801 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5802 printk(KERN_CONT "\n");
5803 printk(KERN_ERR "ERROR: repeated CPUs\n");
5804 break;
5805 }
5806
5807 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5808
5809 printk(KERN_CONT " %*pbl",
5810 cpumask_pr_args(sched_group_cpus(group)));
5811 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5812 printk(KERN_CONT " (cpu_capacity = %lu)",
5813 group->sgc->capacity);
5814 }
5815
5816 group = group->next;
5817 } while (group != sd->groups);
5818 printk(KERN_CONT "\n");
5819
5820 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5821 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5822
5823 if (sd->parent &&
5824 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5825 printk(KERN_ERR "ERROR: parent span is not a superset "
5826 "of domain->span\n");
5827 return 0;
5828 }
5829
sched_domain_debug(struct sched_domain * sd,int cpu)5830 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5831 {
5832 int level = 0;
5833
5834 if (!sched_debug_enabled)
5835 return;
5836
5837 if (!sd) {
5838 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5839 return;
5840 }
5841
5842 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5843
5844 for (;;) {
5845 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5846 break;
5847 level++;
5848 sd = sd->parent;
5849 if (!sd)
5850 break;
5851 }
5852 }
5853 #else /* !CONFIG_SCHED_DEBUG */
5854
5855 # define sched_debug_enabled 0
5856 # define sched_domain_debug(sd, cpu) do { } while (0)
sched_debug(void)5857 static inline bool sched_debug(void)
5858 {
5859 return false;
5860 }
5861 #endif /* CONFIG_SCHED_DEBUG */
5862
sd_degenerate(struct sched_domain * sd)5863 static int sd_degenerate(struct sched_domain *sd)
5864 {
5865 if (cpumask_weight(sched_domain_span(sd)) == 1) {
5866 if (sd->groups->sge)
5867 sd->flags &= ~SD_LOAD_BALANCE;
5868 else
5869 return 1;
5870 }
5871
5872 /* Following flags need at least 2 groups */
5873 if (sd->flags & (SD_LOAD_BALANCE |
5874 SD_BALANCE_NEWIDLE |
5875 SD_BALANCE_FORK |
5876 SD_BALANCE_EXEC |
5877 SD_SHARE_CPUCAPACITY |
5878 SD_ASYM_CPUCAPACITY |
5879 SD_SHARE_PKG_RESOURCES |
5880 SD_SHARE_POWERDOMAIN |
5881 SD_SHARE_CAP_STATES)) {
5882 if (sd->groups != sd->groups->next)
5883 return 0;
5884 }
5885
5886 /* Following flags don't use groups */
5887 if (sd->flags & (SD_WAKE_AFFINE))
5888 return 0;
5889
5890 return 1;
5891 }
5892
5893 static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)5894 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5895 {
5896 unsigned long cflags = sd->flags, pflags = parent->flags;
5897
5898 if (sd_degenerate(parent))
5899 return 1;
5900
5901 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5902 return 0;
5903
5904 /* Flags needing groups don't count if only 1 group in parent */
5905 if (parent->groups == parent->groups->next) {
5906 pflags &= ~(SD_LOAD_BALANCE |
5907 SD_BALANCE_NEWIDLE |
5908 SD_BALANCE_FORK |
5909 SD_BALANCE_EXEC |
5910 SD_ASYM_CPUCAPACITY |
5911 SD_SHARE_CPUCAPACITY |
5912 SD_SHARE_PKG_RESOURCES |
5913 SD_PREFER_SIBLING |
5914 SD_SHARE_POWERDOMAIN |
5915 SD_SHARE_CAP_STATES);
5916 if (parent->groups->sge) {
5917 parent->flags &= ~SD_LOAD_BALANCE;
5918 return 0;
5919 }
5920 if (nr_node_ids == 1)
5921 pflags &= ~SD_SERIALIZE;
5922 }
5923 if (~cflags & pflags)
5924 return 0;
5925
5926 return 1;
5927 }
5928
free_rootdomain(struct rcu_head * rcu)5929 static void free_rootdomain(struct rcu_head *rcu)
5930 {
5931 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5932
5933 cpupri_cleanup(&rd->cpupri);
5934 cpudl_cleanup(&rd->cpudl);
5935 free_cpumask_var(rd->dlo_mask);
5936 free_cpumask_var(rd->rto_mask);
5937 free_cpumask_var(rd->online);
5938 free_cpumask_var(rd->span);
5939 kfree(rd);
5940 }
5941
rq_attach_root(struct rq * rq,struct root_domain * rd)5942 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5943 {
5944 struct root_domain *old_rd = NULL;
5945 unsigned long flags;
5946
5947 raw_spin_lock_irqsave(&rq->lock, flags);
5948
5949 if (rq->rd) {
5950 old_rd = rq->rd;
5951
5952 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5953 set_rq_offline(rq);
5954
5955 cpumask_clear_cpu(rq->cpu, old_rd->span);
5956
5957 /*
5958 * If we dont want to free the old_rd yet then
5959 * set old_rd to NULL to skip the freeing later
5960 * in this function:
5961 */
5962 if (!atomic_dec_and_test(&old_rd->refcount))
5963 old_rd = NULL;
5964 }
5965
5966 atomic_inc(&rd->refcount);
5967 rq->rd = rd;
5968
5969 cpumask_set_cpu(rq->cpu, rd->span);
5970 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5971 set_rq_online(rq);
5972
5973 raw_spin_unlock_irqrestore(&rq->lock, flags);
5974
5975 if (old_rd)
5976 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5977 }
5978
sched_get_rd(struct root_domain * rd)5979 void sched_get_rd(struct root_domain *rd)
5980 {
5981 atomic_inc(&rd->refcount);
5982 }
5983
sched_put_rd(struct root_domain * rd)5984 void sched_put_rd(struct root_domain *rd)
5985 {
5986 if (!atomic_dec_and_test(&rd->refcount))
5987 return;
5988
5989 call_rcu_sched(&rd->rcu, free_rootdomain);
5990 }
5991
init_rootdomain(struct root_domain * rd)5992 static int init_rootdomain(struct root_domain *rd)
5993 {
5994 memset(rd, 0, sizeof(*rd));
5995
5996 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5997 goto out;
5998 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5999 goto free_span;
6000 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
6001 goto free_online;
6002 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6003 goto free_dlo_mask;
6004
6005 #ifdef HAVE_RT_PUSH_IPI
6006 rd->rto_cpu = -1;
6007 raw_spin_lock_init(&rd->rto_lock);
6008 init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
6009 #endif
6010
6011 init_dl_bw(&rd->dl_bw);
6012 if (cpudl_init(&rd->cpudl) != 0)
6013 goto free_dlo_mask;
6014
6015 if (cpupri_init(&rd->cpupri) != 0)
6016 goto free_rto_mask;
6017
6018 init_max_cpu_capacity(&rd->max_cpu_capacity);
6019
6020 rd->max_cap_orig_cpu = rd->min_cap_orig_cpu = -1;
6021
6022 return 0;
6023
6024 free_rto_mask:
6025 free_cpumask_var(rd->rto_mask);
6026 free_dlo_mask:
6027 free_cpumask_var(rd->dlo_mask);
6028 free_online:
6029 free_cpumask_var(rd->online);
6030 free_span:
6031 free_cpumask_var(rd->span);
6032 out:
6033 return -ENOMEM;
6034 }
6035
6036 /*
6037 * By default the system creates a single root-domain with all cpus as
6038 * members (mimicking the global state we have today).
6039 */
6040 struct root_domain def_root_domain;
6041
init_defrootdomain(void)6042 static void init_defrootdomain(void)
6043 {
6044 init_rootdomain(&def_root_domain);
6045
6046 atomic_set(&def_root_domain.refcount, 1);
6047 }
6048
alloc_rootdomain(void)6049 static struct root_domain *alloc_rootdomain(void)
6050 {
6051 struct root_domain *rd;
6052
6053 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6054 if (!rd)
6055 return NULL;
6056
6057 if (init_rootdomain(rd) != 0) {
6058 kfree(rd);
6059 return NULL;
6060 }
6061
6062 return rd;
6063 }
6064
free_sched_groups(struct sched_group * sg,int free_sgc)6065 static void free_sched_groups(struct sched_group *sg, int free_sgc)
6066 {
6067 struct sched_group *tmp, *first;
6068
6069 if (!sg)
6070 return;
6071
6072 first = sg;
6073 do {
6074 tmp = sg->next;
6075
6076 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
6077 kfree(sg->sgc);
6078
6079 kfree(sg);
6080 sg = tmp;
6081 } while (sg != first);
6082 }
6083
destroy_sched_domain(struct sched_domain * sd)6084 static void destroy_sched_domain(struct sched_domain *sd)
6085 {
6086 /*
6087 * If its an overlapping domain it has private groups, iterate and
6088 * nuke them all.
6089 */
6090 if (sd->flags & SD_OVERLAP) {
6091 free_sched_groups(sd->groups, 1);
6092 } else if (atomic_dec_and_test(&sd->groups->ref)) {
6093 kfree(sd->groups->sgc);
6094 kfree(sd->groups);
6095 }
6096 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
6097 kfree(sd->shared);
6098 kfree(sd);
6099 }
6100
destroy_sched_domains_rcu(struct rcu_head * rcu)6101 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
6102 {
6103 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6104
6105 while (sd) {
6106 struct sched_domain *parent = sd->parent;
6107 destroy_sched_domain(sd);
6108 sd = parent;
6109 }
6110 }
6111
destroy_sched_domains(struct sched_domain * sd)6112 static void destroy_sched_domains(struct sched_domain *sd)
6113 {
6114 if (sd)
6115 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
6116 }
6117
6118 /*
6119 * Keep a special pointer to the highest sched_domain that has
6120 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6121 * allows us to avoid some pointer chasing select_idle_sibling().
6122 *
6123 * Also keep a unique ID per domain (we use the first cpu number in
6124 * the cpumask of the domain), this allows us to quickly tell if
6125 * two cpus are in the same cache domain, see cpus_share_cache().
6126 */
6127 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6128 DEFINE_PER_CPU(int, sd_llc_size);
6129 DEFINE_PER_CPU(int, sd_llc_id);
6130 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
6131 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6132 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6133 DEFINE_PER_CPU(struct sched_domain *, sd_ea);
6134 DEFINE_PER_CPU(struct sched_domain *, sd_scs);
6135
update_top_cache_domain(int cpu)6136 static void update_top_cache_domain(int cpu)
6137 {
6138 struct sched_domain_shared *sds = NULL;
6139 struct sched_domain *sd;
6140 struct sched_domain *ea_sd = NULL;
6141 int id = cpu;
6142 int size = 1;
6143
6144 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6145 if (sd) {
6146 id = cpumask_first(sched_domain_span(sd));
6147 size = cpumask_weight(sched_domain_span(sd));
6148 sds = sd->shared;
6149 }
6150
6151 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6152 per_cpu(sd_llc_size, cpu) = size;
6153 per_cpu(sd_llc_id, cpu) = id;
6154 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
6155
6156 sd = lowest_flag_domain(cpu, SD_NUMA);
6157 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6158
6159 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6160 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6161
6162 for_each_domain(cpu, sd) {
6163 if (sd->groups->sge)
6164 ea_sd = sd;
6165 else
6166 break;
6167 }
6168 rcu_assign_pointer(per_cpu(sd_ea, cpu), ea_sd);
6169
6170 sd = highest_flag_domain(cpu, SD_SHARE_CAP_STATES);
6171 rcu_assign_pointer(per_cpu(sd_scs, cpu), sd);
6172 }
6173
6174 /*
6175 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6176 * hold the hotplug lock.
6177 */
6178 static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)6179 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6180 {
6181 struct rq *rq = cpu_rq(cpu);
6182 struct sched_domain *tmp;
6183
6184 /* Remove the sched domains which do not contribute to scheduling. */
6185 for (tmp = sd; tmp; ) {
6186 struct sched_domain *parent = tmp->parent;
6187 if (!parent)
6188 break;
6189
6190 if (sd_parent_degenerate(tmp, parent)) {
6191 tmp->parent = parent->parent;
6192 if (parent->parent)
6193 parent->parent->child = tmp;
6194 /*
6195 * Transfer SD_PREFER_SIBLING down in case of a
6196 * degenerate parent; the spans match for this
6197 * so the property transfers.
6198 */
6199 if (parent->flags & SD_PREFER_SIBLING)
6200 tmp->flags |= SD_PREFER_SIBLING;
6201 destroy_sched_domain(parent);
6202 } else
6203 tmp = tmp->parent;
6204 }
6205
6206 if (sd && sd_degenerate(sd)) {
6207 tmp = sd;
6208 sd = sd->parent;
6209 destroy_sched_domain(tmp);
6210 if (sd)
6211 sd->child = NULL;
6212 }
6213
6214 sched_domain_debug(sd, cpu);
6215
6216 rq_attach_root(rq, rd);
6217 tmp = rq->sd;
6218 rcu_assign_pointer(rq->sd, sd);
6219 destroy_sched_domains(tmp);
6220
6221 update_top_cache_domain(cpu);
6222 }
6223
6224 /* Setup the mask of cpus configured for isolated domains */
isolated_cpu_setup(char * str)6225 static int __init isolated_cpu_setup(char *str)
6226 {
6227 int ret;
6228
6229 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6230 ret = cpulist_parse(str, cpu_isolated_map);
6231 if (ret) {
6232 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6233 return 0;
6234 }
6235 return 1;
6236 }
6237 __setup("isolcpus=", isolated_cpu_setup);
6238
6239 struct s_data {
6240 struct sched_domain ** __percpu sd;
6241 struct root_domain *rd;
6242 };
6243
6244 enum s_alloc {
6245 sa_rootdomain,
6246 sa_sd,
6247 sa_sd_storage,
6248 sa_none,
6249 };
6250
6251 /*
6252 * Build an iteration mask that can exclude certain CPUs from the upwards
6253 * domain traversal.
6254 *
6255 * Only CPUs that can arrive at this group should be considered to continue
6256 * balancing.
6257 *
6258 * Asymmetric node setups can result in situations where the domain tree is of
6259 * unequal depth, make sure to skip domains that already cover the entire
6260 * range.
6261 *
6262 * In that case build_sched_domains() will have terminated the iteration early
6263 * and our sibling sd spans will be empty. Domains should always include the
6264 * cpu they're built on, so check that.
6265 *
6266 */
build_group_mask(struct sched_domain * sd,struct sched_group * sg)6267 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6268 {
6269 const struct cpumask *sg_span = sched_group_cpus(sg);
6270 struct sd_data *sdd = sd->private;
6271 struct sched_domain *sibling;
6272 int i;
6273
6274 for_each_cpu(i, sg_span) {
6275 sibling = *per_cpu_ptr(sdd->sd, i);
6276
6277 /*
6278 * Can happen in the asymmetric case, where these siblings are
6279 * unused. The mask will not be empty because those CPUs that
6280 * do have the top domain _should_ span the domain.
6281 */
6282 if (!sibling->child)
6283 continue;
6284
6285 /* If we would not end up here, we can't continue from here */
6286 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
6287 continue;
6288
6289 cpumask_set_cpu(i, sched_group_mask(sg));
6290 }
6291
6292 /* We must not have empty masks here */
6293 WARN_ON_ONCE(cpumask_empty(sched_group_mask(sg)));
6294 }
6295
6296 /*
6297 * Return the canonical balance cpu for this group, this is the first cpu
6298 * of this group that's also in the iteration mask.
6299 */
group_balance_cpu(struct sched_group * sg)6300 int group_balance_cpu(struct sched_group *sg)
6301 {
6302 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6303 }
6304
6305 static int
build_overlap_sched_groups(struct sched_domain * sd,int cpu)6306 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6307 {
6308 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6309 const struct cpumask *span = sched_domain_span(sd);
6310 struct cpumask *covered = sched_domains_tmpmask;
6311 struct sd_data *sdd = sd->private;
6312 struct sched_domain *sibling;
6313 int i;
6314
6315 cpumask_clear(covered);
6316
6317 for_each_cpu_wrap(i, span, cpu) {
6318 struct cpumask *sg_span;
6319
6320 if (cpumask_test_cpu(i, covered))
6321 continue;
6322
6323 sibling = *per_cpu_ptr(sdd->sd, i);
6324
6325 /* See the comment near build_group_mask(). */
6326 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6327 continue;
6328
6329 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6330 GFP_KERNEL, cpu_to_node(cpu));
6331
6332 if (!sg)
6333 goto fail;
6334
6335 sg_span = sched_group_cpus(sg);
6336 if (sibling->child)
6337 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6338 else
6339 cpumask_set_cpu(i, sg_span);
6340
6341 cpumask_or(covered, covered, sg_span);
6342
6343 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6344 if (atomic_inc_return(&sg->sgc->ref) == 1)
6345 build_group_mask(sd, sg);
6346
6347 /*
6348 * Initialize sgc->capacity such that even if we mess up the
6349 * domains and no possible iteration will get us here, we won't
6350 * die on a /0 trap.
6351 */
6352 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6353 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
6354 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
6355
6356 /*
6357 * Make sure the first group of this domain contains the
6358 * canonical balance cpu. Otherwise the sched_domain iteration
6359 * breaks. See update_sg_lb_stats().
6360 */
6361 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6362 group_balance_cpu(sg) == cpu)
6363 groups = sg;
6364
6365 if (!first)
6366 first = sg;
6367 if (last)
6368 last->next = sg;
6369 last = sg;
6370 last->next = first;
6371 }
6372 sd->groups = groups;
6373
6374 return 0;
6375
6376 fail:
6377 free_sched_groups(first, 0);
6378
6379 return -ENOMEM;
6380 }
6381
get_group(int cpu,struct sd_data * sdd,struct sched_group ** sg)6382 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6383 {
6384 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6385 struct sched_domain *child = sd->child;
6386
6387 if (child)
6388 cpu = cpumask_first(sched_domain_span(child));
6389
6390 if (sg) {
6391 *sg = *per_cpu_ptr(sdd->sg, cpu);
6392 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6393 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6394 }
6395
6396 return cpu;
6397 }
6398
6399 /*
6400 * build_sched_groups will build a circular linked list of the groups
6401 * covered by the given span, and will set each group's ->cpumask correctly,
6402 * and ->cpu_capacity to 0.
6403 *
6404 * Assumes the sched_domain tree is fully constructed
6405 */
6406 static int
build_sched_groups(struct sched_domain * sd,int cpu)6407 build_sched_groups(struct sched_domain *sd, int cpu)
6408 {
6409 struct sched_group *first = NULL, *last = NULL;
6410 struct sd_data *sdd = sd->private;
6411 const struct cpumask *span = sched_domain_span(sd);
6412 struct cpumask *covered;
6413 int i;
6414
6415 get_group(cpu, sdd, &sd->groups);
6416 atomic_inc(&sd->groups->ref);
6417
6418 if (cpu != cpumask_first(span))
6419 return 0;
6420
6421 lockdep_assert_held(&sched_domains_mutex);
6422 covered = sched_domains_tmpmask;
6423
6424 cpumask_clear(covered);
6425
6426 for_each_cpu(i, span) {
6427 struct sched_group *sg;
6428 int group, j;
6429
6430 if (cpumask_test_cpu(i, covered))
6431 continue;
6432
6433 group = get_group(i, sdd, &sg);
6434 cpumask_setall(sched_group_mask(sg));
6435
6436 for_each_cpu(j, span) {
6437 if (get_group(j, sdd, NULL) != group)
6438 continue;
6439
6440 cpumask_set_cpu(j, covered);
6441 cpumask_set_cpu(j, sched_group_cpus(sg));
6442 }
6443
6444 if (!first)
6445 first = sg;
6446 if (last)
6447 last->next = sg;
6448 last = sg;
6449 }
6450 last->next = first;
6451
6452 return 0;
6453 }
6454
6455 /*
6456 * Initialize sched groups cpu_capacity.
6457 *
6458 * cpu_capacity indicates the capacity of sched group, which is used while
6459 * distributing the load between different sched groups in a sched domain.
6460 * Typically cpu_capacity for all the groups in a sched domain will be same
6461 * unless there are asymmetries in the topology. If there are asymmetries,
6462 * group having more cpu_capacity will pickup more load compared to the
6463 * group having less cpu_capacity.
6464 */
init_sched_groups_capacity(int cpu,struct sched_domain * sd)6465 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6466 {
6467 struct sched_group *sg = sd->groups;
6468
6469 WARN_ON(!sg);
6470
6471 do {
6472 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6473 sg = sg->next;
6474 } while (sg != sd->groups);
6475
6476 if (cpu != group_balance_cpu(sg))
6477 return;
6478
6479 update_group_capacity(sd, cpu);
6480 }
6481
6482 /*
6483 * Check that the per-cpu provided sd energy data is consistent for all cpus
6484 * within the mask.
6485 */
check_sched_energy_data(int cpu,sched_domain_energy_f fn,const struct cpumask * cpumask)6486 static inline void check_sched_energy_data(int cpu, sched_domain_energy_f fn,
6487 const struct cpumask *cpumask)
6488 {
6489 const struct sched_group_energy * const sge = fn(cpu);
6490 struct cpumask mask;
6491 int i;
6492
6493 if (cpumask_weight(cpumask) <= 1)
6494 return;
6495
6496 cpumask_xor(&mask, cpumask, get_cpu_mask(cpu));
6497
6498 for_each_cpu(i, &mask) {
6499 const struct sched_group_energy * const e = fn(i);
6500 int y;
6501
6502 BUG_ON(e->nr_idle_states != sge->nr_idle_states);
6503
6504 for (y = 0; y < (e->nr_idle_states); y++) {
6505 BUG_ON(e->idle_states[y].power !=
6506 sge->idle_states[y].power);
6507 }
6508
6509 BUG_ON(e->nr_cap_states != sge->nr_cap_states);
6510
6511 for (y = 0; y < (e->nr_cap_states); y++) {
6512 BUG_ON(e->cap_states[y].cap != sge->cap_states[y].cap);
6513 BUG_ON(e->cap_states[y].power !=
6514 sge->cap_states[y].power);
6515 }
6516 }
6517 }
6518
init_sched_energy(int cpu,struct sched_domain * sd,sched_domain_energy_f fn)6519 static void init_sched_energy(int cpu, struct sched_domain *sd,
6520 sched_domain_energy_f fn)
6521 {
6522 if (!(fn && fn(cpu)))
6523 return;
6524
6525 if (cpu != group_balance_cpu(sd->groups))
6526 return;
6527
6528 if (sd->child && !sd->child->groups->sge) {
6529 pr_err("BUG: EAS setup broken for CPU%d\n", cpu);
6530 #ifdef CONFIG_SCHED_DEBUG
6531 pr_err(" energy data on %s but not on %s domain\n",
6532 sd->name, sd->child->name);
6533 #endif
6534 return;
6535 }
6536
6537 check_sched_energy_data(cpu, fn, sched_group_cpus(sd->groups));
6538
6539 sd->groups->sge = fn(cpu);
6540 }
6541
6542 /*
6543 * Initializers for schedule domains
6544 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6545 */
6546
6547 static int default_relax_domain_level = -1;
6548 int sched_domain_level_max;
6549
setup_relax_domain_level(char * str)6550 static int __init setup_relax_domain_level(char *str)
6551 {
6552 if (kstrtoint(str, 0, &default_relax_domain_level))
6553 pr_warn("Unable to set relax_domain_level\n");
6554
6555 return 1;
6556 }
6557 __setup("relax_domain_level=", setup_relax_domain_level);
6558
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)6559 static void set_domain_attribute(struct sched_domain *sd,
6560 struct sched_domain_attr *attr)
6561 {
6562 int request;
6563
6564 if (!attr || attr->relax_domain_level < 0) {
6565 if (default_relax_domain_level < 0)
6566 return;
6567 else
6568 request = default_relax_domain_level;
6569 } else
6570 request = attr->relax_domain_level;
6571 if (request < sd->level) {
6572 /* turn off idle balance on this domain */
6573 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6574 } else {
6575 /* turn on idle balance on this domain */
6576 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6577 }
6578 }
6579
6580 static void __sdt_free(const struct cpumask *cpu_map);
6581 static int __sdt_alloc(const struct cpumask *cpu_map);
6582
__free_domain_allocs(struct s_data * d,enum s_alloc what,const struct cpumask * cpu_map)6583 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6584 const struct cpumask *cpu_map)
6585 {
6586 switch (what) {
6587 case sa_rootdomain:
6588 if (!atomic_read(&d->rd->refcount))
6589 free_rootdomain(&d->rd->rcu); /* fall through */
6590 case sa_sd:
6591 free_percpu(d->sd); /* fall through */
6592 case sa_sd_storage:
6593 __sdt_free(cpu_map); /* fall through */
6594 case sa_none:
6595 break;
6596 }
6597 }
6598
__visit_domain_allocation_hell(struct s_data * d,const struct cpumask * cpu_map)6599 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6600 const struct cpumask *cpu_map)
6601 {
6602 memset(d, 0, sizeof(*d));
6603
6604 if (__sdt_alloc(cpu_map))
6605 return sa_sd_storage;
6606 d->sd = alloc_percpu(struct sched_domain *);
6607 if (!d->sd)
6608 return sa_sd_storage;
6609 d->rd = alloc_rootdomain();
6610 if (!d->rd)
6611 return sa_sd;
6612 return sa_rootdomain;
6613 }
6614
6615 /*
6616 * NULL the sd_data elements we've used to build the sched_domain and
6617 * sched_group structure so that the subsequent __free_domain_allocs()
6618 * will not free the data we're using.
6619 */
claim_allocations(int cpu,struct sched_domain * sd)6620 static void claim_allocations(int cpu, struct sched_domain *sd)
6621 {
6622 struct sd_data *sdd = sd->private;
6623
6624 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6625 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6626
6627 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
6628 *per_cpu_ptr(sdd->sds, cpu) = NULL;
6629
6630 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6631 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6632
6633 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6634 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6635 }
6636
6637 #ifdef CONFIG_NUMA
6638 static int sched_domains_numa_levels;
6639 enum numa_topology_type sched_numa_topology_type;
6640 static int *sched_domains_numa_distance;
6641 int sched_max_numa_distance;
6642 static struct cpumask ***sched_domains_numa_masks;
6643 static int sched_domains_curr_level;
6644 #endif
6645
6646 /*
6647 * SD_flags allowed in topology descriptions.
6648 *
6649 * These flags are purely descriptive of the topology and do not prescribe
6650 * behaviour. Behaviour is artificial and mapped in the below sd_init()
6651 * function:
6652 *
6653 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6654 * SD_SHARE_PKG_RESOURCES - describes shared caches
6655 * SD_NUMA - describes NUMA topologies
6656 * SD_SHARE_POWERDOMAIN - describes shared power domain
6657 * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies
6658 * SD_SHARE_CAP_STATES - describes shared capacity states
6659 *
6660 * Odd one out, which beside describing the topology has a quirk also
6661 * prescribes the desired behaviour that goes along with it:
6662 *
6663 * SD_ASYM_PACKING - describes SMT quirks
6664 */
6665 #define TOPOLOGY_SD_FLAGS \
6666 (SD_SHARE_CPUCAPACITY | \
6667 SD_SHARE_PKG_RESOURCES | \
6668 SD_NUMA | \
6669 SD_ASYM_PACKING | \
6670 SD_ASYM_CPUCAPACITY | \
6671 SD_SHARE_POWERDOMAIN | \
6672 SD_SHARE_CAP_STATES)
6673
6674 static struct sched_domain *
sd_init(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain * child,int cpu)6675 sd_init(struct sched_domain_topology_level *tl,
6676 const struct cpumask *cpu_map,
6677 struct sched_domain *child, int cpu)
6678 {
6679 struct sd_data *sdd = &tl->data;
6680 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6681 int sd_id, sd_weight, sd_flags = 0;
6682
6683 #ifdef CONFIG_NUMA
6684 /*
6685 * Ugly hack to pass state to sd_numa_mask()...
6686 */
6687 sched_domains_curr_level = tl->numa_level;
6688 #endif
6689
6690 sd_weight = cpumask_weight(tl->mask(cpu));
6691
6692 if (tl->sd_flags)
6693 sd_flags = (*tl->sd_flags)();
6694 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6695 "wrong sd_flags in topology description\n"))
6696 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6697
6698 *sd = (struct sched_domain){
6699 .min_interval = sd_weight,
6700 .max_interval = 2*sd_weight,
6701 .busy_factor = 32,
6702 .imbalance_pct = 125,
6703
6704 .cache_nice_tries = 0,
6705 .busy_idx = 0,
6706 .idle_idx = 0,
6707 .newidle_idx = 0,
6708 .wake_idx = 0,
6709 .forkexec_idx = 0,
6710
6711 .flags = 1*SD_LOAD_BALANCE
6712 | 1*SD_BALANCE_NEWIDLE
6713 | 1*SD_BALANCE_EXEC
6714 | 1*SD_BALANCE_FORK
6715 | 0*SD_BALANCE_WAKE
6716 | 1*SD_WAKE_AFFINE
6717 | 0*SD_SHARE_CPUCAPACITY
6718 | 0*SD_SHARE_PKG_RESOURCES
6719 | 0*SD_SERIALIZE
6720 | 0*SD_PREFER_SIBLING
6721 | 0*SD_NUMA
6722 | sd_flags
6723 ,
6724
6725 .last_balance = jiffies,
6726 .balance_interval = sd_weight,
6727 .smt_gain = 0,
6728 .max_newidle_lb_cost = 0,
6729 .next_decay_max_lb_cost = jiffies,
6730 .child = child,
6731 #ifdef CONFIG_SCHED_DEBUG
6732 .name = tl->name,
6733 #endif
6734 };
6735
6736 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6737 sd_id = cpumask_first(sched_domain_span(sd));
6738
6739 /*
6740 * Convert topological properties into behaviour.
6741 */
6742
6743 if (sd->flags & SD_ASYM_CPUCAPACITY) {
6744 struct sched_domain *t = sd;
6745
6746 for_each_lower_domain(t)
6747 t->flags |= SD_BALANCE_WAKE;
6748 }
6749
6750 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6751 sd->flags |= SD_PREFER_SIBLING;
6752 sd->imbalance_pct = 110;
6753 sd->smt_gain = 1178; /* ~15% */
6754
6755 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6756 sd->imbalance_pct = 117;
6757 sd->cache_nice_tries = 1;
6758 sd->busy_idx = 2;
6759
6760 #ifdef CONFIG_NUMA
6761 } else if (sd->flags & SD_NUMA) {
6762 sd->cache_nice_tries = 2;
6763 sd->busy_idx = 3;
6764 sd->idle_idx = 2;
6765
6766 sd->flags |= SD_SERIALIZE;
6767 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6768 sd->flags &= ~(SD_BALANCE_EXEC |
6769 SD_BALANCE_FORK |
6770 SD_WAKE_AFFINE);
6771 }
6772
6773 #endif
6774 } else {
6775 sd->flags |= SD_PREFER_SIBLING;
6776 sd->cache_nice_tries = 1;
6777 sd->busy_idx = 2;
6778 sd->idle_idx = 1;
6779 }
6780
6781 /*
6782 * For all levels sharing cache; connect a sched_domain_shared
6783 * instance.
6784 */
6785 if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6786 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
6787 atomic_inc(&sd->shared->ref);
6788 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
6789 }
6790
6791 sd->private = sdd;
6792
6793 return sd;
6794 }
6795
6796 /*
6797 * Topology list, bottom-up.
6798 */
6799 static struct sched_domain_topology_level default_topology[] = {
6800 #ifdef CONFIG_SCHED_SMT
6801 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6802 #endif
6803 #ifdef CONFIG_SCHED_MC
6804 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6805 #endif
6806 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6807 { NULL, },
6808 };
6809
6810 static struct sched_domain_topology_level *sched_domain_topology =
6811 default_topology;
6812
6813 #define for_each_sd_topology(tl) \
6814 for (tl = sched_domain_topology; tl->mask; tl++)
6815
set_sched_topology(struct sched_domain_topology_level * tl)6816 void set_sched_topology(struct sched_domain_topology_level *tl)
6817 {
6818 if (WARN_ON_ONCE(sched_smp_initialized))
6819 return;
6820
6821 sched_domain_topology = tl;
6822 }
6823
6824 #ifdef CONFIG_NUMA
6825
sd_numa_mask(int cpu)6826 static const struct cpumask *sd_numa_mask(int cpu)
6827 {
6828 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6829 }
6830
sched_numa_warn(const char * str)6831 static void sched_numa_warn(const char *str)
6832 {
6833 static int done = false;
6834 int i,j;
6835
6836 if (done)
6837 return;
6838
6839 done = true;
6840
6841 printk(KERN_WARNING "ERROR: %s\n\n", str);
6842
6843 for (i = 0; i < nr_node_ids; i++) {
6844 printk(KERN_WARNING " ");
6845 for (j = 0; j < nr_node_ids; j++)
6846 printk(KERN_CONT "%02d ", node_distance(i,j));
6847 printk(KERN_CONT "\n");
6848 }
6849 printk(KERN_WARNING "\n");
6850 }
6851
find_numa_distance(int distance)6852 bool find_numa_distance(int distance)
6853 {
6854 int i;
6855
6856 if (distance == node_distance(0, 0))
6857 return true;
6858
6859 for (i = 0; i < sched_domains_numa_levels; i++) {
6860 if (sched_domains_numa_distance[i] == distance)
6861 return true;
6862 }
6863
6864 return false;
6865 }
6866
6867 /*
6868 * A system can have three types of NUMA topology:
6869 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6870 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6871 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6872 *
6873 * The difference between a glueless mesh topology and a backplane
6874 * topology lies in whether communication between not directly
6875 * connected nodes goes through intermediary nodes (where programs
6876 * could run), or through backplane controllers. This affects
6877 * placement of programs.
6878 *
6879 * The type of topology can be discerned with the following tests:
6880 * - If the maximum distance between any nodes is 1 hop, the system
6881 * is directly connected.
6882 * - If for two nodes A and B, located N > 1 hops away from each other,
6883 * there is an intermediary node C, which is < N hops away from both
6884 * nodes A and B, the system is a glueless mesh.
6885 */
init_numa_topology_type(void)6886 static void init_numa_topology_type(void)
6887 {
6888 int a, b, c, n;
6889
6890 n = sched_max_numa_distance;
6891
6892 if (sched_domains_numa_levels <= 1) {
6893 sched_numa_topology_type = NUMA_DIRECT;
6894 return;
6895 }
6896
6897 for_each_online_node(a) {
6898 for_each_online_node(b) {
6899 /* Find two nodes furthest removed from each other. */
6900 if (node_distance(a, b) < n)
6901 continue;
6902
6903 /* Is there an intermediary node between a and b? */
6904 for_each_online_node(c) {
6905 if (node_distance(a, c) < n &&
6906 node_distance(b, c) < n) {
6907 sched_numa_topology_type =
6908 NUMA_GLUELESS_MESH;
6909 return;
6910 }
6911 }
6912
6913 sched_numa_topology_type = NUMA_BACKPLANE;
6914 return;
6915 }
6916 }
6917 }
6918
sched_init_numa(void)6919 static void sched_init_numa(void)
6920 {
6921 int next_distance, curr_distance = node_distance(0, 0);
6922 struct sched_domain_topology_level *tl;
6923 int level = 0;
6924 int i, j, k;
6925
6926 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6927 if (!sched_domains_numa_distance)
6928 return;
6929
6930 /*
6931 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6932 * unique distances in the node_distance() table.
6933 *
6934 * Assumes node_distance(0,j) includes all distances in
6935 * node_distance(i,j) in order to avoid cubic time.
6936 */
6937 next_distance = curr_distance;
6938 for (i = 0; i < nr_node_ids; i++) {
6939 for (j = 0; j < nr_node_ids; j++) {
6940 for (k = 0; k < nr_node_ids; k++) {
6941 int distance = node_distance(i, k);
6942
6943 if (distance > curr_distance &&
6944 (distance < next_distance ||
6945 next_distance == curr_distance))
6946 next_distance = distance;
6947
6948 /*
6949 * While not a strong assumption it would be nice to know
6950 * about cases where if node A is connected to B, B is not
6951 * equally connected to A.
6952 */
6953 if (sched_debug() && node_distance(k, i) != distance)
6954 sched_numa_warn("Node-distance not symmetric");
6955
6956 if (sched_debug() && i && !find_numa_distance(distance))
6957 sched_numa_warn("Node-0 not representative");
6958 }
6959 if (next_distance != curr_distance) {
6960 sched_domains_numa_distance[level++] = next_distance;
6961 sched_domains_numa_levels = level;
6962 curr_distance = next_distance;
6963 } else break;
6964 }
6965
6966 /*
6967 * In case of sched_debug() we verify the above assumption.
6968 */
6969 if (!sched_debug())
6970 break;
6971 }
6972
6973 if (!level)
6974 return;
6975
6976 /*
6977 * 'level' contains the number of unique distances, excluding the
6978 * identity distance node_distance(i,i).
6979 *
6980 * The sched_domains_numa_distance[] array includes the actual distance
6981 * numbers.
6982 */
6983
6984 /*
6985 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6986 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6987 * the array will contain less then 'level' members. This could be
6988 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6989 * in other functions.
6990 *
6991 * We reset it to 'level' at the end of this function.
6992 */
6993 sched_domains_numa_levels = 0;
6994
6995 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6996 if (!sched_domains_numa_masks)
6997 return;
6998
6999 /*
7000 * Now for each level, construct a mask per node which contains all
7001 * cpus of nodes that are that many hops away from us.
7002 */
7003 for (i = 0; i < level; i++) {
7004 sched_domains_numa_masks[i] =
7005 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
7006 if (!sched_domains_numa_masks[i])
7007 return;
7008
7009 for (j = 0; j < nr_node_ids; j++) {
7010 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
7011 if (!mask)
7012 return;
7013
7014 sched_domains_numa_masks[i][j] = mask;
7015
7016 for_each_node(k) {
7017 if (node_distance(j, k) > sched_domains_numa_distance[i])
7018 continue;
7019
7020 cpumask_or(mask, mask, cpumask_of_node(k));
7021 }
7022 }
7023 }
7024
7025 /* Compute default topology size */
7026 for (i = 0; sched_domain_topology[i].mask; i++);
7027
7028 tl = kzalloc((i + level + 1) *
7029 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
7030 if (!tl)
7031 return;
7032
7033 /*
7034 * Copy the default topology bits..
7035 */
7036 for (i = 0; sched_domain_topology[i].mask; i++)
7037 tl[i] = sched_domain_topology[i];
7038
7039 /*
7040 * .. and append 'j' levels of NUMA goodness.
7041 */
7042 for (j = 0; j < level; i++, j++) {
7043 tl[i] = (struct sched_domain_topology_level){
7044 .mask = sd_numa_mask,
7045 .sd_flags = cpu_numa_flags,
7046 .flags = SDTL_OVERLAP,
7047 .numa_level = j,
7048 SD_INIT_NAME(NUMA)
7049 };
7050 }
7051
7052 sched_domain_topology = tl;
7053
7054 sched_domains_numa_levels = level;
7055 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
7056
7057 init_numa_topology_type();
7058 }
7059
sched_domains_numa_masks_set(unsigned int cpu)7060 static void sched_domains_numa_masks_set(unsigned int cpu)
7061 {
7062 int node = cpu_to_node(cpu);
7063 int i, j;
7064
7065 for (i = 0; i < sched_domains_numa_levels; i++) {
7066 for (j = 0; j < nr_node_ids; j++) {
7067 if (node_distance(j, node) <= sched_domains_numa_distance[i])
7068 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
7069 }
7070 }
7071 }
7072
sched_domains_numa_masks_clear(unsigned int cpu)7073 static void sched_domains_numa_masks_clear(unsigned int cpu)
7074 {
7075 int i, j;
7076
7077 for (i = 0; i < sched_domains_numa_levels; i++) {
7078 for (j = 0; j < nr_node_ids; j++)
7079 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
7080 }
7081 }
7082
7083 #else
sched_init_numa(void)7084 static inline void sched_init_numa(void) { }
sched_domains_numa_masks_set(unsigned int cpu)7085 static void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)7086 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
7087 #endif /* CONFIG_NUMA */
7088
__sdt_alloc(const struct cpumask * cpu_map)7089 static int __sdt_alloc(const struct cpumask *cpu_map)
7090 {
7091 struct sched_domain_topology_level *tl;
7092 int j;
7093
7094 for_each_sd_topology(tl) {
7095 struct sd_data *sdd = &tl->data;
7096
7097 sdd->sd = alloc_percpu(struct sched_domain *);
7098 if (!sdd->sd)
7099 return -ENOMEM;
7100
7101 sdd->sds = alloc_percpu(struct sched_domain_shared *);
7102 if (!sdd->sds)
7103 return -ENOMEM;
7104
7105 sdd->sg = alloc_percpu(struct sched_group *);
7106 if (!sdd->sg)
7107 return -ENOMEM;
7108
7109 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
7110 if (!sdd->sgc)
7111 return -ENOMEM;
7112
7113 for_each_cpu(j, cpu_map) {
7114 struct sched_domain *sd;
7115 struct sched_domain_shared *sds;
7116 struct sched_group *sg;
7117 struct sched_group_capacity *sgc;
7118
7119 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7120 GFP_KERNEL, cpu_to_node(j));
7121 if (!sd)
7122 return -ENOMEM;
7123
7124 *per_cpu_ptr(sdd->sd, j) = sd;
7125
7126 sds = kzalloc_node(sizeof(struct sched_domain_shared),
7127 GFP_KERNEL, cpu_to_node(j));
7128 if (!sds)
7129 return -ENOMEM;
7130
7131 *per_cpu_ptr(sdd->sds, j) = sds;
7132
7133 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7134 GFP_KERNEL, cpu_to_node(j));
7135 if (!sg)
7136 return -ENOMEM;
7137
7138 sg->next = sg;
7139
7140 *per_cpu_ptr(sdd->sg, j) = sg;
7141
7142 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
7143 GFP_KERNEL, cpu_to_node(j));
7144 if (!sgc)
7145 return -ENOMEM;
7146
7147 *per_cpu_ptr(sdd->sgc, j) = sgc;
7148 }
7149 }
7150
7151 return 0;
7152 }
7153
__sdt_free(const struct cpumask * cpu_map)7154 static void __sdt_free(const struct cpumask *cpu_map)
7155 {
7156 struct sched_domain_topology_level *tl;
7157 int j;
7158
7159 for_each_sd_topology(tl) {
7160 struct sd_data *sdd = &tl->data;
7161
7162 for_each_cpu(j, cpu_map) {
7163 struct sched_domain *sd;
7164
7165 if (sdd->sd) {
7166 sd = *per_cpu_ptr(sdd->sd, j);
7167 if (sd && (sd->flags & SD_OVERLAP))
7168 free_sched_groups(sd->groups, 0);
7169 kfree(*per_cpu_ptr(sdd->sd, j));
7170 }
7171
7172 if (sdd->sds)
7173 kfree(*per_cpu_ptr(sdd->sds, j));
7174 if (sdd->sg)
7175 kfree(*per_cpu_ptr(sdd->sg, j));
7176 if (sdd->sgc)
7177 kfree(*per_cpu_ptr(sdd->sgc, j));
7178 }
7179 free_percpu(sdd->sd);
7180 sdd->sd = NULL;
7181 free_percpu(sdd->sds);
7182 sdd->sds = NULL;
7183 free_percpu(sdd->sg);
7184 sdd->sg = NULL;
7185 free_percpu(sdd->sgc);
7186 sdd->sgc = NULL;
7187 }
7188 }
7189
build_sched_domain(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * child,int cpu)7190 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7191 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7192 struct sched_domain *child, int cpu)
7193 {
7194 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
7195
7196 if (child) {
7197 sd->level = child->level + 1;
7198 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7199 child->parent = sd;
7200
7201 if (!cpumask_subset(sched_domain_span(child),
7202 sched_domain_span(sd))) {
7203 pr_err("BUG: arch topology borken\n");
7204 #ifdef CONFIG_SCHED_DEBUG
7205 pr_err(" the %s domain not a subset of the %s domain\n",
7206 child->name, sd->name);
7207 #endif
7208 /* Fixup, ensure @sd has at least @child cpus. */
7209 cpumask_or(sched_domain_span(sd),
7210 sched_domain_span(sd),
7211 sched_domain_span(child));
7212 }
7213
7214 }
7215 set_domain_attribute(sd, attr);
7216
7217 return sd;
7218 }
7219
7220 /*
7221 * Build sched domains for a given set of cpus and attach the sched domains
7222 * to the individual cpus
7223 */
build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)7224 static int build_sched_domains(const struct cpumask *cpu_map,
7225 struct sched_domain_attr *attr)
7226 {
7227 enum s_alloc alloc_state;
7228 struct sched_domain *sd;
7229 struct s_data d;
7230 int i, ret = -ENOMEM;
7231
7232 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7233 if (alloc_state != sa_rootdomain)
7234 goto error;
7235
7236 /* Set up domains for cpus specified by the cpu_map. */
7237 for_each_cpu(i, cpu_map) {
7238 struct sched_domain_topology_level *tl;
7239
7240 sd = NULL;
7241 for_each_sd_topology(tl) {
7242 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7243 if (tl == sched_domain_topology)
7244 *per_cpu_ptr(d.sd, i) = sd;
7245 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7246 sd->flags |= SD_OVERLAP;
7247 }
7248 }
7249
7250 /* Build the groups for the domains */
7251 for_each_cpu(i, cpu_map) {
7252 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7253 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7254 if (sd->flags & SD_OVERLAP) {
7255 if (build_overlap_sched_groups(sd, i))
7256 goto error;
7257 } else {
7258 if (build_sched_groups(sd, i))
7259 goto error;
7260 }
7261 }
7262 }
7263
7264 /* Calculate CPU capacity for physical packages and nodes */
7265 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7266 struct sched_domain_topology_level *tl = sched_domain_topology;
7267
7268 if (!cpumask_test_cpu(i, cpu_map))
7269 continue;
7270
7271 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent, tl++) {
7272 init_sched_energy(i, sd, tl->energy);
7273 claim_allocations(i, sd);
7274 init_sched_groups_capacity(i, sd);
7275 }
7276 }
7277
7278 /* Attach the domains */
7279 rcu_read_lock();
7280 for_each_cpu(i, cpu_map) {
7281 int max_cpu = READ_ONCE(d.rd->max_cap_orig_cpu);
7282 int min_cpu = READ_ONCE(d.rd->min_cap_orig_cpu);
7283
7284 if ((max_cpu < 0) || (cpu_rq(i)->cpu_capacity_orig >
7285 cpu_rq(max_cpu)->cpu_capacity_orig))
7286 WRITE_ONCE(d.rd->max_cap_orig_cpu, i);
7287
7288 if ((min_cpu < 0) || (cpu_rq(i)->cpu_capacity_orig <
7289 cpu_rq(min_cpu)->cpu_capacity_orig))
7290 WRITE_ONCE(d.rd->min_cap_orig_cpu, i);
7291
7292 sd = *per_cpu_ptr(d.sd, i);
7293
7294 cpu_attach_domain(sd, d.rd, i);
7295 }
7296 rcu_read_unlock();
7297
7298 ret = 0;
7299 error:
7300 __free_domain_allocs(&d, alloc_state, cpu_map);
7301 return ret;
7302 }
7303
7304 static cpumask_var_t *doms_cur; /* current sched domains */
7305 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7306 static struct sched_domain_attr *dattr_cur;
7307 /* attribues of custom domains in 'doms_cur' */
7308
7309 /*
7310 * Special case: If a kmalloc of a doms_cur partition (array of
7311 * cpumask) fails, then fallback to a single sched domain,
7312 * as determined by the single cpumask fallback_doms.
7313 */
7314 static cpumask_var_t fallback_doms;
7315
7316 /*
7317 * arch_update_cpu_topology lets virtualized architectures update the
7318 * cpu core maps. It is supposed to return 1 if the topology changed
7319 * or 0 if it stayed the same.
7320 */
arch_update_cpu_topology(void)7321 int __weak arch_update_cpu_topology(void)
7322 {
7323 return 0;
7324 }
7325
alloc_sched_domains(unsigned int ndoms)7326 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7327 {
7328 int i;
7329 cpumask_var_t *doms;
7330
7331 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7332 if (!doms)
7333 return NULL;
7334 for (i = 0; i < ndoms; i++) {
7335 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7336 free_sched_domains(doms, i);
7337 return NULL;
7338 }
7339 }
7340 return doms;
7341 }
7342
free_sched_domains(cpumask_var_t doms[],unsigned int ndoms)7343 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7344 {
7345 unsigned int i;
7346 for (i = 0; i < ndoms; i++)
7347 free_cpumask_var(doms[i]);
7348 kfree(doms);
7349 }
7350
7351 /*
7352 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7353 * For now this just excludes isolated cpus, but could be used to
7354 * exclude other special cases in the future.
7355 */
init_sched_domains(const struct cpumask * cpu_map)7356 static int init_sched_domains(const struct cpumask *cpu_map)
7357 {
7358 int err;
7359
7360 arch_update_cpu_topology();
7361 ndoms_cur = 1;
7362 doms_cur = alloc_sched_domains(ndoms_cur);
7363 if (!doms_cur)
7364 doms_cur = &fallback_doms;
7365 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7366 err = build_sched_domains(doms_cur[0], NULL);
7367 register_sched_domain_sysctl();
7368
7369 return err;
7370 }
7371
7372 /*
7373 * Detach sched domains from a group of cpus specified in cpu_map
7374 * These cpus will now be attached to the NULL domain
7375 */
detach_destroy_domains(const struct cpumask * cpu_map)7376 static void detach_destroy_domains(const struct cpumask *cpu_map)
7377 {
7378 int i;
7379
7380 rcu_read_lock();
7381 for_each_cpu(i, cpu_map)
7382 cpu_attach_domain(NULL, &def_root_domain, i);
7383 rcu_read_unlock();
7384 }
7385
7386 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)7387 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7388 struct sched_domain_attr *new, int idx_new)
7389 {
7390 struct sched_domain_attr tmp;
7391
7392 /* fast path */
7393 if (!new && !cur)
7394 return 1;
7395
7396 tmp = SD_ATTR_INIT;
7397 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7398 new ? (new + idx_new) : &tmp,
7399 sizeof(struct sched_domain_attr));
7400 }
7401
7402 /*
7403 * Partition sched domains as specified by the 'ndoms_new'
7404 * cpumasks in the array doms_new[] of cpumasks. This compares
7405 * doms_new[] to the current sched domain partitioning, doms_cur[].
7406 * It destroys each deleted domain and builds each new domain.
7407 *
7408 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7409 * The masks don't intersect (don't overlap.) We should setup one
7410 * sched domain for each mask. CPUs not in any of the cpumasks will
7411 * not be load balanced. If the same cpumask appears both in the
7412 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7413 * it as it is.
7414 *
7415 * The passed in 'doms_new' should be allocated using
7416 * alloc_sched_domains. This routine takes ownership of it and will
7417 * free_sched_domains it when done with it. If the caller failed the
7418 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7419 * and partition_sched_domains() will fallback to the single partition
7420 * 'fallback_doms', it also forces the domains to be rebuilt.
7421 *
7422 * If doms_new == NULL it will be replaced with cpu_online_mask.
7423 * ndoms_new == 0 is a special case for destroying existing domains,
7424 * and it will not create the default domain.
7425 *
7426 * Call with hotplug lock held
7427 */
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)7428 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7429 struct sched_domain_attr *dattr_new)
7430 {
7431 int i, j, n;
7432 int new_topology;
7433
7434 mutex_lock(&sched_domains_mutex);
7435
7436 /* always unregister in case we don't destroy any domains */
7437 unregister_sched_domain_sysctl();
7438
7439 /* Let architecture update cpu core mappings. */
7440 new_topology = arch_update_cpu_topology();
7441
7442 n = doms_new ? ndoms_new : 0;
7443
7444 /* Destroy deleted domains */
7445 for (i = 0; i < ndoms_cur; i++) {
7446 for (j = 0; j < n && !new_topology; j++) {
7447 if (cpumask_equal(doms_cur[i], doms_new[j])
7448 && dattrs_equal(dattr_cur, i, dattr_new, j))
7449 goto match1;
7450 }
7451 /* no match - a current sched domain not in new doms_new[] */
7452 detach_destroy_domains(doms_cur[i]);
7453 match1:
7454 ;
7455 }
7456
7457 n = ndoms_cur;
7458 if (doms_new == NULL) {
7459 n = 0;
7460 doms_new = &fallback_doms;
7461 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7462 WARN_ON_ONCE(dattr_new);
7463 }
7464
7465 /* Build new domains */
7466 for (i = 0; i < ndoms_new; i++) {
7467 for (j = 0; j < n && !new_topology; j++) {
7468 if (cpumask_equal(doms_new[i], doms_cur[j])
7469 && dattrs_equal(dattr_new, i, dattr_cur, j))
7470 goto match2;
7471 }
7472 /* no match - add a new doms_new */
7473 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7474 match2:
7475 ;
7476 }
7477
7478 /* Remember the new sched domains */
7479 if (doms_cur != &fallback_doms)
7480 free_sched_domains(doms_cur, ndoms_cur);
7481 kfree(dattr_cur); /* kfree(NULL) is safe */
7482 doms_cur = doms_new;
7483 dattr_cur = dattr_new;
7484 ndoms_cur = ndoms_new;
7485
7486 register_sched_domain_sysctl();
7487
7488 mutex_unlock(&sched_domains_mutex);
7489 }
7490
7491 static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7492
7493 /*
7494 * Update cpusets according to cpu_active mask. If cpusets are
7495 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7496 * around partition_sched_domains().
7497 *
7498 * If we come here as part of a suspend/resume, don't touch cpusets because we
7499 * want to restore it back to its original state upon resume anyway.
7500 */
cpuset_cpu_active(void)7501 static void cpuset_cpu_active(void)
7502 {
7503 if (cpuhp_tasks_frozen) {
7504 /*
7505 * num_cpus_frozen tracks how many CPUs are involved in suspend
7506 * resume sequence. As long as this is not the last online
7507 * operation in the resume sequence, just build a single sched
7508 * domain, ignoring cpusets.
7509 */
7510 partition_sched_domains(1, NULL, NULL);
7511 if (--num_cpus_frozen)
7512 return;
7513 /*
7514 * This is the last CPU online operation. So fall through and
7515 * restore the original sched domains by considering the
7516 * cpuset configurations.
7517 */
7518 cpuset_force_rebuild();
7519 }
7520 cpuset_update_active_cpus(true);
7521 }
7522
cpuset_cpu_inactive(unsigned int cpu)7523 static int cpuset_cpu_inactive(unsigned int cpu)
7524 {
7525 unsigned long flags;
7526 struct dl_bw *dl_b;
7527 bool overflow;
7528 int cpus;
7529
7530 if (!cpuhp_tasks_frozen) {
7531 rcu_read_lock_sched();
7532 dl_b = dl_bw_of(cpu);
7533
7534 raw_spin_lock_irqsave(&dl_b->lock, flags);
7535 cpus = dl_bw_cpus(cpu);
7536 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7537 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7538
7539 rcu_read_unlock_sched();
7540
7541 if (overflow)
7542 return -EBUSY;
7543 cpuset_update_active_cpus(false);
7544 } else {
7545 num_cpus_frozen++;
7546 partition_sched_domains(1, NULL, NULL);
7547 }
7548 return 0;
7549 }
7550
sched_cpu_activate(unsigned int cpu)7551 int sched_cpu_activate(unsigned int cpu)
7552 {
7553 struct rq *rq = cpu_rq(cpu);
7554 unsigned long flags;
7555
7556 set_cpu_active(cpu, true);
7557
7558 if (sched_smp_initialized) {
7559 sched_domains_numa_masks_set(cpu);
7560 cpuset_cpu_active();
7561 }
7562
7563 /*
7564 * Put the rq online, if not already. This happens:
7565 *
7566 * 1) In the early boot process, because we build the real domains
7567 * after all cpus have been brought up.
7568 *
7569 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7570 * domains.
7571 */
7572 raw_spin_lock_irqsave(&rq->lock, flags);
7573 if (rq->rd) {
7574 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7575 set_rq_online(rq);
7576 }
7577 raw_spin_unlock_irqrestore(&rq->lock, flags);
7578
7579 update_max_interval();
7580
7581 return 0;
7582 }
7583
sched_cpu_deactivate(unsigned int cpu)7584 int sched_cpu_deactivate(unsigned int cpu)
7585 {
7586 int ret;
7587
7588 set_cpu_active(cpu, false);
7589 /*
7590 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7591 * users of this state to go away such that all new such users will
7592 * observe it.
7593 *
7594 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7595 * not imply sync_sched(), so wait for both.
7596 *
7597 * Do sync before park smpboot threads to take care the rcu boost case.
7598 */
7599 if (IS_ENABLED(CONFIG_PREEMPT))
7600 synchronize_rcu_mult(call_rcu, call_rcu_sched);
7601 else
7602 synchronize_rcu();
7603
7604 if (!sched_smp_initialized)
7605 return 0;
7606
7607 ret = cpuset_cpu_inactive(cpu);
7608 if (ret) {
7609 set_cpu_active(cpu, true);
7610 return ret;
7611 }
7612 sched_domains_numa_masks_clear(cpu);
7613 return 0;
7614 }
7615
sched_rq_cpu_starting(unsigned int cpu)7616 static void sched_rq_cpu_starting(unsigned int cpu)
7617 {
7618 struct rq *rq = cpu_rq(cpu);
7619
7620 rq->calc_load_update = calc_load_update;
7621 update_max_interval();
7622 }
7623
sched_cpu_starting(unsigned int cpu)7624 int sched_cpu_starting(unsigned int cpu)
7625 {
7626 set_cpu_rq_start_time(cpu);
7627 sched_rq_cpu_starting(cpu);
7628 return 0;
7629 }
7630
7631 #ifdef CONFIG_HOTPLUG_CPU
sched_cpu_dying(unsigned int cpu)7632 int sched_cpu_dying(unsigned int cpu)
7633 {
7634 struct rq *rq = cpu_rq(cpu);
7635 unsigned long flags;
7636
7637 /* Handle pending wakeups and then migrate everything off */
7638 sched_ttwu_pending();
7639 raw_spin_lock_irqsave(&rq->lock, flags);
7640
7641 walt_migrate_sync_cpu(cpu);
7642
7643 if (rq->rd) {
7644 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7645 set_rq_offline(rq);
7646 }
7647 migrate_tasks(rq);
7648 BUG_ON(rq->nr_running != 1);
7649 raw_spin_unlock_irqrestore(&rq->lock, flags);
7650 calc_load_migrate(rq);
7651 update_max_interval();
7652 nohz_balance_exit_idle(cpu);
7653 hrtick_clear(rq);
7654 return 0;
7655 }
7656 #endif
7657
sched_init_smp(void)7658 void __init sched_init_smp(void)
7659 {
7660 cpumask_var_t non_isolated_cpus;
7661
7662 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7663 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7664
7665 sched_init_numa();
7666
7667 /*
7668 * There's no userspace yet to cause hotplug operations; hence all the
7669 * cpu masks are stable and all blatant races in the below code cannot
7670 * happen.
7671 */
7672 mutex_lock(&sched_domains_mutex);
7673 init_sched_domains(cpu_active_mask);
7674 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7675 if (cpumask_empty(non_isolated_cpus))
7676 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7677 mutex_unlock(&sched_domains_mutex);
7678
7679 /* Move init over to a non-isolated CPU */
7680 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7681 BUG();
7682 sched_init_granularity();
7683 free_cpumask_var(non_isolated_cpus);
7684
7685 init_sched_rt_class();
7686 init_sched_dl_class();
7687 sched_smp_initialized = true;
7688 }
7689
migration_init(void)7690 static int __init migration_init(void)
7691 {
7692 sched_rq_cpu_starting(smp_processor_id());
7693 return 0;
7694 }
7695 early_initcall(migration_init);
7696
7697 #else
sched_init_smp(void)7698 void __init sched_init_smp(void)
7699 {
7700 sched_init_granularity();
7701 }
7702 #endif /* CONFIG_SMP */
7703
in_sched_functions(unsigned long addr)7704 int in_sched_functions(unsigned long addr)
7705 {
7706 return in_lock_functions(addr) ||
7707 (addr >= (unsigned long)__sched_text_start
7708 && addr < (unsigned long)__sched_text_end);
7709 }
7710
7711 #ifdef CONFIG_CGROUP_SCHED
7712 /*
7713 * Default task group.
7714 * Every task in system belongs to this group at bootup.
7715 */
7716 struct task_group root_task_group;
7717 LIST_HEAD(task_groups);
7718
7719 /* Cacheline aligned slab cache for task_group */
7720 static struct kmem_cache *task_group_cache __read_mostly;
7721 #endif
7722
7723 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7724 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7725
7726 #define WAIT_TABLE_BITS 8
7727 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
7728 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
7729
bit_waitqueue(void * word,int bit)7730 wait_queue_head_t *bit_waitqueue(void *word, int bit)
7731 {
7732 const int shift = BITS_PER_LONG == 32 ? 5 : 6;
7733 unsigned long val = (unsigned long)word << shift | bit;
7734
7735 return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
7736 }
7737 EXPORT_SYMBOL(bit_waitqueue);
7738
sched_init(void)7739 void __init sched_init(void)
7740 {
7741 int i, j;
7742 unsigned long alloc_size = 0, ptr;
7743
7744 for (i = 0; i < WAIT_TABLE_SIZE; i++)
7745 init_waitqueue_head(bit_wait_table + i);
7746
7747 #ifdef CONFIG_FAIR_GROUP_SCHED
7748 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7749 #endif
7750 #ifdef CONFIG_RT_GROUP_SCHED
7751 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7752 #endif
7753 if (alloc_size) {
7754 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7755
7756 #ifdef CONFIG_FAIR_GROUP_SCHED
7757 root_task_group.se = (struct sched_entity **)ptr;
7758 ptr += nr_cpu_ids * sizeof(void **);
7759
7760 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7761 ptr += nr_cpu_ids * sizeof(void **);
7762
7763 #endif /* CONFIG_FAIR_GROUP_SCHED */
7764 #ifdef CONFIG_RT_GROUP_SCHED
7765 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7766 ptr += nr_cpu_ids * sizeof(void **);
7767
7768 root_task_group.rt_rq = (struct rt_rq **)ptr;
7769 ptr += nr_cpu_ids * sizeof(void **);
7770
7771 #endif /* CONFIG_RT_GROUP_SCHED */
7772 }
7773 #ifdef CONFIG_CPUMASK_OFFSTACK
7774 for_each_possible_cpu(i) {
7775 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7776 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7777 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7778 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7779 }
7780 #endif /* CONFIG_CPUMASK_OFFSTACK */
7781
7782 init_rt_bandwidth(&def_rt_bandwidth,
7783 global_rt_period(), global_rt_runtime());
7784 init_dl_bandwidth(&def_dl_bandwidth,
7785 global_rt_period(), global_rt_runtime());
7786
7787 #ifdef CONFIG_SMP
7788 init_defrootdomain();
7789 #endif
7790
7791 #ifdef CONFIG_RT_GROUP_SCHED
7792 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7793 global_rt_period(), global_rt_runtime());
7794 #endif /* CONFIG_RT_GROUP_SCHED */
7795
7796 #ifdef CONFIG_CGROUP_SCHED
7797 task_group_cache = KMEM_CACHE(task_group, 0);
7798
7799 list_add(&root_task_group.list, &task_groups);
7800 INIT_LIST_HEAD(&root_task_group.children);
7801 INIT_LIST_HEAD(&root_task_group.siblings);
7802 autogroup_init(&init_task);
7803 #endif /* CONFIG_CGROUP_SCHED */
7804
7805 for_each_possible_cpu(i) {
7806 struct rq *rq;
7807
7808 rq = cpu_rq(i);
7809 raw_spin_lock_init(&rq->lock);
7810 rq->nr_running = 0;
7811 rq->calc_load_active = 0;
7812 rq->calc_load_update = jiffies + LOAD_FREQ;
7813 init_cfs_rq(&rq->cfs);
7814 init_rt_rq(&rq->rt);
7815 init_dl_rq(&rq->dl);
7816 #ifdef CONFIG_FAIR_GROUP_SCHED
7817 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7818 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7819 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7820 /*
7821 * How much cpu bandwidth does root_task_group get?
7822 *
7823 * In case of task-groups formed thr' the cgroup filesystem, it
7824 * gets 100% of the cpu resources in the system. This overall
7825 * system cpu resource is divided among the tasks of
7826 * root_task_group and its child task-groups in a fair manner,
7827 * based on each entity's (task or task-group's) weight
7828 * (se->load.weight).
7829 *
7830 * In other words, if root_task_group has 10 tasks of weight
7831 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7832 * then A0's share of the cpu resource is:
7833 *
7834 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7835 *
7836 * We achieve this by letting root_task_group's tasks sit
7837 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7838 */
7839 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7840 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7841 #endif /* CONFIG_FAIR_GROUP_SCHED */
7842
7843 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7844 #ifdef CONFIG_RT_GROUP_SCHED
7845 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7846 #endif
7847
7848 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7849 rq->cpu_load[j] = 0;
7850
7851 #ifdef CONFIG_SMP
7852 rq->sd = NULL;
7853 rq->rd = NULL;
7854 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7855 rq->balance_callback = NULL;
7856 rq->active_balance = 0;
7857 rq->next_balance = jiffies;
7858 rq->push_cpu = 0;
7859 rq->push_task = NULL;
7860 rq->cpu = i;
7861 rq->online = 0;
7862 rq->idle_stamp = 0;
7863 rq->avg_idle = 2*sysctl_sched_migration_cost;
7864 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7865 #ifdef CONFIG_SCHED_WALT
7866 rq->cur_irqload = 0;
7867 rq->avg_irqload = 0;
7868 rq->irqload_ts = 0;
7869 #endif
7870
7871 INIT_LIST_HEAD(&rq->cfs_tasks);
7872
7873 rq_attach_root(rq, &def_root_domain);
7874 #ifdef CONFIG_NO_HZ_COMMON
7875 rq->last_load_update_tick = jiffies;
7876 rq->nohz_flags = 0;
7877 #endif
7878 #ifdef CONFIG_NO_HZ_FULL
7879 rq->last_sched_tick = 0;
7880 #endif
7881 #endif /* CONFIG_SMP */
7882 init_rq_hrtick(rq);
7883 atomic_set(&rq->nr_iowait, 0);
7884 }
7885
7886 set_load_weight(&init_task);
7887
7888 /*
7889 * The boot idle thread does lazy MMU switching as well:
7890 */
7891 atomic_inc(&init_mm.mm_count);
7892 enter_lazy_tlb(&init_mm, current);
7893
7894 /*
7895 * Make us the idle thread. Technically, schedule() should not be
7896 * called from this thread, however somewhere below it might be,
7897 * but because we are the idle thread, we just pick up running again
7898 * when this runqueue becomes "idle".
7899 */
7900 init_idle(current, smp_processor_id());
7901
7902 calc_load_update = jiffies + LOAD_FREQ;
7903
7904 #ifdef CONFIG_SMP
7905 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7906 /* May be allocated at isolcpus cmdline parse time */
7907 if (cpu_isolated_map == NULL)
7908 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7909 idle_thread_set_boot_cpu();
7910 set_cpu_rq_start_time(smp_processor_id());
7911 #endif
7912 init_sched_fair_class();
7913
7914 init_schedstats();
7915
7916 scheduler_running = 1;
7917 }
7918
7919 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)7920 static inline int preempt_count_equals(int preempt_offset)
7921 {
7922 int nested = preempt_count() + rcu_preempt_depth();
7923
7924 return (nested == preempt_offset);
7925 }
7926
7927 static int __might_sleep_init_called;
__might_sleep_init(void)7928 int __init __might_sleep_init(void)
7929 {
7930 __might_sleep_init_called = 1;
7931 return 0;
7932 }
7933 early_initcall(__might_sleep_init);
7934
__might_sleep(const char * file,int line,int preempt_offset)7935 void __might_sleep(const char *file, int line, int preempt_offset)
7936 {
7937 /*
7938 * Blocking primitives will set (and therefore destroy) current->state,
7939 * since we will exit with TASK_RUNNING make sure we enter with it,
7940 * otherwise we will destroy state.
7941 */
7942 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7943 "do not call blocking ops when !TASK_RUNNING; "
7944 "state=%lx set at [<%p>] %pS\n",
7945 current->state,
7946 (void *)current->task_state_change,
7947 (void *)current->task_state_change);
7948
7949 ___might_sleep(file, line, preempt_offset);
7950 }
7951 EXPORT_SYMBOL(__might_sleep);
7952
___might_sleep(const char * file,int line,int preempt_offset)7953 void ___might_sleep(const char *file, int line, int preempt_offset)
7954 {
7955 static unsigned long prev_jiffy; /* ratelimiting */
7956 unsigned long preempt_disable_ip;
7957
7958 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7959 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7960 !is_idle_task(current)) || oops_in_progress)
7961 return;
7962 if (system_state != SYSTEM_RUNNING &&
7963 (!__might_sleep_init_called || system_state != SYSTEM_BOOTING))
7964 return;
7965 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7966 return;
7967 prev_jiffy = jiffies;
7968
7969 /* Save this before calling printk(), since that will clobber it */
7970 preempt_disable_ip = get_preempt_disable_ip(current);
7971
7972 printk(KERN_ERR
7973 "BUG: sleeping function called from invalid context at %s:%d\n",
7974 file, line);
7975 printk(KERN_ERR
7976 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7977 in_atomic(), irqs_disabled(),
7978 current->pid, current->comm);
7979
7980 if (task_stack_end_corrupted(current))
7981 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7982
7983 debug_show_held_locks(current);
7984 if (irqs_disabled())
7985 print_irqtrace_events(current);
7986 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7987 && !preempt_count_equals(preempt_offset)) {
7988 pr_err("Preemption disabled at:");
7989 print_ip_sym(preempt_disable_ip);
7990 pr_cont("\n");
7991 }
7992 dump_stack();
7993 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7994 }
7995 EXPORT_SYMBOL(___might_sleep);
7996 #endif
7997
7998 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)7999 void normalize_rt_tasks(void)
8000 {
8001 struct task_struct *g, *p;
8002 struct sched_attr attr = {
8003 .sched_policy = SCHED_NORMAL,
8004 };
8005
8006 read_lock(&tasklist_lock);
8007 for_each_process_thread(g, p) {
8008 /*
8009 * Only normalize user tasks:
8010 */
8011 if (p->flags & PF_KTHREAD)
8012 continue;
8013
8014 p->se.exec_start = 0;
8015 schedstat_set(p->se.statistics.wait_start, 0);
8016 schedstat_set(p->se.statistics.sleep_start, 0);
8017 schedstat_set(p->se.statistics.block_start, 0);
8018
8019 if (!dl_task(p) && !rt_task(p)) {
8020 /*
8021 * Renice negative nice level userspace
8022 * tasks back to 0:
8023 */
8024 if (task_nice(p) < 0)
8025 set_user_nice(p, 0);
8026 continue;
8027 }
8028
8029 __sched_setscheduler(p, &attr, false, false);
8030 }
8031 read_unlock(&tasklist_lock);
8032 }
8033
8034 #endif /* CONFIG_MAGIC_SYSRQ */
8035
8036 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8037 /*
8038 * These functions are only useful for the IA64 MCA handling, or kdb.
8039 *
8040 * They can only be called when the whole system has been
8041 * stopped - every CPU needs to be quiescent, and no scheduling
8042 * activity can take place. Using them for anything else would
8043 * be a serious bug, and as a result, they aren't even visible
8044 * under any other configuration.
8045 */
8046
8047 /**
8048 * curr_task - return the current task for a given cpu.
8049 * @cpu: the processor in question.
8050 *
8051 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8052 *
8053 * Return: The current task for @cpu.
8054 */
curr_task(int cpu)8055 struct task_struct *curr_task(int cpu)
8056 {
8057 return cpu_curr(cpu);
8058 }
8059
8060 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8061
8062 #ifdef CONFIG_IA64
8063 /**
8064 * set_curr_task - set the current task for a given cpu.
8065 * @cpu: the processor in question.
8066 * @p: the task pointer to set.
8067 *
8068 * Description: This function must only be used when non-maskable interrupts
8069 * are serviced on a separate stack. It allows the architecture to switch the
8070 * notion of the current task on a cpu in a non-blocking manner. This function
8071 * must be called with all CPU's synchronized, and interrupts disabled, the
8072 * and caller must save the original value of the current task (see
8073 * curr_task() above) and restore that value before reenabling interrupts and
8074 * re-starting the system.
8075 *
8076 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8077 */
ia64_set_curr_task(int cpu,struct task_struct * p)8078 void ia64_set_curr_task(int cpu, struct task_struct *p)
8079 {
8080 cpu_curr(cpu) = p;
8081 }
8082
8083 #endif
8084
8085 #ifdef CONFIG_CGROUP_SCHED
8086 /* task_group_lock serializes the addition/removal of task groups */
8087 static DEFINE_SPINLOCK(task_group_lock);
8088
sched_free_group(struct task_group * tg)8089 static void sched_free_group(struct task_group *tg)
8090 {
8091 free_fair_sched_group(tg);
8092 free_rt_sched_group(tg);
8093 autogroup_free(tg);
8094 kmem_cache_free(task_group_cache, tg);
8095 }
8096
8097 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)8098 struct task_group *sched_create_group(struct task_group *parent)
8099 {
8100 struct task_group *tg;
8101
8102 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8103 if (!tg)
8104 return ERR_PTR(-ENOMEM);
8105
8106 if (!alloc_fair_sched_group(tg, parent))
8107 goto err;
8108
8109 if (!alloc_rt_sched_group(tg, parent))
8110 goto err;
8111
8112 return tg;
8113
8114 err:
8115 sched_free_group(tg);
8116 return ERR_PTR(-ENOMEM);
8117 }
8118
sched_online_group(struct task_group * tg,struct task_group * parent)8119 void sched_online_group(struct task_group *tg, struct task_group *parent)
8120 {
8121 unsigned long flags;
8122
8123 spin_lock_irqsave(&task_group_lock, flags);
8124 list_add_rcu(&tg->list, &task_groups);
8125
8126 WARN_ON(!parent); /* root should already exist */
8127
8128 tg->parent = parent;
8129 INIT_LIST_HEAD(&tg->children);
8130 list_add_rcu(&tg->siblings, &parent->children);
8131 spin_unlock_irqrestore(&task_group_lock, flags);
8132
8133 online_fair_sched_group(tg);
8134 }
8135
8136 /* rcu callback to free various structures associated with a task group */
sched_free_group_rcu(struct rcu_head * rhp)8137 static void sched_free_group_rcu(struct rcu_head *rhp)
8138 {
8139 /* now it should be safe to free those cfs_rqs */
8140 sched_free_group(container_of(rhp, struct task_group, rcu));
8141 }
8142
sched_destroy_group(struct task_group * tg)8143 void sched_destroy_group(struct task_group *tg)
8144 {
8145 /* wait for possible concurrent references to cfs_rqs complete */
8146 call_rcu(&tg->rcu, sched_free_group_rcu);
8147 }
8148
sched_offline_group(struct task_group * tg)8149 void sched_offline_group(struct task_group *tg)
8150 {
8151 unsigned long flags;
8152
8153 /* end participation in shares distribution */
8154 unregister_fair_sched_group(tg);
8155
8156 spin_lock_irqsave(&task_group_lock, flags);
8157 list_del_rcu(&tg->list);
8158 list_del_rcu(&tg->siblings);
8159 spin_unlock_irqrestore(&task_group_lock, flags);
8160 }
8161
sched_change_group(struct task_struct * tsk,int type)8162 static void sched_change_group(struct task_struct *tsk, int type)
8163 {
8164 struct task_group *tg;
8165
8166 /*
8167 * All callers are synchronized by task_rq_lock(); we do not use RCU
8168 * which is pointless here. Thus, we pass "true" to task_css_check()
8169 * to prevent lockdep warnings.
8170 */
8171 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8172 struct task_group, css);
8173 tg = autogroup_task_group(tsk, tg);
8174 tsk->sched_task_group = tg;
8175
8176 #ifdef CONFIG_FAIR_GROUP_SCHED
8177 if (tsk->sched_class->task_change_group)
8178 tsk->sched_class->task_change_group(tsk, type);
8179 else
8180 #endif
8181 set_task_rq(tsk, task_cpu(tsk));
8182 }
8183
8184 /*
8185 * Change task's runqueue when it moves between groups.
8186 *
8187 * The caller of this function should have put the task in its new group by
8188 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8189 * its new group.
8190 */
sched_move_task(struct task_struct * tsk)8191 void sched_move_task(struct task_struct *tsk)
8192 {
8193 int queued, running;
8194 struct rq_flags rf;
8195 struct rq *rq;
8196
8197 rq = task_rq_lock(tsk, &rf);
8198 update_rq_clock(rq);
8199
8200 running = task_current(rq, tsk);
8201 queued = task_on_rq_queued(tsk);
8202
8203 if (queued)
8204 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
8205 if (unlikely(running))
8206 put_prev_task(rq, tsk);
8207
8208 sched_change_group(tsk, TASK_MOVE_GROUP);
8209
8210 if (queued)
8211 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
8212 if (unlikely(running))
8213 set_curr_task(rq, tsk);
8214
8215 task_rq_unlock(rq, tsk, &rf);
8216 }
8217 #endif /* CONFIG_CGROUP_SCHED */
8218
8219 #ifdef CONFIG_RT_GROUP_SCHED
8220 /*
8221 * Ensure that the real time constraints are schedulable.
8222 */
8223 static DEFINE_MUTEX(rt_constraints_mutex);
8224
8225 /* Must be called with tasklist_lock held */
tg_has_rt_tasks(struct task_group * tg)8226 static inline int tg_has_rt_tasks(struct task_group *tg)
8227 {
8228 struct task_struct *g, *p;
8229
8230 /*
8231 * Autogroups do not have RT tasks; see autogroup_create().
8232 */
8233 if (task_group_is_autogroup(tg))
8234 return 0;
8235
8236 for_each_process_thread(g, p) {
8237 if (rt_task(p) && task_group(p) == tg)
8238 return 1;
8239 }
8240
8241 return 0;
8242 }
8243
8244 struct rt_schedulable_data {
8245 struct task_group *tg;
8246 u64 rt_period;
8247 u64 rt_runtime;
8248 };
8249
tg_rt_schedulable(struct task_group * tg,void * data)8250 static int tg_rt_schedulable(struct task_group *tg, void *data)
8251 {
8252 struct rt_schedulable_data *d = data;
8253 struct task_group *child;
8254 unsigned long total, sum = 0;
8255 u64 period, runtime;
8256
8257 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8258 runtime = tg->rt_bandwidth.rt_runtime;
8259
8260 if (tg == d->tg) {
8261 period = d->rt_period;
8262 runtime = d->rt_runtime;
8263 }
8264
8265 /*
8266 * Cannot have more runtime than the period.
8267 */
8268 if (runtime > period && runtime != RUNTIME_INF)
8269 return -EINVAL;
8270
8271 /*
8272 * Ensure we don't starve existing RT tasks.
8273 */
8274 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8275 return -EBUSY;
8276
8277 total = to_ratio(period, runtime);
8278
8279 /*
8280 * Nobody can have more than the global setting allows.
8281 */
8282 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8283 return -EINVAL;
8284
8285 /*
8286 * The sum of our children's runtime should not exceed our own.
8287 */
8288 list_for_each_entry_rcu(child, &tg->children, siblings) {
8289 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8290 runtime = child->rt_bandwidth.rt_runtime;
8291
8292 if (child == d->tg) {
8293 period = d->rt_period;
8294 runtime = d->rt_runtime;
8295 }
8296
8297 sum += to_ratio(period, runtime);
8298 }
8299
8300 if (sum > total)
8301 return -EINVAL;
8302
8303 return 0;
8304 }
8305
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)8306 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8307 {
8308 int ret;
8309
8310 struct rt_schedulable_data data = {
8311 .tg = tg,
8312 .rt_period = period,
8313 .rt_runtime = runtime,
8314 };
8315
8316 rcu_read_lock();
8317 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8318 rcu_read_unlock();
8319
8320 return ret;
8321 }
8322
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)8323 static int tg_set_rt_bandwidth(struct task_group *tg,
8324 u64 rt_period, u64 rt_runtime)
8325 {
8326 int i, err = 0;
8327
8328 /*
8329 * Disallowing the root group RT runtime is BAD, it would disallow the
8330 * kernel creating (and or operating) RT threads.
8331 */
8332 if (tg == &root_task_group && rt_runtime == 0)
8333 return -EINVAL;
8334
8335 /* No period doesn't make any sense. */
8336 if (rt_period == 0)
8337 return -EINVAL;
8338
8339 mutex_lock(&rt_constraints_mutex);
8340 read_lock(&tasklist_lock);
8341 err = __rt_schedulable(tg, rt_period, rt_runtime);
8342 if (err)
8343 goto unlock;
8344
8345 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8346 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8347 tg->rt_bandwidth.rt_runtime = rt_runtime;
8348
8349 for_each_possible_cpu(i) {
8350 struct rt_rq *rt_rq = tg->rt_rq[i];
8351
8352 raw_spin_lock(&rt_rq->rt_runtime_lock);
8353 rt_rq->rt_runtime = rt_runtime;
8354 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8355 }
8356 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8357 unlock:
8358 read_unlock(&tasklist_lock);
8359 mutex_unlock(&rt_constraints_mutex);
8360
8361 return err;
8362 }
8363
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)8364 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8365 {
8366 u64 rt_runtime, rt_period;
8367
8368 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8369 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8370 if (rt_runtime_us < 0)
8371 rt_runtime = RUNTIME_INF;
8372
8373 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8374 }
8375
sched_group_rt_runtime(struct task_group * tg)8376 static long sched_group_rt_runtime(struct task_group *tg)
8377 {
8378 u64 rt_runtime_us;
8379
8380 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8381 return -1;
8382
8383 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8384 do_div(rt_runtime_us, NSEC_PER_USEC);
8385 return rt_runtime_us;
8386 }
8387
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)8388 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8389 {
8390 u64 rt_runtime, rt_period;
8391
8392 rt_period = rt_period_us * NSEC_PER_USEC;
8393 rt_runtime = tg->rt_bandwidth.rt_runtime;
8394
8395 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8396 }
8397
sched_group_rt_period(struct task_group * tg)8398 static long sched_group_rt_period(struct task_group *tg)
8399 {
8400 u64 rt_period_us;
8401
8402 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8403 do_div(rt_period_us, NSEC_PER_USEC);
8404 return rt_period_us;
8405 }
8406 #endif /* CONFIG_RT_GROUP_SCHED */
8407
8408 #ifdef CONFIG_RT_GROUP_SCHED
sched_rt_global_constraints(void)8409 static int sched_rt_global_constraints(void)
8410 {
8411 int ret = 0;
8412
8413 mutex_lock(&rt_constraints_mutex);
8414 read_lock(&tasklist_lock);
8415 ret = __rt_schedulable(NULL, 0, 0);
8416 read_unlock(&tasklist_lock);
8417 mutex_unlock(&rt_constraints_mutex);
8418
8419 return ret;
8420 }
8421
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)8422 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8423 {
8424 /* Don't accept realtime tasks when there is no way for them to run */
8425 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8426 return 0;
8427
8428 return 1;
8429 }
8430
8431 #else /* !CONFIG_RT_GROUP_SCHED */
sched_rt_global_constraints(void)8432 static int sched_rt_global_constraints(void)
8433 {
8434 unsigned long flags;
8435 int i;
8436
8437 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8438 for_each_possible_cpu(i) {
8439 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8440
8441 raw_spin_lock(&rt_rq->rt_runtime_lock);
8442 rt_rq->rt_runtime = global_rt_runtime();
8443 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8444 }
8445 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8446
8447 return 0;
8448 }
8449 #endif /* CONFIG_RT_GROUP_SCHED */
8450
sched_dl_global_validate(void)8451 static int sched_dl_global_validate(void)
8452 {
8453 u64 runtime = global_rt_runtime();
8454 u64 period = global_rt_period();
8455 u64 new_bw = to_ratio(period, runtime);
8456 struct dl_bw *dl_b;
8457 int cpu, ret = 0;
8458 unsigned long flags;
8459
8460 /*
8461 * Here we want to check the bandwidth not being set to some
8462 * value smaller than the currently allocated bandwidth in
8463 * any of the root_domains.
8464 *
8465 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8466 * cycling on root_domains... Discussion on different/better
8467 * solutions is welcome!
8468 */
8469 for_each_possible_cpu(cpu) {
8470 rcu_read_lock_sched();
8471 dl_b = dl_bw_of(cpu);
8472
8473 raw_spin_lock_irqsave(&dl_b->lock, flags);
8474 if (new_bw < dl_b->total_bw)
8475 ret = -EBUSY;
8476 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8477
8478 rcu_read_unlock_sched();
8479
8480 if (ret)
8481 break;
8482 }
8483
8484 return ret;
8485 }
8486
sched_dl_do_global(void)8487 static void sched_dl_do_global(void)
8488 {
8489 u64 new_bw = -1;
8490 struct dl_bw *dl_b;
8491 int cpu;
8492 unsigned long flags;
8493
8494 def_dl_bandwidth.dl_period = global_rt_period();
8495 def_dl_bandwidth.dl_runtime = global_rt_runtime();
8496
8497 if (global_rt_runtime() != RUNTIME_INF)
8498 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8499
8500 /*
8501 * FIXME: As above...
8502 */
8503 for_each_possible_cpu(cpu) {
8504 rcu_read_lock_sched();
8505 dl_b = dl_bw_of(cpu);
8506
8507 raw_spin_lock_irqsave(&dl_b->lock, flags);
8508 dl_b->bw = new_bw;
8509 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8510
8511 rcu_read_unlock_sched();
8512 }
8513 }
8514
sched_rt_global_validate(void)8515 static int sched_rt_global_validate(void)
8516 {
8517 if (sysctl_sched_rt_period <= 0)
8518 return -EINVAL;
8519
8520 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8521 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8522 return -EINVAL;
8523
8524 return 0;
8525 }
8526
sched_rt_do_global(void)8527 static void sched_rt_do_global(void)
8528 {
8529 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8530 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8531 }
8532
sched_rt_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)8533 int sched_rt_handler(struct ctl_table *table, int write,
8534 void __user *buffer, size_t *lenp,
8535 loff_t *ppos)
8536 {
8537 int old_period, old_runtime;
8538 static DEFINE_MUTEX(mutex);
8539 int ret;
8540
8541 mutex_lock(&mutex);
8542 old_period = sysctl_sched_rt_period;
8543 old_runtime = sysctl_sched_rt_runtime;
8544
8545 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8546
8547 if (!ret && write) {
8548 ret = sched_rt_global_validate();
8549 if (ret)
8550 goto undo;
8551
8552 ret = sched_dl_global_validate();
8553 if (ret)
8554 goto undo;
8555
8556 ret = sched_rt_global_constraints();
8557 if (ret)
8558 goto undo;
8559
8560 sched_rt_do_global();
8561 sched_dl_do_global();
8562 }
8563 if (0) {
8564 undo:
8565 sysctl_sched_rt_period = old_period;
8566 sysctl_sched_rt_runtime = old_runtime;
8567 }
8568 mutex_unlock(&mutex);
8569
8570 return ret;
8571 }
8572
sched_rr_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)8573 int sched_rr_handler(struct ctl_table *table, int write,
8574 void __user *buffer, size_t *lenp,
8575 loff_t *ppos)
8576 {
8577 int ret;
8578 static DEFINE_MUTEX(mutex);
8579
8580 mutex_lock(&mutex);
8581 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8582 /* make sure that internally we keep jiffies */
8583 /* also, writing zero resets timeslice to default */
8584 if (!ret && write) {
8585 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8586 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8587 }
8588 mutex_unlock(&mutex);
8589 return ret;
8590 }
8591
8592 #ifdef CONFIG_CGROUP_SCHED
8593
css_tg(struct cgroup_subsys_state * css)8594 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8595 {
8596 return css ? container_of(css, struct task_group, css) : NULL;
8597 }
8598
8599 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)8600 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8601 {
8602 struct task_group *parent = css_tg(parent_css);
8603 struct task_group *tg;
8604
8605 if (!parent) {
8606 /* This is early initialization for the top cgroup */
8607 return &root_task_group.css;
8608 }
8609
8610 tg = sched_create_group(parent);
8611 if (IS_ERR(tg))
8612 return ERR_PTR(-ENOMEM);
8613
8614 return &tg->css;
8615 }
8616
8617 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)8618 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8619 {
8620 struct task_group *tg = css_tg(css);
8621 struct task_group *parent = css_tg(css->parent);
8622
8623 if (parent)
8624 sched_online_group(tg, parent);
8625 return 0;
8626 }
8627
cpu_cgroup_css_released(struct cgroup_subsys_state * css)8628 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8629 {
8630 struct task_group *tg = css_tg(css);
8631
8632 sched_offline_group(tg);
8633 }
8634
cpu_cgroup_css_free(struct cgroup_subsys_state * css)8635 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8636 {
8637 struct task_group *tg = css_tg(css);
8638
8639 /*
8640 * Relies on the RCU grace period between css_released() and this.
8641 */
8642 sched_free_group(tg);
8643 }
8644
8645 /*
8646 * This is called before wake_up_new_task(), therefore we really only
8647 * have to set its group bits, all the other stuff does not apply.
8648 */
cpu_cgroup_fork(struct task_struct * task)8649 static void cpu_cgroup_fork(struct task_struct *task)
8650 {
8651 struct rq_flags rf;
8652 struct rq *rq;
8653
8654 rq = task_rq_lock(task, &rf);
8655
8656 update_rq_clock(rq);
8657 sched_change_group(task, TASK_SET_GROUP);
8658
8659 task_rq_unlock(rq, task, &rf);
8660 }
8661
cpu_cgroup_can_attach(struct cgroup_taskset * tset)8662 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8663 {
8664 struct task_struct *task;
8665 struct cgroup_subsys_state *css;
8666 int ret = 0;
8667
8668 cgroup_taskset_for_each(task, css, tset) {
8669 #ifdef CONFIG_RT_GROUP_SCHED
8670 if (!sched_rt_can_attach(css_tg(css), task))
8671 return -EINVAL;
8672 #else
8673 /* We don't support RT-tasks being in separate groups */
8674 if (task->sched_class != &fair_sched_class)
8675 return -EINVAL;
8676 #endif
8677 /*
8678 * Serialize against wake_up_new_task() such that if its
8679 * running, we're sure to observe its full state.
8680 */
8681 raw_spin_lock_irq(&task->pi_lock);
8682 /*
8683 * Avoid calling sched_move_task() before wake_up_new_task()
8684 * has happened. This would lead to problems with PELT, due to
8685 * move wanting to detach+attach while we're not attached yet.
8686 */
8687 if (task->state == TASK_NEW)
8688 ret = -EINVAL;
8689 raw_spin_unlock_irq(&task->pi_lock);
8690
8691 if (ret)
8692 break;
8693 }
8694 return ret;
8695 }
8696
cpu_cgroup_attach(struct cgroup_taskset * tset)8697 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8698 {
8699 struct task_struct *task;
8700 struct cgroup_subsys_state *css;
8701
8702 cgroup_taskset_for_each(task, css, tset)
8703 sched_move_task(task);
8704 }
8705
8706 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)8707 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8708 struct cftype *cftype, u64 shareval)
8709 {
8710 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8711 }
8712
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8713 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8714 struct cftype *cft)
8715 {
8716 struct task_group *tg = css_tg(css);
8717
8718 return (u64) scale_load_down(tg->shares);
8719 }
8720
8721 #ifdef CONFIG_CFS_BANDWIDTH
8722 static DEFINE_MUTEX(cfs_constraints_mutex);
8723
8724 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8725 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8726
8727 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8728
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)8729 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8730 {
8731 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8732 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8733
8734 if (tg == &root_task_group)
8735 return -EINVAL;
8736
8737 /*
8738 * Ensure we have at some amount of bandwidth every period. This is
8739 * to prevent reaching a state of large arrears when throttled via
8740 * entity_tick() resulting in prolonged exit starvation.
8741 */
8742 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8743 return -EINVAL;
8744
8745 /*
8746 * Likewise, bound things on the otherside by preventing insane quota
8747 * periods. This also allows us to normalize in computing quota
8748 * feasibility.
8749 */
8750 if (period > max_cfs_quota_period)
8751 return -EINVAL;
8752
8753 /*
8754 * Prevent race between setting of cfs_rq->runtime_enabled and
8755 * unthrottle_offline_cfs_rqs().
8756 */
8757 get_online_cpus();
8758 mutex_lock(&cfs_constraints_mutex);
8759 ret = __cfs_schedulable(tg, period, quota);
8760 if (ret)
8761 goto out_unlock;
8762
8763 runtime_enabled = quota != RUNTIME_INF;
8764 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8765 /*
8766 * If we need to toggle cfs_bandwidth_used, off->on must occur
8767 * before making related changes, and on->off must occur afterwards
8768 */
8769 if (runtime_enabled && !runtime_was_enabled)
8770 cfs_bandwidth_usage_inc();
8771 raw_spin_lock_irq(&cfs_b->lock);
8772 cfs_b->period = ns_to_ktime(period);
8773 cfs_b->quota = quota;
8774
8775 __refill_cfs_bandwidth_runtime(cfs_b);
8776 /* restart the period timer (if active) to handle new period expiry */
8777 if (runtime_enabled)
8778 start_cfs_bandwidth(cfs_b);
8779 raw_spin_unlock_irq(&cfs_b->lock);
8780
8781 for_each_online_cpu(i) {
8782 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8783 struct rq *rq = cfs_rq->rq;
8784
8785 raw_spin_lock_irq(&rq->lock);
8786 cfs_rq->runtime_enabled = runtime_enabled;
8787 cfs_rq->runtime_remaining = 0;
8788
8789 if (cfs_rq->throttled)
8790 unthrottle_cfs_rq(cfs_rq);
8791 raw_spin_unlock_irq(&rq->lock);
8792 }
8793 if (runtime_was_enabled && !runtime_enabled)
8794 cfs_bandwidth_usage_dec();
8795 out_unlock:
8796 mutex_unlock(&cfs_constraints_mutex);
8797 put_online_cpus();
8798
8799 return ret;
8800 }
8801
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)8802 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8803 {
8804 u64 quota, period;
8805
8806 period = ktime_to_ns(tg->cfs_bandwidth.period);
8807 if (cfs_quota_us < 0)
8808 quota = RUNTIME_INF;
8809 else
8810 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8811
8812 return tg_set_cfs_bandwidth(tg, period, quota);
8813 }
8814
tg_get_cfs_quota(struct task_group * tg)8815 long tg_get_cfs_quota(struct task_group *tg)
8816 {
8817 u64 quota_us;
8818
8819 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8820 return -1;
8821
8822 quota_us = tg->cfs_bandwidth.quota;
8823 do_div(quota_us, NSEC_PER_USEC);
8824
8825 return quota_us;
8826 }
8827
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)8828 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8829 {
8830 u64 quota, period;
8831
8832 period = (u64)cfs_period_us * NSEC_PER_USEC;
8833 quota = tg->cfs_bandwidth.quota;
8834
8835 return tg_set_cfs_bandwidth(tg, period, quota);
8836 }
8837
tg_get_cfs_period(struct task_group * tg)8838 long tg_get_cfs_period(struct task_group *tg)
8839 {
8840 u64 cfs_period_us;
8841
8842 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8843 do_div(cfs_period_us, NSEC_PER_USEC);
8844
8845 return cfs_period_us;
8846 }
8847
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8848 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8849 struct cftype *cft)
8850 {
8851 return tg_get_cfs_quota(css_tg(css));
8852 }
8853
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)8854 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8855 struct cftype *cftype, s64 cfs_quota_us)
8856 {
8857 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8858 }
8859
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8860 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8861 struct cftype *cft)
8862 {
8863 return tg_get_cfs_period(css_tg(css));
8864 }
8865
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)8866 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8867 struct cftype *cftype, u64 cfs_period_us)
8868 {
8869 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8870 }
8871
8872 struct cfs_schedulable_data {
8873 struct task_group *tg;
8874 u64 period, quota;
8875 };
8876
8877 /*
8878 * normalize group quota/period to be quota/max_period
8879 * note: units are usecs
8880 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)8881 static u64 normalize_cfs_quota(struct task_group *tg,
8882 struct cfs_schedulable_data *d)
8883 {
8884 u64 quota, period;
8885
8886 if (tg == d->tg) {
8887 period = d->period;
8888 quota = d->quota;
8889 } else {
8890 period = tg_get_cfs_period(tg);
8891 quota = tg_get_cfs_quota(tg);
8892 }
8893
8894 /* note: these should typically be equivalent */
8895 if (quota == RUNTIME_INF || quota == -1)
8896 return RUNTIME_INF;
8897
8898 return to_ratio(period, quota);
8899 }
8900
tg_cfs_schedulable_down(struct task_group * tg,void * data)8901 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8902 {
8903 struct cfs_schedulable_data *d = data;
8904 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8905 s64 quota = 0, parent_quota = -1;
8906
8907 if (!tg->parent) {
8908 quota = RUNTIME_INF;
8909 } else {
8910 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8911
8912 quota = normalize_cfs_quota(tg, d);
8913 parent_quota = parent_b->hierarchical_quota;
8914
8915 /*
8916 * ensure max(child_quota) <= parent_quota, inherit when no
8917 * limit is set
8918 */
8919 if (quota == RUNTIME_INF)
8920 quota = parent_quota;
8921 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8922 return -EINVAL;
8923 }
8924 cfs_b->hierarchical_quota = quota;
8925
8926 return 0;
8927 }
8928
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)8929 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8930 {
8931 int ret;
8932 struct cfs_schedulable_data data = {
8933 .tg = tg,
8934 .period = period,
8935 .quota = quota,
8936 };
8937
8938 if (quota != RUNTIME_INF) {
8939 do_div(data.period, NSEC_PER_USEC);
8940 do_div(data.quota, NSEC_PER_USEC);
8941 }
8942
8943 rcu_read_lock();
8944 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8945 rcu_read_unlock();
8946
8947 return ret;
8948 }
8949
cpu_stats_show(struct seq_file * sf,void * v)8950 static int cpu_stats_show(struct seq_file *sf, void *v)
8951 {
8952 struct task_group *tg = css_tg(seq_css(sf));
8953 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8954
8955 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8956 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8957 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8958
8959 return 0;
8960 }
8961 #endif /* CONFIG_CFS_BANDWIDTH */
8962 #endif /* CONFIG_FAIR_GROUP_SCHED */
8963
8964 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)8965 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8966 struct cftype *cft, s64 val)
8967 {
8968 return sched_group_set_rt_runtime(css_tg(css), val);
8969 }
8970
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)8971 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8972 struct cftype *cft)
8973 {
8974 return sched_group_rt_runtime(css_tg(css));
8975 }
8976
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)8977 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8978 struct cftype *cftype, u64 rt_period_us)
8979 {
8980 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8981 }
8982
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)8983 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8984 struct cftype *cft)
8985 {
8986 return sched_group_rt_period(css_tg(css));
8987 }
8988 #endif /* CONFIG_RT_GROUP_SCHED */
8989
8990 static struct cftype cpu_files[] = {
8991 #ifdef CONFIG_FAIR_GROUP_SCHED
8992 {
8993 .name = "shares",
8994 .read_u64 = cpu_shares_read_u64,
8995 .write_u64 = cpu_shares_write_u64,
8996 },
8997 #endif
8998 #ifdef CONFIG_CFS_BANDWIDTH
8999 {
9000 .name = "cfs_quota_us",
9001 .read_s64 = cpu_cfs_quota_read_s64,
9002 .write_s64 = cpu_cfs_quota_write_s64,
9003 },
9004 {
9005 .name = "cfs_period_us",
9006 .read_u64 = cpu_cfs_period_read_u64,
9007 .write_u64 = cpu_cfs_period_write_u64,
9008 },
9009 {
9010 .name = "stat",
9011 .seq_show = cpu_stats_show,
9012 },
9013 #endif
9014 #ifdef CONFIG_RT_GROUP_SCHED
9015 {
9016 .name = "rt_runtime_us",
9017 .read_s64 = cpu_rt_runtime_read,
9018 .write_s64 = cpu_rt_runtime_write,
9019 },
9020 {
9021 .name = "rt_period_us",
9022 .read_u64 = cpu_rt_period_read_uint,
9023 .write_u64 = cpu_rt_period_write_uint,
9024 },
9025 #endif
9026 { } /* terminate */
9027 };
9028
9029 struct cgroup_subsys cpu_cgrp_subsys = {
9030 .css_alloc = cpu_cgroup_css_alloc,
9031 .css_online = cpu_cgroup_css_online,
9032 .css_released = cpu_cgroup_css_released,
9033 .css_free = cpu_cgroup_css_free,
9034 .fork = cpu_cgroup_fork,
9035 .can_attach = cpu_cgroup_can_attach,
9036 .attach = cpu_cgroup_attach,
9037 .legacy_cftypes = cpu_files,
9038 .early_init = true,
9039 };
9040
9041 #endif /* CONFIG_CGROUP_SCHED */
9042
dump_cpu_task(int cpu)9043 void dump_cpu_task(int cpu)
9044 {
9045 pr_info("Task dump for CPU %d:\n", cpu);
9046 sched_show_task(cpu_curr(cpu));
9047 }
9048
9049 /*
9050 * Nice levels are multiplicative, with a gentle 10% change for every
9051 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9052 * nice 1, it will get ~10% less CPU time than another CPU-bound task
9053 * that remained on nice 0.
9054 *
9055 * The "10% effect" is relative and cumulative: from _any_ nice level,
9056 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9057 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9058 * If a task goes up by ~10% and another task goes down by ~10% then
9059 * the relative distance between them is ~25%.)
9060 */
9061 const int sched_prio_to_weight[40] = {
9062 /* -20 */ 88761, 71755, 56483, 46273, 36291,
9063 /* -15 */ 29154, 23254, 18705, 14949, 11916,
9064 /* -10 */ 9548, 7620, 6100, 4904, 3906,
9065 /* -5 */ 3121, 2501, 1991, 1586, 1277,
9066 /* 0 */ 1024, 820, 655, 526, 423,
9067 /* 5 */ 335, 272, 215, 172, 137,
9068 /* 10 */ 110, 87, 70, 56, 45,
9069 /* 15 */ 36, 29, 23, 18, 15,
9070 };
9071
9072 /*
9073 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9074 *
9075 * In cases where the weight does not change often, we can use the
9076 * precalculated inverse to speed up arithmetics by turning divisions
9077 * into multiplications:
9078 */
9079 const u32 sched_prio_to_wmult[40] = {
9080 /* -20 */ 48388, 59856, 76040, 92818, 118348,
9081 /* -15 */ 147320, 184698, 229616, 287308, 360437,
9082 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
9083 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
9084 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
9085 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
9086 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
9087 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9088 };
9089