• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  kernel/sched/core.c
3  *
4  *  Kernel scheduler and related syscalls
5  *
6  *  Copyright (C) 1991-2002  Linus Torvalds
7  *
8  *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
9  *		make semaphores SMP safe
10  *  1998-11-19	Implemented schedule_timeout() and related stuff
11  *		by Andrea Arcangeli
12  *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
13  *		hybrid priority-list and round-robin design with
14  *		an array-switch method of distributing timeslices
15  *		and per-CPU runqueues.  Cleanups and useful suggestions
16  *		by Davide Libenzi, preemptible kernel bits by Robert Love.
17  *  2003-09-03	Interactivity tuning by Con Kolivas.
18  *  2004-04-02	Scheduler domains code by Nick Piggin
19  *  2007-04-15  Work begun on replacing all interactivity tuning with a
20  *              fair scheduling design by Con Kolivas.
21  *  2007-05-05  Load balancing (smp-nice) and other improvements
22  *              by Peter Williams
23  *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
24  *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25  *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
26  *              Thomas Gleixner, Mike Kravetz
27  */
28 
29 #include <linux/kasan.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/nmi.h>
33 #include <linux/init.h>
34 #include <linux/uaccess.h>
35 #include <linux/highmem.h>
36 #include <linux/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/ctype.h>
71 #include <linux/ftrace.h>
72 #include <linux/slab.h>
73 #include <linux/init_task.h>
74 #include <linux/context_tracking.h>
75 #include <linux/compiler.h>
76 #include <linux/frame.h>
77 #include <linux/prefetch.h>
78 #include <linux/cpufreq_times.h>
79 
80 #include <asm/switch_to.h>
81 #include <asm/tlb.h>
82 #include <asm/irq_regs.h>
83 #include <asm/mutex.h>
84 #ifdef CONFIG_PARAVIRT
85 #include <asm/paravirt.h>
86 #endif
87 
88 #include "sched.h"
89 #include "../workqueue_internal.h"
90 #include "../smpboot.h"
91 
92 #define CREATE_TRACE_POINTS
93 #include <trace/events/sched.h>
94 #include "walt.h"
95 
96 DEFINE_MUTEX(sched_domains_mutex);
97 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
98 
99 static void update_rq_clock_task(struct rq *rq, s64 delta);
100 
update_rq_clock(struct rq * rq)101 void update_rq_clock(struct rq *rq)
102 {
103 	s64 delta;
104 
105 	lockdep_assert_held(&rq->lock);
106 
107 	if (rq->clock_skip_update & RQCF_ACT_SKIP)
108 		return;
109 
110 	delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
111 	if (delta < 0)
112 		return;
113 	rq->clock += delta;
114 	update_rq_clock_task(rq, delta);
115 }
116 
117 /*
118  * Debugging: various feature bits
119  */
120 
121 #define SCHED_FEAT(name, enabled)	\
122 	(1UL << __SCHED_FEAT_##name) * enabled |
123 
124 const_debug unsigned int sysctl_sched_features =
125 #include "features.h"
126 	0;
127 
128 #undef SCHED_FEAT
129 
130 /*
131  * Number of tasks to iterate in a single balance run.
132  * Limited because this is done with IRQs disabled.
133  */
134 const_debug unsigned int sysctl_sched_nr_migrate = 32;
135 
136 /*
137  * period over which we average the RT time consumption, measured
138  * in ms.
139  *
140  * default: 1s
141  */
142 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
143 
144 /*
145  * period over which we measure -rt task cpu usage in us.
146  * default: 1s
147  */
148 unsigned int sysctl_sched_rt_period = 1000000;
149 
150 __read_mostly int scheduler_running;
151 
152 /*
153  * part of the period that we allow rt tasks to run in us.
154  * default: 0.95s
155  */
156 int sysctl_sched_rt_runtime = 950000;
157 
158 /* cpus with isolated domains */
159 cpumask_var_t cpu_isolated_map;
160 
161 struct rq *
lock_rq_of(struct task_struct * p,struct rq_flags * flags)162 lock_rq_of(struct task_struct *p, struct rq_flags *flags)
163 {
164 	return task_rq_lock(p, flags);
165 }
166 
167 void
unlock_rq_of(struct rq * rq,struct task_struct * p,struct rq_flags * flags)168 unlock_rq_of(struct rq *rq, struct task_struct *p, struct rq_flags *flags)
169 {
170 	task_rq_unlock(rq, p, flags);
171 }
172 
173 /*
174  * this_rq_lock - lock this runqueue and disable interrupts.
175  */
this_rq_lock(void)176 static struct rq *this_rq_lock(void)
177 	__acquires(rq->lock)
178 {
179 	struct rq *rq;
180 
181 	local_irq_disable();
182 	rq = this_rq();
183 	raw_spin_lock(&rq->lock);
184 
185 	return rq;
186 }
187 
188 /*
189  * __task_rq_lock - lock the rq @p resides on.
190  */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)191 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
192 	__acquires(rq->lock)
193 {
194 	struct rq *rq;
195 
196 	lockdep_assert_held(&p->pi_lock);
197 
198 	for (;;) {
199 		rq = task_rq(p);
200 		raw_spin_lock(&rq->lock);
201 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
202 			rf->cookie = lockdep_pin_lock(&rq->lock);
203 			return rq;
204 		}
205 		raw_spin_unlock(&rq->lock);
206 
207 		while (unlikely(task_on_rq_migrating(p)))
208 			cpu_relax();
209 	}
210 }
211 
212 /*
213  * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
214  */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)215 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
216 	__acquires(p->pi_lock)
217 	__acquires(rq->lock)
218 {
219 	struct rq *rq;
220 
221 	for (;;) {
222 		raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
223 		rq = task_rq(p);
224 		raw_spin_lock(&rq->lock);
225 		/*
226 		 *	move_queued_task()		task_rq_lock()
227 		 *
228 		 *	ACQUIRE (rq->lock)
229 		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
230 		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
231 		 *	[S] ->cpu = new_cpu		[L] task_rq()
232 		 *					[L] ->on_rq
233 		 *	RELEASE (rq->lock)
234 		 *
235 		 * If we observe the old cpu in task_rq_lock, the acquire of
236 		 * the old rq->lock will fully serialize against the stores.
237 		 *
238 		 * If we observe the new cpu in task_rq_lock, the acquire will
239 		 * pair with the WMB to ensure we must then also see migrating.
240 		 */
241 		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
242 			rf->cookie = lockdep_pin_lock(&rq->lock);
243 			return rq;
244 		}
245 		raw_spin_unlock(&rq->lock);
246 		raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
247 
248 		while (unlikely(task_on_rq_migrating(p)))
249 			cpu_relax();
250 	}
251 }
252 
253 #ifdef CONFIG_SCHED_HRTICK
254 /*
255  * Use HR-timers to deliver accurate preemption points.
256  */
257 
hrtick_clear(struct rq * rq)258 static void hrtick_clear(struct rq *rq)
259 {
260 	if (hrtimer_active(&rq->hrtick_timer))
261 		hrtimer_cancel(&rq->hrtick_timer);
262 }
263 
264 /*
265  * High-resolution timer tick.
266  * Runs from hardirq context with interrupts disabled.
267  */
hrtick(struct hrtimer * timer)268 static enum hrtimer_restart hrtick(struct hrtimer *timer)
269 {
270 	struct rq *rq = container_of(timer, struct rq, hrtick_timer);
271 
272 	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
273 
274 	raw_spin_lock(&rq->lock);
275 	update_rq_clock(rq);
276 	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
277 	raw_spin_unlock(&rq->lock);
278 
279 	return HRTIMER_NORESTART;
280 }
281 
282 #ifdef CONFIG_SMP
283 
__hrtick_restart(struct rq * rq)284 static void __hrtick_restart(struct rq *rq)
285 {
286 	struct hrtimer *timer = &rq->hrtick_timer;
287 
288 	hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
289 }
290 
291 /*
292  * called from hardirq (IPI) context
293  */
__hrtick_start(void * arg)294 static void __hrtick_start(void *arg)
295 {
296 	struct rq *rq = arg;
297 
298 	raw_spin_lock(&rq->lock);
299 	__hrtick_restart(rq);
300 	rq->hrtick_csd_pending = 0;
301 	raw_spin_unlock(&rq->lock);
302 }
303 
304 /*
305  * Called to set the hrtick timer state.
306  *
307  * called with rq->lock held and irqs disabled
308  */
hrtick_start(struct rq * rq,u64 delay)309 void hrtick_start(struct rq *rq, u64 delay)
310 {
311 	struct hrtimer *timer = &rq->hrtick_timer;
312 	ktime_t time;
313 	s64 delta;
314 
315 	/*
316 	 * Don't schedule slices shorter than 10000ns, that just
317 	 * doesn't make sense and can cause timer DoS.
318 	 */
319 	delta = max_t(s64, delay, 10000LL);
320 	time = ktime_add_ns(timer->base->get_time(), delta);
321 
322 	hrtimer_set_expires(timer, time);
323 
324 	if (rq == this_rq()) {
325 		__hrtick_restart(rq);
326 	} else if (!rq->hrtick_csd_pending) {
327 		smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
328 		rq->hrtick_csd_pending = 1;
329 	}
330 }
331 
332 #else
333 /*
334  * Called to set the hrtick timer state.
335  *
336  * called with rq->lock held and irqs disabled
337  */
hrtick_start(struct rq * rq,u64 delay)338 void hrtick_start(struct rq *rq, u64 delay)
339 {
340 	/*
341 	 * Don't schedule slices shorter than 10000ns, that just
342 	 * doesn't make sense. Rely on vruntime for fairness.
343 	 */
344 	delay = max_t(u64, delay, 10000LL);
345 	hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
346 		      HRTIMER_MODE_REL_PINNED);
347 }
348 #endif /* CONFIG_SMP */
349 
init_rq_hrtick(struct rq * rq)350 static void init_rq_hrtick(struct rq *rq)
351 {
352 #ifdef CONFIG_SMP
353 	rq->hrtick_csd_pending = 0;
354 
355 	rq->hrtick_csd.flags = 0;
356 	rq->hrtick_csd.func = __hrtick_start;
357 	rq->hrtick_csd.info = rq;
358 #endif
359 
360 	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
361 	rq->hrtick_timer.function = hrtick;
362 }
363 #else	/* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)364 static inline void hrtick_clear(struct rq *rq)
365 {
366 }
367 
init_rq_hrtick(struct rq * rq)368 static inline void init_rq_hrtick(struct rq *rq)
369 {
370 }
371 #endif	/* CONFIG_SCHED_HRTICK */
372 
373 /*
374  * cmpxchg based fetch_or, macro so it works for different integer types
375  */
376 #define fetch_or(ptr, mask)						\
377 	({								\
378 		typeof(ptr) _ptr = (ptr);				\
379 		typeof(mask) _mask = (mask);				\
380 		typeof(*_ptr) _old, _val = *_ptr;			\
381 									\
382 		for (;;) {						\
383 			_old = cmpxchg(_ptr, _val, _val | _mask);	\
384 			if (_old == _val)				\
385 				break;					\
386 			_val = _old;					\
387 		}							\
388 	_old;								\
389 })
390 
391 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
392 /*
393  * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
394  * this avoids any races wrt polling state changes and thereby avoids
395  * spurious IPIs.
396  */
set_nr_and_not_polling(struct task_struct * p)397 static bool set_nr_and_not_polling(struct task_struct *p)
398 {
399 	struct thread_info *ti = task_thread_info(p);
400 	return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
401 }
402 
403 /*
404  * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
405  *
406  * If this returns true, then the idle task promises to call
407  * sched_ttwu_pending() and reschedule soon.
408  */
set_nr_if_polling(struct task_struct * p)409 static bool set_nr_if_polling(struct task_struct *p)
410 {
411 	struct thread_info *ti = task_thread_info(p);
412 	typeof(ti->flags) old, val = READ_ONCE(ti->flags);
413 
414 	for (;;) {
415 		if (!(val & _TIF_POLLING_NRFLAG))
416 			return false;
417 		if (val & _TIF_NEED_RESCHED)
418 			return true;
419 		old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
420 		if (old == val)
421 			break;
422 		val = old;
423 	}
424 	return true;
425 }
426 
427 #else
set_nr_and_not_polling(struct task_struct * p)428 static bool set_nr_and_not_polling(struct task_struct *p)
429 {
430 	set_tsk_need_resched(p);
431 	return true;
432 }
433 
434 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)435 static bool set_nr_if_polling(struct task_struct *p)
436 {
437 	return false;
438 }
439 #endif
440 #endif
441 
wake_q_add(struct wake_q_head * head,struct task_struct * task)442 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
443 {
444 	struct wake_q_node *node = &task->wake_q;
445 
446 	/*
447 	 * Atomically grab the task, if ->wake_q is !nil already it means
448 	 * its already queued (either by us or someone else) and will get the
449 	 * wakeup due to that.
450 	 *
451 	 * This cmpxchg() implies a full barrier, which pairs with the write
452 	 * barrier implied by the wakeup in wake_up_q().
453 	 */
454 	if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
455 		return;
456 
457 	get_task_struct(task);
458 
459 	/*
460 	 * The head is context local, there can be no concurrency.
461 	 */
462 	*head->lastp = node;
463 	head->lastp = &node->next;
464 }
465 
wake_up_q(struct wake_q_head * head)466 void wake_up_q(struct wake_q_head *head)
467 {
468 	struct wake_q_node *node = head->first;
469 
470 	while (node != WAKE_Q_TAIL) {
471 		struct task_struct *task;
472 
473 		task = container_of(node, struct task_struct, wake_q);
474 		BUG_ON(!task);
475 		/* task can safely be re-inserted now */
476 		node = node->next;
477 		task->wake_q.next = NULL;
478 
479 		/*
480 		 * wake_up_process() implies a wmb() to pair with the queueing
481 		 * in wake_q_add() so as not to miss wakeups.
482 		 */
483 		wake_up_process(task);
484 		put_task_struct(task);
485 	}
486 }
487 
488 /*
489  * resched_curr - mark rq's current task 'to be rescheduled now'.
490  *
491  * On UP this means the setting of the need_resched flag, on SMP it
492  * might also involve a cross-CPU call to trigger the scheduler on
493  * the target CPU.
494  */
resched_curr(struct rq * rq)495 void resched_curr(struct rq *rq)
496 {
497 	struct task_struct *curr = rq->curr;
498 	int cpu;
499 
500 	lockdep_assert_held(&rq->lock);
501 
502 	if (test_tsk_need_resched(curr))
503 		return;
504 
505 	cpu = cpu_of(rq);
506 
507 	if (cpu == smp_processor_id()) {
508 		set_tsk_need_resched(curr);
509 		set_preempt_need_resched();
510 		return;
511 	}
512 
513 	if (set_nr_and_not_polling(curr))
514 		smp_send_reschedule(cpu);
515 	else
516 		trace_sched_wake_idle_without_ipi(cpu);
517 }
518 
resched_cpu(int cpu)519 void resched_cpu(int cpu)
520 {
521 	struct rq *rq = cpu_rq(cpu);
522 	unsigned long flags;
523 
524 	raw_spin_lock_irqsave(&rq->lock, flags);
525 	if (cpu_online(cpu) || cpu == smp_processor_id())
526 		resched_curr(rq);
527 	raw_spin_unlock_irqrestore(&rq->lock, flags);
528 }
529 
530 #ifdef CONFIG_SMP
531 #ifdef CONFIG_NO_HZ_COMMON
532 /*
533  * In the semi idle case, use the nearest busy cpu for migrating timers
534  * from an idle cpu.  This is good for power-savings.
535  *
536  * We don't do similar optimization for completely idle system, as
537  * selecting an idle cpu will add more delays to the timers than intended
538  * (as that cpu's timer base may not be uptodate wrt jiffies etc).
539  */
get_nohz_timer_target(void)540 int get_nohz_timer_target(void)
541 {
542 	int i, cpu = smp_processor_id();
543 	struct sched_domain *sd;
544 
545 	if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
546 		return cpu;
547 
548 	rcu_read_lock();
549 	for_each_domain(cpu, sd) {
550 		for_each_cpu(i, sched_domain_span(sd)) {
551 			if (cpu == i)
552 				continue;
553 
554 			if (!idle_cpu(i) && is_housekeeping_cpu(i)) {
555 				cpu = i;
556 				goto unlock;
557 			}
558 		}
559 	}
560 
561 	if (!is_housekeeping_cpu(cpu))
562 		cpu = housekeeping_any_cpu();
563 unlock:
564 	rcu_read_unlock();
565 	return cpu;
566 }
567 /*
568  * When add_timer_on() enqueues a timer into the timer wheel of an
569  * idle CPU then this timer might expire before the next timer event
570  * which is scheduled to wake up that CPU. In case of a completely
571  * idle system the next event might even be infinite time into the
572  * future. wake_up_idle_cpu() ensures that the CPU is woken up and
573  * leaves the inner idle loop so the newly added timer is taken into
574  * account when the CPU goes back to idle and evaluates the timer
575  * wheel for the next timer event.
576  */
wake_up_idle_cpu(int cpu)577 static void wake_up_idle_cpu(int cpu)
578 {
579 	struct rq *rq = cpu_rq(cpu);
580 
581 	if (cpu == smp_processor_id())
582 		return;
583 
584 	if (set_nr_and_not_polling(rq->idle))
585 		smp_send_reschedule(cpu);
586 	else
587 		trace_sched_wake_idle_without_ipi(cpu);
588 }
589 
wake_up_full_nohz_cpu(int cpu)590 static bool wake_up_full_nohz_cpu(int cpu)
591 {
592 	/*
593 	 * We just need the target to call irq_exit() and re-evaluate
594 	 * the next tick. The nohz full kick at least implies that.
595 	 * If needed we can still optimize that later with an
596 	 * empty IRQ.
597 	 */
598 	if (cpu_is_offline(cpu))
599 		return true;  /* Don't try to wake offline CPUs. */
600 	if (tick_nohz_full_cpu(cpu)) {
601 		if (cpu != smp_processor_id() ||
602 		    tick_nohz_tick_stopped())
603 			tick_nohz_full_kick_cpu(cpu);
604 		return true;
605 	}
606 
607 	return false;
608 }
609 
610 /*
611  * Wake up the specified CPU.  If the CPU is going offline, it is the
612  * caller's responsibility to deal with the lost wakeup, for example,
613  * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
614  */
wake_up_nohz_cpu(int cpu)615 void wake_up_nohz_cpu(int cpu)
616 {
617 	if (!wake_up_full_nohz_cpu(cpu))
618 		wake_up_idle_cpu(cpu);
619 }
620 
got_nohz_idle_kick(void)621 static inline bool got_nohz_idle_kick(void)
622 {
623 	int cpu = smp_processor_id();
624 
625 	if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
626 		return false;
627 
628 	if (idle_cpu(cpu) && !need_resched())
629 		return true;
630 
631 	/*
632 	 * We can't run Idle Load Balance on this CPU for this time so we
633 	 * cancel it and clear NOHZ_BALANCE_KICK
634 	 */
635 	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
636 	return false;
637 }
638 
639 #else /* CONFIG_NO_HZ_COMMON */
640 
got_nohz_idle_kick(void)641 static inline bool got_nohz_idle_kick(void)
642 {
643 	return false;
644 }
645 
646 #endif /* CONFIG_NO_HZ_COMMON */
647 
648 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)649 bool sched_can_stop_tick(struct rq *rq)
650 {
651 	int fifo_nr_running;
652 
653 	/* Deadline tasks, even if single, need the tick */
654 	if (rq->dl.dl_nr_running)
655 		return false;
656 
657 	/*
658 	 * If there are more than one RR tasks, we need the tick to effect the
659 	 * actual RR behaviour.
660 	 */
661 	if (rq->rt.rr_nr_running) {
662 		if (rq->rt.rr_nr_running == 1)
663 			return true;
664 		else
665 			return false;
666 	}
667 
668 	/*
669 	 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
670 	 * forced preemption between FIFO tasks.
671 	 */
672 	fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
673 	if (fifo_nr_running)
674 		return true;
675 
676 	/*
677 	 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
678 	 * if there's more than one we need the tick for involuntary
679 	 * preemption.
680 	 */
681 	if (rq->nr_running > 1)
682 		return false;
683 
684 	return true;
685 }
686 #endif /* CONFIG_NO_HZ_FULL */
687 
sched_avg_update(struct rq * rq)688 void sched_avg_update(struct rq *rq)
689 {
690 	s64 period = sched_avg_period();
691 
692 	while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
693 		/*
694 		 * Inline assembly required to prevent the compiler
695 		 * optimising this loop into a divmod call.
696 		 * See __iter_div_u64_rem() for another example of this.
697 		 */
698 		asm("" : "+rm" (rq->age_stamp));
699 		rq->age_stamp += period;
700 		rq->rt_avg /= 2;
701 	}
702 }
703 
704 #endif /* CONFIG_SMP */
705 
706 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
707 			(defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
708 /*
709  * Iterate task_group tree rooted at *from, calling @down when first entering a
710  * node and @up when leaving it for the final time.
711  *
712  * Caller must hold rcu_lock or sufficient equivalent.
713  */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)714 int walk_tg_tree_from(struct task_group *from,
715 			     tg_visitor down, tg_visitor up, void *data)
716 {
717 	struct task_group *parent, *child;
718 	int ret;
719 
720 	parent = from;
721 
722 down:
723 	ret = (*down)(parent, data);
724 	if (ret)
725 		goto out;
726 	list_for_each_entry_rcu(child, &parent->children, siblings) {
727 		parent = child;
728 		goto down;
729 
730 up:
731 		continue;
732 	}
733 	ret = (*up)(parent, data);
734 	if (ret || parent == from)
735 		goto out;
736 
737 	child = parent;
738 	parent = parent->parent;
739 	if (parent)
740 		goto up;
741 out:
742 	return ret;
743 }
744 
tg_nop(struct task_group * tg,void * data)745 int tg_nop(struct task_group *tg, void *data)
746 {
747 	return 0;
748 }
749 #endif
750 
set_load_weight(struct task_struct * p)751 static void set_load_weight(struct task_struct *p)
752 {
753 	int prio = p->static_prio - MAX_RT_PRIO;
754 	struct load_weight *load = &p->se.load;
755 
756 	/*
757 	 * SCHED_IDLE tasks get minimal weight:
758 	 */
759 	if (idle_policy(p->policy)) {
760 		load->weight = scale_load(WEIGHT_IDLEPRIO);
761 		load->inv_weight = WMULT_IDLEPRIO;
762 		return;
763 	}
764 
765 	load->weight = scale_load(sched_prio_to_weight[prio]);
766 	load->inv_weight = sched_prio_to_wmult[prio];
767 }
768 
enqueue_task(struct rq * rq,struct task_struct * p,int flags)769 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
770 {
771 	update_rq_clock(rq);
772 	if (!(flags & ENQUEUE_RESTORE))
773 		sched_info_queued(rq, p);
774 	p->sched_class->enqueue_task(rq, p, flags);
775 }
776 
dequeue_task(struct rq * rq,struct task_struct * p,int flags)777 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
778 {
779 	update_rq_clock(rq);
780 	if (!(flags & DEQUEUE_SAVE))
781 		sched_info_dequeued(rq, p);
782 	p->sched_class->dequeue_task(rq, p, flags);
783 }
784 
activate_task(struct rq * rq,struct task_struct * p,int flags)785 void activate_task(struct rq *rq, struct task_struct *p, int flags)
786 {
787 	if (task_contributes_to_load(p))
788 		rq->nr_uninterruptible--;
789 
790 	enqueue_task(rq, p, flags);
791 }
792 
deactivate_task(struct rq * rq,struct task_struct * p,int flags)793 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
794 {
795 	if (task_contributes_to_load(p))
796 		rq->nr_uninterruptible++;
797 
798 	dequeue_task(rq, p, flags);
799 }
800 
update_rq_clock_task(struct rq * rq,s64 delta)801 static void update_rq_clock_task(struct rq *rq, s64 delta)
802 {
803 /*
804  * In theory, the compile should just see 0 here, and optimize out the call
805  * to sched_rt_avg_update. But I don't trust it...
806  */
807 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
808 	s64 steal = 0, irq_delta = 0;
809 #endif
810 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
811 	irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
812 
813 	/*
814 	 * Since irq_time is only updated on {soft,}irq_exit, we might run into
815 	 * this case when a previous update_rq_clock() happened inside a
816 	 * {soft,}irq region.
817 	 *
818 	 * When this happens, we stop ->clock_task and only update the
819 	 * prev_irq_time stamp to account for the part that fit, so that a next
820 	 * update will consume the rest. This ensures ->clock_task is
821 	 * monotonic.
822 	 *
823 	 * It does however cause some slight miss-attribution of {soft,}irq
824 	 * time, a more accurate solution would be to update the irq_time using
825 	 * the current rq->clock timestamp, except that would require using
826 	 * atomic ops.
827 	 */
828 	if (irq_delta > delta)
829 		irq_delta = delta;
830 
831 	rq->prev_irq_time += irq_delta;
832 	delta -= irq_delta;
833 #endif
834 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
835 	if (static_key_false((&paravirt_steal_rq_enabled))) {
836 		steal = paravirt_steal_clock(cpu_of(rq));
837 		steal -= rq->prev_steal_time_rq;
838 
839 		if (unlikely(steal > delta))
840 			steal = delta;
841 
842 		rq->prev_steal_time_rq += steal;
843 		delta -= steal;
844 	}
845 #endif
846 
847 	rq->clock_task += delta;
848 
849 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
850 	if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
851 		sched_rt_avg_update(rq, irq_delta + steal);
852 #endif
853 }
854 
sched_set_stop_task(int cpu,struct task_struct * stop)855 void sched_set_stop_task(int cpu, struct task_struct *stop)
856 {
857 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
858 	struct task_struct *old_stop = cpu_rq(cpu)->stop;
859 
860 	if (stop) {
861 		/*
862 		 * Make it appear like a SCHED_FIFO task, its something
863 		 * userspace knows about and won't get confused about.
864 		 *
865 		 * Also, it will make PI more or less work without too
866 		 * much confusion -- but then, stop work should not
867 		 * rely on PI working anyway.
868 		 */
869 		sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
870 
871 		stop->sched_class = &stop_sched_class;
872 	}
873 
874 	cpu_rq(cpu)->stop = stop;
875 
876 	if (old_stop) {
877 		/*
878 		 * Reset it back to a normal scheduling class so that
879 		 * it can die in pieces.
880 		 */
881 		old_stop->sched_class = &rt_sched_class;
882 	}
883 }
884 
885 /*
886  * __normal_prio - return the priority that is based on the static prio
887  */
__normal_prio(struct task_struct * p)888 static inline int __normal_prio(struct task_struct *p)
889 {
890 	return p->static_prio;
891 }
892 
893 /*
894  * Calculate the expected normal priority: i.e. priority
895  * without taking RT-inheritance into account. Might be
896  * boosted by interactivity modifiers. Changes upon fork,
897  * setprio syscalls, and whenever the interactivity
898  * estimator recalculates.
899  */
normal_prio(struct task_struct * p)900 static inline int normal_prio(struct task_struct *p)
901 {
902 	int prio;
903 
904 	if (task_has_dl_policy(p))
905 		prio = MAX_DL_PRIO-1;
906 	else if (task_has_rt_policy(p))
907 		prio = MAX_RT_PRIO-1 - p->rt_priority;
908 	else
909 		prio = __normal_prio(p);
910 	return prio;
911 }
912 
913 /*
914  * Calculate the current priority, i.e. the priority
915  * taken into account by the scheduler. This value might
916  * be boosted by RT tasks, or might be boosted by
917  * interactivity modifiers. Will be RT if the task got
918  * RT-boosted. If not then it returns p->normal_prio.
919  */
effective_prio(struct task_struct * p)920 static int effective_prio(struct task_struct *p)
921 {
922 	p->normal_prio = normal_prio(p);
923 	/*
924 	 * If we are RT tasks or we were boosted to RT priority,
925 	 * keep the priority unchanged. Otherwise, update priority
926 	 * to the normal priority:
927 	 */
928 	if (!rt_prio(p->prio))
929 		return p->normal_prio;
930 	return p->prio;
931 }
932 
933 /**
934  * task_curr - is this task currently executing on a CPU?
935  * @p: the task in question.
936  *
937  * Return: 1 if the task is currently executing. 0 otherwise.
938  */
task_curr(const struct task_struct * p)939 inline int task_curr(const struct task_struct *p)
940 {
941 	return cpu_curr(task_cpu(p)) == p;
942 }
943 
944 /*
945  * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
946  * use the balance_callback list if you want balancing.
947  *
948  * this means any call to check_class_changed() must be followed by a call to
949  * balance_callback().
950  */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)951 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
952 				       const struct sched_class *prev_class,
953 				       int oldprio)
954 {
955 	if (prev_class != p->sched_class) {
956 		if (prev_class->switched_from)
957 			prev_class->switched_from(rq, p);
958 
959 		p->sched_class->switched_to(rq, p);
960 	} else if (oldprio != p->prio || dl_task(p))
961 		p->sched_class->prio_changed(rq, p, oldprio);
962 }
963 
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)964 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
965 {
966 	const struct sched_class *class;
967 
968 	if (p->sched_class == rq->curr->sched_class) {
969 		rq->curr->sched_class->check_preempt_curr(rq, p, flags);
970 	} else {
971 		for_each_class(class) {
972 			if (class == rq->curr->sched_class)
973 				break;
974 			if (class == p->sched_class) {
975 				resched_curr(rq);
976 				break;
977 			}
978 		}
979 	}
980 
981 	/*
982 	 * A queue event has occurred, and we're going to schedule.  In
983 	 * this case, we can save a useless back to back clock update.
984 	 */
985 	if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
986 		rq_clock_skip_update(rq, true);
987 }
988 
989 #ifdef CONFIG_SMP
990 /*
991  * This is how migration works:
992  *
993  * 1) we invoke migration_cpu_stop() on the target CPU using
994  *    stop_one_cpu().
995  * 2) stopper starts to run (implicitly forcing the migrated thread
996  *    off the CPU)
997  * 3) it checks whether the migrated task is still in the wrong runqueue.
998  * 4) if it's in the wrong runqueue then the migration thread removes
999  *    it and puts it into the right queue.
1000  * 5) stopper completes and stop_one_cpu() returns and the migration
1001  *    is done.
1002  */
1003 
1004 /*
1005  * move_queued_task - move a queued task to new rq.
1006  *
1007  * Returns (locked) new rq. Old rq's lock is released.
1008  */
move_queued_task(struct rq * rq,struct task_struct * p,int new_cpu)1009 static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
1010 {
1011 	lockdep_assert_held(&rq->lock);
1012 
1013 	p->on_rq = TASK_ON_RQ_MIGRATING;
1014 	dequeue_task(rq, p, 0);
1015 	double_lock_balance(rq, cpu_rq(new_cpu));
1016 	set_task_cpu(p, new_cpu);
1017 	double_unlock_balance(rq, cpu_rq(new_cpu));
1018 	raw_spin_unlock(&rq->lock);
1019 
1020 	rq = cpu_rq(new_cpu);
1021 
1022 	raw_spin_lock(&rq->lock);
1023 	BUG_ON(task_cpu(p) != new_cpu);
1024 	enqueue_task(rq, p, 0);
1025 	p->on_rq = TASK_ON_RQ_QUEUED;
1026 	check_preempt_curr(rq, p, 0);
1027 
1028 	return rq;
1029 }
1030 
1031 struct migration_arg {
1032 	struct task_struct *task;
1033 	int dest_cpu;
1034 };
1035 
1036 /*
1037  * Move (not current) task off this cpu, onto dest cpu. We're doing
1038  * this because either it can't run here any more (set_cpus_allowed()
1039  * away from this CPU, or CPU going down), or because we're
1040  * attempting to rebalance this task on exec (sched_exec).
1041  *
1042  * So we race with normal scheduler movements, but that's OK, as long
1043  * as the task is no longer on this CPU.
1044  */
__migrate_task(struct rq * rq,struct task_struct * p,int dest_cpu)1045 static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
1046 {
1047 	if (unlikely(!cpu_active(dest_cpu)))
1048 		return rq;
1049 
1050 	/* Affinity changed (again). */
1051 	if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1052 		return rq;
1053 
1054 	rq = move_queued_task(rq, p, dest_cpu);
1055 
1056 	return rq;
1057 }
1058 
1059 /*
1060  * migration_cpu_stop - this will be executed by a highprio stopper thread
1061  * and performs thread migration by bumping thread off CPU then
1062  * 'pushing' onto another runqueue.
1063  */
migration_cpu_stop(void * data)1064 static int migration_cpu_stop(void *data)
1065 {
1066 	struct migration_arg *arg = data;
1067 	struct task_struct *p = arg->task;
1068 	struct rq *rq = this_rq();
1069 
1070 	/*
1071 	 * The original target cpu might have gone down and we might
1072 	 * be on another cpu but it doesn't matter.
1073 	 */
1074 	local_irq_disable();
1075 	/*
1076 	 * We need to explicitly wake pending tasks before running
1077 	 * __migrate_task() such that we will not miss enforcing cpus_allowed
1078 	 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1079 	 */
1080 	sched_ttwu_pending();
1081 
1082 	raw_spin_lock(&p->pi_lock);
1083 	raw_spin_lock(&rq->lock);
1084 	/*
1085 	 * If task_rq(p) != rq, it cannot be migrated here, because we're
1086 	 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1087 	 * we're holding p->pi_lock.
1088 	 */
1089 	if (task_rq(p) == rq) {
1090 		if (task_on_rq_queued(p))
1091 			rq = __migrate_task(rq, p, arg->dest_cpu);
1092 		else
1093 			p->wake_cpu = arg->dest_cpu;
1094 	}
1095 	raw_spin_unlock(&rq->lock);
1096 	raw_spin_unlock(&p->pi_lock);
1097 
1098 	local_irq_enable();
1099 	return 0;
1100 }
1101 
1102 /*
1103  * sched_class::set_cpus_allowed must do the below, but is not required to
1104  * actually call this function.
1105  */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask)1106 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1107 {
1108 	cpumask_copy(&p->cpus_allowed, new_mask);
1109 	p->nr_cpus_allowed = cpumask_weight(new_mask);
1110 }
1111 
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1112 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1113 {
1114 	struct rq *rq = task_rq(p);
1115 	bool queued, running;
1116 
1117 	lockdep_assert_held(&p->pi_lock);
1118 
1119 	queued = task_on_rq_queued(p);
1120 	running = task_current(rq, p);
1121 
1122 	if (queued) {
1123 		/*
1124 		 * Because __kthread_bind() calls this on blocked tasks without
1125 		 * holding rq->lock.
1126 		 */
1127 		lockdep_assert_held(&rq->lock);
1128 		dequeue_task(rq, p, DEQUEUE_SAVE);
1129 	}
1130 	if (running)
1131 		put_prev_task(rq, p);
1132 
1133 	p->sched_class->set_cpus_allowed(p, new_mask);
1134 
1135 	if (queued)
1136 		enqueue_task(rq, p, ENQUEUE_RESTORE);
1137 	if (running)
1138 		set_curr_task(rq, p);
1139 }
1140 
1141 /*
1142  * Change a given task's CPU affinity. Migrate the thread to a
1143  * proper CPU and schedule it away if the CPU it's executing on
1144  * is removed from the allowed bitmask.
1145  *
1146  * NOTE: the caller must have a valid reference to the task, the
1147  * task must not exit() & deallocate itself prematurely. The
1148  * call is not atomic; no spinlocks may be held.
1149  */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1150 static int __set_cpus_allowed_ptr(struct task_struct *p,
1151 				  const struct cpumask *new_mask, bool check)
1152 {
1153 	const struct cpumask *cpu_valid_mask = cpu_active_mask;
1154 	unsigned int dest_cpu;
1155 	struct rq_flags rf;
1156 	struct rq *rq;
1157 	int ret = 0;
1158 
1159 	rq = task_rq_lock(p, &rf);
1160 	update_rq_clock(rq);
1161 
1162 	if (p->flags & PF_KTHREAD) {
1163 		/*
1164 		 * Kernel threads are allowed on online && !active CPUs
1165 		 */
1166 		cpu_valid_mask = cpu_online_mask;
1167 	}
1168 
1169 	/*
1170 	 * Must re-check here, to close a race against __kthread_bind(),
1171 	 * sched_setaffinity() is not guaranteed to observe the flag.
1172 	 */
1173 	if (check && (p->flags & PF_NO_SETAFFINITY)) {
1174 		ret = -EINVAL;
1175 		goto out;
1176 	}
1177 
1178 	if (cpumask_equal(&p->cpus_allowed, new_mask))
1179 		goto out;
1180 
1181 	if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1182 		ret = -EINVAL;
1183 		goto out;
1184 	}
1185 
1186 	do_set_cpus_allowed(p, new_mask);
1187 
1188 	if (p->flags & PF_KTHREAD) {
1189 		/*
1190 		 * For kernel threads that do indeed end up on online &&
1191 		 * !active we want to ensure they are strict per-cpu threads.
1192 		 */
1193 		WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1194 			!cpumask_intersects(new_mask, cpu_active_mask) &&
1195 			p->nr_cpus_allowed != 1);
1196 	}
1197 
1198 	/* Can the task run on the task's current CPU? If so, we're done */
1199 	if (cpumask_test_cpu(task_cpu(p), new_mask))
1200 		goto out;
1201 
1202 	dest_cpu = cpumask_any_and(cpu_valid_mask, new_mask);
1203 	if (task_running(rq, p) || p->state == TASK_WAKING) {
1204 		struct migration_arg arg = { p, dest_cpu };
1205 		/* Need help from migration thread: drop lock and wait. */
1206 		task_rq_unlock(rq, p, &rf);
1207 		stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1208 		tlb_migrate_finish(p->mm);
1209 		return 0;
1210 	} else if (task_on_rq_queued(p)) {
1211 		/*
1212 		 * OK, since we're going to drop the lock immediately
1213 		 * afterwards anyway.
1214 		 */
1215 		lockdep_unpin_lock(&rq->lock, rf.cookie);
1216 		rq = move_queued_task(rq, p, dest_cpu);
1217 		lockdep_repin_lock(&rq->lock, rf.cookie);
1218 	}
1219 out:
1220 	task_rq_unlock(rq, p, &rf);
1221 
1222 	return ret;
1223 }
1224 
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)1225 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1226 {
1227 	return __set_cpus_allowed_ptr(p, new_mask, false);
1228 }
1229 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1230 
set_task_cpu(struct task_struct * p,unsigned int new_cpu)1231 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1232 {
1233 #ifdef CONFIG_SCHED_DEBUG
1234 	/*
1235 	 * We should never call set_task_cpu() on a blocked task,
1236 	 * ttwu() will sort out the placement.
1237 	 */
1238 	WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1239 			!p->on_rq);
1240 
1241 	/*
1242 	 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1243 	 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1244 	 * time relying on p->on_rq.
1245 	 */
1246 	WARN_ON_ONCE(p->state == TASK_RUNNING &&
1247 		     p->sched_class == &fair_sched_class &&
1248 		     (p->on_rq && !task_on_rq_migrating(p)));
1249 
1250 #ifdef CONFIG_LOCKDEP
1251 	/*
1252 	 * The caller should hold either p->pi_lock or rq->lock, when changing
1253 	 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1254 	 *
1255 	 * sched_move_task() holds both and thus holding either pins the cgroup,
1256 	 * see task_group().
1257 	 *
1258 	 * Furthermore, all task_rq users should acquire both locks, see
1259 	 * task_rq_lock().
1260 	 */
1261 	WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1262 				      lockdep_is_held(&task_rq(p)->lock)));
1263 #endif
1264 #endif
1265 
1266 	trace_sched_migrate_task(p, new_cpu);
1267 
1268 	if (task_cpu(p) != new_cpu) {
1269 		if (p->sched_class->migrate_task_rq)
1270 			p->sched_class->migrate_task_rq(p);
1271 		p->se.nr_migrations++;
1272 		perf_event_task_migrate(p);
1273 
1274 		walt_fixup_busy_time(p, new_cpu);
1275 	}
1276 
1277 	__set_task_cpu(p, new_cpu);
1278 }
1279 
__migrate_swap_task(struct task_struct * p,int cpu)1280 static void __migrate_swap_task(struct task_struct *p, int cpu)
1281 {
1282 	if (task_on_rq_queued(p)) {
1283 		struct rq *src_rq, *dst_rq;
1284 
1285 		src_rq = task_rq(p);
1286 		dst_rq = cpu_rq(cpu);
1287 
1288 		p->on_rq = TASK_ON_RQ_MIGRATING;
1289 		deactivate_task(src_rq, p, 0);
1290 		p->on_rq = TASK_ON_RQ_MIGRATING;
1291 		set_task_cpu(p, cpu);
1292 		p->on_rq = TASK_ON_RQ_QUEUED;
1293 		activate_task(dst_rq, p, 0);
1294 		p->on_rq = TASK_ON_RQ_QUEUED;
1295 		check_preempt_curr(dst_rq, p, 0);
1296 	} else {
1297 		/*
1298 		 * Task isn't running anymore; make it appear like we migrated
1299 		 * it before it went to sleep. This means on wakeup we make the
1300 		 * previous cpu our target instead of where it really is.
1301 		 */
1302 		p->wake_cpu = cpu;
1303 	}
1304 }
1305 
1306 struct migration_swap_arg {
1307 	struct task_struct *src_task, *dst_task;
1308 	int src_cpu, dst_cpu;
1309 };
1310 
migrate_swap_stop(void * data)1311 static int migrate_swap_stop(void *data)
1312 {
1313 	struct migration_swap_arg *arg = data;
1314 	struct rq *src_rq, *dst_rq;
1315 	int ret = -EAGAIN;
1316 
1317 	if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1318 		return -EAGAIN;
1319 
1320 	src_rq = cpu_rq(arg->src_cpu);
1321 	dst_rq = cpu_rq(arg->dst_cpu);
1322 
1323 	double_raw_lock(&arg->src_task->pi_lock,
1324 			&arg->dst_task->pi_lock);
1325 	double_rq_lock(src_rq, dst_rq);
1326 
1327 	if (task_cpu(arg->dst_task) != arg->dst_cpu)
1328 		goto unlock;
1329 
1330 	if (task_cpu(arg->src_task) != arg->src_cpu)
1331 		goto unlock;
1332 
1333 	if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1334 		goto unlock;
1335 
1336 	if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1337 		goto unlock;
1338 
1339 	__migrate_swap_task(arg->src_task, arg->dst_cpu);
1340 	__migrate_swap_task(arg->dst_task, arg->src_cpu);
1341 
1342 	ret = 0;
1343 
1344 unlock:
1345 	double_rq_unlock(src_rq, dst_rq);
1346 	raw_spin_unlock(&arg->dst_task->pi_lock);
1347 	raw_spin_unlock(&arg->src_task->pi_lock);
1348 
1349 	return ret;
1350 }
1351 
1352 /*
1353  * Cross migrate two tasks
1354  */
migrate_swap(struct task_struct * cur,struct task_struct * p)1355 int migrate_swap(struct task_struct *cur, struct task_struct *p)
1356 {
1357 	struct migration_swap_arg arg;
1358 	int ret = -EINVAL;
1359 
1360 	arg = (struct migration_swap_arg){
1361 		.src_task = cur,
1362 		.src_cpu = task_cpu(cur),
1363 		.dst_task = p,
1364 		.dst_cpu = task_cpu(p),
1365 	};
1366 
1367 	if (arg.src_cpu == arg.dst_cpu)
1368 		goto out;
1369 
1370 	/*
1371 	 * These three tests are all lockless; this is OK since all of them
1372 	 * will be re-checked with proper locks held further down the line.
1373 	 */
1374 	if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1375 		goto out;
1376 
1377 	if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1378 		goto out;
1379 
1380 	if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1381 		goto out;
1382 
1383 	trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1384 	ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1385 
1386 out:
1387 	return ret;
1388 }
1389 
1390 /*
1391  * wait_task_inactive - wait for a thread to unschedule.
1392  *
1393  * If @match_state is nonzero, it's the @p->state value just checked and
1394  * not expected to change.  If it changes, i.e. @p might have woken up,
1395  * then return zero.  When we succeed in waiting for @p to be off its CPU,
1396  * we return a positive number (its total switch count).  If a second call
1397  * a short while later returns the same number, the caller can be sure that
1398  * @p has remained unscheduled the whole time.
1399  *
1400  * The caller must ensure that the task *will* unschedule sometime soon,
1401  * else this function might spin for a *long* time. This function can't
1402  * be called with interrupts off, or it may introduce deadlock with
1403  * smp_call_function() if an IPI is sent by the same process we are
1404  * waiting to become inactive.
1405  */
wait_task_inactive(struct task_struct * p,long match_state)1406 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1407 {
1408 	int running, queued;
1409 	struct rq_flags rf;
1410 	unsigned long ncsw;
1411 	struct rq *rq;
1412 
1413 	for (;;) {
1414 		/*
1415 		 * We do the initial early heuristics without holding
1416 		 * any task-queue locks at all. We'll only try to get
1417 		 * the runqueue lock when things look like they will
1418 		 * work out!
1419 		 */
1420 		rq = task_rq(p);
1421 
1422 		/*
1423 		 * If the task is actively running on another CPU
1424 		 * still, just relax and busy-wait without holding
1425 		 * any locks.
1426 		 *
1427 		 * NOTE! Since we don't hold any locks, it's not
1428 		 * even sure that "rq" stays as the right runqueue!
1429 		 * But we don't care, since "task_running()" will
1430 		 * return false if the runqueue has changed and p
1431 		 * is actually now running somewhere else!
1432 		 */
1433 		while (task_running(rq, p)) {
1434 			if (match_state && unlikely(p->state != match_state))
1435 				return 0;
1436 			cpu_relax();
1437 		}
1438 
1439 		/*
1440 		 * Ok, time to look more closely! We need the rq
1441 		 * lock now, to be *sure*. If we're wrong, we'll
1442 		 * just go back and repeat.
1443 		 */
1444 		rq = task_rq_lock(p, &rf);
1445 		trace_sched_wait_task(p);
1446 		running = task_running(rq, p);
1447 		queued = task_on_rq_queued(p);
1448 		ncsw = 0;
1449 		if (!match_state || p->state == match_state)
1450 			ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1451 		task_rq_unlock(rq, p, &rf);
1452 
1453 		/*
1454 		 * If it changed from the expected state, bail out now.
1455 		 */
1456 		if (unlikely(!ncsw))
1457 			break;
1458 
1459 		/*
1460 		 * Was it really running after all now that we
1461 		 * checked with the proper locks actually held?
1462 		 *
1463 		 * Oops. Go back and try again..
1464 		 */
1465 		if (unlikely(running)) {
1466 			cpu_relax();
1467 			continue;
1468 		}
1469 
1470 		/*
1471 		 * It's not enough that it's not actively running,
1472 		 * it must be off the runqueue _entirely_, and not
1473 		 * preempted!
1474 		 *
1475 		 * So if it was still runnable (but just not actively
1476 		 * running right now), it's preempted, and we should
1477 		 * yield - it could be a while.
1478 		 */
1479 		if (unlikely(queued)) {
1480 			ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1481 
1482 			set_current_state(TASK_UNINTERRUPTIBLE);
1483 			schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1484 			continue;
1485 		}
1486 
1487 		/*
1488 		 * Ahh, all good. It wasn't running, and it wasn't
1489 		 * runnable, which means that it will never become
1490 		 * running in the future either. We're all done!
1491 		 */
1492 		break;
1493 	}
1494 
1495 	return ncsw;
1496 }
1497 
1498 /***
1499  * kick_process - kick a running thread to enter/exit the kernel
1500  * @p: the to-be-kicked thread
1501  *
1502  * Cause a process which is running on another CPU to enter
1503  * kernel-mode, without any delay. (to get signals handled.)
1504  *
1505  * NOTE: this function doesn't have to take the runqueue lock,
1506  * because all it wants to ensure is that the remote task enters
1507  * the kernel. If the IPI races and the task has been migrated
1508  * to another CPU then no harm is done and the purpose has been
1509  * achieved as well.
1510  */
kick_process(struct task_struct * p)1511 void kick_process(struct task_struct *p)
1512 {
1513 	int cpu;
1514 
1515 	preempt_disable();
1516 	cpu = task_cpu(p);
1517 	if ((cpu != smp_processor_id()) && task_curr(p))
1518 		smp_send_reschedule(cpu);
1519 	preempt_enable();
1520 }
1521 EXPORT_SYMBOL_GPL(kick_process);
1522 
1523 /*
1524  * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1525  *
1526  * A few notes on cpu_active vs cpu_online:
1527  *
1528  *  - cpu_active must be a subset of cpu_online
1529  *
1530  *  - on cpu-up we allow per-cpu kthreads on the online && !active cpu,
1531  *    see __set_cpus_allowed_ptr(). At this point the newly online
1532  *    cpu isn't yet part of the sched domains, and balancing will not
1533  *    see it.
1534  *
1535  *  - on cpu-down we clear cpu_active() to mask the sched domains and
1536  *    avoid the load balancer to place new tasks on the to be removed
1537  *    cpu. Existing tasks will remain running there and will be taken
1538  *    off.
1539  *
1540  * This means that fallback selection must not select !active CPUs.
1541  * And can assume that any active CPU must be online. Conversely
1542  * select_task_rq() below may allow selection of !active CPUs in order
1543  * to satisfy the above rules.
1544  */
select_fallback_rq(int cpu,struct task_struct * p)1545 static int select_fallback_rq(int cpu, struct task_struct *p)
1546 {
1547 	int nid = cpu_to_node(cpu);
1548 	const struct cpumask *nodemask = NULL;
1549 	enum { cpuset, possible, fail } state = cpuset;
1550 	int dest_cpu;
1551 
1552 	/*
1553 	 * If the node that the cpu is on has been offlined, cpu_to_node()
1554 	 * will return -1. There is no cpu on the node, and we should
1555 	 * select the cpu on the other node.
1556 	 */
1557 	if (nid != -1) {
1558 		nodemask = cpumask_of_node(nid);
1559 
1560 		/* Look for allowed, online CPU in same node. */
1561 		for_each_cpu(dest_cpu, nodemask) {
1562 			if (!cpu_active(dest_cpu))
1563 				continue;
1564 			if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1565 				return dest_cpu;
1566 		}
1567 	}
1568 
1569 	for (;;) {
1570 		/* Any allowed, online CPU? */
1571 		for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1572 			if (!(p->flags & PF_KTHREAD) && !cpu_active(dest_cpu))
1573 				continue;
1574 			if (!cpu_online(dest_cpu))
1575 				continue;
1576 			goto out;
1577 		}
1578 
1579 		/* No more Mr. Nice Guy. */
1580 		switch (state) {
1581 		case cpuset:
1582 			if (IS_ENABLED(CONFIG_CPUSETS)) {
1583 				cpuset_cpus_allowed_fallback(p);
1584 				state = possible;
1585 				break;
1586 			}
1587 			/* fall-through */
1588 		case possible:
1589 			do_set_cpus_allowed(p, cpu_possible_mask);
1590 			state = fail;
1591 			break;
1592 
1593 		case fail:
1594 			BUG();
1595 			break;
1596 		}
1597 	}
1598 
1599 out:
1600 	if (state != cpuset) {
1601 		/*
1602 		 * Don't tell them about moving exiting tasks or
1603 		 * kernel threads (both mm NULL), since they never
1604 		 * leave kernel.
1605 		 */
1606 		if (p->mm && printk_ratelimit()) {
1607 			printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1608 					task_pid_nr(p), p->comm, cpu);
1609 		}
1610 	}
1611 
1612 	return dest_cpu;
1613 }
1614 
1615 /*
1616  * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1617  */
1618 static inline
select_task_rq(struct task_struct * p,int cpu,int sd_flags,int wake_flags)1619 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1620 {
1621 	lockdep_assert_held(&p->pi_lock);
1622 
1623 	if (tsk_nr_cpus_allowed(p) > 1)
1624 		cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1625 	else
1626 		cpu = cpumask_any(tsk_cpus_allowed(p));
1627 
1628 	/*
1629 	 * In order not to call set_task_cpu() on a blocking task we need
1630 	 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1631 	 * cpu.
1632 	 *
1633 	 * Since this is common to all placement strategies, this lives here.
1634 	 *
1635 	 * [ this allows ->select_task() to simply return task_cpu(p) and
1636 	 *   not worry about this generic constraint ]
1637 	 */
1638 	if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1639 		     !cpu_online(cpu)))
1640 		cpu = select_fallback_rq(task_cpu(p), p);
1641 
1642 	return cpu;
1643 }
1644 
update_avg(u64 * avg,u64 sample)1645 static void update_avg(u64 *avg, u64 sample)
1646 {
1647 	s64 diff = sample - *avg;
1648 	*avg += diff >> 3;
1649 }
1650 
1651 #else
1652 
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1653 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1654 					 const struct cpumask *new_mask, bool check)
1655 {
1656 	return set_cpus_allowed_ptr(p, new_mask);
1657 }
1658 
1659 #endif /* CONFIG_SMP */
1660 
1661 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)1662 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1663 {
1664 	struct rq *rq;
1665 
1666 	if (!schedstat_enabled())
1667 		return;
1668 
1669 	rq = this_rq();
1670 
1671 #ifdef CONFIG_SMP
1672 	if (cpu == rq->cpu) {
1673 		schedstat_inc(rq->ttwu_local);
1674 		schedstat_inc(p->se.statistics.nr_wakeups_local);
1675 	} else {
1676 		struct sched_domain *sd;
1677 
1678 		schedstat_inc(p->se.statistics.nr_wakeups_remote);
1679 		rcu_read_lock();
1680 		for_each_domain(rq->cpu, sd) {
1681 			if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1682 				schedstat_inc(sd->ttwu_wake_remote);
1683 				break;
1684 			}
1685 		}
1686 		rcu_read_unlock();
1687 	}
1688 
1689 	if (wake_flags & WF_MIGRATED)
1690 		schedstat_inc(p->se.statistics.nr_wakeups_migrate);
1691 #endif /* CONFIG_SMP */
1692 
1693 	schedstat_inc(rq->ttwu_count);
1694 	schedstat_inc(p->se.statistics.nr_wakeups);
1695 
1696 	if (wake_flags & WF_SYNC)
1697 		schedstat_inc(p->se.statistics.nr_wakeups_sync);
1698 }
1699 
ttwu_activate(struct rq * rq,struct task_struct * p,int en_flags)1700 static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1701 {
1702 	activate_task(rq, p, en_flags);
1703 	p->on_rq = TASK_ON_RQ_QUEUED;
1704 
1705 	/* if a worker is waking up, notify workqueue */
1706 	if (p->flags & PF_WQ_WORKER)
1707 		wq_worker_waking_up(p, cpu_of(rq));
1708 }
1709 
1710 /*
1711  * Mark the task runnable and perform wakeup-preemption.
1712  */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct pin_cookie cookie)1713 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
1714 			   struct pin_cookie cookie)
1715 {
1716 	check_preempt_curr(rq, p, wake_flags);
1717 	p->state = TASK_RUNNING;
1718 	trace_sched_wakeup(p);
1719 
1720 #ifdef CONFIG_SMP
1721 	if (p->sched_class->task_woken) {
1722 		/*
1723 		 * Our task @p is fully woken up and running; so its safe to
1724 		 * drop the rq->lock, hereafter rq is only used for statistics.
1725 		 */
1726 		lockdep_unpin_lock(&rq->lock, cookie);
1727 		p->sched_class->task_woken(rq, p);
1728 		lockdep_repin_lock(&rq->lock, cookie);
1729 	}
1730 
1731 	if (rq->idle_stamp) {
1732 		u64 delta = rq_clock(rq) - rq->idle_stamp;
1733 		u64 max = 2*rq->max_idle_balance_cost;
1734 
1735 		update_avg(&rq->avg_idle, delta);
1736 
1737 		if (rq->avg_idle > max)
1738 			rq->avg_idle = max;
1739 
1740 		rq->idle_stamp = 0;
1741 	}
1742 #endif
1743 }
1744 
1745 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct pin_cookie cookie)1746 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
1747 		 struct pin_cookie cookie)
1748 {
1749 	int en_flags = ENQUEUE_WAKEUP;
1750 
1751 	lockdep_assert_held(&rq->lock);
1752 
1753 #ifdef CONFIG_SMP
1754 	if (p->sched_contributes_to_load)
1755 		rq->nr_uninterruptible--;
1756 
1757 	if (wake_flags & WF_MIGRATED)
1758 		en_flags |= ENQUEUE_MIGRATED;
1759 #endif
1760 
1761 	ttwu_activate(rq, p, en_flags);
1762 	ttwu_do_wakeup(rq, p, wake_flags, cookie);
1763 }
1764 
1765 /*
1766  * Called in case the task @p isn't fully descheduled from its runqueue,
1767  * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1768  * since all we need to do is flip p->state to TASK_RUNNING, since
1769  * the task is still ->on_rq.
1770  */
ttwu_remote(struct task_struct * p,int wake_flags)1771 static int ttwu_remote(struct task_struct *p, int wake_flags)
1772 {
1773 	struct rq_flags rf;
1774 	struct rq *rq;
1775 	int ret = 0;
1776 
1777 	rq = __task_rq_lock(p, &rf);
1778 	if (task_on_rq_queued(p)) {
1779 		/* check_preempt_curr() may use rq clock */
1780 		update_rq_clock(rq);
1781 		ttwu_do_wakeup(rq, p, wake_flags, rf.cookie);
1782 		ret = 1;
1783 	}
1784 	__task_rq_unlock(rq, &rf);
1785 
1786 	return ret;
1787 }
1788 
1789 #ifdef CONFIG_SMP
sched_ttwu_pending(void)1790 void sched_ttwu_pending(void)
1791 {
1792 	struct rq *rq = this_rq();
1793 	struct llist_node *llist = llist_del_all(&rq->wake_list);
1794 	struct pin_cookie cookie;
1795 	struct task_struct *p;
1796 	unsigned long flags;
1797 
1798 	if (!llist)
1799 		return;
1800 
1801 	raw_spin_lock_irqsave(&rq->lock, flags);
1802 	cookie = lockdep_pin_lock(&rq->lock);
1803 
1804 	while (llist) {
1805 		int wake_flags = 0;
1806 
1807 		p = llist_entry(llist, struct task_struct, wake_entry);
1808 		llist = llist_next(llist);
1809 
1810 		if (p->sched_remote_wakeup)
1811 			wake_flags = WF_MIGRATED;
1812 
1813 		ttwu_do_activate(rq, p, wake_flags, cookie);
1814 	}
1815 
1816 	lockdep_unpin_lock(&rq->lock, cookie);
1817 	raw_spin_unlock_irqrestore(&rq->lock, flags);
1818 }
1819 
scheduler_ipi(void)1820 void scheduler_ipi(void)
1821 {
1822 	/*
1823 	 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1824 	 * TIF_NEED_RESCHED remotely (for the first time) will also send
1825 	 * this IPI.
1826 	 */
1827 	preempt_fold_need_resched();
1828 
1829 	if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1830 		return;
1831 
1832 	/*
1833 	 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1834 	 * traditionally all their work was done from the interrupt return
1835 	 * path. Now that we actually do some work, we need to make sure
1836 	 * we do call them.
1837 	 *
1838 	 * Some archs already do call them, luckily irq_enter/exit nest
1839 	 * properly.
1840 	 *
1841 	 * Arguably we should visit all archs and update all handlers,
1842 	 * however a fair share of IPIs are still resched only so this would
1843 	 * somewhat pessimize the simple resched case.
1844 	 */
1845 	irq_enter();
1846 	sched_ttwu_pending();
1847 
1848 	/*
1849 	 * Check if someone kicked us for doing the nohz idle load balance.
1850 	 */
1851 	if (unlikely(got_nohz_idle_kick())) {
1852 		this_rq()->idle_balance = 1;
1853 		raise_softirq_irqoff(SCHED_SOFTIRQ);
1854 	}
1855 	irq_exit();
1856 }
1857 
ttwu_queue_remote(struct task_struct * p,int cpu,int wake_flags)1858 static void ttwu_queue_remote(struct task_struct *p, int cpu, int wake_flags)
1859 {
1860 	struct rq *rq = cpu_rq(cpu);
1861 
1862 	p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
1863 
1864 	if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1865 		if (!set_nr_if_polling(rq->idle))
1866 			smp_send_reschedule(cpu);
1867 		else
1868 			trace_sched_wake_idle_without_ipi(cpu);
1869 	}
1870 }
1871 
wake_up_if_idle(int cpu)1872 void wake_up_if_idle(int cpu)
1873 {
1874 	struct rq *rq = cpu_rq(cpu);
1875 	unsigned long flags;
1876 
1877 	rcu_read_lock();
1878 
1879 	if (!is_idle_task(rcu_dereference(rq->curr)))
1880 		goto out;
1881 
1882 	if (set_nr_if_polling(rq->idle)) {
1883 		trace_sched_wake_idle_without_ipi(cpu);
1884 	} else {
1885 		raw_spin_lock_irqsave(&rq->lock, flags);
1886 		if (is_idle_task(rq->curr))
1887 			smp_send_reschedule(cpu);
1888 		/* Else cpu is not in idle, do nothing here */
1889 		raw_spin_unlock_irqrestore(&rq->lock, flags);
1890 	}
1891 
1892 out:
1893 	rcu_read_unlock();
1894 }
1895 
cpus_share_cache(int this_cpu,int that_cpu)1896 bool cpus_share_cache(int this_cpu, int that_cpu)
1897 {
1898 	return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1899 }
1900 #endif /* CONFIG_SMP */
1901 
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)1902 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
1903 {
1904 	struct rq *rq = cpu_rq(cpu);
1905 	struct pin_cookie cookie;
1906 
1907 #if defined(CONFIG_SMP)
1908 	if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1909 		sched_clock_cpu(cpu); /* sync clocks x-cpu */
1910 		ttwu_queue_remote(p, cpu, wake_flags);
1911 		return;
1912 	}
1913 #endif
1914 
1915 	raw_spin_lock(&rq->lock);
1916 	cookie = lockdep_pin_lock(&rq->lock);
1917 	ttwu_do_activate(rq, p, wake_flags, cookie);
1918 	lockdep_unpin_lock(&rq->lock, cookie);
1919 	raw_spin_unlock(&rq->lock);
1920 }
1921 
1922 /*
1923  * Notes on Program-Order guarantees on SMP systems.
1924  *
1925  *  MIGRATION
1926  *
1927  * The basic program-order guarantee on SMP systems is that when a task [t]
1928  * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1929  * execution on its new cpu [c1].
1930  *
1931  * For migration (of runnable tasks) this is provided by the following means:
1932  *
1933  *  A) UNLOCK of the rq(c0)->lock scheduling out task t
1934  *  B) migration for t is required to synchronize *both* rq(c0)->lock and
1935  *     rq(c1)->lock (if not at the same time, then in that order).
1936  *  C) LOCK of the rq(c1)->lock scheduling in task
1937  *
1938  * Transitivity guarantees that B happens after A and C after B.
1939  * Note: we only require RCpc transitivity.
1940  * Note: the cpu doing B need not be c0 or c1
1941  *
1942  * Example:
1943  *
1944  *   CPU0            CPU1            CPU2
1945  *
1946  *   LOCK rq(0)->lock
1947  *   sched-out X
1948  *   sched-in Y
1949  *   UNLOCK rq(0)->lock
1950  *
1951  *                                   LOCK rq(0)->lock // orders against CPU0
1952  *                                   dequeue X
1953  *                                   UNLOCK rq(0)->lock
1954  *
1955  *                                   LOCK rq(1)->lock
1956  *                                   enqueue X
1957  *                                   UNLOCK rq(1)->lock
1958  *
1959  *                   LOCK rq(1)->lock // orders against CPU2
1960  *                   sched-out Z
1961  *                   sched-in X
1962  *                   UNLOCK rq(1)->lock
1963  *
1964  *
1965  *  BLOCKING -- aka. SLEEP + WAKEUP
1966  *
1967  * For blocking we (obviously) need to provide the same guarantee as for
1968  * migration. However the means are completely different as there is no lock
1969  * chain to provide order. Instead we do:
1970  *
1971  *   1) smp_store_release(X->on_cpu, 0)
1972  *   2) smp_cond_load_acquire(!X->on_cpu)
1973  *
1974  * Example:
1975  *
1976  *   CPU0 (schedule)  CPU1 (try_to_wake_up) CPU2 (schedule)
1977  *
1978  *   LOCK rq(0)->lock LOCK X->pi_lock
1979  *   dequeue X
1980  *   sched-out X
1981  *   smp_store_release(X->on_cpu, 0);
1982  *
1983  *                    smp_cond_load_acquire(&X->on_cpu, !VAL);
1984  *                    X->state = WAKING
1985  *                    set_task_cpu(X,2)
1986  *
1987  *                    LOCK rq(2)->lock
1988  *                    enqueue X
1989  *                    X->state = RUNNING
1990  *                    UNLOCK rq(2)->lock
1991  *
1992  *                                          LOCK rq(2)->lock // orders against CPU1
1993  *                                          sched-out Z
1994  *                                          sched-in X
1995  *                                          UNLOCK rq(2)->lock
1996  *
1997  *                    UNLOCK X->pi_lock
1998  *   UNLOCK rq(0)->lock
1999  *
2000  *
2001  * However; for wakeups there is a second guarantee we must provide, namely we
2002  * must observe the state that lead to our wakeup. That is, not only must our
2003  * task observe its own prior state, it must also observe the stores prior to
2004  * its wakeup.
2005  *
2006  * This means that any means of doing remote wakeups must order the CPU doing
2007  * the wakeup against the CPU the task is going to end up running on. This,
2008  * however, is already required for the regular Program-Order guarantee above,
2009  * since the waking CPU is the one issueing the ACQUIRE (smp_cond_load_acquire).
2010  *
2011  */
2012 
2013 /**
2014  * try_to_wake_up - wake up a thread
2015  * @p: the thread to be awakened
2016  * @state: the mask of task states that can be woken
2017  * @wake_flags: wake modifier flags (WF_*)
2018  *
2019  * Put it on the run-queue if it's not already there. The "current"
2020  * thread is always on the run-queue (except when the actual
2021  * re-schedule is in progress), and as such you're allowed to do
2022  * the simpler "current->state = TASK_RUNNING" to mark yourself
2023  * runnable without the overhead of this.
2024  *
2025  * Return: %true if @p was woken up, %false if it was already running.
2026  * or @state didn't match @p's state.
2027  */
2028 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)2029 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2030 {
2031 	unsigned long flags;
2032 	int cpu, success = 0;
2033 #ifdef CONFIG_SMP
2034 	struct rq *rq;
2035 	u64 wallclock;
2036 #endif
2037 
2038 	/*
2039 	 * If we are going to wake up a thread waiting for CONDITION we
2040 	 * need to ensure that CONDITION=1 done by the caller can not be
2041 	 * reordered with p->state check below. This pairs with mb() in
2042 	 * set_current_state() the waiting thread does.
2043 	 */
2044 	smp_mb__before_spinlock();
2045 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2046 	if (!(p->state & state))
2047 		goto out;
2048 
2049 	trace_sched_waking(p);
2050 
2051 	success = 1; /* we're going to change ->state */
2052 	cpu = task_cpu(p);
2053 
2054 	/*
2055 	 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2056 	 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2057 	 * in smp_cond_load_acquire() below.
2058 	 *
2059 	 * sched_ttwu_pending()                 try_to_wake_up()
2060 	 *   [S] p->on_rq = 1;                  [L] P->state
2061 	 *       UNLOCK rq->lock  -----.
2062 	 *                              \
2063 	 *				 +---   RMB
2064 	 * schedule()                   /
2065 	 *       LOCK rq->lock    -----'
2066 	 *       UNLOCK rq->lock
2067 	 *
2068 	 * [task p]
2069 	 *   [S] p->state = UNINTERRUPTIBLE     [L] p->on_rq
2070 	 *
2071 	 * Pairs with the UNLOCK+LOCK on rq->lock from the
2072 	 * last wakeup of our task and the schedule that got our task
2073 	 * current.
2074 	 */
2075 	smp_rmb();
2076 	if (p->on_rq && ttwu_remote(p, wake_flags))
2077 		goto stat;
2078 
2079 #ifdef CONFIG_SMP
2080 	/*
2081 	 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2082 	 * possible to, falsely, observe p->on_cpu == 0.
2083 	 *
2084 	 * One must be running (->on_cpu == 1) in order to remove oneself
2085 	 * from the runqueue.
2086 	 *
2087 	 *  [S] ->on_cpu = 1;	[L] ->on_rq
2088 	 *      UNLOCK rq->lock
2089 	 *			RMB
2090 	 *      LOCK   rq->lock
2091 	 *  [S] ->on_rq = 0;    [L] ->on_cpu
2092 	 *
2093 	 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
2094 	 * from the consecutive calls to schedule(); the first switching to our
2095 	 * task, the second putting it to sleep.
2096 	 */
2097 	smp_rmb();
2098 
2099 	/*
2100 	 * If the owning (remote) cpu is still in the middle of schedule() with
2101 	 * this task as prev, wait until its done referencing the task.
2102 	 *
2103 	 * Pairs with the smp_store_release() in finish_lock_switch().
2104 	 *
2105 	 * This ensures that tasks getting woken will be fully ordered against
2106 	 * their previous state and preserve Program Order.
2107 	 */
2108 	smp_cond_load_acquire(&p->on_cpu, !VAL);
2109 
2110 	rq = cpu_rq(task_cpu(p));
2111 
2112 	raw_spin_lock(&rq->lock);
2113 	wallclock = walt_ktime_clock();
2114 	walt_update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
2115 	walt_update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
2116 	raw_spin_unlock(&rq->lock);
2117 
2118 	p->sched_contributes_to_load = !!task_contributes_to_load(p);
2119 	p->state = TASK_WAKING;
2120 
2121 	cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2122 
2123 	if (task_cpu(p) != cpu) {
2124 		wake_flags |= WF_MIGRATED;
2125 		set_task_cpu(p, cpu);
2126 	}
2127 
2128 #endif /* CONFIG_SMP */
2129 
2130 	ttwu_queue(p, cpu, wake_flags);
2131 stat:
2132 	ttwu_stat(p, cpu, wake_flags);
2133 out:
2134 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2135 
2136 	return success;
2137 }
2138 
2139 /**
2140  * try_to_wake_up_local - try to wake up a local task with rq lock held
2141  * @p: the thread to be awakened
2142  * @cookie: context's cookie for pinning
2143  *
2144  * Put @p on the run-queue if it's not already there. The caller must
2145  * ensure that this_rq() is locked, @p is bound to this_rq() and not
2146  * the current task.
2147  */
try_to_wake_up_local(struct task_struct * p,struct pin_cookie cookie)2148 static void try_to_wake_up_local(struct task_struct *p, struct pin_cookie cookie)
2149 {
2150 	struct rq *rq = task_rq(p);
2151 
2152 	if (WARN_ON_ONCE(rq != this_rq()) ||
2153 	    WARN_ON_ONCE(p == current))
2154 		return;
2155 
2156 	lockdep_assert_held(&rq->lock);
2157 
2158 	if (!raw_spin_trylock(&p->pi_lock)) {
2159 		/*
2160 		 * This is OK, because current is on_cpu, which avoids it being
2161 		 * picked for load-balance and preemption/IRQs are still
2162 		 * disabled avoiding further scheduler activity on it and we've
2163 		 * not yet picked a replacement task.
2164 		 */
2165 		lockdep_unpin_lock(&rq->lock, cookie);
2166 		raw_spin_unlock(&rq->lock);
2167 		raw_spin_lock(&p->pi_lock);
2168 		raw_spin_lock(&rq->lock);
2169 		lockdep_repin_lock(&rq->lock, cookie);
2170 	}
2171 
2172 	if (!(p->state & TASK_NORMAL))
2173 		goto out;
2174 
2175 	trace_sched_waking(p);
2176 
2177 	if (!task_on_rq_queued(p)) {
2178 		u64 wallclock = walt_ktime_clock();
2179 
2180 		walt_update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
2181 		walt_update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
2182 		ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2183 	}
2184 
2185 	ttwu_do_wakeup(rq, p, 0, cookie);
2186 	ttwu_stat(p, smp_processor_id(), 0);
2187 out:
2188 	raw_spin_unlock(&p->pi_lock);
2189 }
2190 
2191 /**
2192  * wake_up_process - Wake up a specific process
2193  * @p: The process to be woken up.
2194  *
2195  * Attempt to wake up the nominated process and move it to the set of runnable
2196  * processes.
2197  *
2198  * Return: 1 if the process was woken up, 0 if it was already running.
2199  *
2200  * It may be assumed that this function implies a write memory barrier before
2201  * changing the task state if and only if any tasks are woken up.
2202  */
wake_up_process(struct task_struct * p)2203 int wake_up_process(struct task_struct *p)
2204 {
2205 	return try_to_wake_up(p, TASK_NORMAL, 0);
2206 }
2207 EXPORT_SYMBOL(wake_up_process);
2208 
wake_up_state(struct task_struct * p,unsigned int state)2209 int wake_up_state(struct task_struct *p, unsigned int state)
2210 {
2211 	return try_to_wake_up(p, state, 0);
2212 }
2213 
2214 /*
2215  * This function clears the sched_dl_entity static params.
2216  */
__dl_clear_params(struct task_struct * p)2217 void __dl_clear_params(struct task_struct *p)
2218 {
2219 	struct sched_dl_entity *dl_se = &p->dl;
2220 
2221 	dl_se->dl_runtime = 0;
2222 	dl_se->dl_deadline = 0;
2223 	dl_se->dl_period = 0;
2224 	dl_se->flags = 0;
2225 	dl_se->dl_bw = 0;
2226 	dl_se->dl_density = 0;
2227 
2228 	dl_se->dl_throttled = 0;
2229 	dl_se->dl_yielded = 0;
2230 }
2231 
2232 /*
2233  * Perform scheduler related setup for a newly forked process p.
2234  * p is forked by current.
2235  *
2236  * __sched_fork() is basic setup used by init_idle() too:
2237  */
__sched_fork(unsigned long clone_flags,struct task_struct * p)2238 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2239 {
2240 	p->on_rq			= 0;
2241 
2242 	p->se.on_rq			= 0;
2243 	p->se.exec_start		= 0;
2244 	p->se.sum_exec_runtime		= 0;
2245 	p->se.prev_sum_exec_runtime	= 0;
2246 	p->se.nr_migrations		= 0;
2247 	p->se.vruntime			= 0;
2248 #ifdef CONFIG_SCHED_WALT
2249 	p->last_sleep_ts		= 0;
2250 #endif
2251 
2252 	INIT_LIST_HEAD(&p->se.group_node);
2253 	walt_init_new_task_load(p);
2254 
2255 #ifdef CONFIG_FAIR_GROUP_SCHED
2256 	p->se.cfs_rq			= NULL;
2257 #endif
2258 
2259 #ifdef CONFIG_SCHEDSTATS
2260 	/* Even if schedstat is disabled, there should not be garbage */
2261 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2262 #endif
2263 
2264 #ifdef CONFIG_CPU_FREQ_TIMES
2265 	cpufreq_task_times_init(p);
2266 #endif
2267 
2268 	RB_CLEAR_NODE(&p->dl.rb_node);
2269 	init_dl_task_timer(&p->dl);
2270 	__dl_clear_params(p);
2271 
2272 	INIT_LIST_HEAD(&p->rt.run_list);
2273 	p->rt.timeout		= 0;
2274 	p->rt.time_slice	= sched_rr_timeslice;
2275 	p->rt.on_rq		= 0;
2276 	p->rt.on_list		= 0;
2277 
2278 #ifdef CONFIG_PREEMPT_NOTIFIERS
2279 	INIT_HLIST_HEAD(&p->preempt_notifiers);
2280 #endif
2281 
2282 #ifdef CONFIG_NUMA_BALANCING
2283 	if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
2284 		p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2285 		p->mm->numa_scan_seq = 0;
2286 	}
2287 
2288 	if (clone_flags & CLONE_VM)
2289 		p->numa_preferred_nid = current->numa_preferred_nid;
2290 	else
2291 		p->numa_preferred_nid = -1;
2292 
2293 	p->node_stamp = 0ULL;
2294 	p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
2295 	p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2296 	p->numa_work.next = &p->numa_work;
2297 	p->numa_faults = NULL;
2298 	p->last_task_numa_placement = 0;
2299 	p->last_sum_exec_runtime = 0;
2300 
2301 	p->numa_group = NULL;
2302 #endif /* CONFIG_NUMA_BALANCING */
2303 }
2304 
2305 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2306 
2307 #ifdef CONFIG_NUMA_BALANCING
2308 
set_numabalancing_state(bool enabled)2309 void set_numabalancing_state(bool enabled)
2310 {
2311 	if (enabled)
2312 		static_branch_enable(&sched_numa_balancing);
2313 	else
2314 		static_branch_disable(&sched_numa_balancing);
2315 }
2316 
2317 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2318 int sysctl_numa_balancing(struct ctl_table *table, int write,
2319 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2320 {
2321 	struct ctl_table t;
2322 	int err;
2323 	int state = static_branch_likely(&sched_numa_balancing);
2324 
2325 	if (write && !capable(CAP_SYS_ADMIN))
2326 		return -EPERM;
2327 
2328 	t = *table;
2329 	t.data = &state;
2330 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2331 	if (err < 0)
2332 		return err;
2333 	if (write)
2334 		set_numabalancing_state(state);
2335 	return err;
2336 }
2337 #endif
2338 #endif
2339 
2340 #ifdef CONFIG_SCHEDSTATS
2341 
2342 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2343 static bool __initdata __sched_schedstats = false;
2344 
set_schedstats(bool enabled)2345 static void set_schedstats(bool enabled)
2346 {
2347 	if (enabled)
2348 		static_branch_enable(&sched_schedstats);
2349 	else
2350 		static_branch_disable(&sched_schedstats);
2351 }
2352 
force_schedstat_enabled(void)2353 void force_schedstat_enabled(void)
2354 {
2355 	if (!schedstat_enabled()) {
2356 		pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2357 		static_branch_enable(&sched_schedstats);
2358 	}
2359 }
2360 
setup_schedstats(char * str)2361 static int __init setup_schedstats(char *str)
2362 {
2363 	int ret = 0;
2364 	if (!str)
2365 		goto out;
2366 
2367 	/*
2368 	 * This code is called before jump labels have been set up, so we can't
2369 	 * change the static branch directly just yet.  Instead set a temporary
2370 	 * variable so init_schedstats() can do it later.
2371 	 */
2372 	if (!strcmp(str, "enable")) {
2373 		__sched_schedstats = true;
2374 		ret = 1;
2375 	} else if (!strcmp(str, "disable")) {
2376 		__sched_schedstats = false;
2377 		ret = 1;
2378 	}
2379 out:
2380 	if (!ret)
2381 		pr_warn("Unable to parse schedstats=\n");
2382 
2383 	return ret;
2384 }
2385 __setup("schedstats=", setup_schedstats);
2386 
init_schedstats(void)2387 static void __init init_schedstats(void)
2388 {
2389 	set_schedstats(__sched_schedstats);
2390 }
2391 
2392 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2393 int sysctl_schedstats(struct ctl_table *table, int write,
2394 			 void __user *buffer, size_t *lenp, loff_t *ppos)
2395 {
2396 	struct ctl_table t;
2397 	int err;
2398 	int state = static_branch_likely(&sched_schedstats);
2399 
2400 	if (write && !capable(CAP_SYS_ADMIN))
2401 		return -EPERM;
2402 
2403 	t = *table;
2404 	t.data = &state;
2405 	err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2406 	if (err < 0)
2407 		return err;
2408 	if (write)
2409 		set_schedstats(state);
2410 	return err;
2411 }
2412 #endif /* CONFIG_PROC_SYSCTL */
2413 #else  /* !CONFIG_SCHEDSTATS */
init_schedstats(void)2414 static inline void init_schedstats(void) {}
2415 #endif /* CONFIG_SCHEDSTATS */
2416 
2417 /*
2418  * fork()/clone()-time setup:
2419  */
sched_fork(unsigned long clone_flags,struct task_struct * p)2420 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2421 {
2422 	unsigned long flags;
2423 	int cpu = get_cpu();
2424 
2425 	__sched_fork(clone_flags, p);
2426 	/*
2427 	 * We mark the process as NEW here. This guarantees that
2428 	 * nobody will actually run it, and a signal or other external
2429 	 * event cannot wake it up and insert it on the runqueue either.
2430 	 */
2431 	p->state = TASK_NEW;
2432 
2433 	/*
2434 	 * Make sure we do not leak PI boosting priority to the child.
2435 	 */
2436 	p->prio = current->normal_prio;
2437 
2438 	/*
2439 	 * Revert to default priority/policy on fork if requested.
2440 	 */
2441 	if (unlikely(p->sched_reset_on_fork)) {
2442 		if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2443 			p->policy = SCHED_NORMAL;
2444 			p->static_prio = NICE_TO_PRIO(0);
2445 			p->rt_priority = 0;
2446 		} else if (PRIO_TO_NICE(p->static_prio) < 0)
2447 			p->static_prio = NICE_TO_PRIO(0);
2448 
2449 		p->prio = p->normal_prio = __normal_prio(p);
2450 		set_load_weight(p);
2451 
2452 		/*
2453 		 * We don't need the reset flag anymore after the fork. It has
2454 		 * fulfilled its duty:
2455 		 */
2456 		p->sched_reset_on_fork = 0;
2457 	}
2458 
2459 	if (dl_prio(p->prio)) {
2460 		put_cpu();
2461 		return -EAGAIN;
2462 	} else if (rt_prio(p->prio)) {
2463 		p->sched_class = &rt_sched_class;
2464 	} else {
2465 		p->sched_class = &fair_sched_class;
2466 	}
2467 
2468 	init_entity_runnable_average(&p->se);
2469 
2470 	/*
2471 	 * The child is not yet in the pid-hash so no cgroup attach races,
2472 	 * and the cgroup is pinned to this child due to cgroup_fork()
2473 	 * is ran before sched_fork().
2474 	 *
2475 	 * Silence PROVE_RCU.
2476 	 */
2477 	raw_spin_lock_irqsave(&p->pi_lock, flags);
2478 	/*
2479 	 * We're setting the cpu for the first time, we don't migrate,
2480 	 * so use __set_task_cpu().
2481 	 */
2482 	__set_task_cpu(p, cpu);
2483 	if (p->sched_class->task_fork)
2484 		p->sched_class->task_fork(p);
2485 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2486 
2487 #ifdef CONFIG_SCHED_INFO
2488 	if (likely(sched_info_on()))
2489 		memset(&p->sched_info, 0, sizeof(p->sched_info));
2490 #endif
2491 #if defined(CONFIG_SMP)
2492 	p->on_cpu = 0;
2493 #endif
2494 	init_task_preempt_count(p);
2495 #ifdef CONFIG_SMP
2496 	plist_node_init(&p->pushable_tasks, MAX_PRIO);
2497 	RB_CLEAR_NODE(&p->pushable_dl_tasks);
2498 #endif
2499 
2500 	put_cpu();
2501 	return 0;
2502 }
2503 
to_ratio(u64 period,u64 runtime)2504 unsigned long to_ratio(u64 period, u64 runtime)
2505 {
2506 	if (runtime == RUNTIME_INF)
2507 		return 1ULL << 20;
2508 
2509 	/*
2510 	 * Doing this here saves a lot of checks in all
2511 	 * the calling paths, and returning zero seems
2512 	 * safe for them anyway.
2513 	 */
2514 	if (period == 0)
2515 		return 0;
2516 
2517 	return div64_u64(runtime << 20, period);
2518 }
2519 
2520 #ifdef CONFIG_SMP
dl_bw_of(int i)2521 inline struct dl_bw *dl_bw_of(int i)
2522 {
2523 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2524 			 "sched RCU must be held");
2525 	return &cpu_rq(i)->rd->dl_bw;
2526 }
2527 
dl_bw_cpus(int i)2528 static inline int dl_bw_cpus(int i)
2529 {
2530 	struct root_domain *rd = cpu_rq(i)->rd;
2531 	int cpus = 0;
2532 
2533 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2534 			 "sched RCU must be held");
2535 	for_each_cpu_and(i, rd->span, cpu_active_mask)
2536 		cpus++;
2537 
2538 	return cpus;
2539 }
2540 #else
dl_bw_of(int i)2541 inline struct dl_bw *dl_bw_of(int i)
2542 {
2543 	return &cpu_rq(i)->dl.dl_bw;
2544 }
2545 
dl_bw_cpus(int i)2546 static inline int dl_bw_cpus(int i)
2547 {
2548 	return 1;
2549 }
2550 #endif
2551 
2552 /*
2553  * We must be sure that accepting a new task (or allowing changing the
2554  * parameters of an existing one) is consistent with the bandwidth
2555  * constraints. If yes, this function also accordingly updates the currently
2556  * allocated bandwidth to reflect the new situation.
2557  *
2558  * This function is called while holding p's rq->lock.
2559  *
2560  * XXX we should delay bw change until the task's 0-lag point, see
2561  * __setparam_dl().
2562  */
dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)2563 static int dl_overflow(struct task_struct *p, int policy,
2564 		       const struct sched_attr *attr)
2565 {
2566 
2567 	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2568 	u64 period = attr->sched_period ?: attr->sched_deadline;
2569 	u64 runtime = attr->sched_runtime;
2570 	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2571 	int cpus, err = -1;
2572 
2573 	/* !deadline task may carry old deadline bandwidth */
2574 	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2575 		return 0;
2576 
2577 	/*
2578 	 * Either if a task, enters, leave, or stays -deadline but changes
2579 	 * its parameters, we may need to update accordingly the total
2580 	 * allocated bandwidth of the container.
2581 	 */
2582 	raw_spin_lock(&dl_b->lock);
2583 	cpus = dl_bw_cpus(task_cpu(p));
2584 	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2585 	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2586 		__dl_add(dl_b, new_bw);
2587 		err = 0;
2588 	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2589 		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2590 		__dl_clear(dl_b, p->dl.dl_bw);
2591 		__dl_add(dl_b, new_bw);
2592 		err = 0;
2593 	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2594 		__dl_clear(dl_b, p->dl.dl_bw);
2595 		err = 0;
2596 	}
2597 	raw_spin_unlock(&dl_b->lock);
2598 
2599 	return err;
2600 }
2601 
2602 extern void init_dl_bw(struct dl_bw *dl_b);
2603 
2604 /*
2605  * wake_up_new_task - wake up a newly created task for the first time.
2606  *
2607  * This function will do some initial scheduler statistics housekeeping
2608  * that must be done for every newly created context, then puts the task
2609  * on the runqueue and wakes it.
2610  */
wake_up_new_task(struct task_struct * p)2611 void wake_up_new_task(struct task_struct *p)
2612 {
2613 	struct rq_flags rf;
2614 	struct rq *rq;
2615 
2616 	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2617 
2618 	walt_init_new_task_load(p);
2619 
2620 	p->state = TASK_RUNNING;
2621 #ifdef CONFIG_SMP
2622 	/*
2623 	 * Fork balancing, do it here and not earlier because:
2624 	 *  - cpus_allowed can change in the fork path
2625 	 *  - any previously selected cpu might disappear through hotplug
2626 	 *
2627 	 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2628 	 * as we're not fully set-up yet.
2629 	 */
2630 	__set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2631 #endif
2632 	rq = __task_rq_lock(p, &rf);
2633 	update_rq_clock(rq);
2634 	post_init_entity_util_avg(&p->se);
2635 
2636 	walt_mark_task_starting(p);
2637 
2638 	activate_task(rq, p, ENQUEUE_WAKEUP_NEW);
2639 	p->on_rq = TASK_ON_RQ_QUEUED;
2640 	trace_sched_wakeup_new(p);
2641 	check_preempt_curr(rq, p, WF_FORK);
2642 #ifdef CONFIG_SMP
2643 	if (p->sched_class->task_woken) {
2644 		/*
2645 		 * Nothing relies on rq->lock after this, so its fine to
2646 		 * drop it.
2647 		 */
2648 		lockdep_unpin_lock(&rq->lock, rf.cookie);
2649 		p->sched_class->task_woken(rq, p);
2650 		lockdep_repin_lock(&rq->lock, rf.cookie);
2651 	}
2652 #endif
2653 	task_rq_unlock(rq, p, &rf);
2654 }
2655 
2656 #ifdef CONFIG_PREEMPT_NOTIFIERS
2657 
2658 static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2659 
preempt_notifier_inc(void)2660 void preempt_notifier_inc(void)
2661 {
2662 	static_key_slow_inc(&preempt_notifier_key);
2663 }
2664 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2665 
preempt_notifier_dec(void)2666 void preempt_notifier_dec(void)
2667 {
2668 	static_key_slow_dec(&preempt_notifier_key);
2669 }
2670 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2671 
2672 /**
2673  * preempt_notifier_register - tell me when current is being preempted & rescheduled
2674  * @notifier: notifier struct to register
2675  */
preempt_notifier_register(struct preempt_notifier * notifier)2676 void preempt_notifier_register(struct preempt_notifier *notifier)
2677 {
2678 	if (!static_key_false(&preempt_notifier_key))
2679 		WARN(1, "registering preempt_notifier while notifiers disabled\n");
2680 
2681 	hlist_add_head(&notifier->link, &current->preempt_notifiers);
2682 }
2683 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2684 
2685 /**
2686  * preempt_notifier_unregister - no longer interested in preemption notifications
2687  * @notifier: notifier struct to unregister
2688  *
2689  * This is *not* safe to call from within a preemption notifier.
2690  */
preempt_notifier_unregister(struct preempt_notifier * notifier)2691 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2692 {
2693 	hlist_del(&notifier->link);
2694 }
2695 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2696 
__fire_sched_in_preempt_notifiers(struct task_struct * curr)2697 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
2698 {
2699 	struct preempt_notifier *notifier;
2700 
2701 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2702 		notifier->ops->sched_in(notifier, raw_smp_processor_id());
2703 }
2704 
fire_sched_in_preempt_notifiers(struct task_struct * curr)2705 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2706 {
2707 	if (static_key_false(&preempt_notifier_key))
2708 		__fire_sched_in_preempt_notifiers(curr);
2709 }
2710 
2711 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2712 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
2713 				   struct task_struct *next)
2714 {
2715 	struct preempt_notifier *notifier;
2716 
2717 	hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2718 		notifier->ops->sched_out(notifier, next);
2719 }
2720 
2721 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2722 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2723 				 struct task_struct *next)
2724 {
2725 	if (static_key_false(&preempt_notifier_key))
2726 		__fire_sched_out_preempt_notifiers(curr, next);
2727 }
2728 
2729 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2730 
fire_sched_in_preempt_notifiers(struct task_struct * curr)2731 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2732 {
2733 }
2734 
2735 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)2736 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2737 				 struct task_struct *next)
2738 {
2739 }
2740 
2741 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2742 
2743 /**
2744  * prepare_task_switch - prepare to switch tasks
2745  * @rq: the runqueue preparing to switch
2746  * @prev: the current task that is being switched out
2747  * @next: the task we are going to switch to.
2748  *
2749  * This is called with the rq lock held and interrupts off. It must
2750  * be paired with a subsequent finish_task_switch after the context
2751  * switch.
2752  *
2753  * prepare_task_switch sets up locking and calls architecture specific
2754  * hooks.
2755  */
2756 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)2757 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2758 		    struct task_struct *next)
2759 {
2760 	sched_info_switch(rq, prev, next);
2761 	perf_event_task_sched_out(prev, next);
2762 	fire_sched_out_preempt_notifiers(prev, next);
2763 	prepare_lock_switch(rq, next);
2764 	prepare_arch_switch(next);
2765 }
2766 
2767 /**
2768  * finish_task_switch - clean up after a task-switch
2769  * @prev: the thread we just switched away from.
2770  *
2771  * finish_task_switch must be called after the context switch, paired
2772  * with a prepare_task_switch call before the context switch.
2773  * finish_task_switch will reconcile locking set up by prepare_task_switch,
2774  * and do any other architecture-specific cleanup actions.
2775  *
2776  * Note that we may have delayed dropping an mm in context_switch(). If
2777  * so, we finish that here outside of the runqueue lock. (Doing it
2778  * with the lock held can cause deadlocks; see schedule() for
2779  * details.)
2780  *
2781  * The context switch have flipped the stack from under us and restored the
2782  * local variables which were saved when this task called schedule() in the
2783  * past. prev == current is still correct but we need to recalculate this_rq
2784  * because prev may have moved to another CPU.
2785  */
finish_task_switch(struct task_struct * prev)2786 static struct rq *finish_task_switch(struct task_struct *prev)
2787 	__releases(rq->lock)
2788 {
2789 	struct rq *rq = this_rq();
2790 	struct mm_struct *mm = rq->prev_mm;
2791 	long prev_state;
2792 
2793 	/*
2794 	 * The previous task will have left us with a preempt_count of 2
2795 	 * because it left us after:
2796 	 *
2797 	 *	schedule()
2798 	 *	  preempt_disable();			// 1
2799 	 *	  __schedule()
2800 	 *	    raw_spin_lock_irq(&rq->lock)	// 2
2801 	 *
2802 	 * Also, see FORK_PREEMPT_COUNT.
2803 	 */
2804 	if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2805 		      "corrupted preempt_count: %s/%d/0x%x\n",
2806 		      current->comm, current->pid, preempt_count()))
2807 		preempt_count_set(FORK_PREEMPT_COUNT);
2808 
2809 	rq->prev_mm = NULL;
2810 
2811 	/*
2812 	 * A task struct has one reference for the use as "current".
2813 	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2814 	 * schedule one last time. The schedule call will never return, and
2815 	 * the scheduled task must drop that reference.
2816 	 *
2817 	 * We must observe prev->state before clearing prev->on_cpu (in
2818 	 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2819 	 * running on another CPU and we could rave with its RUNNING -> DEAD
2820 	 * transition, resulting in a double drop.
2821 	 */
2822 	prev_state = prev->state;
2823 	vtime_task_switch(prev);
2824 	perf_event_task_sched_in(prev, current);
2825 	finish_lock_switch(rq, prev);
2826 	finish_arch_post_lock_switch();
2827 
2828 	fire_sched_in_preempt_notifiers(current);
2829 	if (mm)
2830 		mmdrop(mm);
2831 	if (unlikely(prev_state == TASK_DEAD)) {
2832 		if (prev->sched_class->task_dead)
2833 			prev->sched_class->task_dead(prev);
2834 
2835 		/*
2836 		 * Remove function-return probe instances associated with this
2837 		 * task and put them back on the free list.
2838 		 */
2839 		kprobe_flush_task(prev);
2840 
2841 		/* Task is done with its stack. */
2842 		put_task_stack(prev);
2843 
2844 		put_task_struct(prev);
2845 	}
2846 
2847 	tick_nohz_task_switch();
2848 	return rq;
2849 }
2850 
2851 #ifdef CONFIG_SMP
2852 
2853 /* rq->lock is NOT held, but preemption is disabled */
__balance_callback(struct rq * rq)2854 static void __balance_callback(struct rq *rq)
2855 {
2856 	struct callback_head *head, *next;
2857 	void (*func)(struct rq *rq);
2858 	unsigned long flags;
2859 
2860 	raw_spin_lock_irqsave(&rq->lock, flags);
2861 	head = rq->balance_callback;
2862 	rq->balance_callback = NULL;
2863 	while (head) {
2864 		func = (void (*)(struct rq *))head->func;
2865 		next = head->next;
2866 		head->next = NULL;
2867 		head = next;
2868 
2869 		func(rq);
2870 	}
2871 	raw_spin_unlock_irqrestore(&rq->lock, flags);
2872 }
2873 
balance_callback(struct rq * rq)2874 static inline void balance_callback(struct rq *rq)
2875 {
2876 	if (unlikely(rq->balance_callback))
2877 		__balance_callback(rq);
2878 }
2879 
2880 #else
2881 
balance_callback(struct rq * rq)2882 static inline void balance_callback(struct rq *rq)
2883 {
2884 }
2885 
2886 #endif
2887 
2888 /**
2889  * schedule_tail - first thing a freshly forked thread must call.
2890  * @prev: the thread we just switched away from.
2891  */
schedule_tail(struct task_struct * prev)2892 asmlinkage __visible void schedule_tail(struct task_struct *prev)
2893 	__releases(rq->lock)
2894 {
2895 	struct rq *rq;
2896 
2897 	/*
2898 	 * New tasks start with FORK_PREEMPT_COUNT, see there and
2899 	 * finish_task_switch() for details.
2900 	 *
2901 	 * finish_task_switch() will drop rq->lock() and lower preempt_count
2902 	 * and the preempt_enable() will end up enabling preemption (on
2903 	 * PREEMPT_COUNT kernels).
2904 	 */
2905 
2906 	rq = finish_task_switch(prev);
2907 	balance_callback(rq);
2908 	preempt_enable();
2909 
2910 	if (current->set_child_tid)
2911 		put_user(task_pid_vnr(current), current->set_child_tid);
2912 }
2913 
2914 /*
2915  * context_switch - switch to the new MM and the new thread's register state.
2916  */
2917 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct pin_cookie cookie)2918 context_switch(struct rq *rq, struct task_struct *prev,
2919 	       struct task_struct *next, struct pin_cookie cookie)
2920 {
2921 	struct mm_struct *mm, *oldmm;
2922 
2923 	prepare_task_switch(rq, prev, next);
2924 
2925 	mm = next->mm;
2926 	oldmm = prev->active_mm;
2927 	/*
2928 	 * For paravirt, this is coupled with an exit in switch_to to
2929 	 * combine the page table reload and the switch backend into
2930 	 * one hypercall.
2931 	 */
2932 	arch_start_context_switch(prev);
2933 
2934 	if (!mm) {
2935 		next->active_mm = oldmm;
2936 		atomic_inc(&oldmm->mm_count);
2937 		enter_lazy_tlb(oldmm, next);
2938 	} else
2939 		switch_mm_irqs_off(oldmm, mm, next);
2940 
2941 	if (!prev->mm) {
2942 		prev->active_mm = NULL;
2943 		rq->prev_mm = oldmm;
2944 	}
2945 	/*
2946 	 * Since the runqueue lock will be released by the next
2947 	 * task (which is an invalid locking op but in the case
2948 	 * of the scheduler it's an obvious special-case), so we
2949 	 * do an early lockdep release here:
2950 	 */
2951 	lockdep_unpin_lock(&rq->lock, cookie);
2952 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2953 
2954 	/* Here we just switch the register state and the stack. */
2955 	switch_to(prev, next, prev);
2956 	barrier();
2957 
2958 	return finish_task_switch(prev);
2959 }
2960 
2961 /*
2962  * nr_running and nr_context_switches:
2963  *
2964  * externally visible scheduler statistics: current number of runnable
2965  * threads, total number of context switches performed since bootup.
2966  */
nr_running(void)2967 unsigned long nr_running(void)
2968 {
2969 	unsigned long i, sum = 0;
2970 
2971 	for_each_online_cpu(i)
2972 		sum += cpu_rq(i)->nr_running;
2973 
2974 	return sum;
2975 }
2976 
2977 /*
2978  * Check if only the current task is running on the cpu.
2979  *
2980  * Caution: this function does not check that the caller has disabled
2981  * preemption, thus the result might have a time-of-check-to-time-of-use
2982  * race.  The caller is responsible to use it correctly, for example:
2983  *
2984  * - from a non-preemptable section (of course)
2985  *
2986  * - from a thread that is bound to a single CPU
2987  *
2988  * - in a loop with very short iterations (e.g. a polling loop)
2989  */
single_task_running(void)2990 bool single_task_running(void)
2991 {
2992 	return raw_rq()->nr_running == 1;
2993 }
2994 EXPORT_SYMBOL(single_task_running);
2995 
nr_context_switches(void)2996 unsigned long long nr_context_switches(void)
2997 {
2998 	int i;
2999 	unsigned long long sum = 0;
3000 
3001 	for_each_possible_cpu(i)
3002 		sum += cpu_rq(i)->nr_switches;
3003 
3004 	return sum;
3005 }
3006 
nr_iowait(void)3007 unsigned long nr_iowait(void)
3008 {
3009 	unsigned long i, sum = 0;
3010 
3011 	for_each_possible_cpu(i)
3012 		sum += atomic_read(&cpu_rq(i)->nr_iowait);
3013 
3014 	return sum;
3015 }
3016 
nr_iowait_cpu(int cpu)3017 unsigned long nr_iowait_cpu(int cpu)
3018 {
3019 	struct rq *this = cpu_rq(cpu);
3020 	return atomic_read(&this->nr_iowait);
3021 }
3022 
3023 #ifdef CONFIG_CPU_QUIET
nr_running_integral(unsigned int cpu)3024 u64 nr_running_integral(unsigned int cpu)
3025 {
3026 	unsigned int seqcnt;
3027 	u64 integral;
3028 	struct rq *q;
3029 
3030 	if (cpu >= nr_cpu_ids)
3031 		return 0;
3032 
3033 	q = cpu_rq(cpu);
3034 
3035 	/*
3036 	 * Update average to avoid reading stalled value if there were
3037 	 * no run-queue changes for a long time. On the other hand if
3038 	 * the changes are happening right now, just read current value
3039 	 * directly.
3040 	 */
3041 
3042 	seqcnt = read_seqcount_begin(&q->ave_seqcnt);
3043 	integral = do_nr_running_integral(q);
3044 	if (read_seqcount_retry(&q->ave_seqcnt, seqcnt)) {
3045 		read_seqcount_begin(&q->ave_seqcnt);
3046 		integral = q->nr_running_integral;
3047 	}
3048 
3049 	return integral;
3050 }
3051 #endif
3052 
get_iowait_load(unsigned long * nr_waiters,unsigned long * load)3053 void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
3054 {
3055 	struct rq *rq = this_rq();
3056 	*nr_waiters = atomic_read(&rq->nr_iowait);
3057 	*load = rq->load.weight;
3058 }
3059 
3060 #ifdef CONFIG_SMP
3061 
3062 /*
3063  * sched_exec - execve() is a valuable balancing opportunity, because at
3064  * this point the task has the smallest effective memory and cache footprint.
3065  */
sched_exec(void)3066 void sched_exec(void)
3067 {
3068 	struct task_struct *p = current;
3069 	unsigned long flags;
3070 	int dest_cpu;
3071 
3072 	raw_spin_lock_irqsave(&p->pi_lock, flags);
3073 	dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3074 	if (dest_cpu == smp_processor_id())
3075 		goto unlock;
3076 
3077 	if (likely(cpu_active(dest_cpu))) {
3078 		struct migration_arg arg = { p, dest_cpu };
3079 
3080 		raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3081 		stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3082 		return;
3083 	}
3084 unlock:
3085 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3086 }
3087 
3088 #endif
3089 
3090 DEFINE_PER_CPU(struct kernel_stat, kstat);
3091 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3092 
3093 EXPORT_PER_CPU_SYMBOL(kstat);
3094 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3095 
3096 /*
3097  * The function fair_sched_class.update_curr accesses the struct curr
3098  * and its field curr->exec_start; when called from task_sched_runtime(),
3099  * we observe a high rate of cache misses in practice.
3100  * Prefetching this data results in improved performance.
3101  */
prefetch_curr_exec_start(struct task_struct * p)3102 static inline void prefetch_curr_exec_start(struct task_struct *p)
3103 {
3104 #ifdef CONFIG_FAIR_GROUP_SCHED
3105 	struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3106 #else
3107 	struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3108 #endif
3109 	prefetch(curr);
3110 	prefetch(&curr->exec_start);
3111 }
3112 
3113 /*
3114  * Return accounted runtime for the task.
3115  * In case the task is currently running, return the runtime plus current's
3116  * pending runtime that have not been accounted yet.
3117  */
task_sched_runtime(struct task_struct * p)3118 unsigned long long task_sched_runtime(struct task_struct *p)
3119 {
3120 	struct rq_flags rf;
3121 	struct rq *rq;
3122 	u64 ns;
3123 
3124 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3125 	/*
3126 	 * 64-bit doesn't need locks to atomically read a 64bit value.
3127 	 * So we have a optimization chance when the task's delta_exec is 0.
3128 	 * Reading ->on_cpu is racy, but this is ok.
3129 	 *
3130 	 * If we race with it leaving cpu, we'll take a lock. So we're correct.
3131 	 * If we race with it entering cpu, unaccounted time is 0. This is
3132 	 * indistinguishable from the read occurring a few cycles earlier.
3133 	 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3134 	 * been accounted, so we're correct here as well.
3135 	 */
3136 	if (!p->on_cpu || !task_on_rq_queued(p))
3137 		return p->se.sum_exec_runtime;
3138 #endif
3139 
3140 	rq = task_rq_lock(p, &rf);
3141 	/*
3142 	 * Must be ->curr _and_ ->on_rq.  If dequeued, we would
3143 	 * project cycles that may never be accounted to this
3144 	 * thread, breaking clock_gettime().
3145 	 */
3146 	if (task_current(rq, p) && task_on_rq_queued(p)) {
3147 		prefetch_curr_exec_start(p);
3148 		update_rq_clock(rq);
3149 		p->sched_class->update_curr(rq);
3150 	}
3151 	ns = p->se.sum_exec_runtime;
3152 	task_rq_unlock(rq, p, &rf);
3153 
3154 	return ns;
3155 }
3156 
3157 /*
3158  * This function gets called by the timer code, with HZ frequency.
3159  * We call it with interrupts disabled.
3160  */
scheduler_tick(void)3161 void scheduler_tick(void)
3162 {
3163 	int cpu = smp_processor_id();
3164 	struct rq *rq = cpu_rq(cpu);
3165 	struct task_struct *curr = rq->curr;
3166 
3167 	sched_clock_tick();
3168 
3169 	raw_spin_lock(&rq->lock);
3170 	walt_set_window_start(rq);
3171 	walt_update_task_ravg(rq->curr, rq, TASK_UPDATE,
3172 			walt_ktime_clock(), 0);
3173 	update_rq_clock(rq);
3174 	curr->sched_class->task_tick(rq, curr, 0);
3175 	cpu_load_update_active(rq);
3176 	calc_global_load_tick(rq);
3177 	raw_spin_unlock(&rq->lock);
3178 
3179 	perf_event_task_tick();
3180 
3181 #ifdef CONFIG_SMP
3182 	rq->idle_balance = idle_cpu(cpu);
3183 	trigger_load_balance(rq);
3184 #endif
3185 	rq_last_tick_reset(rq);
3186 
3187 	if (curr->sched_class == &fair_sched_class)
3188 		check_for_migration(rq, curr);
3189 }
3190 
3191 #ifdef CONFIG_NO_HZ_FULL
3192 /**
3193  * scheduler_tick_max_deferment
3194  *
3195  * Keep at least one tick per second when a single
3196  * active task is running because the scheduler doesn't
3197  * yet completely support full dynticks environment.
3198  *
3199  * This makes sure that uptime, CFS vruntime, load
3200  * balancing, etc... continue to move forward, even
3201  * with a very low granularity.
3202  *
3203  * Return: Maximum deferment in nanoseconds.
3204  */
scheduler_tick_max_deferment(void)3205 u64 scheduler_tick_max_deferment(void)
3206 {
3207 	struct rq *rq = this_rq();
3208 	unsigned long next, now = READ_ONCE(jiffies);
3209 
3210 	next = rq->last_sched_tick + HZ;
3211 
3212 	if (time_before_eq(next, now))
3213 		return 0;
3214 
3215 	return jiffies_to_nsecs(next - now);
3216 }
3217 #endif
3218 
3219 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3220 				defined(CONFIG_PREEMPT_TRACER))
3221 /*
3222  * If the value passed in is equal to the current preempt count
3223  * then we just disabled preemption. Start timing the latency.
3224  */
preempt_latency_start(int val)3225 static inline void preempt_latency_start(int val)
3226 {
3227 	if (preempt_count() == val) {
3228 		unsigned long ip = get_lock_parent_ip();
3229 #ifdef CONFIG_DEBUG_PREEMPT
3230 		current->preempt_disable_ip = ip;
3231 #endif
3232 		trace_preempt_off(CALLER_ADDR0, ip);
3233 	}
3234 }
3235 
preempt_count_add(int val)3236 void preempt_count_add(int val)
3237 {
3238 #ifdef CONFIG_DEBUG_PREEMPT
3239 	/*
3240 	 * Underflow?
3241 	 */
3242 	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3243 		return;
3244 #endif
3245 	__preempt_count_add(val);
3246 #ifdef CONFIG_DEBUG_PREEMPT
3247 	/*
3248 	 * Spinlock count overflowing soon?
3249 	 */
3250 	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3251 				PREEMPT_MASK - 10);
3252 #endif
3253 	preempt_latency_start(val);
3254 }
3255 EXPORT_SYMBOL(preempt_count_add);
3256 NOKPROBE_SYMBOL(preempt_count_add);
3257 
3258 /*
3259  * If the value passed in equals to the current preempt count
3260  * then we just enabled preemption. Stop timing the latency.
3261  */
preempt_latency_stop(int val)3262 static inline void preempt_latency_stop(int val)
3263 {
3264 	if (preempt_count() == val)
3265 		trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3266 }
3267 
preempt_count_sub(int val)3268 void preempt_count_sub(int val)
3269 {
3270 #ifdef CONFIG_DEBUG_PREEMPT
3271 	/*
3272 	 * Underflow?
3273 	 */
3274 	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3275 		return;
3276 	/*
3277 	 * Is the spinlock portion underflowing?
3278 	 */
3279 	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3280 			!(preempt_count() & PREEMPT_MASK)))
3281 		return;
3282 #endif
3283 
3284 	preempt_latency_stop(val);
3285 	__preempt_count_sub(val);
3286 }
3287 EXPORT_SYMBOL(preempt_count_sub);
3288 NOKPROBE_SYMBOL(preempt_count_sub);
3289 
3290 #else
preempt_latency_start(int val)3291 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)3292 static inline void preempt_latency_stop(int val) { }
3293 #endif
3294 
3295 /*
3296  * Print scheduling while atomic bug:
3297  */
__schedule_bug(struct task_struct * prev)3298 static noinline void __schedule_bug(struct task_struct *prev)
3299 {
3300 	/* Save this before calling printk(), since that will clobber it */
3301 	unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3302 
3303 	if (oops_in_progress)
3304 		return;
3305 
3306 	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3307 		prev->comm, prev->pid, preempt_count());
3308 
3309 	debug_show_held_locks(prev);
3310 	print_modules();
3311 	if (irqs_disabled())
3312 		print_irqtrace_events(prev);
3313 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3314 	    && in_atomic_preempt_off()) {
3315 		pr_err("Preemption disabled at:");
3316 		print_ip_sym(preempt_disable_ip);
3317 		pr_cont("\n");
3318 	}
3319 	if (panic_on_warn)
3320 		panic("scheduling while atomic\n");
3321 
3322 	dump_stack();
3323 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3324 }
3325 
3326 /*
3327  * Various schedule()-time debugging checks and statistics:
3328  */
schedule_debug(struct task_struct * prev)3329 static inline void schedule_debug(struct task_struct *prev)
3330 {
3331 #ifdef CONFIG_SCHED_STACK_END_CHECK
3332 	if (task_stack_end_corrupted(prev))
3333 		panic("corrupted stack end detected inside scheduler\n");
3334 #endif
3335 
3336 	if (unlikely(in_atomic_preempt_off())) {
3337 		__schedule_bug(prev);
3338 		preempt_count_set(PREEMPT_DISABLED);
3339 	}
3340 	rcu_sleep_check();
3341 
3342 	profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3343 
3344 	schedstat_inc(this_rq()->sched_count);
3345 }
3346 
3347 /*
3348  * Pick up the highest-prio task:
3349  */
3350 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct pin_cookie cookie)3351 pick_next_task(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
3352 {
3353 	const struct sched_class *class = &fair_sched_class;
3354 	struct task_struct *p;
3355 
3356 	/*
3357 	 * Optimization: we know that if all tasks are in
3358 	 * the fair class we can call that function directly:
3359 	 */
3360 	if (likely(prev->sched_class == class &&
3361 		   rq->nr_running == rq->cfs.h_nr_running)) {
3362 		p = fair_sched_class.pick_next_task(rq, prev, cookie);
3363 		if (unlikely(p == RETRY_TASK))
3364 			goto again;
3365 
3366 		/* assumes fair_sched_class->next == idle_sched_class */
3367 		if (unlikely(!p))
3368 			p = idle_sched_class.pick_next_task(rq, prev, cookie);
3369 
3370 		return p;
3371 	}
3372 
3373 again:
3374 	for_each_class(class) {
3375 		p = class->pick_next_task(rq, prev, cookie);
3376 		if (p) {
3377 			if (unlikely(p == RETRY_TASK))
3378 				goto again;
3379 			return p;
3380 		}
3381 	}
3382 
3383 	BUG(); /* the idle class will always have a runnable task */
3384 }
3385 
3386 /*
3387  * __schedule() is the main scheduler function.
3388  *
3389  * The main means of driving the scheduler and thus entering this function are:
3390  *
3391  *   1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3392  *
3393  *   2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3394  *      paths. For example, see arch/x86/entry_64.S.
3395  *
3396  *      To drive preemption between tasks, the scheduler sets the flag in timer
3397  *      interrupt handler scheduler_tick().
3398  *
3399  *   3. Wakeups don't really cause entry into schedule(). They add a
3400  *      task to the run-queue and that's it.
3401  *
3402  *      Now, if the new task added to the run-queue preempts the current
3403  *      task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3404  *      called on the nearest possible occasion:
3405  *
3406  *       - If the kernel is preemptible (CONFIG_PREEMPT=y):
3407  *
3408  *         - in syscall or exception context, at the next outmost
3409  *           preempt_enable(). (this might be as soon as the wake_up()'s
3410  *           spin_unlock()!)
3411  *
3412  *         - in IRQ context, return from interrupt-handler to
3413  *           preemptible context
3414  *
3415  *       - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3416  *         then at the next:
3417  *
3418  *          - cond_resched() call
3419  *          - explicit schedule() call
3420  *          - return from syscall or exception to user-space
3421  *          - return from interrupt-handler to user-space
3422  *
3423  * WARNING: must be called with preemption disabled!
3424  */
__schedule(bool preempt)3425 static void __sched notrace __schedule(bool preempt)
3426 {
3427 	struct task_struct *prev, *next;
3428 	unsigned long *switch_count;
3429 	struct pin_cookie cookie;
3430 	struct rq *rq;
3431 	int cpu;
3432 	u64 wallclock;
3433 
3434 	cpu = smp_processor_id();
3435 	rq = cpu_rq(cpu);
3436 	prev = rq->curr;
3437 
3438 	schedule_debug(prev);
3439 
3440 	if (sched_feat(HRTICK))
3441 		hrtick_clear(rq);
3442 
3443 	local_irq_disable();
3444 	rcu_note_context_switch();
3445 
3446 	/*
3447 	 * Make sure that signal_pending_state()->signal_pending() below
3448 	 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3449 	 * done by the caller to avoid the race with signal_wake_up().
3450 	 */
3451 	smp_mb__before_spinlock();
3452 	raw_spin_lock(&rq->lock);
3453 	cookie = lockdep_pin_lock(&rq->lock);
3454 
3455 	rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3456 
3457 	switch_count = &prev->nivcsw;
3458 	if (!preempt && prev->state) {
3459 		if (unlikely(signal_pending_state(prev->state, prev))) {
3460 			prev->state = TASK_RUNNING;
3461 		} else {
3462 			deactivate_task(rq, prev, DEQUEUE_SLEEP);
3463 			prev->on_rq = 0;
3464 
3465 			/*
3466 			 * If a worker went to sleep, notify and ask workqueue
3467 			 * whether it wants to wake up a task to maintain
3468 			 * concurrency.
3469 			 */
3470 			if (prev->flags & PF_WQ_WORKER) {
3471 				struct task_struct *to_wakeup;
3472 
3473 				to_wakeup = wq_worker_sleeping(prev);
3474 				if (to_wakeup)
3475 					try_to_wake_up_local(to_wakeup, cookie);
3476 			}
3477 		}
3478 		switch_count = &prev->nvcsw;
3479 	}
3480 
3481 	if (task_on_rq_queued(prev))
3482 		update_rq_clock(rq);
3483 
3484 	next = pick_next_task(rq, prev, cookie);
3485 	wallclock = walt_ktime_clock();
3486 	walt_update_task_ravg(prev, rq, PUT_PREV_TASK, wallclock, 0);
3487 	walt_update_task_ravg(next, rq, PICK_NEXT_TASK, wallclock, 0);
3488 	clear_tsk_need_resched(prev);
3489 	clear_preempt_need_resched();
3490 	rq->clock_skip_update = 0;
3491 
3492 	if (likely(prev != next)) {
3493 #ifdef CONFIG_SCHED_WALT
3494 		if (!prev->on_rq)
3495 			prev->last_sleep_ts = wallclock;
3496 #endif
3497 		rq->nr_switches++;
3498 		rq->curr = next;
3499 		++*switch_count;
3500 
3501 		trace_sched_switch(preempt, prev, next);
3502 		rq = context_switch(rq, prev, next, cookie); /* unlocks the rq */
3503 	} else {
3504 		lockdep_unpin_lock(&rq->lock, cookie);
3505 		raw_spin_unlock_irq(&rq->lock);
3506 	}
3507 
3508 	balance_callback(rq);
3509 }
3510 
do_task_dead(void)3511 void __noreturn do_task_dead(void)
3512 {
3513 	/*
3514 	 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
3515 	 * when the following two conditions become true.
3516 	 *   - There is race condition of mmap_sem (It is acquired by
3517 	 *     exit_mm()), and
3518 	 *   - SMI occurs before setting TASK_RUNINNG.
3519 	 *     (or hypervisor of virtual machine switches to other guest)
3520 	 *  As a result, we may become TASK_RUNNING after becoming TASK_DEAD
3521 	 *
3522 	 * To avoid it, we have to wait for releasing tsk->pi_lock which
3523 	 * is held by try_to_wake_up()
3524 	 */
3525 	smp_mb();
3526 	raw_spin_unlock_wait(&current->pi_lock);
3527 
3528 	/* causes final put_task_struct in finish_task_switch(). */
3529 	__set_current_state(TASK_DEAD);
3530 	current->flags |= PF_NOFREEZE;	/* tell freezer to ignore us */
3531 	__schedule(false);
3532 	BUG();
3533 	/* Avoid "noreturn function does return".  */
3534 	for (;;)
3535 		cpu_relax();	/* For when BUG is null */
3536 }
3537 
sched_submit_work(struct task_struct * tsk)3538 static inline void sched_submit_work(struct task_struct *tsk)
3539 {
3540 	if (!tsk->state || tsk_is_pi_blocked(tsk))
3541 		return;
3542 	/*
3543 	 * If we are going to sleep and we have plugged IO queued,
3544 	 * make sure to submit it to avoid deadlocks.
3545 	 */
3546 	if (blk_needs_flush_plug(tsk))
3547 		blk_schedule_flush_plug(tsk);
3548 }
3549 
schedule(void)3550 asmlinkage __visible void __sched schedule(void)
3551 {
3552 	struct task_struct *tsk = current;
3553 
3554 	sched_submit_work(tsk);
3555 	do {
3556 		preempt_disable();
3557 		__schedule(false);
3558 		sched_preempt_enable_no_resched();
3559 	} while (need_resched());
3560 }
3561 EXPORT_SYMBOL(schedule);
3562 
3563 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)3564 asmlinkage __visible void __sched schedule_user(void)
3565 {
3566 	/*
3567 	 * If we come here after a random call to set_need_resched(),
3568 	 * or we have been woken up remotely but the IPI has not yet arrived,
3569 	 * we haven't yet exited the RCU idle mode. Do it here manually until
3570 	 * we find a better solution.
3571 	 *
3572 	 * NB: There are buggy callers of this function.  Ideally we
3573 	 * should warn if prev_state != CONTEXT_USER, but that will trigger
3574 	 * too frequently to make sense yet.
3575 	 */
3576 	enum ctx_state prev_state = exception_enter();
3577 	schedule();
3578 	exception_exit(prev_state);
3579 }
3580 #endif
3581 
3582 /**
3583  * schedule_preempt_disabled - called with preemption disabled
3584  *
3585  * Returns with preemption disabled. Note: preempt_count must be 1
3586  */
schedule_preempt_disabled(void)3587 void __sched schedule_preempt_disabled(void)
3588 {
3589 	sched_preempt_enable_no_resched();
3590 	schedule();
3591 	preempt_disable();
3592 }
3593 
preempt_schedule_common(void)3594 static void __sched notrace preempt_schedule_common(void)
3595 {
3596 	do {
3597 		/*
3598 		 * Because the function tracer can trace preempt_count_sub()
3599 		 * and it also uses preempt_enable/disable_notrace(), if
3600 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3601 		 * by the function tracer will call this function again and
3602 		 * cause infinite recursion.
3603 		 *
3604 		 * Preemption must be disabled here before the function
3605 		 * tracer can trace. Break up preempt_disable() into two
3606 		 * calls. One to disable preemption without fear of being
3607 		 * traced. The other to still record the preemption latency,
3608 		 * which can also be traced by the function tracer.
3609 		 */
3610 		preempt_disable_notrace();
3611 		preempt_latency_start(1);
3612 		__schedule(true);
3613 		preempt_latency_stop(1);
3614 		preempt_enable_no_resched_notrace();
3615 
3616 		/*
3617 		 * Check again in case we missed a preemption opportunity
3618 		 * between schedule and now.
3619 		 */
3620 	} while (need_resched());
3621 }
3622 
3623 #ifdef CONFIG_PREEMPT
3624 /*
3625  * this is the entry point to schedule() from in-kernel preemption
3626  * off of preempt_enable. Kernel preemptions off return from interrupt
3627  * occur there and call schedule directly.
3628  */
preempt_schedule(void)3629 asmlinkage __visible void __sched notrace preempt_schedule(void)
3630 {
3631 	/*
3632 	 * If there is a non-zero preempt_count or interrupts are disabled,
3633 	 * we do not want to preempt the current task. Just return..
3634 	 */
3635 	if (likely(!preemptible()))
3636 		return;
3637 
3638 	preempt_schedule_common();
3639 }
3640 NOKPROBE_SYMBOL(preempt_schedule);
3641 EXPORT_SYMBOL(preempt_schedule);
3642 
3643 /**
3644  * preempt_schedule_notrace - preempt_schedule called by tracing
3645  *
3646  * The tracing infrastructure uses preempt_enable_notrace to prevent
3647  * recursion and tracing preempt enabling caused by the tracing
3648  * infrastructure itself. But as tracing can happen in areas coming
3649  * from userspace or just about to enter userspace, a preempt enable
3650  * can occur before user_exit() is called. This will cause the scheduler
3651  * to be called when the system is still in usermode.
3652  *
3653  * To prevent this, the preempt_enable_notrace will use this function
3654  * instead of preempt_schedule() to exit user context if needed before
3655  * calling the scheduler.
3656  */
preempt_schedule_notrace(void)3657 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
3658 {
3659 	enum ctx_state prev_ctx;
3660 
3661 	if (likely(!preemptible()))
3662 		return;
3663 
3664 	do {
3665 		/*
3666 		 * Because the function tracer can trace preempt_count_sub()
3667 		 * and it also uses preempt_enable/disable_notrace(), if
3668 		 * NEED_RESCHED is set, the preempt_enable_notrace() called
3669 		 * by the function tracer will call this function again and
3670 		 * cause infinite recursion.
3671 		 *
3672 		 * Preemption must be disabled here before the function
3673 		 * tracer can trace. Break up preempt_disable() into two
3674 		 * calls. One to disable preemption without fear of being
3675 		 * traced. The other to still record the preemption latency,
3676 		 * which can also be traced by the function tracer.
3677 		 */
3678 		preempt_disable_notrace();
3679 		preempt_latency_start(1);
3680 		/*
3681 		 * Needs preempt disabled in case user_exit() is traced
3682 		 * and the tracer calls preempt_enable_notrace() causing
3683 		 * an infinite recursion.
3684 		 */
3685 		prev_ctx = exception_enter();
3686 		__schedule(true);
3687 		exception_exit(prev_ctx);
3688 
3689 		preempt_latency_stop(1);
3690 		preempt_enable_no_resched_notrace();
3691 	} while (need_resched());
3692 }
3693 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
3694 
3695 #endif /* CONFIG_PREEMPT */
3696 
3697 /*
3698  * this is the entry point to schedule() from kernel preemption
3699  * off of irq context.
3700  * Note, that this is called and return with irqs disabled. This will
3701  * protect us against recursive calling from irq.
3702  */
preempt_schedule_irq(void)3703 asmlinkage __visible void __sched preempt_schedule_irq(void)
3704 {
3705 	enum ctx_state prev_state;
3706 
3707 	/* Catch callers which need to be fixed */
3708 	BUG_ON(preempt_count() || !irqs_disabled());
3709 
3710 	prev_state = exception_enter();
3711 
3712 	do {
3713 		preempt_disable();
3714 		local_irq_enable();
3715 		__schedule(true);
3716 		local_irq_disable();
3717 		sched_preempt_enable_no_resched();
3718 	} while (need_resched());
3719 
3720 	exception_exit(prev_state);
3721 }
3722 
default_wake_function(wait_queue_t * curr,unsigned mode,int wake_flags,void * key)3723 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3724 			  void *key)
3725 {
3726 	return try_to_wake_up(curr->private, mode, wake_flags);
3727 }
3728 EXPORT_SYMBOL(default_wake_function);
3729 
3730 #ifdef CONFIG_RT_MUTEXES
3731 
3732 /*
3733  * rt_mutex_setprio - set the current priority of a task
3734  * @p: task
3735  * @prio: prio value (kernel-internal form)
3736  *
3737  * This function changes the 'effective' priority of a task. It does
3738  * not touch ->normal_prio like __setscheduler().
3739  *
3740  * Used by the rt_mutex code to implement priority inheritance
3741  * logic. Call site only calls if the priority of the task changed.
3742  */
rt_mutex_setprio(struct task_struct * p,int prio)3743 void rt_mutex_setprio(struct task_struct *p, int prio)
3744 {
3745 	int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
3746 	const struct sched_class *prev_class;
3747 	struct rq_flags rf;
3748 	struct rq *rq;
3749 
3750 	BUG_ON(prio > MAX_PRIO);
3751 
3752 	rq = __task_rq_lock(p, &rf);
3753 	update_rq_clock(rq);
3754 
3755 	/*
3756 	 * Idle task boosting is a nono in general. There is one
3757 	 * exception, when PREEMPT_RT and NOHZ is active:
3758 	 *
3759 	 * The idle task calls get_next_timer_interrupt() and holds
3760 	 * the timer wheel base->lock on the CPU and another CPU wants
3761 	 * to access the timer (probably to cancel it). We can safely
3762 	 * ignore the boosting request, as the idle CPU runs this code
3763 	 * with interrupts disabled and will complete the lock
3764 	 * protected section without being interrupted. So there is no
3765 	 * real need to boost.
3766 	 */
3767 	if (unlikely(p == rq->idle)) {
3768 		WARN_ON(p != rq->curr);
3769 		WARN_ON(p->pi_blocked_on);
3770 		goto out_unlock;
3771 	}
3772 
3773 	trace_sched_pi_setprio(p, prio);
3774 	oldprio = p->prio;
3775 
3776 	if (oldprio == prio)
3777 		queue_flag &= ~DEQUEUE_MOVE;
3778 
3779 	prev_class = p->sched_class;
3780 	queued = task_on_rq_queued(p);
3781 	running = task_current(rq, p);
3782 	if (queued)
3783 		dequeue_task(rq, p, queue_flag);
3784 	if (running)
3785 		put_prev_task(rq, p);
3786 
3787 	/*
3788 	 * Boosting condition are:
3789 	 * 1. -rt task is running and holds mutex A
3790 	 *      --> -dl task blocks on mutex A
3791 	 *
3792 	 * 2. -dl task is running and holds mutex A
3793 	 *      --> -dl task blocks on mutex A and could preempt the
3794 	 *          running task
3795 	 */
3796 	if (dl_prio(prio)) {
3797 		struct task_struct *pi_task = rt_mutex_get_top_task(p);
3798 		if (!dl_prio(p->normal_prio) ||
3799 		    (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3800 			p->dl.dl_boosted = 1;
3801 			queue_flag |= ENQUEUE_REPLENISH;
3802 		} else
3803 			p->dl.dl_boosted = 0;
3804 		p->sched_class = &dl_sched_class;
3805 	} else if (rt_prio(prio)) {
3806 		if (dl_prio(oldprio))
3807 			p->dl.dl_boosted = 0;
3808 		if (oldprio < prio)
3809 			queue_flag |= ENQUEUE_HEAD;
3810 		p->sched_class = &rt_sched_class;
3811 	} else {
3812 		if (dl_prio(oldprio))
3813 			p->dl.dl_boosted = 0;
3814 		if (rt_prio(oldprio))
3815 			p->rt.timeout = 0;
3816 		p->sched_class = &fair_sched_class;
3817 	}
3818 
3819 	p->prio = prio;
3820 
3821 	if (queued)
3822 		enqueue_task(rq, p, queue_flag);
3823 	if (running)
3824 		set_curr_task(rq, p);
3825 
3826 	check_class_changed(rq, p, prev_class, oldprio);
3827 out_unlock:
3828 	preempt_disable(); /* avoid rq from going away on us */
3829 	__task_rq_unlock(rq, &rf);
3830 
3831 	balance_callback(rq);
3832 	preempt_enable();
3833 }
3834 #endif
3835 
set_user_nice(struct task_struct * p,long nice)3836 void set_user_nice(struct task_struct *p, long nice)
3837 {
3838 	bool queued, running;
3839 	int old_prio, delta;
3840 	struct rq_flags rf;
3841 	struct rq *rq;
3842 
3843 	if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3844 		return;
3845 	/*
3846 	 * We have to be careful, if called from sys_setpriority(),
3847 	 * the task might be in the middle of scheduling on another CPU.
3848 	 */
3849 	rq = task_rq_lock(p, &rf);
3850 	update_rq_clock(rq);
3851 
3852 	/*
3853 	 * The RT priorities are set via sched_setscheduler(), but we still
3854 	 * allow the 'normal' nice value to be set - but as expected
3855 	 * it wont have any effect on scheduling until the task is
3856 	 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3857 	 */
3858 	if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3859 		p->static_prio = NICE_TO_PRIO(nice);
3860 		goto out_unlock;
3861 	}
3862 	queued = task_on_rq_queued(p);
3863 	running = task_current(rq, p);
3864 	if (queued)
3865 		dequeue_task(rq, p, DEQUEUE_SAVE);
3866 	if (running)
3867 		put_prev_task(rq, p);
3868 
3869 	p->static_prio = NICE_TO_PRIO(nice);
3870 	set_load_weight(p);
3871 	old_prio = p->prio;
3872 	p->prio = effective_prio(p);
3873 	delta = p->prio - old_prio;
3874 
3875 	if (queued) {
3876 		enqueue_task(rq, p, ENQUEUE_RESTORE);
3877 		/*
3878 		 * If the task increased its priority or is running and
3879 		 * lowered its priority, then reschedule its CPU:
3880 		 */
3881 		if (delta < 0 || (delta > 0 && task_running(rq, p)))
3882 			resched_curr(rq);
3883 	}
3884 	if (running)
3885 		set_curr_task(rq, p);
3886 out_unlock:
3887 	task_rq_unlock(rq, p, &rf);
3888 }
3889 EXPORT_SYMBOL(set_user_nice);
3890 
3891 /*
3892  * can_nice - check if a task can reduce its nice value
3893  * @p: task
3894  * @nice: nice value
3895  */
can_nice(const struct task_struct * p,const int nice)3896 int can_nice(const struct task_struct *p, const int nice)
3897 {
3898 	/* convert nice value [19,-20] to rlimit style value [1,40] */
3899 	int nice_rlim = nice_to_rlimit(nice);
3900 
3901 	return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3902 		capable(CAP_SYS_NICE));
3903 }
3904 
3905 #ifdef __ARCH_WANT_SYS_NICE
3906 
3907 /*
3908  * sys_nice - change the priority of the current process.
3909  * @increment: priority increment
3910  *
3911  * sys_setpriority is a more generic, but much slower function that
3912  * does similar things.
3913  */
SYSCALL_DEFINE1(nice,int,increment)3914 SYSCALL_DEFINE1(nice, int, increment)
3915 {
3916 	long nice, retval;
3917 
3918 	/*
3919 	 * Setpriority might change our priority at the same moment.
3920 	 * We don't have to worry. Conceptually one call occurs first
3921 	 * and we have a single winner.
3922 	 */
3923 	increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3924 	nice = task_nice(current) + increment;
3925 
3926 	nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3927 	if (increment < 0 && !can_nice(current, nice))
3928 		return -EPERM;
3929 
3930 	retval = security_task_setnice(current, nice);
3931 	if (retval)
3932 		return retval;
3933 
3934 	set_user_nice(current, nice);
3935 	return 0;
3936 }
3937 
3938 #endif
3939 
3940 /**
3941  * task_prio - return the priority value of a given task.
3942  * @p: the task in question.
3943  *
3944  * Return: The priority value as seen by users in /proc.
3945  * RT tasks are offset by -200. Normal tasks are centered
3946  * around 0, value goes from -16 to +15.
3947  */
task_prio(const struct task_struct * p)3948 int task_prio(const struct task_struct *p)
3949 {
3950 	return p->prio - MAX_RT_PRIO;
3951 }
3952 
3953 /**
3954  * idle_cpu - is a given cpu idle currently?
3955  * @cpu: the processor in question.
3956  *
3957  * Return: 1 if the CPU is currently idle. 0 otherwise.
3958  */
idle_cpu(int cpu)3959 int idle_cpu(int cpu)
3960 {
3961 	struct rq *rq = cpu_rq(cpu);
3962 
3963 	if (rq->curr != rq->idle)
3964 		return 0;
3965 
3966 	if (rq->nr_running)
3967 		return 0;
3968 
3969 #ifdef CONFIG_SMP
3970 	if (!llist_empty(&rq->wake_list))
3971 		return 0;
3972 #endif
3973 
3974 	return 1;
3975 }
3976 
3977 /**
3978  * idle_task - return the idle task for a given cpu.
3979  * @cpu: the processor in question.
3980  *
3981  * Return: The idle task for the cpu @cpu.
3982  */
idle_task(int cpu)3983 struct task_struct *idle_task(int cpu)
3984 {
3985 	return cpu_rq(cpu)->idle;
3986 }
3987 
3988 /**
3989  * find_process_by_pid - find a process with a matching PID value.
3990  * @pid: the pid in question.
3991  *
3992  * The task of @pid, if found. %NULL otherwise.
3993  */
find_process_by_pid(pid_t pid)3994 static struct task_struct *find_process_by_pid(pid_t pid)
3995 {
3996 	return pid ? find_task_by_vpid(pid) : current;
3997 }
3998 
3999 /*
4000  * This function initializes the sched_dl_entity of a newly becoming
4001  * SCHED_DEADLINE task.
4002  *
4003  * Only the static values are considered here, the actual runtime and the
4004  * absolute deadline will be properly calculated when the task is enqueued
4005  * for the first time with its new policy.
4006  */
4007 static void
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)4008 __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
4009 {
4010 	struct sched_dl_entity *dl_se = &p->dl;
4011 
4012 	dl_se->dl_runtime = attr->sched_runtime;
4013 	dl_se->dl_deadline = attr->sched_deadline;
4014 	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
4015 	dl_se->flags = attr->sched_flags;
4016 	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
4017 	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
4018 
4019 	/*
4020 	 * Changing the parameters of a task is 'tricky' and we're not doing
4021 	 * the correct thing -- also see task_dead_dl() and switched_from_dl().
4022 	 *
4023 	 * What we SHOULD do is delay the bandwidth release until the 0-lag
4024 	 * point. This would include retaining the task_struct until that time
4025 	 * and change dl_overflow() to not immediately decrement the current
4026 	 * amount.
4027 	 *
4028 	 * Instead we retain the current runtime/deadline and let the new
4029 	 * parameters take effect after the current reservation period lapses.
4030 	 * This is safe (albeit pessimistic) because the 0-lag point is always
4031 	 * before the current scheduling deadline.
4032 	 *
4033 	 * We can still have temporary overloads because we do not delay the
4034 	 * change in bandwidth until that time; so admission control is
4035 	 * not on the safe side. It does however guarantee tasks will never
4036 	 * consume more than promised.
4037 	 */
4038 }
4039 
4040 /*
4041  * sched_setparam() passes in -1 for its policy, to let the functions
4042  * it calls know not to change it.
4043  */
4044 #define SETPARAM_POLICY	-1
4045 
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)4046 static void __setscheduler_params(struct task_struct *p,
4047 		const struct sched_attr *attr)
4048 {
4049 	int policy = attr->sched_policy;
4050 
4051 	if (policy == SETPARAM_POLICY)
4052 		policy = p->policy;
4053 
4054 	p->policy = policy;
4055 
4056 	if (dl_policy(policy))
4057 		__setparam_dl(p, attr);
4058 	else if (fair_policy(policy))
4059 		p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4060 
4061 	/*
4062 	 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4063 	 * !rt_policy. Always setting this ensures that things like
4064 	 * getparam()/getattr() don't report silly values for !rt tasks.
4065 	 */
4066 	p->rt_priority = attr->sched_priority;
4067 	p->normal_prio = normal_prio(p);
4068 	set_load_weight(p);
4069 }
4070 
4071 /* Actually do priority change: must hold pi & rq lock. */
__setscheduler(struct rq * rq,struct task_struct * p,const struct sched_attr * attr,bool keep_boost)4072 static void __setscheduler(struct rq *rq, struct task_struct *p,
4073 			   const struct sched_attr *attr, bool keep_boost)
4074 {
4075 	__setscheduler_params(p, attr);
4076 
4077 	/*
4078 	 * Keep a potential priority boosting if called from
4079 	 * sched_setscheduler().
4080 	 */
4081 	if (keep_boost)
4082 		p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
4083 	else
4084 		p->prio = normal_prio(p);
4085 
4086 	if (dl_prio(p->prio))
4087 		p->sched_class = &dl_sched_class;
4088 	else if (rt_prio(p->prio))
4089 		p->sched_class = &rt_sched_class;
4090 	else
4091 		p->sched_class = &fair_sched_class;
4092 }
4093 
4094 static void
__getparam_dl(struct task_struct * p,struct sched_attr * attr)4095 __getparam_dl(struct task_struct *p, struct sched_attr *attr)
4096 {
4097 	struct sched_dl_entity *dl_se = &p->dl;
4098 
4099 	attr->sched_priority = p->rt_priority;
4100 	attr->sched_runtime = dl_se->dl_runtime;
4101 	attr->sched_deadline = dl_se->dl_deadline;
4102 	attr->sched_period = dl_se->dl_period;
4103 	attr->sched_flags = dl_se->flags;
4104 }
4105 
4106 /*
4107  * This function validates the new parameters of a -deadline task.
4108  * We ask for the deadline not being zero, and greater or equal
4109  * than the runtime, as well as the period of being zero or
4110  * greater than deadline. Furthermore, we have to be sure that
4111  * user parameters are above the internal resolution of 1us (we
4112  * check sched_runtime only since it is always the smaller one) and
4113  * below 2^63 ns (we have to check both sched_deadline and
4114  * sched_period, as the latter can be zero).
4115  */
4116 static bool
__checkparam_dl(const struct sched_attr * attr)4117 __checkparam_dl(const struct sched_attr *attr)
4118 {
4119 	/* deadline != 0 */
4120 	if (attr->sched_deadline == 0)
4121 		return false;
4122 
4123 	/*
4124 	 * Since we truncate DL_SCALE bits, make sure we're at least
4125 	 * that big.
4126 	 */
4127 	if (attr->sched_runtime < (1ULL << DL_SCALE))
4128 		return false;
4129 
4130 	/*
4131 	 * Since we use the MSB for wrap-around and sign issues, make
4132 	 * sure it's not set (mind that period can be equal to zero).
4133 	 */
4134 	if (attr->sched_deadline & (1ULL << 63) ||
4135 	    attr->sched_period & (1ULL << 63))
4136 		return false;
4137 
4138 	/* runtime <= deadline <= period (if period != 0) */
4139 	if ((attr->sched_period != 0 &&
4140 	     attr->sched_period < attr->sched_deadline) ||
4141 	    attr->sched_deadline < attr->sched_runtime)
4142 		return false;
4143 
4144 	return true;
4145 }
4146 
4147 /*
4148  * check the target process has a UID that matches the current process's
4149  */
check_same_owner(struct task_struct * p)4150 static bool check_same_owner(struct task_struct *p)
4151 {
4152 	const struct cred *cred = current_cred(), *pcred;
4153 	bool match;
4154 
4155 	rcu_read_lock();
4156 	pcred = __task_cred(p);
4157 	match = (uid_eq(cred->euid, pcred->euid) ||
4158 		 uid_eq(cred->euid, pcred->uid));
4159 	rcu_read_unlock();
4160 	return match;
4161 }
4162 
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)4163 static bool dl_param_changed(struct task_struct *p,
4164 		const struct sched_attr *attr)
4165 {
4166 	struct sched_dl_entity *dl_se = &p->dl;
4167 
4168 	if (dl_se->dl_runtime != attr->sched_runtime ||
4169 		dl_se->dl_deadline != attr->sched_deadline ||
4170 		dl_se->dl_period != attr->sched_period ||
4171 		dl_se->flags != attr->sched_flags)
4172 		return true;
4173 
4174 	return false;
4175 }
4176 
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)4177 static int __sched_setscheduler(struct task_struct *p,
4178 				const struct sched_attr *attr,
4179 				bool user, bool pi)
4180 {
4181 	int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4182 		      MAX_RT_PRIO - 1 - attr->sched_priority;
4183 	int retval, oldprio, oldpolicy = -1, queued, running;
4184 	int new_effective_prio, policy = attr->sched_policy;
4185 	const struct sched_class *prev_class;
4186 	struct rq_flags rf;
4187 	int reset_on_fork;
4188 	int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
4189 	struct rq *rq;
4190 
4191 	/* may grab non-irq protected spin_locks */
4192 	BUG_ON(in_interrupt());
4193 recheck:
4194 	/* double check policy once rq lock held */
4195 	if (policy < 0) {
4196 		reset_on_fork = p->sched_reset_on_fork;
4197 		policy = oldpolicy = p->policy;
4198 	} else {
4199 		reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4200 
4201 		if (!valid_policy(policy))
4202 			return -EINVAL;
4203 	}
4204 
4205 	if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
4206 		return -EINVAL;
4207 
4208 	/*
4209 	 * Valid priorities for SCHED_FIFO and SCHED_RR are
4210 	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4211 	 * SCHED_BATCH and SCHED_IDLE is 0.
4212 	 */
4213 	if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4214 	    (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4215 		return -EINVAL;
4216 	if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4217 	    (rt_policy(policy) != (attr->sched_priority != 0)))
4218 		return -EINVAL;
4219 
4220 	/*
4221 	 * Allow unprivileged RT tasks to decrease priority:
4222 	 */
4223 	if (user && !capable(CAP_SYS_NICE)) {
4224 		if (fair_policy(policy)) {
4225 			if (attr->sched_nice < task_nice(p) &&
4226 			    !can_nice(p, attr->sched_nice))
4227 				return -EPERM;
4228 		}
4229 
4230 		if (rt_policy(policy)) {
4231 			unsigned long rlim_rtprio =
4232 					task_rlimit(p, RLIMIT_RTPRIO);
4233 
4234 			/* can't set/change the rt policy */
4235 			if (policy != p->policy && !rlim_rtprio)
4236 				return -EPERM;
4237 
4238 			/* can't increase priority */
4239 			if (attr->sched_priority > p->rt_priority &&
4240 			    attr->sched_priority > rlim_rtprio)
4241 				return -EPERM;
4242 		}
4243 
4244 		 /*
4245 		  * Can't set/change SCHED_DEADLINE policy at all for now
4246 		  * (safest behavior); in the future we would like to allow
4247 		  * unprivileged DL tasks to increase their relative deadline
4248 		  * or reduce their runtime (both ways reducing utilization)
4249 		  */
4250 		if (dl_policy(policy))
4251 			return -EPERM;
4252 
4253 		/*
4254 		 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4255 		 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4256 		 */
4257 		if (idle_policy(p->policy) && !idle_policy(policy)) {
4258 			if (!can_nice(p, task_nice(p)))
4259 				return -EPERM;
4260 		}
4261 
4262 		/* can't change other user's priorities */
4263 		if (!check_same_owner(p))
4264 			return -EPERM;
4265 
4266 		/* Normal users shall not reset the sched_reset_on_fork flag */
4267 		if (p->sched_reset_on_fork && !reset_on_fork)
4268 			return -EPERM;
4269 	}
4270 
4271 	if (user) {
4272 		retval = security_task_setscheduler(p);
4273 		if (retval)
4274 			return retval;
4275 	}
4276 
4277 	/*
4278 	 * make sure no PI-waiters arrive (or leave) while we are
4279 	 * changing the priority of the task:
4280 	 *
4281 	 * To be able to change p->policy safely, the appropriate
4282 	 * runqueue lock must be held.
4283 	 */
4284 	rq = task_rq_lock(p, &rf);
4285 	update_rq_clock(rq);
4286 
4287 	/*
4288 	 * Changing the policy of the stop threads its a very bad idea
4289 	 */
4290 	if (p == rq->stop) {
4291 		task_rq_unlock(rq, p, &rf);
4292 		return -EINVAL;
4293 	}
4294 
4295 	/*
4296 	 * If not changing anything there's no need to proceed further,
4297 	 * but store a possible modification of reset_on_fork.
4298 	 */
4299 	if (unlikely(policy == p->policy)) {
4300 		if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4301 			goto change;
4302 		if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4303 			goto change;
4304 		if (dl_policy(policy) && dl_param_changed(p, attr))
4305 			goto change;
4306 
4307 		p->sched_reset_on_fork = reset_on_fork;
4308 		task_rq_unlock(rq, p, &rf);
4309 		return 0;
4310 	}
4311 change:
4312 
4313 	if (user) {
4314 #ifdef CONFIG_RT_GROUP_SCHED
4315 		/*
4316 		 * Do not allow realtime tasks into groups that have no runtime
4317 		 * assigned.
4318 		 */
4319 		if (rt_bandwidth_enabled() && rt_policy(policy) &&
4320 				task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4321 				!task_group_is_autogroup(task_group(p))) {
4322 			task_rq_unlock(rq, p, &rf);
4323 			return -EPERM;
4324 		}
4325 #endif
4326 #ifdef CONFIG_SMP
4327 		if (dl_bandwidth_enabled() && dl_policy(policy)) {
4328 			cpumask_t *span = rq->rd->span;
4329 
4330 			/*
4331 			 * Don't allow tasks with an affinity mask smaller than
4332 			 * the entire root_domain to become SCHED_DEADLINE. We
4333 			 * will also fail if there's no bandwidth available.
4334 			 */
4335 			if (!cpumask_subset(span, &p->cpus_allowed) ||
4336 			    rq->rd->dl_bw.bw == 0) {
4337 				task_rq_unlock(rq, p, &rf);
4338 				return -EPERM;
4339 			}
4340 		}
4341 #endif
4342 	}
4343 
4344 	/* recheck policy now with rq lock held */
4345 	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4346 		policy = oldpolicy = -1;
4347 		task_rq_unlock(rq, p, &rf);
4348 		goto recheck;
4349 	}
4350 
4351 	/*
4352 	 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4353 	 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4354 	 * is available.
4355 	 */
4356 	if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
4357 		task_rq_unlock(rq, p, &rf);
4358 		return -EBUSY;
4359 	}
4360 
4361 	p->sched_reset_on_fork = reset_on_fork;
4362 	oldprio = p->prio;
4363 
4364 	if (pi) {
4365 		/*
4366 		 * Take priority boosted tasks into account. If the new
4367 		 * effective priority is unchanged, we just store the new
4368 		 * normal parameters and do not touch the scheduler class and
4369 		 * the runqueue. This will be done when the task deboost
4370 		 * itself.
4371 		 */
4372 		new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
4373 		if (new_effective_prio == oldprio)
4374 			queue_flags &= ~DEQUEUE_MOVE;
4375 	}
4376 
4377 	queued = task_on_rq_queued(p);
4378 	running = task_current(rq, p);
4379 	if (queued)
4380 		dequeue_task(rq, p, queue_flags);
4381 	if (running)
4382 		put_prev_task(rq, p);
4383 
4384 	prev_class = p->sched_class;
4385 	__setscheduler(rq, p, attr, pi);
4386 
4387 	if (queued) {
4388 		/*
4389 		 * We enqueue to tail when the priority of a task is
4390 		 * increased (user space view).
4391 		 */
4392 		if (oldprio < p->prio)
4393 			queue_flags |= ENQUEUE_HEAD;
4394 
4395 		enqueue_task(rq, p, queue_flags);
4396 	}
4397 	if (running)
4398 		set_curr_task(rq, p);
4399 
4400 	check_class_changed(rq, p, prev_class, oldprio);
4401 	preempt_disable(); /* avoid rq from going away on us */
4402 	task_rq_unlock(rq, p, &rf);
4403 
4404 	if (pi)
4405 		rt_mutex_adjust_pi(p);
4406 
4407 	/*
4408 	 * Run balance callbacks after we've adjusted the PI chain.
4409 	 */
4410 	balance_callback(rq);
4411 	preempt_enable();
4412 
4413 	return 0;
4414 }
4415 
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)4416 static int _sched_setscheduler(struct task_struct *p, int policy,
4417 			       const struct sched_param *param, bool check)
4418 {
4419 	struct sched_attr attr = {
4420 		.sched_policy   = policy,
4421 		.sched_priority = param->sched_priority,
4422 		.sched_nice	= PRIO_TO_NICE(p->static_prio),
4423 	};
4424 
4425 	/* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4426 	if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
4427 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4428 		policy &= ~SCHED_RESET_ON_FORK;
4429 		attr.sched_policy = policy;
4430 	}
4431 
4432 	return __sched_setscheduler(p, &attr, check, true);
4433 }
4434 /**
4435  * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4436  * @p: the task in question.
4437  * @policy: new policy.
4438  * @param: structure containing the new RT priority.
4439  *
4440  * Return: 0 on success. An error code otherwise.
4441  *
4442  * NOTE that the task may be already dead.
4443  */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)4444 int sched_setscheduler(struct task_struct *p, int policy,
4445 		       const struct sched_param *param)
4446 {
4447 	return _sched_setscheduler(p, policy, param, true);
4448 }
4449 EXPORT_SYMBOL_GPL(sched_setscheduler);
4450 
sched_setattr(struct task_struct * p,const struct sched_attr * attr)4451 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4452 {
4453 	return __sched_setscheduler(p, attr, true, true);
4454 }
4455 EXPORT_SYMBOL_GPL(sched_setattr);
4456 
4457 /**
4458  * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4459  * @p: the task in question.
4460  * @policy: new policy.
4461  * @param: structure containing the new RT priority.
4462  *
4463  * Just like sched_setscheduler, only don't bother checking if the
4464  * current context has permission.  For example, this is needed in
4465  * stop_machine(): we create temporary high priority worker threads,
4466  * but our caller might not have that capability.
4467  *
4468  * Return: 0 on success. An error code otherwise.
4469  */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)4470 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4471 			       const struct sched_param *param)
4472 {
4473 	return _sched_setscheduler(p, policy, param, false);
4474 }
4475 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
4476 
4477 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)4478 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4479 {
4480 	struct sched_param lparam;
4481 	struct task_struct *p;
4482 	int retval;
4483 
4484 	if (!param || pid < 0)
4485 		return -EINVAL;
4486 	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4487 		return -EFAULT;
4488 
4489 	rcu_read_lock();
4490 	retval = -ESRCH;
4491 	p = find_process_by_pid(pid);
4492 	if (p != NULL)
4493 		retval = sched_setscheduler(p, policy, &lparam);
4494 	rcu_read_unlock();
4495 
4496 	return retval;
4497 }
4498 
4499 /*
4500  * Mimics kernel/events/core.c perf_copy_attr().
4501  */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)4502 static int sched_copy_attr(struct sched_attr __user *uattr,
4503 			   struct sched_attr *attr)
4504 {
4505 	u32 size;
4506 	int ret;
4507 
4508 	if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4509 		return -EFAULT;
4510 
4511 	/*
4512 	 * zero the full structure, so that a short copy will be nice.
4513 	 */
4514 	memset(attr, 0, sizeof(*attr));
4515 
4516 	ret = get_user(size, &uattr->size);
4517 	if (ret)
4518 		return ret;
4519 
4520 	if (size > PAGE_SIZE)	/* silly large */
4521 		goto err_size;
4522 
4523 	if (!size)		/* abi compat */
4524 		size = SCHED_ATTR_SIZE_VER0;
4525 
4526 	if (size < SCHED_ATTR_SIZE_VER0)
4527 		goto err_size;
4528 
4529 	/*
4530 	 * If we're handed a bigger struct than we know of,
4531 	 * ensure all the unknown bits are 0 - i.e. new
4532 	 * user-space does not rely on any kernel feature
4533 	 * extensions we dont know about yet.
4534 	 */
4535 	if (size > sizeof(*attr)) {
4536 		unsigned char __user *addr;
4537 		unsigned char __user *end;
4538 		unsigned char val;
4539 
4540 		addr = (void __user *)uattr + sizeof(*attr);
4541 		end  = (void __user *)uattr + size;
4542 
4543 		for (; addr < end; addr++) {
4544 			ret = get_user(val, addr);
4545 			if (ret)
4546 				return ret;
4547 			if (val)
4548 				goto err_size;
4549 		}
4550 		size = sizeof(*attr);
4551 	}
4552 
4553 	ret = copy_from_user(attr, uattr, size);
4554 	if (ret)
4555 		return -EFAULT;
4556 
4557 	/*
4558 	 * XXX: do we want to be lenient like existing syscalls; or do we want
4559 	 * to be strict and return an error on out-of-bounds values?
4560 	 */
4561 	attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
4562 
4563 	return 0;
4564 
4565 err_size:
4566 	put_user(sizeof(*attr), &uattr->size);
4567 	return -E2BIG;
4568 }
4569 
4570 /**
4571  * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4572  * @pid: the pid in question.
4573  * @policy: new policy.
4574  * @param: structure containing the new RT priority.
4575  *
4576  * Return: 0 on success. An error code otherwise.
4577  */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)4578 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4579 		struct sched_param __user *, param)
4580 {
4581 	/* negative values for policy are not valid */
4582 	if (policy < 0)
4583 		return -EINVAL;
4584 
4585 	return do_sched_setscheduler(pid, policy, param);
4586 }
4587 
4588 /**
4589  * sys_sched_setparam - set/change the RT priority of a thread
4590  * @pid: the pid in question.
4591  * @param: structure containing the new RT priority.
4592  *
4593  * Return: 0 on success. An error code otherwise.
4594  */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)4595 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4596 {
4597 	return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
4598 }
4599 
4600 /**
4601  * sys_sched_setattr - same as above, but with extended sched_attr
4602  * @pid: the pid in question.
4603  * @uattr: structure containing the extended parameters.
4604  * @flags: for future extension.
4605  */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)4606 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4607 			       unsigned int, flags)
4608 {
4609 	struct sched_attr attr;
4610 	struct task_struct *p;
4611 	int retval;
4612 
4613 	if (!uattr || pid < 0 || flags)
4614 		return -EINVAL;
4615 
4616 	retval = sched_copy_attr(uattr, &attr);
4617 	if (retval)
4618 		return retval;
4619 
4620 	if ((int)attr.sched_policy < 0)
4621 		return -EINVAL;
4622 
4623 	rcu_read_lock();
4624 	retval = -ESRCH;
4625 	p = find_process_by_pid(pid);
4626 	if (p != NULL)
4627 		retval = sched_setattr(p, &attr);
4628 	rcu_read_unlock();
4629 
4630 	return retval;
4631 }
4632 
4633 /**
4634  * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4635  * @pid: the pid in question.
4636  *
4637  * Return: On success, the policy of the thread. Otherwise, a negative error
4638  * code.
4639  */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)4640 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4641 {
4642 	struct task_struct *p;
4643 	int retval;
4644 
4645 	if (pid < 0)
4646 		return -EINVAL;
4647 
4648 	retval = -ESRCH;
4649 	rcu_read_lock();
4650 	p = find_process_by_pid(pid);
4651 	if (p) {
4652 		retval = security_task_getscheduler(p);
4653 		if (!retval)
4654 			retval = p->policy
4655 				| (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4656 	}
4657 	rcu_read_unlock();
4658 	return retval;
4659 }
4660 
4661 /**
4662  * sys_sched_getparam - get the RT priority of a thread
4663  * @pid: the pid in question.
4664  * @param: structure containing the RT priority.
4665  *
4666  * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4667  * code.
4668  */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)4669 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4670 {
4671 	struct sched_param lp = { .sched_priority = 0 };
4672 	struct task_struct *p;
4673 	int retval;
4674 
4675 	if (!param || pid < 0)
4676 		return -EINVAL;
4677 
4678 	rcu_read_lock();
4679 	p = find_process_by_pid(pid);
4680 	retval = -ESRCH;
4681 	if (!p)
4682 		goto out_unlock;
4683 
4684 	retval = security_task_getscheduler(p);
4685 	if (retval)
4686 		goto out_unlock;
4687 
4688 	if (task_has_rt_policy(p))
4689 		lp.sched_priority = p->rt_priority;
4690 	rcu_read_unlock();
4691 
4692 	/*
4693 	 * This one might sleep, we cannot do it with a spinlock held ...
4694 	 */
4695 	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4696 
4697 	return retval;
4698 
4699 out_unlock:
4700 	rcu_read_unlock();
4701 	return retval;
4702 }
4703 
sched_read_attr(struct sched_attr __user * uattr,struct sched_attr * attr,unsigned int usize)4704 static int sched_read_attr(struct sched_attr __user *uattr,
4705 			   struct sched_attr *attr,
4706 			   unsigned int usize)
4707 {
4708 	int ret;
4709 
4710 	if (!access_ok(VERIFY_WRITE, uattr, usize))
4711 		return -EFAULT;
4712 
4713 	/*
4714 	 * If we're handed a smaller struct than we know of,
4715 	 * ensure all the unknown bits are 0 - i.e. old
4716 	 * user-space does not get uncomplete information.
4717 	 */
4718 	if (usize < sizeof(*attr)) {
4719 		unsigned char *addr;
4720 		unsigned char *end;
4721 
4722 		addr = (void *)attr + usize;
4723 		end  = (void *)attr + sizeof(*attr);
4724 
4725 		for (; addr < end; addr++) {
4726 			if (*addr)
4727 				return -EFBIG;
4728 		}
4729 
4730 		attr->size = usize;
4731 	}
4732 
4733 	ret = copy_to_user(uattr, attr, attr->size);
4734 	if (ret)
4735 		return -EFAULT;
4736 
4737 	return 0;
4738 }
4739 
4740 /**
4741  * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4742  * @pid: the pid in question.
4743  * @uattr: structure containing the extended parameters.
4744  * @size: sizeof(attr) for fwd/bwd comp.
4745  * @flags: for future extension.
4746  */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,size,unsigned int,flags)4747 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4748 		unsigned int, size, unsigned int, flags)
4749 {
4750 	struct sched_attr attr = {
4751 		.size = sizeof(struct sched_attr),
4752 	};
4753 	struct task_struct *p;
4754 	int retval;
4755 
4756 	if (!uattr || pid < 0 || size > PAGE_SIZE ||
4757 	    size < SCHED_ATTR_SIZE_VER0 || flags)
4758 		return -EINVAL;
4759 
4760 	rcu_read_lock();
4761 	p = find_process_by_pid(pid);
4762 	retval = -ESRCH;
4763 	if (!p)
4764 		goto out_unlock;
4765 
4766 	retval = security_task_getscheduler(p);
4767 	if (retval)
4768 		goto out_unlock;
4769 
4770 	attr.sched_policy = p->policy;
4771 	if (p->sched_reset_on_fork)
4772 		attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4773 	if (task_has_dl_policy(p))
4774 		__getparam_dl(p, &attr);
4775 	else if (task_has_rt_policy(p))
4776 		attr.sched_priority = p->rt_priority;
4777 	else
4778 		attr.sched_nice = task_nice(p);
4779 
4780 	rcu_read_unlock();
4781 
4782 	retval = sched_read_attr(uattr, &attr, size);
4783 	return retval;
4784 
4785 out_unlock:
4786 	rcu_read_unlock();
4787 	return retval;
4788 }
4789 
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)4790 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4791 {
4792 	cpumask_var_t cpus_allowed, new_mask;
4793 	struct task_struct *p;
4794 	int retval;
4795 
4796 	rcu_read_lock();
4797 
4798 	p = find_process_by_pid(pid);
4799 	if (!p) {
4800 		rcu_read_unlock();
4801 		return -ESRCH;
4802 	}
4803 
4804 	/* Prevent p going away */
4805 	get_task_struct(p);
4806 	rcu_read_unlock();
4807 
4808 	if (p->flags & PF_NO_SETAFFINITY) {
4809 		retval = -EINVAL;
4810 		goto out_put_task;
4811 	}
4812 	if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4813 		retval = -ENOMEM;
4814 		goto out_put_task;
4815 	}
4816 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4817 		retval = -ENOMEM;
4818 		goto out_free_cpus_allowed;
4819 	}
4820 	retval = -EPERM;
4821 	if (!check_same_owner(p)) {
4822 		rcu_read_lock();
4823 		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4824 			rcu_read_unlock();
4825 			goto out_free_new_mask;
4826 		}
4827 		rcu_read_unlock();
4828 	}
4829 
4830 	retval = security_task_setscheduler(p);
4831 	if (retval)
4832 		goto out_free_new_mask;
4833 
4834 
4835 	cpuset_cpus_allowed(p, cpus_allowed);
4836 	cpumask_and(new_mask, in_mask, cpus_allowed);
4837 
4838 	/*
4839 	 * Since bandwidth control happens on root_domain basis,
4840 	 * if admission test is enabled, we only admit -deadline
4841 	 * tasks allowed to run on all the CPUs in the task's
4842 	 * root_domain.
4843 	 */
4844 #ifdef CONFIG_SMP
4845 	if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4846 		rcu_read_lock();
4847 		if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4848 			retval = -EBUSY;
4849 			rcu_read_unlock();
4850 			goto out_free_new_mask;
4851 		}
4852 		rcu_read_unlock();
4853 	}
4854 #endif
4855 again:
4856 	retval = __set_cpus_allowed_ptr(p, new_mask, true);
4857 
4858 	if (!retval) {
4859 		cpuset_cpus_allowed(p, cpus_allowed);
4860 		if (!cpumask_subset(new_mask, cpus_allowed)) {
4861 			/*
4862 			 * We must have raced with a concurrent cpuset
4863 			 * update. Just reset the cpus_allowed to the
4864 			 * cpuset's cpus_allowed
4865 			 */
4866 			cpumask_copy(new_mask, cpus_allowed);
4867 			goto again;
4868 		}
4869 	}
4870 out_free_new_mask:
4871 	free_cpumask_var(new_mask);
4872 out_free_cpus_allowed:
4873 	free_cpumask_var(cpus_allowed);
4874 out_put_task:
4875 	put_task_struct(p);
4876 	return retval;
4877 }
4878 
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)4879 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4880 			     struct cpumask *new_mask)
4881 {
4882 	if (len < cpumask_size())
4883 		cpumask_clear(new_mask);
4884 	else if (len > cpumask_size())
4885 		len = cpumask_size();
4886 
4887 	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4888 }
4889 
4890 /**
4891  * sys_sched_setaffinity - set the cpu affinity of a process
4892  * @pid: pid of the process
4893  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4894  * @user_mask_ptr: user-space pointer to the new cpu mask
4895  *
4896  * Return: 0 on success. An error code otherwise.
4897  */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)4898 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4899 		unsigned long __user *, user_mask_ptr)
4900 {
4901 	cpumask_var_t new_mask;
4902 	int retval;
4903 
4904 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4905 		return -ENOMEM;
4906 
4907 	retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4908 	if (retval == 0)
4909 		retval = sched_setaffinity(pid, new_mask);
4910 	free_cpumask_var(new_mask);
4911 	return retval;
4912 }
4913 
sched_getaffinity(pid_t pid,struct cpumask * mask)4914 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4915 {
4916 	struct task_struct *p;
4917 	unsigned long flags;
4918 	int retval;
4919 
4920 	rcu_read_lock();
4921 
4922 	retval = -ESRCH;
4923 	p = find_process_by_pid(pid);
4924 	if (!p)
4925 		goto out_unlock;
4926 
4927 	retval = security_task_getscheduler(p);
4928 	if (retval)
4929 		goto out_unlock;
4930 
4931 	raw_spin_lock_irqsave(&p->pi_lock, flags);
4932 	cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4933 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4934 
4935 out_unlock:
4936 	rcu_read_unlock();
4937 
4938 	return retval;
4939 }
4940 
4941 /**
4942  * sys_sched_getaffinity - get the cpu affinity of a process
4943  * @pid: pid of the process
4944  * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4945  * @user_mask_ptr: user-space pointer to hold the current cpu mask
4946  *
4947  * Return: size of CPU mask copied to user_mask_ptr on success. An
4948  * error code otherwise.
4949  */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)4950 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4951 		unsigned long __user *, user_mask_ptr)
4952 {
4953 	int ret;
4954 	cpumask_var_t mask;
4955 
4956 	if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4957 		return -EINVAL;
4958 	if (len & (sizeof(unsigned long)-1))
4959 		return -EINVAL;
4960 
4961 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4962 		return -ENOMEM;
4963 
4964 	ret = sched_getaffinity(pid, mask);
4965 	if (ret == 0) {
4966 		size_t retlen = min_t(size_t, len, cpumask_size());
4967 
4968 		if (copy_to_user(user_mask_ptr, mask, retlen))
4969 			ret = -EFAULT;
4970 		else
4971 			ret = retlen;
4972 	}
4973 	free_cpumask_var(mask);
4974 
4975 	return ret;
4976 }
4977 
4978 /**
4979  * sys_sched_yield - yield the current processor to other threads.
4980  *
4981  * This function yields the current CPU to other tasks. If there are no
4982  * other threads running on this CPU then this function will return.
4983  *
4984  * Return: 0.
4985  */
SYSCALL_DEFINE0(sched_yield)4986 SYSCALL_DEFINE0(sched_yield)
4987 {
4988 	struct rq *rq = this_rq_lock();
4989 
4990 	schedstat_inc(rq->yld_count);
4991 	current->sched_class->yield_task(rq);
4992 
4993 	/*
4994 	 * Since we are going to call schedule() anyway, there's
4995 	 * no need to preempt or enable interrupts:
4996 	 */
4997 	__release(rq->lock);
4998 	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4999 	do_raw_spin_unlock(&rq->lock);
5000 	sched_preempt_enable_no_resched();
5001 
5002 	schedule();
5003 
5004 	return 0;
5005 }
5006 
5007 #ifndef CONFIG_PREEMPT
_cond_resched(void)5008 int __sched _cond_resched(void)
5009 {
5010 	if (should_resched(0)) {
5011 		preempt_schedule_common();
5012 		return 1;
5013 	}
5014 	return 0;
5015 }
5016 EXPORT_SYMBOL(_cond_resched);
5017 #endif
5018 
5019 /*
5020  * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5021  * call schedule, and on return reacquire the lock.
5022  *
5023  * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5024  * operations here to prevent schedule() from being called twice (once via
5025  * spin_unlock(), once by hand).
5026  */
__cond_resched_lock(spinlock_t * lock)5027 int __cond_resched_lock(spinlock_t *lock)
5028 {
5029 	int resched = should_resched(PREEMPT_LOCK_OFFSET);
5030 	int ret = 0;
5031 
5032 	lockdep_assert_held(lock);
5033 
5034 	if (spin_needbreak(lock) || resched) {
5035 		spin_unlock(lock);
5036 		if (resched)
5037 			preempt_schedule_common();
5038 		else
5039 			cpu_relax();
5040 		ret = 1;
5041 		spin_lock(lock);
5042 	}
5043 	return ret;
5044 }
5045 EXPORT_SYMBOL(__cond_resched_lock);
5046 
__cond_resched_softirq(void)5047 int __sched __cond_resched_softirq(void)
5048 {
5049 	BUG_ON(!in_softirq());
5050 
5051 	if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
5052 		local_bh_enable();
5053 		preempt_schedule_common();
5054 		local_bh_disable();
5055 		return 1;
5056 	}
5057 	return 0;
5058 }
5059 EXPORT_SYMBOL(__cond_resched_softirq);
5060 
5061 /**
5062  * yield - yield the current processor to other threads.
5063  *
5064  * Do not ever use this function, there's a 99% chance you're doing it wrong.
5065  *
5066  * The scheduler is at all times free to pick the calling task as the most
5067  * eligible task to run, if removing the yield() call from your code breaks
5068  * it, its already broken.
5069  *
5070  * Typical broken usage is:
5071  *
5072  * while (!event)
5073  * 	yield();
5074  *
5075  * where one assumes that yield() will let 'the other' process run that will
5076  * make event true. If the current task is a SCHED_FIFO task that will never
5077  * happen. Never use yield() as a progress guarantee!!
5078  *
5079  * If you want to use yield() to wait for something, use wait_event().
5080  * If you want to use yield() to be 'nice' for others, use cond_resched().
5081  * If you still want to use yield(), do not!
5082  */
yield(void)5083 void __sched yield(void)
5084 {
5085 	set_current_state(TASK_RUNNING);
5086 	sys_sched_yield();
5087 }
5088 EXPORT_SYMBOL(yield);
5089 
5090 /**
5091  * yield_to - yield the current processor to another thread in
5092  * your thread group, or accelerate that thread toward the
5093  * processor it's on.
5094  * @p: target task
5095  * @preempt: whether task preemption is allowed or not
5096  *
5097  * It's the caller's job to ensure that the target task struct
5098  * can't go away on us before we can do any checks.
5099  *
5100  * Return:
5101  *	true (>0) if we indeed boosted the target task.
5102  *	false (0) if we failed to boost the target.
5103  *	-ESRCH if there's no task to yield to.
5104  */
yield_to(struct task_struct * p,bool preempt)5105 int __sched yield_to(struct task_struct *p, bool preempt)
5106 {
5107 	struct task_struct *curr = current;
5108 	struct rq *rq, *p_rq;
5109 	unsigned long flags;
5110 	int yielded = 0;
5111 
5112 	local_irq_save(flags);
5113 	rq = this_rq();
5114 
5115 again:
5116 	p_rq = task_rq(p);
5117 	/*
5118 	 * If we're the only runnable task on the rq and target rq also
5119 	 * has only one task, there's absolutely no point in yielding.
5120 	 */
5121 	if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5122 		yielded = -ESRCH;
5123 		goto out_irq;
5124 	}
5125 
5126 	double_rq_lock(rq, p_rq);
5127 	if (task_rq(p) != p_rq) {
5128 		double_rq_unlock(rq, p_rq);
5129 		goto again;
5130 	}
5131 
5132 	if (!curr->sched_class->yield_to_task)
5133 		goto out_unlock;
5134 
5135 	if (curr->sched_class != p->sched_class)
5136 		goto out_unlock;
5137 
5138 	if (task_running(p_rq, p) || p->state)
5139 		goto out_unlock;
5140 
5141 	yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5142 	if (yielded) {
5143 		schedstat_inc(rq->yld_count);
5144 		/*
5145 		 * Make p's CPU reschedule; pick_next_entity takes care of
5146 		 * fairness.
5147 		 */
5148 		if (preempt && rq != p_rq)
5149 			resched_curr(p_rq);
5150 	}
5151 
5152 out_unlock:
5153 	double_rq_unlock(rq, p_rq);
5154 out_irq:
5155 	local_irq_restore(flags);
5156 
5157 	if (yielded > 0)
5158 		schedule();
5159 
5160 	return yielded;
5161 }
5162 EXPORT_SYMBOL_GPL(yield_to);
5163 
5164 /*
5165  * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5166  * that process accounting knows that this is a task in IO wait state.
5167  */
io_schedule_timeout(long timeout)5168 long __sched io_schedule_timeout(long timeout)
5169 {
5170 	int old_iowait = current->in_iowait;
5171 	struct rq *rq;
5172 	long ret;
5173 
5174 	current->in_iowait = 1;
5175 	blk_schedule_flush_plug(current);
5176 
5177 	delayacct_blkio_start();
5178 	rq = raw_rq();
5179 	atomic_inc(&rq->nr_iowait);
5180 	ret = schedule_timeout(timeout);
5181 	current->in_iowait = old_iowait;
5182 	atomic_dec(&rq->nr_iowait);
5183 	delayacct_blkio_end();
5184 
5185 	return ret;
5186 }
5187 EXPORT_SYMBOL(io_schedule_timeout);
5188 
5189 /**
5190  * sys_sched_get_priority_max - return maximum RT priority.
5191  * @policy: scheduling class.
5192  *
5193  * Return: On success, this syscall returns the maximum
5194  * rt_priority that can be used by a given scheduling class.
5195  * On failure, a negative error code is returned.
5196  */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)5197 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5198 {
5199 	int ret = -EINVAL;
5200 
5201 	switch (policy) {
5202 	case SCHED_FIFO:
5203 	case SCHED_RR:
5204 		ret = MAX_USER_RT_PRIO-1;
5205 		break;
5206 	case SCHED_DEADLINE:
5207 	case SCHED_NORMAL:
5208 	case SCHED_BATCH:
5209 	case SCHED_IDLE:
5210 		ret = 0;
5211 		break;
5212 	}
5213 	return ret;
5214 }
5215 
5216 /**
5217  * sys_sched_get_priority_min - return minimum RT priority.
5218  * @policy: scheduling class.
5219  *
5220  * Return: On success, this syscall returns the minimum
5221  * rt_priority that can be used by a given scheduling class.
5222  * On failure, a negative error code is returned.
5223  */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)5224 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5225 {
5226 	int ret = -EINVAL;
5227 
5228 	switch (policy) {
5229 	case SCHED_FIFO:
5230 	case SCHED_RR:
5231 		ret = 1;
5232 		break;
5233 	case SCHED_DEADLINE:
5234 	case SCHED_NORMAL:
5235 	case SCHED_BATCH:
5236 	case SCHED_IDLE:
5237 		ret = 0;
5238 	}
5239 	return ret;
5240 }
5241 
5242 /**
5243  * sys_sched_rr_get_interval - return the default timeslice of a process.
5244  * @pid: pid of the process.
5245  * @interval: userspace pointer to the timeslice value.
5246  *
5247  * this syscall writes the default timeslice value of a given process
5248  * into the user-space timespec buffer. A value of '0' means infinity.
5249  *
5250  * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5251  * an error code.
5252  */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct timespec __user *,interval)5253 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5254 		struct timespec __user *, interval)
5255 {
5256 	struct task_struct *p;
5257 	unsigned int time_slice;
5258 	struct rq_flags rf;
5259 	struct timespec t;
5260 	struct rq *rq;
5261 	int retval;
5262 
5263 	if (pid < 0)
5264 		return -EINVAL;
5265 
5266 	retval = -ESRCH;
5267 	rcu_read_lock();
5268 	p = find_process_by_pid(pid);
5269 	if (!p)
5270 		goto out_unlock;
5271 
5272 	retval = security_task_getscheduler(p);
5273 	if (retval)
5274 		goto out_unlock;
5275 
5276 	rq = task_rq_lock(p, &rf);
5277 	time_slice = 0;
5278 	if (p->sched_class->get_rr_interval)
5279 		time_slice = p->sched_class->get_rr_interval(rq, p);
5280 	task_rq_unlock(rq, p, &rf);
5281 
5282 	rcu_read_unlock();
5283 	jiffies_to_timespec(time_slice, &t);
5284 	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5285 	return retval;
5286 
5287 out_unlock:
5288 	rcu_read_unlock();
5289 	return retval;
5290 }
5291 
5292 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5293 
sched_show_task(struct task_struct * p)5294 void sched_show_task(struct task_struct *p)
5295 {
5296 	unsigned long free = 0;
5297 	int ppid;
5298 	unsigned long state = p->state;
5299 
5300 	if (!try_get_task_stack(p))
5301 		return;
5302 	if (state)
5303 		state = __ffs(state) + 1;
5304 	printk(KERN_INFO "%-15.15s %c", p->comm,
5305 		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5306 	if (state == TASK_RUNNING)
5307 		printk(KERN_CONT "  running task    ");
5308 #ifdef CONFIG_DEBUG_STACK_USAGE
5309 	free = stack_not_used(p);
5310 #endif
5311 	ppid = 0;
5312 	rcu_read_lock();
5313 	if (pid_alive(p))
5314 		ppid = task_pid_nr(rcu_dereference(p->real_parent));
5315 	rcu_read_unlock();
5316 	printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5317 		task_pid_nr(p), ppid,
5318 		(unsigned long)task_thread_info(p)->flags);
5319 
5320 	print_worker_info(KERN_INFO, p);
5321 	show_stack(p, NULL);
5322 	put_task_stack(p);
5323 }
5324 
show_state_filter(unsigned long state_filter)5325 void show_state_filter(unsigned long state_filter)
5326 {
5327 	struct task_struct *g, *p;
5328 
5329 #if BITS_PER_LONG == 32
5330 	printk(KERN_INFO
5331 		"  task                PC stack   pid father\n");
5332 #else
5333 	printk(KERN_INFO
5334 		"  task                        PC stack   pid father\n");
5335 #endif
5336 	rcu_read_lock();
5337 	for_each_process_thread(g, p) {
5338 		/*
5339 		 * reset the NMI-timeout, listing all files on a slow
5340 		 * console might take a lot of time:
5341 		 * Also, reset softlockup watchdogs on all CPUs, because
5342 		 * another CPU might be blocked waiting for us to process
5343 		 * an IPI.
5344 		 */
5345 		touch_nmi_watchdog();
5346 		touch_all_softlockup_watchdogs();
5347 		if (!state_filter || (p->state & state_filter))
5348 			sched_show_task(p);
5349 	}
5350 
5351 #ifdef CONFIG_SCHED_DEBUG
5352 	if (!state_filter)
5353 		sysrq_sched_debug_show();
5354 #endif
5355 	rcu_read_unlock();
5356 	/*
5357 	 * Only show locks if all tasks are dumped:
5358 	 */
5359 	if (!state_filter)
5360 		debug_show_all_locks();
5361 }
5362 
init_idle_bootup_task(struct task_struct * idle)5363 void init_idle_bootup_task(struct task_struct *idle)
5364 {
5365 	idle->sched_class = &idle_sched_class;
5366 }
5367 
5368 /**
5369  * init_idle - set up an idle thread for a given CPU
5370  * @idle: task in question
5371  * @cpu: cpu the idle task belongs to
5372  *
5373  * NOTE: this function does not set the idle thread's NEED_RESCHED
5374  * flag, to make booting more robust.
5375  */
init_idle(struct task_struct * idle,int cpu)5376 void init_idle(struct task_struct *idle, int cpu)
5377 {
5378 	struct rq *rq = cpu_rq(cpu);
5379 	unsigned long flags;
5380 
5381 	raw_spin_lock_irqsave(&idle->pi_lock, flags);
5382 	raw_spin_lock(&rq->lock);
5383 
5384 	__sched_fork(0, idle);
5385 	idle->state = TASK_RUNNING;
5386 	idle->se.exec_start = sched_clock();
5387 
5388 	kasan_unpoison_task_stack(idle);
5389 
5390 #ifdef CONFIG_SMP
5391 	/*
5392 	 * Its possible that init_idle() gets called multiple times on a task,
5393 	 * in that case do_set_cpus_allowed() will not do the right thing.
5394 	 *
5395 	 * And since this is boot we can forgo the serialization.
5396 	 */
5397 	set_cpus_allowed_common(idle, cpumask_of(cpu));
5398 #endif
5399 	/*
5400 	 * We're having a chicken and egg problem, even though we are
5401 	 * holding rq->lock, the cpu isn't yet set to this cpu so the
5402 	 * lockdep check in task_group() will fail.
5403 	 *
5404 	 * Similar case to sched_fork(). / Alternatively we could
5405 	 * use task_rq_lock() here and obtain the other rq->lock.
5406 	 *
5407 	 * Silence PROVE_RCU
5408 	 */
5409 	rcu_read_lock();
5410 	__set_task_cpu(idle, cpu);
5411 	rcu_read_unlock();
5412 
5413 	rq->curr = rq->idle = idle;
5414 	idle->on_rq = TASK_ON_RQ_QUEUED;
5415 #ifdef CONFIG_SMP
5416 	idle->on_cpu = 1;
5417 #endif
5418 	raw_spin_unlock(&rq->lock);
5419 	raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
5420 
5421 	/* Set the preempt count _outside_ the spinlocks! */
5422 	init_idle_preempt_count(idle, cpu);
5423 
5424 	/*
5425 	 * The idle tasks have their own, simple scheduling class:
5426 	 */
5427 	idle->sched_class = &idle_sched_class;
5428 	ftrace_graph_init_idle_task(idle, cpu);
5429 	vtime_init_idle(idle, cpu);
5430 #ifdef CONFIG_SMP
5431 	sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5432 #endif
5433 }
5434 
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)5435 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5436 			      const struct cpumask *trial)
5437 {
5438 	int ret = 1, trial_cpus;
5439 	struct dl_bw *cur_dl_b;
5440 	unsigned long flags;
5441 
5442 	if (!cpumask_weight(cur))
5443 		return ret;
5444 
5445 	rcu_read_lock_sched();
5446 	cur_dl_b = dl_bw_of(cpumask_any(cur));
5447 	trial_cpus = cpumask_weight(trial);
5448 
5449 	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5450 	if (cur_dl_b->bw != -1 &&
5451 	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5452 		ret = 0;
5453 	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
5454 	rcu_read_unlock_sched();
5455 
5456 	return ret;
5457 }
5458 
task_can_attach(struct task_struct * p,const struct cpumask * cs_cpus_allowed)5459 int task_can_attach(struct task_struct *p,
5460 		    const struct cpumask *cs_cpus_allowed)
5461 {
5462 	int ret = 0;
5463 
5464 	/*
5465 	 * Kthreads which disallow setaffinity shouldn't be moved
5466 	 * to a new cpuset; we don't want to change their cpu
5467 	 * affinity and isolating such threads by their set of
5468 	 * allowed nodes is unnecessary.  Thus, cpusets are not
5469 	 * applicable for such threads.  This prevents checking for
5470 	 * success of set_cpus_allowed_ptr() on all attached tasks
5471 	 * before cpus_allowed may be changed.
5472 	 */
5473 	if (p->flags & PF_NO_SETAFFINITY) {
5474 		ret = -EINVAL;
5475 		goto out;
5476 	}
5477 
5478 #ifdef CONFIG_SMP
5479 	if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5480 					      cs_cpus_allowed)) {
5481 		unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5482 							cs_cpus_allowed);
5483 		struct dl_bw *dl_b;
5484 		bool overflow;
5485 		int cpus;
5486 		unsigned long flags;
5487 
5488 		rcu_read_lock_sched();
5489 		dl_b = dl_bw_of(dest_cpu);
5490 		raw_spin_lock_irqsave(&dl_b->lock, flags);
5491 		cpus = dl_bw_cpus(dest_cpu);
5492 		overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5493 		if (overflow)
5494 			ret = -EBUSY;
5495 		else {
5496 			/*
5497 			 * We reserve space for this task in the destination
5498 			 * root_domain, as we can't fail after this point.
5499 			 * We will free resources in the source root_domain
5500 			 * later on (see set_cpus_allowed_dl()).
5501 			 */
5502 			__dl_add(dl_b, p->dl.dl_bw);
5503 		}
5504 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
5505 		rcu_read_unlock_sched();
5506 
5507 	}
5508 #endif
5509 out:
5510 	return ret;
5511 }
5512 
5513 #ifdef CONFIG_SMP
5514 
5515 static bool sched_smp_initialized __read_mostly;
5516 
5517 #ifdef CONFIG_NUMA_BALANCING
5518 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)5519 int migrate_task_to(struct task_struct *p, int target_cpu)
5520 {
5521 	struct migration_arg arg = { p, target_cpu };
5522 	int curr_cpu = task_cpu(p);
5523 
5524 	if (curr_cpu == target_cpu)
5525 		return 0;
5526 
5527 	if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5528 		return -EINVAL;
5529 
5530 	/* TODO: This is not properly updating schedstats */
5531 
5532 	trace_sched_move_numa(p, curr_cpu, target_cpu);
5533 	return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5534 }
5535 
5536 /*
5537  * Requeue a task on a given node and accurately track the number of NUMA
5538  * tasks on the runqueues
5539  */
sched_setnuma(struct task_struct * p,int nid)5540 void sched_setnuma(struct task_struct *p, int nid)
5541 {
5542 	bool queued, running;
5543 	struct rq_flags rf;
5544 	struct rq *rq;
5545 
5546 	rq = task_rq_lock(p, &rf);
5547 	queued = task_on_rq_queued(p);
5548 	running = task_current(rq, p);
5549 
5550 	if (queued)
5551 		dequeue_task(rq, p, DEQUEUE_SAVE);
5552 	if (running)
5553 		put_prev_task(rq, p);
5554 
5555 	p->numa_preferred_nid = nid;
5556 
5557 	if (queued)
5558 		enqueue_task(rq, p, ENQUEUE_RESTORE);
5559 	if (running)
5560 		set_curr_task(rq, p);
5561 	task_rq_unlock(rq, p, &rf);
5562 }
5563 #endif /* CONFIG_NUMA_BALANCING */
5564 
5565 #ifdef CONFIG_HOTPLUG_CPU
5566 /*
5567  * Ensures that the idle task is using init_mm right before its cpu goes
5568  * offline.
5569  */
idle_task_exit(void)5570 void idle_task_exit(void)
5571 {
5572 	struct mm_struct *mm = current->active_mm;
5573 
5574 	BUG_ON(cpu_online(smp_processor_id()));
5575 
5576 	if (mm != &init_mm) {
5577 		switch_mm(mm, &init_mm, current);
5578 		finish_arch_post_lock_switch();
5579 	}
5580 	mmdrop(mm);
5581 }
5582 
5583 /*
5584  * Since this CPU is going 'away' for a while, fold any nr_active delta
5585  * we might have. Assumes we're called after migrate_tasks() so that the
5586  * nr_active count is stable. We need to take the teardown thread which
5587  * is calling this into account, so we hand in adjust = 1 to the load
5588  * calculation.
5589  *
5590  * Also see the comment "Global load-average calculations".
5591  */
calc_load_migrate(struct rq * rq)5592 static void calc_load_migrate(struct rq *rq)
5593 {
5594 	long delta = calc_load_fold_active(rq, 1);
5595 	if (delta)
5596 		atomic_long_add(delta, &calc_load_tasks);
5597 }
5598 
put_prev_task_fake(struct rq * rq,struct task_struct * prev)5599 static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5600 {
5601 }
5602 
5603 static const struct sched_class fake_sched_class = {
5604 	.put_prev_task = put_prev_task_fake,
5605 };
5606 
5607 static struct task_struct fake_task = {
5608 	/*
5609 	 * Avoid pull_{rt,dl}_task()
5610 	 */
5611 	.prio = MAX_PRIO + 1,
5612 	.sched_class = &fake_sched_class,
5613 };
5614 
5615 /*
5616  * Migrate all tasks from the rq, sleeping tasks will be migrated by
5617  * try_to_wake_up()->select_task_rq().
5618  *
5619  * Called with rq->lock held even though we'er in stop_machine() and
5620  * there's no concurrency possible, we hold the required locks anyway
5621  * because of lock validation efforts.
5622  */
migrate_tasks(struct rq * dead_rq)5623 static void migrate_tasks(struct rq *dead_rq)
5624 {
5625 	struct rq *rq = dead_rq;
5626 	struct task_struct *next, *stop = rq->stop;
5627 	struct pin_cookie cookie;
5628 	int dest_cpu;
5629 
5630 	/*
5631 	 * Fudge the rq selection such that the below task selection loop
5632 	 * doesn't get stuck on the currently eligible stop task.
5633 	 *
5634 	 * We're currently inside stop_machine() and the rq is either stuck
5635 	 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5636 	 * either way we should never end up calling schedule() until we're
5637 	 * done here.
5638 	 */
5639 	rq->stop = NULL;
5640 
5641 	/*
5642 	 * put_prev_task() and pick_next_task() sched
5643 	 * class method both need to have an up-to-date
5644 	 * value of rq->clock[_task]
5645 	 */
5646 	update_rq_clock(rq);
5647 
5648 	for (;;) {
5649 		/*
5650 		 * There's this thread running, bail when that's the only
5651 		 * remaining thread.
5652 		 */
5653 		if (rq->nr_running == 1)
5654 			break;
5655 
5656 		/*
5657 		 * pick_next_task assumes pinned rq->lock.
5658 		 */
5659 		cookie = lockdep_pin_lock(&rq->lock);
5660 		next = pick_next_task(rq, &fake_task, cookie);
5661 		BUG_ON(!next);
5662 		next->sched_class->put_prev_task(rq, next);
5663 
5664 		/*
5665 		 * Rules for changing task_struct::cpus_allowed are holding
5666 		 * both pi_lock and rq->lock, such that holding either
5667 		 * stabilizes the mask.
5668 		 *
5669 		 * Drop rq->lock is not quite as disastrous as it usually is
5670 		 * because !cpu_active at this point, which means load-balance
5671 		 * will not interfere. Also, stop-machine.
5672 		 */
5673 		lockdep_unpin_lock(&rq->lock, cookie);
5674 		raw_spin_unlock(&rq->lock);
5675 		raw_spin_lock(&next->pi_lock);
5676 		raw_spin_lock(&rq->lock);
5677 
5678 		/*
5679 		 * Since we're inside stop-machine, _nothing_ should have
5680 		 * changed the task, WARN if weird stuff happened, because in
5681 		 * that case the above rq->lock drop is a fail too.
5682 		 */
5683 		if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5684 			raw_spin_unlock(&next->pi_lock);
5685 			continue;
5686 		}
5687 
5688 		/* Find suitable destination for @next, with force if needed. */
5689 		dest_cpu = select_fallback_rq(dead_rq->cpu, next);
5690 
5691 		rq = __migrate_task(rq, next, dest_cpu);
5692 		if (rq != dead_rq) {
5693 			raw_spin_unlock(&rq->lock);
5694 			rq = dead_rq;
5695 			raw_spin_lock(&rq->lock);
5696 		}
5697 		raw_spin_unlock(&next->pi_lock);
5698 	}
5699 
5700 	rq->stop = stop;
5701 }
5702 #endif /* CONFIG_HOTPLUG_CPU */
5703 
set_rq_online(struct rq * rq)5704 static void set_rq_online(struct rq *rq)
5705 {
5706 	if (!rq->online) {
5707 		const struct sched_class *class;
5708 
5709 		cpumask_set_cpu(rq->cpu, rq->rd->online);
5710 		rq->online = 1;
5711 
5712 		for_each_class(class) {
5713 			if (class->rq_online)
5714 				class->rq_online(rq);
5715 		}
5716 	}
5717 }
5718 
set_rq_offline(struct rq * rq)5719 static void set_rq_offline(struct rq *rq)
5720 {
5721 	if (rq->online) {
5722 		const struct sched_class *class;
5723 
5724 		for_each_class(class) {
5725 			if (class->rq_offline)
5726 				class->rq_offline(rq);
5727 		}
5728 
5729 		cpumask_clear_cpu(rq->cpu, rq->rd->online);
5730 		rq->online = 0;
5731 	}
5732 }
5733 
set_cpu_rq_start_time(unsigned int cpu)5734 static void set_cpu_rq_start_time(unsigned int cpu)
5735 {
5736 	struct rq *rq = cpu_rq(cpu);
5737 
5738 	rq->age_stamp = sched_clock_cpu(cpu);
5739 }
5740 
5741 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5742 
5743 #ifdef CONFIG_SCHED_DEBUG
5744 
5745 static __read_mostly int sched_debug_enabled;
5746 
sched_debug_setup(char * str)5747 static int __init sched_debug_setup(char *str)
5748 {
5749 	sched_debug_enabled = 1;
5750 
5751 	return 0;
5752 }
5753 early_param("sched_debug", sched_debug_setup);
5754 
sched_debug(void)5755 static inline bool sched_debug(void)
5756 {
5757 	return sched_debug_enabled;
5758 }
5759 
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)5760 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5761 				  struct cpumask *groupmask)
5762 {
5763 	struct sched_group *group = sd->groups;
5764 
5765 	cpumask_clear(groupmask);
5766 
5767 	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5768 
5769 	if (!(sd->flags & SD_LOAD_BALANCE)) {
5770 		printk("does not load-balance\n");
5771 		return -1;
5772 	}
5773 
5774 	printk(KERN_CONT "span %*pbl level %s\n",
5775 	       cpumask_pr_args(sched_domain_span(sd)), sd->name);
5776 
5777 	if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5778 		printk(KERN_ERR "ERROR: domain->span does not contain "
5779 				"CPU%d\n", cpu);
5780 	}
5781 	if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5782 		printk(KERN_ERR "ERROR: domain->groups does not contain"
5783 				" CPU%d\n", cpu);
5784 	}
5785 
5786 	printk(KERN_DEBUG "%*s groups:", level + 1, "");
5787 	do {
5788 		if (!group) {
5789 			printk("\n");
5790 			printk(KERN_ERR "ERROR: group is NULL\n");
5791 			break;
5792 		}
5793 
5794 		if (!cpumask_weight(sched_group_cpus(group))) {
5795 			printk(KERN_CONT "\n");
5796 			printk(KERN_ERR "ERROR: empty group\n");
5797 			break;
5798 		}
5799 
5800 		if (!(sd->flags & SD_OVERLAP) &&
5801 		    cpumask_intersects(groupmask, sched_group_cpus(group))) {
5802 			printk(KERN_CONT "\n");
5803 			printk(KERN_ERR "ERROR: repeated CPUs\n");
5804 			break;
5805 		}
5806 
5807 		cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5808 
5809 		printk(KERN_CONT " %*pbl",
5810 		       cpumask_pr_args(sched_group_cpus(group)));
5811 		if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5812 			printk(KERN_CONT " (cpu_capacity = %lu)",
5813 				group->sgc->capacity);
5814 		}
5815 
5816 		group = group->next;
5817 	} while (group != sd->groups);
5818 	printk(KERN_CONT "\n");
5819 
5820 	if (!cpumask_equal(sched_domain_span(sd), groupmask))
5821 		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5822 
5823 	if (sd->parent &&
5824 	    !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5825 		printk(KERN_ERR "ERROR: parent span is not a superset "
5826 			"of domain->span\n");
5827 	return 0;
5828 }
5829 
sched_domain_debug(struct sched_domain * sd,int cpu)5830 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5831 {
5832 	int level = 0;
5833 
5834 	if (!sched_debug_enabled)
5835 		return;
5836 
5837 	if (!sd) {
5838 		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5839 		return;
5840 	}
5841 
5842 	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5843 
5844 	for (;;) {
5845 		if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5846 			break;
5847 		level++;
5848 		sd = sd->parent;
5849 		if (!sd)
5850 			break;
5851 	}
5852 }
5853 #else /* !CONFIG_SCHED_DEBUG */
5854 
5855 # define sched_debug_enabled 0
5856 # define sched_domain_debug(sd, cpu) do { } while (0)
sched_debug(void)5857 static inline bool sched_debug(void)
5858 {
5859 	return false;
5860 }
5861 #endif /* CONFIG_SCHED_DEBUG */
5862 
sd_degenerate(struct sched_domain * sd)5863 static int sd_degenerate(struct sched_domain *sd)
5864 {
5865 	if (cpumask_weight(sched_domain_span(sd)) == 1) {
5866 		if (sd->groups->sge)
5867 			sd->flags &= ~SD_LOAD_BALANCE;
5868 		else
5869 			return 1;
5870 	}
5871 
5872 	/* Following flags need at least 2 groups */
5873 	if (sd->flags & (SD_LOAD_BALANCE |
5874 			 SD_BALANCE_NEWIDLE |
5875 			 SD_BALANCE_FORK |
5876 			 SD_BALANCE_EXEC |
5877 			 SD_SHARE_CPUCAPACITY |
5878 			 SD_ASYM_CPUCAPACITY |
5879 			 SD_SHARE_PKG_RESOURCES |
5880 			 SD_SHARE_POWERDOMAIN |
5881 			 SD_SHARE_CAP_STATES)) {
5882 		if (sd->groups != sd->groups->next)
5883 			return 0;
5884 	}
5885 
5886 	/* Following flags don't use groups */
5887 	if (sd->flags & (SD_WAKE_AFFINE))
5888 		return 0;
5889 
5890 	return 1;
5891 }
5892 
5893 static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)5894 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5895 {
5896 	unsigned long cflags = sd->flags, pflags = parent->flags;
5897 
5898 	if (sd_degenerate(parent))
5899 		return 1;
5900 
5901 	if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5902 		return 0;
5903 
5904 	/* Flags needing groups don't count if only 1 group in parent */
5905 	if (parent->groups == parent->groups->next) {
5906 		pflags &= ~(SD_LOAD_BALANCE |
5907 				SD_BALANCE_NEWIDLE |
5908 				SD_BALANCE_FORK |
5909 				SD_BALANCE_EXEC |
5910 				SD_ASYM_CPUCAPACITY |
5911 				SD_SHARE_CPUCAPACITY |
5912 				SD_SHARE_PKG_RESOURCES |
5913 				SD_PREFER_SIBLING |
5914 				SD_SHARE_POWERDOMAIN |
5915 				SD_SHARE_CAP_STATES);
5916 		if (parent->groups->sge) {
5917 			parent->flags &= ~SD_LOAD_BALANCE;
5918 			return 0;
5919 		}
5920 		if (nr_node_ids == 1)
5921 			pflags &= ~SD_SERIALIZE;
5922 	}
5923 	if (~cflags & pflags)
5924 		return 0;
5925 
5926 	return 1;
5927 }
5928 
free_rootdomain(struct rcu_head * rcu)5929 static void free_rootdomain(struct rcu_head *rcu)
5930 {
5931 	struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5932 
5933 	cpupri_cleanup(&rd->cpupri);
5934 	cpudl_cleanup(&rd->cpudl);
5935 	free_cpumask_var(rd->dlo_mask);
5936 	free_cpumask_var(rd->rto_mask);
5937 	free_cpumask_var(rd->online);
5938 	free_cpumask_var(rd->span);
5939 	kfree(rd);
5940 }
5941 
rq_attach_root(struct rq * rq,struct root_domain * rd)5942 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5943 {
5944 	struct root_domain *old_rd = NULL;
5945 	unsigned long flags;
5946 
5947 	raw_spin_lock_irqsave(&rq->lock, flags);
5948 
5949 	if (rq->rd) {
5950 		old_rd = rq->rd;
5951 
5952 		if (cpumask_test_cpu(rq->cpu, old_rd->online))
5953 			set_rq_offline(rq);
5954 
5955 		cpumask_clear_cpu(rq->cpu, old_rd->span);
5956 
5957 		/*
5958 		 * If we dont want to free the old_rd yet then
5959 		 * set old_rd to NULL to skip the freeing later
5960 		 * in this function:
5961 		 */
5962 		if (!atomic_dec_and_test(&old_rd->refcount))
5963 			old_rd = NULL;
5964 	}
5965 
5966 	atomic_inc(&rd->refcount);
5967 	rq->rd = rd;
5968 
5969 	cpumask_set_cpu(rq->cpu, rd->span);
5970 	if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5971 		set_rq_online(rq);
5972 
5973 	raw_spin_unlock_irqrestore(&rq->lock, flags);
5974 
5975 	if (old_rd)
5976 		call_rcu_sched(&old_rd->rcu, free_rootdomain);
5977 }
5978 
sched_get_rd(struct root_domain * rd)5979 void sched_get_rd(struct root_domain *rd)
5980 {
5981 	atomic_inc(&rd->refcount);
5982 }
5983 
sched_put_rd(struct root_domain * rd)5984 void sched_put_rd(struct root_domain *rd)
5985 {
5986 	if (!atomic_dec_and_test(&rd->refcount))
5987 		return;
5988 
5989 	call_rcu_sched(&rd->rcu, free_rootdomain);
5990 }
5991 
init_rootdomain(struct root_domain * rd)5992 static int init_rootdomain(struct root_domain *rd)
5993 {
5994 	memset(rd, 0, sizeof(*rd));
5995 
5996 	if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
5997 		goto out;
5998 	if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
5999 		goto free_span;
6000 	if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
6001 		goto free_online;
6002 	if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6003 		goto free_dlo_mask;
6004 
6005 #ifdef HAVE_RT_PUSH_IPI
6006 	rd->rto_cpu = -1;
6007 	raw_spin_lock_init(&rd->rto_lock);
6008 	init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
6009 #endif
6010 
6011 	init_dl_bw(&rd->dl_bw);
6012 	if (cpudl_init(&rd->cpudl) != 0)
6013 		goto free_dlo_mask;
6014 
6015 	if (cpupri_init(&rd->cpupri) != 0)
6016 		goto free_rto_mask;
6017 
6018 	init_max_cpu_capacity(&rd->max_cpu_capacity);
6019 
6020 	rd->max_cap_orig_cpu = rd->min_cap_orig_cpu = -1;
6021 
6022 	return 0;
6023 
6024 free_rto_mask:
6025 	free_cpumask_var(rd->rto_mask);
6026 free_dlo_mask:
6027 	free_cpumask_var(rd->dlo_mask);
6028 free_online:
6029 	free_cpumask_var(rd->online);
6030 free_span:
6031 	free_cpumask_var(rd->span);
6032 out:
6033 	return -ENOMEM;
6034 }
6035 
6036 /*
6037  * By default the system creates a single root-domain with all cpus as
6038  * members (mimicking the global state we have today).
6039  */
6040 struct root_domain def_root_domain;
6041 
init_defrootdomain(void)6042 static void init_defrootdomain(void)
6043 {
6044 	init_rootdomain(&def_root_domain);
6045 
6046 	atomic_set(&def_root_domain.refcount, 1);
6047 }
6048 
alloc_rootdomain(void)6049 static struct root_domain *alloc_rootdomain(void)
6050 {
6051 	struct root_domain *rd;
6052 
6053 	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6054 	if (!rd)
6055 		return NULL;
6056 
6057 	if (init_rootdomain(rd) != 0) {
6058 		kfree(rd);
6059 		return NULL;
6060 	}
6061 
6062 	return rd;
6063 }
6064 
free_sched_groups(struct sched_group * sg,int free_sgc)6065 static void free_sched_groups(struct sched_group *sg, int free_sgc)
6066 {
6067 	struct sched_group *tmp, *first;
6068 
6069 	if (!sg)
6070 		return;
6071 
6072 	first = sg;
6073 	do {
6074 		tmp = sg->next;
6075 
6076 		if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
6077 			kfree(sg->sgc);
6078 
6079 		kfree(sg);
6080 		sg = tmp;
6081 	} while (sg != first);
6082 }
6083 
destroy_sched_domain(struct sched_domain * sd)6084 static void destroy_sched_domain(struct sched_domain *sd)
6085 {
6086 	/*
6087 	 * If its an overlapping domain it has private groups, iterate and
6088 	 * nuke them all.
6089 	 */
6090 	if (sd->flags & SD_OVERLAP) {
6091 		free_sched_groups(sd->groups, 1);
6092 	} else if (atomic_dec_and_test(&sd->groups->ref)) {
6093 		kfree(sd->groups->sgc);
6094 		kfree(sd->groups);
6095 	}
6096 	if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
6097 		kfree(sd->shared);
6098 	kfree(sd);
6099 }
6100 
destroy_sched_domains_rcu(struct rcu_head * rcu)6101 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
6102 {
6103 	struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6104 
6105 	while (sd) {
6106 		struct sched_domain *parent = sd->parent;
6107 		destroy_sched_domain(sd);
6108 		sd = parent;
6109 	}
6110 }
6111 
destroy_sched_domains(struct sched_domain * sd)6112 static void destroy_sched_domains(struct sched_domain *sd)
6113 {
6114 	if (sd)
6115 		call_rcu(&sd->rcu, destroy_sched_domains_rcu);
6116 }
6117 
6118 /*
6119  * Keep a special pointer to the highest sched_domain that has
6120  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
6121  * allows us to avoid some pointer chasing select_idle_sibling().
6122  *
6123  * Also keep a unique ID per domain (we use the first cpu number in
6124  * the cpumask of the domain), this allows us to quickly tell if
6125  * two cpus are in the same cache domain, see cpus_share_cache().
6126  */
6127 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
6128 DEFINE_PER_CPU(int, sd_llc_size);
6129 DEFINE_PER_CPU(int, sd_llc_id);
6130 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
6131 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
6132 DEFINE_PER_CPU(struct sched_domain *, sd_asym);
6133 DEFINE_PER_CPU(struct sched_domain *, sd_ea);
6134 DEFINE_PER_CPU(struct sched_domain *, sd_scs);
6135 
update_top_cache_domain(int cpu)6136 static void update_top_cache_domain(int cpu)
6137 {
6138 	struct sched_domain_shared *sds = NULL;
6139 	struct sched_domain *sd;
6140 	struct sched_domain *ea_sd = NULL;
6141 	int id = cpu;
6142 	int size = 1;
6143 
6144 	sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
6145 	if (sd) {
6146 		id = cpumask_first(sched_domain_span(sd));
6147 		size = cpumask_weight(sched_domain_span(sd));
6148 		sds = sd->shared;
6149 	}
6150 
6151 	rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
6152 	per_cpu(sd_llc_size, cpu) = size;
6153 	per_cpu(sd_llc_id, cpu) = id;
6154 	rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
6155 
6156 	sd = lowest_flag_domain(cpu, SD_NUMA);
6157 	rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
6158 
6159 	sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
6160 	rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
6161 
6162 	for_each_domain(cpu, sd) {
6163 		if (sd->groups->sge)
6164 			ea_sd = sd;
6165 		else
6166 			break;
6167 	}
6168 	rcu_assign_pointer(per_cpu(sd_ea, cpu), ea_sd);
6169 
6170 	sd = highest_flag_domain(cpu, SD_SHARE_CAP_STATES);
6171 	rcu_assign_pointer(per_cpu(sd_scs, cpu), sd);
6172 }
6173 
6174 /*
6175  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6176  * hold the hotplug lock.
6177  */
6178 static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)6179 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6180 {
6181 	struct rq *rq = cpu_rq(cpu);
6182 	struct sched_domain *tmp;
6183 
6184 	/* Remove the sched domains which do not contribute to scheduling. */
6185 	for (tmp = sd; tmp; ) {
6186 		struct sched_domain *parent = tmp->parent;
6187 		if (!parent)
6188 			break;
6189 
6190 		if (sd_parent_degenerate(tmp, parent)) {
6191 			tmp->parent = parent->parent;
6192 			if (parent->parent)
6193 				parent->parent->child = tmp;
6194 			/*
6195 			 * Transfer SD_PREFER_SIBLING down in case of a
6196 			 * degenerate parent; the spans match for this
6197 			 * so the property transfers.
6198 			 */
6199 			if (parent->flags & SD_PREFER_SIBLING)
6200 				tmp->flags |= SD_PREFER_SIBLING;
6201 			destroy_sched_domain(parent);
6202 		} else
6203 			tmp = tmp->parent;
6204 	}
6205 
6206 	if (sd && sd_degenerate(sd)) {
6207 		tmp = sd;
6208 		sd = sd->parent;
6209 		destroy_sched_domain(tmp);
6210 		if (sd)
6211 			sd->child = NULL;
6212 	}
6213 
6214 	sched_domain_debug(sd, cpu);
6215 
6216 	rq_attach_root(rq, rd);
6217 	tmp = rq->sd;
6218 	rcu_assign_pointer(rq->sd, sd);
6219 	destroy_sched_domains(tmp);
6220 
6221 	update_top_cache_domain(cpu);
6222 }
6223 
6224 /* Setup the mask of cpus configured for isolated domains */
isolated_cpu_setup(char * str)6225 static int __init isolated_cpu_setup(char *str)
6226 {
6227 	int ret;
6228 
6229 	alloc_bootmem_cpumask_var(&cpu_isolated_map);
6230 	ret = cpulist_parse(str, cpu_isolated_map);
6231 	if (ret) {
6232 		pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
6233 		return 0;
6234 	}
6235 	return 1;
6236 }
6237 __setup("isolcpus=", isolated_cpu_setup);
6238 
6239 struct s_data {
6240 	struct sched_domain ** __percpu sd;
6241 	struct root_domain	*rd;
6242 };
6243 
6244 enum s_alloc {
6245 	sa_rootdomain,
6246 	sa_sd,
6247 	sa_sd_storage,
6248 	sa_none,
6249 };
6250 
6251 /*
6252  * Build an iteration mask that can exclude certain CPUs from the upwards
6253  * domain traversal.
6254  *
6255  * Only CPUs that can arrive at this group should be considered to continue
6256  * balancing.
6257  *
6258  * Asymmetric node setups can result in situations where the domain tree is of
6259  * unequal depth, make sure to skip domains that already cover the entire
6260  * range.
6261  *
6262  * In that case build_sched_domains() will have terminated the iteration early
6263  * and our sibling sd spans will be empty. Domains should always include the
6264  * cpu they're built on, so check that.
6265  *
6266  */
build_group_mask(struct sched_domain * sd,struct sched_group * sg)6267 static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6268 {
6269 	const struct cpumask *sg_span = sched_group_cpus(sg);
6270 	struct sd_data *sdd = sd->private;
6271 	struct sched_domain *sibling;
6272 	int i;
6273 
6274 	for_each_cpu(i, sg_span) {
6275 		sibling = *per_cpu_ptr(sdd->sd, i);
6276 
6277 		/*
6278 		 * Can happen in the asymmetric case, where these siblings are
6279 		 * unused. The mask will not be empty because those CPUs that
6280 		 * do have the top domain _should_ span the domain.
6281 		 */
6282 		if (!sibling->child)
6283 			continue;
6284 
6285 		/* If we would not end up here, we can't continue from here */
6286 		if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
6287 			continue;
6288 
6289 		cpumask_set_cpu(i, sched_group_mask(sg));
6290 	}
6291 
6292 	/* We must not have empty masks here */
6293 	WARN_ON_ONCE(cpumask_empty(sched_group_mask(sg)));
6294 }
6295 
6296 /*
6297  * Return the canonical balance cpu for this group, this is the first cpu
6298  * of this group that's also in the iteration mask.
6299  */
group_balance_cpu(struct sched_group * sg)6300 int group_balance_cpu(struct sched_group *sg)
6301 {
6302 	return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6303 }
6304 
6305 static int
build_overlap_sched_groups(struct sched_domain * sd,int cpu)6306 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6307 {
6308 	struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6309 	const struct cpumask *span = sched_domain_span(sd);
6310 	struct cpumask *covered = sched_domains_tmpmask;
6311 	struct sd_data *sdd = sd->private;
6312 	struct sched_domain *sibling;
6313 	int i;
6314 
6315 	cpumask_clear(covered);
6316 
6317 	for_each_cpu_wrap(i, span, cpu) {
6318 		struct cpumask *sg_span;
6319 
6320 		if (cpumask_test_cpu(i, covered))
6321 			continue;
6322 
6323 		sibling = *per_cpu_ptr(sdd->sd, i);
6324 
6325 		/* See the comment near build_group_mask(). */
6326 		if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6327 			continue;
6328 
6329 		sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6330 				GFP_KERNEL, cpu_to_node(cpu));
6331 
6332 		if (!sg)
6333 			goto fail;
6334 
6335 		sg_span = sched_group_cpus(sg);
6336 		if (sibling->child)
6337 			cpumask_copy(sg_span, sched_domain_span(sibling->child));
6338 		else
6339 			cpumask_set_cpu(i, sg_span);
6340 
6341 		cpumask_or(covered, covered, sg_span);
6342 
6343 		sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6344 		if (atomic_inc_return(&sg->sgc->ref) == 1)
6345 			build_group_mask(sd, sg);
6346 
6347 		/*
6348 		 * Initialize sgc->capacity such that even if we mess up the
6349 		 * domains and no possible iteration will get us here, we won't
6350 		 * die on a /0 trap.
6351 		 */
6352 		sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
6353 		sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
6354 		sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
6355 
6356 		/*
6357 		 * Make sure the first group of this domain contains the
6358 		 * canonical balance cpu. Otherwise the sched_domain iteration
6359 		 * breaks. See update_sg_lb_stats().
6360 		 */
6361 		if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
6362 		    group_balance_cpu(sg) == cpu)
6363 			groups = sg;
6364 
6365 		if (!first)
6366 			first = sg;
6367 		if (last)
6368 			last->next = sg;
6369 		last = sg;
6370 		last->next = first;
6371 	}
6372 	sd->groups = groups;
6373 
6374 	return 0;
6375 
6376 fail:
6377 	free_sched_groups(first, 0);
6378 
6379 	return -ENOMEM;
6380 }
6381 
get_group(int cpu,struct sd_data * sdd,struct sched_group ** sg)6382 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
6383 {
6384 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6385 	struct sched_domain *child = sd->child;
6386 
6387 	if (child)
6388 		cpu = cpumask_first(sched_domain_span(child));
6389 
6390 	if (sg) {
6391 		*sg = *per_cpu_ptr(sdd->sg, cpu);
6392 		(*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6393 		atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
6394 	}
6395 
6396 	return cpu;
6397 }
6398 
6399 /*
6400  * build_sched_groups will build a circular linked list of the groups
6401  * covered by the given span, and will set each group's ->cpumask correctly,
6402  * and ->cpu_capacity to 0.
6403  *
6404  * Assumes the sched_domain tree is fully constructed
6405  */
6406 static int
build_sched_groups(struct sched_domain * sd,int cpu)6407 build_sched_groups(struct sched_domain *sd, int cpu)
6408 {
6409 	struct sched_group *first = NULL, *last = NULL;
6410 	struct sd_data *sdd = sd->private;
6411 	const struct cpumask *span = sched_domain_span(sd);
6412 	struct cpumask *covered;
6413 	int i;
6414 
6415 	get_group(cpu, sdd, &sd->groups);
6416 	atomic_inc(&sd->groups->ref);
6417 
6418 	if (cpu != cpumask_first(span))
6419 		return 0;
6420 
6421 	lockdep_assert_held(&sched_domains_mutex);
6422 	covered = sched_domains_tmpmask;
6423 
6424 	cpumask_clear(covered);
6425 
6426 	for_each_cpu(i, span) {
6427 		struct sched_group *sg;
6428 		int group, j;
6429 
6430 		if (cpumask_test_cpu(i, covered))
6431 			continue;
6432 
6433 		group = get_group(i, sdd, &sg);
6434 		cpumask_setall(sched_group_mask(sg));
6435 
6436 		for_each_cpu(j, span) {
6437 			if (get_group(j, sdd, NULL) != group)
6438 				continue;
6439 
6440 			cpumask_set_cpu(j, covered);
6441 			cpumask_set_cpu(j, sched_group_cpus(sg));
6442 		}
6443 
6444 		if (!first)
6445 			first = sg;
6446 		if (last)
6447 			last->next = sg;
6448 		last = sg;
6449 	}
6450 	last->next = first;
6451 
6452 	return 0;
6453 }
6454 
6455 /*
6456  * Initialize sched groups cpu_capacity.
6457  *
6458  * cpu_capacity indicates the capacity of sched group, which is used while
6459  * distributing the load between different sched groups in a sched domain.
6460  * Typically cpu_capacity for all the groups in a sched domain will be same
6461  * unless there are asymmetries in the topology. If there are asymmetries,
6462  * group having more cpu_capacity will pickup more load compared to the
6463  * group having less cpu_capacity.
6464  */
init_sched_groups_capacity(int cpu,struct sched_domain * sd)6465 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6466 {
6467 	struct sched_group *sg = sd->groups;
6468 
6469 	WARN_ON(!sg);
6470 
6471 	do {
6472 		sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6473 		sg = sg->next;
6474 	} while (sg != sd->groups);
6475 
6476 	if (cpu != group_balance_cpu(sg))
6477 		return;
6478 
6479 	update_group_capacity(sd, cpu);
6480 }
6481 
6482 /*
6483  * Check that the per-cpu provided sd energy data is consistent for all cpus
6484  * within the mask.
6485  */
check_sched_energy_data(int cpu,sched_domain_energy_f fn,const struct cpumask * cpumask)6486 static inline void check_sched_energy_data(int cpu, sched_domain_energy_f fn,
6487 					   const struct cpumask *cpumask)
6488 {
6489 	const struct sched_group_energy * const sge = fn(cpu);
6490 	struct cpumask mask;
6491 	int i;
6492 
6493 	if (cpumask_weight(cpumask) <= 1)
6494 		return;
6495 
6496 	cpumask_xor(&mask, cpumask, get_cpu_mask(cpu));
6497 
6498 	for_each_cpu(i, &mask) {
6499 		const struct sched_group_energy * const e = fn(i);
6500 		int y;
6501 
6502 		BUG_ON(e->nr_idle_states != sge->nr_idle_states);
6503 
6504 		for (y = 0; y < (e->nr_idle_states); y++) {
6505 			BUG_ON(e->idle_states[y].power !=
6506 					sge->idle_states[y].power);
6507 		}
6508 
6509 		BUG_ON(e->nr_cap_states != sge->nr_cap_states);
6510 
6511 		for (y = 0; y < (e->nr_cap_states); y++) {
6512 			BUG_ON(e->cap_states[y].cap != sge->cap_states[y].cap);
6513 			BUG_ON(e->cap_states[y].power !=
6514 					sge->cap_states[y].power);
6515 		}
6516 	}
6517 }
6518 
init_sched_energy(int cpu,struct sched_domain * sd,sched_domain_energy_f fn)6519 static void init_sched_energy(int cpu, struct sched_domain *sd,
6520 			      sched_domain_energy_f fn)
6521 {
6522 	if (!(fn && fn(cpu)))
6523 		return;
6524 
6525 	if (cpu != group_balance_cpu(sd->groups))
6526 		return;
6527 
6528 	if (sd->child && !sd->child->groups->sge) {
6529 		pr_err("BUG: EAS setup broken for CPU%d\n", cpu);
6530 #ifdef CONFIG_SCHED_DEBUG
6531 		pr_err("     energy data on %s but not on %s domain\n",
6532 			sd->name, sd->child->name);
6533 #endif
6534 		return;
6535 	}
6536 
6537 	check_sched_energy_data(cpu, fn, sched_group_cpus(sd->groups));
6538 
6539 	sd->groups->sge = fn(cpu);
6540 }
6541 
6542 /*
6543  * Initializers for schedule domains
6544  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6545  */
6546 
6547 static int default_relax_domain_level = -1;
6548 int sched_domain_level_max;
6549 
setup_relax_domain_level(char * str)6550 static int __init setup_relax_domain_level(char *str)
6551 {
6552 	if (kstrtoint(str, 0, &default_relax_domain_level))
6553 		pr_warn("Unable to set relax_domain_level\n");
6554 
6555 	return 1;
6556 }
6557 __setup("relax_domain_level=", setup_relax_domain_level);
6558 
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)6559 static void set_domain_attribute(struct sched_domain *sd,
6560 				 struct sched_domain_attr *attr)
6561 {
6562 	int request;
6563 
6564 	if (!attr || attr->relax_domain_level < 0) {
6565 		if (default_relax_domain_level < 0)
6566 			return;
6567 		else
6568 			request = default_relax_domain_level;
6569 	} else
6570 		request = attr->relax_domain_level;
6571 	if (request < sd->level) {
6572 		/* turn off idle balance on this domain */
6573 		sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6574 	} else {
6575 		/* turn on idle balance on this domain */
6576 		sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6577 	}
6578 }
6579 
6580 static void __sdt_free(const struct cpumask *cpu_map);
6581 static int __sdt_alloc(const struct cpumask *cpu_map);
6582 
__free_domain_allocs(struct s_data * d,enum s_alloc what,const struct cpumask * cpu_map)6583 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6584 				 const struct cpumask *cpu_map)
6585 {
6586 	switch (what) {
6587 	case sa_rootdomain:
6588 		if (!atomic_read(&d->rd->refcount))
6589 			free_rootdomain(&d->rd->rcu); /* fall through */
6590 	case sa_sd:
6591 		free_percpu(d->sd); /* fall through */
6592 	case sa_sd_storage:
6593 		__sdt_free(cpu_map); /* fall through */
6594 	case sa_none:
6595 		break;
6596 	}
6597 }
6598 
__visit_domain_allocation_hell(struct s_data * d,const struct cpumask * cpu_map)6599 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6600 						   const struct cpumask *cpu_map)
6601 {
6602 	memset(d, 0, sizeof(*d));
6603 
6604 	if (__sdt_alloc(cpu_map))
6605 		return sa_sd_storage;
6606 	d->sd = alloc_percpu(struct sched_domain *);
6607 	if (!d->sd)
6608 		return sa_sd_storage;
6609 	d->rd = alloc_rootdomain();
6610 	if (!d->rd)
6611 		return sa_sd;
6612 	return sa_rootdomain;
6613 }
6614 
6615 /*
6616  * NULL the sd_data elements we've used to build the sched_domain and
6617  * sched_group structure so that the subsequent __free_domain_allocs()
6618  * will not free the data we're using.
6619  */
claim_allocations(int cpu,struct sched_domain * sd)6620 static void claim_allocations(int cpu, struct sched_domain *sd)
6621 {
6622 	struct sd_data *sdd = sd->private;
6623 
6624 	WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6625 	*per_cpu_ptr(sdd->sd, cpu) = NULL;
6626 
6627 	if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
6628 		*per_cpu_ptr(sdd->sds, cpu) = NULL;
6629 
6630 	if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6631 		*per_cpu_ptr(sdd->sg, cpu) = NULL;
6632 
6633 	if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6634 		*per_cpu_ptr(sdd->sgc, cpu) = NULL;
6635 }
6636 
6637 #ifdef CONFIG_NUMA
6638 static int sched_domains_numa_levels;
6639 enum numa_topology_type sched_numa_topology_type;
6640 static int *sched_domains_numa_distance;
6641 int sched_max_numa_distance;
6642 static struct cpumask ***sched_domains_numa_masks;
6643 static int sched_domains_curr_level;
6644 #endif
6645 
6646 /*
6647  * SD_flags allowed in topology descriptions.
6648  *
6649  * These flags are purely descriptive of the topology and do not prescribe
6650  * behaviour. Behaviour is artificial and mapped in the below sd_init()
6651  * function:
6652  *
6653  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
6654  *   SD_SHARE_PKG_RESOURCES - describes shared caches
6655  *   SD_NUMA                - describes NUMA topologies
6656  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
6657  *   SD_ASYM_CPUCAPACITY    - describes mixed capacity topologies
6658  *   SD_SHARE_CAP_STATES    - describes shared capacity states
6659  *
6660  * Odd one out, which beside describing the topology has a quirk also
6661  * prescribes the desired behaviour that goes along with it:
6662  *
6663  *   SD_ASYM_PACKING        - describes SMT quirks
6664  */
6665 #define TOPOLOGY_SD_FLAGS		\
6666 	(SD_SHARE_CPUCAPACITY |		\
6667 	 SD_SHARE_PKG_RESOURCES |	\
6668 	 SD_NUMA |			\
6669 	 SD_ASYM_PACKING |		\
6670 	 SD_ASYM_CPUCAPACITY |		\
6671 	 SD_SHARE_POWERDOMAIN |		\
6672 	 SD_SHARE_CAP_STATES)
6673 
6674 static struct sched_domain *
sd_init(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain * child,int cpu)6675 sd_init(struct sched_domain_topology_level *tl,
6676 	const struct cpumask *cpu_map,
6677 	struct sched_domain *child, int cpu)
6678 {
6679 	struct sd_data *sdd = &tl->data;
6680 	struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6681 	int sd_id, sd_weight, sd_flags = 0;
6682 
6683 #ifdef CONFIG_NUMA
6684 	/*
6685 	 * Ugly hack to pass state to sd_numa_mask()...
6686 	 */
6687 	sched_domains_curr_level = tl->numa_level;
6688 #endif
6689 
6690 	sd_weight = cpumask_weight(tl->mask(cpu));
6691 
6692 	if (tl->sd_flags)
6693 		sd_flags = (*tl->sd_flags)();
6694 	if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6695 			"wrong sd_flags in topology description\n"))
6696 		sd_flags &= ~TOPOLOGY_SD_FLAGS;
6697 
6698 	*sd = (struct sched_domain){
6699 		.min_interval		= sd_weight,
6700 		.max_interval		= 2*sd_weight,
6701 		.busy_factor		= 32,
6702 		.imbalance_pct		= 125,
6703 
6704 		.cache_nice_tries	= 0,
6705 		.busy_idx		= 0,
6706 		.idle_idx		= 0,
6707 		.newidle_idx		= 0,
6708 		.wake_idx		= 0,
6709 		.forkexec_idx		= 0,
6710 
6711 		.flags			= 1*SD_LOAD_BALANCE
6712 					| 1*SD_BALANCE_NEWIDLE
6713 					| 1*SD_BALANCE_EXEC
6714 					| 1*SD_BALANCE_FORK
6715 					| 0*SD_BALANCE_WAKE
6716 					| 1*SD_WAKE_AFFINE
6717 					| 0*SD_SHARE_CPUCAPACITY
6718 					| 0*SD_SHARE_PKG_RESOURCES
6719 					| 0*SD_SERIALIZE
6720 					| 0*SD_PREFER_SIBLING
6721 					| 0*SD_NUMA
6722 					| sd_flags
6723 					,
6724 
6725 		.last_balance		= jiffies,
6726 		.balance_interval	= sd_weight,
6727 		.smt_gain		= 0,
6728 		.max_newidle_lb_cost	= 0,
6729 		.next_decay_max_lb_cost	= jiffies,
6730 		.child			= child,
6731 #ifdef CONFIG_SCHED_DEBUG
6732 		.name			= tl->name,
6733 #endif
6734 	};
6735 
6736 	cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6737 	sd_id = cpumask_first(sched_domain_span(sd));
6738 
6739 	/*
6740 	 * Convert topological properties into behaviour.
6741 	 */
6742 
6743 	if (sd->flags & SD_ASYM_CPUCAPACITY) {
6744 		struct sched_domain *t = sd;
6745 
6746 		for_each_lower_domain(t)
6747 			t->flags |= SD_BALANCE_WAKE;
6748 	}
6749 
6750 	if (sd->flags & SD_SHARE_CPUCAPACITY) {
6751 		sd->flags |= SD_PREFER_SIBLING;
6752 		sd->imbalance_pct = 110;
6753 		sd->smt_gain = 1178; /* ~15% */
6754 
6755 	} else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6756 		sd->imbalance_pct = 117;
6757 		sd->cache_nice_tries = 1;
6758 		sd->busy_idx = 2;
6759 
6760 #ifdef CONFIG_NUMA
6761 	} else if (sd->flags & SD_NUMA) {
6762 		sd->cache_nice_tries = 2;
6763 		sd->busy_idx = 3;
6764 		sd->idle_idx = 2;
6765 
6766 		sd->flags |= SD_SERIALIZE;
6767 		if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6768 			sd->flags &= ~(SD_BALANCE_EXEC |
6769 				       SD_BALANCE_FORK |
6770 				       SD_WAKE_AFFINE);
6771 		}
6772 
6773 #endif
6774 	} else {
6775 		sd->flags |= SD_PREFER_SIBLING;
6776 		sd->cache_nice_tries = 1;
6777 		sd->busy_idx = 2;
6778 		sd->idle_idx = 1;
6779 	}
6780 
6781 	/*
6782 	 * For all levels sharing cache; connect a sched_domain_shared
6783 	 * instance.
6784 	 */
6785 	if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6786 		sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
6787 		atomic_inc(&sd->shared->ref);
6788 		atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
6789 	}
6790 
6791 	sd->private = sdd;
6792 
6793 	return sd;
6794 }
6795 
6796 /*
6797  * Topology list, bottom-up.
6798  */
6799 static struct sched_domain_topology_level default_topology[] = {
6800 #ifdef CONFIG_SCHED_SMT
6801 	{ cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6802 #endif
6803 #ifdef CONFIG_SCHED_MC
6804 	{ cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6805 #endif
6806 	{ cpu_cpu_mask, SD_INIT_NAME(DIE) },
6807 	{ NULL, },
6808 };
6809 
6810 static struct sched_domain_topology_level *sched_domain_topology =
6811 	default_topology;
6812 
6813 #define for_each_sd_topology(tl)			\
6814 	for (tl = sched_domain_topology; tl->mask; tl++)
6815 
set_sched_topology(struct sched_domain_topology_level * tl)6816 void set_sched_topology(struct sched_domain_topology_level *tl)
6817 {
6818 	if (WARN_ON_ONCE(sched_smp_initialized))
6819 		return;
6820 
6821 	sched_domain_topology = tl;
6822 }
6823 
6824 #ifdef CONFIG_NUMA
6825 
sd_numa_mask(int cpu)6826 static const struct cpumask *sd_numa_mask(int cpu)
6827 {
6828 	return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6829 }
6830 
sched_numa_warn(const char * str)6831 static void sched_numa_warn(const char *str)
6832 {
6833 	static int done = false;
6834 	int i,j;
6835 
6836 	if (done)
6837 		return;
6838 
6839 	done = true;
6840 
6841 	printk(KERN_WARNING "ERROR: %s\n\n", str);
6842 
6843 	for (i = 0; i < nr_node_ids; i++) {
6844 		printk(KERN_WARNING "  ");
6845 		for (j = 0; j < nr_node_ids; j++)
6846 			printk(KERN_CONT "%02d ", node_distance(i,j));
6847 		printk(KERN_CONT "\n");
6848 	}
6849 	printk(KERN_WARNING "\n");
6850 }
6851 
find_numa_distance(int distance)6852 bool find_numa_distance(int distance)
6853 {
6854 	int i;
6855 
6856 	if (distance == node_distance(0, 0))
6857 		return true;
6858 
6859 	for (i = 0; i < sched_domains_numa_levels; i++) {
6860 		if (sched_domains_numa_distance[i] == distance)
6861 			return true;
6862 	}
6863 
6864 	return false;
6865 }
6866 
6867 /*
6868  * A system can have three types of NUMA topology:
6869  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6870  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6871  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6872  *
6873  * The difference between a glueless mesh topology and a backplane
6874  * topology lies in whether communication between not directly
6875  * connected nodes goes through intermediary nodes (where programs
6876  * could run), or through backplane controllers. This affects
6877  * placement of programs.
6878  *
6879  * The type of topology can be discerned with the following tests:
6880  * - If the maximum distance between any nodes is 1 hop, the system
6881  *   is directly connected.
6882  * - If for two nodes A and B, located N > 1 hops away from each other,
6883  *   there is an intermediary node C, which is < N hops away from both
6884  *   nodes A and B, the system is a glueless mesh.
6885  */
init_numa_topology_type(void)6886 static void init_numa_topology_type(void)
6887 {
6888 	int a, b, c, n;
6889 
6890 	n = sched_max_numa_distance;
6891 
6892 	if (sched_domains_numa_levels <= 1) {
6893 		sched_numa_topology_type = NUMA_DIRECT;
6894 		return;
6895 	}
6896 
6897 	for_each_online_node(a) {
6898 		for_each_online_node(b) {
6899 			/* Find two nodes furthest removed from each other. */
6900 			if (node_distance(a, b) < n)
6901 				continue;
6902 
6903 			/* Is there an intermediary node between a and b? */
6904 			for_each_online_node(c) {
6905 				if (node_distance(a, c) < n &&
6906 				    node_distance(b, c) < n) {
6907 					sched_numa_topology_type =
6908 							NUMA_GLUELESS_MESH;
6909 					return;
6910 				}
6911 			}
6912 
6913 			sched_numa_topology_type = NUMA_BACKPLANE;
6914 			return;
6915 		}
6916 	}
6917 }
6918 
sched_init_numa(void)6919 static void sched_init_numa(void)
6920 {
6921 	int next_distance, curr_distance = node_distance(0, 0);
6922 	struct sched_domain_topology_level *tl;
6923 	int level = 0;
6924 	int i, j, k;
6925 
6926 	sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6927 	if (!sched_domains_numa_distance)
6928 		return;
6929 
6930 	/*
6931 	 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6932 	 * unique distances in the node_distance() table.
6933 	 *
6934 	 * Assumes node_distance(0,j) includes all distances in
6935 	 * node_distance(i,j) in order to avoid cubic time.
6936 	 */
6937 	next_distance = curr_distance;
6938 	for (i = 0; i < nr_node_ids; i++) {
6939 		for (j = 0; j < nr_node_ids; j++) {
6940 			for (k = 0; k < nr_node_ids; k++) {
6941 				int distance = node_distance(i, k);
6942 
6943 				if (distance > curr_distance &&
6944 				    (distance < next_distance ||
6945 				     next_distance == curr_distance))
6946 					next_distance = distance;
6947 
6948 				/*
6949 				 * While not a strong assumption it would be nice to know
6950 				 * about cases where if node A is connected to B, B is not
6951 				 * equally connected to A.
6952 				 */
6953 				if (sched_debug() && node_distance(k, i) != distance)
6954 					sched_numa_warn("Node-distance not symmetric");
6955 
6956 				if (sched_debug() && i && !find_numa_distance(distance))
6957 					sched_numa_warn("Node-0 not representative");
6958 			}
6959 			if (next_distance != curr_distance) {
6960 				sched_domains_numa_distance[level++] = next_distance;
6961 				sched_domains_numa_levels = level;
6962 				curr_distance = next_distance;
6963 			} else break;
6964 		}
6965 
6966 		/*
6967 		 * In case of sched_debug() we verify the above assumption.
6968 		 */
6969 		if (!sched_debug())
6970 			break;
6971 	}
6972 
6973 	if (!level)
6974 		return;
6975 
6976 	/*
6977 	 * 'level' contains the number of unique distances, excluding the
6978 	 * identity distance node_distance(i,i).
6979 	 *
6980 	 * The sched_domains_numa_distance[] array includes the actual distance
6981 	 * numbers.
6982 	 */
6983 
6984 	/*
6985 	 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6986 	 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6987 	 * the array will contain less then 'level' members. This could be
6988 	 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6989 	 * in other functions.
6990 	 *
6991 	 * We reset it to 'level' at the end of this function.
6992 	 */
6993 	sched_domains_numa_levels = 0;
6994 
6995 	sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6996 	if (!sched_domains_numa_masks)
6997 		return;
6998 
6999 	/*
7000 	 * Now for each level, construct a mask per node which contains all
7001 	 * cpus of nodes that are that many hops away from us.
7002 	 */
7003 	for (i = 0; i < level; i++) {
7004 		sched_domains_numa_masks[i] =
7005 			kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
7006 		if (!sched_domains_numa_masks[i])
7007 			return;
7008 
7009 		for (j = 0; j < nr_node_ids; j++) {
7010 			struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
7011 			if (!mask)
7012 				return;
7013 
7014 			sched_domains_numa_masks[i][j] = mask;
7015 
7016 			for_each_node(k) {
7017 				if (node_distance(j, k) > sched_domains_numa_distance[i])
7018 					continue;
7019 
7020 				cpumask_or(mask, mask, cpumask_of_node(k));
7021 			}
7022 		}
7023 	}
7024 
7025 	/* Compute default topology size */
7026 	for (i = 0; sched_domain_topology[i].mask; i++);
7027 
7028 	tl = kzalloc((i + level + 1) *
7029 			sizeof(struct sched_domain_topology_level), GFP_KERNEL);
7030 	if (!tl)
7031 		return;
7032 
7033 	/*
7034 	 * Copy the default topology bits..
7035 	 */
7036 	for (i = 0; sched_domain_topology[i].mask; i++)
7037 		tl[i] = sched_domain_topology[i];
7038 
7039 	/*
7040 	 * .. and append 'j' levels of NUMA goodness.
7041 	 */
7042 	for (j = 0; j < level; i++, j++) {
7043 		tl[i] = (struct sched_domain_topology_level){
7044 			.mask = sd_numa_mask,
7045 			.sd_flags = cpu_numa_flags,
7046 			.flags = SDTL_OVERLAP,
7047 			.numa_level = j,
7048 			SD_INIT_NAME(NUMA)
7049 		};
7050 	}
7051 
7052 	sched_domain_topology = tl;
7053 
7054 	sched_domains_numa_levels = level;
7055 	sched_max_numa_distance = sched_domains_numa_distance[level - 1];
7056 
7057 	init_numa_topology_type();
7058 }
7059 
sched_domains_numa_masks_set(unsigned int cpu)7060 static void sched_domains_numa_masks_set(unsigned int cpu)
7061 {
7062 	int node = cpu_to_node(cpu);
7063 	int i, j;
7064 
7065 	for (i = 0; i < sched_domains_numa_levels; i++) {
7066 		for (j = 0; j < nr_node_ids; j++) {
7067 			if (node_distance(j, node) <= sched_domains_numa_distance[i])
7068 				cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
7069 		}
7070 	}
7071 }
7072 
sched_domains_numa_masks_clear(unsigned int cpu)7073 static void sched_domains_numa_masks_clear(unsigned int cpu)
7074 {
7075 	int i, j;
7076 
7077 	for (i = 0; i < sched_domains_numa_levels; i++) {
7078 		for (j = 0; j < nr_node_ids; j++)
7079 			cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
7080 	}
7081 }
7082 
7083 #else
sched_init_numa(void)7084 static inline void sched_init_numa(void) { }
sched_domains_numa_masks_set(unsigned int cpu)7085 static void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)7086 static void sched_domains_numa_masks_clear(unsigned int cpu) { }
7087 #endif /* CONFIG_NUMA */
7088 
__sdt_alloc(const struct cpumask * cpu_map)7089 static int __sdt_alloc(const struct cpumask *cpu_map)
7090 {
7091 	struct sched_domain_topology_level *tl;
7092 	int j;
7093 
7094 	for_each_sd_topology(tl) {
7095 		struct sd_data *sdd = &tl->data;
7096 
7097 		sdd->sd = alloc_percpu(struct sched_domain *);
7098 		if (!sdd->sd)
7099 			return -ENOMEM;
7100 
7101 		sdd->sds = alloc_percpu(struct sched_domain_shared *);
7102 		if (!sdd->sds)
7103 			return -ENOMEM;
7104 
7105 		sdd->sg = alloc_percpu(struct sched_group *);
7106 		if (!sdd->sg)
7107 			return -ENOMEM;
7108 
7109 		sdd->sgc = alloc_percpu(struct sched_group_capacity *);
7110 		if (!sdd->sgc)
7111 			return -ENOMEM;
7112 
7113 		for_each_cpu(j, cpu_map) {
7114 			struct sched_domain *sd;
7115 			struct sched_domain_shared *sds;
7116 			struct sched_group *sg;
7117 			struct sched_group_capacity *sgc;
7118 
7119 			sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7120 					GFP_KERNEL, cpu_to_node(j));
7121 			if (!sd)
7122 				return -ENOMEM;
7123 
7124 			*per_cpu_ptr(sdd->sd, j) = sd;
7125 
7126 			sds = kzalloc_node(sizeof(struct sched_domain_shared),
7127 					GFP_KERNEL, cpu_to_node(j));
7128 			if (!sds)
7129 				return -ENOMEM;
7130 
7131 			*per_cpu_ptr(sdd->sds, j) = sds;
7132 
7133 			sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7134 					GFP_KERNEL, cpu_to_node(j));
7135 			if (!sg)
7136 				return -ENOMEM;
7137 
7138 			sg->next = sg;
7139 
7140 			*per_cpu_ptr(sdd->sg, j) = sg;
7141 
7142 			sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
7143 					GFP_KERNEL, cpu_to_node(j));
7144 			if (!sgc)
7145 				return -ENOMEM;
7146 
7147 			*per_cpu_ptr(sdd->sgc, j) = sgc;
7148 		}
7149 	}
7150 
7151 	return 0;
7152 }
7153 
__sdt_free(const struct cpumask * cpu_map)7154 static void __sdt_free(const struct cpumask *cpu_map)
7155 {
7156 	struct sched_domain_topology_level *tl;
7157 	int j;
7158 
7159 	for_each_sd_topology(tl) {
7160 		struct sd_data *sdd = &tl->data;
7161 
7162 		for_each_cpu(j, cpu_map) {
7163 			struct sched_domain *sd;
7164 
7165 			if (sdd->sd) {
7166 				sd = *per_cpu_ptr(sdd->sd, j);
7167 				if (sd && (sd->flags & SD_OVERLAP))
7168 					free_sched_groups(sd->groups, 0);
7169 				kfree(*per_cpu_ptr(sdd->sd, j));
7170 			}
7171 
7172 			if (sdd->sds)
7173 				kfree(*per_cpu_ptr(sdd->sds, j));
7174 			if (sdd->sg)
7175 				kfree(*per_cpu_ptr(sdd->sg, j));
7176 			if (sdd->sgc)
7177 				kfree(*per_cpu_ptr(sdd->sgc, j));
7178 		}
7179 		free_percpu(sdd->sd);
7180 		sdd->sd = NULL;
7181 		free_percpu(sdd->sds);
7182 		sdd->sds = NULL;
7183 		free_percpu(sdd->sg);
7184 		sdd->sg = NULL;
7185 		free_percpu(sdd->sgc);
7186 		sdd->sgc = NULL;
7187 	}
7188 }
7189 
build_sched_domain(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * child,int cpu)7190 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7191 		const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7192 		struct sched_domain *child, int cpu)
7193 {
7194 	struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
7195 
7196 	if (child) {
7197 		sd->level = child->level + 1;
7198 		sched_domain_level_max = max(sched_domain_level_max, sd->level);
7199 		child->parent = sd;
7200 
7201 		if (!cpumask_subset(sched_domain_span(child),
7202 				    sched_domain_span(sd))) {
7203 			pr_err("BUG: arch topology borken\n");
7204 #ifdef CONFIG_SCHED_DEBUG
7205 			pr_err("     the %s domain not a subset of the %s domain\n",
7206 					child->name, sd->name);
7207 #endif
7208 			/* Fixup, ensure @sd has at least @child cpus. */
7209 			cpumask_or(sched_domain_span(sd),
7210 				   sched_domain_span(sd),
7211 				   sched_domain_span(child));
7212 		}
7213 
7214 	}
7215 	set_domain_attribute(sd, attr);
7216 
7217 	return sd;
7218 }
7219 
7220 /*
7221  * Build sched domains for a given set of cpus and attach the sched domains
7222  * to the individual cpus
7223  */
build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)7224 static int build_sched_domains(const struct cpumask *cpu_map,
7225 			       struct sched_domain_attr *attr)
7226 {
7227 	enum s_alloc alloc_state;
7228 	struct sched_domain *sd;
7229 	struct s_data d;
7230 	int i, ret = -ENOMEM;
7231 
7232 	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7233 	if (alloc_state != sa_rootdomain)
7234 		goto error;
7235 
7236 	/* Set up domains for cpus specified by the cpu_map. */
7237 	for_each_cpu(i, cpu_map) {
7238 		struct sched_domain_topology_level *tl;
7239 
7240 		sd = NULL;
7241 		for_each_sd_topology(tl) {
7242 			sd = build_sched_domain(tl, cpu_map, attr, sd, i);
7243 			if (tl == sched_domain_topology)
7244 				*per_cpu_ptr(d.sd, i) = sd;
7245 			if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7246 				sd->flags |= SD_OVERLAP;
7247 		}
7248 	}
7249 
7250 	/* Build the groups for the domains */
7251 	for_each_cpu(i, cpu_map) {
7252 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7253 			sd->span_weight = cpumask_weight(sched_domain_span(sd));
7254 			if (sd->flags & SD_OVERLAP) {
7255 				if (build_overlap_sched_groups(sd, i))
7256 					goto error;
7257 			} else {
7258 				if (build_sched_groups(sd, i))
7259 					goto error;
7260 			}
7261 		}
7262 	}
7263 
7264 	/* Calculate CPU capacity for physical packages and nodes */
7265 	for (i = nr_cpumask_bits-1; i >= 0; i--) {
7266 		struct sched_domain_topology_level *tl = sched_domain_topology;
7267 
7268 		if (!cpumask_test_cpu(i, cpu_map))
7269 			continue;
7270 
7271 		for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent, tl++) {
7272 			init_sched_energy(i, sd, tl->energy);
7273 			claim_allocations(i, sd);
7274 			init_sched_groups_capacity(i, sd);
7275 		}
7276 	}
7277 
7278 	/* Attach the domains */
7279 	rcu_read_lock();
7280 	for_each_cpu(i, cpu_map) {
7281 		int max_cpu = READ_ONCE(d.rd->max_cap_orig_cpu);
7282 		int min_cpu = READ_ONCE(d.rd->min_cap_orig_cpu);
7283 
7284 		if ((max_cpu < 0) || (cpu_rq(i)->cpu_capacity_orig >
7285 		    cpu_rq(max_cpu)->cpu_capacity_orig))
7286 			WRITE_ONCE(d.rd->max_cap_orig_cpu, i);
7287 
7288 		if ((min_cpu < 0) || (cpu_rq(i)->cpu_capacity_orig <
7289 		    cpu_rq(min_cpu)->cpu_capacity_orig))
7290 			WRITE_ONCE(d.rd->min_cap_orig_cpu, i);
7291 
7292 		sd = *per_cpu_ptr(d.sd, i);
7293 
7294 		cpu_attach_domain(sd, d.rd, i);
7295 	}
7296 	rcu_read_unlock();
7297 
7298 	ret = 0;
7299 error:
7300 	__free_domain_allocs(&d, alloc_state, cpu_map);
7301 	return ret;
7302 }
7303 
7304 static cpumask_var_t *doms_cur;	/* current sched domains */
7305 static int ndoms_cur;		/* number of sched domains in 'doms_cur' */
7306 static struct sched_domain_attr *dattr_cur;
7307 				/* attribues of custom domains in 'doms_cur' */
7308 
7309 /*
7310  * Special case: If a kmalloc of a doms_cur partition (array of
7311  * cpumask) fails, then fallback to a single sched domain,
7312  * as determined by the single cpumask fallback_doms.
7313  */
7314 static cpumask_var_t fallback_doms;
7315 
7316 /*
7317  * arch_update_cpu_topology lets virtualized architectures update the
7318  * cpu core maps. It is supposed to return 1 if the topology changed
7319  * or 0 if it stayed the same.
7320  */
arch_update_cpu_topology(void)7321 int __weak arch_update_cpu_topology(void)
7322 {
7323 	return 0;
7324 }
7325 
alloc_sched_domains(unsigned int ndoms)7326 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7327 {
7328 	int i;
7329 	cpumask_var_t *doms;
7330 
7331 	doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7332 	if (!doms)
7333 		return NULL;
7334 	for (i = 0; i < ndoms; i++) {
7335 		if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7336 			free_sched_domains(doms, i);
7337 			return NULL;
7338 		}
7339 	}
7340 	return doms;
7341 }
7342 
free_sched_domains(cpumask_var_t doms[],unsigned int ndoms)7343 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7344 {
7345 	unsigned int i;
7346 	for (i = 0; i < ndoms; i++)
7347 		free_cpumask_var(doms[i]);
7348 	kfree(doms);
7349 }
7350 
7351 /*
7352  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7353  * For now this just excludes isolated cpus, but could be used to
7354  * exclude other special cases in the future.
7355  */
init_sched_domains(const struct cpumask * cpu_map)7356 static int init_sched_domains(const struct cpumask *cpu_map)
7357 {
7358 	int err;
7359 
7360 	arch_update_cpu_topology();
7361 	ndoms_cur = 1;
7362 	doms_cur = alloc_sched_domains(ndoms_cur);
7363 	if (!doms_cur)
7364 		doms_cur = &fallback_doms;
7365 	cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7366 	err = build_sched_domains(doms_cur[0], NULL);
7367 	register_sched_domain_sysctl();
7368 
7369 	return err;
7370 }
7371 
7372 /*
7373  * Detach sched domains from a group of cpus specified in cpu_map
7374  * These cpus will now be attached to the NULL domain
7375  */
detach_destroy_domains(const struct cpumask * cpu_map)7376 static void detach_destroy_domains(const struct cpumask *cpu_map)
7377 {
7378 	int i;
7379 
7380 	rcu_read_lock();
7381 	for_each_cpu(i, cpu_map)
7382 		cpu_attach_domain(NULL, &def_root_domain, i);
7383 	rcu_read_unlock();
7384 }
7385 
7386 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)7387 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7388 			struct sched_domain_attr *new, int idx_new)
7389 {
7390 	struct sched_domain_attr tmp;
7391 
7392 	/* fast path */
7393 	if (!new && !cur)
7394 		return 1;
7395 
7396 	tmp = SD_ATTR_INIT;
7397 	return !memcmp(cur ? (cur + idx_cur) : &tmp,
7398 			new ? (new + idx_new) : &tmp,
7399 			sizeof(struct sched_domain_attr));
7400 }
7401 
7402 /*
7403  * Partition sched domains as specified by the 'ndoms_new'
7404  * cpumasks in the array doms_new[] of cpumasks. This compares
7405  * doms_new[] to the current sched domain partitioning, doms_cur[].
7406  * It destroys each deleted domain and builds each new domain.
7407  *
7408  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7409  * The masks don't intersect (don't overlap.) We should setup one
7410  * sched domain for each mask. CPUs not in any of the cpumasks will
7411  * not be load balanced. If the same cpumask appears both in the
7412  * current 'doms_cur' domains and in the new 'doms_new', we can leave
7413  * it as it is.
7414  *
7415  * The passed in 'doms_new' should be allocated using
7416  * alloc_sched_domains.  This routine takes ownership of it and will
7417  * free_sched_domains it when done with it. If the caller failed the
7418  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7419  * and partition_sched_domains() will fallback to the single partition
7420  * 'fallback_doms', it also forces the domains to be rebuilt.
7421  *
7422  * If doms_new == NULL it will be replaced with cpu_online_mask.
7423  * ndoms_new == 0 is a special case for destroying existing domains,
7424  * and it will not create the default domain.
7425  *
7426  * Call with hotplug lock held
7427  */
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)7428 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7429 			     struct sched_domain_attr *dattr_new)
7430 {
7431 	int i, j, n;
7432 	int new_topology;
7433 
7434 	mutex_lock(&sched_domains_mutex);
7435 
7436 	/* always unregister in case we don't destroy any domains */
7437 	unregister_sched_domain_sysctl();
7438 
7439 	/* Let architecture update cpu core mappings. */
7440 	new_topology = arch_update_cpu_topology();
7441 
7442 	n = doms_new ? ndoms_new : 0;
7443 
7444 	/* Destroy deleted domains */
7445 	for (i = 0; i < ndoms_cur; i++) {
7446 		for (j = 0; j < n && !new_topology; j++) {
7447 			if (cpumask_equal(doms_cur[i], doms_new[j])
7448 			    && dattrs_equal(dattr_cur, i, dattr_new, j))
7449 				goto match1;
7450 		}
7451 		/* no match - a current sched domain not in new doms_new[] */
7452 		detach_destroy_domains(doms_cur[i]);
7453 match1:
7454 		;
7455 	}
7456 
7457 	n = ndoms_cur;
7458 	if (doms_new == NULL) {
7459 		n = 0;
7460 		doms_new = &fallback_doms;
7461 		cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7462 		WARN_ON_ONCE(dattr_new);
7463 	}
7464 
7465 	/* Build new domains */
7466 	for (i = 0; i < ndoms_new; i++) {
7467 		for (j = 0; j < n && !new_topology; j++) {
7468 			if (cpumask_equal(doms_new[i], doms_cur[j])
7469 			    && dattrs_equal(dattr_new, i, dattr_cur, j))
7470 				goto match2;
7471 		}
7472 		/* no match - add a new doms_new */
7473 		build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7474 match2:
7475 		;
7476 	}
7477 
7478 	/* Remember the new sched domains */
7479 	if (doms_cur != &fallback_doms)
7480 		free_sched_domains(doms_cur, ndoms_cur);
7481 	kfree(dattr_cur);	/* kfree(NULL) is safe */
7482 	doms_cur = doms_new;
7483 	dattr_cur = dattr_new;
7484 	ndoms_cur = ndoms_new;
7485 
7486 	register_sched_domain_sysctl();
7487 
7488 	mutex_unlock(&sched_domains_mutex);
7489 }
7490 
7491 static int num_cpus_frozen;	/* used to mark begin/end of suspend/resume */
7492 
7493 /*
7494  * Update cpusets according to cpu_active mask.  If cpusets are
7495  * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7496  * around partition_sched_domains().
7497  *
7498  * If we come here as part of a suspend/resume, don't touch cpusets because we
7499  * want to restore it back to its original state upon resume anyway.
7500  */
cpuset_cpu_active(void)7501 static void cpuset_cpu_active(void)
7502 {
7503 	if (cpuhp_tasks_frozen) {
7504 		/*
7505 		 * num_cpus_frozen tracks how many CPUs are involved in suspend
7506 		 * resume sequence. As long as this is not the last online
7507 		 * operation in the resume sequence, just build a single sched
7508 		 * domain, ignoring cpusets.
7509 		 */
7510 		partition_sched_domains(1, NULL, NULL);
7511 		if (--num_cpus_frozen)
7512 			return;
7513 		/*
7514 		 * This is the last CPU online operation. So fall through and
7515 		 * restore the original sched domains by considering the
7516 		 * cpuset configurations.
7517 		 */
7518 		cpuset_force_rebuild();
7519 	}
7520 	cpuset_update_active_cpus(true);
7521 }
7522 
cpuset_cpu_inactive(unsigned int cpu)7523 static int cpuset_cpu_inactive(unsigned int cpu)
7524 {
7525 	unsigned long flags;
7526 	struct dl_bw *dl_b;
7527 	bool overflow;
7528 	int cpus;
7529 
7530 	if (!cpuhp_tasks_frozen) {
7531 		rcu_read_lock_sched();
7532 		dl_b = dl_bw_of(cpu);
7533 
7534 		raw_spin_lock_irqsave(&dl_b->lock, flags);
7535 		cpus = dl_bw_cpus(cpu);
7536 		overflow = __dl_overflow(dl_b, cpus, 0, 0);
7537 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7538 
7539 		rcu_read_unlock_sched();
7540 
7541 		if (overflow)
7542 			return -EBUSY;
7543 		cpuset_update_active_cpus(false);
7544 	} else {
7545 		num_cpus_frozen++;
7546 		partition_sched_domains(1, NULL, NULL);
7547 	}
7548 	return 0;
7549 }
7550 
sched_cpu_activate(unsigned int cpu)7551 int sched_cpu_activate(unsigned int cpu)
7552 {
7553 	struct rq *rq = cpu_rq(cpu);
7554 	unsigned long flags;
7555 
7556 	set_cpu_active(cpu, true);
7557 
7558 	if (sched_smp_initialized) {
7559 		sched_domains_numa_masks_set(cpu);
7560 		cpuset_cpu_active();
7561 	}
7562 
7563 	/*
7564 	 * Put the rq online, if not already. This happens:
7565 	 *
7566 	 * 1) In the early boot process, because we build the real domains
7567 	 *    after all cpus have been brought up.
7568 	 *
7569 	 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7570 	 *    domains.
7571 	 */
7572 	raw_spin_lock_irqsave(&rq->lock, flags);
7573 	if (rq->rd) {
7574 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7575 		set_rq_online(rq);
7576 	}
7577 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7578 
7579 	update_max_interval();
7580 
7581 	return 0;
7582 }
7583 
sched_cpu_deactivate(unsigned int cpu)7584 int sched_cpu_deactivate(unsigned int cpu)
7585 {
7586 	int ret;
7587 
7588 	set_cpu_active(cpu, false);
7589 	/*
7590 	 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7591 	 * users of this state to go away such that all new such users will
7592 	 * observe it.
7593 	 *
7594 	 * For CONFIG_PREEMPT we have preemptible RCU and its sync_rcu() might
7595 	 * not imply sync_sched(), so wait for both.
7596 	 *
7597 	 * Do sync before park smpboot threads to take care the rcu boost case.
7598 	 */
7599 	if (IS_ENABLED(CONFIG_PREEMPT))
7600 		synchronize_rcu_mult(call_rcu, call_rcu_sched);
7601 	else
7602 		synchronize_rcu();
7603 
7604 	if (!sched_smp_initialized)
7605 		return 0;
7606 
7607 	ret = cpuset_cpu_inactive(cpu);
7608 	if (ret) {
7609 		set_cpu_active(cpu, true);
7610 		return ret;
7611 	}
7612 	sched_domains_numa_masks_clear(cpu);
7613 	return 0;
7614 }
7615 
sched_rq_cpu_starting(unsigned int cpu)7616 static void sched_rq_cpu_starting(unsigned int cpu)
7617 {
7618 	struct rq *rq = cpu_rq(cpu);
7619 
7620 	rq->calc_load_update = calc_load_update;
7621 	update_max_interval();
7622 }
7623 
sched_cpu_starting(unsigned int cpu)7624 int sched_cpu_starting(unsigned int cpu)
7625 {
7626 	set_cpu_rq_start_time(cpu);
7627 	sched_rq_cpu_starting(cpu);
7628 	return 0;
7629 }
7630 
7631 #ifdef CONFIG_HOTPLUG_CPU
sched_cpu_dying(unsigned int cpu)7632 int sched_cpu_dying(unsigned int cpu)
7633 {
7634 	struct rq *rq = cpu_rq(cpu);
7635 	unsigned long flags;
7636 
7637 	/* Handle pending wakeups and then migrate everything off */
7638 	sched_ttwu_pending();
7639 	raw_spin_lock_irqsave(&rq->lock, flags);
7640 
7641 	walt_migrate_sync_cpu(cpu);
7642 
7643 	if (rq->rd) {
7644 		BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7645 		set_rq_offline(rq);
7646 	}
7647 	migrate_tasks(rq);
7648 	BUG_ON(rq->nr_running != 1);
7649 	raw_spin_unlock_irqrestore(&rq->lock, flags);
7650 	calc_load_migrate(rq);
7651 	update_max_interval();
7652 	nohz_balance_exit_idle(cpu);
7653 	hrtick_clear(rq);
7654 	return 0;
7655 }
7656 #endif
7657 
sched_init_smp(void)7658 void __init sched_init_smp(void)
7659 {
7660 	cpumask_var_t non_isolated_cpus;
7661 
7662 	alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7663 	alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7664 
7665 	sched_init_numa();
7666 
7667 	/*
7668 	 * There's no userspace yet to cause hotplug operations; hence all the
7669 	 * cpu masks are stable and all blatant races in the below code cannot
7670 	 * happen.
7671 	 */
7672 	mutex_lock(&sched_domains_mutex);
7673 	init_sched_domains(cpu_active_mask);
7674 	cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7675 	if (cpumask_empty(non_isolated_cpus))
7676 		cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7677 	mutex_unlock(&sched_domains_mutex);
7678 
7679 	/* Move init over to a non-isolated CPU */
7680 	if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7681 		BUG();
7682 	sched_init_granularity();
7683 	free_cpumask_var(non_isolated_cpus);
7684 
7685 	init_sched_rt_class();
7686 	init_sched_dl_class();
7687 	sched_smp_initialized = true;
7688 }
7689 
migration_init(void)7690 static int __init migration_init(void)
7691 {
7692 	sched_rq_cpu_starting(smp_processor_id());
7693 	return 0;
7694 }
7695 early_initcall(migration_init);
7696 
7697 #else
sched_init_smp(void)7698 void __init sched_init_smp(void)
7699 {
7700 	sched_init_granularity();
7701 }
7702 #endif /* CONFIG_SMP */
7703 
in_sched_functions(unsigned long addr)7704 int in_sched_functions(unsigned long addr)
7705 {
7706 	return in_lock_functions(addr) ||
7707 		(addr >= (unsigned long)__sched_text_start
7708 		&& addr < (unsigned long)__sched_text_end);
7709 }
7710 
7711 #ifdef CONFIG_CGROUP_SCHED
7712 /*
7713  * Default task group.
7714  * Every task in system belongs to this group at bootup.
7715  */
7716 struct task_group root_task_group;
7717 LIST_HEAD(task_groups);
7718 
7719 /* Cacheline aligned slab cache for task_group */
7720 static struct kmem_cache *task_group_cache __read_mostly;
7721 #endif
7722 
7723 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7724 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7725 
7726 #define WAIT_TABLE_BITS 8
7727 #define WAIT_TABLE_SIZE (1 << WAIT_TABLE_BITS)
7728 static wait_queue_head_t bit_wait_table[WAIT_TABLE_SIZE] __cacheline_aligned;
7729 
bit_waitqueue(void * word,int bit)7730 wait_queue_head_t *bit_waitqueue(void *word, int bit)
7731 {
7732 	const int shift = BITS_PER_LONG == 32 ? 5 : 6;
7733 	unsigned long val = (unsigned long)word << shift | bit;
7734 
7735 	return bit_wait_table + hash_long(val, WAIT_TABLE_BITS);
7736 }
7737 EXPORT_SYMBOL(bit_waitqueue);
7738 
sched_init(void)7739 void __init sched_init(void)
7740 {
7741 	int i, j;
7742 	unsigned long alloc_size = 0, ptr;
7743 
7744 	for (i = 0; i < WAIT_TABLE_SIZE; i++)
7745 		init_waitqueue_head(bit_wait_table + i);
7746 
7747 #ifdef CONFIG_FAIR_GROUP_SCHED
7748 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7749 #endif
7750 #ifdef CONFIG_RT_GROUP_SCHED
7751 	alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7752 #endif
7753 	if (alloc_size) {
7754 		ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7755 
7756 #ifdef CONFIG_FAIR_GROUP_SCHED
7757 		root_task_group.se = (struct sched_entity **)ptr;
7758 		ptr += nr_cpu_ids * sizeof(void **);
7759 
7760 		root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7761 		ptr += nr_cpu_ids * sizeof(void **);
7762 
7763 #endif /* CONFIG_FAIR_GROUP_SCHED */
7764 #ifdef CONFIG_RT_GROUP_SCHED
7765 		root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7766 		ptr += nr_cpu_ids * sizeof(void **);
7767 
7768 		root_task_group.rt_rq = (struct rt_rq **)ptr;
7769 		ptr += nr_cpu_ids * sizeof(void **);
7770 
7771 #endif /* CONFIG_RT_GROUP_SCHED */
7772 	}
7773 #ifdef CONFIG_CPUMASK_OFFSTACK
7774 	for_each_possible_cpu(i) {
7775 		per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7776 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7777 		per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7778 			cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7779 	}
7780 #endif /* CONFIG_CPUMASK_OFFSTACK */
7781 
7782 	init_rt_bandwidth(&def_rt_bandwidth,
7783 			global_rt_period(), global_rt_runtime());
7784 	init_dl_bandwidth(&def_dl_bandwidth,
7785 			global_rt_period(), global_rt_runtime());
7786 
7787 #ifdef CONFIG_SMP
7788 	init_defrootdomain();
7789 #endif
7790 
7791 #ifdef CONFIG_RT_GROUP_SCHED
7792 	init_rt_bandwidth(&root_task_group.rt_bandwidth,
7793 			global_rt_period(), global_rt_runtime());
7794 #endif /* CONFIG_RT_GROUP_SCHED */
7795 
7796 #ifdef CONFIG_CGROUP_SCHED
7797 	task_group_cache = KMEM_CACHE(task_group, 0);
7798 
7799 	list_add(&root_task_group.list, &task_groups);
7800 	INIT_LIST_HEAD(&root_task_group.children);
7801 	INIT_LIST_HEAD(&root_task_group.siblings);
7802 	autogroup_init(&init_task);
7803 #endif /* CONFIG_CGROUP_SCHED */
7804 
7805 	for_each_possible_cpu(i) {
7806 		struct rq *rq;
7807 
7808 		rq = cpu_rq(i);
7809 		raw_spin_lock_init(&rq->lock);
7810 		rq->nr_running = 0;
7811 		rq->calc_load_active = 0;
7812 		rq->calc_load_update = jiffies + LOAD_FREQ;
7813 		init_cfs_rq(&rq->cfs);
7814 		init_rt_rq(&rq->rt);
7815 		init_dl_rq(&rq->dl);
7816 #ifdef CONFIG_FAIR_GROUP_SCHED
7817 		root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7818 		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7819 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7820 		/*
7821 		 * How much cpu bandwidth does root_task_group get?
7822 		 *
7823 		 * In case of task-groups formed thr' the cgroup filesystem, it
7824 		 * gets 100% of the cpu resources in the system. This overall
7825 		 * system cpu resource is divided among the tasks of
7826 		 * root_task_group and its child task-groups in a fair manner,
7827 		 * based on each entity's (task or task-group's) weight
7828 		 * (se->load.weight).
7829 		 *
7830 		 * In other words, if root_task_group has 10 tasks of weight
7831 		 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7832 		 * then A0's share of the cpu resource is:
7833 		 *
7834 		 *	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7835 		 *
7836 		 * We achieve this by letting root_task_group's tasks sit
7837 		 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7838 		 */
7839 		init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7840 		init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7841 #endif /* CONFIG_FAIR_GROUP_SCHED */
7842 
7843 		rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7844 #ifdef CONFIG_RT_GROUP_SCHED
7845 		init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7846 #endif
7847 
7848 		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7849 			rq->cpu_load[j] = 0;
7850 
7851 #ifdef CONFIG_SMP
7852 		rq->sd = NULL;
7853 		rq->rd = NULL;
7854 		rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7855 		rq->balance_callback = NULL;
7856 		rq->active_balance = 0;
7857 		rq->next_balance = jiffies;
7858 		rq->push_cpu = 0;
7859 		rq->push_task = NULL;
7860 		rq->cpu = i;
7861 		rq->online = 0;
7862 		rq->idle_stamp = 0;
7863 		rq->avg_idle = 2*sysctl_sched_migration_cost;
7864 		rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7865 #ifdef CONFIG_SCHED_WALT
7866 		rq->cur_irqload = 0;
7867 		rq->avg_irqload = 0;
7868 		rq->irqload_ts = 0;
7869 #endif
7870 
7871 		INIT_LIST_HEAD(&rq->cfs_tasks);
7872 
7873 		rq_attach_root(rq, &def_root_domain);
7874 #ifdef CONFIG_NO_HZ_COMMON
7875 		rq->last_load_update_tick = jiffies;
7876 		rq->nohz_flags = 0;
7877 #endif
7878 #ifdef CONFIG_NO_HZ_FULL
7879 		rq->last_sched_tick = 0;
7880 #endif
7881 #endif /* CONFIG_SMP */
7882 		init_rq_hrtick(rq);
7883 		atomic_set(&rq->nr_iowait, 0);
7884 	}
7885 
7886 	set_load_weight(&init_task);
7887 
7888 	/*
7889 	 * The boot idle thread does lazy MMU switching as well:
7890 	 */
7891 	atomic_inc(&init_mm.mm_count);
7892 	enter_lazy_tlb(&init_mm, current);
7893 
7894 	/*
7895 	 * Make us the idle thread. Technically, schedule() should not be
7896 	 * called from this thread, however somewhere below it might be,
7897 	 * but because we are the idle thread, we just pick up running again
7898 	 * when this runqueue becomes "idle".
7899 	 */
7900 	init_idle(current, smp_processor_id());
7901 
7902 	calc_load_update = jiffies + LOAD_FREQ;
7903 
7904 #ifdef CONFIG_SMP
7905 	zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7906 	/* May be allocated at isolcpus cmdline parse time */
7907 	if (cpu_isolated_map == NULL)
7908 		zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7909 	idle_thread_set_boot_cpu();
7910 	set_cpu_rq_start_time(smp_processor_id());
7911 #endif
7912 	init_sched_fair_class();
7913 
7914 	init_schedstats();
7915 
7916 	scheduler_running = 1;
7917 }
7918 
7919 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)7920 static inline int preempt_count_equals(int preempt_offset)
7921 {
7922 	int nested = preempt_count() + rcu_preempt_depth();
7923 
7924 	return (nested == preempt_offset);
7925 }
7926 
7927 static int __might_sleep_init_called;
__might_sleep_init(void)7928 int __init __might_sleep_init(void)
7929 {
7930 	__might_sleep_init_called = 1;
7931 	return 0;
7932 }
7933 early_initcall(__might_sleep_init);
7934 
__might_sleep(const char * file,int line,int preempt_offset)7935 void __might_sleep(const char *file, int line, int preempt_offset)
7936 {
7937 	/*
7938 	 * Blocking primitives will set (and therefore destroy) current->state,
7939 	 * since we will exit with TASK_RUNNING make sure we enter with it,
7940 	 * otherwise we will destroy state.
7941 	 */
7942 	WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7943 			"do not call blocking ops when !TASK_RUNNING; "
7944 			"state=%lx set at [<%p>] %pS\n",
7945 			current->state,
7946 			(void *)current->task_state_change,
7947 			(void *)current->task_state_change);
7948 
7949 	___might_sleep(file, line, preempt_offset);
7950 }
7951 EXPORT_SYMBOL(__might_sleep);
7952 
___might_sleep(const char * file,int line,int preempt_offset)7953 void ___might_sleep(const char *file, int line, int preempt_offset)
7954 {
7955 	static unsigned long prev_jiffy;	/* ratelimiting */
7956 	unsigned long preempt_disable_ip;
7957 
7958 	rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7959 	if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7960 	     !is_idle_task(current)) || oops_in_progress)
7961 		return;
7962 	if (system_state != SYSTEM_RUNNING &&
7963 	    (!__might_sleep_init_called || system_state != SYSTEM_BOOTING))
7964 		return;
7965 	if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7966 		return;
7967 	prev_jiffy = jiffies;
7968 
7969 	/* Save this before calling printk(), since that will clobber it */
7970 	preempt_disable_ip = get_preempt_disable_ip(current);
7971 
7972 	printk(KERN_ERR
7973 		"BUG: sleeping function called from invalid context at %s:%d\n",
7974 			file, line);
7975 	printk(KERN_ERR
7976 		"in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7977 			in_atomic(), irqs_disabled(),
7978 			current->pid, current->comm);
7979 
7980 	if (task_stack_end_corrupted(current))
7981 		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7982 
7983 	debug_show_held_locks(current);
7984 	if (irqs_disabled())
7985 		print_irqtrace_events(current);
7986 	if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7987 	    && !preempt_count_equals(preempt_offset)) {
7988 		pr_err("Preemption disabled at:");
7989 		print_ip_sym(preempt_disable_ip);
7990 		pr_cont("\n");
7991 	}
7992 	dump_stack();
7993 	add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7994 }
7995 EXPORT_SYMBOL(___might_sleep);
7996 #endif
7997 
7998 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)7999 void normalize_rt_tasks(void)
8000 {
8001 	struct task_struct *g, *p;
8002 	struct sched_attr attr = {
8003 		.sched_policy = SCHED_NORMAL,
8004 	};
8005 
8006 	read_lock(&tasklist_lock);
8007 	for_each_process_thread(g, p) {
8008 		/*
8009 		 * Only normalize user tasks:
8010 		 */
8011 		if (p->flags & PF_KTHREAD)
8012 			continue;
8013 
8014 		p->se.exec_start = 0;
8015 		schedstat_set(p->se.statistics.wait_start,  0);
8016 		schedstat_set(p->se.statistics.sleep_start, 0);
8017 		schedstat_set(p->se.statistics.block_start, 0);
8018 
8019 		if (!dl_task(p) && !rt_task(p)) {
8020 			/*
8021 			 * Renice negative nice level userspace
8022 			 * tasks back to 0:
8023 			 */
8024 			if (task_nice(p) < 0)
8025 				set_user_nice(p, 0);
8026 			continue;
8027 		}
8028 
8029 		__sched_setscheduler(p, &attr, false, false);
8030 	}
8031 	read_unlock(&tasklist_lock);
8032 }
8033 
8034 #endif /* CONFIG_MAGIC_SYSRQ */
8035 
8036 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8037 /*
8038  * These functions are only useful for the IA64 MCA handling, or kdb.
8039  *
8040  * They can only be called when the whole system has been
8041  * stopped - every CPU needs to be quiescent, and no scheduling
8042  * activity can take place. Using them for anything else would
8043  * be a serious bug, and as a result, they aren't even visible
8044  * under any other configuration.
8045  */
8046 
8047 /**
8048  * curr_task - return the current task for a given cpu.
8049  * @cpu: the processor in question.
8050  *
8051  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8052  *
8053  * Return: The current task for @cpu.
8054  */
curr_task(int cpu)8055 struct task_struct *curr_task(int cpu)
8056 {
8057 	return cpu_curr(cpu);
8058 }
8059 
8060 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8061 
8062 #ifdef CONFIG_IA64
8063 /**
8064  * set_curr_task - set the current task for a given cpu.
8065  * @cpu: the processor in question.
8066  * @p: the task pointer to set.
8067  *
8068  * Description: This function must only be used when non-maskable interrupts
8069  * are serviced on a separate stack. It allows the architecture to switch the
8070  * notion of the current task on a cpu in a non-blocking manner. This function
8071  * must be called with all CPU's synchronized, and interrupts disabled, the
8072  * and caller must save the original value of the current task (see
8073  * curr_task() above) and restore that value before reenabling interrupts and
8074  * re-starting the system.
8075  *
8076  * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8077  */
ia64_set_curr_task(int cpu,struct task_struct * p)8078 void ia64_set_curr_task(int cpu, struct task_struct *p)
8079 {
8080 	cpu_curr(cpu) = p;
8081 }
8082 
8083 #endif
8084 
8085 #ifdef CONFIG_CGROUP_SCHED
8086 /* task_group_lock serializes the addition/removal of task groups */
8087 static DEFINE_SPINLOCK(task_group_lock);
8088 
sched_free_group(struct task_group * tg)8089 static void sched_free_group(struct task_group *tg)
8090 {
8091 	free_fair_sched_group(tg);
8092 	free_rt_sched_group(tg);
8093 	autogroup_free(tg);
8094 	kmem_cache_free(task_group_cache, tg);
8095 }
8096 
8097 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)8098 struct task_group *sched_create_group(struct task_group *parent)
8099 {
8100 	struct task_group *tg;
8101 
8102 	tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8103 	if (!tg)
8104 		return ERR_PTR(-ENOMEM);
8105 
8106 	if (!alloc_fair_sched_group(tg, parent))
8107 		goto err;
8108 
8109 	if (!alloc_rt_sched_group(tg, parent))
8110 		goto err;
8111 
8112 	return tg;
8113 
8114 err:
8115 	sched_free_group(tg);
8116 	return ERR_PTR(-ENOMEM);
8117 }
8118 
sched_online_group(struct task_group * tg,struct task_group * parent)8119 void sched_online_group(struct task_group *tg, struct task_group *parent)
8120 {
8121 	unsigned long flags;
8122 
8123 	spin_lock_irqsave(&task_group_lock, flags);
8124 	list_add_rcu(&tg->list, &task_groups);
8125 
8126 	WARN_ON(!parent); /* root should already exist */
8127 
8128 	tg->parent = parent;
8129 	INIT_LIST_HEAD(&tg->children);
8130 	list_add_rcu(&tg->siblings, &parent->children);
8131 	spin_unlock_irqrestore(&task_group_lock, flags);
8132 
8133 	online_fair_sched_group(tg);
8134 }
8135 
8136 /* rcu callback to free various structures associated with a task group */
sched_free_group_rcu(struct rcu_head * rhp)8137 static void sched_free_group_rcu(struct rcu_head *rhp)
8138 {
8139 	/* now it should be safe to free those cfs_rqs */
8140 	sched_free_group(container_of(rhp, struct task_group, rcu));
8141 }
8142 
sched_destroy_group(struct task_group * tg)8143 void sched_destroy_group(struct task_group *tg)
8144 {
8145 	/* wait for possible concurrent references to cfs_rqs complete */
8146 	call_rcu(&tg->rcu, sched_free_group_rcu);
8147 }
8148 
sched_offline_group(struct task_group * tg)8149 void sched_offline_group(struct task_group *tg)
8150 {
8151 	unsigned long flags;
8152 
8153 	/* end participation in shares distribution */
8154 	unregister_fair_sched_group(tg);
8155 
8156 	spin_lock_irqsave(&task_group_lock, flags);
8157 	list_del_rcu(&tg->list);
8158 	list_del_rcu(&tg->siblings);
8159 	spin_unlock_irqrestore(&task_group_lock, flags);
8160 }
8161 
sched_change_group(struct task_struct * tsk,int type)8162 static void sched_change_group(struct task_struct *tsk, int type)
8163 {
8164 	struct task_group *tg;
8165 
8166 	/*
8167 	 * All callers are synchronized by task_rq_lock(); we do not use RCU
8168 	 * which is pointless here. Thus, we pass "true" to task_css_check()
8169 	 * to prevent lockdep warnings.
8170 	 */
8171 	tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8172 			  struct task_group, css);
8173 	tg = autogroup_task_group(tsk, tg);
8174 	tsk->sched_task_group = tg;
8175 
8176 #ifdef CONFIG_FAIR_GROUP_SCHED
8177 	if (tsk->sched_class->task_change_group)
8178 		tsk->sched_class->task_change_group(tsk, type);
8179 	else
8180 #endif
8181 		set_task_rq(tsk, task_cpu(tsk));
8182 }
8183 
8184 /*
8185  * Change task's runqueue when it moves between groups.
8186  *
8187  * The caller of this function should have put the task in its new group by
8188  * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8189  * its new group.
8190  */
sched_move_task(struct task_struct * tsk)8191 void sched_move_task(struct task_struct *tsk)
8192 {
8193 	int queued, running;
8194 	struct rq_flags rf;
8195 	struct rq *rq;
8196 
8197 	rq = task_rq_lock(tsk, &rf);
8198 	update_rq_clock(rq);
8199 
8200 	running = task_current(rq, tsk);
8201 	queued = task_on_rq_queued(tsk);
8202 
8203 	if (queued)
8204 		dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
8205 	if (unlikely(running))
8206 		put_prev_task(rq, tsk);
8207 
8208 	sched_change_group(tsk, TASK_MOVE_GROUP);
8209 
8210 	if (queued)
8211 		enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
8212 	if (unlikely(running))
8213 		set_curr_task(rq, tsk);
8214 
8215 	task_rq_unlock(rq, tsk, &rf);
8216 }
8217 #endif /* CONFIG_CGROUP_SCHED */
8218 
8219 #ifdef CONFIG_RT_GROUP_SCHED
8220 /*
8221  * Ensure that the real time constraints are schedulable.
8222  */
8223 static DEFINE_MUTEX(rt_constraints_mutex);
8224 
8225 /* Must be called with tasklist_lock held */
tg_has_rt_tasks(struct task_group * tg)8226 static inline int tg_has_rt_tasks(struct task_group *tg)
8227 {
8228 	struct task_struct *g, *p;
8229 
8230 	/*
8231 	 * Autogroups do not have RT tasks; see autogroup_create().
8232 	 */
8233 	if (task_group_is_autogroup(tg))
8234 		return 0;
8235 
8236 	for_each_process_thread(g, p) {
8237 		if (rt_task(p) && task_group(p) == tg)
8238 			return 1;
8239 	}
8240 
8241 	return 0;
8242 }
8243 
8244 struct rt_schedulable_data {
8245 	struct task_group *tg;
8246 	u64 rt_period;
8247 	u64 rt_runtime;
8248 };
8249 
tg_rt_schedulable(struct task_group * tg,void * data)8250 static int tg_rt_schedulable(struct task_group *tg, void *data)
8251 {
8252 	struct rt_schedulable_data *d = data;
8253 	struct task_group *child;
8254 	unsigned long total, sum = 0;
8255 	u64 period, runtime;
8256 
8257 	period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8258 	runtime = tg->rt_bandwidth.rt_runtime;
8259 
8260 	if (tg == d->tg) {
8261 		period = d->rt_period;
8262 		runtime = d->rt_runtime;
8263 	}
8264 
8265 	/*
8266 	 * Cannot have more runtime than the period.
8267 	 */
8268 	if (runtime > period && runtime != RUNTIME_INF)
8269 		return -EINVAL;
8270 
8271 	/*
8272 	 * Ensure we don't starve existing RT tasks.
8273 	 */
8274 	if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8275 		return -EBUSY;
8276 
8277 	total = to_ratio(period, runtime);
8278 
8279 	/*
8280 	 * Nobody can have more than the global setting allows.
8281 	 */
8282 	if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8283 		return -EINVAL;
8284 
8285 	/*
8286 	 * The sum of our children's runtime should not exceed our own.
8287 	 */
8288 	list_for_each_entry_rcu(child, &tg->children, siblings) {
8289 		period = ktime_to_ns(child->rt_bandwidth.rt_period);
8290 		runtime = child->rt_bandwidth.rt_runtime;
8291 
8292 		if (child == d->tg) {
8293 			period = d->rt_period;
8294 			runtime = d->rt_runtime;
8295 		}
8296 
8297 		sum += to_ratio(period, runtime);
8298 	}
8299 
8300 	if (sum > total)
8301 		return -EINVAL;
8302 
8303 	return 0;
8304 }
8305 
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)8306 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8307 {
8308 	int ret;
8309 
8310 	struct rt_schedulable_data data = {
8311 		.tg = tg,
8312 		.rt_period = period,
8313 		.rt_runtime = runtime,
8314 	};
8315 
8316 	rcu_read_lock();
8317 	ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8318 	rcu_read_unlock();
8319 
8320 	return ret;
8321 }
8322 
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)8323 static int tg_set_rt_bandwidth(struct task_group *tg,
8324 		u64 rt_period, u64 rt_runtime)
8325 {
8326 	int i, err = 0;
8327 
8328 	/*
8329 	 * Disallowing the root group RT runtime is BAD, it would disallow the
8330 	 * kernel creating (and or operating) RT threads.
8331 	 */
8332 	if (tg == &root_task_group && rt_runtime == 0)
8333 		return -EINVAL;
8334 
8335 	/* No period doesn't make any sense. */
8336 	if (rt_period == 0)
8337 		return -EINVAL;
8338 
8339 	mutex_lock(&rt_constraints_mutex);
8340 	read_lock(&tasklist_lock);
8341 	err = __rt_schedulable(tg, rt_period, rt_runtime);
8342 	if (err)
8343 		goto unlock;
8344 
8345 	raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8346 	tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8347 	tg->rt_bandwidth.rt_runtime = rt_runtime;
8348 
8349 	for_each_possible_cpu(i) {
8350 		struct rt_rq *rt_rq = tg->rt_rq[i];
8351 
8352 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8353 		rt_rq->rt_runtime = rt_runtime;
8354 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8355 	}
8356 	raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8357 unlock:
8358 	read_unlock(&tasklist_lock);
8359 	mutex_unlock(&rt_constraints_mutex);
8360 
8361 	return err;
8362 }
8363 
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)8364 static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8365 {
8366 	u64 rt_runtime, rt_period;
8367 
8368 	rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8369 	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8370 	if (rt_runtime_us < 0)
8371 		rt_runtime = RUNTIME_INF;
8372 
8373 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8374 }
8375 
sched_group_rt_runtime(struct task_group * tg)8376 static long sched_group_rt_runtime(struct task_group *tg)
8377 {
8378 	u64 rt_runtime_us;
8379 
8380 	if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8381 		return -1;
8382 
8383 	rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8384 	do_div(rt_runtime_us, NSEC_PER_USEC);
8385 	return rt_runtime_us;
8386 }
8387 
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)8388 static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
8389 {
8390 	u64 rt_runtime, rt_period;
8391 
8392 	rt_period = rt_period_us * NSEC_PER_USEC;
8393 	rt_runtime = tg->rt_bandwidth.rt_runtime;
8394 
8395 	return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8396 }
8397 
sched_group_rt_period(struct task_group * tg)8398 static long sched_group_rt_period(struct task_group *tg)
8399 {
8400 	u64 rt_period_us;
8401 
8402 	rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8403 	do_div(rt_period_us, NSEC_PER_USEC);
8404 	return rt_period_us;
8405 }
8406 #endif /* CONFIG_RT_GROUP_SCHED */
8407 
8408 #ifdef CONFIG_RT_GROUP_SCHED
sched_rt_global_constraints(void)8409 static int sched_rt_global_constraints(void)
8410 {
8411 	int ret = 0;
8412 
8413 	mutex_lock(&rt_constraints_mutex);
8414 	read_lock(&tasklist_lock);
8415 	ret = __rt_schedulable(NULL, 0, 0);
8416 	read_unlock(&tasklist_lock);
8417 	mutex_unlock(&rt_constraints_mutex);
8418 
8419 	return ret;
8420 }
8421 
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)8422 static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8423 {
8424 	/* Don't accept realtime tasks when there is no way for them to run */
8425 	if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8426 		return 0;
8427 
8428 	return 1;
8429 }
8430 
8431 #else /* !CONFIG_RT_GROUP_SCHED */
sched_rt_global_constraints(void)8432 static int sched_rt_global_constraints(void)
8433 {
8434 	unsigned long flags;
8435 	int i;
8436 
8437 	raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8438 	for_each_possible_cpu(i) {
8439 		struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8440 
8441 		raw_spin_lock(&rt_rq->rt_runtime_lock);
8442 		rt_rq->rt_runtime = global_rt_runtime();
8443 		raw_spin_unlock(&rt_rq->rt_runtime_lock);
8444 	}
8445 	raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8446 
8447 	return 0;
8448 }
8449 #endif /* CONFIG_RT_GROUP_SCHED */
8450 
sched_dl_global_validate(void)8451 static int sched_dl_global_validate(void)
8452 {
8453 	u64 runtime = global_rt_runtime();
8454 	u64 period = global_rt_period();
8455 	u64 new_bw = to_ratio(period, runtime);
8456 	struct dl_bw *dl_b;
8457 	int cpu, ret = 0;
8458 	unsigned long flags;
8459 
8460 	/*
8461 	 * Here we want to check the bandwidth not being set to some
8462 	 * value smaller than the currently allocated bandwidth in
8463 	 * any of the root_domains.
8464 	 *
8465 	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
8466 	 * cycling on root_domains... Discussion on different/better
8467 	 * solutions is welcome!
8468 	 */
8469 	for_each_possible_cpu(cpu) {
8470 		rcu_read_lock_sched();
8471 		dl_b = dl_bw_of(cpu);
8472 
8473 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8474 		if (new_bw < dl_b->total_bw)
8475 			ret = -EBUSY;
8476 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8477 
8478 		rcu_read_unlock_sched();
8479 
8480 		if (ret)
8481 			break;
8482 	}
8483 
8484 	return ret;
8485 }
8486 
sched_dl_do_global(void)8487 static void sched_dl_do_global(void)
8488 {
8489 	u64 new_bw = -1;
8490 	struct dl_bw *dl_b;
8491 	int cpu;
8492 	unsigned long flags;
8493 
8494 	def_dl_bandwidth.dl_period = global_rt_period();
8495 	def_dl_bandwidth.dl_runtime = global_rt_runtime();
8496 
8497 	if (global_rt_runtime() != RUNTIME_INF)
8498 		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
8499 
8500 	/*
8501 	 * FIXME: As above...
8502 	 */
8503 	for_each_possible_cpu(cpu) {
8504 		rcu_read_lock_sched();
8505 		dl_b = dl_bw_of(cpu);
8506 
8507 		raw_spin_lock_irqsave(&dl_b->lock, flags);
8508 		dl_b->bw = new_bw;
8509 		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
8510 
8511 		rcu_read_unlock_sched();
8512 	}
8513 }
8514 
sched_rt_global_validate(void)8515 static int sched_rt_global_validate(void)
8516 {
8517 	if (sysctl_sched_rt_period <= 0)
8518 		return -EINVAL;
8519 
8520 	if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
8521 		(sysctl_sched_rt_runtime > sysctl_sched_rt_period))
8522 		return -EINVAL;
8523 
8524 	return 0;
8525 }
8526 
sched_rt_do_global(void)8527 static void sched_rt_do_global(void)
8528 {
8529 	def_rt_bandwidth.rt_runtime = global_rt_runtime();
8530 	def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
8531 }
8532 
sched_rt_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)8533 int sched_rt_handler(struct ctl_table *table, int write,
8534 		void __user *buffer, size_t *lenp,
8535 		loff_t *ppos)
8536 {
8537 	int old_period, old_runtime;
8538 	static DEFINE_MUTEX(mutex);
8539 	int ret;
8540 
8541 	mutex_lock(&mutex);
8542 	old_period = sysctl_sched_rt_period;
8543 	old_runtime = sysctl_sched_rt_runtime;
8544 
8545 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8546 
8547 	if (!ret && write) {
8548 		ret = sched_rt_global_validate();
8549 		if (ret)
8550 			goto undo;
8551 
8552 		ret = sched_dl_global_validate();
8553 		if (ret)
8554 			goto undo;
8555 
8556 		ret = sched_rt_global_constraints();
8557 		if (ret)
8558 			goto undo;
8559 
8560 		sched_rt_do_global();
8561 		sched_dl_do_global();
8562 	}
8563 	if (0) {
8564 undo:
8565 		sysctl_sched_rt_period = old_period;
8566 		sysctl_sched_rt_runtime = old_runtime;
8567 	}
8568 	mutex_unlock(&mutex);
8569 
8570 	return ret;
8571 }
8572 
sched_rr_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)8573 int sched_rr_handler(struct ctl_table *table, int write,
8574 		void __user *buffer, size_t *lenp,
8575 		loff_t *ppos)
8576 {
8577 	int ret;
8578 	static DEFINE_MUTEX(mutex);
8579 
8580 	mutex_lock(&mutex);
8581 	ret = proc_dointvec(table, write, buffer, lenp, ppos);
8582 	/* make sure that internally we keep jiffies */
8583 	/* also, writing zero resets timeslice to default */
8584 	if (!ret && write) {
8585 		sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8586 			RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
8587 	}
8588 	mutex_unlock(&mutex);
8589 	return ret;
8590 }
8591 
8592 #ifdef CONFIG_CGROUP_SCHED
8593 
css_tg(struct cgroup_subsys_state * css)8594 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8595 {
8596 	return css ? container_of(css, struct task_group, css) : NULL;
8597 }
8598 
8599 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)8600 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8601 {
8602 	struct task_group *parent = css_tg(parent_css);
8603 	struct task_group *tg;
8604 
8605 	if (!parent) {
8606 		/* This is early initialization for the top cgroup */
8607 		return &root_task_group.css;
8608 	}
8609 
8610 	tg = sched_create_group(parent);
8611 	if (IS_ERR(tg))
8612 		return ERR_PTR(-ENOMEM);
8613 
8614 	return &tg->css;
8615 }
8616 
8617 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)8618 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8619 {
8620 	struct task_group *tg = css_tg(css);
8621 	struct task_group *parent = css_tg(css->parent);
8622 
8623 	if (parent)
8624 		sched_online_group(tg, parent);
8625 	return 0;
8626 }
8627 
cpu_cgroup_css_released(struct cgroup_subsys_state * css)8628 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8629 {
8630 	struct task_group *tg = css_tg(css);
8631 
8632 	sched_offline_group(tg);
8633 }
8634 
cpu_cgroup_css_free(struct cgroup_subsys_state * css)8635 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8636 {
8637 	struct task_group *tg = css_tg(css);
8638 
8639 	/*
8640 	 * Relies on the RCU grace period between css_released() and this.
8641 	 */
8642 	sched_free_group(tg);
8643 }
8644 
8645 /*
8646  * This is called before wake_up_new_task(), therefore we really only
8647  * have to set its group bits, all the other stuff does not apply.
8648  */
cpu_cgroup_fork(struct task_struct * task)8649 static void cpu_cgroup_fork(struct task_struct *task)
8650 {
8651 	struct rq_flags rf;
8652 	struct rq *rq;
8653 
8654 	rq = task_rq_lock(task, &rf);
8655 
8656 	update_rq_clock(rq);
8657 	sched_change_group(task, TASK_SET_GROUP);
8658 
8659 	task_rq_unlock(rq, task, &rf);
8660 }
8661 
cpu_cgroup_can_attach(struct cgroup_taskset * tset)8662 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8663 {
8664 	struct task_struct *task;
8665 	struct cgroup_subsys_state *css;
8666 	int ret = 0;
8667 
8668 	cgroup_taskset_for_each(task, css, tset) {
8669 #ifdef CONFIG_RT_GROUP_SCHED
8670 		if (!sched_rt_can_attach(css_tg(css), task))
8671 			return -EINVAL;
8672 #else
8673 		/* We don't support RT-tasks being in separate groups */
8674 		if (task->sched_class != &fair_sched_class)
8675 			return -EINVAL;
8676 #endif
8677 		/*
8678 		 * Serialize against wake_up_new_task() such that if its
8679 		 * running, we're sure to observe its full state.
8680 		 */
8681 		raw_spin_lock_irq(&task->pi_lock);
8682 		/*
8683 		 * Avoid calling sched_move_task() before wake_up_new_task()
8684 		 * has happened. This would lead to problems with PELT, due to
8685 		 * move wanting to detach+attach while we're not attached yet.
8686 		 */
8687 		if (task->state == TASK_NEW)
8688 			ret = -EINVAL;
8689 		raw_spin_unlock_irq(&task->pi_lock);
8690 
8691 		if (ret)
8692 			break;
8693 	}
8694 	return ret;
8695 }
8696 
cpu_cgroup_attach(struct cgroup_taskset * tset)8697 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8698 {
8699 	struct task_struct *task;
8700 	struct cgroup_subsys_state *css;
8701 
8702 	cgroup_taskset_for_each(task, css, tset)
8703 		sched_move_task(task);
8704 }
8705 
8706 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)8707 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8708 				struct cftype *cftype, u64 shareval)
8709 {
8710 	return sched_group_set_shares(css_tg(css), scale_load(shareval));
8711 }
8712 
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8713 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8714 			       struct cftype *cft)
8715 {
8716 	struct task_group *tg = css_tg(css);
8717 
8718 	return (u64) scale_load_down(tg->shares);
8719 }
8720 
8721 #ifdef CONFIG_CFS_BANDWIDTH
8722 static DEFINE_MUTEX(cfs_constraints_mutex);
8723 
8724 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8725 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8726 
8727 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8728 
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)8729 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8730 {
8731 	int i, ret = 0, runtime_enabled, runtime_was_enabled;
8732 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8733 
8734 	if (tg == &root_task_group)
8735 		return -EINVAL;
8736 
8737 	/*
8738 	 * Ensure we have at some amount of bandwidth every period.  This is
8739 	 * to prevent reaching a state of large arrears when throttled via
8740 	 * entity_tick() resulting in prolonged exit starvation.
8741 	 */
8742 	if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8743 		return -EINVAL;
8744 
8745 	/*
8746 	 * Likewise, bound things on the otherside by preventing insane quota
8747 	 * periods.  This also allows us to normalize in computing quota
8748 	 * feasibility.
8749 	 */
8750 	if (period > max_cfs_quota_period)
8751 		return -EINVAL;
8752 
8753 	/*
8754 	 * Prevent race between setting of cfs_rq->runtime_enabled and
8755 	 * unthrottle_offline_cfs_rqs().
8756 	 */
8757 	get_online_cpus();
8758 	mutex_lock(&cfs_constraints_mutex);
8759 	ret = __cfs_schedulable(tg, period, quota);
8760 	if (ret)
8761 		goto out_unlock;
8762 
8763 	runtime_enabled = quota != RUNTIME_INF;
8764 	runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8765 	/*
8766 	 * If we need to toggle cfs_bandwidth_used, off->on must occur
8767 	 * before making related changes, and on->off must occur afterwards
8768 	 */
8769 	if (runtime_enabled && !runtime_was_enabled)
8770 		cfs_bandwidth_usage_inc();
8771 	raw_spin_lock_irq(&cfs_b->lock);
8772 	cfs_b->period = ns_to_ktime(period);
8773 	cfs_b->quota = quota;
8774 
8775 	__refill_cfs_bandwidth_runtime(cfs_b);
8776 	/* restart the period timer (if active) to handle new period expiry */
8777 	if (runtime_enabled)
8778 		start_cfs_bandwidth(cfs_b);
8779 	raw_spin_unlock_irq(&cfs_b->lock);
8780 
8781 	for_each_online_cpu(i) {
8782 		struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8783 		struct rq *rq = cfs_rq->rq;
8784 
8785 		raw_spin_lock_irq(&rq->lock);
8786 		cfs_rq->runtime_enabled = runtime_enabled;
8787 		cfs_rq->runtime_remaining = 0;
8788 
8789 		if (cfs_rq->throttled)
8790 			unthrottle_cfs_rq(cfs_rq);
8791 		raw_spin_unlock_irq(&rq->lock);
8792 	}
8793 	if (runtime_was_enabled && !runtime_enabled)
8794 		cfs_bandwidth_usage_dec();
8795 out_unlock:
8796 	mutex_unlock(&cfs_constraints_mutex);
8797 	put_online_cpus();
8798 
8799 	return ret;
8800 }
8801 
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)8802 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8803 {
8804 	u64 quota, period;
8805 
8806 	period = ktime_to_ns(tg->cfs_bandwidth.period);
8807 	if (cfs_quota_us < 0)
8808 		quota = RUNTIME_INF;
8809 	else
8810 		quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8811 
8812 	return tg_set_cfs_bandwidth(tg, period, quota);
8813 }
8814 
tg_get_cfs_quota(struct task_group * tg)8815 long tg_get_cfs_quota(struct task_group *tg)
8816 {
8817 	u64 quota_us;
8818 
8819 	if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8820 		return -1;
8821 
8822 	quota_us = tg->cfs_bandwidth.quota;
8823 	do_div(quota_us, NSEC_PER_USEC);
8824 
8825 	return quota_us;
8826 }
8827 
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)8828 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8829 {
8830 	u64 quota, period;
8831 
8832 	period = (u64)cfs_period_us * NSEC_PER_USEC;
8833 	quota = tg->cfs_bandwidth.quota;
8834 
8835 	return tg_set_cfs_bandwidth(tg, period, quota);
8836 }
8837 
tg_get_cfs_period(struct task_group * tg)8838 long tg_get_cfs_period(struct task_group *tg)
8839 {
8840 	u64 cfs_period_us;
8841 
8842 	cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8843 	do_div(cfs_period_us, NSEC_PER_USEC);
8844 
8845 	return cfs_period_us;
8846 }
8847 
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8848 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8849 				  struct cftype *cft)
8850 {
8851 	return tg_get_cfs_quota(css_tg(css));
8852 }
8853 
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)8854 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8855 				   struct cftype *cftype, s64 cfs_quota_us)
8856 {
8857 	return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8858 }
8859 
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8860 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8861 				   struct cftype *cft)
8862 {
8863 	return tg_get_cfs_period(css_tg(css));
8864 }
8865 
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)8866 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8867 				    struct cftype *cftype, u64 cfs_period_us)
8868 {
8869 	return tg_set_cfs_period(css_tg(css), cfs_period_us);
8870 }
8871 
8872 struct cfs_schedulable_data {
8873 	struct task_group *tg;
8874 	u64 period, quota;
8875 };
8876 
8877 /*
8878  * normalize group quota/period to be quota/max_period
8879  * note: units are usecs
8880  */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)8881 static u64 normalize_cfs_quota(struct task_group *tg,
8882 			       struct cfs_schedulable_data *d)
8883 {
8884 	u64 quota, period;
8885 
8886 	if (tg == d->tg) {
8887 		period = d->period;
8888 		quota = d->quota;
8889 	} else {
8890 		period = tg_get_cfs_period(tg);
8891 		quota = tg_get_cfs_quota(tg);
8892 	}
8893 
8894 	/* note: these should typically be equivalent */
8895 	if (quota == RUNTIME_INF || quota == -1)
8896 		return RUNTIME_INF;
8897 
8898 	return to_ratio(period, quota);
8899 }
8900 
tg_cfs_schedulable_down(struct task_group * tg,void * data)8901 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8902 {
8903 	struct cfs_schedulable_data *d = data;
8904 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8905 	s64 quota = 0, parent_quota = -1;
8906 
8907 	if (!tg->parent) {
8908 		quota = RUNTIME_INF;
8909 	} else {
8910 		struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8911 
8912 		quota = normalize_cfs_quota(tg, d);
8913 		parent_quota = parent_b->hierarchical_quota;
8914 
8915 		/*
8916 		 * ensure max(child_quota) <= parent_quota, inherit when no
8917 		 * limit is set
8918 		 */
8919 		if (quota == RUNTIME_INF)
8920 			quota = parent_quota;
8921 		else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8922 			return -EINVAL;
8923 	}
8924 	cfs_b->hierarchical_quota = quota;
8925 
8926 	return 0;
8927 }
8928 
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)8929 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8930 {
8931 	int ret;
8932 	struct cfs_schedulable_data data = {
8933 		.tg = tg,
8934 		.period = period,
8935 		.quota = quota,
8936 	};
8937 
8938 	if (quota != RUNTIME_INF) {
8939 		do_div(data.period, NSEC_PER_USEC);
8940 		do_div(data.quota, NSEC_PER_USEC);
8941 	}
8942 
8943 	rcu_read_lock();
8944 	ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8945 	rcu_read_unlock();
8946 
8947 	return ret;
8948 }
8949 
cpu_stats_show(struct seq_file * sf,void * v)8950 static int cpu_stats_show(struct seq_file *sf, void *v)
8951 {
8952 	struct task_group *tg = css_tg(seq_css(sf));
8953 	struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8954 
8955 	seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8956 	seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8957 	seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8958 
8959 	return 0;
8960 }
8961 #endif /* CONFIG_CFS_BANDWIDTH */
8962 #endif /* CONFIG_FAIR_GROUP_SCHED */
8963 
8964 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)8965 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8966 				struct cftype *cft, s64 val)
8967 {
8968 	return sched_group_set_rt_runtime(css_tg(css), val);
8969 }
8970 
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)8971 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8972 			       struct cftype *cft)
8973 {
8974 	return sched_group_rt_runtime(css_tg(css));
8975 }
8976 
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)8977 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8978 				    struct cftype *cftype, u64 rt_period_us)
8979 {
8980 	return sched_group_set_rt_period(css_tg(css), rt_period_us);
8981 }
8982 
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)8983 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8984 				   struct cftype *cft)
8985 {
8986 	return sched_group_rt_period(css_tg(css));
8987 }
8988 #endif /* CONFIG_RT_GROUP_SCHED */
8989 
8990 static struct cftype cpu_files[] = {
8991 #ifdef CONFIG_FAIR_GROUP_SCHED
8992 	{
8993 		.name = "shares",
8994 		.read_u64 = cpu_shares_read_u64,
8995 		.write_u64 = cpu_shares_write_u64,
8996 	},
8997 #endif
8998 #ifdef CONFIG_CFS_BANDWIDTH
8999 	{
9000 		.name = "cfs_quota_us",
9001 		.read_s64 = cpu_cfs_quota_read_s64,
9002 		.write_s64 = cpu_cfs_quota_write_s64,
9003 	},
9004 	{
9005 		.name = "cfs_period_us",
9006 		.read_u64 = cpu_cfs_period_read_u64,
9007 		.write_u64 = cpu_cfs_period_write_u64,
9008 	},
9009 	{
9010 		.name = "stat",
9011 		.seq_show = cpu_stats_show,
9012 	},
9013 #endif
9014 #ifdef CONFIG_RT_GROUP_SCHED
9015 	{
9016 		.name = "rt_runtime_us",
9017 		.read_s64 = cpu_rt_runtime_read,
9018 		.write_s64 = cpu_rt_runtime_write,
9019 	},
9020 	{
9021 		.name = "rt_period_us",
9022 		.read_u64 = cpu_rt_period_read_uint,
9023 		.write_u64 = cpu_rt_period_write_uint,
9024 	},
9025 #endif
9026 	{ }	/* terminate */
9027 };
9028 
9029 struct cgroup_subsys cpu_cgrp_subsys = {
9030 	.css_alloc	= cpu_cgroup_css_alloc,
9031 	.css_online	= cpu_cgroup_css_online,
9032 	.css_released	= cpu_cgroup_css_released,
9033 	.css_free	= cpu_cgroup_css_free,
9034 	.fork		= cpu_cgroup_fork,
9035 	.can_attach	= cpu_cgroup_can_attach,
9036 	.attach		= cpu_cgroup_attach,
9037 	.legacy_cftypes	= cpu_files,
9038 	.early_init	= true,
9039 };
9040 
9041 #endif	/* CONFIG_CGROUP_SCHED */
9042 
dump_cpu_task(int cpu)9043 void dump_cpu_task(int cpu)
9044 {
9045 	pr_info("Task dump for CPU %d:\n", cpu);
9046 	sched_show_task(cpu_curr(cpu));
9047 }
9048 
9049 /*
9050  * Nice levels are multiplicative, with a gentle 10% change for every
9051  * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9052  * nice 1, it will get ~10% less CPU time than another CPU-bound task
9053  * that remained on nice 0.
9054  *
9055  * The "10% effect" is relative and cumulative: from _any_ nice level,
9056  * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9057  * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9058  * If a task goes up by ~10% and another task goes down by ~10% then
9059  * the relative distance between them is ~25%.)
9060  */
9061 const int sched_prio_to_weight[40] = {
9062  /* -20 */     88761,     71755,     56483,     46273,     36291,
9063  /* -15 */     29154,     23254,     18705,     14949,     11916,
9064  /* -10 */      9548,      7620,      6100,      4904,      3906,
9065  /*  -5 */      3121,      2501,      1991,      1586,      1277,
9066  /*   0 */      1024,       820,       655,       526,       423,
9067  /*   5 */       335,       272,       215,       172,       137,
9068  /*  10 */       110,        87,        70,        56,        45,
9069  /*  15 */        36,        29,        23,        18,        15,
9070 };
9071 
9072 /*
9073  * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9074  *
9075  * In cases where the weight does not change often, we can use the
9076  * precalculated inverse to speed up arithmetics by turning divisions
9077  * into multiplications:
9078  */
9079 const u32 sched_prio_to_wmult[40] = {
9080  /* -20 */     48388,     59856,     76040,     92818,    118348,
9081  /* -15 */    147320,    184698,    229616,    287308,    360437,
9082  /* -10 */    449829,    563644,    704093,    875809,   1099582,
9083  /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
9084  /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
9085  /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
9086  /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
9087  /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9088 };
9089