• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/init.h>
12 #include <linux/kprobes.h>
13 #include <linux/kgdb.h>
14 #include <linux/smp.h>
15 #include <linux/io.h>
16 #include <linux/syscore_ops.h>
17 
18 #include <asm/stackprotector.h>
19 #include <asm/perf_event.h>
20 #include <asm/mmu_context.h>
21 #include <asm/archrandom.h>
22 #include <asm/hypervisor.h>
23 #include <asm/processor.h>
24 #include <asm/tlbflush.h>
25 #include <asm/debugreg.h>
26 #include <asm/sections.h>
27 #include <asm/vsyscall.h>
28 #include <linux/topology.h>
29 #include <linux/cpumask.h>
30 #include <asm/pgtable.h>
31 #include <linux/atomic.h>
32 #include <asm/proto.h>
33 #include <asm/setup.h>
34 #include <asm/apic.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/mtrr.h>
38 #include <linux/numa.h>
39 #include <asm/asm.h>
40 #include <asm/bugs.h>
41 #include <asm/cpu.h>
42 #include <asm/mce.h>
43 #include <asm/msr.h>
44 #include <asm/pat.h>
45 #include <asm/microcode.h>
46 #include <asm/microcode_intel.h>
47 #include <asm/intel-family.h>
48 #include <asm/cpu_device_id.h>
49 
50 #ifdef CONFIG_X86_LOCAL_APIC
51 #include <asm/uv/uv.h>
52 #endif
53 
54 #include "cpu.h"
55 
56 /* all of these masks are initialized in setup_cpu_local_masks() */
57 cpumask_var_t cpu_initialized_mask;
58 cpumask_var_t cpu_callout_mask;
59 cpumask_var_t cpu_callin_mask;
60 
61 /* representing cpus for which sibling maps can be computed */
62 cpumask_var_t cpu_sibling_setup_mask;
63 
64 /* correctly size the local cpu masks */
setup_cpu_local_masks(void)65 void __init setup_cpu_local_masks(void)
66 {
67 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
68 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
69 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
70 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
71 }
72 
default_init(struct cpuinfo_x86 * c)73 static void default_init(struct cpuinfo_x86 *c)
74 {
75 #ifdef CONFIG_X86_64
76 	cpu_detect_cache_sizes(c);
77 #else
78 	/* Not much we can do here... */
79 	/* Check if at least it has cpuid */
80 	if (c->cpuid_level == -1) {
81 		/* No cpuid. It must be an ancient CPU */
82 		if (c->x86 == 4)
83 			strcpy(c->x86_model_id, "486");
84 		else if (c->x86 == 3)
85 			strcpy(c->x86_model_id, "386");
86 	}
87 #endif
88 }
89 
90 static const struct cpu_dev default_cpu = {
91 	.c_init		= default_init,
92 	.c_vendor	= "Unknown",
93 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
94 };
95 
96 static const struct cpu_dev *this_cpu = &default_cpu;
97 
98 DEFINE_PER_CPU_PAGE_ALIGNED_USER_MAPPED(struct gdt_page, gdt_page) = { .gdt = {
99 #ifdef CONFIG_X86_64
100 	/*
101 	 * We need valid kernel segments for data and code in long mode too
102 	 * IRET will check the segment types  kkeil 2000/10/28
103 	 * Also sysret mandates a special GDT layout
104 	 *
105 	 * TLS descriptors are currently at a different place compared to i386.
106 	 * Hopefully nobody expects them at a fixed place (Wine?)
107 	 */
108 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
109 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
110 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
111 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
112 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
113 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
114 #else
115 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
116 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
117 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
118 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
119 	/*
120 	 * Segments used for calling PnP BIOS have byte granularity.
121 	 * They code segments and data segments have fixed 64k limits,
122 	 * the transfer segment sizes are set at run time.
123 	 */
124 	/* 32-bit code */
125 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
126 	/* 16-bit code */
127 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
128 	/* 16-bit data */
129 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
130 	/* 16-bit data */
131 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
132 	/* 16-bit data */
133 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
134 	/*
135 	 * The APM segments have byte granularity and their bases
136 	 * are set at run time.  All have 64k limits.
137 	 */
138 	/* 32-bit code */
139 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
140 	/* 16-bit code */
141 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
142 	/* data */
143 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
144 
145 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
146 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
147 	GDT_STACK_CANARY_INIT
148 #endif
149 } };
150 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
151 
x86_mpx_setup(char * s)152 static int __init x86_mpx_setup(char *s)
153 {
154 	/* require an exact match without trailing characters */
155 	if (strlen(s))
156 		return 0;
157 
158 	/* do not emit a message if the feature is not present */
159 	if (!boot_cpu_has(X86_FEATURE_MPX))
160 		return 1;
161 
162 	setup_clear_cpu_cap(X86_FEATURE_MPX);
163 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
164 	return 1;
165 }
166 __setup("nompx", x86_mpx_setup);
167 
168 #ifdef CONFIG_X86_64
x86_pcid_setup(char * s)169 static int __init x86_pcid_setup(char *s)
170 {
171 	/* require an exact match without trailing characters */
172 	if (strlen(s))
173 		return 0;
174 
175 	/* do not emit a message if the feature is not present */
176 	if (!boot_cpu_has(X86_FEATURE_PCID))
177 		return 1;
178 
179 	setup_clear_cpu_cap(X86_FEATURE_PCID);
180 	pr_info("nopcid: PCID feature disabled\n");
181 	return 1;
182 }
183 __setup("nopcid", x86_pcid_setup);
184 #endif
185 
x86_noinvpcid_setup(char * s)186 static int __init x86_noinvpcid_setup(char *s)
187 {
188 	/* noinvpcid doesn't accept parameters */
189 	if (s)
190 		return -EINVAL;
191 
192 	/* do not emit a message if the feature is not present */
193 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
194 		return 0;
195 
196 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
197 	pr_info("noinvpcid: INVPCID feature disabled\n");
198 	return 0;
199 }
200 early_param("noinvpcid", x86_noinvpcid_setup);
201 
202 #ifdef CONFIG_X86_32
203 static int cachesize_override = -1;
204 static int disable_x86_serial_nr = 1;
205 
cachesize_setup(char * str)206 static int __init cachesize_setup(char *str)
207 {
208 	get_option(&str, &cachesize_override);
209 	return 1;
210 }
211 __setup("cachesize=", cachesize_setup);
212 
x86_sep_setup(char * s)213 static int __init x86_sep_setup(char *s)
214 {
215 	setup_clear_cpu_cap(X86_FEATURE_SEP);
216 	return 1;
217 }
218 __setup("nosep", x86_sep_setup);
219 
220 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)221 static inline int flag_is_changeable_p(u32 flag)
222 {
223 	u32 f1, f2;
224 
225 	/*
226 	 * Cyrix and IDT cpus allow disabling of CPUID
227 	 * so the code below may return different results
228 	 * when it is executed before and after enabling
229 	 * the CPUID. Add "volatile" to not allow gcc to
230 	 * optimize the subsequent calls to this function.
231 	 */
232 	asm volatile ("pushfl		\n\t"
233 		      "pushfl		\n\t"
234 		      "popl %0		\n\t"
235 		      "movl %0, %1	\n\t"
236 		      "xorl %2, %0	\n\t"
237 		      "pushl %0		\n\t"
238 		      "popfl		\n\t"
239 		      "pushfl		\n\t"
240 		      "popl %0		\n\t"
241 		      "popfl		\n\t"
242 
243 		      : "=&r" (f1), "=&r" (f2)
244 		      : "ir" (flag));
245 
246 	return ((f1^f2) & flag) != 0;
247 }
248 
249 /* Probe for the CPUID instruction */
have_cpuid_p(void)250 int have_cpuid_p(void)
251 {
252 	return flag_is_changeable_p(X86_EFLAGS_ID);
253 }
254 
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)255 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
256 {
257 	unsigned long lo, hi;
258 
259 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
260 		return;
261 
262 	/* Disable processor serial number: */
263 
264 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
265 	lo |= 0x200000;
266 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
267 
268 	pr_notice("CPU serial number disabled.\n");
269 	clear_cpu_cap(c, X86_FEATURE_PN);
270 
271 	/* Disabling the serial number may affect the cpuid level */
272 	c->cpuid_level = cpuid_eax(0);
273 }
274 
x86_serial_nr_setup(char * s)275 static int __init x86_serial_nr_setup(char *s)
276 {
277 	disable_x86_serial_nr = 0;
278 	return 1;
279 }
280 __setup("serialnumber", x86_serial_nr_setup);
281 #else
flag_is_changeable_p(u32 flag)282 static inline int flag_is_changeable_p(u32 flag)
283 {
284 	return 1;
285 }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)286 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
287 {
288 }
289 #endif
290 
setup_disable_smep(char * arg)291 static __init int setup_disable_smep(char *arg)
292 {
293 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
294 	/* Check for things that depend on SMEP being enabled: */
295 	check_mpx_erratum(&boot_cpu_data);
296 	return 1;
297 }
298 __setup("nosmep", setup_disable_smep);
299 
setup_smep(struct cpuinfo_x86 * c)300 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
301 {
302 	if (cpu_has(c, X86_FEATURE_SMEP))
303 		cr4_set_bits(X86_CR4_SMEP);
304 }
305 
setup_disable_smap(char * arg)306 static __init int setup_disable_smap(char *arg)
307 {
308 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
309 	return 1;
310 }
311 __setup("nosmap", setup_disable_smap);
312 
setup_smap(struct cpuinfo_x86 * c)313 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
314 {
315 	unsigned long eflags = native_save_fl();
316 
317 	/* This should have been cleared long ago */
318 	BUG_ON(eflags & X86_EFLAGS_AC);
319 
320 	if (cpu_has(c, X86_FEATURE_SMAP)) {
321 #ifdef CONFIG_X86_SMAP
322 		cr4_set_bits(X86_CR4_SMAP);
323 #else
324 		cr4_clear_bits(X86_CR4_SMAP);
325 #endif
326 	}
327 }
328 
setup_pcid(struct cpuinfo_x86 * c)329 static void setup_pcid(struct cpuinfo_x86 *c)
330 {
331 	if (cpu_has(c, X86_FEATURE_PCID)) {
332 		if (cpu_has(c, X86_FEATURE_PGE) || kaiser_enabled) {
333 			cr4_set_bits(X86_CR4_PCIDE);
334 			/*
335 			 * INVPCID has two "groups" of types:
336 			 * 1/2: Invalidate an individual address
337 			 * 3/4: Invalidate all contexts
338 			 *
339 			 * 1/2 take a PCID, but 3/4 do not.  So, 3/4
340 			 * ignore the PCID argument in the descriptor.
341 			 * But, we have to be careful not to call 1/2
342 			 * with an actual non-zero PCID in them before
343 			 * we do the above cr4_set_bits().
344 			 */
345 			if (cpu_has(c, X86_FEATURE_INVPCID))
346 				set_cpu_cap(c, X86_FEATURE_INVPCID_SINGLE);
347 		} else {
348 			/*
349 			 * flush_tlb_all(), as currently implemented, won't
350 			 * work if PCID is on but PGE is not.  Since that
351 			 * combination doesn't exist on real hardware, there's
352 			 * no reason to try to fully support it, but it's
353 			 * polite to avoid corrupting data if we're on
354 			 * an improperly configured VM.
355 			 */
356 			clear_cpu_cap(c, X86_FEATURE_PCID);
357 		}
358 	}
359 	kaiser_setup_pcid();
360 }
361 
362 /*
363  * Protection Keys are not available in 32-bit mode.
364  */
365 static bool pku_disabled;
366 
setup_pku(struct cpuinfo_x86 * c)367 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
368 {
369 	/* check the boot processor, plus compile options for PKU: */
370 	if (!cpu_feature_enabled(X86_FEATURE_PKU))
371 		return;
372 	/* checks the actual processor's cpuid bits: */
373 	if (!cpu_has(c, X86_FEATURE_PKU))
374 		return;
375 	if (pku_disabled)
376 		return;
377 
378 	cr4_set_bits(X86_CR4_PKE);
379 	/*
380 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
381 	 * cpuid bit to be set.  We need to ensure that we
382 	 * update that bit in this CPU's "cpu_info".
383 	 */
384 	get_cpu_cap(c);
385 }
386 
387 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)388 static __init int setup_disable_pku(char *arg)
389 {
390 	/*
391 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
392 	 * runtime checks are against OSPKE so clearing the
393 	 * bit does nothing.
394 	 *
395 	 * This way, we will see "pku" in cpuinfo, but not
396 	 * "ospke", which is exactly what we want.  It shows
397 	 * that the CPU has PKU, but the OS has not enabled it.
398 	 * This happens to be exactly how a system would look
399 	 * if we disabled the config option.
400 	 */
401 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
402 	pku_disabled = true;
403 	return 1;
404 }
405 __setup("nopku", setup_disable_pku);
406 #endif /* CONFIG_X86_64 */
407 
408 /*
409  * Some CPU features depend on higher CPUID levels, which may not always
410  * be available due to CPUID level capping or broken virtualization
411  * software.  Add those features to this table to auto-disable them.
412  */
413 struct cpuid_dependent_feature {
414 	u32 feature;
415 	u32 level;
416 };
417 
418 static const struct cpuid_dependent_feature
419 cpuid_dependent_features[] = {
420 	{ X86_FEATURE_MWAIT,		0x00000005 },
421 	{ X86_FEATURE_DCA,		0x00000009 },
422 	{ X86_FEATURE_XSAVE,		0x0000000d },
423 	{ 0, 0 }
424 };
425 
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)426 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
427 {
428 	const struct cpuid_dependent_feature *df;
429 
430 	for (df = cpuid_dependent_features; df->feature; df++) {
431 
432 		if (!cpu_has(c, df->feature))
433 			continue;
434 		/*
435 		 * Note: cpuid_level is set to -1 if unavailable, but
436 		 * extended_extended_level is set to 0 if unavailable
437 		 * and the legitimate extended levels are all negative
438 		 * when signed; hence the weird messing around with
439 		 * signs here...
440 		 */
441 		if (!((s32)df->level < 0 ?
442 		     (u32)df->level > (u32)c->extended_cpuid_level :
443 		     (s32)df->level > (s32)c->cpuid_level))
444 			continue;
445 
446 		clear_cpu_cap(c, df->feature);
447 		if (!warn)
448 			continue;
449 
450 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
451 			x86_cap_flag(df->feature), df->level);
452 	}
453 }
454 
455 /*
456  * Naming convention should be: <Name> [(<Codename>)]
457  * This table only is used unless init_<vendor>() below doesn't set it;
458  * in particular, if CPUID levels 0x80000002..4 are supported, this
459  * isn't used
460  */
461 
462 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)463 static const char *table_lookup_model(struct cpuinfo_x86 *c)
464 {
465 #ifdef CONFIG_X86_32
466 	const struct legacy_cpu_model_info *info;
467 
468 	if (c->x86_model >= 16)
469 		return NULL;	/* Range check */
470 
471 	if (!this_cpu)
472 		return NULL;
473 
474 	info = this_cpu->legacy_models;
475 
476 	while (info->family) {
477 		if (info->family == c->x86)
478 			return info->model_names[c->x86_model];
479 		info++;
480 	}
481 #endif
482 	return NULL;		/* Not found */
483 }
484 
485 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
486 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
487 
load_percpu_segment(int cpu)488 void load_percpu_segment(int cpu)
489 {
490 #ifdef CONFIG_X86_32
491 	loadsegment(fs, __KERNEL_PERCPU);
492 #else
493 	__loadsegment_simple(gs, 0);
494 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
495 #endif
496 	load_stack_canary_segment();
497 }
498 
499 /*
500  * Current gdt points %fs at the "master" per-cpu area: after this,
501  * it's on the real one.
502  */
switch_to_new_gdt(int cpu)503 void switch_to_new_gdt(int cpu)
504 {
505 	struct desc_ptr gdt_descr;
506 
507 	gdt_descr.address = (long)get_cpu_gdt_table(cpu);
508 	gdt_descr.size = GDT_SIZE - 1;
509 	load_gdt(&gdt_descr);
510 	/* Reload the per-cpu base */
511 
512 	load_percpu_segment(cpu);
513 }
514 
515 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
516 
get_model_name(struct cpuinfo_x86 * c)517 static void get_model_name(struct cpuinfo_x86 *c)
518 {
519 	unsigned int *v;
520 	char *p, *q, *s;
521 
522 	if (c->extended_cpuid_level < 0x80000004)
523 		return;
524 
525 	v = (unsigned int *)c->x86_model_id;
526 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
527 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
528 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
529 	c->x86_model_id[48] = 0;
530 
531 	/* Trim whitespace */
532 	p = q = s = &c->x86_model_id[0];
533 
534 	while (*p == ' ')
535 		p++;
536 
537 	while (*p) {
538 		/* Note the last non-whitespace index */
539 		if (!isspace(*p))
540 			s = q;
541 
542 		*q++ = *p++;
543 	}
544 
545 	*(s + 1) = '\0';
546 }
547 
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)548 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
549 {
550 	unsigned int n, dummy, ebx, ecx, edx, l2size;
551 
552 	n = c->extended_cpuid_level;
553 
554 	if (n >= 0x80000005) {
555 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
556 		c->x86_cache_size = (ecx>>24) + (edx>>24);
557 #ifdef CONFIG_X86_64
558 		/* On K8 L1 TLB is inclusive, so don't count it */
559 		c->x86_tlbsize = 0;
560 #endif
561 	}
562 
563 	if (n < 0x80000006)	/* Some chips just has a large L1. */
564 		return;
565 
566 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
567 	l2size = ecx >> 16;
568 
569 #ifdef CONFIG_X86_64
570 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
571 #else
572 	/* do processor-specific cache resizing */
573 	if (this_cpu->legacy_cache_size)
574 		l2size = this_cpu->legacy_cache_size(c, l2size);
575 
576 	/* Allow user to override all this if necessary. */
577 	if (cachesize_override != -1)
578 		l2size = cachesize_override;
579 
580 	if (l2size == 0)
581 		return;		/* Again, no L2 cache is possible */
582 #endif
583 
584 	c->x86_cache_size = l2size;
585 }
586 
587 u16 __read_mostly tlb_lli_4k[NR_INFO];
588 u16 __read_mostly tlb_lli_2m[NR_INFO];
589 u16 __read_mostly tlb_lli_4m[NR_INFO];
590 u16 __read_mostly tlb_lld_4k[NR_INFO];
591 u16 __read_mostly tlb_lld_2m[NR_INFO];
592 u16 __read_mostly tlb_lld_4m[NR_INFO];
593 u16 __read_mostly tlb_lld_1g[NR_INFO];
594 
cpu_detect_tlb(struct cpuinfo_x86 * c)595 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
596 {
597 	if (this_cpu->c_detect_tlb)
598 		this_cpu->c_detect_tlb(c);
599 
600 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
601 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
602 		tlb_lli_4m[ENTRIES]);
603 
604 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
605 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
606 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
607 }
608 
detect_ht(struct cpuinfo_x86 * c)609 void detect_ht(struct cpuinfo_x86 *c)
610 {
611 #ifdef CONFIG_SMP
612 	u32 eax, ebx, ecx, edx;
613 	int index_msb, core_bits;
614 	static bool printed;
615 
616 	if (!cpu_has(c, X86_FEATURE_HT))
617 		return;
618 
619 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
620 		goto out;
621 
622 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
623 		return;
624 
625 	cpuid(1, &eax, &ebx, &ecx, &edx);
626 
627 	smp_num_siblings = (ebx & 0xff0000) >> 16;
628 
629 	if (smp_num_siblings == 1) {
630 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
631 		goto out;
632 	}
633 
634 	if (smp_num_siblings <= 1)
635 		goto out;
636 
637 	index_msb = get_count_order(smp_num_siblings);
638 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
639 
640 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
641 
642 	index_msb = get_count_order(smp_num_siblings);
643 
644 	core_bits = get_count_order(c->x86_max_cores);
645 
646 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
647 				       ((1 << core_bits) - 1);
648 
649 out:
650 	if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
651 		pr_info("CPU: Physical Processor ID: %d\n",
652 			c->phys_proc_id);
653 		pr_info("CPU: Processor Core ID: %d\n",
654 			c->cpu_core_id);
655 		printed = 1;
656 	}
657 #endif
658 }
659 
get_cpu_vendor(struct cpuinfo_x86 * c)660 static void get_cpu_vendor(struct cpuinfo_x86 *c)
661 {
662 	char *v = c->x86_vendor_id;
663 	int i;
664 
665 	for (i = 0; i < X86_VENDOR_NUM; i++) {
666 		if (!cpu_devs[i])
667 			break;
668 
669 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
670 		    (cpu_devs[i]->c_ident[1] &&
671 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
672 
673 			this_cpu = cpu_devs[i];
674 			c->x86_vendor = this_cpu->c_x86_vendor;
675 			return;
676 		}
677 	}
678 
679 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
680 		    "CPU: Your system may be unstable.\n", v);
681 
682 	c->x86_vendor = X86_VENDOR_UNKNOWN;
683 	this_cpu = &default_cpu;
684 }
685 
cpu_detect(struct cpuinfo_x86 * c)686 void cpu_detect(struct cpuinfo_x86 *c)
687 {
688 	/* Get vendor name */
689 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
690 	      (unsigned int *)&c->x86_vendor_id[0],
691 	      (unsigned int *)&c->x86_vendor_id[8],
692 	      (unsigned int *)&c->x86_vendor_id[4]);
693 
694 	c->x86 = 4;
695 	/* Intel-defined flags: level 0x00000001 */
696 	if (c->cpuid_level >= 0x00000001) {
697 		u32 junk, tfms, cap0, misc;
698 
699 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
700 		c->x86		= x86_family(tfms);
701 		c->x86_model	= x86_model(tfms);
702 		c->x86_stepping	= x86_stepping(tfms);
703 
704 		if (cap0 & (1<<19)) {
705 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
706 			c->x86_cache_alignment = c->x86_clflush_size;
707 		}
708 	}
709 }
710 
apply_forced_caps(struct cpuinfo_x86 * c)711 static void apply_forced_caps(struct cpuinfo_x86 *c)
712 {
713 	int i;
714 
715 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
716 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
717 		c->x86_capability[i] |= cpu_caps_set[i];
718 	}
719 }
720 
init_speculation_control(struct cpuinfo_x86 * c)721 static void init_speculation_control(struct cpuinfo_x86 *c)
722 {
723 	/*
724 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
725 	 * and they also have a different bit for STIBP support. Also,
726 	 * a hypervisor might have set the individual AMD bits even on
727 	 * Intel CPUs, for finer-grained selection of what's available.
728 	 *
729 	 * We use the AMD bits in 0x8000_0008 EBX as the generic hardware
730 	 * features, which are visible in /proc/cpuinfo and used by the
731 	 * kernel. So set those accordingly from the Intel bits.
732 	 */
733 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
734 		set_cpu_cap(c, X86_FEATURE_IBRS);
735 		set_cpu_cap(c, X86_FEATURE_IBPB);
736 	}
737 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
738 		set_cpu_cap(c, X86_FEATURE_STIBP);
739 }
740 
get_cpu_cap(struct cpuinfo_x86 * c)741 void get_cpu_cap(struct cpuinfo_x86 *c)
742 {
743 	u32 eax, ebx, ecx, edx;
744 
745 	/* Intel-defined flags: level 0x00000001 */
746 	if (c->cpuid_level >= 0x00000001) {
747 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
748 
749 		c->x86_capability[CPUID_1_ECX] = ecx;
750 		c->x86_capability[CPUID_1_EDX] = edx;
751 	}
752 
753 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
754 	if (c->cpuid_level >= 0x00000006)
755 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
756 
757 	/* Additional Intel-defined flags: level 0x00000007 */
758 	if (c->cpuid_level >= 0x00000007) {
759 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
760 		c->x86_capability[CPUID_7_0_EBX] = ebx;
761 		c->x86_capability[CPUID_7_ECX] = ecx;
762 		c->x86_capability[CPUID_7_EDX] = edx;
763 	}
764 
765 	/* Extended state features: level 0x0000000d */
766 	if (c->cpuid_level >= 0x0000000d) {
767 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
768 
769 		c->x86_capability[CPUID_D_1_EAX] = eax;
770 	}
771 
772 	/* Additional Intel-defined flags: level 0x0000000F */
773 	if (c->cpuid_level >= 0x0000000F) {
774 
775 		/* QoS sub-leaf, EAX=0Fh, ECX=0 */
776 		cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
777 		c->x86_capability[CPUID_F_0_EDX] = edx;
778 
779 		if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
780 			/* will be overridden if occupancy monitoring exists */
781 			c->x86_cache_max_rmid = ebx;
782 
783 			/* QoS sub-leaf, EAX=0Fh, ECX=1 */
784 			cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
785 			c->x86_capability[CPUID_F_1_EDX] = edx;
786 
787 			if ((cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) ||
788 			      ((cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL)) ||
789 			       (cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)))) {
790 				c->x86_cache_max_rmid = ecx;
791 				c->x86_cache_occ_scale = ebx;
792 			}
793 		} else {
794 			c->x86_cache_max_rmid = -1;
795 			c->x86_cache_occ_scale = -1;
796 		}
797 	}
798 
799 	/* AMD-defined flags: level 0x80000001 */
800 	eax = cpuid_eax(0x80000000);
801 	c->extended_cpuid_level = eax;
802 
803 	if ((eax & 0xffff0000) == 0x80000000) {
804 		if (eax >= 0x80000001) {
805 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
806 
807 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
808 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
809 		}
810 	}
811 
812 	if (c->extended_cpuid_level >= 0x80000007) {
813 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
814 
815 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
816 		c->x86_power = edx;
817 	}
818 
819 	if (c->extended_cpuid_level >= 0x80000008) {
820 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
821 
822 		c->x86_virt_bits = (eax >> 8) & 0xff;
823 		c->x86_phys_bits = eax & 0xff;
824 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
825 	}
826 #ifdef CONFIG_X86_32
827 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
828 		c->x86_phys_bits = 36;
829 #endif
830 
831 	if (c->extended_cpuid_level >= 0x8000000a)
832 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
833 
834 	init_scattered_cpuid_features(c);
835 	init_speculation_control(c);
836 }
837 
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)838 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
839 {
840 #ifdef CONFIG_X86_32
841 	int i;
842 
843 	/*
844 	 * First of all, decide if this is a 486 or higher
845 	 * It's a 486 if we can modify the AC flag
846 	 */
847 	if (flag_is_changeable_p(X86_EFLAGS_AC))
848 		c->x86 = 4;
849 	else
850 		c->x86 = 3;
851 
852 	for (i = 0; i < X86_VENDOR_NUM; i++)
853 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
854 			c->x86_vendor_id[0] = 0;
855 			cpu_devs[i]->c_identify(c);
856 			if (c->x86_vendor_id[0]) {
857 				get_cpu_vendor(c);
858 				break;
859 			}
860 		}
861 #endif
862 }
863 
864 static const __initconst struct x86_cpu_id cpu_no_speculation[] = {
865 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_CEDARVIEW,	X86_FEATURE_ANY },
866 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_CLOVERVIEW,	X86_FEATURE_ANY },
867 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_LINCROFT,	X86_FEATURE_ANY },
868 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_PENWELL,	X86_FEATURE_ANY },
869 	{ X86_VENDOR_INTEL,	6, INTEL_FAM6_ATOM_PINEVIEW,	X86_FEATURE_ANY },
870 	{ X86_VENDOR_CENTAUR,	5 },
871 	{ X86_VENDOR_INTEL,	5 },
872 	{ X86_VENDOR_NSC,	5 },
873 	{ X86_VENDOR_ANY,	4 },
874 	{}
875 };
876 
877 static const __initconst struct x86_cpu_id cpu_no_meltdown[] = {
878 	{ X86_VENDOR_AMD },
879 	{}
880 };
881 
cpu_vulnerable_to_meltdown(struct cpuinfo_x86 * c)882 static bool __init cpu_vulnerable_to_meltdown(struct cpuinfo_x86 *c)
883 {
884 	u64 ia32_cap = 0;
885 
886 	if (x86_match_cpu(cpu_no_meltdown))
887 		return false;
888 
889 	if (cpu_has(c, X86_FEATURE_ARCH_CAPABILITIES))
890 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
891 
892 	/* Rogue Data Cache Load? No! */
893 	if (ia32_cap & ARCH_CAP_RDCL_NO)
894 		return false;
895 
896 	return true;
897 }
898 
899 /*
900  * Do minimum CPU detection early.
901  * Fields really needed: vendor, cpuid_level, family, model, mask,
902  * cache alignment.
903  * The others are not touched to avoid unwanted side effects.
904  *
905  * WARNING: this function is only called on the BP.  Don't add code here
906  * that is supposed to run on all CPUs.
907  */
early_identify_cpu(struct cpuinfo_x86 * c)908 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
909 {
910 #ifdef CONFIG_X86_64
911 	c->x86_clflush_size = 64;
912 	c->x86_phys_bits = 36;
913 	c->x86_virt_bits = 48;
914 #else
915 	c->x86_clflush_size = 32;
916 	c->x86_phys_bits = 32;
917 	c->x86_virt_bits = 32;
918 #endif
919 	c->x86_cache_alignment = c->x86_clflush_size;
920 
921 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
922 	c->extended_cpuid_level = 0;
923 
924 	if (!have_cpuid_p())
925 		identify_cpu_without_cpuid(c);
926 
927 	/* cyrix could have cpuid enabled via c_identify()*/
928 	if (have_cpuid_p()) {
929 		cpu_detect(c);
930 		get_cpu_vendor(c);
931 		get_cpu_cap(c);
932 
933 		if (this_cpu->c_early_init)
934 			this_cpu->c_early_init(c);
935 
936 		c->cpu_index = 0;
937 		filter_cpuid_features(c, false);
938 
939 		if (this_cpu->c_bsp_init)
940 			this_cpu->c_bsp_init(c);
941 	}
942 
943 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
944 
945 	if (!x86_match_cpu(cpu_no_speculation)) {
946 		if (cpu_vulnerable_to_meltdown(c))
947 			setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
948 		setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
949 		setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
950 	}
951 
952 	fpu__init_system(c);
953 
954 #ifdef CONFIG_X86_32
955 	/*
956 	 * Regardless of whether PCID is enumerated, the SDM says
957 	 * that it can't be enabled in 32-bit mode.
958 	 */
959 	setup_clear_cpu_cap(X86_FEATURE_PCID);
960 #endif
961 }
962 
early_cpu_init(void)963 void __init early_cpu_init(void)
964 {
965 	const struct cpu_dev *const *cdev;
966 	int count = 0;
967 
968 #ifdef CONFIG_PROCESSOR_SELECT
969 	pr_info("KERNEL supported cpus:\n");
970 #endif
971 
972 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
973 		const struct cpu_dev *cpudev = *cdev;
974 
975 		if (count >= X86_VENDOR_NUM)
976 			break;
977 		cpu_devs[count] = cpudev;
978 		count++;
979 
980 #ifdef CONFIG_PROCESSOR_SELECT
981 		{
982 			unsigned int j;
983 
984 			for (j = 0; j < 2; j++) {
985 				if (!cpudev->c_ident[j])
986 					continue;
987 				pr_info("  %s %s\n", cpudev->c_vendor,
988 					cpudev->c_ident[j]);
989 			}
990 		}
991 #endif
992 	}
993 	early_identify_cpu(&boot_cpu_data);
994 }
995 
996 /*
997  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
998  * unfortunately, that's not true in practice because of early VIA
999  * chips and (more importantly) broken virtualizers that are not easy
1000  * to detect. In the latter case it doesn't even *fail* reliably, so
1001  * probing for it doesn't even work. Disable it completely on 32-bit
1002  * unless we can find a reliable way to detect all the broken cases.
1003  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1004  */
detect_nopl(struct cpuinfo_x86 * c)1005 static void detect_nopl(struct cpuinfo_x86 *c)
1006 {
1007 #ifdef CONFIG_X86_32
1008 	clear_cpu_cap(c, X86_FEATURE_NOPL);
1009 #else
1010 	set_cpu_cap(c, X86_FEATURE_NOPL);
1011 #endif
1012 }
1013 
detect_null_seg_behavior(struct cpuinfo_x86 * c)1014 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1015 {
1016 #ifdef CONFIG_X86_64
1017 	/*
1018 	 * Empirically, writing zero to a segment selector on AMD does
1019 	 * not clear the base, whereas writing zero to a segment
1020 	 * selector on Intel does clear the base.  Intel's behavior
1021 	 * allows slightly faster context switches in the common case
1022 	 * where GS is unused by the prev and next threads.
1023 	 *
1024 	 * Since neither vendor documents this anywhere that I can see,
1025 	 * detect it directly instead of hardcoding the choice by
1026 	 * vendor.
1027 	 *
1028 	 * I've designated AMD's behavior as the "bug" because it's
1029 	 * counterintuitive and less friendly.
1030 	 */
1031 
1032 	unsigned long old_base, tmp;
1033 	rdmsrl(MSR_FS_BASE, old_base);
1034 	wrmsrl(MSR_FS_BASE, 1);
1035 	loadsegment(fs, 0);
1036 	rdmsrl(MSR_FS_BASE, tmp);
1037 	if (tmp != 0)
1038 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1039 	wrmsrl(MSR_FS_BASE, old_base);
1040 #endif
1041 }
1042 
generic_identify(struct cpuinfo_x86 * c)1043 static void generic_identify(struct cpuinfo_x86 *c)
1044 {
1045 	c->extended_cpuid_level = 0;
1046 
1047 	if (!have_cpuid_p())
1048 		identify_cpu_without_cpuid(c);
1049 
1050 	/* cyrix could have cpuid enabled via c_identify()*/
1051 	if (!have_cpuid_p())
1052 		return;
1053 
1054 	cpu_detect(c);
1055 
1056 	get_cpu_vendor(c);
1057 
1058 	get_cpu_cap(c);
1059 
1060 	if (c->cpuid_level >= 0x00000001) {
1061 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1062 #ifdef CONFIG_X86_32
1063 # ifdef CONFIG_SMP
1064 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1065 # else
1066 		c->apicid = c->initial_apicid;
1067 # endif
1068 #endif
1069 		c->phys_proc_id = c->initial_apicid;
1070 	}
1071 
1072 	get_model_name(c); /* Default name */
1073 
1074 	detect_nopl(c);
1075 
1076 	detect_null_seg_behavior(c);
1077 
1078 	/*
1079 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1080 	 * systems that run Linux at CPL > 0 may or may not have the
1081 	 * issue, but, even if they have the issue, there's absolutely
1082 	 * nothing we can do about it because we can't use the real IRET
1083 	 * instruction.
1084 	 *
1085 	 * NB: For the time being, only 32-bit kernels support
1086 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1087 	 * whether to apply espfix using paravirt hooks.  If any
1088 	 * non-paravirt system ever shows up that does *not* have the
1089 	 * ESPFIX issue, we can change this.
1090 	 */
1091 #ifdef CONFIG_X86_32
1092 # ifdef CONFIG_PARAVIRT
1093 	do {
1094 		extern void native_iret(void);
1095 		if (pv_cpu_ops.iret == native_iret)
1096 			set_cpu_bug(c, X86_BUG_ESPFIX);
1097 	} while (0);
1098 # else
1099 	set_cpu_bug(c, X86_BUG_ESPFIX);
1100 # endif
1101 #endif
1102 }
1103 
x86_init_cache_qos(struct cpuinfo_x86 * c)1104 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1105 {
1106 	/*
1107 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
1108 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1109 	 * in case CQM bits really aren't there in this CPU.
1110 	 */
1111 	if (c != &boot_cpu_data) {
1112 		boot_cpu_data.x86_cache_max_rmid =
1113 			min(boot_cpu_data.x86_cache_max_rmid,
1114 			    c->x86_cache_max_rmid);
1115 	}
1116 }
1117 
1118 /*
1119  * Validate that ACPI/mptables have the same information about the
1120  * effective APIC id and update the package map.
1121  */
validate_apic_and_package_id(struct cpuinfo_x86 * c)1122 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1123 {
1124 #ifdef CONFIG_SMP
1125 	unsigned int apicid, cpu = smp_processor_id();
1126 
1127 	apicid = apic->cpu_present_to_apicid(cpu);
1128 
1129 	if (apicid != c->apicid) {
1130 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1131 		       cpu, apicid, c->initial_apicid);
1132 	}
1133 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1134 #else
1135 	c->logical_proc_id = 0;
1136 #endif
1137 }
1138 
1139 /*
1140  * This does the hard work of actually picking apart the CPU stuff...
1141  */
identify_cpu(struct cpuinfo_x86 * c)1142 static void identify_cpu(struct cpuinfo_x86 *c)
1143 {
1144 	int i;
1145 
1146 	c->loops_per_jiffy = loops_per_jiffy;
1147 	c->x86_cache_size = 0;
1148 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1149 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1150 	c->x86_vendor_id[0] = '\0'; /* Unset */
1151 	c->x86_model_id[0] = '\0';  /* Unset */
1152 	c->x86_max_cores = 1;
1153 	c->x86_coreid_bits = 0;
1154 	c->cu_id = 0xff;
1155 #ifdef CONFIG_X86_64
1156 	c->x86_clflush_size = 64;
1157 	c->x86_phys_bits = 36;
1158 	c->x86_virt_bits = 48;
1159 #else
1160 	c->cpuid_level = -1;	/* CPUID not detected */
1161 	c->x86_clflush_size = 32;
1162 	c->x86_phys_bits = 32;
1163 	c->x86_virt_bits = 32;
1164 #endif
1165 	c->x86_cache_alignment = c->x86_clflush_size;
1166 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1167 
1168 	generic_identify(c);
1169 
1170 	if (this_cpu->c_identify)
1171 		this_cpu->c_identify(c);
1172 
1173 	/* Clear/Set all flags overridden by options, after probe */
1174 	apply_forced_caps(c);
1175 
1176 #ifdef CONFIG_X86_64
1177 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1178 #endif
1179 
1180 	/*
1181 	 * Vendor-specific initialization.  In this section we
1182 	 * canonicalize the feature flags, meaning if there are
1183 	 * features a certain CPU supports which CPUID doesn't
1184 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1185 	 * we handle them here.
1186 	 *
1187 	 * At the end of this section, c->x86_capability better
1188 	 * indicate the features this CPU genuinely supports!
1189 	 */
1190 	if (this_cpu->c_init)
1191 		this_cpu->c_init(c);
1192 
1193 	/* Disable the PN if appropriate */
1194 	squash_the_stupid_serial_number(c);
1195 
1196 	/* Set up SMEP/SMAP */
1197 	setup_smep(c);
1198 	setup_smap(c);
1199 
1200 	/* Set up PCID */
1201 	setup_pcid(c);
1202 
1203 	/*
1204 	 * The vendor-specific functions might have changed features.
1205 	 * Now we do "generic changes."
1206 	 */
1207 
1208 	/* Filter out anything that depends on CPUID levels we don't have */
1209 	filter_cpuid_features(c, true);
1210 
1211 	/* If the model name is still unset, do table lookup. */
1212 	if (!c->x86_model_id[0]) {
1213 		const char *p;
1214 		p = table_lookup_model(c);
1215 		if (p)
1216 			strcpy(c->x86_model_id, p);
1217 		else
1218 			/* Last resort... */
1219 			sprintf(c->x86_model_id, "%02x/%02x",
1220 				c->x86, c->x86_model);
1221 	}
1222 
1223 #ifdef CONFIG_X86_64
1224 	detect_ht(c);
1225 #endif
1226 
1227 	init_hypervisor(c);
1228 	x86_init_rdrand(c);
1229 	x86_init_cache_qos(c);
1230 	setup_pku(c);
1231 
1232 	/*
1233 	 * Clear/Set all flags overridden by options, need do it
1234 	 * before following smp all cpus cap AND.
1235 	 */
1236 	apply_forced_caps(c);
1237 
1238 	/*
1239 	 * On SMP, boot_cpu_data holds the common feature set between
1240 	 * all CPUs; so make sure that we indicate which features are
1241 	 * common between the CPUs.  The first time this routine gets
1242 	 * executed, c == &boot_cpu_data.
1243 	 */
1244 	if (c != &boot_cpu_data) {
1245 		/* AND the already accumulated flags with these */
1246 		for (i = 0; i < NCAPINTS; i++)
1247 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1248 
1249 		/* OR, i.e. replicate the bug flags */
1250 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1251 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1252 	}
1253 
1254 	/* Init Machine Check Exception if available. */
1255 	mcheck_cpu_init(c);
1256 
1257 	select_idle_routine(c);
1258 
1259 #ifdef CONFIG_NUMA
1260 	numa_add_cpu(smp_processor_id());
1261 #endif
1262 }
1263 
1264 /*
1265  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1266  * on 32-bit kernels:
1267  */
1268 #ifdef CONFIG_X86_32
enable_sep_cpu(void)1269 void enable_sep_cpu(void)
1270 {
1271 	struct tss_struct *tss;
1272 	int cpu;
1273 
1274 	if (!boot_cpu_has(X86_FEATURE_SEP))
1275 		return;
1276 
1277 	cpu = get_cpu();
1278 	tss = &per_cpu(cpu_tss, cpu);
1279 
1280 	/*
1281 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1282 	 * see the big comment in struct x86_hw_tss's definition.
1283 	 */
1284 
1285 	tss->x86_tss.ss1 = __KERNEL_CS;
1286 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1287 
1288 	wrmsr(MSR_IA32_SYSENTER_ESP,
1289 	      (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1290 	      0);
1291 
1292 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1293 
1294 	put_cpu();
1295 }
1296 #endif
1297 
identify_boot_cpu(void)1298 void __init identify_boot_cpu(void)
1299 {
1300 	identify_cpu(&boot_cpu_data);
1301 	init_amd_e400_c1e_mask();
1302 #ifdef CONFIG_X86_32
1303 	sysenter_setup();
1304 	enable_sep_cpu();
1305 #endif
1306 	cpu_detect_tlb(&boot_cpu_data);
1307 }
1308 
identify_secondary_cpu(struct cpuinfo_x86 * c)1309 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1310 {
1311 	BUG_ON(c == &boot_cpu_data);
1312 	identify_cpu(c);
1313 #ifdef CONFIG_X86_32
1314 	enable_sep_cpu();
1315 #endif
1316 	mtrr_ap_init();
1317 	validate_apic_and_package_id(c);
1318 }
1319 
1320 struct msr_range {
1321 	unsigned	min;
1322 	unsigned	max;
1323 };
1324 
1325 static const struct msr_range msr_range_array[] = {
1326 	{ 0x00000000, 0x00000418},
1327 	{ 0xc0000000, 0xc000040b},
1328 	{ 0xc0010000, 0xc0010142},
1329 	{ 0xc0011000, 0xc001103b},
1330 };
1331 
__print_cpu_msr(void)1332 static void __print_cpu_msr(void)
1333 {
1334 	unsigned index_min, index_max;
1335 	unsigned index;
1336 	u64 val;
1337 	int i;
1338 
1339 	for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1340 		index_min = msr_range_array[i].min;
1341 		index_max = msr_range_array[i].max;
1342 
1343 		for (index = index_min; index < index_max; index++) {
1344 			if (rdmsrl_safe(index, &val))
1345 				continue;
1346 			pr_info(" MSR%08x: %016llx\n", index, val);
1347 		}
1348 	}
1349 }
1350 
1351 static int show_msr;
1352 
setup_show_msr(char * arg)1353 static __init int setup_show_msr(char *arg)
1354 {
1355 	int num;
1356 
1357 	get_option(&arg, &num);
1358 
1359 	if (num > 0)
1360 		show_msr = num;
1361 	return 1;
1362 }
1363 __setup("show_msr=", setup_show_msr);
1364 
setup_noclflush(char * arg)1365 static __init int setup_noclflush(char *arg)
1366 {
1367 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1368 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1369 	return 1;
1370 }
1371 __setup("noclflush", setup_noclflush);
1372 
print_cpu_info(struct cpuinfo_x86 * c)1373 void print_cpu_info(struct cpuinfo_x86 *c)
1374 {
1375 	const char *vendor = NULL;
1376 
1377 	if (c->x86_vendor < X86_VENDOR_NUM) {
1378 		vendor = this_cpu->c_vendor;
1379 	} else {
1380 		if (c->cpuid_level >= 0)
1381 			vendor = c->x86_vendor_id;
1382 	}
1383 
1384 	if (vendor && !strstr(c->x86_model_id, vendor))
1385 		pr_cont("%s ", vendor);
1386 
1387 	if (c->x86_model_id[0])
1388 		pr_cont("%s", c->x86_model_id);
1389 	else
1390 		pr_cont("%d86", c->x86);
1391 
1392 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1393 
1394 	if (c->x86_stepping || c->cpuid_level >= 0)
1395 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1396 	else
1397 		pr_cont(")\n");
1398 
1399 	print_cpu_msr(c);
1400 }
1401 
print_cpu_msr(struct cpuinfo_x86 * c)1402 void print_cpu_msr(struct cpuinfo_x86 *c)
1403 {
1404 	if (c->cpu_index < show_msr)
1405 		__print_cpu_msr();
1406 }
1407 
setup_disablecpuid(char * arg)1408 static __init int setup_disablecpuid(char *arg)
1409 {
1410 	int bit;
1411 
1412 	if (get_option(&arg, &bit) && bit >= 0 && bit < NCAPINTS * 32)
1413 		setup_clear_cpu_cap(bit);
1414 	else
1415 		return 0;
1416 
1417 	return 1;
1418 }
1419 __setup("clearcpuid=", setup_disablecpuid);
1420 
1421 #ifdef CONFIG_X86_64
1422 struct desc_ptr idt_descr __ro_after_init = {
1423 	.size = NR_VECTORS * 16 - 1,
1424 	.address = (unsigned long) idt_table,
1425 };
1426 const struct desc_ptr debug_idt_descr = {
1427 	.size = NR_VECTORS * 16 - 1,
1428 	.address = (unsigned long) debug_idt_table,
1429 };
1430 
1431 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1432 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1433 
1434 /*
1435  * The following percpu variables are hot.  Align current_task to
1436  * cacheline size such that they fall in the same cacheline.
1437  */
1438 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1439 	&init_task;
1440 EXPORT_PER_CPU_SYMBOL(current_task);
1441 
1442 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1443 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1444 
1445 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1446 
1447 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1448 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1449 
1450 /*
1451  * Special IST stacks which the CPU switches to when it calls
1452  * an IST-marked descriptor entry. Up to 7 stacks (hardware
1453  * limit), all of them are 4K, except the debug stack which
1454  * is 8K.
1455  */
1456 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1457 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
1458 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
1459 };
1460 
1461 DEFINE_PER_CPU_PAGE_ALIGNED_USER_MAPPED(char, exception_stacks
1462 	[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1463 
1464 /* May not be marked __init: used by software suspend */
syscall_init(void)1465 void syscall_init(void)
1466 {
1467 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1468 	wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1469 
1470 #ifdef CONFIG_IA32_EMULATION
1471 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1472 	/*
1473 	 * This only works on Intel CPUs.
1474 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1475 	 * This does not cause SYSENTER to jump to the wrong location, because
1476 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1477 	 */
1478 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1479 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1480 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1481 #else
1482 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1483 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1484 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1485 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1486 #endif
1487 
1488 	/* Flags to clear on syscall */
1489 	wrmsrl(MSR_SYSCALL_MASK,
1490 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1491 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1492 }
1493 
1494 /*
1495  * Copies of the original ist values from the tss are only accessed during
1496  * debugging, no special alignment required.
1497  */
1498 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1499 
1500 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1501 DEFINE_PER_CPU(int, debug_stack_usage);
1502 
is_debug_stack(unsigned long addr)1503 int is_debug_stack(unsigned long addr)
1504 {
1505 	return __this_cpu_read(debug_stack_usage) ||
1506 		(addr <= __this_cpu_read(debug_stack_addr) &&
1507 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1508 }
1509 NOKPROBE_SYMBOL(is_debug_stack);
1510 
1511 DEFINE_PER_CPU(u32, debug_idt_ctr);
1512 
debug_stack_set_zero(void)1513 void debug_stack_set_zero(void)
1514 {
1515 	this_cpu_inc(debug_idt_ctr);
1516 	load_current_idt();
1517 }
1518 NOKPROBE_SYMBOL(debug_stack_set_zero);
1519 
debug_stack_reset(void)1520 void debug_stack_reset(void)
1521 {
1522 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1523 		return;
1524 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1525 		load_current_idt();
1526 }
1527 NOKPROBE_SYMBOL(debug_stack_reset);
1528 
1529 #else	/* CONFIG_X86_64 */
1530 
1531 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1532 EXPORT_PER_CPU_SYMBOL(current_task);
1533 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1534 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1535 
1536 /*
1537  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1538  * the top of the kernel stack.  Use an extra percpu variable to track the
1539  * top of the kernel stack directly.
1540  */
1541 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1542 	(unsigned long)&init_thread_union + THREAD_SIZE;
1543 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1544 
1545 #ifdef CONFIG_CC_STACKPROTECTOR
1546 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1547 #endif
1548 
1549 #endif	/* CONFIG_X86_64 */
1550 
1551 /*
1552  * Clear all 6 debug registers:
1553  */
clear_all_debug_regs(void)1554 static void clear_all_debug_regs(void)
1555 {
1556 	int i;
1557 
1558 	for (i = 0; i < 8; i++) {
1559 		/* Ignore db4, db5 */
1560 		if ((i == 4) || (i == 5))
1561 			continue;
1562 
1563 		set_debugreg(0, i);
1564 	}
1565 }
1566 
1567 #ifdef CONFIG_KGDB
1568 /*
1569  * Restore debug regs if using kgdbwait and you have a kernel debugger
1570  * connection established.
1571  */
dbg_restore_debug_regs(void)1572 static void dbg_restore_debug_regs(void)
1573 {
1574 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1575 		arch_kgdb_ops.correct_hw_break();
1576 }
1577 #else /* ! CONFIG_KGDB */
1578 #define dbg_restore_debug_regs()
1579 #endif /* ! CONFIG_KGDB */
1580 
wait_for_master_cpu(int cpu)1581 static void wait_for_master_cpu(int cpu)
1582 {
1583 #ifdef CONFIG_SMP
1584 	/*
1585 	 * wait for ACK from master CPU before continuing
1586 	 * with AP initialization
1587 	 */
1588 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1589 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1590 		cpu_relax();
1591 #endif
1592 }
1593 
1594 /*
1595  * cpu_init() initializes state that is per-CPU. Some data is already
1596  * initialized (naturally) in the bootstrap process, such as the GDT
1597  * and IDT. We reload them nevertheless, this function acts as a
1598  * 'CPU state barrier', nothing should get across.
1599  * A lot of state is already set up in PDA init for 64 bit
1600  */
1601 #ifdef CONFIG_X86_64
1602 
cpu_init(void)1603 void cpu_init(void)
1604 {
1605 	struct orig_ist *oist;
1606 	struct task_struct *me;
1607 	struct tss_struct *t;
1608 	unsigned long v;
1609 	int cpu = raw_smp_processor_id();
1610 	int i;
1611 
1612 	wait_for_master_cpu(cpu);
1613 
1614 	/*
1615 	 * Initialize the CR4 shadow before doing anything that could
1616 	 * try to read it.
1617 	 */
1618 	cr4_init_shadow();
1619 	if (!kaiser_enabled) {
1620 		/*
1621 		 * secondary_startup_64() deferred setting PGE in cr4:
1622 		 * probe_page_size_mask() sets it on the boot cpu,
1623 		 * but it needs to be set on each secondary cpu.
1624 		 */
1625 		cr4_set_bits(X86_CR4_PGE);
1626 	}
1627 
1628 	/*
1629 	 * Load microcode on this cpu if a valid microcode is available.
1630 	 * This is early microcode loading procedure.
1631 	 */
1632 	load_ucode_ap();
1633 
1634 	t = &per_cpu(cpu_tss, cpu);
1635 	oist = &per_cpu(orig_ist, cpu);
1636 
1637 #ifdef CONFIG_NUMA
1638 	if (this_cpu_read(numa_node) == 0 &&
1639 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1640 		set_numa_node(early_cpu_to_node(cpu));
1641 #endif
1642 
1643 	me = current;
1644 
1645 	pr_debug("Initializing CPU#%d\n", cpu);
1646 
1647 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1648 
1649 	/*
1650 	 * Initialize the per-CPU GDT with the boot GDT,
1651 	 * and set up the GDT descriptor:
1652 	 */
1653 
1654 	switch_to_new_gdt(cpu);
1655 	loadsegment(fs, 0);
1656 
1657 	load_current_idt();
1658 
1659 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1660 	syscall_init();
1661 
1662 	wrmsrl(MSR_FS_BASE, 0);
1663 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1664 	barrier();
1665 
1666 	x86_configure_nx();
1667 	x2apic_setup();
1668 
1669 	/*
1670 	 * set up and load the per-CPU TSS
1671 	 */
1672 	if (!oist->ist[0]) {
1673 		char *estacks = per_cpu(exception_stacks, cpu);
1674 
1675 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1676 			estacks += exception_stack_sizes[v];
1677 			oist->ist[v] = t->x86_tss.ist[v] =
1678 					(unsigned long)estacks;
1679 			if (v == DEBUG_STACK-1)
1680 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1681 		}
1682 	}
1683 
1684 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1685 
1686 	/*
1687 	 * <= is required because the CPU will access up to
1688 	 * 8 bits beyond the end of the IO permission bitmap.
1689 	 */
1690 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1691 		t->io_bitmap[i] = ~0UL;
1692 
1693 	atomic_inc(&init_mm.mm_count);
1694 	me->active_mm = &init_mm;
1695 	BUG_ON(me->mm);
1696 	enter_lazy_tlb(&init_mm, me);
1697 
1698 	load_sp0(t, &current->thread);
1699 	set_tss_desc(cpu, t);
1700 	load_TR_desc();
1701 	load_mm_ldt(&init_mm);
1702 
1703 	clear_all_debug_regs();
1704 	dbg_restore_debug_regs();
1705 
1706 	fpu__init_cpu();
1707 
1708 	if (is_uv_system())
1709 		uv_cpu_init();
1710 }
1711 
1712 #else
1713 
cpu_init(void)1714 void cpu_init(void)
1715 {
1716 	int cpu = smp_processor_id();
1717 	struct task_struct *curr = current;
1718 	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1719 	struct thread_struct *thread = &curr->thread;
1720 
1721 	wait_for_master_cpu(cpu);
1722 
1723 	/*
1724 	 * Initialize the CR4 shadow before doing anything that could
1725 	 * try to read it.
1726 	 */
1727 	cr4_init_shadow();
1728 
1729 	show_ucode_info_early();
1730 
1731 	pr_info("Initializing CPU#%d\n", cpu);
1732 
1733 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1734 	    boot_cpu_has(X86_FEATURE_TSC) ||
1735 	    boot_cpu_has(X86_FEATURE_DE))
1736 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1737 
1738 	load_current_idt();
1739 	switch_to_new_gdt(cpu);
1740 
1741 	/*
1742 	 * Set up and load the per-CPU TSS and LDT
1743 	 */
1744 	atomic_inc(&init_mm.mm_count);
1745 	curr->active_mm = &init_mm;
1746 	BUG_ON(curr->mm);
1747 	enter_lazy_tlb(&init_mm, curr);
1748 
1749 	load_sp0(t, thread);
1750 	set_tss_desc(cpu, t);
1751 	load_TR_desc();
1752 	load_mm_ldt(&init_mm);
1753 
1754 	t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1755 
1756 #ifdef CONFIG_DOUBLEFAULT
1757 	/* Set up doublefault TSS pointer in the GDT */
1758 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1759 #endif
1760 
1761 	clear_all_debug_regs();
1762 	dbg_restore_debug_regs();
1763 
1764 	fpu__init_cpu();
1765 }
1766 #endif
1767 
bsp_resume(void)1768 static void bsp_resume(void)
1769 {
1770 	if (this_cpu->c_bsp_resume)
1771 		this_cpu->c_bsp_resume(&boot_cpu_data);
1772 }
1773 
1774 static struct syscore_ops cpu_syscore_ops = {
1775 	.resume		= bsp_resume,
1776 };
1777 
init_cpu_syscore(void)1778 static int __init init_cpu_syscore(void)
1779 {
1780 	register_syscore_ops(&cpu_syscore_ops);
1781 	return 0;
1782 }
1783 core_initcall(init_cpu_syscore);
1784