1 /*
2 * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
3 *
4 * Copyright (c) 2006 SUSE Linux Products GmbH
5 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
6 *
7 * This file is released under the GPLv2.
8 */
9
10 #include <linux/dma-mapping.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15
16 /*
17 * Managed DMA API
18 */
19 struct dma_devres {
20 size_t size;
21 void *vaddr;
22 dma_addr_t dma_handle;
23 };
24
dmam_coherent_release(struct device * dev,void * res)25 static void dmam_coherent_release(struct device *dev, void *res)
26 {
27 struct dma_devres *this = res;
28
29 dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
30 }
31
dmam_noncoherent_release(struct device * dev,void * res)32 static void dmam_noncoherent_release(struct device *dev, void *res)
33 {
34 struct dma_devres *this = res;
35
36 dma_free_noncoherent(dev, this->size, this->vaddr, this->dma_handle);
37 }
38
dmam_match(struct device * dev,void * res,void * match_data)39 static int dmam_match(struct device *dev, void *res, void *match_data)
40 {
41 struct dma_devres *this = res, *match = match_data;
42
43 if (this->vaddr == match->vaddr) {
44 WARN_ON(this->size != match->size ||
45 this->dma_handle != match->dma_handle);
46 return 1;
47 }
48 return 0;
49 }
50
51 /**
52 * dmam_alloc_coherent - Managed dma_alloc_coherent()
53 * @dev: Device to allocate coherent memory for
54 * @size: Size of allocation
55 * @dma_handle: Out argument for allocated DMA handle
56 * @gfp: Allocation flags
57 *
58 * Managed dma_alloc_coherent(). Memory allocated using this function
59 * will be automatically released on driver detach.
60 *
61 * RETURNS:
62 * Pointer to allocated memory on success, NULL on failure.
63 */
dmam_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)64 void *dmam_alloc_coherent(struct device *dev, size_t size,
65 dma_addr_t *dma_handle, gfp_t gfp)
66 {
67 struct dma_devres *dr;
68 void *vaddr;
69
70 dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
71 if (!dr)
72 return NULL;
73
74 vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
75 if (!vaddr) {
76 devres_free(dr);
77 return NULL;
78 }
79
80 dr->vaddr = vaddr;
81 dr->dma_handle = *dma_handle;
82 dr->size = size;
83
84 devres_add(dev, dr);
85
86 return vaddr;
87 }
88 EXPORT_SYMBOL(dmam_alloc_coherent);
89
90 /**
91 * dmam_free_coherent - Managed dma_free_coherent()
92 * @dev: Device to free coherent memory for
93 * @size: Size of allocation
94 * @vaddr: Virtual address of the memory to free
95 * @dma_handle: DMA handle of the memory to free
96 *
97 * Managed dma_free_coherent().
98 */
dmam_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)99 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
100 dma_addr_t dma_handle)
101 {
102 struct dma_devres match_data = { size, vaddr, dma_handle };
103
104 dma_free_coherent(dev, size, vaddr, dma_handle);
105 WARN_ON(devres_destroy(dev, dmam_coherent_release, dmam_match,
106 &match_data));
107 }
108 EXPORT_SYMBOL(dmam_free_coherent);
109
110 /**
111 * dmam_alloc_non_coherent - Managed dma_alloc_non_coherent()
112 * @dev: Device to allocate non_coherent memory for
113 * @size: Size of allocation
114 * @dma_handle: Out argument for allocated DMA handle
115 * @gfp: Allocation flags
116 *
117 * Managed dma_alloc_non_coherent(). Memory allocated using this
118 * function will be automatically released on driver detach.
119 *
120 * RETURNS:
121 * Pointer to allocated memory on success, NULL on failure.
122 */
dmam_alloc_noncoherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)123 void *dmam_alloc_noncoherent(struct device *dev, size_t size,
124 dma_addr_t *dma_handle, gfp_t gfp)
125 {
126 struct dma_devres *dr;
127 void *vaddr;
128
129 dr = devres_alloc(dmam_noncoherent_release, sizeof(*dr), gfp);
130 if (!dr)
131 return NULL;
132
133 vaddr = dma_alloc_noncoherent(dev, size, dma_handle, gfp);
134 if (!vaddr) {
135 devres_free(dr);
136 return NULL;
137 }
138
139 dr->vaddr = vaddr;
140 dr->dma_handle = *dma_handle;
141 dr->size = size;
142
143 devres_add(dev, dr);
144
145 return vaddr;
146 }
147 EXPORT_SYMBOL(dmam_alloc_noncoherent);
148
149 /**
150 * dmam_free_coherent - Managed dma_free_noncoherent()
151 * @dev: Device to free noncoherent memory for
152 * @size: Size of allocation
153 * @vaddr: Virtual address of the memory to free
154 * @dma_handle: DMA handle of the memory to free
155 *
156 * Managed dma_free_noncoherent().
157 */
dmam_free_noncoherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)158 void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
159 dma_addr_t dma_handle)
160 {
161 struct dma_devres match_data = { size, vaddr, dma_handle };
162
163 dma_free_noncoherent(dev, size, vaddr, dma_handle);
164 WARN_ON(!devres_destroy(dev, dmam_noncoherent_release, dmam_match,
165 &match_data));
166 }
167 EXPORT_SYMBOL(dmam_free_noncoherent);
168
169 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
170
dmam_coherent_decl_release(struct device * dev,void * res)171 static void dmam_coherent_decl_release(struct device *dev, void *res)
172 {
173 dma_release_declared_memory(dev);
174 }
175
176 /**
177 * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
178 * @dev: Device to declare coherent memory for
179 * @phys_addr: Physical address of coherent memory to be declared
180 * @device_addr: Device address of coherent memory to be declared
181 * @size: Size of coherent memory to be declared
182 * @flags: Flags
183 *
184 * Managed dma_declare_coherent_memory().
185 *
186 * RETURNS:
187 * 0 on success, -errno on failure.
188 */
dmam_declare_coherent_memory(struct device * dev,phys_addr_t phys_addr,dma_addr_t device_addr,size_t size,int flags)189 int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
190 dma_addr_t device_addr, size_t size, int flags)
191 {
192 void *res;
193 int rc;
194
195 res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
196 if (!res)
197 return -ENOMEM;
198
199 rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size,
200 flags);
201 if (rc) {
202 devres_add(dev, res);
203 rc = 0;
204 } else {
205 devres_free(res);
206 rc = -ENOMEM;
207 }
208
209 return rc;
210 }
211 EXPORT_SYMBOL(dmam_declare_coherent_memory);
212
213 /**
214 * dmam_release_declared_memory - Managed dma_release_declared_memory().
215 * @dev: Device to release declared coherent memory for
216 *
217 * Managed dmam_release_declared_memory().
218 */
dmam_release_declared_memory(struct device * dev)219 void dmam_release_declared_memory(struct device *dev)
220 {
221 WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
222 }
223 EXPORT_SYMBOL(dmam_release_declared_memory);
224
225 #endif
226
227 /*
228 * Create scatter-list for the already allocated DMA buffer.
229 */
dma_common_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t handle,size_t size)230 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
231 void *cpu_addr, dma_addr_t handle, size_t size)
232 {
233 struct page *page = virt_to_page(cpu_addr);
234 int ret;
235
236 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
237 if (unlikely(ret))
238 return ret;
239
240 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
241 return 0;
242 }
243 EXPORT_SYMBOL(dma_common_get_sgtable);
244
245 /*
246 * Create userspace mapping for the DMA-coherent memory.
247 */
dma_common_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size)248 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
249 void *cpu_addr, dma_addr_t dma_addr, size_t size)
250 {
251 int ret = -ENXIO;
252 #if defined(CONFIG_MMU) && !defined(CONFIG_ARCH_NO_COHERENT_DMA_MMAP)
253 unsigned long user_count = vma_pages(vma);
254 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
255 unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
256 unsigned long off = vma->vm_pgoff;
257
258 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
259
260 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
261 return ret;
262
263 if (off < count && user_count <= (count - off)) {
264 ret = remap_pfn_range(vma, vma->vm_start,
265 pfn + off,
266 user_count << PAGE_SHIFT,
267 vma->vm_page_prot);
268 }
269 #endif /* CONFIG_MMU && !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
270
271 return ret;
272 }
273 EXPORT_SYMBOL(dma_common_mmap);
274
275 #ifdef CONFIG_MMU
276 /*
277 * remaps an array of PAGE_SIZE pages into another vm_area
278 * Cannot be used in non-sleeping contexts
279 */
dma_common_pages_remap(struct page ** pages,size_t size,unsigned long vm_flags,pgprot_t prot,const void * caller)280 void *dma_common_pages_remap(struct page **pages, size_t size,
281 unsigned long vm_flags, pgprot_t prot,
282 const void *caller)
283 {
284 struct vm_struct *area;
285
286 area = get_vm_area_caller(size, vm_flags, caller);
287 if (!area)
288 return NULL;
289
290 area->pages = pages;
291
292 if (map_vm_area(area, prot, pages)) {
293 vunmap(area->addr);
294 return NULL;
295 }
296
297 return area->addr;
298 }
299
300 /*
301 * remaps an allocated contiguous region into another vm_area.
302 * Cannot be used in non-sleeping contexts
303 */
304
dma_common_contiguous_remap(struct page * page,size_t size,unsigned long vm_flags,pgprot_t prot,const void * caller)305 void *dma_common_contiguous_remap(struct page *page, size_t size,
306 unsigned long vm_flags,
307 pgprot_t prot, const void *caller)
308 {
309 int i;
310 struct page **pages;
311 void *ptr;
312 unsigned long pfn;
313
314 pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL);
315 if (!pages)
316 return NULL;
317
318 for (i = 0, pfn = page_to_pfn(page); i < (size >> PAGE_SHIFT); i++)
319 pages[i] = pfn_to_page(pfn + i);
320
321 ptr = dma_common_pages_remap(pages, size, vm_flags, prot, caller);
322
323 kfree(pages);
324
325 return ptr;
326 }
327
328 /*
329 * unmaps a range previously mapped by dma_common_*_remap
330 */
dma_common_free_remap(void * cpu_addr,size_t size,unsigned long vm_flags)331 void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags)
332 {
333 struct vm_struct *area = find_vm_area(cpu_addr);
334
335 if (!area || (area->flags & vm_flags) != vm_flags) {
336 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
337 return;
338 }
339
340 unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size));
341 vunmap(cpu_addr);
342 }
343 #endif
344