• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * drivers/base/dma-mapping.c - arch-independent dma-mapping routines
3  *
4  * Copyright (c) 2006  SUSE Linux Products GmbH
5  * Copyright (c) 2006  Tejun Heo <teheo@suse.de>
6  *
7  * This file is released under the GPLv2.
8  */
9 
10 #include <linux/dma-mapping.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 
16 /*
17  * Managed DMA API
18  */
19 struct dma_devres {
20 	size_t		size;
21 	void		*vaddr;
22 	dma_addr_t	dma_handle;
23 };
24 
dmam_coherent_release(struct device * dev,void * res)25 static void dmam_coherent_release(struct device *dev, void *res)
26 {
27 	struct dma_devres *this = res;
28 
29 	dma_free_coherent(dev, this->size, this->vaddr, this->dma_handle);
30 }
31 
dmam_noncoherent_release(struct device * dev,void * res)32 static void dmam_noncoherent_release(struct device *dev, void *res)
33 {
34 	struct dma_devres *this = res;
35 
36 	dma_free_noncoherent(dev, this->size, this->vaddr, this->dma_handle);
37 }
38 
dmam_match(struct device * dev,void * res,void * match_data)39 static int dmam_match(struct device *dev, void *res, void *match_data)
40 {
41 	struct dma_devres *this = res, *match = match_data;
42 
43 	if (this->vaddr == match->vaddr) {
44 		WARN_ON(this->size != match->size ||
45 			this->dma_handle != match->dma_handle);
46 		return 1;
47 	}
48 	return 0;
49 }
50 
51 /**
52  * dmam_alloc_coherent - Managed dma_alloc_coherent()
53  * @dev: Device to allocate coherent memory for
54  * @size: Size of allocation
55  * @dma_handle: Out argument for allocated DMA handle
56  * @gfp: Allocation flags
57  *
58  * Managed dma_alloc_coherent().  Memory allocated using this function
59  * will be automatically released on driver detach.
60  *
61  * RETURNS:
62  * Pointer to allocated memory on success, NULL on failure.
63  */
dmam_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)64 void *dmam_alloc_coherent(struct device *dev, size_t size,
65 			   dma_addr_t *dma_handle, gfp_t gfp)
66 {
67 	struct dma_devres *dr;
68 	void *vaddr;
69 
70 	dr = devres_alloc(dmam_coherent_release, sizeof(*dr), gfp);
71 	if (!dr)
72 		return NULL;
73 
74 	vaddr = dma_alloc_coherent(dev, size, dma_handle, gfp);
75 	if (!vaddr) {
76 		devres_free(dr);
77 		return NULL;
78 	}
79 
80 	dr->vaddr = vaddr;
81 	dr->dma_handle = *dma_handle;
82 	dr->size = size;
83 
84 	devres_add(dev, dr);
85 
86 	return vaddr;
87 }
88 EXPORT_SYMBOL(dmam_alloc_coherent);
89 
90 /**
91  * dmam_free_coherent - Managed dma_free_coherent()
92  * @dev: Device to free coherent memory for
93  * @size: Size of allocation
94  * @vaddr: Virtual address of the memory to free
95  * @dma_handle: DMA handle of the memory to free
96  *
97  * Managed dma_free_coherent().
98  */
dmam_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)99 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
100 			dma_addr_t dma_handle)
101 {
102 	struct dma_devres match_data = { size, vaddr, dma_handle };
103 
104 	dma_free_coherent(dev, size, vaddr, dma_handle);
105 	WARN_ON(devres_destroy(dev, dmam_coherent_release, dmam_match,
106 			       &match_data));
107 }
108 EXPORT_SYMBOL(dmam_free_coherent);
109 
110 /**
111  * dmam_alloc_non_coherent - Managed dma_alloc_non_coherent()
112  * @dev: Device to allocate non_coherent memory for
113  * @size: Size of allocation
114  * @dma_handle: Out argument for allocated DMA handle
115  * @gfp: Allocation flags
116  *
117  * Managed dma_alloc_non_coherent().  Memory allocated using this
118  * function will be automatically released on driver detach.
119  *
120  * RETURNS:
121  * Pointer to allocated memory on success, NULL on failure.
122  */
dmam_alloc_noncoherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)123 void *dmam_alloc_noncoherent(struct device *dev, size_t size,
124 			     dma_addr_t *dma_handle, gfp_t gfp)
125 {
126 	struct dma_devres *dr;
127 	void *vaddr;
128 
129 	dr = devres_alloc(dmam_noncoherent_release, sizeof(*dr), gfp);
130 	if (!dr)
131 		return NULL;
132 
133 	vaddr = dma_alloc_noncoherent(dev, size, dma_handle, gfp);
134 	if (!vaddr) {
135 		devres_free(dr);
136 		return NULL;
137 	}
138 
139 	dr->vaddr = vaddr;
140 	dr->dma_handle = *dma_handle;
141 	dr->size = size;
142 
143 	devres_add(dev, dr);
144 
145 	return vaddr;
146 }
147 EXPORT_SYMBOL(dmam_alloc_noncoherent);
148 
149 /**
150  * dmam_free_coherent - Managed dma_free_noncoherent()
151  * @dev: Device to free noncoherent memory for
152  * @size: Size of allocation
153  * @vaddr: Virtual address of the memory to free
154  * @dma_handle: DMA handle of the memory to free
155  *
156  * Managed dma_free_noncoherent().
157  */
dmam_free_noncoherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)158 void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
159 			   dma_addr_t dma_handle)
160 {
161 	struct dma_devres match_data = { size, vaddr, dma_handle };
162 
163 	dma_free_noncoherent(dev, size, vaddr, dma_handle);
164 	WARN_ON(!devres_destroy(dev, dmam_noncoherent_release, dmam_match,
165 				&match_data));
166 }
167 EXPORT_SYMBOL(dmam_free_noncoherent);
168 
169 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
170 
dmam_coherent_decl_release(struct device * dev,void * res)171 static void dmam_coherent_decl_release(struct device *dev, void *res)
172 {
173 	dma_release_declared_memory(dev);
174 }
175 
176 /**
177  * dmam_declare_coherent_memory - Managed dma_declare_coherent_memory()
178  * @dev: Device to declare coherent memory for
179  * @phys_addr: Physical address of coherent memory to be declared
180  * @device_addr: Device address of coherent memory to be declared
181  * @size: Size of coherent memory to be declared
182  * @flags: Flags
183  *
184  * Managed dma_declare_coherent_memory().
185  *
186  * RETURNS:
187  * 0 on success, -errno on failure.
188  */
dmam_declare_coherent_memory(struct device * dev,phys_addr_t phys_addr,dma_addr_t device_addr,size_t size,int flags)189 int dmam_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
190 				 dma_addr_t device_addr, size_t size, int flags)
191 {
192 	void *res;
193 	int rc;
194 
195 	res = devres_alloc(dmam_coherent_decl_release, 0, GFP_KERNEL);
196 	if (!res)
197 		return -ENOMEM;
198 
199 	rc = dma_declare_coherent_memory(dev, phys_addr, device_addr, size,
200 					 flags);
201 	if (rc) {
202 		devres_add(dev, res);
203 		rc = 0;
204 	} else {
205 		devres_free(res);
206 		rc = -ENOMEM;
207 	}
208 
209 	return rc;
210 }
211 EXPORT_SYMBOL(dmam_declare_coherent_memory);
212 
213 /**
214  * dmam_release_declared_memory - Managed dma_release_declared_memory().
215  * @dev: Device to release declared coherent memory for
216  *
217  * Managed dmam_release_declared_memory().
218  */
dmam_release_declared_memory(struct device * dev)219 void dmam_release_declared_memory(struct device *dev)
220 {
221 	WARN_ON(devres_destroy(dev, dmam_coherent_decl_release, NULL, NULL));
222 }
223 EXPORT_SYMBOL(dmam_release_declared_memory);
224 
225 #endif
226 
227 /*
228  * Create scatter-list for the already allocated DMA buffer.
229  */
dma_common_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t handle,size_t size)230 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
231 		 void *cpu_addr, dma_addr_t handle, size_t size)
232 {
233 	struct page *page = virt_to_page(cpu_addr);
234 	int ret;
235 
236 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
237 	if (unlikely(ret))
238 		return ret;
239 
240 	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
241 	return 0;
242 }
243 EXPORT_SYMBOL(dma_common_get_sgtable);
244 
245 /*
246  * Create userspace mapping for the DMA-coherent memory.
247  */
dma_common_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size)248 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
249 		    void *cpu_addr, dma_addr_t dma_addr, size_t size)
250 {
251 	int ret = -ENXIO;
252 #if defined(CONFIG_MMU) && !defined(CONFIG_ARCH_NO_COHERENT_DMA_MMAP)
253 	unsigned long user_count = vma_pages(vma);
254 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
255 	unsigned long pfn = page_to_pfn(virt_to_page(cpu_addr));
256 	unsigned long off = vma->vm_pgoff;
257 
258 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
259 
260 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
261 		return ret;
262 
263 	if (off < count && user_count <= (count - off)) {
264 		ret = remap_pfn_range(vma, vma->vm_start,
265 				      pfn + off,
266 				      user_count << PAGE_SHIFT,
267 				      vma->vm_page_prot);
268 	}
269 #endif	/* CONFIG_MMU && !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
270 
271 	return ret;
272 }
273 EXPORT_SYMBOL(dma_common_mmap);
274 
275 #ifdef CONFIG_MMU
276 /*
277  * remaps an array of PAGE_SIZE pages into another vm_area
278  * Cannot be used in non-sleeping contexts
279  */
dma_common_pages_remap(struct page ** pages,size_t size,unsigned long vm_flags,pgprot_t prot,const void * caller)280 void *dma_common_pages_remap(struct page **pages, size_t size,
281 			unsigned long vm_flags, pgprot_t prot,
282 			const void *caller)
283 {
284 	struct vm_struct *area;
285 
286 	area = get_vm_area_caller(size, vm_flags, caller);
287 	if (!area)
288 		return NULL;
289 
290 	area->pages = pages;
291 
292 	if (map_vm_area(area, prot, pages)) {
293 		vunmap(area->addr);
294 		return NULL;
295 	}
296 
297 	return area->addr;
298 }
299 
300 /*
301  * remaps an allocated contiguous region into another vm_area.
302  * Cannot be used in non-sleeping contexts
303  */
304 
dma_common_contiguous_remap(struct page * page,size_t size,unsigned long vm_flags,pgprot_t prot,const void * caller)305 void *dma_common_contiguous_remap(struct page *page, size_t size,
306 			unsigned long vm_flags,
307 			pgprot_t prot, const void *caller)
308 {
309 	int i;
310 	struct page **pages;
311 	void *ptr;
312 	unsigned long pfn;
313 
314 	pages = kmalloc(sizeof(struct page *) << get_order(size), GFP_KERNEL);
315 	if (!pages)
316 		return NULL;
317 
318 	for (i = 0, pfn = page_to_pfn(page); i < (size >> PAGE_SHIFT); i++)
319 		pages[i] = pfn_to_page(pfn + i);
320 
321 	ptr = dma_common_pages_remap(pages, size, vm_flags, prot, caller);
322 
323 	kfree(pages);
324 
325 	return ptr;
326 }
327 
328 /*
329  * unmaps a range previously mapped by dma_common_*_remap
330  */
dma_common_free_remap(void * cpu_addr,size_t size,unsigned long vm_flags)331 void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags)
332 {
333 	struct vm_struct *area = find_vm_area(cpu_addr);
334 
335 	if (!area || (area->flags & vm_flags) != vm_flags) {
336 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
337 		return;
338 	}
339 
340 	unmap_kernel_range((unsigned long)cpu_addr, PAGE_ALIGN(size));
341 	vunmap(cpu_addr);
342 }
343 #endif
344