• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /*
47  * Usage:
48  * dcache->d_inode->i_lock protects:
49  *   - i_dentry, d_u.d_alias, d_inode of aliases
50  * dcache_hash_bucket lock protects:
51  *   - the dcache hash table
52  * s_anon bl list spinlock protects:
53  *   - the s_anon list (see __d_drop)
54  * dentry->d_sb->s_dentry_lru_lock protects:
55  *   - the dcache lru lists and counters
56  * d_lock protects:
57  *   - d_flags
58  *   - d_name
59  *   - d_lru
60  *   - d_count
61  *   - d_unhashed()
62  *   - d_parent and d_subdirs
63  *   - childrens' d_child and d_parent
64  *   - d_u.d_alias, d_inode
65  *
66  * Ordering:
67  * dentry->d_inode->i_lock
68  *   dentry->d_lock
69  *     dentry->d_sb->s_dentry_lru_lock
70  *     dcache_hash_bucket lock
71  *     s_anon lock
72  *
73  * If there is an ancestor relationship:
74  * dentry->d_parent->...->d_parent->d_lock
75  *   ...
76  *     dentry->d_parent->d_lock
77  *       dentry->d_lock
78  *
79  * If no ancestor relationship:
80  * if (dentry1 < dentry2)
81  *   dentry1->d_lock
82  *     dentry2->d_lock
83  */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86 
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88 
89 EXPORT_SYMBOL(rename_lock);
90 
91 static struct kmem_cache *dentry_cache __read_mostly;
92 
93 /*
94  * This is the single most critical data structure when it comes
95  * to the dcache: the hashtable for lookups. Somebody should try
96  * to make this good - I've just made it work.
97  *
98  * This hash-function tries to avoid losing too many bits of hash
99  * information, yet avoid using a prime hash-size or similar.
100  */
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
d_hash(unsigned int hash)107 static inline struct hlist_bl_head *d_hash(unsigned int hash)
108 {
109 	return dentry_hashtable + (hash >> (32 - d_hash_shift));
110 }
111 
112 #define IN_LOOKUP_SHIFT 10
113 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
114 
in_lookup_hash(const struct dentry * parent,unsigned int hash)115 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
116 					unsigned int hash)
117 {
118 	hash += (unsigned long) parent / L1_CACHE_BYTES;
119 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
120 }
121 
122 
123 /* Statistics gathering. */
124 struct dentry_stat_t dentry_stat = {
125 	.age_limit = 45,
126 };
127 
128 static DEFINE_PER_CPU(long, nr_dentry);
129 static DEFINE_PER_CPU(long, nr_dentry_unused);
130 
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132 
133 /*
134  * Here we resort to our own counters instead of using generic per-cpu counters
135  * for consistency with what the vfs inode code does. We are expected to harvest
136  * better code and performance by having our own specialized counters.
137  *
138  * Please note that the loop is done over all possible CPUs, not over all online
139  * CPUs. The reason for this is that we don't want to play games with CPUs going
140  * on and off. If one of them goes off, we will just keep their counters.
141  *
142  * glommer: See cffbc8a for details, and if you ever intend to change this,
143  * please update all vfs counters to match.
144  */
get_nr_dentry(void)145 static long get_nr_dentry(void)
146 {
147 	int i;
148 	long sum = 0;
149 	for_each_possible_cpu(i)
150 		sum += per_cpu(nr_dentry, i);
151 	return sum < 0 ? 0 : sum;
152 }
153 
get_nr_dentry_unused(void)154 static long get_nr_dentry_unused(void)
155 {
156 	int i;
157 	long sum = 0;
158 	for_each_possible_cpu(i)
159 		sum += per_cpu(nr_dentry_unused, i);
160 	return sum < 0 ? 0 : sum;
161 }
162 
proc_nr_dentry(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)163 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
164 		   size_t *lenp, loff_t *ppos)
165 {
166 	dentry_stat.nr_dentry = get_nr_dentry();
167 	dentry_stat.nr_unused = get_nr_dentry_unused();
168 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
169 }
170 #endif
171 
172 /*
173  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
174  * The strings are both count bytes long, and count is non-zero.
175  */
176 #ifdef CONFIG_DCACHE_WORD_ACCESS
177 
178 #include <asm/word-at-a-time.h>
179 /*
180  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
181  * aligned allocation for this particular component. We don't
182  * strictly need the load_unaligned_zeropad() safety, but it
183  * doesn't hurt either.
184  *
185  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
186  * need the careful unaligned handling.
187  */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)188 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
189 {
190 	unsigned long a,b,mask;
191 
192 	for (;;) {
193 		a = *(unsigned long *)cs;
194 		b = load_unaligned_zeropad(ct);
195 		if (tcount < sizeof(unsigned long))
196 			break;
197 		if (unlikely(a != b))
198 			return 1;
199 		cs += sizeof(unsigned long);
200 		ct += sizeof(unsigned long);
201 		tcount -= sizeof(unsigned long);
202 		if (!tcount)
203 			return 0;
204 	}
205 	mask = bytemask_from_count(tcount);
206 	return unlikely(!!((a ^ b) & mask));
207 }
208 
209 #else
210 
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)211 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
212 {
213 	do {
214 		if (*cs != *ct)
215 			return 1;
216 		cs++;
217 		ct++;
218 		tcount--;
219 	} while (tcount);
220 	return 0;
221 }
222 
223 #endif
224 
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)225 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
226 {
227 	/*
228 	 * Be careful about RCU walk racing with rename:
229 	 * use 'lockless_dereference' to fetch the name pointer.
230 	 *
231 	 * NOTE! Even if a rename will mean that the length
232 	 * was not loaded atomically, we don't care. The
233 	 * RCU walk will check the sequence count eventually,
234 	 * and catch it. And we won't overrun the buffer,
235 	 * because we're reading the name pointer atomically,
236 	 * and a dentry name is guaranteed to be properly
237 	 * terminated with a NUL byte.
238 	 *
239 	 * End result: even if 'len' is wrong, we'll exit
240 	 * early because the data cannot match (there can
241 	 * be no NUL in the ct/tcount data)
242 	 */
243 	const unsigned char *cs = lockless_dereference(dentry->d_name.name);
244 
245 	return dentry_string_cmp(cs, ct, tcount);
246 }
247 
248 struct external_name {
249 	union {
250 		atomic_t count;
251 		struct rcu_head head;
252 	} u;
253 	unsigned char name[];
254 };
255 
external_name(struct dentry * dentry)256 static inline struct external_name *external_name(struct dentry *dentry)
257 {
258 	return container_of(dentry->d_name.name, struct external_name, name[0]);
259 }
260 
__d_free(struct rcu_head * head)261 static void __d_free(struct rcu_head *head)
262 {
263 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
264 
265 	kmem_cache_free(dentry_cache, dentry);
266 }
267 
__d_free_external(struct rcu_head * head)268 static void __d_free_external(struct rcu_head *head)
269 {
270 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
271 	kfree(external_name(dentry));
272 	kmem_cache_free(dentry_cache, dentry);
273 }
274 
dname_external(const struct dentry * dentry)275 static inline int dname_external(const struct dentry *dentry)
276 {
277 	return dentry->d_name.name != dentry->d_iname;
278 }
279 
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)280 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
281 {
282 	spin_lock(&dentry->d_lock);
283 	if (unlikely(dname_external(dentry))) {
284 		struct external_name *p = external_name(dentry);
285 		atomic_inc(&p->u.count);
286 		spin_unlock(&dentry->d_lock);
287 		name->name = p->name;
288 	} else {
289 		memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
290 		spin_unlock(&dentry->d_lock);
291 		name->name = name->inline_name;
292 	}
293 }
294 EXPORT_SYMBOL(take_dentry_name_snapshot);
295 
release_dentry_name_snapshot(struct name_snapshot * name)296 void release_dentry_name_snapshot(struct name_snapshot *name)
297 {
298 	if (unlikely(name->name != name->inline_name)) {
299 		struct external_name *p;
300 		p = container_of(name->name, struct external_name, name[0]);
301 		if (unlikely(atomic_dec_and_test(&p->u.count)))
302 			kfree_rcu(p, u.head);
303 	}
304 }
305 EXPORT_SYMBOL(release_dentry_name_snapshot);
306 
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)307 static inline void __d_set_inode_and_type(struct dentry *dentry,
308 					  struct inode *inode,
309 					  unsigned type_flags)
310 {
311 	unsigned flags;
312 
313 	dentry->d_inode = inode;
314 	flags = READ_ONCE(dentry->d_flags);
315 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
316 	flags |= type_flags;
317 	WRITE_ONCE(dentry->d_flags, flags);
318 }
319 
__d_clear_type_and_inode(struct dentry * dentry)320 static inline void __d_clear_type_and_inode(struct dentry *dentry)
321 {
322 	unsigned flags = READ_ONCE(dentry->d_flags);
323 
324 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
325 	WRITE_ONCE(dentry->d_flags, flags);
326 	dentry->d_inode = NULL;
327 }
328 
dentry_free(struct dentry * dentry)329 static void dentry_free(struct dentry *dentry)
330 {
331 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
332 	if (unlikely(dname_external(dentry))) {
333 		struct external_name *p = external_name(dentry);
334 		if (likely(atomic_dec_and_test(&p->u.count))) {
335 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
336 			return;
337 		}
338 	}
339 	/* if dentry was never visible to RCU, immediate free is OK */
340 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
341 		__d_free(&dentry->d_u.d_rcu);
342 	else
343 		call_rcu(&dentry->d_u.d_rcu, __d_free);
344 }
345 
346 /*
347  * Release the dentry's inode, using the filesystem
348  * d_iput() operation if defined.
349  */
dentry_unlink_inode(struct dentry * dentry)350 static void dentry_unlink_inode(struct dentry * dentry)
351 	__releases(dentry->d_lock)
352 	__releases(dentry->d_inode->i_lock)
353 {
354 	struct inode *inode = dentry->d_inode;
355 	bool hashed = !d_unhashed(dentry);
356 
357 	if (hashed)
358 		raw_write_seqcount_begin(&dentry->d_seq);
359 	__d_clear_type_and_inode(dentry);
360 	hlist_del_init(&dentry->d_u.d_alias);
361 	if (hashed)
362 		raw_write_seqcount_end(&dentry->d_seq);
363 	spin_unlock(&dentry->d_lock);
364 	spin_unlock(&inode->i_lock);
365 	if (!inode->i_nlink)
366 		fsnotify_inoderemove(inode);
367 	if (dentry->d_op && dentry->d_op->d_iput)
368 		dentry->d_op->d_iput(dentry, inode);
369 	else
370 		iput(inode);
371 }
372 
373 /*
374  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
375  * is in use - which includes both the "real" per-superblock
376  * LRU list _and_ the DCACHE_SHRINK_LIST use.
377  *
378  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
379  * on the shrink list (ie not on the superblock LRU list).
380  *
381  * The per-cpu "nr_dentry_unused" counters are updated with
382  * the DCACHE_LRU_LIST bit.
383  *
384  * These helper functions make sure we always follow the
385  * rules. d_lock must be held by the caller.
386  */
387 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)388 static void d_lru_add(struct dentry *dentry)
389 {
390 	D_FLAG_VERIFY(dentry, 0);
391 	dentry->d_flags |= DCACHE_LRU_LIST;
392 	this_cpu_inc(nr_dentry_unused);
393 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
394 }
395 
d_lru_del(struct dentry * dentry)396 static void d_lru_del(struct dentry *dentry)
397 {
398 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
399 	dentry->d_flags &= ~DCACHE_LRU_LIST;
400 	this_cpu_dec(nr_dentry_unused);
401 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
402 }
403 
d_shrink_del(struct dentry * dentry)404 static void d_shrink_del(struct dentry *dentry)
405 {
406 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
407 	list_del_init(&dentry->d_lru);
408 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
409 	this_cpu_dec(nr_dentry_unused);
410 }
411 
d_shrink_add(struct dentry * dentry,struct list_head * list)412 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
413 {
414 	D_FLAG_VERIFY(dentry, 0);
415 	list_add(&dentry->d_lru, list);
416 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
417 	this_cpu_inc(nr_dentry_unused);
418 }
419 
420 /*
421  * These can only be called under the global LRU lock, ie during the
422  * callback for freeing the LRU list. "isolate" removes it from the
423  * LRU lists entirely, while shrink_move moves it to the indicated
424  * private list.
425  */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)426 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
427 {
428 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
429 	dentry->d_flags &= ~DCACHE_LRU_LIST;
430 	this_cpu_dec(nr_dentry_unused);
431 	list_lru_isolate(lru, &dentry->d_lru);
432 }
433 
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)434 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
435 			      struct list_head *list)
436 {
437 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
438 	dentry->d_flags |= DCACHE_SHRINK_LIST;
439 	list_lru_isolate_move(lru, &dentry->d_lru, list);
440 }
441 
442 /*
443  * dentry_lru_(add|del)_list) must be called with d_lock held.
444  */
dentry_lru_add(struct dentry * dentry)445 static void dentry_lru_add(struct dentry *dentry)
446 {
447 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
448 		d_lru_add(dentry);
449 }
450 
451 /**
452  * d_drop - drop a dentry
453  * @dentry: dentry to drop
454  *
455  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
456  * be found through a VFS lookup any more. Note that this is different from
457  * deleting the dentry - d_delete will try to mark the dentry negative if
458  * possible, giving a successful _negative_ lookup, while d_drop will
459  * just make the cache lookup fail.
460  *
461  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
462  * reason (NFS timeouts or autofs deletes).
463  *
464  * __d_drop requires dentry->d_lock
465  * ___d_drop doesn't mark dentry as "unhashed"
466  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
467  */
___d_drop(struct dentry * dentry)468 static void ___d_drop(struct dentry *dentry)
469 {
470 	if (!d_unhashed(dentry)) {
471 		struct hlist_bl_head *b;
472 		/*
473 		 * Hashed dentries are normally on the dentry hashtable,
474 		 * with the exception of those newly allocated by
475 		 * d_obtain_alias, which are always IS_ROOT:
476 		 */
477 		if (unlikely(IS_ROOT(dentry)))
478 			b = &dentry->d_sb->s_anon;
479 		else
480 			b = d_hash(dentry->d_name.hash);
481 
482 		hlist_bl_lock(b);
483 		__hlist_bl_del(&dentry->d_hash);
484 		hlist_bl_unlock(b);
485 		/* After this call, in-progress rcu-walk path lookup will fail. */
486 		write_seqcount_invalidate(&dentry->d_seq);
487 	}
488 }
489 
__d_drop(struct dentry * dentry)490 void __d_drop(struct dentry *dentry)
491 {
492 	___d_drop(dentry);
493 	dentry->d_hash.pprev = NULL;
494 }
495 EXPORT_SYMBOL(__d_drop);
496 
d_drop(struct dentry * dentry)497 void d_drop(struct dentry *dentry)
498 {
499 	spin_lock(&dentry->d_lock);
500 	__d_drop(dentry);
501 	spin_unlock(&dentry->d_lock);
502 }
503 EXPORT_SYMBOL(d_drop);
504 
dentry_unlist(struct dentry * dentry,struct dentry * parent)505 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
506 {
507 	struct dentry *next;
508 	/*
509 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
510 	 * attached to the dentry tree
511 	 */
512 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
513 	if (unlikely(list_empty(&dentry->d_child)))
514 		return;
515 	__list_del_entry(&dentry->d_child);
516 	/*
517 	 * Cursors can move around the list of children.  While we'd been
518 	 * a normal list member, it didn't matter - ->d_child.next would've
519 	 * been updated.  However, from now on it won't be and for the
520 	 * things like d_walk() it might end up with a nasty surprise.
521 	 * Normally d_walk() doesn't care about cursors moving around -
522 	 * ->d_lock on parent prevents that and since a cursor has no children
523 	 * of its own, we get through it without ever unlocking the parent.
524 	 * There is one exception, though - if we ascend from a child that
525 	 * gets killed as soon as we unlock it, the next sibling is found
526 	 * using the value left in its ->d_child.next.  And if _that_
527 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
528 	 * before d_walk() regains parent->d_lock, we'll end up skipping
529 	 * everything the cursor had been moved past.
530 	 *
531 	 * Solution: make sure that the pointer left behind in ->d_child.next
532 	 * points to something that won't be moving around.  I.e. skip the
533 	 * cursors.
534 	 */
535 	while (dentry->d_child.next != &parent->d_subdirs) {
536 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
537 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
538 			break;
539 		dentry->d_child.next = next->d_child.next;
540 	}
541 }
542 
__dentry_kill(struct dentry * dentry)543 static void __dentry_kill(struct dentry *dentry)
544 {
545 	struct dentry *parent = NULL;
546 	bool can_free = true;
547 	if (!IS_ROOT(dentry))
548 		parent = dentry->d_parent;
549 
550 	/*
551 	 * The dentry is now unrecoverably dead to the world.
552 	 */
553 	lockref_mark_dead(&dentry->d_lockref);
554 
555 	/*
556 	 * inform the fs via d_prune that this dentry is about to be
557 	 * unhashed and destroyed.
558 	 */
559 	if (dentry->d_flags & DCACHE_OP_PRUNE)
560 		dentry->d_op->d_prune(dentry);
561 
562 	if (dentry->d_flags & DCACHE_LRU_LIST) {
563 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
564 			d_lru_del(dentry);
565 	}
566 	/* if it was on the hash then remove it */
567 	__d_drop(dentry);
568 	dentry_unlist(dentry, parent);
569 	if (parent)
570 		spin_unlock(&parent->d_lock);
571 	if (dentry->d_inode)
572 		dentry_unlink_inode(dentry);
573 	else
574 		spin_unlock(&dentry->d_lock);
575 	this_cpu_dec(nr_dentry);
576 	if (dentry->d_op && dentry->d_op->d_release)
577 		dentry->d_op->d_release(dentry);
578 
579 	spin_lock(&dentry->d_lock);
580 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
581 		dentry->d_flags |= DCACHE_MAY_FREE;
582 		can_free = false;
583 	}
584 	spin_unlock(&dentry->d_lock);
585 	if (likely(can_free))
586 		dentry_free(dentry);
587 }
588 
589 /*
590  * Finish off a dentry we've decided to kill.
591  * dentry->d_lock must be held, returns with it unlocked.
592  * If ref is non-zero, then decrement the refcount too.
593  * Returns dentry requiring refcount drop, or NULL if we're done.
594  */
dentry_kill(struct dentry * dentry)595 static struct dentry *dentry_kill(struct dentry *dentry)
596 	__releases(dentry->d_lock)
597 {
598 	struct inode *inode = dentry->d_inode;
599 	struct dentry *parent = NULL;
600 
601 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
602 		goto failed;
603 
604 	if (!IS_ROOT(dentry)) {
605 		parent = dentry->d_parent;
606 		if (unlikely(!spin_trylock(&parent->d_lock))) {
607 			if (inode)
608 				spin_unlock(&inode->i_lock);
609 			goto failed;
610 		}
611 	}
612 
613 	__dentry_kill(dentry);
614 	return parent;
615 
616 failed:
617 	spin_unlock(&dentry->d_lock);
618 	return dentry; /* try again with same dentry */
619 }
620 
lock_parent(struct dentry * dentry)621 static inline struct dentry *lock_parent(struct dentry *dentry)
622 {
623 	struct dentry *parent = dentry->d_parent;
624 	if (IS_ROOT(dentry))
625 		return NULL;
626 	if (unlikely(dentry->d_lockref.count < 0))
627 		return NULL;
628 	if (likely(spin_trylock(&parent->d_lock)))
629 		return parent;
630 	rcu_read_lock();
631 	spin_unlock(&dentry->d_lock);
632 again:
633 	parent = ACCESS_ONCE(dentry->d_parent);
634 	spin_lock(&parent->d_lock);
635 	/*
636 	 * We can't blindly lock dentry until we are sure
637 	 * that we won't violate the locking order.
638 	 * Any changes of dentry->d_parent must have
639 	 * been done with parent->d_lock held, so
640 	 * spin_lock() above is enough of a barrier
641 	 * for checking if it's still our child.
642 	 */
643 	if (unlikely(parent != dentry->d_parent)) {
644 		spin_unlock(&parent->d_lock);
645 		goto again;
646 	}
647 	if (parent != dentry) {
648 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
649 		if (unlikely(dentry->d_lockref.count < 0)) {
650 			spin_unlock(&parent->d_lock);
651 			parent = NULL;
652 		}
653 	} else {
654 		parent = NULL;
655 	}
656 	rcu_read_unlock();
657 	return parent;
658 }
659 
660 /*
661  * Try to do a lockless dput(), and return whether that was successful.
662  *
663  * If unsuccessful, we return false, having already taken the dentry lock.
664  *
665  * The caller needs to hold the RCU read lock, so that the dentry is
666  * guaranteed to stay around even if the refcount goes down to zero!
667  */
fast_dput(struct dentry * dentry)668 static inline bool fast_dput(struct dentry *dentry)
669 {
670 	int ret;
671 	unsigned int d_flags;
672 
673 	/*
674 	 * If we have a d_op->d_delete() operation, we sould not
675 	 * let the dentry count go to zero, so use "put_or_lock".
676 	 */
677 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
678 		return lockref_put_or_lock(&dentry->d_lockref);
679 
680 	/*
681 	 * .. otherwise, we can try to just decrement the
682 	 * lockref optimistically.
683 	 */
684 	ret = lockref_put_return(&dentry->d_lockref);
685 
686 	/*
687 	 * If the lockref_put_return() failed due to the lock being held
688 	 * by somebody else, the fast path has failed. We will need to
689 	 * get the lock, and then check the count again.
690 	 */
691 	if (unlikely(ret < 0)) {
692 		spin_lock(&dentry->d_lock);
693 		if (dentry->d_lockref.count > 1) {
694 			dentry->d_lockref.count--;
695 			spin_unlock(&dentry->d_lock);
696 			return 1;
697 		}
698 		return 0;
699 	}
700 
701 	/*
702 	 * If we weren't the last ref, we're done.
703 	 */
704 	if (ret)
705 		return 1;
706 
707 	/*
708 	 * Careful, careful. The reference count went down
709 	 * to zero, but we don't hold the dentry lock, so
710 	 * somebody else could get it again, and do another
711 	 * dput(), and we need to not race with that.
712 	 *
713 	 * However, there is a very special and common case
714 	 * where we don't care, because there is nothing to
715 	 * do: the dentry is still hashed, it does not have
716 	 * a 'delete' op, and it's referenced and already on
717 	 * the LRU list.
718 	 *
719 	 * NOTE! Since we aren't locked, these values are
720 	 * not "stable". However, it is sufficient that at
721 	 * some point after we dropped the reference the
722 	 * dentry was hashed and the flags had the proper
723 	 * value. Other dentry users may have re-gotten
724 	 * a reference to the dentry and change that, but
725 	 * our work is done - we can leave the dentry
726 	 * around with a zero refcount.
727 	 */
728 	smp_rmb();
729 	d_flags = ACCESS_ONCE(dentry->d_flags);
730 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
731 
732 	/* Nothing to do? Dropping the reference was all we needed? */
733 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
734 		return 1;
735 
736 	/*
737 	 * Not the fast normal case? Get the lock. We've already decremented
738 	 * the refcount, but we'll need to re-check the situation after
739 	 * getting the lock.
740 	 */
741 	spin_lock(&dentry->d_lock);
742 
743 	/*
744 	 * Did somebody else grab a reference to it in the meantime, and
745 	 * we're no longer the last user after all? Alternatively, somebody
746 	 * else could have killed it and marked it dead. Either way, we
747 	 * don't need to do anything else.
748 	 */
749 	if (dentry->d_lockref.count) {
750 		spin_unlock(&dentry->d_lock);
751 		return 1;
752 	}
753 
754 	/*
755 	 * Re-get the reference we optimistically dropped. We hold the
756 	 * lock, and we just tested that it was zero, so we can just
757 	 * set it to 1.
758 	 */
759 	dentry->d_lockref.count = 1;
760 	return 0;
761 }
762 
763 
764 /*
765  * This is dput
766  *
767  * This is complicated by the fact that we do not want to put
768  * dentries that are no longer on any hash chain on the unused
769  * list: we'd much rather just get rid of them immediately.
770  *
771  * However, that implies that we have to traverse the dentry
772  * tree upwards to the parents which might _also_ now be
773  * scheduled for deletion (it may have been only waiting for
774  * its last child to go away).
775  *
776  * This tail recursion is done by hand as we don't want to depend
777  * on the compiler to always get this right (gcc generally doesn't).
778  * Real recursion would eat up our stack space.
779  */
780 
781 /*
782  * dput - release a dentry
783  * @dentry: dentry to release
784  *
785  * Release a dentry. This will drop the usage count and if appropriate
786  * call the dentry unlink method as well as removing it from the queues and
787  * releasing its resources. If the parent dentries were scheduled for release
788  * they too may now get deleted.
789  */
dput(struct dentry * dentry)790 void dput(struct dentry *dentry)
791 {
792 	if (unlikely(!dentry))
793 		return;
794 
795 repeat:
796 	might_sleep();
797 
798 	rcu_read_lock();
799 	if (likely(fast_dput(dentry))) {
800 		rcu_read_unlock();
801 		return;
802 	}
803 
804 	/* Slow case: now with the dentry lock held */
805 	rcu_read_unlock();
806 
807 	WARN_ON(d_in_lookup(dentry));
808 
809 	/* Unreachable? Get rid of it */
810 	if (unlikely(d_unhashed(dentry)))
811 		goto kill_it;
812 
813 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
814 		goto kill_it;
815 
816 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
817 		if (dentry->d_op->d_delete(dentry))
818 			goto kill_it;
819 	}
820 
821 	if (!(dentry->d_flags & DCACHE_REFERENCED))
822 		dentry->d_flags |= DCACHE_REFERENCED;
823 	dentry_lru_add(dentry);
824 
825 	dentry->d_lockref.count--;
826 	spin_unlock(&dentry->d_lock);
827 	return;
828 
829 kill_it:
830 	dentry = dentry_kill(dentry);
831 	if (dentry) {
832 		cond_resched();
833 		goto repeat;
834 	}
835 }
836 EXPORT_SYMBOL(dput);
837 
838 
839 /* This must be called with d_lock held */
__dget_dlock(struct dentry * dentry)840 static inline void __dget_dlock(struct dentry *dentry)
841 {
842 	dentry->d_lockref.count++;
843 }
844 
__dget(struct dentry * dentry)845 static inline void __dget(struct dentry *dentry)
846 {
847 	lockref_get(&dentry->d_lockref);
848 }
849 
dget_parent(struct dentry * dentry)850 struct dentry *dget_parent(struct dentry *dentry)
851 {
852 	int gotref;
853 	struct dentry *ret;
854 
855 	/*
856 	 * Do optimistic parent lookup without any
857 	 * locking.
858 	 */
859 	rcu_read_lock();
860 	ret = ACCESS_ONCE(dentry->d_parent);
861 	gotref = lockref_get_not_zero(&ret->d_lockref);
862 	rcu_read_unlock();
863 	if (likely(gotref)) {
864 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
865 			return ret;
866 		dput(ret);
867 	}
868 
869 repeat:
870 	/*
871 	 * Don't need rcu_dereference because we re-check it was correct under
872 	 * the lock.
873 	 */
874 	rcu_read_lock();
875 	ret = dentry->d_parent;
876 	spin_lock(&ret->d_lock);
877 	if (unlikely(ret != dentry->d_parent)) {
878 		spin_unlock(&ret->d_lock);
879 		rcu_read_unlock();
880 		goto repeat;
881 	}
882 	rcu_read_unlock();
883 	BUG_ON(!ret->d_lockref.count);
884 	ret->d_lockref.count++;
885 	spin_unlock(&ret->d_lock);
886 	return ret;
887 }
888 EXPORT_SYMBOL(dget_parent);
889 
890 /**
891  * d_find_alias - grab a hashed alias of inode
892  * @inode: inode in question
893  *
894  * If inode has a hashed alias, or is a directory and has any alias,
895  * acquire the reference to alias and return it. Otherwise return NULL.
896  * Notice that if inode is a directory there can be only one alias and
897  * it can be unhashed only if it has no children, or if it is the root
898  * of a filesystem, or if the directory was renamed and d_revalidate
899  * was the first vfs operation to notice.
900  *
901  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
902  * any other hashed alias over that one.
903  */
__d_find_alias(struct inode * inode)904 static struct dentry *__d_find_alias(struct inode *inode)
905 {
906 	struct dentry *alias, *discon_alias;
907 
908 again:
909 	discon_alias = NULL;
910 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
911 		spin_lock(&alias->d_lock);
912  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
913 			if (IS_ROOT(alias) &&
914 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
915 				discon_alias = alias;
916 			} else {
917 				__dget_dlock(alias);
918 				spin_unlock(&alias->d_lock);
919 				return alias;
920 			}
921 		}
922 		spin_unlock(&alias->d_lock);
923 	}
924 	if (discon_alias) {
925 		alias = discon_alias;
926 		spin_lock(&alias->d_lock);
927 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
928 			__dget_dlock(alias);
929 			spin_unlock(&alias->d_lock);
930 			return alias;
931 		}
932 		spin_unlock(&alias->d_lock);
933 		goto again;
934 	}
935 	return NULL;
936 }
937 
d_find_alias(struct inode * inode)938 struct dentry *d_find_alias(struct inode *inode)
939 {
940 	struct dentry *de = NULL;
941 
942 	if (!hlist_empty(&inode->i_dentry)) {
943 		spin_lock(&inode->i_lock);
944 		de = __d_find_alias(inode);
945 		spin_unlock(&inode->i_lock);
946 	}
947 	return de;
948 }
949 EXPORT_SYMBOL(d_find_alias);
950 
951 /*
952  *	Try to kill dentries associated with this inode.
953  * WARNING: you must own a reference to inode.
954  */
d_prune_aliases(struct inode * inode)955 void d_prune_aliases(struct inode *inode)
956 {
957 	struct dentry *dentry;
958 restart:
959 	spin_lock(&inode->i_lock);
960 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
961 		spin_lock(&dentry->d_lock);
962 		if (!dentry->d_lockref.count) {
963 			struct dentry *parent = lock_parent(dentry);
964 			if (likely(!dentry->d_lockref.count)) {
965 				__dentry_kill(dentry);
966 				dput(parent);
967 				goto restart;
968 			}
969 			if (parent)
970 				spin_unlock(&parent->d_lock);
971 		}
972 		spin_unlock(&dentry->d_lock);
973 	}
974 	spin_unlock(&inode->i_lock);
975 }
976 EXPORT_SYMBOL(d_prune_aliases);
977 
shrink_dentry_list(struct list_head * list)978 static void shrink_dentry_list(struct list_head *list)
979 {
980 	struct dentry *dentry, *parent;
981 
982 	while (!list_empty(list)) {
983 		struct inode *inode;
984 		dentry = list_entry(list->prev, struct dentry, d_lru);
985 		spin_lock(&dentry->d_lock);
986 		parent = lock_parent(dentry);
987 
988 		/*
989 		 * The dispose list is isolated and dentries are not accounted
990 		 * to the LRU here, so we can simply remove it from the list
991 		 * here regardless of whether it is referenced or not.
992 		 */
993 		d_shrink_del(dentry);
994 
995 		/*
996 		 * We found an inuse dentry which was not removed from
997 		 * the LRU because of laziness during lookup. Do not free it.
998 		 */
999 		if (dentry->d_lockref.count > 0) {
1000 			spin_unlock(&dentry->d_lock);
1001 			if (parent)
1002 				spin_unlock(&parent->d_lock);
1003 			continue;
1004 		}
1005 
1006 
1007 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1008 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1009 			spin_unlock(&dentry->d_lock);
1010 			if (parent)
1011 				spin_unlock(&parent->d_lock);
1012 			if (can_free)
1013 				dentry_free(dentry);
1014 			continue;
1015 		}
1016 
1017 		inode = dentry->d_inode;
1018 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1019 			d_shrink_add(dentry, list);
1020 			spin_unlock(&dentry->d_lock);
1021 			if (parent)
1022 				spin_unlock(&parent->d_lock);
1023 			continue;
1024 		}
1025 
1026 		__dentry_kill(dentry);
1027 
1028 		/*
1029 		 * We need to prune ancestors too. This is necessary to prevent
1030 		 * quadratic behavior of shrink_dcache_parent(), but is also
1031 		 * expected to be beneficial in reducing dentry cache
1032 		 * fragmentation.
1033 		 */
1034 		dentry = parent;
1035 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1036 			parent = lock_parent(dentry);
1037 			if (dentry->d_lockref.count != 1) {
1038 				dentry->d_lockref.count--;
1039 				spin_unlock(&dentry->d_lock);
1040 				if (parent)
1041 					spin_unlock(&parent->d_lock);
1042 				break;
1043 			}
1044 			inode = dentry->d_inode;	/* can't be NULL */
1045 			if (unlikely(!spin_trylock(&inode->i_lock))) {
1046 				spin_unlock(&dentry->d_lock);
1047 				if (parent)
1048 					spin_unlock(&parent->d_lock);
1049 				cpu_relax();
1050 				continue;
1051 			}
1052 			__dentry_kill(dentry);
1053 			dentry = parent;
1054 		}
1055 	}
1056 }
1057 
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1058 static enum lru_status dentry_lru_isolate(struct list_head *item,
1059 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1060 {
1061 	struct list_head *freeable = arg;
1062 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1063 
1064 
1065 	/*
1066 	 * we are inverting the lru lock/dentry->d_lock here,
1067 	 * so use a trylock. If we fail to get the lock, just skip
1068 	 * it
1069 	 */
1070 	if (!spin_trylock(&dentry->d_lock))
1071 		return LRU_SKIP;
1072 
1073 	/*
1074 	 * Referenced dentries are still in use. If they have active
1075 	 * counts, just remove them from the LRU. Otherwise give them
1076 	 * another pass through the LRU.
1077 	 */
1078 	if (dentry->d_lockref.count) {
1079 		d_lru_isolate(lru, dentry);
1080 		spin_unlock(&dentry->d_lock);
1081 		return LRU_REMOVED;
1082 	}
1083 
1084 	if (dentry->d_flags & DCACHE_REFERENCED) {
1085 		dentry->d_flags &= ~DCACHE_REFERENCED;
1086 		spin_unlock(&dentry->d_lock);
1087 
1088 		/*
1089 		 * The list move itself will be made by the common LRU code. At
1090 		 * this point, we've dropped the dentry->d_lock but keep the
1091 		 * lru lock. This is safe to do, since every list movement is
1092 		 * protected by the lru lock even if both locks are held.
1093 		 *
1094 		 * This is guaranteed by the fact that all LRU management
1095 		 * functions are intermediated by the LRU API calls like
1096 		 * list_lru_add and list_lru_del. List movement in this file
1097 		 * only ever occur through this functions or through callbacks
1098 		 * like this one, that are called from the LRU API.
1099 		 *
1100 		 * The only exceptions to this are functions like
1101 		 * shrink_dentry_list, and code that first checks for the
1102 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1103 		 * operating only with stack provided lists after they are
1104 		 * properly isolated from the main list.  It is thus, always a
1105 		 * local access.
1106 		 */
1107 		return LRU_ROTATE;
1108 	}
1109 
1110 	d_lru_shrink_move(lru, dentry, freeable);
1111 	spin_unlock(&dentry->d_lock);
1112 
1113 	return LRU_REMOVED;
1114 }
1115 
1116 /**
1117  * prune_dcache_sb - shrink the dcache
1118  * @sb: superblock
1119  * @sc: shrink control, passed to list_lru_shrink_walk()
1120  *
1121  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1122  * is done when we need more memory and called from the superblock shrinker
1123  * function.
1124  *
1125  * This function may fail to free any resources if all the dentries are in
1126  * use.
1127  */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1128 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1129 {
1130 	LIST_HEAD(dispose);
1131 	long freed;
1132 
1133 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1134 				     dentry_lru_isolate, &dispose);
1135 	shrink_dentry_list(&dispose);
1136 	return freed;
1137 }
1138 
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1139 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1140 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1141 {
1142 	struct list_head *freeable = arg;
1143 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1144 
1145 	/*
1146 	 * we are inverting the lru lock/dentry->d_lock here,
1147 	 * so use a trylock. If we fail to get the lock, just skip
1148 	 * it
1149 	 */
1150 	if (!spin_trylock(&dentry->d_lock))
1151 		return LRU_SKIP;
1152 
1153 	d_lru_shrink_move(lru, dentry, freeable);
1154 	spin_unlock(&dentry->d_lock);
1155 
1156 	return LRU_REMOVED;
1157 }
1158 
1159 
1160 /**
1161  * shrink_dcache_sb - shrink dcache for a superblock
1162  * @sb: superblock
1163  *
1164  * Shrink the dcache for the specified super block. This is used to free
1165  * the dcache before unmounting a file system.
1166  */
shrink_dcache_sb(struct super_block * sb)1167 void shrink_dcache_sb(struct super_block *sb)
1168 {
1169 	long freed;
1170 
1171 	do {
1172 		LIST_HEAD(dispose);
1173 
1174 		freed = list_lru_walk(&sb->s_dentry_lru,
1175 			dentry_lru_isolate_shrink, &dispose, 1024);
1176 
1177 		this_cpu_sub(nr_dentry_unused, freed);
1178 		shrink_dentry_list(&dispose);
1179 		cond_resched();
1180 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1181 }
1182 EXPORT_SYMBOL(shrink_dcache_sb);
1183 
1184 /**
1185  * enum d_walk_ret - action to talke during tree walk
1186  * @D_WALK_CONTINUE:	contrinue walk
1187  * @D_WALK_QUIT:	quit walk
1188  * @D_WALK_NORETRY:	quit when retry is needed
1189  * @D_WALK_SKIP:	skip this dentry and its children
1190  */
1191 enum d_walk_ret {
1192 	D_WALK_CONTINUE,
1193 	D_WALK_QUIT,
1194 	D_WALK_NORETRY,
1195 	D_WALK_SKIP,
1196 };
1197 
1198 /**
1199  * d_walk - walk the dentry tree
1200  * @parent:	start of walk
1201  * @data:	data passed to @enter() and @finish()
1202  * @enter:	callback when first entering the dentry
1203  * @finish:	callback when successfully finished the walk
1204  *
1205  * The @enter() and @finish() callbacks are called with d_lock held.
1206  */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *),void (* finish)(void *))1207 static void d_walk(struct dentry *parent, void *data,
1208 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1209 		   void (*finish)(void *))
1210 {
1211 	struct dentry *this_parent;
1212 	struct list_head *next;
1213 	unsigned seq = 0;
1214 	enum d_walk_ret ret;
1215 	bool retry = true;
1216 
1217 again:
1218 	read_seqbegin_or_lock(&rename_lock, &seq);
1219 	this_parent = parent;
1220 	spin_lock(&this_parent->d_lock);
1221 
1222 	ret = enter(data, this_parent);
1223 	switch (ret) {
1224 	case D_WALK_CONTINUE:
1225 		break;
1226 	case D_WALK_QUIT:
1227 	case D_WALK_SKIP:
1228 		goto out_unlock;
1229 	case D_WALK_NORETRY:
1230 		retry = false;
1231 		break;
1232 	}
1233 repeat:
1234 	next = this_parent->d_subdirs.next;
1235 resume:
1236 	while (next != &this_parent->d_subdirs) {
1237 		struct list_head *tmp = next;
1238 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1239 		next = tmp->next;
1240 
1241 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1242 			continue;
1243 
1244 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1245 
1246 		ret = enter(data, dentry);
1247 		switch (ret) {
1248 		case D_WALK_CONTINUE:
1249 			break;
1250 		case D_WALK_QUIT:
1251 			spin_unlock(&dentry->d_lock);
1252 			goto out_unlock;
1253 		case D_WALK_NORETRY:
1254 			retry = false;
1255 			break;
1256 		case D_WALK_SKIP:
1257 			spin_unlock(&dentry->d_lock);
1258 			continue;
1259 		}
1260 
1261 		if (!list_empty(&dentry->d_subdirs)) {
1262 			spin_unlock(&this_parent->d_lock);
1263 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1264 			this_parent = dentry;
1265 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1266 			goto repeat;
1267 		}
1268 		spin_unlock(&dentry->d_lock);
1269 	}
1270 	/*
1271 	 * All done at this level ... ascend and resume the search.
1272 	 */
1273 	rcu_read_lock();
1274 ascend:
1275 	if (this_parent != parent) {
1276 		struct dentry *child = this_parent;
1277 		this_parent = child->d_parent;
1278 
1279 		spin_unlock(&child->d_lock);
1280 		spin_lock(&this_parent->d_lock);
1281 
1282 		/* might go back up the wrong parent if we have had a rename. */
1283 		if (need_seqretry(&rename_lock, seq))
1284 			goto rename_retry;
1285 		/* go into the first sibling still alive */
1286 		do {
1287 			next = child->d_child.next;
1288 			if (next == &this_parent->d_subdirs)
1289 				goto ascend;
1290 			child = list_entry(next, struct dentry, d_child);
1291 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1292 		rcu_read_unlock();
1293 		goto resume;
1294 	}
1295 	if (need_seqretry(&rename_lock, seq))
1296 		goto rename_retry;
1297 	rcu_read_unlock();
1298 	if (finish)
1299 		finish(data);
1300 
1301 out_unlock:
1302 	spin_unlock(&this_parent->d_lock);
1303 	done_seqretry(&rename_lock, seq);
1304 	return;
1305 
1306 rename_retry:
1307 	spin_unlock(&this_parent->d_lock);
1308 	rcu_read_unlock();
1309 	BUG_ON(seq & 1);
1310 	if (!retry)
1311 		return;
1312 	seq = 1;
1313 	goto again;
1314 }
1315 
1316 /*
1317  * Search for at least 1 mount point in the dentry's subdirs.
1318  * We descend to the next level whenever the d_subdirs
1319  * list is non-empty and continue searching.
1320  */
1321 
check_mount(void * data,struct dentry * dentry)1322 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1323 {
1324 	int *ret = data;
1325 	if (d_mountpoint(dentry)) {
1326 		*ret = 1;
1327 		return D_WALK_QUIT;
1328 	}
1329 	return D_WALK_CONTINUE;
1330 }
1331 
1332 /**
1333  * have_submounts - check for mounts over a dentry
1334  * @parent: dentry to check.
1335  *
1336  * Return true if the parent or its subdirectories contain
1337  * a mount point
1338  */
have_submounts(struct dentry * parent)1339 int have_submounts(struct dentry *parent)
1340 {
1341 	int ret = 0;
1342 
1343 	d_walk(parent, &ret, check_mount, NULL);
1344 
1345 	return ret;
1346 }
1347 EXPORT_SYMBOL(have_submounts);
1348 
1349 /*
1350  * Called by mount code to set a mountpoint and check if the mountpoint is
1351  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1352  * subtree can become unreachable).
1353  *
1354  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1355  * this reason take rename_lock and d_lock on dentry and ancestors.
1356  */
d_set_mounted(struct dentry * dentry)1357 int d_set_mounted(struct dentry *dentry)
1358 {
1359 	struct dentry *p;
1360 	int ret = -ENOENT;
1361 	write_seqlock(&rename_lock);
1362 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1363 		/* Need exclusion wrt. d_invalidate() */
1364 		spin_lock(&p->d_lock);
1365 		if (unlikely(d_unhashed(p))) {
1366 			spin_unlock(&p->d_lock);
1367 			goto out;
1368 		}
1369 		spin_unlock(&p->d_lock);
1370 	}
1371 	spin_lock(&dentry->d_lock);
1372 	if (!d_unlinked(dentry)) {
1373 		ret = -EBUSY;
1374 		if (!d_mountpoint(dentry)) {
1375 			dentry->d_flags |= DCACHE_MOUNTED;
1376 			ret = 0;
1377 		}
1378 	}
1379  	spin_unlock(&dentry->d_lock);
1380 out:
1381 	write_sequnlock(&rename_lock);
1382 	return ret;
1383 }
1384 
1385 /*
1386  * Search the dentry child list of the specified parent,
1387  * and move any unused dentries to the end of the unused
1388  * list for prune_dcache(). We descend to the next level
1389  * whenever the d_subdirs list is non-empty and continue
1390  * searching.
1391  *
1392  * It returns zero iff there are no unused children,
1393  * otherwise  it returns the number of children moved to
1394  * the end of the unused list. This may not be the total
1395  * number of unused children, because select_parent can
1396  * drop the lock and return early due to latency
1397  * constraints.
1398  */
1399 
1400 struct select_data {
1401 	struct dentry *start;
1402 	struct list_head dispose;
1403 	int found;
1404 };
1405 
select_collect(void * _data,struct dentry * dentry)1406 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1407 {
1408 	struct select_data *data = _data;
1409 	enum d_walk_ret ret = D_WALK_CONTINUE;
1410 
1411 	if (data->start == dentry)
1412 		goto out;
1413 
1414 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1415 		data->found++;
1416 	} else {
1417 		if (dentry->d_flags & DCACHE_LRU_LIST)
1418 			d_lru_del(dentry);
1419 		if (!dentry->d_lockref.count) {
1420 			d_shrink_add(dentry, &data->dispose);
1421 			data->found++;
1422 		}
1423 	}
1424 	/*
1425 	 * We can return to the caller if we have found some (this
1426 	 * ensures forward progress). We'll be coming back to find
1427 	 * the rest.
1428 	 */
1429 	if (!list_empty(&data->dispose))
1430 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1431 out:
1432 	return ret;
1433 }
1434 
1435 /**
1436  * shrink_dcache_parent - prune dcache
1437  * @parent: parent of entries to prune
1438  *
1439  * Prune the dcache to remove unused children of the parent dentry.
1440  */
shrink_dcache_parent(struct dentry * parent)1441 void shrink_dcache_parent(struct dentry *parent)
1442 {
1443 	for (;;) {
1444 		struct select_data data;
1445 
1446 		INIT_LIST_HEAD(&data.dispose);
1447 		data.start = parent;
1448 		data.found = 0;
1449 
1450 		d_walk(parent, &data, select_collect, NULL);
1451 		if (!data.found)
1452 			break;
1453 
1454 		shrink_dentry_list(&data.dispose);
1455 		cond_resched();
1456 	}
1457 }
1458 EXPORT_SYMBOL(shrink_dcache_parent);
1459 
umount_check(void * _data,struct dentry * dentry)1460 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1461 {
1462 	/* it has busy descendents; complain about those instead */
1463 	if (!list_empty(&dentry->d_subdirs))
1464 		return D_WALK_CONTINUE;
1465 
1466 	/* root with refcount 1 is fine */
1467 	if (dentry == _data && dentry->d_lockref.count == 1)
1468 		return D_WALK_CONTINUE;
1469 
1470 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1471 			" still in use (%d) [unmount of %s %s]\n",
1472 		       dentry,
1473 		       dentry->d_inode ?
1474 		       dentry->d_inode->i_ino : 0UL,
1475 		       dentry,
1476 		       dentry->d_lockref.count,
1477 		       dentry->d_sb->s_type->name,
1478 		       dentry->d_sb->s_id);
1479 	WARN_ON(1);
1480 	return D_WALK_CONTINUE;
1481 }
1482 
do_one_tree(struct dentry * dentry)1483 static void do_one_tree(struct dentry *dentry)
1484 {
1485 	shrink_dcache_parent(dentry);
1486 	d_walk(dentry, dentry, umount_check, NULL);
1487 	d_drop(dentry);
1488 	dput(dentry);
1489 }
1490 
1491 /*
1492  * destroy the dentries attached to a superblock on unmounting
1493  */
shrink_dcache_for_umount(struct super_block * sb)1494 void shrink_dcache_for_umount(struct super_block *sb)
1495 {
1496 	struct dentry *dentry;
1497 
1498 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1499 
1500 	dentry = sb->s_root;
1501 	sb->s_root = NULL;
1502 	do_one_tree(dentry);
1503 
1504 	while (!hlist_bl_empty(&sb->s_anon)) {
1505 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1506 		do_one_tree(dentry);
1507 	}
1508 }
1509 
1510 struct detach_data {
1511 	struct select_data select;
1512 	struct dentry *mountpoint;
1513 };
detach_and_collect(void * _data,struct dentry * dentry)1514 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1515 {
1516 	struct detach_data *data = _data;
1517 
1518 	if (d_mountpoint(dentry)) {
1519 		__dget_dlock(dentry);
1520 		data->mountpoint = dentry;
1521 		return D_WALK_QUIT;
1522 	}
1523 
1524 	return select_collect(&data->select, dentry);
1525 }
1526 
check_and_drop(void * _data)1527 static void check_and_drop(void *_data)
1528 {
1529 	struct detach_data *data = _data;
1530 
1531 	if (!data->mountpoint && !data->select.found)
1532 		__d_drop(data->select.start);
1533 }
1534 
1535 /**
1536  * d_invalidate - detach submounts, prune dcache, and drop
1537  * @dentry: dentry to invalidate (aka detach, prune and drop)
1538  *
1539  * no dcache lock.
1540  *
1541  * The final d_drop is done as an atomic operation relative to
1542  * rename_lock ensuring there are no races with d_set_mounted.  This
1543  * ensures there are no unhashed dentries on the path to a mountpoint.
1544  */
d_invalidate(struct dentry * dentry)1545 void d_invalidate(struct dentry *dentry)
1546 {
1547 	/*
1548 	 * If it's already been dropped, return OK.
1549 	 */
1550 	spin_lock(&dentry->d_lock);
1551 	if (d_unhashed(dentry)) {
1552 		spin_unlock(&dentry->d_lock);
1553 		return;
1554 	}
1555 	spin_unlock(&dentry->d_lock);
1556 
1557 	/* Negative dentries can be dropped without further checks */
1558 	if (!dentry->d_inode) {
1559 		d_drop(dentry);
1560 		return;
1561 	}
1562 
1563 	for (;;) {
1564 		struct detach_data data;
1565 
1566 		data.mountpoint = NULL;
1567 		INIT_LIST_HEAD(&data.select.dispose);
1568 		data.select.start = dentry;
1569 		data.select.found = 0;
1570 
1571 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1572 
1573 		if (data.select.found)
1574 			shrink_dentry_list(&data.select.dispose);
1575 
1576 		if (data.mountpoint) {
1577 			detach_mounts(data.mountpoint);
1578 			dput(data.mountpoint);
1579 		}
1580 
1581 		if (!data.mountpoint && !data.select.found)
1582 			break;
1583 
1584 		cond_resched();
1585 	}
1586 }
1587 EXPORT_SYMBOL(d_invalidate);
1588 
1589 /**
1590  * __d_alloc	-	allocate a dcache entry
1591  * @sb: filesystem it will belong to
1592  * @name: qstr of the name
1593  *
1594  * Allocates a dentry. It returns %NULL if there is insufficient memory
1595  * available. On a success the dentry is returned. The name passed in is
1596  * copied and the copy passed in may be reused after this call.
1597  */
1598 
__d_alloc(struct super_block * sb,const struct qstr * name)1599 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1600 {
1601 	struct dentry *dentry;
1602 	char *dname;
1603 	int err;
1604 
1605 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1606 	if (!dentry)
1607 		return NULL;
1608 
1609 	/*
1610 	 * We guarantee that the inline name is always NUL-terminated.
1611 	 * This way the memcpy() done by the name switching in rename
1612 	 * will still always have a NUL at the end, even if we might
1613 	 * be overwriting an internal NUL character
1614 	 */
1615 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1616 	if (unlikely(!name)) {
1617 		static const struct qstr anon = QSTR_INIT("/", 1);
1618 		name = &anon;
1619 		dname = dentry->d_iname;
1620 	} else if (name->len > DNAME_INLINE_LEN-1) {
1621 		size_t size = offsetof(struct external_name, name[1]);
1622 		struct external_name *p = kmalloc(size + name->len,
1623 						  GFP_KERNEL_ACCOUNT);
1624 		if (!p) {
1625 			kmem_cache_free(dentry_cache, dentry);
1626 			return NULL;
1627 		}
1628 		atomic_set(&p->u.count, 1);
1629 		dname = p->name;
1630 		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1631 			kasan_unpoison_shadow(dname,
1632 				round_up(name->len + 1,	sizeof(unsigned long)));
1633 	} else  {
1634 		dname = dentry->d_iname;
1635 	}
1636 
1637 	dentry->d_name.len = name->len;
1638 	dentry->d_name.hash = name->hash;
1639 	memcpy(dname, name->name, name->len);
1640 	dname[name->len] = 0;
1641 
1642 	/* Make sure we always see the terminating NUL character */
1643 	smp_wmb();
1644 	dentry->d_name.name = dname;
1645 
1646 	dentry->d_lockref.count = 1;
1647 	dentry->d_flags = 0;
1648 	spin_lock_init(&dentry->d_lock);
1649 	seqcount_init(&dentry->d_seq);
1650 	dentry->d_inode = NULL;
1651 	dentry->d_parent = dentry;
1652 	dentry->d_sb = sb;
1653 	dentry->d_op = NULL;
1654 	dentry->d_fsdata = NULL;
1655 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1656 	INIT_LIST_HEAD(&dentry->d_lru);
1657 	INIT_LIST_HEAD(&dentry->d_subdirs);
1658 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1659 	INIT_LIST_HEAD(&dentry->d_child);
1660 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1661 
1662 	if (dentry->d_op && dentry->d_op->d_init) {
1663 		err = dentry->d_op->d_init(dentry);
1664 		if (err) {
1665 			if (dname_external(dentry))
1666 				kfree(external_name(dentry));
1667 			kmem_cache_free(dentry_cache, dentry);
1668 			return NULL;
1669 		}
1670 	}
1671 
1672 	this_cpu_inc(nr_dentry);
1673 
1674 	return dentry;
1675 }
1676 
1677 /**
1678  * d_alloc	-	allocate a dcache entry
1679  * @parent: parent of entry to allocate
1680  * @name: qstr of the name
1681  *
1682  * Allocates a dentry. It returns %NULL if there is insufficient memory
1683  * available. On a success the dentry is returned. The name passed in is
1684  * copied and the copy passed in may be reused after this call.
1685  */
d_alloc(struct dentry * parent,const struct qstr * name)1686 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1687 {
1688 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1689 	if (!dentry)
1690 		return NULL;
1691 	dentry->d_flags |= DCACHE_RCUACCESS;
1692 	spin_lock(&parent->d_lock);
1693 	/*
1694 	 * don't need child lock because it is not subject
1695 	 * to concurrency here
1696 	 */
1697 	__dget_dlock(parent);
1698 	dentry->d_parent = parent;
1699 	list_add(&dentry->d_child, &parent->d_subdirs);
1700 	spin_unlock(&parent->d_lock);
1701 
1702 	return dentry;
1703 }
1704 EXPORT_SYMBOL(d_alloc);
1705 
d_alloc_cursor(struct dentry * parent)1706 struct dentry *d_alloc_cursor(struct dentry * parent)
1707 {
1708 	struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1709 	if (dentry) {
1710 		dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1711 		dentry->d_parent = dget(parent);
1712 	}
1713 	return dentry;
1714 }
1715 
1716 /**
1717  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1718  * @sb: the superblock
1719  * @name: qstr of the name
1720  *
1721  * For a filesystem that just pins its dentries in memory and never
1722  * performs lookups at all, return an unhashed IS_ROOT dentry.
1723  */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1724 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1725 {
1726 	return __d_alloc(sb, name);
1727 }
1728 EXPORT_SYMBOL(d_alloc_pseudo);
1729 
d_alloc_name(struct dentry * parent,const char * name)1730 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1731 {
1732 	struct qstr q;
1733 
1734 	q.name = name;
1735 	q.hash_len = hashlen_string(parent, name);
1736 	return d_alloc(parent, &q);
1737 }
1738 EXPORT_SYMBOL(d_alloc_name);
1739 
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1740 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1741 {
1742 	WARN_ON_ONCE(dentry->d_op);
1743 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1744 				DCACHE_OP_COMPARE	|
1745 				DCACHE_OP_REVALIDATE	|
1746 				DCACHE_OP_WEAK_REVALIDATE	|
1747 				DCACHE_OP_DELETE	|
1748 				DCACHE_OP_REAL));
1749 	dentry->d_op = op;
1750 	if (!op)
1751 		return;
1752 	if (op->d_hash)
1753 		dentry->d_flags |= DCACHE_OP_HASH;
1754 	if (op->d_compare)
1755 		dentry->d_flags |= DCACHE_OP_COMPARE;
1756 	if (op->d_revalidate)
1757 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1758 	if (op->d_weak_revalidate)
1759 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1760 	if (op->d_delete)
1761 		dentry->d_flags |= DCACHE_OP_DELETE;
1762 	if (op->d_prune)
1763 		dentry->d_flags |= DCACHE_OP_PRUNE;
1764 	if (op->d_real)
1765 		dentry->d_flags |= DCACHE_OP_REAL;
1766 
1767 }
1768 EXPORT_SYMBOL(d_set_d_op);
1769 
1770 
1771 /*
1772  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1773  * @dentry - The dentry to mark
1774  *
1775  * Mark a dentry as falling through to the lower layer (as set with
1776  * d_pin_lower()).  This flag may be recorded on the medium.
1777  */
d_set_fallthru(struct dentry * dentry)1778 void d_set_fallthru(struct dentry *dentry)
1779 {
1780 	spin_lock(&dentry->d_lock);
1781 	dentry->d_flags |= DCACHE_FALLTHRU;
1782 	spin_unlock(&dentry->d_lock);
1783 }
1784 EXPORT_SYMBOL(d_set_fallthru);
1785 
d_flags_for_inode(struct inode * inode)1786 static unsigned d_flags_for_inode(struct inode *inode)
1787 {
1788 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1789 
1790 	if (!inode)
1791 		return DCACHE_MISS_TYPE;
1792 
1793 	if (S_ISDIR(inode->i_mode)) {
1794 		add_flags = DCACHE_DIRECTORY_TYPE;
1795 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1796 			if (unlikely(!inode->i_op->lookup))
1797 				add_flags = DCACHE_AUTODIR_TYPE;
1798 			else
1799 				inode->i_opflags |= IOP_LOOKUP;
1800 		}
1801 		goto type_determined;
1802 	}
1803 
1804 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1805 		if (unlikely(inode->i_op->get_link)) {
1806 			add_flags = DCACHE_SYMLINK_TYPE;
1807 			goto type_determined;
1808 		}
1809 		inode->i_opflags |= IOP_NOFOLLOW;
1810 	}
1811 
1812 	if (unlikely(!S_ISREG(inode->i_mode)))
1813 		add_flags = DCACHE_SPECIAL_TYPE;
1814 
1815 type_determined:
1816 	if (unlikely(IS_AUTOMOUNT(inode)))
1817 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1818 	return add_flags;
1819 }
1820 
__d_instantiate(struct dentry * dentry,struct inode * inode)1821 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1822 {
1823 	unsigned add_flags = d_flags_for_inode(inode);
1824 	WARN_ON(d_in_lookup(dentry));
1825 
1826 	spin_lock(&dentry->d_lock);
1827 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1828 	raw_write_seqcount_begin(&dentry->d_seq);
1829 	__d_set_inode_and_type(dentry, inode, add_flags);
1830 	raw_write_seqcount_end(&dentry->d_seq);
1831 	fsnotify_update_flags(dentry);
1832 	spin_unlock(&dentry->d_lock);
1833 }
1834 
1835 /**
1836  * d_instantiate - fill in inode information for a dentry
1837  * @entry: dentry to complete
1838  * @inode: inode to attach to this dentry
1839  *
1840  * Fill in inode information in the entry.
1841  *
1842  * This turns negative dentries into productive full members
1843  * of society.
1844  *
1845  * NOTE! This assumes that the inode count has been incremented
1846  * (or otherwise set) by the caller to indicate that it is now
1847  * in use by the dcache.
1848  */
1849 
d_instantiate(struct dentry * entry,struct inode * inode)1850 void d_instantiate(struct dentry *entry, struct inode * inode)
1851 {
1852 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1853 	if (inode) {
1854 		security_d_instantiate(entry, inode);
1855 		spin_lock(&inode->i_lock);
1856 		__d_instantiate(entry, inode);
1857 		spin_unlock(&inode->i_lock);
1858 	}
1859 }
1860 EXPORT_SYMBOL(d_instantiate);
1861 
1862 /**
1863  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1864  * @entry: dentry to complete
1865  * @inode: inode to attach to this dentry
1866  *
1867  * Fill in inode information in the entry.  If a directory alias is found, then
1868  * return an error (and drop inode).  Together with d_materialise_unique() this
1869  * guarantees that a directory inode may never have more than one alias.
1870  */
d_instantiate_no_diralias(struct dentry * entry,struct inode * inode)1871 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1872 {
1873 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1874 
1875 	security_d_instantiate(entry, inode);
1876 	spin_lock(&inode->i_lock);
1877 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1878 		spin_unlock(&inode->i_lock);
1879 		iput(inode);
1880 		return -EBUSY;
1881 	}
1882 	__d_instantiate(entry, inode);
1883 	spin_unlock(&inode->i_lock);
1884 
1885 	return 0;
1886 }
1887 EXPORT_SYMBOL(d_instantiate_no_diralias);
1888 
d_make_root(struct inode * root_inode)1889 struct dentry *d_make_root(struct inode *root_inode)
1890 {
1891 	struct dentry *res = NULL;
1892 
1893 	if (root_inode) {
1894 		res = __d_alloc(root_inode->i_sb, NULL);
1895 		if (res)
1896 			d_instantiate(res, root_inode);
1897 		else
1898 			iput(root_inode);
1899 	}
1900 	return res;
1901 }
1902 EXPORT_SYMBOL(d_make_root);
1903 
__d_find_any_alias(struct inode * inode)1904 static struct dentry * __d_find_any_alias(struct inode *inode)
1905 {
1906 	struct dentry *alias;
1907 
1908 	if (hlist_empty(&inode->i_dentry))
1909 		return NULL;
1910 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1911 	__dget(alias);
1912 	return alias;
1913 }
1914 
1915 /**
1916  * d_find_any_alias - find any alias for a given inode
1917  * @inode: inode to find an alias for
1918  *
1919  * If any aliases exist for the given inode, take and return a
1920  * reference for one of them.  If no aliases exist, return %NULL.
1921  */
d_find_any_alias(struct inode * inode)1922 struct dentry *d_find_any_alias(struct inode *inode)
1923 {
1924 	struct dentry *de;
1925 
1926 	spin_lock(&inode->i_lock);
1927 	de = __d_find_any_alias(inode);
1928 	spin_unlock(&inode->i_lock);
1929 	return de;
1930 }
1931 EXPORT_SYMBOL(d_find_any_alias);
1932 
__d_obtain_alias(struct inode * inode,int disconnected)1933 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1934 {
1935 	struct dentry *tmp;
1936 	struct dentry *res;
1937 	unsigned add_flags;
1938 
1939 	if (!inode)
1940 		return ERR_PTR(-ESTALE);
1941 	if (IS_ERR(inode))
1942 		return ERR_CAST(inode);
1943 
1944 	res = d_find_any_alias(inode);
1945 	if (res)
1946 		goto out_iput;
1947 
1948 	tmp = __d_alloc(inode->i_sb, NULL);
1949 	if (!tmp) {
1950 		res = ERR_PTR(-ENOMEM);
1951 		goto out_iput;
1952 	}
1953 
1954 	security_d_instantiate(tmp, inode);
1955 	spin_lock(&inode->i_lock);
1956 	res = __d_find_any_alias(inode);
1957 	if (res) {
1958 		spin_unlock(&inode->i_lock);
1959 		dput(tmp);
1960 		goto out_iput;
1961 	}
1962 
1963 	/* attach a disconnected dentry */
1964 	add_flags = d_flags_for_inode(inode);
1965 
1966 	if (disconnected)
1967 		add_flags |= DCACHE_DISCONNECTED;
1968 
1969 	spin_lock(&tmp->d_lock);
1970 	__d_set_inode_and_type(tmp, inode, add_flags);
1971 	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1972 	hlist_bl_lock(&tmp->d_sb->s_anon);
1973 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1974 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1975 	spin_unlock(&tmp->d_lock);
1976 	spin_unlock(&inode->i_lock);
1977 
1978 	return tmp;
1979 
1980  out_iput:
1981 	iput(inode);
1982 	return res;
1983 }
1984 
1985 /**
1986  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1987  * @inode: inode to allocate the dentry for
1988  *
1989  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1990  * similar open by handle operations.  The returned dentry may be anonymous,
1991  * or may have a full name (if the inode was already in the cache).
1992  *
1993  * When called on a directory inode, we must ensure that the inode only ever
1994  * has one dentry.  If a dentry is found, that is returned instead of
1995  * allocating a new one.
1996  *
1997  * On successful return, the reference to the inode has been transferred
1998  * to the dentry.  In case of an error the reference on the inode is released.
1999  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2000  * be passed in and the error will be propagated to the return value,
2001  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2002  */
d_obtain_alias(struct inode * inode)2003 struct dentry *d_obtain_alias(struct inode *inode)
2004 {
2005 	return __d_obtain_alias(inode, 1);
2006 }
2007 EXPORT_SYMBOL(d_obtain_alias);
2008 
2009 /**
2010  * d_obtain_root - find or allocate a dentry for a given inode
2011  * @inode: inode to allocate the dentry for
2012  *
2013  * Obtain an IS_ROOT dentry for the root of a filesystem.
2014  *
2015  * We must ensure that directory inodes only ever have one dentry.  If a
2016  * dentry is found, that is returned instead of allocating a new one.
2017  *
2018  * On successful return, the reference to the inode has been transferred
2019  * to the dentry.  In case of an error the reference on the inode is
2020  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2021  * error will be propagate to the return value, with a %NULL @inode
2022  * replaced by ERR_PTR(-ESTALE).
2023  */
d_obtain_root(struct inode * inode)2024 struct dentry *d_obtain_root(struct inode *inode)
2025 {
2026 	return __d_obtain_alias(inode, 0);
2027 }
2028 EXPORT_SYMBOL(d_obtain_root);
2029 
2030 /**
2031  * d_add_ci - lookup or allocate new dentry with case-exact name
2032  * @inode:  the inode case-insensitive lookup has found
2033  * @dentry: the negative dentry that was passed to the parent's lookup func
2034  * @name:   the case-exact name to be associated with the returned dentry
2035  *
2036  * This is to avoid filling the dcache with case-insensitive names to the
2037  * same inode, only the actual correct case is stored in the dcache for
2038  * case-insensitive filesystems.
2039  *
2040  * For a case-insensitive lookup match and if the the case-exact dentry
2041  * already exists in in the dcache, use it and return it.
2042  *
2043  * If no entry exists with the exact case name, allocate new dentry with
2044  * the exact case, and return the spliced entry.
2045  */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2046 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2047 			struct qstr *name)
2048 {
2049 	struct dentry *found, *res;
2050 
2051 	/*
2052 	 * First check if a dentry matching the name already exists,
2053 	 * if not go ahead and create it now.
2054 	 */
2055 	found = d_hash_and_lookup(dentry->d_parent, name);
2056 	if (found) {
2057 		iput(inode);
2058 		return found;
2059 	}
2060 	if (d_in_lookup(dentry)) {
2061 		found = d_alloc_parallel(dentry->d_parent, name,
2062 					dentry->d_wait);
2063 		if (IS_ERR(found) || !d_in_lookup(found)) {
2064 			iput(inode);
2065 			return found;
2066 		}
2067 	} else {
2068 		found = d_alloc(dentry->d_parent, name);
2069 		if (!found) {
2070 			iput(inode);
2071 			return ERR_PTR(-ENOMEM);
2072 		}
2073 	}
2074 	res = d_splice_alias(inode, found);
2075 	if (res) {
2076 		dput(found);
2077 		return res;
2078 	}
2079 	return found;
2080 }
2081 EXPORT_SYMBOL(d_add_ci);
2082 
2083 
d_same_name(const struct dentry * dentry,const struct dentry * parent,const struct qstr * name)2084 static inline bool d_same_name(const struct dentry *dentry,
2085 				const struct dentry *parent,
2086 				const struct qstr *name)
2087 {
2088 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2089 		if (dentry->d_name.len != name->len)
2090 			return false;
2091 		return dentry_cmp(dentry, name->name, name->len) == 0;
2092 	}
2093 	return parent->d_op->d_compare(dentry,
2094 				       dentry->d_name.len, dentry->d_name.name,
2095 				       name) == 0;
2096 }
2097 
2098 /**
2099  * __d_lookup_rcu - search for a dentry (racy, store-free)
2100  * @parent: parent dentry
2101  * @name: qstr of name we wish to find
2102  * @seqp: returns d_seq value at the point where the dentry was found
2103  * Returns: dentry, or NULL
2104  *
2105  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2106  * resolution (store-free path walking) design described in
2107  * Documentation/filesystems/path-lookup.txt.
2108  *
2109  * This is not to be used outside core vfs.
2110  *
2111  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2112  * held, and rcu_read_lock held. The returned dentry must not be stored into
2113  * without taking d_lock and checking d_seq sequence count against @seq
2114  * returned here.
2115  *
2116  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2117  * function.
2118  *
2119  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2120  * the returned dentry, so long as its parent's seqlock is checked after the
2121  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2122  * is formed, giving integrity down the path walk.
2123  *
2124  * NOTE! The caller *has* to check the resulting dentry against the sequence
2125  * number we've returned before using any of the resulting dentry state!
2126  */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2127 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2128 				const struct qstr *name,
2129 				unsigned *seqp)
2130 {
2131 	u64 hashlen = name->hash_len;
2132 	const unsigned char *str = name->name;
2133 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2134 	struct hlist_bl_node *node;
2135 	struct dentry *dentry;
2136 
2137 	/*
2138 	 * Note: There is significant duplication with __d_lookup_rcu which is
2139 	 * required to prevent single threaded performance regressions
2140 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2141 	 * Keep the two functions in sync.
2142 	 */
2143 
2144 	/*
2145 	 * The hash list is protected using RCU.
2146 	 *
2147 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2148 	 * races with d_move().
2149 	 *
2150 	 * It is possible that concurrent renames can mess up our list
2151 	 * walk here and result in missing our dentry, resulting in the
2152 	 * false-negative result. d_lookup() protects against concurrent
2153 	 * renames using rename_lock seqlock.
2154 	 *
2155 	 * See Documentation/filesystems/path-lookup.txt for more details.
2156 	 */
2157 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2158 		unsigned seq;
2159 
2160 seqretry:
2161 		/*
2162 		 * The dentry sequence count protects us from concurrent
2163 		 * renames, and thus protects parent and name fields.
2164 		 *
2165 		 * The caller must perform a seqcount check in order
2166 		 * to do anything useful with the returned dentry.
2167 		 *
2168 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2169 		 * we don't wait for the sequence count to stabilize if it
2170 		 * is in the middle of a sequence change. If we do the slow
2171 		 * dentry compare, we will do seqretries until it is stable,
2172 		 * and if we end up with a successful lookup, we actually
2173 		 * want to exit RCU lookup anyway.
2174 		 *
2175 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2176 		 * we are still guaranteed NUL-termination of ->d_name.name.
2177 		 */
2178 		seq = raw_seqcount_begin(&dentry->d_seq);
2179 		if (dentry->d_parent != parent)
2180 			continue;
2181 		if (d_unhashed(dentry))
2182 			continue;
2183 
2184 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2185 			int tlen;
2186 			const char *tname;
2187 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2188 				continue;
2189 			tlen = dentry->d_name.len;
2190 			tname = dentry->d_name.name;
2191 			/* we want a consistent (name,len) pair */
2192 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2193 				cpu_relax();
2194 				goto seqretry;
2195 			}
2196 			if (parent->d_op->d_compare(dentry,
2197 						    tlen, tname, name) != 0)
2198 				continue;
2199 		} else {
2200 			if (dentry->d_name.hash_len != hashlen)
2201 				continue;
2202 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2203 				continue;
2204 		}
2205 		*seqp = seq;
2206 		return dentry;
2207 	}
2208 	return NULL;
2209 }
2210 
2211 /**
2212  * d_lookup - search for a dentry
2213  * @parent: parent dentry
2214  * @name: qstr of name we wish to find
2215  * Returns: dentry, or NULL
2216  *
2217  * d_lookup searches the children of the parent dentry for the name in
2218  * question. If the dentry is found its reference count is incremented and the
2219  * dentry is returned. The caller must use dput to free the entry when it has
2220  * finished using it. %NULL is returned if the dentry does not exist.
2221  */
d_lookup(const struct dentry * parent,const struct qstr * name)2222 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2223 {
2224 	struct dentry *dentry;
2225 	unsigned seq;
2226 
2227 	do {
2228 		seq = read_seqbegin(&rename_lock);
2229 		dentry = __d_lookup(parent, name);
2230 		if (dentry)
2231 			break;
2232 	} while (read_seqretry(&rename_lock, seq));
2233 	return dentry;
2234 }
2235 EXPORT_SYMBOL(d_lookup);
2236 
2237 /**
2238  * __d_lookup - search for a dentry (racy)
2239  * @parent: parent dentry
2240  * @name: qstr of name we wish to find
2241  * Returns: dentry, or NULL
2242  *
2243  * __d_lookup is like d_lookup, however it may (rarely) return a
2244  * false-negative result due to unrelated rename activity.
2245  *
2246  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2247  * however it must be used carefully, eg. with a following d_lookup in
2248  * the case of failure.
2249  *
2250  * __d_lookup callers must be commented.
2251  */
__d_lookup(const struct dentry * parent,const struct qstr * name)2252 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2253 {
2254 	unsigned int hash = name->hash;
2255 	struct hlist_bl_head *b = d_hash(hash);
2256 	struct hlist_bl_node *node;
2257 	struct dentry *found = NULL;
2258 	struct dentry *dentry;
2259 
2260 	/*
2261 	 * Note: There is significant duplication with __d_lookup_rcu which is
2262 	 * required to prevent single threaded performance regressions
2263 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2264 	 * Keep the two functions in sync.
2265 	 */
2266 
2267 	/*
2268 	 * The hash list is protected using RCU.
2269 	 *
2270 	 * Take d_lock when comparing a candidate dentry, to avoid races
2271 	 * with d_move().
2272 	 *
2273 	 * It is possible that concurrent renames can mess up our list
2274 	 * walk here and result in missing our dentry, resulting in the
2275 	 * false-negative result. d_lookup() protects against concurrent
2276 	 * renames using rename_lock seqlock.
2277 	 *
2278 	 * See Documentation/filesystems/path-lookup.txt for more details.
2279 	 */
2280 	rcu_read_lock();
2281 
2282 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2283 
2284 		if (dentry->d_name.hash != hash)
2285 			continue;
2286 
2287 		spin_lock(&dentry->d_lock);
2288 		if (dentry->d_parent != parent)
2289 			goto next;
2290 		if (d_unhashed(dentry))
2291 			goto next;
2292 
2293 		if (!d_same_name(dentry, parent, name))
2294 			goto next;
2295 
2296 		dentry->d_lockref.count++;
2297 		found = dentry;
2298 		spin_unlock(&dentry->d_lock);
2299 		break;
2300 next:
2301 		spin_unlock(&dentry->d_lock);
2302  	}
2303  	rcu_read_unlock();
2304 
2305  	return found;
2306 }
2307 
2308 /**
2309  * d_hash_and_lookup - hash the qstr then search for a dentry
2310  * @dir: Directory to search in
2311  * @name: qstr of name we wish to find
2312  *
2313  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2314  */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2315 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2316 {
2317 	/*
2318 	 * Check for a fs-specific hash function. Note that we must
2319 	 * calculate the standard hash first, as the d_op->d_hash()
2320 	 * routine may choose to leave the hash value unchanged.
2321 	 */
2322 	name->hash = full_name_hash(dir, name->name, name->len);
2323 	if (dir->d_flags & DCACHE_OP_HASH) {
2324 		int err = dir->d_op->d_hash(dir, name);
2325 		if (unlikely(err < 0))
2326 			return ERR_PTR(err);
2327 	}
2328 	return d_lookup(dir, name);
2329 }
2330 EXPORT_SYMBOL(d_hash_and_lookup);
2331 
2332 /*
2333  * When a file is deleted, we have two options:
2334  * - turn this dentry into a negative dentry
2335  * - unhash this dentry and free it.
2336  *
2337  * Usually, we want to just turn this into
2338  * a negative dentry, but if anybody else is
2339  * currently using the dentry or the inode
2340  * we can't do that and we fall back on removing
2341  * it from the hash queues and waiting for
2342  * it to be deleted later when it has no users
2343  */
2344 
2345 /**
2346  * d_delete - delete a dentry
2347  * @dentry: The dentry to delete
2348  *
2349  * Turn the dentry into a negative dentry if possible, otherwise
2350  * remove it from the hash queues so it can be deleted later
2351  */
2352 
d_delete(struct dentry * dentry)2353 void d_delete(struct dentry * dentry)
2354 {
2355 	struct inode *inode;
2356 	int isdir = 0;
2357 	/*
2358 	 * Are we the only user?
2359 	 */
2360 again:
2361 	spin_lock(&dentry->d_lock);
2362 	inode = dentry->d_inode;
2363 	isdir = S_ISDIR(inode->i_mode);
2364 	if (dentry->d_lockref.count == 1) {
2365 		if (!spin_trylock(&inode->i_lock)) {
2366 			spin_unlock(&dentry->d_lock);
2367 			cpu_relax();
2368 			goto again;
2369 		}
2370 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2371 		dentry_unlink_inode(dentry);
2372 		fsnotify_nameremove(dentry, isdir);
2373 		return;
2374 	}
2375 
2376 	if (!d_unhashed(dentry))
2377 		__d_drop(dentry);
2378 
2379 	spin_unlock(&dentry->d_lock);
2380 
2381 	fsnotify_nameremove(dentry, isdir);
2382 }
2383 EXPORT_SYMBOL(d_delete);
2384 
__d_rehash(struct dentry * entry)2385 static void __d_rehash(struct dentry *entry)
2386 {
2387 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2388 
2389 	hlist_bl_lock(b);
2390 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2391 	hlist_bl_unlock(b);
2392 }
2393 
2394 /**
2395  * d_rehash	- add an entry back to the hash
2396  * @entry: dentry to add to the hash
2397  *
2398  * Adds a dentry to the hash according to its name.
2399  */
2400 
d_rehash(struct dentry * entry)2401 void d_rehash(struct dentry * entry)
2402 {
2403 	spin_lock(&entry->d_lock);
2404 	__d_rehash(entry);
2405 	spin_unlock(&entry->d_lock);
2406 }
2407 EXPORT_SYMBOL(d_rehash);
2408 
start_dir_add(struct inode * dir)2409 static inline unsigned start_dir_add(struct inode *dir)
2410 {
2411 
2412 	for (;;) {
2413 		unsigned n = dir->i_dir_seq;
2414 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2415 			return n;
2416 		cpu_relax();
2417 	}
2418 }
2419 
end_dir_add(struct inode * dir,unsigned n)2420 static inline void end_dir_add(struct inode *dir, unsigned n)
2421 {
2422 	smp_store_release(&dir->i_dir_seq, n + 2);
2423 }
2424 
d_wait_lookup(struct dentry * dentry)2425 static void d_wait_lookup(struct dentry *dentry)
2426 {
2427 	if (d_in_lookup(dentry)) {
2428 		DECLARE_WAITQUEUE(wait, current);
2429 		add_wait_queue(dentry->d_wait, &wait);
2430 		do {
2431 			set_current_state(TASK_UNINTERRUPTIBLE);
2432 			spin_unlock(&dentry->d_lock);
2433 			schedule();
2434 			spin_lock(&dentry->d_lock);
2435 		} while (d_in_lookup(dentry));
2436 	}
2437 }
2438 
d_alloc_parallel(struct dentry * parent,const struct qstr * name,wait_queue_head_t * wq)2439 struct dentry *d_alloc_parallel(struct dentry *parent,
2440 				const struct qstr *name,
2441 				wait_queue_head_t *wq)
2442 {
2443 	unsigned int hash = name->hash;
2444 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2445 	struct hlist_bl_node *node;
2446 	struct dentry *new = d_alloc(parent, name);
2447 	struct dentry *dentry;
2448 	unsigned seq, r_seq, d_seq;
2449 
2450 	if (unlikely(!new))
2451 		return ERR_PTR(-ENOMEM);
2452 
2453 retry:
2454 	rcu_read_lock();
2455 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2456 	r_seq = read_seqbegin(&rename_lock);
2457 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2458 	if (unlikely(dentry)) {
2459 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2460 			rcu_read_unlock();
2461 			goto retry;
2462 		}
2463 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2464 			rcu_read_unlock();
2465 			dput(dentry);
2466 			goto retry;
2467 		}
2468 		rcu_read_unlock();
2469 		dput(new);
2470 		return dentry;
2471 	}
2472 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2473 		rcu_read_unlock();
2474 		goto retry;
2475 	}
2476 	hlist_bl_lock(b);
2477 	if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2478 		hlist_bl_unlock(b);
2479 		rcu_read_unlock();
2480 		goto retry;
2481 	}
2482 	/*
2483 	 * No changes for the parent since the beginning of d_lookup().
2484 	 * Since all removals from the chain happen with hlist_bl_lock(),
2485 	 * any potential in-lookup matches are going to stay here until
2486 	 * we unlock the chain.  All fields are stable in everything
2487 	 * we encounter.
2488 	 */
2489 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2490 		if (dentry->d_name.hash != hash)
2491 			continue;
2492 		if (dentry->d_parent != parent)
2493 			continue;
2494 		if (!d_same_name(dentry, parent, name))
2495 			continue;
2496 		hlist_bl_unlock(b);
2497 		/* now we can try to grab a reference */
2498 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2499 			rcu_read_unlock();
2500 			goto retry;
2501 		}
2502 
2503 		rcu_read_unlock();
2504 		/*
2505 		 * somebody is likely to be still doing lookup for it;
2506 		 * wait for them to finish
2507 		 */
2508 		spin_lock(&dentry->d_lock);
2509 		d_wait_lookup(dentry);
2510 		/*
2511 		 * it's not in-lookup anymore; in principle we should repeat
2512 		 * everything from dcache lookup, but it's likely to be what
2513 		 * d_lookup() would've found anyway.  If it is, just return it;
2514 		 * otherwise we really have to repeat the whole thing.
2515 		 */
2516 		if (unlikely(dentry->d_name.hash != hash))
2517 			goto mismatch;
2518 		if (unlikely(dentry->d_parent != parent))
2519 			goto mismatch;
2520 		if (unlikely(d_unhashed(dentry)))
2521 			goto mismatch;
2522 		if (unlikely(!d_same_name(dentry, parent, name)))
2523 			goto mismatch;
2524 		/* OK, it *is* a hashed match; return it */
2525 		spin_unlock(&dentry->d_lock);
2526 		dput(new);
2527 		return dentry;
2528 	}
2529 	rcu_read_unlock();
2530 	/* we can't take ->d_lock here; it's OK, though. */
2531 	new->d_flags |= DCACHE_PAR_LOOKUP;
2532 	new->d_wait = wq;
2533 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2534 	hlist_bl_unlock(b);
2535 	return new;
2536 mismatch:
2537 	spin_unlock(&dentry->d_lock);
2538 	dput(dentry);
2539 	goto retry;
2540 }
2541 EXPORT_SYMBOL(d_alloc_parallel);
2542 
__d_lookup_done(struct dentry * dentry)2543 void __d_lookup_done(struct dentry *dentry)
2544 {
2545 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2546 						 dentry->d_name.hash);
2547 	hlist_bl_lock(b);
2548 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2549 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2550 	wake_up_all(dentry->d_wait);
2551 	dentry->d_wait = NULL;
2552 	hlist_bl_unlock(b);
2553 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2554 	INIT_LIST_HEAD(&dentry->d_lru);
2555 }
2556 EXPORT_SYMBOL(__d_lookup_done);
2557 
2558 /* inode->i_lock held if inode is non-NULL */
2559 
__d_add(struct dentry * dentry,struct inode * inode)2560 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2561 {
2562 	struct inode *dir = NULL;
2563 	unsigned n;
2564 	spin_lock(&dentry->d_lock);
2565 	if (unlikely(d_in_lookup(dentry))) {
2566 		dir = dentry->d_parent->d_inode;
2567 		n = start_dir_add(dir);
2568 		__d_lookup_done(dentry);
2569 	}
2570 	if (inode) {
2571 		unsigned add_flags = d_flags_for_inode(inode);
2572 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2573 		raw_write_seqcount_begin(&dentry->d_seq);
2574 		__d_set_inode_and_type(dentry, inode, add_flags);
2575 		raw_write_seqcount_end(&dentry->d_seq);
2576 		fsnotify_update_flags(dentry);
2577 	}
2578 	__d_rehash(dentry);
2579 	if (dir)
2580 		end_dir_add(dir, n);
2581 	spin_unlock(&dentry->d_lock);
2582 	if (inode)
2583 		spin_unlock(&inode->i_lock);
2584 }
2585 
2586 /**
2587  * d_add - add dentry to hash queues
2588  * @entry: dentry to add
2589  * @inode: The inode to attach to this dentry
2590  *
2591  * This adds the entry to the hash queues and initializes @inode.
2592  * The entry was actually filled in earlier during d_alloc().
2593  */
2594 
d_add(struct dentry * entry,struct inode * inode)2595 void d_add(struct dentry *entry, struct inode *inode)
2596 {
2597 	if (inode) {
2598 		security_d_instantiate(entry, inode);
2599 		spin_lock(&inode->i_lock);
2600 	}
2601 	__d_add(entry, inode);
2602 }
2603 EXPORT_SYMBOL(d_add);
2604 
2605 /**
2606  * d_exact_alias - find and hash an exact unhashed alias
2607  * @entry: dentry to add
2608  * @inode: The inode to go with this dentry
2609  *
2610  * If an unhashed dentry with the same name/parent and desired
2611  * inode already exists, hash and return it.  Otherwise, return
2612  * NULL.
2613  *
2614  * Parent directory should be locked.
2615  */
d_exact_alias(struct dentry * entry,struct inode * inode)2616 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2617 {
2618 	struct dentry *alias;
2619 	unsigned int hash = entry->d_name.hash;
2620 
2621 	spin_lock(&inode->i_lock);
2622 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2623 		/*
2624 		 * Don't need alias->d_lock here, because aliases with
2625 		 * d_parent == entry->d_parent are not subject to name or
2626 		 * parent changes, because the parent inode i_mutex is held.
2627 		 */
2628 		if (alias->d_name.hash != hash)
2629 			continue;
2630 		if (alias->d_parent != entry->d_parent)
2631 			continue;
2632 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2633 			continue;
2634 		spin_lock(&alias->d_lock);
2635 		if (!d_unhashed(alias)) {
2636 			spin_unlock(&alias->d_lock);
2637 			alias = NULL;
2638 		} else {
2639 			__dget_dlock(alias);
2640 			__d_rehash(alias);
2641 			spin_unlock(&alias->d_lock);
2642 		}
2643 		spin_unlock(&inode->i_lock);
2644 		return alias;
2645 	}
2646 	spin_unlock(&inode->i_lock);
2647 	return NULL;
2648 }
2649 EXPORT_SYMBOL(d_exact_alias);
2650 
2651 /**
2652  * dentry_update_name_case - update case insensitive dentry with a new name
2653  * @dentry: dentry to be updated
2654  * @name: new name
2655  *
2656  * Update a case insensitive dentry with new case of name.
2657  *
2658  * dentry must have been returned by d_lookup with name @name. Old and new
2659  * name lengths must match (ie. no d_compare which allows mismatched name
2660  * lengths).
2661  *
2662  * Parent inode i_mutex must be held over d_lookup and into this call (to
2663  * keep renames and concurrent inserts, and readdir(2) away).
2664  */
dentry_update_name_case(struct dentry * dentry,const struct qstr * name)2665 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2666 {
2667 	BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2668 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2669 
2670 	spin_lock(&dentry->d_lock);
2671 	write_seqcount_begin(&dentry->d_seq);
2672 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2673 	write_seqcount_end(&dentry->d_seq);
2674 	spin_unlock(&dentry->d_lock);
2675 }
2676 EXPORT_SYMBOL(dentry_update_name_case);
2677 
swap_names(struct dentry * dentry,struct dentry * target)2678 static void swap_names(struct dentry *dentry, struct dentry *target)
2679 {
2680 	if (unlikely(dname_external(target))) {
2681 		if (unlikely(dname_external(dentry))) {
2682 			/*
2683 			 * Both external: swap the pointers
2684 			 */
2685 			swap(target->d_name.name, dentry->d_name.name);
2686 		} else {
2687 			/*
2688 			 * dentry:internal, target:external.  Steal target's
2689 			 * storage and make target internal.
2690 			 */
2691 			memcpy(target->d_iname, dentry->d_name.name,
2692 					dentry->d_name.len + 1);
2693 			dentry->d_name.name = target->d_name.name;
2694 			target->d_name.name = target->d_iname;
2695 		}
2696 	} else {
2697 		if (unlikely(dname_external(dentry))) {
2698 			/*
2699 			 * dentry:external, target:internal.  Give dentry's
2700 			 * storage to target and make dentry internal
2701 			 */
2702 			memcpy(dentry->d_iname, target->d_name.name,
2703 					target->d_name.len + 1);
2704 			target->d_name.name = dentry->d_name.name;
2705 			dentry->d_name.name = dentry->d_iname;
2706 		} else {
2707 			/*
2708 			 * Both are internal.
2709 			 */
2710 			unsigned int i;
2711 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2712 			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2713 			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2714 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2715 				swap(((long *) &dentry->d_iname)[i],
2716 				     ((long *) &target->d_iname)[i]);
2717 			}
2718 		}
2719 	}
2720 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2721 }
2722 
copy_name(struct dentry * dentry,struct dentry * target)2723 static void copy_name(struct dentry *dentry, struct dentry *target)
2724 {
2725 	struct external_name *old_name = NULL;
2726 	if (unlikely(dname_external(dentry)))
2727 		old_name = external_name(dentry);
2728 	if (unlikely(dname_external(target))) {
2729 		atomic_inc(&external_name(target)->u.count);
2730 		dentry->d_name = target->d_name;
2731 	} else {
2732 		memcpy(dentry->d_iname, target->d_name.name,
2733 				target->d_name.len + 1);
2734 		dentry->d_name.name = dentry->d_iname;
2735 		dentry->d_name.hash_len = target->d_name.hash_len;
2736 	}
2737 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2738 		kfree_rcu(old_name, u.head);
2739 }
2740 
dentry_lock_for_move(struct dentry * dentry,struct dentry * target)2741 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2742 {
2743 	/*
2744 	 * XXXX: do we really need to take target->d_lock?
2745 	 */
2746 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2747 		spin_lock(&target->d_parent->d_lock);
2748 	else {
2749 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2750 			spin_lock(&dentry->d_parent->d_lock);
2751 			spin_lock_nested(&target->d_parent->d_lock,
2752 						DENTRY_D_LOCK_NESTED);
2753 		} else {
2754 			spin_lock(&target->d_parent->d_lock);
2755 			spin_lock_nested(&dentry->d_parent->d_lock,
2756 						DENTRY_D_LOCK_NESTED);
2757 		}
2758 	}
2759 	if (target < dentry) {
2760 		spin_lock_nested(&target->d_lock, 2);
2761 		spin_lock_nested(&dentry->d_lock, 3);
2762 	} else {
2763 		spin_lock_nested(&dentry->d_lock, 2);
2764 		spin_lock_nested(&target->d_lock, 3);
2765 	}
2766 }
2767 
dentry_unlock_for_move(struct dentry * dentry,struct dentry * target)2768 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2769 {
2770 	if (target->d_parent != dentry->d_parent)
2771 		spin_unlock(&dentry->d_parent->d_lock);
2772 	if (target->d_parent != target)
2773 		spin_unlock(&target->d_parent->d_lock);
2774 	spin_unlock(&target->d_lock);
2775 	spin_unlock(&dentry->d_lock);
2776 }
2777 
2778 /*
2779  * When switching names, the actual string doesn't strictly have to
2780  * be preserved in the target - because we're dropping the target
2781  * anyway. As such, we can just do a simple memcpy() to copy over
2782  * the new name before we switch, unless we are going to rehash
2783  * it.  Note that if we *do* unhash the target, we are not allowed
2784  * to rehash it without giving it a new name/hash key - whether
2785  * we swap or overwrite the names here, resulting name won't match
2786  * the reality in filesystem; it's only there for d_path() purposes.
2787  * Note that all of this is happening under rename_lock, so the
2788  * any hash lookup seeing it in the middle of manipulations will
2789  * be discarded anyway.  So we do not care what happens to the hash
2790  * key in that case.
2791  */
2792 /*
2793  * __d_move - move a dentry
2794  * @dentry: entry to move
2795  * @target: new dentry
2796  * @exchange: exchange the two dentries
2797  *
2798  * Update the dcache to reflect the move of a file name. Negative
2799  * dcache entries should not be moved in this way. Caller must hold
2800  * rename_lock, the i_mutex of the source and target directories,
2801  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2802  */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2803 static void __d_move(struct dentry *dentry, struct dentry *target,
2804 		     bool exchange)
2805 {
2806 	struct inode *dir = NULL;
2807 	unsigned n;
2808 	if (!dentry->d_inode)
2809 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2810 
2811 	BUG_ON(d_ancestor(dentry, target));
2812 	BUG_ON(d_ancestor(target, dentry));
2813 
2814 	dentry_lock_for_move(dentry, target);
2815 	if (unlikely(d_in_lookup(target))) {
2816 		dir = target->d_parent->d_inode;
2817 		n = start_dir_add(dir);
2818 		__d_lookup_done(target);
2819 	}
2820 
2821 	write_seqcount_begin(&dentry->d_seq);
2822 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2823 
2824 	/* unhash both */
2825 	/* ___d_drop does write_seqcount_barrier, but they're OK to nest. */
2826 	___d_drop(dentry);
2827 	___d_drop(target);
2828 
2829 	/* Switch the names.. */
2830 	if (exchange)
2831 		swap_names(dentry, target);
2832 	else
2833 		copy_name(dentry, target);
2834 
2835 	/* rehash in new place(s) */
2836 	__d_rehash(dentry);
2837 	if (exchange)
2838 		__d_rehash(target);
2839 	else
2840 		target->d_hash.pprev = NULL;
2841 
2842 	/* ... and switch them in the tree */
2843 	if (IS_ROOT(dentry)) {
2844 		/* splicing a tree */
2845 		dentry->d_flags |= DCACHE_RCUACCESS;
2846 		dentry->d_parent = target->d_parent;
2847 		target->d_parent = target;
2848 		list_del_init(&target->d_child);
2849 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2850 	} else {
2851 		/* swapping two dentries */
2852 		swap(dentry->d_parent, target->d_parent);
2853 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2854 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2855 		if (exchange)
2856 			fsnotify_update_flags(target);
2857 		fsnotify_update_flags(dentry);
2858 	}
2859 
2860 	write_seqcount_end(&target->d_seq);
2861 	write_seqcount_end(&dentry->d_seq);
2862 
2863 	if (dir)
2864 		end_dir_add(dir, n);
2865 	dentry_unlock_for_move(dentry, target);
2866 }
2867 
2868 /*
2869  * d_move - move a dentry
2870  * @dentry: entry to move
2871  * @target: new dentry
2872  *
2873  * Update the dcache to reflect the move of a file name. Negative
2874  * dcache entries should not be moved in this way. See the locking
2875  * requirements for __d_move.
2876  */
d_move(struct dentry * dentry,struct dentry * target)2877 void d_move(struct dentry *dentry, struct dentry *target)
2878 {
2879 	write_seqlock(&rename_lock);
2880 	__d_move(dentry, target, false);
2881 	write_sequnlock(&rename_lock);
2882 }
2883 EXPORT_SYMBOL(d_move);
2884 
2885 /*
2886  * d_exchange - exchange two dentries
2887  * @dentry1: first dentry
2888  * @dentry2: second dentry
2889  */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2890 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2891 {
2892 	write_seqlock(&rename_lock);
2893 
2894 	WARN_ON(!dentry1->d_inode);
2895 	WARN_ON(!dentry2->d_inode);
2896 	WARN_ON(IS_ROOT(dentry1));
2897 	WARN_ON(IS_ROOT(dentry2));
2898 
2899 	__d_move(dentry1, dentry2, true);
2900 
2901 	write_sequnlock(&rename_lock);
2902 }
2903 
2904 /**
2905  * d_ancestor - search for an ancestor
2906  * @p1: ancestor dentry
2907  * @p2: child dentry
2908  *
2909  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2910  * an ancestor of p2, else NULL.
2911  */
d_ancestor(struct dentry * p1,struct dentry * p2)2912 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2913 {
2914 	struct dentry *p;
2915 
2916 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2917 		if (p->d_parent == p1)
2918 			return p;
2919 	}
2920 	return NULL;
2921 }
2922 
2923 /*
2924  * This helper attempts to cope with remotely renamed directories
2925  *
2926  * It assumes that the caller is already holding
2927  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2928  *
2929  * Note: If ever the locking in lock_rename() changes, then please
2930  * remember to update this too...
2931  */
__d_unalias(struct inode * inode,struct dentry * dentry,struct dentry * alias)2932 static int __d_unalias(struct inode *inode,
2933 		struct dentry *dentry, struct dentry *alias)
2934 {
2935 	struct mutex *m1 = NULL;
2936 	struct rw_semaphore *m2 = NULL;
2937 	int ret = -ESTALE;
2938 
2939 	/* If alias and dentry share a parent, then no extra locks required */
2940 	if (alias->d_parent == dentry->d_parent)
2941 		goto out_unalias;
2942 
2943 	/* See lock_rename() */
2944 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2945 		goto out_err;
2946 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2947 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2948 		goto out_err;
2949 	m2 = &alias->d_parent->d_inode->i_rwsem;
2950 out_unalias:
2951 	__d_move(alias, dentry, false);
2952 	ret = 0;
2953 out_err:
2954 	if (m2)
2955 		up_read(m2);
2956 	if (m1)
2957 		mutex_unlock(m1);
2958 	return ret;
2959 }
2960 
2961 /**
2962  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2963  * @inode:  the inode which may have a disconnected dentry
2964  * @dentry: a negative dentry which we want to point to the inode.
2965  *
2966  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2967  * place of the given dentry and return it, else simply d_add the inode
2968  * to the dentry and return NULL.
2969  *
2970  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2971  * we should error out: directories can't have multiple aliases.
2972  *
2973  * This is needed in the lookup routine of any filesystem that is exportable
2974  * (via knfsd) so that we can build dcache paths to directories effectively.
2975  *
2976  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2977  * is returned.  This matches the expected return value of ->lookup.
2978  *
2979  * Cluster filesystems may call this function with a negative, hashed dentry.
2980  * In that case, we know that the inode will be a regular file, and also this
2981  * will only occur during atomic_open. So we need to check for the dentry
2982  * being already hashed only in the final case.
2983  */
d_splice_alias(struct inode * inode,struct dentry * dentry)2984 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2985 {
2986 	if (IS_ERR(inode))
2987 		return ERR_CAST(inode);
2988 
2989 	BUG_ON(!d_unhashed(dentry));
2990 
2991 	if (!inode)
2992 		goto out;
2993 
2994 	security_d_instantiate(dentry, inode);
2995 	spin_lock(&inode->i_lock);
2996 	if (S_ISDIR(inode->i_mode)) {
2997 		struct dentry *new = __d_find_any_alias(inode);
2998 		if (unlikely(new)) {
2999 			/* The reference to new ensures it remains an alias */
3000 			spin_unlock(&inode->i_lock);
3001 			write_seqlock(&rename_lock);
3002 			if (unlikely(d_ancestor(new, dentry))) {
3003 				write_sequnlock(&rename_lock);
3004 				dput(new);
3005 				new = ERR_PTR(-ELOOP);
3006 				pr_warn_ratelimited(
3007 					"VFS: Lookup of '%s' in %s %s"
3008 					" would have caused loop\n",
3009 					dentry->d_name.name,
3010 					inode->i_sb->s_type->name,
3011 					inode->i_sb->s_id);
3012 			} else if (!IS_ROOT(new)) {
3013 				int err = __d_unalias(inode, dentry, new);
3014 				write_sequnlock(&rename_lock);
3015 				if (err) {
3016 					dput(new);
3017 					new = ERR_PTR(err);
3018 				}
3019 			} else {
3020 				__d_move(new, dentry, false);
3021 				write_sequnlock(&rename_lock);
3022 			}
3023 			iput(inode);
3024 			return new;
3025 		}
3026 	}
3027 out:
3028 	__d_add(dentry, inode);
3029 	return NULL;
3030 }
3031 EXPORT_SYMBOL(d_splice_alias);
3032 
prepend(char ** buffer,int * buflen,const char * str,int namelen)3033 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3034 {
3035 	*buflen -= namelen;
3036 	if (*buflen < 0)
3037 		return -ENAMETOOLONG;
3038 	*buffer -= namelen;
3039 	memcpy(*buffer, str, namelen);
3040 	return 0;
3041 }
3042 
3043 /**
3044  * prepend_name - prepend a pathname in front of current buffer pointer
3045  * @buffer: buffer pointer
3046  * @buflen: allocated length of the buffer
3047  * @name:   name string and length qstr structure
3048  *
3049  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3050  * make sure that either the old or the new name pointer and length are
3051  * fetched. However, there may be mismatch between length and pointer.
3052  * The length cannot be trusted, we need to copy it byte-by-byte until
3053  * the length is reached or a null byte is found. It also prepends "/" at
3054  * the beginning of the name. The sequence number check at the caller will
3055  * retry it again when a d_move() does happen. So any garbage in the buffer
3056  * due to mismatched pointer and length will be discarded.
3057  *
3058  * Data dependency barrier is needed to make sure that we see that terminating
3059  * NUL.  Alpha strikes again, film at 11...
3060  */
prepend_name(char ** buffer,int * buflen,const struct qstr * name)3061 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3062 {
3063 	const char *dname = ACCESS_ONCE(name->name);
3064 	u32 dlen = ACCESS_ONCE(name->len);
3065 	char *p;
3066 
3067 	smp_read_barrier_depends();
3068 
3069 	*buflen -= dlen + 1;
3070 	if (*buflen < 0)
3071 		return -ENAMETOOLONG;
3072 	p = *buffer -= dlen + 1;
3073 	*p++ = '/';
3074 	while (dlen--) {
3075 		char c = *dname++;
3076 		if (!c)
3077 			break;
3078 		*p++ = c;
3079 	}
3080 	return 0;
3081 }
3082 
3083 /**
3084  * prepend_path - Prepend path string to a buffer
3085  * @path: the dentry/vfsmount to report
3086  * @root: root vfsmnt/dentry
3087  * @buffer: pointer to the end of the buffer
3088  * @buflen: pointer to buffer length
3089  *
3090  * The function will first try to write out the pathname without taking any
3091  * lock other than the RCU read lock to make sure that dentries won't go away.
3092  * It only checks the sequence number of the global rename_lock as any change
3093  * in the dentry's d_seq will be preceded by changes in the rename_lock
3094  * sequence number. If the sequence number had been changed, it will restart
3095  * the whole pathname back-tracing sequence again by taking the rename_lock.
3096  * In this case, there is no need to take the RCU read lock as the recursive
3097  * parent pointer references will keep the dentry chain alive as long as no
3098  * rename operation is performed.
3099  */
prepend_path(const struct path * path,const struct path * root,char ** buffer,int * buflen)3100 static int prepend_path(const struct path *path,
3101 			const struct path *root,
3102 			char **buffer, int *buflen)
3103 {
3104 	struct dentry *dentry;
3105 	struct vfsmount *vfsmnt;
3106 	struct mount *mnt;
3107 	int error = 0;
3108 	unsigned seq, m_seq = 0;
3109 	char *bptr;
3110 	int blen;
3111 
3112 	rcu_read_lock();
3113 restart_mnt:
3114 	read_seqbegin_or_lock(&mount_lock, &m_seq);
3115 	seq = 0;
3116 	rcu_read_lock();
3117 restart:
3118 	bptr = *buffer;
3119 	blen = *buflen;
3120 	error = 0;
3121 	dentry = path->dentry;
3122 	vfsmnt = path->mnt;
3123 	mnt = real_mount(vfsmnt);
3124 	read_seqbegin_or_lock(&rename_lock, &seq);
3125 	while (dentry != root->dentry || vfsmnt != root->mnt) {
3126 		struct dentry * parent;
3127 
3128 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3129 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3130 			/* Escaped? */
3131 			if (dentry != vfsmnt->mnt_root) {
3132 				bptr = *buffer;
3133 				blen = *buflen;
3134 				error = 3;
3135 				break;
3136 			}
3137 			/* Global root? */
3138 			if (mnt != parent) {
3139 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3140 				mnt = parent;
3141 				vfsmnt = &mnt->mnt;
3142 				continue;
3143 			}
3144 			if (!error)
3145 				error = is_mounted(vfsmnt) ? 1 : 2;
3146 			break;
3147 		}
3148 		parent = dentry->d_parent;
3149 		prefetch(parent);
3150 		error = prepend_name(&bptr, &blen, &dentry->d_name);
3151 		if (error)
3152 			break;
3153 
3154 		dentry = parent;
3155 	}
3156 	if (!(seq & 1))
3157 		rcu_read_unlock();
3158 	if (need_seqretry(&rename_lock, seq)) {
3159 		seq = 1;
3160 		goto restart;
3161 	}
3162 	done_seqretry(&rename_lock, seq);
3163 
3164 	if (!(m_seq & 1))
3165 		rcu_read_unlock();
3166 	if (need_seqretry(&mount_lock, m_seq)) {
3167 		m_seq = 1;
3168 		goto restart_mnt;
3169 	}
3170 	done_seqretry(&mount_lock, m_seq);
3171 
3172 	if (error >= 0 && bptr == *buffer) {
3173 		if (--blen < 0)
3174 			error = -ENAMETOOLONG;
3175 		else
3176 			*--bptr = '/';
3177 	}
3178 	*buffer = bptr;
3179 	*buflen = blen;
3180 	return error;
3181 }
3182 
3183 /**
3184  * __d_path - return the path of a dentry
3185  * @path: the dentry/vfsmount to report
3186  * @root: root vfsmnt/dentry
3187  * @buf: buffer to return value in
3188  * @buflen: buffer length
3189  *
3190  * Convert a dentry into an ASCII path name.
3191  *
3192  * Returns a pointer into the buffer or an error code if the
3193  * path was too long.
3194  *
3195  * "buflen" should be positive.
3196  *
3197  * If the path is not reachable from the supplied root, return %NULL.
3198  */
__d_path(const struct path * path,const struct path * root,char * buf,int buflen)3199 char *__d_path(const struct path *path,
3200 	       const struct path *root,
3201 	       char *buf, int buflen)
3202 {
3203 	char *res = buf + buflen;
3204 	int error;
3205 
3206 	prepend(&res, &buflen, "\0", 1);
3207 	error = prepend_path(path, root, &res, &buflen);
3208 
3209 	if (error < 0)
3210 		return ERR_PTR(error);
3211 	if (error > 0)
3212 		return NULL;
3213 	return res;
3214 }
3215 
d_absolute_path(const struct path * path,char * buf,int buflen)3216 char *d_absolute_path(const struct path *path,
3217 	       char *buf, int buflen)
3218 {
3219 	struct path root = {};
3220 	char *res = buf + buflen;
3221 	int error;
3222 
3223 	prepend(&res, &buflen, "\0", 1);
3224 	error = prepend_path(path, &root, &res, &buflen);
3225 
3226 	if (error > 1)
3227 		error = -EINVAL;
3228 	if (error < 0)
3229 		return ERR_PTR(error);
3230 	return res;
3231 }
3232 EXPORT_SYMBOL(d_absolute_path);
3233 
3234 /*
3235  * same as __d_path but appends "(deleted)" for unlinked files.
3236  */
path_with_deleted(const struct path * path,const struct path * root,char ** buf,int * buflen)3237 static int path_with_deleted(const struct path *path,
3238 			     const struct path *root,
3239 			     char **buf, int *buflen)
3240 {
3241 	prepend(buf, buflen, "\0", 1);
3242 	if (d_unlinked(path->dentry)) {
3243 		int error = prepend(buf, buflen, " (deleted)", 10);
3244 		if (error)
3245 			return error;
3246 	}
3247 
3248 	return prepend_path(path, root, buf, buflen);
3249 }
3250 
prepend_unreachable(char ** buffer,int * buflen)3251 static int prepend_unreachable(char **buffer, int *buflen)
3252 {
3253 	return prepend(buffer, buflen, "(unreachable)", 13);
3254 }
3255 
get_fs_root_rcu(struct fs_struct * fs,struct path * root)3256 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3257 {
3258 	unsigned seq;
3259 
3260 	do {
3261 		seq = read_seqcount_begin(&fs->seq);
3262 		*root = fs->root;
3263 	} while (read_seqcount_retry(&fs->seq, seq));
3264 }
3265 
3266 /**
3267  * d_path - return the path of a dentry
3268  * @path: path to report
3269  * @buf: buffer to return value in
3270  * @buflen: buffer length
3271  *
3272  * Convert a dentry into an ASCII path name. If the entry has been deleted
3273  * the string " (deleted)" is appended. Note that this is ambiguous.
3274  *
3275  * Returns a pointer into the buffer or an error code if the path was
3276  * too long. Note: Callers should use the returned pointer, not the passed
3277  * in buffer, to use the name! The implementation often starts at an offset
3278  * into the buffer, and may leave 0 bytes at the start.
3279  *
3280  * "buflen" should be positive.
3281  */
d_path(const struct path * path,char * buf,int buflen)3282 char *d_path(const struct path *path, char *buf, int buflen)
3283 {
3284 	char *res = buf + buflen;
3285 	struct path root;
3286 	int error;
3287 
3288 	/*
3289 	 * We have various synthetic filesystems that never get mounted.  On
3290 	 * these filesystems dentries are never used for lookup purposes, and
3291 	 * thus don't need to be hashed.  They also don't need a name until a
3292 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3293 	 * below allows us to generate a name for these objects on demand:
3294 	 *
3295 	 * Some pseudo inodes are mountable.  When they are mounted
3296 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3297 	 * and instead have d_path return the mounted path.
3298 	 */
3299 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3300 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3301 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3302 
3303 	rcu_read_lock();
3304 	get_fs_root_rcu(current->fs, &root);
3305 	error = path_with_deleted(path, &root, &res, &buflen);
3306 	rcu_read_unlock();
3307 
3308 	if (error < 0)
3309 		res = ERR_PTR(error);
3310 	return res;
3311 }
3312 EXPORT_SYMBOL(d_path);
3313 
3314 /*
3315  * Helper function for dentry_operations.d_dname() members
3316  */
dynamic_dname(struct dentry * dentry,char * buffer,int buflen,const char * fmt,...)3317 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3318 			const char *fmt, ...)
3319 {
3320 	va_list args;
3321 	char temp[64];
3322 	int sz;
3323 
3324 	va_start(args, fmt);
3325 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3326 	va_end(args);
3327 
3328 	if (sz > sizeof(temp) || sz > buflen)
3329 		return ERR_PTR(-ENAMETOOLONG);
3330 
3331 	buffer += buflen - sz;
3332 	return memcpy(buffer, temp, sz);
3333 }
3334 
simple_dname(struct dentry * dentry,char * buffer,int buflen)3335 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3336 {
3337 	char *end = buffer + buflen;
3338 	/* these dentries are never renamed, so d_lock is not needed */
3339 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3340 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3341 	    prepend(&end, &buflen, "/", 1))
3342 		end = ERR_PTR(-ENAMETOOLONG);
3343 	return end;
3344 }
3345 EXPORT_SYMBOL(simple_dname);
3346 
3347 /*
3348  * Write full pathname from the root of the filesystem into the buffer.
3349  */
__dentry_path(struct dentry * d,char * buf,int buflen)3350 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3351 {
3352 	struct dentry *dentry;
3353 	char *end, *retval;
3354 	int len, seq = 0;
3355 	int error = 0;
3356 
3357 	if (buflen < 2)
3358 		goto Elong;
3359 
3360 	rcu_read_lock();
3361 restart:
3362 	dentry = d;
3363 	end = buf + buflen;
3364 	len = buflen;
3365 	prepend(&end, &len, "\0", 1);
3366 	/* Get '/' right */
3367 	retval = end-1;
3368 	*retval = '/';
3369 	read_seqbegin_or_lock(&rename_lock, &seq);
3370 	while (!IS_ROOT(dentry)) {
3371 		struct dentry *parent = dentry->d_parent;
3372 
3373 		prefetch(parent);
3374 		error = prepend_name(&end, &len, &dentry->d_name);
3375 		if (error)
3376 			break;
3377 
3378 		retval = end;
3379 		dentry = parent;
3380 	}
3381 	if (!(seq & 1))
3382 		rcu_read_unlock();
3383 	if (need_seqretry(&rename_lock, seq)) {
3384 		seq = 1;
3385 		goto restart;
3386 	}
3387 	done_seqretry(&rename_lock, seq);
3388 	if (error)
3389 		goto Elong;
3390 	return retval;
3391 Elong:
3392 	return ERR_PTR(-ENAMETOOLONG);
3393 }
3394 
dentry_path_raw(struct dentry * dentry,char * buf,int buflen)3395 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3396 {
3397 	return __dentry_path(dentry, buf, buflen);
3398 }
3399 EXPORT_SYMBOL(dentry_path_raw);
3400 
dentry_path(struct dentry * dentry,char * buf,int buflen)3401 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3402 {
3403 	char *p = NULL;
3404 	char *retval;
3405 
3406 	if (d_unlinked(dentry)) {
3407 		p = buf + buflen;
3408 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3409 			goto Elong;
3410 		buflen++;
3411 	}
3412 	retval = __dentry_path(dentry, buf, buflen);
3413 	if (!IS_ERR(retval) && p)
3414 		*p = '/';	/* restore '/' overriden with '\0' */
3415 	return retval;
3416 Elong:
3417 	return ERR_PTR(-ENAMETOOLONG);
3418 }
3419 
get_fs_root_and_pwd_rcu(struct fs_struct * fs,struct path * root,struct path * pwd)3420 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3421 				    struct path *pwd)
3422 {
3423 	unsigned seq;
3424 
3425 	do {
3426 		seq = read_seqcount_begin(&fs->seq);
3427 		*root = fs->root;
3428 		*pwd = fs->pwd;
3429 	} while (read_seqcount_retry(&fs->seq, seq));
3430 }
3431 
3432 /*
3433  * NOTE! The user-level library version returns a
3434  * character pointer. The kernel system call just
3435  * returns the length of the buffer filled (which
3436  * includes the ending '\0' character), or a negative
3437  * error value. So libc would do something like
3438  *
3439  *	char *getcwd(char * buf, size_t size)
3440  *	{
3441  *		int retval;
3442  *
3443  *		retval = sys_getcwd(buf, size);
3444  *		if (retval >= 0)
3445  *			return buf;
3446  *		errno = -retval;
3447  *		return NULL;
3448  *	}
3449  */
SYSCALL_DEFINE2(getcwd,char __user *,buf,unsigned long,size)3450 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3451 {
3452 	int error;
3453 	struct path pwd, root;
3454 	char *page = __getname();
3455 
3456 	if (!page)
3457 		return -ENOMEM;
3458 
3459 	rcu_read_lock();
3460 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3461 
3462 	error = -ENOENT;
3463 	if (!d_unlinked(pwd.dentry)) {
3464 		unsigned long len;
3465 		char *cwd = page + PATH_MAX;
3466 		int buflen = PATH_MAX;
3467 
3468 		prepend(&cwd, &buflen, "\0", 1);
3469 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3470 		rcu_read_unlock();
3471 
3472 		if (error < 0)
3473 			goto out;
3474 
3475 		/* Unreachable from current root */
3476 		if (error > 0) {
3477 			error = prepend_unreachable(&cwd, &buflen);
3478 			if (error)
3479 				goto out;
3480 		}
3481 
3482 		error = -ERANGE;
3483 		len = PATH_MAX + page - cwd;
3484 		if (len <= size) {
3485 			error = len;
3486 			if (copy_to_user(buf, cwd, len))
3487 				error = -EFAULT;
3488 		}
3489 	} else {
3490 		rcu_read_unlock();
3491 	}
3492 
3493 out:
3494 	__putname(page);
3495 	return error;
3496 }
3497 
3498 /*
3499  * Test whether new_dentry is a subdirectory of old_dentry.
3500  *
3501  * Trivially implemented using the dcache structure
3502  */
3503 
3504 /**
3505  * is_subdir - is new dentry a subdirectory of old_dentry
3506  * @new_dentry: new dentry
3507  * @old_dentry: old dentry
3508  *
3509  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3510  * Returns false otherwise.
3511  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3512  */
3513 
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3514 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3515 {
3516 	bool result;
3517 	unsigned seq;
3518 
3519 	if (new_dentry == old_dentry)
3520 		return true;
3521 
3522 	do {
3523 		/* for restarting inner loop in case of seq retry */
3524 		seq = read_seqbegin(&rename_lock);
3525 		/*
3526 		 * Need rcu_readlock to protect against the d_parent trashing
3527 		 * due to d_move
3528 		 */
3529 		rcu_read_lock();
3530 		if (d_ancestor(old_dentry, new_dentry))
3531 			result = true;
3532 		else
3533 			result = false;
3534 		rcu_read_unlock();
3535 	} while (read_seqretry(&rename_lock, seq));
3536 
3537 	return result;
3538 }
3539 
d_genocide_kill(void * data,struct dentry * dentry)3540 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3541 {
3542 	struct dentry *root = data;
3543 	if (dentry != root) {
3544 		if (d_unhashed(dentry) || !dentry->d_inode)
3545 			return D_WALK_SKIP;
3546 
3547 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3548 			dentry->d_flags |= DCACHE_GENOCIDE;
3549 			dentry->d_lockref.count--;
3550 		}
3551 	}
3552 	return D_WALK_CONTINUE;
3553 }
3554 
d_genocide(struct dentry * parent)3555 void d_genocide(struct dentry *parent)
3556 {
3557 	d_walk(parent, parent, d_genocide_kill, NULL);
3558 }
3559 
d_tmpfile(struct dentry * dentry,struct inode * inode)3560 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3561 {
3562 	inode_dec_link_count(inode);
3563 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3564 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3565 		!d_unlinked(dentry));
3566 	spin_lock(&dentry->d_parent->d_lock);
3567 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3568 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3569 				(unsigned long long)inode->i_ino);
3570 	spin_unlock(&dentry->d_lock);
3571 	spin_unlock(&dentry->d_parent->d_lock);
3572 	d_instantiate(dentry, inode);
3573 }
3574 EXPORT_SYMBOL(d_tmpfile);
3575 
3576 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3577 static int __init set_dhash_entries(char *str)
3578 {
3579 	if (!str)
3580 		return 0;
3581 	dhash_entries = simple_strtoul(str, &str, 0);
3582 	return 1;
3583 }
3584 __setup("dhash_entries=", set_dhash_entries);
3585 
dcache_init_early(void)3586 static void __init dcache_init_early(void)
3587 {
3588 	unsigned int loop;
3589 
3590 	/* If hashes are distributed across NUMA nodes, defer
3591 	 * hash allocation until vmalloc space is available.
3592 	 */
3593 	if (hashdist)
3594 		return;
3595 
3596 	dentry_hashtable =
3597 		alloc_large_system_hash("Dentry cache",
3598 					sizeof(struct hlist_bl_head),
3599 					dhash_entries,
3600 					13,
3601 					HASH_EARLY,
3602 					&d_hash_shift,
3603 					&d_hash_mask,
3604 					0,
3605 					0);
3606 
3607 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3608 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3609 }
3610 
dcache_init(void)3611 static void __init dcache_init(void)
3612 {
3613 	unsigned int loop;
3614 
3615 	/*
3616 	 * A constructor could be added for stable state like the lists,
3617 	 * but it is probably not worth it because of the cache nature
3618 	 * of the dcache.
3619 	 */
3620 	dentry_cache = KMEM_CACHE(dentry,
3621 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3622 
3623 	/* Hash may have been set up in dcache_init_early */
3624 	if (!hashdist)
3625 		return;
3626 
3627 	dentry_hashtable =
3628 		alloc_large_system_hash("Dentry cache",
3629 					sizeof(struct hlist_bl_head),
3630 					dhash_entries,
3631 					13,
3632 					0,
3633 					&d_hash_shift,
3634 					&d_hash_mask,
3635 					0,
3636 					0);
3637 
3638 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3639 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3640 }
3641 
3642 /* SLAB cache for __getname() consumers */
3643 struct kmem_cache *names_cachep __read_mostly;
3644 EXPORT_SYMBOL(names_cachep);
3645 
3646 EXPORT_SYMBOL(d_genocide);
3647 
vfs_caches_init_early(void)3648 void __init vfs_caches_init_early(void)
3649 {
3650 	dcache_init_early();
3651 	inode_init_early();
3652 }
3653 
vfs_caches_init(void)3654 void __init vfs_caches_init(void)
3655 {
3656 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3657 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3658 
3659 	dcache_init();
3660 	inode_init();
3661 	files_init();
3662 	files_maxfiles_init();
3663 	mnt_init();
3664 	bdev_cache_init();
3665 	chrdev_init();
3666 }
3667